An experimental study of the learnability of
congestion control

Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker,
Hari Balakrishnan

MIT CSAIL

http://web.mit.edu/remy/learnability

August 31, 2014

1/17



This talk

» How easy is it to learn a network protocol to
achieve a desired goal, despite a mismatched set
of assumptions?

2/17



This talk

» How easy is it to learn a network protocol to
achieve a desired goal, despite a mismatched set

of assumptions?

» cf. Learning: “Knowledge acquisition without
explicit programming” (Valiant 1984)

2/17



Preview of key results

3/17



Preview of key results

» Can tolerate mismatched link-rate assumptions

3/17



Preview of key results

» Can tolerate mismatched link-rate assumptions

» Need precision about the number of senders

3/17



Preview of key results

» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders

» TCP compatibility is a double-edged sword

3/17



Preview of key results

» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders

» TCP compatibility is a double-edged sword

» Can tolerate mismatch in the # of bottlenecks

3/17



Experimental method

4/17



Experimental method

4/17



Experimental method

O

I

O
O/b%‘&/m*%

\O‘O \O

4/17



Experimental method

o 9

\/

\O‘O \O

4/17



Experimental method

o ¢

< Mbps, ms>
O_LO

o=

4/17



Experimental method

an o

Q
\ OM

4/17



Experimental method

4/17



Experimental method

Training Networks
L
ML
m}SO/g:”“L;o
075

~O-0
.

5/17



Experimental method

Objective Function:
- log (tpt/delay)
- Avg. Flow Completion time

_)

Training Networks

‘s

]
K S

5/17



Experimental method

Objective Function:
- log (tpt/delay)
- Avg. Flow Completion time

Congestion
———>| Learner Control
Algorithm

Training Networks

‘s

]
K S

5/17



Experimental method

Objective Function:
- log (tpt/delay)
- Avg. Flow Completion time

Training Networks

%‘ -
A emy
: (SIGCOMM 13) RemyCC
¢ e

5/17



Experimental method

Objective Function:
- log (tpt/delay)
- Avg. Flow Completion time

Training Networks Testing Networks
L [ ]
o 6l
Ve ithin| ®<0_@, @
ﬁO\. rem Test within o
: — [ RemycC |12 5 :
. (SIGCOMM 13)
e e ‘e
QO/O/ O\\\O\
\T\O~. .V'Ll'L.

5/17



Remy compared with an ideal protocol

32 F

16

Throughput (Mbps)
S
T

05 L1 ! ! ! !
500 400 300 200 100 0

Queueing delay (ms)

6/17



Remy compared with an ideal protocol

2 IdeaIJ)

16

Throughput (Mbps)
S
T

05 L1 ! ! ! !
500 400 300 200 100 0

Queueing delay (ms)

6/17



Remy compared with an ideal protocol

2 |deaé|>$

RemyCC
16

Throughput (Mbps)
S
T

05 L1 ! ! ! !
500 400 300 200 100 0

Queueing delay (ms)

6/17



Remy compared with an ideal protocol

2 F
Ideal
RemyCC
16 |
O .
—~ 8l Cubic Cublc/squoDelo
2
Qo
=3
2 4
=
[=2)
>
o
£
2 -
1
0.5 1 | 1 ] ]
500 400 300 200 100 0

Queueing delay (ms)

6/17



Learning network protocols despite mismatched
assumptions

7/17



Learning network protocols despite mismatched
assumptions

» Is there a tradeoff between operating range and
generality in link rates?

7/17



Learning network protocols despite mismatched
assumptions

» Is there a tradeoff between operating range and
generality in link rates?

» |s there a tradeoff between performance and
operating range in link rates?

7/17



Performance and link-rate operating range

-05 -

Objective Function
(Normalized)

10 100 1000
Link rate (Mbps)

8 /17



Performance and link-rate operating range

-0.5

Objective Function
(Normalized)

Ideal

10 10
Link rate (Mbps)

0 1000

8 /17



Performance and link-rate operating range

-0.5
Objective Function
(Normalized)

10 100 1000
Link rate (Mbps)



Performance and link-rate operating range

-0.5

Objective Function
(Normalized)

10 100 1000
Link rate (Mbps)



Performance and link-rate operating range
‘ xranae
100x range

Ideal

-0.5

Objective Function
(Normalized)

10 100 1000
Link rate (Mbps)

8 /17



Performance and link-rate operating range

P Ox ranae *
100x range
o 1000x range

Ideal

-0.5

Objective Function
(Normalized)

10 100 1000
Link rate (Mbps)

8 /17



Performance and link-rate operating range

P Ox ranae *
100x range
o 1000x range

Ideal

-0.5

Objective Function
(Normalized)

10 100 1000
Link rate (Mbps)

8 /17



Performance and link-rate operating range

9/17



Performance and link-rate operating range

» Very clear generality vs. operating range tradeoff

9/17



Performance and link-rate operating range

» Very clear generality vs. operating range tradeoff

» Only weak evidence of a performance vs.
operating range tradeoff

9/17



Performance and link-rate operating range

» Very clear generality vs. operating range tradeoff

» Only weak evidence of a performance vs.
operating range tradeoff

» Possible to design a forwards-comptabible
protocol handling a wide range in link rates

9/17



Learning network protocols despite mismatched
assumptions

Can we learn a protocol that performs well both
when there are few senders and when there are
many senders?

10 /17



Imperfections in the number of senders

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Normalized objective function

-1.2

—14

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

-0.2

-0.4

-0.6

-0.8

-1.0

Normalized objective function

-1.2

-1.4

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

-0.2

-0.4

-0.6

-0.8

-1.0

Normalized objective function

-1.2

-1.4

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

-0.2

-0.4

-0.6

-0.8

1.0 "

Normalized objective function

-1.2

-1.4

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

-0.2

-0.4

-0.6

-0.8

-1.0

Normalized objective function

-1.2

-1.4

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

Ideal

Normalized objective function

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

-0.2

-0.4

-0.6

-0.8

-1.0

Normalized objective function

-1.2

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

-0.2

-0.4

-0.6

-0.8

-1.0

Normalized objective function

-1.2

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

—0. 2 | T

-0.4

-0.6

-0.8

Normalized objective function

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

1-100

-0.2

-0.4

-0.6

Normalized objective function

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

1-100

-0.2

-0.4

-0.6

-0.8

-1.0

Normalized objective function

-1.2

-1.4

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

-0.2

-0.4

-0.6

-0.8

-1.0

Normalized objective function

-1.2

-1.4

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

0.0 Ideal

-0.2

-0.4

-0.6

-0.8

-1.0

Normalized objective function

-1.2

—14

0 20 40 60 80 100
Number of senders 11 / 17



Imperfections in the number of senders

Tradeoff between performance with few senders and
performance with many senders

11/17



Learning network protocols despite mismatched
assumptions

What are the costs and benefits of learning a new
protocol that shares fairly with a legacy sender?

12/17



Imperfect assumptions about the nature of other senders

» TCP-Aware RemyCC: Contends with:

» TCP-Aware RemyCC half the time
» TCP NewReno half the time.

13 /17



Imperfect assumptions about the nature of other senders

» TCP-Aware RemyCC: Contends with:

» TCP-Aware RemyCC half the time
» TCP NewReno half the time.

» TCP-Naive RemyCC: Contends with:
» TCP-Naive RemyCC all the time

13 /17



RemyCC competing against itself

7~

RemyCC
NewReno [TCP-naive]

_? O

Throughput (Mbps)
(6]

3 | | | J
128 64 32 16

Queueing delay (ms)

14 /17



RemyCC competing against itself

7~

RemyCC
NewReno [TCP-naive]

_? <~-=---0

Cost of TCP-awareness

Throughput (Mbps)
(6]

3 | | | J
128 64 32 16

Queueing delay (ms)

14 /17



RemyCC competing against itself

7~

RemyCC RemyCC
NewReno [TCP-aware] [TCP-naive]

? Po o

Throughput (Mbps)
(6]

3 | | | J
128 64 32 16

Queueing delay (ms)

14 /17



RemyCC competing against TCP NewReno

7~

NewReno
6 -
@
Q
Qo
=3
25
=
[=2)
>
o
=
£
RemyCC
4 [TCP-naive]
3 |

128 96

Queueing delay (ms)

15 /17



RemyCC competing against TCP NewReno

7~

L \
° \
Effect of \

TCP-aware"s,
adverSarye ~

\N*

Throughput (Mbps)
o
T

——

geneft of

3 |
128 96

Queueing delay (ms)

15 /17



RemyCC competing against TCP NewReno

Throughput (Mbps)

7~

RemyCC
NewReno [TCP-aware]

- . 4

|

128

96

Queueing delay (ms)

15 /17



RemyCC competing against TCP NewReno

TCP awareness benefits you when needed, costs if
you don't

15 /17



Caveats

16 /17



Caveats

» Remy as a proxy for an optimal learner

16 /17



Caveats

» Remy as a proxy for an optimal learner

» Results may change with better learners

16 /17



Caveats

» Remy as a proxy for an optimal learner
» Results may change with better learners

» Negative results may no longer hold

16 /17



The learnability of congestion control

17 /17



The learnability of congestion control

» Can tolerate mismatched link-rate assumptions

17 /17



The learnability of congestion control

» Can tolerate mismatched link-rate assumptions

» Need precision about the number of senders

17 /17



The learnability of congestion control

» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders

» TCP compatibility is a double-edged sword

17 /17



The learnability of congestion control

» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders
» TCP compatibility is a double-edged sword

» Can tolerate mismatch in the # of bottlenecks

17 /17



The learnability of congestion control

» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders
» TCP compatibility is a double-edged sword

» Can tolerate mismatch in the # of bottlenecks
» Ongoing work in using findings:

17 /17



The learnability of congestion control

» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders
» TCP compatibility is a double-edged sword

» Can tolerate mismatch in the # of bottlenecks
» Ongoing work in using findings:
» improve Google's datacenter transport

17 /17



The learnability of congestion control

» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders
» TCP compatibility is a double-edged sword

» Can tolerate mismatch in the # of bottlenecks
» Ongoing work in using findings:

» improve Google's datacenter transport

» user-space implementation of RemyCC

17 /17



The learnability of congestion control

» Can tolerate mismatched link-rate assumptions
» Need precision about the number of senders
» TCP compatibility is a double-edged sword

» Can tolerate mismatch in the # of bottlenecks
» Ongoing work in using findings:

» improve Google's datacenter transport

» user-space implementation of RemyCC

» http://web.mit.edu/remy /learnability

17 /17



Backup slides

17 /17



The Remy protocol synthesis procedure

» Protocol: range-based rule table from state to action

17 /17



The Remy protocol synthesis procedure

» Protocol: range-based rule table from state to action
» State: Congestion signals tracked by the sender

s_.ewma : EWMA over packet inter-transmit times
r_ewma : EWMA over ACK inter-arrival times
rtt_ratio: Ratio of RTT to minimum RTT
slow_r_ewma: Slower version of s_ewma

vV vy vy

17 /17



The Remy protocol synthesis procedure

» Protocol: range-based rule table from state to action
» State: Congestion signals tracked by the sender

s_.ewma : EWMA over packet inter-transmit times
r_ewma : EWMA over ACK inter-arrival times

» rtt_ratio: Ratio of RTT to minimum RTT

» slow_r_ewma: Slower version of s_.ewma

vy

» Action: modify window, transmission rate

» Multiplier m to current window
» Increment ¢ to current window
» Minimum inter-transmit time.

17 /17



The Remy protocol synthesis procedure

o L=

Start with one rule: one action for all states
Optimize each action to maximize objective
Find most used rule

Median split that rule based on state usage

Repeat 2, 3, and 4 till you converge

17 /17



One action for all states. Find the best value.




The best (single) action. Now split it on median.




Simulate
I --

s_ewma

r_ewma

17 /17



Optimize each of the new actions

<0.90,4,3.3>

r_ewma

<0.90,4,3.3>

s_ewma
17 /17



Now split the most-used rule

<0.70,6,53.5>

r_ewma

<0.60,19,76.2>

s_ewma
17 /17



Simulate

r_ewma

<0.70,6,53.5>

<0.60’19,76.2> .-

s_ewma

17 /17



Optimize

<0.70,6,53.5>

r_ewma

<0.80,5,4.1>

<0.60,19,76.2>

<0.80,5,4.1>

s_ewma
17 /17



Split

<0.60,17,13.3>

r_ewma

<0.80,17,4.6>

<0.30,29,49.7>

<0.80,8,62.7>

s_ewma
17 /17



Simulate

<0.60,17,13.3>

r_ewma

<0.80,17,4.6>

<0.30,29,49.7>

<0.80,8,62.7>

s_ewma
17 /17



Can applications with different objectives coexist?

» Tpt. Sender: A throughput-intensive sender

log(throughput) — 0.1 % log(delay) (1)

» Lat. Sender: A latency-sensitive sender

log(throughput) — 10.0 x log(delay) (2)

» Running over a FIFO queue

17 /17



Training for diversity has a cost ...

16 T T

11 -

Throughput (Mbps)

1 ! ! ! ! ! ! ! ! ! !
2048 1024 512 256 128 64 32 16 8 4 2 1

Queueing delay (ms)

17 /17



Training for diversity has a cost ...

16 T J T T T T T T T T
11 |
Tpt. Sender :—:ati.v:]ender
g [naive]
S 5+ |
5
£
[=2}
]
F-
=
2 B —
1 1 1 1 1 1 | | | | )

2048 1024 512 256 128 64 32 16 8 4 2 1

Queueing delay (ms)

17 /17



Training for diversity has a cost ...

Throughput (Mbps)

16

11

1

2048 1024 512

Cost of ICoexistence

Tpt. Sender |
[naive] +

o
Tpt. Sender
[coevolved]

Il Il Il Il Il Il Il

Lat. Sender
[naive]

Lat. Sender|
[coevolved]

256 128 64 32 16

Queueing delay (ms)

17 /17



but, benefits the docile sender

16 T T T

11 -

Throughput (Mbps)

1 ! ! ! ! ! ! ! ! ! !
2048 1024 512 256 128 64 32 16 8 4 2 1

Queueing delay (ms)

17 /17



but, benefits the docile sender

16 T T T T T T T T T
Tpt. Sender
11 | [naive] -
7
g
S 5+ .
5
2
[=2}
g
= Lat. Sender
e [naive i
1 1 1 1 1 1 1 1 1 1 1

2048 1024 512 256 128 64 32 16 8 4 2 1

Queueing delay (ms)

17 /17



but, benefits the docile sender

16 T T T T T T T T T
Tpt. Sen‘der
11 |- [naive i
[ 1 \\
Effect of ™ Tpt. Sender
Playing nice o [coevolved]
7 -
z Q
2 5 |
3 Lat. Sender
5 [coevolved]
3
F Lat. Sender ,4
oL [naive R4 ]
-3 tion
= Oe\lo\\»\
Be\'\ei\\ )
1 1 1 1 1 1 1 1 1 1 1

2048 1024 512 256 128 64 32 16 8 4 2 1

Queueing delay (ms)

17 /17



