Exercises on factorization into $A=L U$

Problem 4.1: What matrix E puts A into triangular form $E A=U$? Multiply by $E^{-1}=L$ to factor A into $L U$.

$$
A=\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

Solution: We will perform a series of row operations to transform the matrix A into an upper triangular matrix. First, we multiply the first row by 2 and then subtract it from the second row in order to make the first element of the second row 0 :

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 0 \\
2 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & -2 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

Next, we multiply the first row by 2 (again) and subtract it from the third row in order to make the first element of the third row 0 :

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & -2 & 0 \\
2 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & -2 & 0 \\
0 & -6 & 1
\end{array}\right]
$$

Now, we multiply the second row by 3 and subtract it from the third row in order to make the second element of the third row 0 :

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & -2 & 0 \\
0 & -6 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]=U
$$

We take the three matrices we used to perform each operation and multiply them to get E :

$$
E=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
4 & -3 & 1
\end{array}\right]=E .
$$

To check, we evaluate $E A$:

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
4 & -3 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 0 \\
2 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]=U .
$$

To find E^{-1}, use the Gauss-Jordan elimination method (or just insert the multipliers 2, 2, 3 into E^{-1})

$$
\left.\left.\begin{array}{c}
{\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 & 1 & 0 \\
4 & -3 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & 0 \\
0 & -3 & 1 & -4 & 0 & 1
\end{array}\right]} \\
\longrightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 1 & 2 & 3 & 1
\end{array}\right]
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 3 & 1
\end{array}\right]=E^{-1}\right] .
$$

We can check that this is in fact the inverse of E :

$$
E E^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
4 & -3 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 3 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I .
$$

Finally, to factorize A into $L U$ (where $L=E^{-1}$):

$$
\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 0 \\
2 & 0 & 1
\end{array}\right]=A=L U=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 3 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Problem 4.2: (2.6 \#13. Introduction to Linear Algebra: Strang) Compute L and U for the symmetric matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

Find four conditions on a, b, c, d to get $A=L U$ with four pivots.
Solution: Elimination subtracts row 1 from rows 2-4, then row 2 from rows $3-4$, and finally row 3 from row 4 ; the result is U. All the multipliers $\ell_{i j}$ are equal to 1 ; so L is the lower triangular matrix with 1 's on the diagonal and below it.

$$
\begin{aligned}
& \mathbf{A} \longrightarrow\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
0 & b-a & c-a & d-a
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & c-b & d-b
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & 0 & d-c
\end{array}\right]=U, L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

The pivots are the nonzero entries on the diagonal of U. So there are four pivots when these four conditions are satisfied: $a \neq 0, b \neq a, c \neq b$, and $d \neq c$.

