Exercises on positive definite matrices and minima

Problem 27.1: (6.5 \#33. Introduction to Linear Algebra: Strang) When A and B are symmetric positive definite, $A B$ might not even be symmetric, but its eigenvalues are still positive. Start from $A B \mathbf{x}=\lambda \mathbf{x}$ and take dot products with $B \mathbf{x}$. Then prove $\lambda>0$.

Solution:

$$
\begin{aligned}
A B \mathbf{x} & =\lambda \mathbf{x} \\
(A B \mathbf{x})^{T} B \mathbf{x} & =(\lambda \mathbf{x})^{T} B \mathbf{x} \\
(B \mathbf{x})^{T} A^{T} B \mathbf{x} & =\lambda \mathbf{x}^{T} B \mathbf{x} \\
(B \mathbf{x})^{T} A(B \mathbf{x}) & =\lambda\left(\mathbf{x}^{T} B \mathbf{x}\right)
\end{aligned}
$$

where $A^{T}=A$ because A is symmetric. Since A is positive definite we know $(B \mathbf{x})^{T} A(B \mathbf{x})>0$, and since B is positive definite $\mathbf{x}^{T} B \mathbf{x}>0$. Hence, λ must be positive as well.

Problem 27.2: Find the quadratic form associated with the matrix $\left[\begin{array}{ll}1 & 5 \\ 7 & 9\end{array}\right]$. Is this function $f(x, y)$ always positive, always negative, or sometimes positive and sometimes negative?
Solution: \quad To find the quadratic form, compute $\mathbf{x}^{\mathrm{T}} A \mathbf{x}$:

$$
\begin{aligned}
f(x, y) & =\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 5 \\
7 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& =x(x+5 y)+y(7 x+9 y) \\
& =\mathbf{x}^{2}+\mathbf{1 2} \mathbf{x y}+\mathbf{9} \mathbf{y}^{\mathbf{2}}
\end{aligned}
$$

This expression can be positive, e.g. when $y=0$ and $x \neq 0$.
The expression will sometimes be negative because A is not positive definite. For instance, $f(2,-2)=-8$. Thus the quadratic form associated with the matrix A is sometimes positive and sometimes negative. Another way to reach this conclusion is to note that $\operatorname{det} A=-26$ is negative and so A is not positive definite.

