Exercises on factorization into A = LU

Problem 4.1: What matrix *E* puts *A* into triangular form EA = U? Multiply by $E^{-1} = L$ to factor *A* into *LU*.

$$A = \left[\begin{array}{rrr} 1 & 3 & 0 \\ 2 & 4 & 0 \\ 2 & 0 & 1 \end{array} \right]$$

Solution: We will perform a series of row operations to transform the matrix *A* into an upper triangular matrix. First, we multiply the first row by 2 and then subtract it from the second row in order to make the first element of the second row 0:

Γ	1	0	0	1	3	0		1	3	0]
-	-2	1	0	2	4	0	=	0	-2	0
	0	0	1	2	0	1		2	0	1

Next, we multiply the first row by 2 (again) and subtract it from the third row in order to make the first element of the third row 0:

Γ	1	0	0 -	[1	L	3	0 -]	[1]	3	0]
	0	1	0)	-2	0	=	0	-2	0
L	-2	0	1		2	0	1		0	-6	1

Now, we multiply the second row by 3 and subtract it from the third row in order to make the second element of the third row 0:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & -2 & 0 \\ 0 & -6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = U.$$

We take the three matrices we used to perform each operation and multiply them to get *E*:

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & -3 & 1 \end{bmatrix} = E.$$

To check, we evaluate *EA*:

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 2 & 4 & 0 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = U.$$

To find E^{-1} , use the Gauss-Jordan elimination method (or just insert the multipliers 2, 2, 3 into E^{-1})

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ -2 & 1 & 0 & | & 0 & 1 & 0 \\ 4 & -3 & 1 & | & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2 & 1 & 0 \\ 0 & -3 & 1 & | & -4 & 0 & 1 \end{bmatrix}$$
$$\longrightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2 & 1 & 0 \\ 0 & 0 & 1 & | & 2 & 3 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & | & 2 & 1 & 0 \\ 2 & 1 & 0 & | & 2 & 3 & 1 \end{bmatrix} = E^{-1}$$

We can check that this is in fact the inverse of *E*:

$$EE^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I.$$

Finally, to factorize *A* into *LU* (where $L = E^{-1}$):

$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 4 & 0 \\ 2 & 0 & 1 \end{bmatrix} = A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Problem 4.2: (2.6 #13. *Introduction to Linear Algebra:* Strang) Compute *L* and *U* for the symmetric matrix

$$\mathbf{A} = \left[egin{array}{cccc} a & a & a & a & a \ a & b & b & b & b \ a & b & c & c & c \ a & b & c & d \end{array}
ight].$$

Find four conditions on *a*, *b*, *c*, *d* to get A = LU with four pivots.

Solution: Elimination subtracts row 1 from rows 2-4, then row 2 from rows 3-4, and finally row 3 from row 4; the result is *U*. All the multipliers ℓ_{ij} are equal to 1; so *L* is the lower triangular matrix with 1's on the diagonal and below it.

$$\mathbf{A} \longrightarrow \begin{bmatrix} a & a & a & a & a \\ 0 & b-a & b-a & b-a \\ 0 & b-a & c-a & c-a \\ 0 & b-a & c-a & d-a \end{bmatrix} \longrightarrow \begin{bmatrix} a & a & a & a & a \\ 0 & b-a & b-a & b-a \\ 0 & 0 & c-b & c-b \\ 0 & 0 & c-b & d-b \end{bmatrix}$$
$$\longrightarrow \begin{bmatrix} a & a & a & a \\ 0 & b-a & b-a & b-a \\ 0 & 0 & c-b & c-b \\ 0 & 0 & 0 & d-c \end{bmatrix} = U, L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$$

The pivots are the nonzero entries on the diagonal of *U*. So there are four pivots when these four conditions are satisfied: $a \neq 0, b \neq a, c \neq b$, and $d \neq c$.