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This talk

I How easy is it to learn a network protocol to
achieve a desired goal, despite a mismatched set
of assumptions?

I cf. Learning: “Knowledge acquisition without
explicit programming” (Valiant 1984)
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I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
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Remy compared with an ideal protocol
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Learning network protocols despite mismatched
assumptions

I Is there a tradeoff between operating range and
generality in link rates?
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Performance and link-rate operating range

I Very clear generality vs. operating range tradeoff
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operating range tradeoff
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Learning network protocols despite mismatched
assumptions

Can we learn a protocol that performs well both
when there are few senders and when there are
many senders?
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Imperfections in the number of senders

Tradeoff between performance with few senders and
performance with many senders
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Learning network protocols despite mismatched
assumptions

What are the costs and benefits of learning a new
protocol that shares fairly with a legacy sender?
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Imperfect assumptions about the nature of other senders

I TCP-Aware RemyCC: Contends with:
I TCP-Aware RemyCC half the time
I TCP NewReno half the time.

I TCP-Naive RemyCC: Contends with:
I TCP-Naive RemyCC all the time
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RemyCC competing against TCP NewReno

TCP awareness benefits you when needed, costs if
you don’t
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Caveats

I Remy as a proxy for an optimal learner

I Results may change with better learners

I Negative results may no longer hold
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The learnability of congestion control

I Can tolerate mismatched link-rate assumptions

I Need precision about the number of senders

I TCP compatibility is a double-edged sword

I Can tolerate mismatch in the # of bottlenecks
I Ongoing work in using findings:

I improve Google’s datacenter transport
I user-space implementation of RemyCC

I http://web.mit.edu/remy/learnability
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Backup slides
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The Remy protocol synthesis procedure

I Protocol: range-based rule table from state to action

I State: Congestion signals tracked by the sender
I s ewma : EWMA over packet inter-transmit times
I r ewma : EWMA over ACK inter-arrival times
I rtt ratio: Ratio of RTT to minimum RTT
I slow r ewma: Slower version of s ewma

I Action: modify window, transmission rate
I Multiplier m to current window
I Increment c to current window
I Minimum inter-transmit time.
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The Remy protocol synthesis procedure

1. Start with one rule: one action for all states

2. Optimize each action to maximize objective

3. Find most used rule

4. Median split that rule based on state usage

5. Repeat 2, 3, and 4 till you converge
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One action for all states. Find the best value.
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The best (single) action. Now split it on median.
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Can applications with different objectives coexist?

I Tpt. Sender: A throughput-intensive sender

log(throughput)− 0.1 ∗ log(delay) (1)

I Lat. Sender: A latency-sensitive sender

log(throughput)− 10.0 ∗ log(delay) (2)

I Running over a FIFO queue
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Training for diversity has a cost ...
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but, benefits the docile sender

1

2

5

11

16

124816326412825651210242048

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

17 / 17



but, benefits the docile sender

1

2

5

11

16

124816326412825651210242048

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Tpt. Sender
[naive]

Lat. Sender
[naive]

17 / 17



but, benefits the docile sender

1

2

5

11

16

124816326412825651210242048

T
hr

ou
gh

pu
t (

M
bp

s)

Queueing delay (ms)

Tpt. Sender
[naive]

Tpt. Sender
[coevolved]

Lat. Sender
[naive]

Lat. Sender
[coevolved]

Benefit of coevolution

Effect of
playing nice

17 / 17


