Exercises on complex matrices; fast Fourier transform

Problem 26.1: Compute the matrix F_{2}.
Solution: $\quad F_{2}=\left[\begin{array}{cc}1 & 1 \\ 1 & w\end{array}\right]$, where $w=e^{i 2 \pi / 2}=-1$. Hence

$$
F_{2}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Problem 26.2: \quad Find the matrices D and P used in the factorization:

$$
F_{4}=\left[\begin{array}{rr}
I & D \\
I & -D
\end{array}\right]\left[\begin{array}{ll}
F_{2} & \\
& F_{2}
\end{array}\right] P
$$

Hint: D is created using fourth roots, not square roots, of 1. Check your answer by multiplying.

Solution: We computed $F_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ in the previous problem.

$$
D=\left[\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right]
$$

P is a permutation matrix that arranges the components of the incoming vector so that its even components come first. For F_{4}, that means swapping the first and second components:

$$
\begin{gathered}
P\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
x_{2} \\
x_{1} \\
x_{3}
\end{array}\right] . \\
\text { So, } P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

Finally, we check our work by multiplying:

$$
\begin{aligned}
{\left[\begin{array}{rr}
I & D \\
I & -D
\end{array}\right]\left[\begin{array}{ll}
F_{2} & \\
& F_{2}
\end{array}\right] P } & =\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & i \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -i
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & i \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -i
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & i & i^{2} & i^{3} \\
1 & i^{2} & i^{4} & i^{6} \\
1 & i^{3} & i^{6} & i^{9}
\end{array}\right]=F_{4} .
\end{aligned}
$$

