
An experimental study of the learnability of
congestion control

Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker,
Hari Balakrishnan

MIT CSAIL

http://web.mit.edu/remy/learnability

August 31, 2014

1 / 17



This talk

I How easy is it to learn a network protocol to
achieve a desired goal, despite a mismatched set
of assumptions?

I cf. Learning: “Knowledge acquisition without
explicit programming” (Valiant 1984)

2 / 17



This talk

I How easy is it to learn a network protocol to
achieve a desired goal, despite a mismatched set
of assumptions?

I cf. Learning: “Knowledge acquisition without
explicit programming” (Valiant 1984)

2 / 17



Preview of key results

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks

3 / 17



Preview of key results

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks

3 / 17



Preview of key results

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks

3 / 17



Preview of key results

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks

3 / 17



Preview of key results

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks

3 / 17



Experimental method

4 / 17



Experimental method

4 / 17



Experimental method

< Mbps, ms>

4 / 17



Experimental method

< Mbps, ms>

4 / 17



Experimental method

< Mbps, ms>

4 / 17



Experimental method

< Mbps, ms>

4 / 17



Experimental method

< Mbps, ms>

4 / 17



Experimental method

< Mbps, ms>

Training Networks

5 / 17



Experimental method

< Mbps, ms>

Training Networks

Objective Function:
- log (tpt/delay)
- Avg. Flow Completion time

Learner

5 / 17



Experimental method

< Mbps, ms>

Training Networks

Objective Function:
- log (tpt/delay)
- Avg. Flow Completion time

Learner
Congestion
Control
Algorithm

5 / 17



Experimental method

< Mbps, ms>

Training Networks

Objective Function:
- log (tpt/delay)
- Avg. Flow Completion time

Remy
(SIGCOMM 13)

RemyCC

5 / 17



Experimental method

< Mbps, ms>

Training Networks

< Mbps, ms>

Test within
ns-2

Testing Networks

Objective Function:
- log (tpt/delay)
- Avg. Flow Completion time

Remy
(SIGCOMM 13)

RemyCC

5 / 17



Remy compared with an ideal protocol

0.5

1

2

4

8

16

32

0100200300400500

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

6 / 17



Remy compared with an ideal protocol

0.5

1

2

4

8

16

32

0100200300400500

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Ideal

6 / 17



Remy compared with an ideal protocol

0.5

1

2

4

8

16

32

0100200300400500

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Ideal

RemyCC

6 / 17



Remy compared with an ideal protocol

0.5

1

2

4

8

16

32

0100200300400500

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Ideal

RemyCC

Cubic Cubic/sfqCoDel

6 / 17



Learning network protocols despite mismatched
assumptions

I Is there a tradeoff between operating range and
generality in link rates?

I Is there a tradeoff between performance and
operating range in link rates?

7 / 17



Learning network protocols despite mismatched
assumptions

I Is there a tradeoff between operating range and
generality in link rates?

I Is there a tradeoff between performance and
operating range in link rates?

7 / 17



Learning network protocols despite mismatched
assumptions

I Is there a tradeoff between operating range and
generality in link rates?

I Is there a tradeoff between performance and
operating range in link rates?

7 / 17



Performance and link-rate operating range

-1.5

-1

-0.5

0

1 10 100 1000
Link rate (Mbps)

Objective Function
(Normalized)

8 / 17



Performance and link-rate operating range

-1.5

-1

-0.5

0

1 10 100 1000
Link rate (Mbps)

Objective Function
(Normalized)

Ideal

8 / 17



Performance and link-rate operating range

-1.5

-1

-0.5

0

1 10 100 1000
Link rate (Mbps)

Objective Function
(Normalized)

Ideal

2x range

8 / 17



Performance and link-rate operating range

-1.5

-1

-0.5

0

1 10 100 1000
Link rate (Mbps)

Objective Function
(Normalized)

Ideal

2x range
10x range

8 / 17



Performance and link-rate operating range

-1.5

-1

-0.5

0

1 10 100 1000
Link rate (Mbps)

Objective Function
(Normalized)

Ideal

2x range
10x range

100x range

8 / 17



Performance and link-rate operating range

-1.5

-1

-0.5

0

1 10 100 1000
Link rate (Mbps)

Objective Function
(Normalized)

Ideal

2x range
10x range

100x range
1000x range

8 / 17



Performance and link-rate operating range

-1.5

-1

-0.5

0

1 10 100 1000
Link rate (Mbps)

Objective Function
(Normalized)

Ideal

Cubic

Cubic-over-sfqCoDel

2x range
10x range

100x range
1000x range

8 / 17



Performance and link-rate operating range

I Very clear generality vs. operating range tradeoff

I Only weak evidence of a performance vs.
operating range tradeoff

I Possible to design a forwards-comptabible
protocol handling a wide range in link rates

9 / 17



Performance and link-rate operating range

I Very clear generality vs. operating range tradeoff

I Only weak evidence of a performance vs.
operating range tradeoff

I Possible to design a forwards-comptabible
protocol handling a wide range in link rates

9 / 17



Performance and link-rate operating range

I Very clear generality vs. operating range tradeoff

I Only weak evidence of a performance vs.
operating range tradeoff

I Possible to design a forwards-comptabible
protocol handling a wide range in link rates

9 / 17



Performance and link-rate operating range

I Very clear generality vs. operating range tradeoff

I Only weak evidence of a performance vs.
operating range tradeoff

I Possible to design a forwards-comptabible
protocol handling a wide range in link rates

9 / 17



Learning network protocols despite mismatched
assumptions

Can we learn a protocol that performs well both
when there are few senders and when there are
many senders?

10 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

1
- 10

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

1
- 10

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

1
- 10

1 - 50

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

1
- 10

1 - 50

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

1
- 10

1 - 50

1 - 100

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

1
- 10

1 - 50

1 - 100

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

1
- 10

1 - 50

1 - 100

Cubic

11 / 17



Imperfections in the number of senders

0 20 40 60 80 100

Number of senders

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
fu

nc
tio

n

Ideal

1
-2

1
- 10

1 - 50

1 - 100

Cubic

Cubic-over-sfqCoDel

11 / 17



Imperfections in the number of senders

Tradeoff between performance with few senders and
performance with many senders

11 / 17



Learning network protocols despite mismatched
assumptions

What are the costs and benefits of learning a new
protocol that shares fairly with a legacy sender?

12 / 17



Imperfect assumptions about the nature of other senders

I TCP-Aware RemyCC: Contends with:
I TCP-Aware RemyCC half the time
I TCP NewReno half the time.

I TCP-Naive RemyCC: Contends with:
I TCP-Naive RemyCC all the time

13 / 17



Imperfect assumptions about the nature of other senders

I TCP-Aware RemyCC: Contends with:
I TCP-Aware RemyCC half the time
I TCP NewReno half the time.

I TCP-Naive RemyCC: Contends with:
I TCP-Naive RemyCC all the time

13 / 17



RemyCC competing against itself

3

4

5

6

7

163264128

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Bet
te
r

NewReno
RemyCC

[TCP-naive]

14 / 17



RemyCC competing against itself

3

4

5

6

7

163264128

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Bet
te
r

NewReno
RemyCC

[TCP-naive]

Cost of TCP-awareness

14 / 17



RemyCC competing against itself

3

4

5

6

7

163264128

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Bet
te
r

NewReno
RemyCC

[TCP-naive]

Cost of TCP-awareness

RemyCC
[TCP-aware]

14 / 17



RemyCC competing against TCP NewReno

4

5

6

7

6496128

Queueing delay (ms)

Bet
te
r

3

T
hr

ou
gh

pu
t (

M
bp

s)

NewReno

RemyCC
[TCP-naive]

15 / 17



RemyCC competing against TCP NewReno

4

5

6

7

6496128

Queueing delay (ms)

Bet
te
r

3

T
hr

ou
gh

pu
t (

M
bp

s)

NewReno

RemyCC
[TCP-naive]

Benefit of TCP-awareness

Effect of
TCP-awareadversary

15 / 17



RemyCC competing against TCP NewReno

4

5

6

7

6496128

Queueing delay (ms)

Bet
te
r

3

T
hr

ou
gh

pu
t (

M
bp

s)

NewReno
RemyCC

[TCP-aware]

NewReno

RemyCC
[TCP-naive]

Benefit of TCP-awareness

Effect of
TCP-awareadversary

15 / 17



RemyCC competing against TCP NewReno

TCP awareness benefits you when needed, costs if
you don’t

15 / 17



Caveats

I Remy as a proxy for an optimal learner

I Results may change with better learners

I Negative results may no longer hold

16 / 17



Caveats

I Remy as a proxy for an optimal learner

I Results may change with better learners

I Negative results may no longer hold

16 / 17



Caveats

I Remy as a proxy for an optimal learner

I Results may change with better learners

I Negative results may no longer hold

16 / 17



Caveats

I Remy as a proxy for an optimal learner

I Results may change with better learners

I Negative results may no longer hold

16 / 17



The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
I Ongoing work in using findings:

I improve Google’s datacenter transport
I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability

17 / 17



The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
I Ongoing work in using findings:

I improve Google’s datacenter transport
I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability

17 / 17



The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
I Ongoing work in using findings:

I improve Google’s datacenter transport
I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability

17 / 17



The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
I Ongoing work in using findings:

I improve Google’s datacenter transport
I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability

17 / 17



The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks

I Ongoing work in using findings:

I improve Google’s datacenter transport
I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability

17 / 17



The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
I Ongoing work in using findings:

I improve Google’s datacenter transport
I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability

17 / 17



The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
I Ongoing work in using findings:

I improve Google’s datacenter transport

I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability

17 / 17



The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
I Ongoing work in using findings:

I improve Google’s datacenter transport
I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability

17 / 17



The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
I Ongoing work in using findings:

I improve Google’s datacenter transport
I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability

17 / 17



Backup slides

17 / 17



The Remy protocol synthesis procedure

I Protocol: range-based rule table from state to action

I State: Congestion signals tracked by the sender
I s ewma : EWMA over packet inter-transmit times
I r ewma : EWMA over ACK inter-arrival times
I rtt ratio: Ratio of RTT to minimum RTT
I slow r ewma: Slower version of s ewma

I Action: modify window, transmission rate
I Multiplier m to current window
I Increment c to current window
I Minimum inter-transmit time.

17 / 17



The Remy protocol synthesis procedure

I Protocol: range-based rule table from state to action
I State: Congestion signals tracked by the sender

I s ewma : EWMA over packet inter-transmit times
I r ewma : EWMA over ACK inter-arrival times
I rtt ratio: Ratio of RTT to minimum RTT
I slow r ewma: Slower version of s ewma

I Action: modify window, transmission rate
I Multiplier m to current window
I Increment c to current window
I Minimum inter-transmit time.

17 / 17



The Remy protocol synthesis procedure

I Protocol: range-based rule table from state to action
I State: Congestion signals tracked by the sender

I s ewma : EWMA over packet inter-transmit times
I r ewma : EWMA over ACK inter-arrival times
I rtt ratio: Ratio of RTT to minimum RTT
I slow r ewma: Slower version of s ewma

I Action: modify window, transmission rate
I Multiplier m to current window
I Increment c to current window
I Minimum inter-transmit time.

17 / 17



The Remy protocol synthesis procedure

1. Start with one rule: one action for all states

2. Optimize each action to maximize objective

3. Find most used rule

4. Median split that rule based on state usage

5. Repeat 2, 3, and 4 till you converge

17 / 17



One action for all states. Find the best value.

s_ewma

r_
ew
m
a

<?,?,?>

17 / 17



The best (single) action. Now split it on median.

s_ewma

r_
ew
m
a

<0.90,4,3.3>

17 / 17



Simulate

s_ewma

r_
ew
m
a

<0.90,4,3.3>

<0.90,4,3.3>

<0.90,4,3.3>

<0.90,4,3.3>

17 / 17



Optimize each of the new actions

s_ewma

r_
ew
m
a

<0.90,4,3.3>

<0.90,4,3.3>

<0.90,4,3.3>

<0.90,4,3.3>

17 / 17



Now split the most-used rule

s_ewma

r_
ew
m
a

<0.90,5,2.8>

<0.60,19,76.2>

<0.70,6,53.5>

<0.80,5,4.1>

17 / 17



Simulate

s_ewma

r_
ew
m
a

<0.90,5,2.8>

<0.60,19,76.2>

<0.70,6,53.5>

<0.80,5,4.1>

<0.80,5,4.1>

<0.80,5,4.1>

<0.80,5,4.1>

17 / 17



Optimize

s_ewma

r_
ew
m
a

<0.90,5,2.8>

<0.60,19,76.2>

<0.70,6,53.5>

<0.80,5,4.1>

<0.80,5,4.1>

<0.80,5,4.1>

<0.80,5,4.1>

17 / 17



Split

s_ewma

r_
ew
m
a

<0.90,5,2.8>

<0.30,29,49.7>

<0.60,17,13.3>

<0.80,8,3.3>

<0.80,8,62.7>

<0.80,17,4.6>

<0.80,7,16.9>

17 / 17



Simulate

s_ewma

r_
ew
m
a

<0.30,29,49.7>

<0.60,17,13.3>

<0.80,8,3.3>

<0.80,8,62.7>

<0.80,17,4.6>

<0.80,7,16.9>

<0.90,5,2.8>

<0.90,5,2.8>

<0.90,5,2.8>

<0.90,5,2.8>

17 / 17



Can applications with different objectives coexist?

I Tpt. Sender: A throughput-intensive sender

log(throughput)− 0.1 ∗ log(delay) (1)

I Lat. Sender: A latency-sensitive sender

log(throughput)− 10.0 ∗ log(delay) (2)

I Running over a FIFO queue

17 / 17



Training for diversity has a cost ...

1

2

5

11

16

124816326412825651210242048

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

17 / 17



Training for diversity has a cost ...

1

2

5

11

16

124816326412825651210242048

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Tpt. Sender
[naive]

Lat. Sender
[naive]

17 / 17



Training for diversity has a cost ...

1

2

5

11

16

124816326412825651210242048

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Tpt. Sender
[naive]

Tpt. Sender
[coevolved]

Lat. Sender
[naive]

Lat. Sender
[coevolved]

Cost of Coexistence

17 / 17



but, benefits the docile sender

1

2

5

11

16

124816326412825651210242048

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

17 / 17



but, benefits the docile sender

1

2

5

11

16

124816326412825651210242048

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Tpt. Sender
[naive]

Lat. Sender
[naive]

17 / 17



but, benefits the docile sender

1

2

5

11

16

124816326412825651210242048

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Tpt. Sender
[naive]

Tpt. Sender
[coevolved]

Lat. Sender
[naive]

Lat. Sender
[coevolved]

Benefit of coevolution

Effect of
playing nice

17 / 17


