Exercises on Markov matrices; Fourier series

Problem 24.1: (6.4 #7. Introduction to Linear Algebra: Strang)

- a) Find a symmetric matrix $\begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$ that has a negative eigenvalue.
- b) How do you know it must have a negative pivot?
- c) How do you know it can't have two negative eigenvalues?

Solution:

- a) The eigenvalues of that matrix are $1 \pm b$. If b > 1 or b < -1 the matrix has a negative eigenvalue.
- b) The pivots have the same signs as the eigenvalues. If the matrix has a negative eigenvalue, then it must have a negative pivot.
- c) To obtain one negative eigenvalue, we choose either b > 1 or b < -1 (as stated in part (a)). If we choose b > 1, then $\lambda_1 = 1 + b$ will be positive while $\lambda_2 = 1 b$ will be negative. Alternatively, if we choose b < -1, then $\lambda_1 = 1 + b$ will be negative while $\lambda_2 = 1 b$ will be positive. Therefore this matrix cannot have two negative eigenvalues.

Problem 24.2: (6.4 #23.) Which of these classes of matrices do *A* and *B* belong to: invertible, orthogonal, projection, permutation, diagonalizable, Markov?

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad B = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Which of these factorizations are possible for *A* and *B*: *LU*, *QR*, $S\Lambda S^{-1}$, or $Q\Lambda Q^T$?

Solution:

a) For *A* :

$\det A = -1 \neq 0.$	<i>A</i> is invertible .
$AA^T = I.$	A is orthogonal .
$A^2 = I \neq A.$	<i>A</i> is not a projection .
A has one 1 in each row and column with	<i>A</i> is a permutation.
0's elsewhere.	
$A = A^T$, so A is symmetric.	A is diagonalizable .
Each column of A sums to one.	A is Markov .

All of the factorizations are possible for *A*: *LU* and *QR* are always possible, $S\Lambda S^{-1}$ is possible because it is diagonalizable, and $Q\Lambda Q^T$ is possible because it is symmetric.

b) For *B* :

$\det B = 0.$	<i>B</i> is not invertible .
$BB^T \neq I.$	<i>B</i> is not orthogonal .
$B^2 = B.$	<i>B</i> is a projection.
<i>B</i> does not have one 1 in each row and each	<i>B</i> is not a permutation .
column, with 0's elsewhere.	
$B = B^T$ so B is symmetric.	<i>B</i> is diagonalizable .
Each column of <i>B</i> sums to one.	<i>B</i> is Markov .

All of the factorizations are possible for *B*: *LU* and *QR* are always possible, $S\Lambda S^{-1}$ is possible because it is diagonalizable, and $Q\Lambda Q^T$ is possible because it is symmetric.

Problem 24.3: (8.3 #11.) Complete *A* to a Markov matrix and find the steady state eigenvector. When *A* is a symmetric Markov matrix, why is $\mathbf{x}_1 = (1, ..., 1)$ its steady state?

$$A = \left[\begin{array}{rrr} .7 & .1 & .2 \\ .1 & .6 & .3 \\ _ & _ & _ \end{array} \right].$$

Solution: Matrix *A* becomes:

$$A = \left[\begin{array}{rrr} .7 & .1 & .2 \\ .1 & .6 & .3 \\ .2 & .3 & .5 \end{array} \right],$$

with steady state vector (1,1,1). When *A* is a *symmetric* Markov matrix, the elements of each row sum to one. The elements of each row of A - I then sum to zero. Since the steady state vector **x** is the eigenvector associated with eigenvalue $\lambda = 1$, we solve $(A - \lambda I)\mathbf{x} = (A - I)\mathbf{x} = \mathbf{0}$ to get $\mathbf{x} = (1, ..., 1)$.