Exercises on projections onto subspaces

Problem 15.1: (4.2 \#13. Introduction to Linear Algebra: Strang) Suppose A is the four by four identity matrix with its last column removed; A is four by three. Project $\mathbf{b}=(1,2,3,4)$ onto the column space of A. What shape is the projection matrix P and what is P ?

Solution: $\quad P$ will be four by four since we are projecting a 4-dimensional vector to another 4-dimensional vector. We will have:

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This can be seen by observing that the column space of A is the $w x y$-space, so we just need to subtract the z coordinate from the 4 -dimensional vector (w, x, y, z) we're projecting. The projection of \mathbf{b} is therefore:

$$
\mathbf{p}=P \mathbf{b}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right]
$$

Problem 15.2: (4.2 \#17.) If $P^{2}=P$, show that $(I-P)^{2}=I-P$. For the matrices A and P from the previous question, P projects onto the column space of A and $I-P$ projects onto the \qquad

Solution:

$$
(I-P)^{2}=I^{2}-I P-P I+P^{2}=I-2 P+P^{2}=I-2 P+P=I-P
$$

Using the matrices A and P from the previous question,

$$
I-P=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

projects onto the left nullspace of A.

