18.100B Lecture Notes

February 14, 2006
$\underline{\text { Defn }} \mathbb{\mathbb { C }}$ is the set \mathbb{R}^{2} containing pairs (a, b) with operations:

$$
\begin{aligned}
& (a, b)+(c, d)=(a+c, b+d) \\
& (a, b) *(c, d)=(a c-b d, a d+b c)
\end{aligned}
$$

We write (a, b) as $a+b i$, with $i=(0,1)$.
Note \mathbb{C} contains \mathbb{R} as a subfield in the form $(a, 0)$. We will write $\operatorname{Re}(a+i b)=$ a, and $\operatorname{Im}(a+i b)=b$
$\underline{\text { Defn }}$ The complex conjugate of $z=a+i b$ is $\bar{z}=a-i b$ The complex conjugate has the following properties:
a) $\overline{(z+w)}=\bar{z}+\bar{w}$
b) $\overline{(z w)}=\overline{z w}$
c) $z+\bar{z}=2 \operatorname{Re}(z)$ and $z-\bar{z}=2 \operatorname{Im}(z)$
d) $z \bar{z}$ is real and positive (if $z \neq 0$)

Defn $\quad|z|=\sqrt{z \bar{z}}$

b) $|z|=|\bar{z}|$
c) $|z w|=|z||w|$
d) $|\operatorname{Re} z| \leq|z|$
e) $|z+w| \leq|z|+|w|$ ("Triangle inequality")

Defn \quad The vector space over $\mathbb{C}\left(C^{n}\right)$ consists of n-tuples $\vec{z}=\left(z_{1}, z_{2}, \ldots z_{n}\right) z_{n} \in \mathbb{C}$ $\vec{z}+\vec{w}=\left(z_{1}+w_{z}, z_{2}+w_{2}, \ldots z_{n}+w_{n}\right)$
if $\lambda \in \mathbb{Z}, \lambda \vec{z}=\left(\lambda z_{1}, \lambda z_{2}, \ldots \lambda z_{n}\right)$
Defn The Hermition inner product is

$$
<\vec{z}, \vec{w}>=\sum_{k=1}^{n} z_{k} \overline{w_{k}}
$$

Note $\langle\vec{z}, \vec{z}\rangle=\sum_{k=1}^{n} z_{k} \overline{z_{k}} \in \mathbb{R},>0 \vec{z} \neq(0,0, \ldots)$
$\underline{\text { Defn }} \quad\|\vec{z}\|=\sqrt{<\vec{z}, \vec{z}}$

Claim
a) $\langle\vec{z}, \vec{w}\rangle=\overline{(}\langle\vec{w}, \vec{z}\rangle)$
b) $\langle\lambda \vec{z}, \vec{w}\rangle=\lambda<\vec{z}, \vec{w}\rangle$ $<\vec{z}, \lambda \vec{w}>=\bar{\lambda}<\vec{z}, \vec{w}>$
c) $\langle\vec{z}+\vec{w}, \vec{s}\rangle=\langle\vec{z}, \vec{s}\rangle+\langle\vec{w}, \vec{s}\rangle$

Thm (Cauchy-Schwartz inequality)

$$
|<\vec{z}, \vec{w}>| \leq\|\vec{z}\| \cdot\|\vec{w}\|
$$

Equivalently:

$$
\begin{aligned}
& |<\vec{z}, \vec{w}>|^{2} \leq<\vec{z}, \vec{z}><\vec{w}, \vec{w}> \\
& \sum_{k=1}^{n} z_{k} \overline{w_{k}} \leq\left(\sum_{k=1}^{n} z_{k} \overline{z_{k}}\right)\left(\sum_{k=1}^{n} w_{k} \overline{w_{k}}\right)
\end{aligned}
$$

$\underline{P f}$

$$
\begin{aligned}
& 0 \leq \quad<\vec{z}-\lambda \vec{w}, \vec{z}-\lambda \vec{w}> \\
& =\quad\langle\vec{z}, \vec{z}\rangle-\lambda\langle\vec{w}, \vec{z}\rangle \\
& -\bar{\lambda}<\vec{z}, \vec{w}>-\lambda \bar{\lambda}<\vec{w}, \vec{w}> \\
& \text { Set } \lambda=\frac{\langle\vec{z}, \vec{w}\rangle}{\langle\vec{w}, \vec{w}\rangle} \\
& \left.0 \quad \leq \quad<\vec{z}, \vec{z}>-\frac{\langle\vec{z}, \vec{w}\rangle}{\langle\vec{w}, \vec{w}\rangle}<\vec{w}, \vec{z}\right\rangle \\
& \left.-\frac{\langle\vec{w}, \vec{z}\rangle}{\langle\vec{w}, \vec{w}\rangle}<\vec{z}, \vec{w}\right\rangle+\frac{\langle\vec{z}, \vec{w}\rangle\langle\vec{w}, \vec{z}\rangle}{\langle\vec{w}, \vec{w}\rangle} \\
& <\vec{z}, \vec{w}\rangle\langle\vec{w}, \vec{z}\rangle \quad \leq \quad<\vec{z}, \vec{z}\rangle\langle\vec{w}, \vec{w}\rangle \\
& \left|<\vec{z}, \vec{w}>^{2}\right| \quad \leq \quad<\vec{z}, \vec{z}><\vec{w}, \vec{w}>
\end{aligned}
$$

