Exercises on the four fundamental subspaces

Problem 10.1: (3.6 \#11. Introduction to Linear Algebra: Strang) A is an m by n matrix of rank r. Suppose there are right sides \mathbf{b} for which $A \mathbf{x}=\mathbf{b}$ has no solution.
a) What are all the inequalities $(<$ or $\leq)$ that must be true between m, n, and r ?
b) How do you know that $A^{T} \mathbf{y}=\mathbf{0}$ has solutions other than $\mathbf{y}=\mathbf{0}$?

Solution:

a) The rank of a matrix is always less than or equal to the number of rows and columns, so $r \leq m$ and $r \leq n$. The second statement tells us that the column space is not all of \mathbb{R}^{n}, so $r<m$.
b) These solutions make up the left nullspace, which has dimension $m-$ $r>0$ (that is, there are nonzero vectors in it).

Problem 10.2: (3.6 \#24.) $A^{T} \mathbf{y}=\mathbf{d}$ is solvable when \mathbf{d} is in which of the four subspaces? The solution \mathbf{y} is unique when the \qquad contains only the zero vector.

Solution: It is solvable when \mathbf{d} is in the row space, which consists of all vectors $A^{T} \mathbf{y}$. The solution \mathbf{y} is unique when the left nullspace contains only the zero vector.

