Exercises on diagonalization and powers of A

Problem 22.1: (6.2 \#6. Introduction to Linear Algebra: Strang) Describe all matrices S that diagonalize this matrix A (find all eigenvectors):

$$
A=\left[\begin{array}{ll}
4 & 0 \\
1 & 2
\end{array}\right]
$$

Then describe all matrices that diagonalize A^{-1}.
Solution: To find the eigenvectors of A, we first find the eigenvalues:

$$
\operatorname{det}\left[\begin{array}{rr}
4-\lambda & 0 \\
1 & 2-\lambda
\end{array}\right]=0 \Longrightarrow(4-\lambda)(2-\lambda)=0
$$

Hence the eigenvalues are $\lambda_{1}=4$ and $\lambda_{2}=2$. Using these values, we find the eigenvectors by solving $(A-\lambda I) \mathbf{x}=\mathbf{0}$:

$$
\left(A-\lambda_{1} I\right) \mathbf{x}=\left[\begin{array}{rr}
0 & 0 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow y=2 z
$$

thus any multiple of $(\mathbf{2}, \mathbf{1})$ is an eigenvector for λ_{1}.

$$
\left(A-\lambda_{2} I\right) \mathbf{x}=\left[\begin{array}{ll}
2 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow y=0, z=\text { free variable }
$$

thus any multiple of $(\mathbf{0}, \mathbf{1})$ is an eigenvector for λ_{2}. Therefore the columns of the matrices S that diagonalize A are nonzero multiples of $(2,1)$ and $(1,0)$. They can appear in either order.

Finally, because $A^{-1}=S \Lambda^{-1} S^{-1}$ the same matrices S will diagonalize A^{-1}.

Problem 22.2: (6.2 \#16.) Find Λ and S to diagonalize A :

$$
A=\left[\begin{array}{ll}
.6 & .9 \\
.4 & .1
\end{array}\right] .
$$

What is the limit of Λ^{k} as $k \rightarrow \infty$? What is the limit matrix of $S \Lambda^{k} S^{-1}$? In the columns of this matrix you see the \qquad -.

Solution: Since each of the columns of A sum to one, A is a Markov matrix and definitely has eigenvalue $\lambda_{1}=1$. The trace of A is .7 , so the other eigenvalue is $\lambda_{2}=.7-1=-.3$. To find S we need to find the corresponding eigenvectors:

$$
\begin{gathered}
\left(A-\lambda_{1} I\right) \mathbf{x}_{\mathbf{1}}=\left[\begin{array}{rr}
-.4 & .9 \\
.4 & -.9
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow \mathbf{x}_{1}=(9,4) \\
\left(A-\lambda_{2} I\right) \mathbf{x}_{\mathbf{2}}=\left[\begin{array}{ll}
.9 & .9 \\
.4 & .4
\end{array}\right]\left[\begin{array}{l}
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow y=-z \Longrightarrow \mathbf{x}_{2}=(1,-1)
\end{gathered}
$$

Putting these together, we have:

$$
S=\left[\begin{array}{rr}
9 & 1 \\
4 & -1
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ll}
1 & \\
& -.3
\end{array}\right] . \text { As } k \rightarrow \infty, \Lambda^{k} \rightarrow\left[\begin{array}{ll}
1 & \\
& 0
\end{array}\right] .
$$

So

$$
S \Lambda^{k} S^{-1} \rightarrow\left[\begin{array}{rr}
9 & 1 \\
4 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & \\
& 0
\end{array}\right]\left(\frac{1}{13}\right)\left[\begin{array}{rr}
9 & 1 \\
4 & -9
\end{array}\right]=\frac{1}{13}\left[\begin{array}{ll}
9 & 9 \\
4 & 4
\end{array}\right] .
$$

In the columns of this matrix you see the steady state vector.

