Exercises on column space and nullspace

Problem 6.1: (3.1 \#30. Introduction to Linear Algebra: Strang) Suppose S and \mathbf{T} are two subspaces of a vector space \mathbf{V}.
a) Definition: The sum $\mathbf{S}+\mathbf{T}$ contains all sums $\mathbf{s}+\boldsymbol{t}$ of a vector \mathbf{s} in \mathbf{S} and a vector \mathbf{t} in \mathbf{T}. Show that $\mathbf{S}+\mathbf{T}$ satisfies the requirements (addition and scalar multiplication) for a vector space.
b) If \mathbf{S} and \mathbf{T} are lines in \mathbf{R}^{m}, what is the difference between $\mathbf{S}+\mathbf{T}$ and $\mathbf{S} \cup \mathbf{T}$? That union contains all vectors from \mathbf{S} and \mathbf{T} or both. Explain this statement: The span of $\mathbf{S} \cup \mathbf{T}$ is $\mathbf{S}+\mathbf{T}$.

Solution:

a) Let $\mathbf{s}, \mathbf{s}^{\prime}$ be vectors in \mathbf{S}, let $\mathbf{t}, \mathbf{t}^{\prime}$ be vectors in \mathbf{T}, and let c be a scalar. Then

$$
(\mathbf{s}+\mathbf{t})+\left(\mathbf{s}^{\prime}+\mathbf{t}^{\prime}\right)=\left(\mathbf{s}+\mathbf{s}^{\prime}\right)+\left(\mathbf{t}+\mathbf{t}^{\prime}\right) \text { and } c(\mathbf{s}+\mathbf{t})=c \mathbf{s}+c \mathbf{t} .
$$

Thus $\mathbf{S}+\mathbf{T}$ is closed under addition and scalar multiplication; in other words, it satisfies the two requirements for a vector space.
b) If \mathbf{S} and \mathbf{T} are distinct lines, then $\mathbf{S}+\mathbf{T}$ is a plane, whereas $\mathbf{S} \cup \mathbf{T}$ is only the two lines. The span of $\mathbf{S} \cup \mathbf{T}$ is the set of all combinations of vectors in this union of two lines. In particular, it contains all sums $\mathbf{s}+\mathbf{t}$ of a vector \mathbf{s} in \mathbf{S} and a vector \mathbf{t} in \mathbf{T}, and these sums form $\mathbf{S}+\mathbf{T}$.
Since $\mathbf{S}+\mathbf{T}$ contains both \mathbf{S} and \mathbf{T}, it contains $\mathbf{S} \cup \mathbf{T}$. Further, $\mathbf{S}+\mathbf{T}$ is a vector space. So it contains all combinations of vectors in itself; in particular, it contains the span of $\mathbf{S} \cup \mathbf{T}$. Thus the span of $\mathbf{S} \cup \mathbf{T}$ is $\mathbf{S}+\mathbf{T}$.

Problem 6.2: (3.2\#18.) The plane $x-3 y-z=12$ is parallel to the plane $x-3 y-x=0$. One particular point on this plane is $(12,0,0)$. All points on the plane have the form (fill in the first components)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+y\left[\begin{array}{l}
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Solution: The equation $x=12+3 y+z$ says it all:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\left(=\left[\begin{array}{r}
12+3 y+z \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{r}
12 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{r}
3 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{r}
1 \\
0 \\
1
\end{array}\right]
$$

Problem 6.3: (3.2 \#36.) How is the nullspace $\mathbf{N}(C)$ related to the spaces $\mathbf{N}(A)$ and $\mathbf{N}(B)$, if $C=\left[\begin{array}{c}A \\ B\end{array}\right]$?
Solution: $\quad \mathbf{N}(C)=\mathbf{N}(A) \cap \mathbf{N}(B)$ contains all vectors that are in both nullspaces:

$$
C \mathbf{x}=\left[\begin{array}{c}
A \mathbf{x} \\
B \mathbf{x}
\end{array}\right]=0
$$

if and only if $A \mathbf{x}=0$ and $B \mathbf{x}=0$.

