MATH 100 SAMPLE MIDTERM SOLUTIONS

These solutions may contain errors. If you find an error, please report it by email. The first student to report each error will get half a point of extra credit added to their final grade.
(1) (10 pts) Evaluate $x^{2}+3 x$ when $x=-8$.

$$
8^{2}+3 \cdot 8=64+24=88
$$

(2) $(10 \mathrm{pts})$ Simplify: $4(5 y-3)-(6 y+3)$.

$$
4(5 y-3)-(6 y+3)=20 y-12-6 y-3=14 y-15
$$

(3) (10 pts) Simplify: $\left(49 x^{2} y^{4}\right)^{-1 / 2}$.

$$
\left(49 x^{2} y^{4}\right)^{-1 / 2}=\frac{1}{\left(49 x^{2} y^{4}\right)^{1 / 2}}=\frac{1}{\sqrt{\left(49 x^{2} y^{4}\right)}}=\frac{1}{\sqrt{49} \sqrt{x^{2}} \sqrt{y^{4}}}=\frac{1}{7 x y^{2}}
$$

(4) (10 pts) Simplify: $4\left(1-t^{2}\right)+2 t(t+1)$.

$$
4\left(1-t^{2}\right)+2 t(t+1)=4-4 t^{2}+2 t^{2}+2 t=-2 t^{2}+2 t+4
$$

(5) (10 pts) Factor completely: $x^{3}+3 x^{2}+2 x$.

$$
x^{3}+3 x^{2}+2 x=x\left(x^{2}+3 x+2\right)=x(x+2)(x+1)
$$

(6) Consider the rational equation $\frac{2}{x-1}+4=\frac{14}{x-1}$.
a) (5 pts) What value or values of x make the denominator zero?

$$
x=1
$$

b) (5 pts) Solve the equation for x.

$$
\begin{gathered}
\frac{2}{x-1}+4=\frac{14}{x-1} \\
(x-1)\left(\frac{2}{x-1}+4\right)=(x-1) \frac{14}{x-1} \\
2+4(x-1)=14 \\
2+4 x-4=14 \\
-2+4 x=14 \\
4 x=16 \\
x=4
\end{gathered}
$$

Check: $2 / 3+4=14 / 3$?
(7) (10 pts) Solve for $x: 2 x^{2}+5 x+3=0$.

$$
\begin{gathered}
2 x^{2}+5 x+3=0 \\
(2 x+3)(x+1)=0 \\
2 x+3=0 \text { or } x+1=0 \\
x=-3 / 2 \text { or } x=-1
\end{gathered}
$$

Check: $2(-3 / 2)^{2}+5(-3 / 2)+3=0 ? 2(-1)^{2}+5(-1)+3=0$?
(8) (10 pts) Find the equation of the line connecting the points $(1,4)$ and $(3,7)$.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \text { and } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m=\frac{7-4}{3-1}=\frac{3}{2} \\
y-4=\frac{3}{2}(x-1) \\
y-4=\frac{3}{2} x-\frac{3}{2} \\
y=\frac{3}{2} x+\frac{5}{2}
\end{gathered}
$$

Check: $7=\frac{3}{2}(3)+\frac{5}{2}$?
(9) The graph of the equation $y=5 x+3$ is a line.
a) (5 pts) Find the x - and y-intercepts of that line.

$$
0=5 x+3 \text { when } x=-\frac{3}{5} . y=3 \text { when } x=0
$$

The x-intercept is at $\left(-\frac{3}{5}, 0\right)$. The y-intercept is at $(0,3)$.
b) (5 pts) Give the equation of the line perpendicular to that line that passes through the point $(5,10)$.

The slope of the perpendicular will be $-\frac{1}{5}$.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \text { so } y-10=-\frac{1}{5}(x-5) \\
y-10=-\frac{1}{5} x+1 \\
y=-\frac{1}{5} x+11
\end{gathered}
$$

Check by graphing (if you're using a graphing calculator, make sure distances along your x-axis match those along your y-axis.)
(10) The graph of the function $f(x)=x^{3}-3 x^{2}+2 x$ is shown below.
a) (5 pts) For approximately what value(s) of x does $f(x)=1$?

Sketch the horizontal line $y=1$. This intersects the graph at about (2.3,1), so $f(x)=1$ when x is approximately 2.3 .
b) (5 pts) Is the function f even, odd or neither? Justify your answer.

$$
f(-x)=(-x)^{3}-3(-x)^{2}+2(-x)=-x^{3}-3 x^{2}-2 x .
$$

This does not equal $f(x)$ or $-f(x)$, so f is neither even nor odd.

Bonus (5 pts) Simplify:

$$
\begin{gathered}
\frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h} \\
\frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}=\frac{\frac{x^{2}}{x^{2}} \frac{1}{(x+h)^{2}}-\frac{1}{x^{2}(x+h)^{2}}(x+h)^{2}}{h} \\
=\frac{\frac{x^{2}}{x^{2}(x+h)^{2}}-\frac{(x+h)^{2}}{x^{2}(x+h)^{2}}}{h}=\frac{\frac{x^{2}-(x+h)^{2}}{x^{2}(x+h)^{2}}}{h} \\
=\frac{\frac{x^{2}-\left(x^{2}+2 x h+h^{2}\right)}{x^{2}(x+h)^{2}}}{h}=\frac{\frac{-2 x h-h^{2}}{x^{2}(x+h)^{2}}}{\frac{h}{1}} \\
=\frac{h(-2 x-h)}{x^{2}(x+h)^{2}} \frac{1}{h}=\frac{-2 x-h}{x^{2}(x+h)^{2}}
\end{gathered}
$$

