Exercises on the four fundamental subspaces

Problem 10.1: (3.6 #11. *Introduction to Linear Algebra:* Strang) A is an m by n matrix of rank r. Suppose there are right sides \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ has no solution.

- a) What are all the inequalities (< or \le) that must be true between m, n, and r?
- b) How do you know that $A^T y = 0$ has solutions other than y = 0?

Solution:

- a) The rank of a matrix is always less than or equal to the number of rows and columns, so $r \le m$ and $r \le n$. The second statement tells us that the column space is not all of \mathbb{R}^n , so r < m.
- b) These solutions make up the left nullspace, which has dimension m-r>0 (that is, there are nonzero vectors in it).

Problem 10.2: (3.6 #24.) A^T **y** = **d** is solvable when **d** is in which of the four subspaces? The solution **y** is unique when the _____ contains only the zero vector.

Solution: It is solvable when **d** is in the row space, which consists of all vectors A^T **y**. The solution **y** is unique when the **left nullspace** contains only the zero vector.