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This talk

» How easy is it to learn a network protocol to
achieve a desired goal, despite a mismatched set
of assumptions?
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This talk

» How easy is it to learn a network protocol to
achieve a desired goal, despite a mismatched set

of assumptions?

» cf. Learning: “Knowledge acquisition without
explicit programming” (Valiant 1984)
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» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders

» TCP compatibility is a double-edged sword

» Can tolerate mismatch in the # of bottlenecks
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Remy compared with an ideal protocol
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Learning network protocols despite mismatched
assumptions

» Is there a tradeoff between operating range and
generality in link rates?

» |s there a tradeoff between performance and
operating range in link rates?
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Performance and link-rate operating range

» Very clear generality vs. operating range tradeoff

» Only weak evidence of a performance vs.
operating range tradeoff

» Possible to design a forwards-comptabible
protocol handling a wide range in link rates
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Learning network protocols despite mismatched
assumptions

Can we learn a protocol that performs well both
when there are few senders and when there are
many senders?
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Imperfections in the number of senders

Tradeoff between performance with few senders and
performance with many senders
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Learning network protocols despite mismatched
assumptions

What are the costs and benefits of learning a new
protocol that shares fairly with a legacy sender?
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Imperfect assumptions about the nature of other senders

» TCP-Aware RemyCC: Contends with:

» TCP-Aware RemyCC half the time
» TCP NewReno half the time.
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Imperfect assumptions about the nature of other senders

» TCP-Aware RemyCC: Contends with:

» TCP-Aware RemyCC half the time
» TCP NewReno half the time.

» TCP-Naive RemyCC: Contends with:
» TCP-Naive RemyCC all the time
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RemyCC competing against TCP NewReno

TCP awareness benefits you when needed, costs if
you don't
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Caveats

» Remy as a proxy for an optimal learner
» Results may change with better learners

» Negative results may no longer hold
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The learnability of congestion control

» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders
» TCP compatibility is a double-edged sword

» Can tolerate mismatch in the # of bottlenecks
» Ongoing work in using findings:

» improve Google's datacenter transport

» user-space implementation of RemyCC

» http://web.mit.edu/remy /learnability
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The Remy protocol synthesis procedure

» Protocol: range-based rule table from state to action
» State: Congestion signals tracked by the sender

s_.ewma : EWMA over packet inter-transmit times
r_ewma : EWMA over ACK inter-arrival times

» rtt_ratio: Ratio of RTT to minimum RTT

» slow_r_ewma: Slower version of s_.ewma

vy

» Action: modify window, transmission rate

» Multiplier m to current window
» Increment ¢ to current window
» Minimum inter-transmit time.
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The Remy protocol synthesis procedure

o L=

Start with one rule: one action for all states
Optimize each action to maximize objective
Find most used rule

Median split that rule based on state usage

Repeat 2, 3, and 4 till you converge
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One action for all states. Find the best value.




The best (single) action. Now split it on median.




Simulate
I --

s_ewma

r_ewma
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Optimize each of the new actions
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Now split the most-used rule
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Optimize

<0.70,6,53.5>

r_ewma

<0.80,5,4.1>

<0.60,19,76.2>

<0.80,5,4.1>
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Split
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Can applications with different objectives coexist?

» Tpt. Sender: A throughput-intensive sender

log(throughput) — 0.1 % log(delay) (1)

» Lat. Sender: A latency-sensitive sender

log(throughput) — 10.0 x log(delay) (2)

» Running over a FIFO queue
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Training for diversity has a cost ...
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but, benefits the docile sender
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