Exercises on independence, basis, and dimension

Problem 9.1: (3.5 \#2. Introduction to Linear Algebra: Strang) Find the largest possible number of independent vectors among:

$$
\begin{gathered}
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right], \\
\mathbf{v}_{4}=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
0
\end{array}\right], \mathbf{v}_{5}=\left[\begin{array}{r}
0 \\
1 \\
0 \\
-1
\end{array}\right] \quad \text { and } \mathbf{v}_{6}=\left[\begin{array}{r}
0 \\
0 \\
1 \\
-1
\end{array}\right] .
\end{gathered}
$$

Solution: Since $\mathbf{v}_{4}=\mathbf{v}_{2}-\mathbf{v}_{1}, \mathbf{v}_{5}=\mathbf{v}_{3}-\mathbf{v}_{1}$, and $\mathbf{v}_{6}=\mathbf{v}_{3}-\mathbf{v}_{2}$, the vectors $\mathbf{v}_{4}, \mathbf{v}_{5}$, and \mathbf{v}_{6} are dependent on the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3}. To determine the relationship between the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} we apply row reduction to the matrix $\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$:

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

As there are three pivots, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are independent. Therefore the largest number of independent vectors among the given six vectors is three.

Problem 9.2: (3.5 \#20.) Find a basis for the plane $x-2 y+3 z=0$ in \mathbb{R}^{3}. Then find a basis for the intersection of that plane with the $x y$ plane. Then find a basis for all vectors perpendicular to the plane.

Solution: This plane is the nullspace of the matrix

$$
A=\left[\begin{array}{rrr}
1 & -2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The special solutions to $A \mathbf{x}=\mathbf{0}$ are

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \text { and } \mathbf{v}_{2}=\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right]
$$

These form a basis for the nullspace of A and thus for the plane.
The intersection of this plane with the $x y$ plane contains \mathbf{v}_{1} and does not contain \mathbf{v}_{2}; the intersection must be a line. Since $\mathbf{v}_{\mathbf{1}}$ lies on this line it also provides a basis for it.

Finally, we can use "inspection" or the cross product to find the vector

$$
\mathbf{v}_{3}=\left[\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right]
$$

which is perpendicular to both \mathbf{v}_{1} and \mathbf{v}_{2}. It is therefore perpendicular to the plane. Since the space of vectors perpendicular to a plane in \mathbb{R}^{3} is one-dimensional, \mathbf{v}_{3} serves as a basis for that space.

