Exercises on orthogonal matrices and Gram-Schmidt

Problem 17.1: (4.4 \#10.b Introduction to Linear Algebra: Strang)
Orthonormal vectors are automatically linearly independent.
Matrix Proof: Show that $Q \mathbf{x}=\mathbf{0}$ implies $\mathbf{x}=\mathbf{0}$. Since Q may be rectangular, you can use Q^{T} but not Q^{-1}.

Solution: By definition, Q is a matrix whose columns are orthonormal, and so we know that $Q^{T} Q=I$ (where Q may be rectangular). Then:

$$
Q \mathbf{x}=\mathbf{0} \Longrightarrow Q^{T} Q \mathbf{x}=Q^{T} \mathbf{0} \Longrightarrow I \mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}=\mathbf{0}
$$

Thus the nullspace of Q is the zero vector, and so the columns of Q are linearly independent. There are no non-zero linear combinations of the columns that equal the zero vector. Thus, orthonormal vectors are automatically linearly independent.

Problem 17.2: (4.4 \#18) Given the vectors \mathbf{a}, \mathbf{b} and \mathbf{c} listed below, use the Gram-Schmidt process to find orthogonal vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} that span the same space.

$$
\mathbf{a}=(1,-1,0,0), \mathbf{b}=(0,1,-1,0), \mathbf{c}=(0,0,1,-1)
$$

Show that $\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$ and $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ are bases for the space of vectors perpendicular to $\mathbf{d}=(1,1,1,1)$.

Solution: We apply Gram-Schmidt to a, b, c. First, we set

$$
\mathbf{A}=\mathbf{a}=(\mathbf{1},-\mathbf{1}, \mathbf{0}, \mathbf{0})
$$

Next we find B:

$$
\mathbf{B}=\mathbf{b}-\frac{\mathbf{A}^{\mathbf{T}} \mathbf{b}}{\mathbf{A}^{\mathbf{T}} \mathbf{A}} \mathbf{A}=(0,1,-1,0)+\frac{1}{2}(1,-1,0,0)=\left(\frac{\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{2}},-\mathbf{1}, \mathbf{0}\right) .
$$

And then we find \mathbf{C} :

$$
\mathbf{C}=\mathbf{c}-\frac{\mathbf{A}^{\mathbf{T}} \mathbf{c}}{\mathbf{A}^{\mathbf{T}} \mathbf{A}} \mathbf{A}-\frac{\mathbf{B}^{\mathbf{T}} \mathbf{c}}{\mathbf{B}^{\mathbf{T}} \mathbf{B}} \mathbf{B}=(0,0,1,-1)+\frac{2}{3}\left(\frac{1}{2}, \frac{1}{2},-1,0\right)=\left(\frac{\mathbf{1}}{3}, \frac{\mathbf{1}}{3}, \frac{\mathbf{1}}{3},-\mathbf{1}\right) .
$$

We know from the first problem that the elements of the set $\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$ are linearly independent, and each vector is orthogonal to $(1,1,1,1)$. The space of vectors perpendicular to \mathbf{d} is three dimensional (since the row space of $(1,1,1,1)$ is one-dimensional, and the number of dimensions of the row space added to the number of dimensions of the nullspace add to 4). Therefore $\{\mathbf{A}, \mathbf{B}, \mathbf{C}\}$ forms a basis for the space of vectors perpendicular to d .

Similarly, $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is a basis for the space of vectors perpendicular to \mathbf{d} because the vectors are linearly independent, orthogonal to (1,1,1,1), and because there are three of them.

