## Exercises on transposes, permutations, spaces

Problem 5.1: (2.7 \#13. Introduction to Linear Algebra: Strang)
a) Find a 3 by 3 permutation matrix with $P^{3}=I$ (but not $P=I$ ).
b) Find a 4 by 4 permutation $\widehat{P}$ with $\widehat{P}^{4} \neq I$.

## Solution:

a) Let $P$ move the rows in a cycle: the first to the second, the second to the third, and the third to the first. So

$$
P=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], P^{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \text { and } P^{3}=I
$$

b) Let $\widehat{P}$ be the block diagonal matrix with 1 and $P$ on the diagonal; $\widehat{P}=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & P\end{array}\right]$. Since $P^{3}=I$, also $\widehat{P}^{3}=I$. So $\widehat{P}^{4}=\widehat{P} \neq I$.

Problem 5.2: $\quad$ Suppose $A$ is a four by four matrix. How many entries of $A$ can be chosen independently if:
a) $A$ is symmetric?
b) $A$ is skew-symmetric? $\left(A^{T}=-A\right)$

## Solution:

a) The most general form of a four by four symmetric matrix is:

$$
A=\left[\begin{array}{llll}
a & e & f & g \\
e & b & h & i \\
f & h & c & j \\
g & i & j & d
\end{array}\right]
$$

Therefore 10 entries can be chosen independently.
b) The most general form of a four by four skew-symmetric matrix is:

$$
A=\left[\begin{array}{rrrr}
0 & -a & -b & -c \\
a & 0 & -d & -e \\
b & d & 0 & -f \\
c & e & f & 0
\end{array}\right]
$$

Therefore 6 entries can be chosen independently.

Problem 5.3: (3.1 \#18.) True or false (check addition or give a counterexample):
a) The symmetric matrices in $M$ (with $A^{T}=A$ ) form a subspace.
b) The skew-symmetric matrices in $M$ (with $A^{T}=-A$ ) form a subspace.
c) The unsymmetric matrices in $M$ (with $A^{T} \neq A$ ) form a subspace.

## Solution:

a) True: $A^{T}=A$ and $B^{T}=B$ lead to:

$$
(A+B)^{T}=A^{T}+B^{T}=A+B, \text { and }(c A)^{T}=c A .
$$

b) True: $A^{T}=-A$ and $B^{T}=-B$ lead to:

$$
(A+B)^{T}=A^{T}+B^{T}=-A-B=-(A+B), \text { and }(c A)^{T}=-c A
$$

c) False: $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

