18.100B Lecture Notes

February 14, 2006

Defn	$\underline{\mathbb{C}}$ is the set \mathbb{R}^2 containing pairs (a, b) with operations:
	(a,b) + (c,d) = (a+c,b+d)
	(a,b)*(c,d) = (ac-bd,ad+bc)
	We write (a, b) as $a + bi$, with $i = (0, 1)$. Note \mathbb{C} contains \mathbb{R} as a subfield in the form $(a, 0)$. We will write $\operatorname{Re}(a+ib) = a$, and $\operatorname{Im}(a+ib) = b$
Defn	The complex conjugate of $z = a + ib$ is $\overline{z} = a - ib$ The complex conjugate has the following properties:
	a) $\overline{(z+w)} = \overline{z} + \overline{w}$
	b) $\overline{(zw)} = \overline{zw}$
	c) $z + \overline{z} = 2 \operatorname{Re}(z)$ and $z - \overline{z} = 2 \operatorname{Im}(z)$
	d) $z\overline{z}$ is real and positive (if $z \neq 0$)
Defn	$ z = \sqrt{z\overline{z}}$
<u>Claim</u>	a) $ z > 0$ if $z \neq 0$, and 0 otherwise
	b) $ z = \overline{z} $
	c) $ zw = z w $
	d) $ \text{Re}z \le z $
	e) $ z + w \le z + w $ ("Triangle inequality")

- $\underline{Defn} \qquad \text{The vector space over } \mathbb{C}(C^n) \text{ consists of } n\text{-tuples } \vec{z} = (z_1, z_2, ... z_n) \ z_n \in \mathbb{C}$ $\vec{z} + \vec{w} = (z_1 + w_z, z_2 + w_2, ... z_n + w_n)$ $\mathbf{if } \lambda \in \mathbb{Z}, \lambda \vec{z} = (\lambda z_1, \lambda z_2, ... \lambda z_n)$
- \underline{Defn} The Hermition inner product is

$$\langle \vec{z}, \vec{w} \rangle = \sum_{k=1}^{n} z_k \overline{w_k}$$

Note $\langle \vec{z}, \vec{z} \rangle = \sum_{k=1}^{n} z_k \overline{z_k} \in \mathbb{R}, > 0 \ \vec{z} \neq (0, 0, ...)$

 $\underline{Defn} \qquad ||\vec{z}|| = \sqrt{<\vec{z},\vec{z}}$

<u>*Thm*</u> (Cauchy-Schwartz inequality)

$$|<\vec{z},\vec{w}>|\leq ||\vec{z}||\cdot||\vec{w}||$$

Equivalently:

$$|\langle \vec{z}, \vec{w} \rangle|^{2} \leq \langle \vec{z}, \vec{z} \rangle \langle \vec{w}, \vec{w} \rangle$$
$$\sum_{k=1}^{n} z_{k} \overline{w_{k}} \leq (\sum_{k=1}^{n} z_{k} \overline{z_{k}}) (\sum_{k=1}^{n} w_{k} \overline{w_{k}})$$

<u>Pf</u>