Exercises on Markov matrices; Fourier series

Problem 24.1: (6.4 \#7. Introduction to Linear Algebra: Strang)
a) Find a symmetric matrix $\left[\begin{array}{ll}1 & b \\ b & 1\end{array}\right]$ that has a negative eigenvalue.
b) How do you know it must have a negative pivot?
c) How do you know it can't have two negative eigenvalues?

Solution:

a) The eigenvalues of that matrix are $1 \pm b$. If $b>1$ or $b<-1$ the matrix has a negative eigenvalue.
b) The pivots have the same signs as the eigenvalues. If the matrix has a negative eigenvalue, then it must have a negative pivot.
c) To obtain one negative eigenvalue, we choose either $b>1$ or $b<-1$ (as stated in part (a)). If we choose $b>1$, then $\lambda_{1}=1+b$ will be positive while $\lambda_{2}=1-b$ will be negative. Alternatively, if we choose $b<-1$, then $\lambda_{1}=1+b$ will be negative while $\lambda_{2}=1-b$ will be positive. Therefore this matrix cannot have two negative eigenvalues.

Problem 24.2: (6.4 \#23.) Which of these classes of matrices do A and B belong to: invertible, orthogonal, projection, permutation, diagonalizable, Markov?

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad B=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Which of these factorizations are possible for A and $B: L U, Q R, S \Lambda S^{-1}$, or $Q \wedge Q^{T}$?

Solution:

a) For A :

$$
\begin{array}{ll}
\operatorname{det} A=-1 \neq 0 . & A \text { is invertible. } \\
A A^{T}=I . & A \text { is orthogonal. } \\
A^{2}=I \neq A . & A \text { is not a projection. } \\
A \text { has one } 1 \text { in each row and column with } & A \text { is a permutation. }
\end{array}
$$

0's elsewhere.

$$
A=A^{T} \text {, so } A \text { is symmetric. } \quad A \text { is diagonalizable. }
$$

$$
\text { Each column of } A \text { sums to one. } \quad \text { A is Markov. }
$$

All of the factorizations are possible for $A: L U$ and $Q R$ are always possible, $S \Lambda S^{-1}$ is possible because it is diagonalizable, and $Q \wedge Q^{T}$ is possible because it is symmetric.
b) For B :

$$
\begin{array}{ll}
\operatorname{det} B=0 . & B \text { is not invertible. } \\
B B^{T} \neq I . & B \text { is not orthogonal. } \\
B^{2}=B . & B \text { is a projection. } \\
B \text { does not have one } 1 \text { in each row and each } & B \text { is not a permutation. }
\end{array}
$$ column, with 0's elsewhere.

$B=B^{T}$ so B is symmetric. $\quad B$ is diagonalizable. Each column of B sums to one. B is Markov.
All of the factorizations are possible for $B: L U$ and $Q R$ are always possible, $S \Lambda S^{-1}$ is possible because it is diagonalizable, and $Q \Lambda Q^{T}$ is possible because it is symmetric.

Problem 24.3: (8.3 \#11.) Complete A to a Markov matrix and find the steady state eigenvector. When A is a symmetric Markov matrix, why is $\mathbf{x}_{1}=(1, \ldots, 1)$ its steady state?

$$
A=\left[\begin{array}{rrr}
.7 & .1 & .2 \\
.1 & .6 & .3 \\
- & - & -
\end{array}\right]
$$

Solution: Matrix A becomes:

$$
A=\left[\begin{array}{lll}
.7 & .1 & .2 \\
.1 & .6 & .3 \\
.2 & .3 & .5
\end{array}\right]
$$

with steady state vector $(1,1,1)$. When A is a symmetric Markov matrix, the elements of each row sum to one. The elements of each row of $A-I$ then sum to zero. Since the steady state vector \mathbf{x} is the eigenvector associated with eigenvalue $\lambda=1$, we solve $(A-\lambda I) \mathbf{x}=(A-I) \mathbf{x}=\mathbf{0}$ to get $\mathbf{x}=$ (1,..., 1).

