Exercises on multiplication and inverse matrices

Problem 3.1: \quad Add $A B$ to $A C$ and compare with $A(B+C)$:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 0 \\
5 & 6
\end{array}\right]
$$

Solution: We first add $A B$ to $A C$:

$$
\begin{gathered}
A B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right], \quad A C=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
5 & 6
\end{array}\right]=\left[\begin{array}{ll}
10 & 12 \\
20 & 24
\end{array}\right] \\
\longrightarrow A B+A C=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right]+\left[\begin{array}{ll}
10 & 12 \\
20 & 24
\end{array}\right]=\left[\begin{array}{ll}
11 & 12 \\
23 & 24
\end{array}\right] .
\end{gathered}
$$

We then compute $A(B+C)$:

$$
\begin{gathered}
B+C=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
5 & 6
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
5 & 6
\end{array}\right] \\
\longrightarrow A(B+C)=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
5 & 6
\end{array}\right]=\left[\begin{array}{ll}
11 & 12 \\
23 & 24
\end{array}\right]=A B+A C .
\end{gathered}
$$

Therefore, $A B+A C=A(B+C)$.
Problem 3.2: (2.5 \#24. Introduction to Linear Algebra: Strang) Use GaussJordan elimination on $\left[\begin{array}{ll}U & I\end{array}\right]$ to find the upper triangular U^{-1} :

$$
U U^{-1}=I\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
0 & 0 & 0 \\
x_{1} & x_{2} & x_{3} \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{llllll}
1 & a & b & 1 & 0 & 0 \\
0 & 1 & c & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \longrightarrow\left(R_{1}=R_{1}-a R_{2}\right)} \\
\\
\\
\\
\\
\left(R_{2}=R_{2}-c R_{2}\right)
\end{gathered}\left(\begin{array}{rrrrrr}
1 & 0 & b-a c & 1 & -a & 0 \\
0 & 1 & 0 & 0 & 1 & -c \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

