Exercises on solving $A \mathbf{x}=\mathbf{b}$ and row reduced form R

Problem 8.1: (3.4 \#13.(a,b,d) Introduction to Linear Algebra: Strang) Explain why these are all false:
a) The complete solution is any linear combination of \mathbf{x}_{p} and \mathbf{x}_{n}.
b) The system $A \mathbf{x}=\mathbf{b}$ has at most one particular solution.
c) If A is invertible there is no solution \mathbf{x}_{n} in the nullspace.

Solution:

a) The coefficient of \mathbf{x}_{p} must be one.
b) If $\mathbf{x}_{n} \in \mathbf{N}(A)$ is in the nullspace of A and \mathbf{x}_{p} is one particular solution, then $\mathbf{x}_{p}+\mathbf{x}_{n}$ is also a particular solution.
c) There's always $\mathbf{x}_{n}=0$.

Problem 8.2: (3.4 \#28.) Let

$$
U=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 4
\end{array}\right] \text { and } \mathbf{c}=\left[\begin{array}{l}
5 \\
8
\end{array}\right]
$$

Use Gauss-Jordan elimination to reduce the matrices $\left[\begin{array}{ll}U & 0\end{array}\right]$ and $\left[\begin{array}{ll}U & \mathbf{c}\end{array}\right]$ to $\left[\begin{array}{ll}R & 0\end{array}\right]$ and $\left[\begin{array}{ll}R & \mathbf{d}\end{array}\right]$. Solve $R \mathbf{x}=\mathbf{0}$ and $R \mathbf{x}=\mathbf{d}$.

Check your work by plugging your values into the equations $U \mathbf{x}=\mathbf{0}$ and $U \mathbf{x}=\mathbf{c}$.

Solution: First we transform $\left[\begin{array}{ll}U & 0\end{array}\right]$ into $\left[\begin{array}{ll}R & 0\end{array}\right]$:

$$
\left[\begin{array}{ll}
U & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
0 & 0 & 4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ll}
R & 0
\end{array}\right]
$$

We now solve $R \mathbf{x}=\mathbf{0}$ via back substitution:

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{r}
x_{1}+2 x_{2}=0 \\
x_{3}=0
\end{array}\right] \rightarrow \mathbf{x}=\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]
$$

where we used the free variable $x_{2}=-1$. ($c x$ is a solution for all c.)
We check that this is a correct solution by plugging it into $U \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \checkmark
$$

Next, we transform $\left[\begin{array}{ll}U & \mathbf{c}\end{array}\right]$ into $\left[\begin{array}{ll}R & \mathbf{d}\end{array}\right]$:

$$
\left[\begin{array}{ll}
U & \mathbf{c}
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & 3 & 5 \\
0 & 0 & 4 & 8
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 3 & 5 \\
0 & 0 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right]=\left[\begin{array}{ll}
R & \mathbf{d}
\end{array}\right] .
$$

We now solve $R \mathbf{x}=\mathbf{d}$ via back substitution:

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] \rightarrow\left[\begin{array}{r}
x_{1}+2 x_{2}=-1 \\
x_{3}=2
\end{array}\right] \rightarrow \mathbf{x}=\left[\begin{array}{r}
-3 \\
1 \\
2
\end{array}\right]
$$

where we used the free variable $x_{2}=1$.
Finally, we check that this is the correct solution by plugging it into the equation $U \mathbf{x}=\mathbf{c}$:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{r}
-3 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right] \checkmark
$$

Problem 8.3: (3.4 \#36.) Suppose $A \mathbf{x}=\mathbf{b}$ and $C \mathbf{x}=\mathbf{b}$ have the same (complete) solutions for every \mathbf{b}. Is it true that $A=C$?

Solution: Yes. In order to check that $A=C$ as matrices, it is enough to check that $A \mathbf{y}=C \mathbf{y}$ for all vectors \mathbf{y} of the correct size (or just for the standard basis vectors, since multiplication by them "picks out the columns"). So let \mathbf{y} be any vector of the correct size, and set $\mathbf{b}=A \mathbf{y}$. Then \mathbf{y} is certainly a solution to $A \mathbf{x}=\mathbf{b}$, and so by our hypothesis must also be a solution to $\mathbf{C x}=\mathbf{b}$; in other words, $\mathbf{C y}=\mathbf{b}=A \mathbf{y}$.

