## Exercises on solving $A \mathbf{x}=0$ : pivot variables, special solutions

## Problem 7.1:

a) Find the row reduced form of:

$$
A=\left[\begin{array}{rrrr}
1 & 5 & 7 & 9 \\
0 & 4 & 1 & 7 \\
2 & -2 & 11 & -3
\end{array}\right]
$$

b) What is the rank of this matrix?
c) Find any special solutions to the equation $A \mathbf{x}=\mathbf{0}$.

## Solution:

a) To transform $A$ into its reduced row form, we perform a series of row operations. Different operations are possible (same answer!). First, we multiply the first row by 2 and subtract it from the third row:

$$
\left[\begin{array}{rrrr}
1 & 5 & 7 & 9 \\
0 & 4 & 1 & 7 \\
2 & -2 & 11 & -3
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 5 & 7 & 9 \\
0 & 4 & 1 & 7 \\
0 & -12 & -3 & -21
\end{array}\right]
$$

We then multiply the second row by $\frac{1}{4}$ to make the second pivot 1 :

$$
\left[\begin{array}{rrrr}
1 & 5 & 7 & 9 \\
0 & 4 & 1 & 7 \\
0 & -12 & -3 & -21
\end{array}\right] \longrightarrow\left[\begin{array}{rrrr}
1 & 5 & 7 & 9 \\
0 & 1 & 1 / 4 & 7 / 4 \\
0 & -12 & -3 & -21
\end{array}\right]
$$

Multiply the second row by 12 and add it to the third row:

$$
\left[\begin{array}{rrrr}
1 & 5 & 7 & 9 \\
0 & 1 & 1 / 4 & 7 / 4 \\
0 & -12 & -3 & -21
\end{array}\right] \longrightarrow\left[\begin{array}{rrrr}
1 & 5 & 7 & 9 \\
0 & 1 & 1 / 4 & 7 / 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Finally, multiply the second row by 5 and subtract it from the first row:

$$
\left[\begin{array}{rrrr}
1 & 5 & 7 & 9 \\
0 & 1 & 1 / 4 & 7 / 4 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{rrrr}
1 & 0 & -23 / 4 & 1 / 4 \\
0 & 1 & 1 / 4 & 7 / 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

b) The matrix is of rank 2 because it has 2 pivots.
c) The special solutions to $A \mathbf{x}=\mathbf{0}$ are:

$$
\left[\begin{array}{r}
23 / 4 \\
-1 / 4 \\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{r}
-1 / 4 \\
-7 / 4 \\
0 \\
1
\end{array}\right]
$$

Problem 7.2: (3.3 \#17.b Introduction to Linear Algebra: Strang) Find $A_{1}$ and $A_{2}$ so that $\operatorname{rank}\left(A_{1} B\right)=1$ and $\operatorname{rank}\left(A_{2} B\right)=0$ for $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

Solution: Take $A_{1}=I_{2}$ and $A_{2}=0_{2}$.
A less trivial example is $A_{2}=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$.

