The Zephyr Programmer’s Manual

DRAFT

Robert S. French
John T. Kohl

DRAFT

Revision : 2.1
—5 May 1989

CONTENTS i

Contents
1 Introduction 1
2 Manual Conventions 2
3 Overview of the Zephyr System 3
3.1 Major DIvisions o o . e e e e e e e e e e e e e 3
4 General Concepts 5
4.1 The Subscription Service L e e e 5
4.1.1 Theclassfield L 5
412 Theinstance field 5
4.1.3 Therecipientfield 5
4.1.4 Examples 6
4.1.5 Subscription Authorizationo 6
4.1.6 Default Subscriptions e e e e 7
4.2 The User Location Service o i i e 7
42.1 Location Information L 7
422 ExposureLevels e 7
5 Programming Standard Applications 9
5.1 The Zephyr Library and Include Files 9
5.1.1 Naming conventions vt ittt e e e e 9
52 TheZNotice t StruCture vt ittt e e e e e e 9
5.2.1 Componentsofthe Header 9
522 NoticeKinds e 11
5.2.3 Field Structure of the Notice Body 11
5.3 Acknowledgment Structure oL Lo e e e 12
54 ErrorHandling e 12
5.5 Inmitialization e e 13
5.5.1 ZInitialize oL e e e 13
5.52 ZOpenPort L e 13
56 Cleaning Up e 14
5.6.1 ZClosePort e 14

5.6.2 ZCancelSubscriptions e 14

CONTENTS il

5.7 Sending NOtICES o o o e e e e e e 14
5.7.1 ZSendNotice L e e 15
572 ZSendList L e 15
5.7.3 Useful Information to IncludeinaNotice 16

5.7.3.1 ZGetSender 16
57732 ZGetRealm 16
5.74 SendingBinaryData oL 16
5741 ZMakeAsCii 16
5.7.5 Sending Authenticated Notices 17
5.7.6 Sample Application 17

5.8 Receiving Acknowledgments L. e e 18

5.8.1 UsingPredicates e 18

5.8.1.1 ZCompareUIDPred and ZCompareMultiUIDPred 19
5.8.2 ZCheckIfNotice 19
5.83 ZFreeNotiCe i e 19
5.84 ZIINoOtiCe o e e 19
5.85 ZCompareUID e e 20
5.8.6 Sample Application e 20

5.9 Subscribing to Noticeso 21
5.9.1 ZSubscribeTo 22
5.9.2 ZUnsubscribeTo e 22
5.9.3 ZCancelSubscriptions e e e 23
5.9.4 Subscribing for the WindowGram Client 23

5941 ZGetWGPort. 23

5.10 Receiving NOtICeS o o vt i e e e e e e 23
5.10.1 ZReceiveNOtICe v i e e e 24
5.10.2 ReceivingBinary Data L 24

5.10.2.1 ZReadAscii e 24
5.10.3 Receiving Authenticated Notices L. 24
5.10.3.1 ZCheckAuthentication 24
5.10.4 Sample Application L 25

5.11 UsingtheInput Queue e e e e e 26

SA1.1 ZPending L e e e e 26

5.11.2 ZQLength L e 26

CONTENTS iii

5.12

5.13

5.14

5.15

5.16

5.11.3 ZPeekNOtiCe o o o e e e e e 27
5.11.4 ZPeekIfNotice L e e 27
Using Packets 27
5.12.1 ZFormatNOtiCe o i e e e e e 28
5.12.2 ZFormatNoticeList e 28
5.123 ZSendPacket e 28
5.124 ZReceivePacket 29
5.12.5 ZPeekPacket L 29
5.12.6 ZParseNOUCE o ot e e e e e 30
5.12.7 Sample Application 30
Using Raw NOLICES o o e e e e e e e 32
5.13.1 ZFormatRawNotice e 32
5.13.2 ZFormatSmallRawNotice 32
5.13.3 ZFormatRawNoticeList e 32
5.13.4 ZFormatSmallRawNoticeList 33
5.13.5 ZSendRawNotice e 33
5.13.6 ZSendRawList e 34
Retrieving User Locations L 34
5.14.1 ZLocateUser o i e e e e 34
5.142 ZNewLocateUser o i i e 34
5.143 ZGetLocations e e e e e e 35
5.14.4 ZFlushLocations i it e 35
5.145 Sample Application e 35
Retrieving Subscriptions L. L 36
5.15.1 ZRetrieveSubscriptions e 36
5.15.2 ZRetrieveDefaultSubscriptions oL 37
5.15.3 ZGetSubsCriptions e e e e e e e 37
5.15.4 ZFlushSubscriptions e e e 37
5.15.5 Sample Applicationo 38
Variable Handling e 39
5.16.1 ZGetVariable 39
5.16.2 ZSetVariable 39
5.16.3 ZUnsetVariable L e 40

5.16.4 Sample Application e 40

CONTENTS

6 Advanced Programming Topics

6.1

6.2

6.3

6.4
6.5

6.6

6.7

Changing Your Location Information L oo
6.1.1 ZSetLocation e
6.1.2 ZUnsetLocation i e e e e
6.1.3 ZFlushMyLocations i e e e
Using Your Own Socket L e
6.2.1 ZGetFD e
6.2.2 ZSetFD
Changing the Destination Address e
6.3.1 ZGetDestAddr
6.3.2 ZSetDestAddr e
Using Zephyr as a Rendezvous Service Lo
Server Functions L L e e
6.5.1 ZSetServerState e e
6.5.2 ZSrvSendNotice e
6.5.3 ZSrvSendList e
6.54 ZSrvSendRawList L e
6.5.5 ZFormatAuthenticNotice e
Communicating with the WindowGram Client
6.6.1 WheretoSend Notices
6.6.2 Available Commands
6.6.3 Sample Application e
Communicating with the HostManager
6.7.1 WheretoSend Notices
6.7.2 Available Commands
6.7.3 Sample Application L

A Additional Examples

Al
A2
A3

ZWIIE . . o o e e e e
ZIOCAte L e

2] I |

B Error Codes

C Function Templates

v

42
42
42
43
43
43
44
44
44
44
44
45
45
45
45
46
46
47
47
47
47
48
48
49
49
49

51
51
59
61

67

69

1 INTRODUCTION 1

1. Introduction

Zephyr is a notice transport and delivery system developed at MIT Project Athena in 1987. It is an integrated
system that provides the ability to send notifications, such as personal messages and system warnings, from one
user or system service to another user or group of users.

This manual describes the Zephyr library, the programmer’s interface to Zephyr. The Zephyr library consists
of a collection of C language functions which allow the programmer to send and receive notices. Additional
functions are provided in the library to modify how notices are distributed and to retrieve various pieces of infor-
mation.

Because this manual is primarily concerned with describing how to write an application which uses Zephyr,
the internal workings of the Zephyr system are not discussed in detail. The interested reader can find additional
information about Zephyr in the Zephyr design document [1].

This manual is organized into four main sections as follows:
Overview of the Zephyr System. This section describes the various components of Zephyr, and briefly de-
scribes how they interact.
General Concepts. This section describes the subscription and user location services.

Programming Standard Applications. This section describes the Zephyr include files, the functions available
in the Zephyr library, and many concepts that are relevant to programming Zephyr applications.

Advanced Programming Topics. This section describes more advanced topics, including how to send control
messages to Zephyr servers and HostManagers.

In addition, the following appendices are provided:

Additional Examples. Listings of zwrite, zlocate, and zstat, three standard Zephyr applications, are provided.
Error Codes. All Zephyr error codes are listed with a brief description of each.

Function Templates. Contains the templates for all of the functions mentioned in this manual.

2 MANUAL CONVENTIONS 2

2. Manual Conventions
The following typographical conventions are used in this manual:
e A combination of class, class instance, and recipient (used for subscriptions) is written as <CLASS, IN-

STANCE, RECIPIENT>.

e A function template is written as follows:
Function template for function:

int function (argl, arg2)
int argl;
char *arg2;

Prerequisite functions: Any functions that must be called before this one.

Possible errors: All possible error codes that could be returned.
e During the discussion of a function, arguments are written in bold type, like argl.
e Explicit members of a structure are also written in bold type, like member.
e Filenames are written in slanted type, like filename.
e Symbols that are defined in an include file are written in the normal type face, like ZERR_NONE.

e Strings that should be entered explicitly are written between quotes, like “rfrench”.

3 OVERVIEW OF THE ZEPHYR SYSTEM 3

3.

3.1.

Overview of the Zephyr System

Major Divisions

The Zephyr system consists of three primary sections:

e The Zephyr clients: These are the applications which actually use Zephyr to accomplish a task. Examples

of clients are zwrite, which allows a user to send messages to other users, syslogd, which can send system
warnings to users, and zwgc, the WindowGram client, which is the standard way for users to receive in-
coming notices. Clients are generally written using the Zephyr library, which is the primary subject of this
manual.

The HostManager: The HostManager is the intermediary between the clients and the rest of the Zephyr
system. There is one HostManager running on every host which supports Zephyr programs. All clients send
their outgoing notices to the HostManager. The HostManager then redistributes them to Zephyr servers for
final delivery. The HostManager is in charge of determining if a particular server is still operational, and
choosing a different server if necessary.

The Zephyr servers: These are the core of the Zephyr system. They are in charge of receiving notices from
the clients (via the HostManagers), figuring out which clients or users should receive them, and distributing
them. They are also in charge of keeping an up-to-date user location database. There can be any number of
servers spread throughout a workstation environment. The servers keep in constant communication, sharing
information about changed subscriptions and changed user locations.

The communication between these three components is indicated schematically in Figure 1. One server and

two hosts are shown. Each host consists of a HostManager and two clients. The sending host is sending a message
which is received by a client on the receiving host. This is a simplified view of the computing environment. Nor-
mally there would be hundreds or thousands of hosts, and several servers which keep in constant communication

with

each other.

When a notice is sent from a client, many events happen “behind the scenes” that are not normally seen by

the user. However, these events are very important to an applications programmer, and are listed in simplified
form below. Note that many of these actions occur in parallel so this should not be construed as an absolute order
of events.

. The source client program calls a Zephyr library routine which sends a notice.

The Zephyr library sends the notice to the HostManager on the same host, and then waits for an acknowl-
edgment.

. The HostManager receives the notice, and sends back an acknowledgment (HMACK) to the originating

client.
The Zephyr library receives the acknowledgment and returns to the calling program.

The HostManager forwards the notice to a Zephyr server, and appends the notice to its queue of unacknowl-
edged notices.

The Zephyr server receives the notice, determines its recipients, and sends back an acknowledgment (SER-
VACK) to the HostManager.

The HostManager receives the acknowledgment, removes the notice from its queue of unacknowledged
notices, and forwards a copy of the acknowledgment (SERVACK) to the client program.

The client program receives and disposes of the acknowledgment.

3 OVERVIEW OF THE ZEPHYR SYSTEM 4

Server
SERVACK
notice
HostManager HostManager
HMACK
&
SERVACK
CLIENTACK notice
Client Client
| | | |
! Client ! ! Client !
| | | |
Receiving Host Sending Host

Figure 1: Interaction between the various parts of a Zephyr system.

9. The server forwards the notice to all recipients, and each time appends the notice to its queue of unacknowl-
edged notices.

10. A destination client receives the notice, and sends back an acknowledgment (CLIENTACK) to the server.

11. The server receives the acknowledgment and removes the notice from its queue of unacknowledged notices.

At each stage except the initial client to HostManager communication, if an acknowledgment is not received
after a certain length of time, the notice is retransmitted. The initial client to HostManager communication is
not retransmitted because there is little chance of a notice being lost when transmitted to a program on the same
machine, and thus the lack of an acknowledgment indicates that something is very wrong.

Flags may be set in the notice to indicate how much acknowledgment should be done. The possibilities range
from no acknowledgments to the full acknowledgment scenario listed above. A discussion of the different levels
of acknowledgment can be found in §5.2.2, and a discussion of the structure of acknowledgments can be found in
§5.3.

4 GENERAL CONCEPTS 5

4. General Concepts

The following pages describe two concepts that may be useful to an applications programmer: The subscription
paradigm for notice distribution and the user location system. The subscription paradigm is used to determine
who will receive a given notice. The user location system is used to locate users.

4.1. The Subscription Service

Since the primary purpose of Zephyr is to deliver notices from one user or service to another, an important
consideration is the means of specifying the recipient of a notice. An application must be able to send a given
notice to a particular recipient, a known group of recipients, or an arbitrary, dynamically changing group of
recipients. Zephyr accomplishes this by using a “subscription” service. Each Zephyr notice contains three fields
which determine its recipients: zsub_class, zsub_instance, and zsub_recipient (these used to lack the zsub_ prefix,
but class is an illegal field name in C++). Users subscribe to specific triples of class, instance, and recipient, as
described below, and these subscriptions are used to determine whether or not a given user will receive a notice.

4.1.1. The class field

The class is the top-level characteristic of a notice. It serves two primary purposes:

e It is used as the first indicator of who might be able to receive the notice

e It is used to determine if the sender is authorized to send a notice of the particular class (see §4.1.5, “Sub-
scription Authorization”).

For example, a “MESSAGE” class might be used to indicate a generic user-to-user message, and a “FILSRV”
class might be used to indicate a file server message.

4.1.2. The instance field

The instance is a subdivision of the class. Its primary purpose is to narrow down the subject of the notice. For
example, a notice with class “FILSRV” might contain the name of the fileserver as its instance. By itself, the
instance is not very useful. It is simply an extra string like the class field that is used to determine possible
recipients. However, the instance field allows wildcarding at subscription time. This means that a person could
subscribe to file server messages from only a particular server by specifying the file server’s name as the instance,
or all file server messages by specifying instance “*”.

The only wildcard instance allowed is “*”. More complicated regular expressions (such as “* MIT.EDU” to
match all hosts in the MIT.EDU domain) are not allowed.

4.1.3. The recipient field

The recipient is the actual username of the person the notice is intended for. On systems which support the
Kerberos authentication system [2], the recipient is the Kerberos principal of the recipient. A Kerberos principal
is usually of the form username @realm, where realm is the name of the Kerberos realm controlling the user’s
host.

The recipient field may be wildcarded on both the sending and receiving ends. Once again “*” is the only
valid wildcard. These limitations apply:

4 GENERAL CONCEPTS 6

e If a user is subscribing to the triple <class, instance, username>, where username is the username of the
user, only notices with the user’s explicit username in their recipient field will be sent to the user.

o If a user is subscribing to the triple <class, instance, *>, only notices with a recipient of “*” will be sent

to the user.

Thus, if a user is subscribing to <MESSAGE, PERSONAL, rfrench@ATHENA.MIT.EDU>, and a message is
sent to <MESSAGE, PERSONAL, *>, he will not receive it. Likewise, if a person is subscribing to <MESSAGE,
PERSONAL, *>, and one is sent to <MESSAGE, PERSONAL, rfrench@ATHENA.MIT.EDU>, he will not receive
it. Subscriptions can be combined. Thus if a person is subscribing to both of these triples, he will receive both
messages. Note also that a person cannot subscribe to messages destined for users other than himself. These
limitations combine to prevent a user from receiving another user’s personal messages.

4.1.4. Examples

A notice sent to <MESSAGE, PERSONAL, rfrench@ATHENA.MIT.EDU> will be received by user “rfrench” if he
subscribes to:
<MESSAGE, PERSONAL, rfrench@ATHENA.MIT.EDU >

<MESSAGE, *, rfrench@ATHENA.MIT.EDU >

But he would not receive it if he subscribed to:

<FOOBAR, PERSONAL, rfrench@ATHENA.MIT.EDU >
<MESSAGE, FOOBAR, rfrench@ATHENA.MIT.EDU >

<MESSAGE, PERSONAL, *>

Likewise, a notice sent to <FILSRV, PARIS.MIT.EDU, *> would be received by someone subscribing to:

<FILSRV, PARIS.MIT.EDU, *>

<FILSRV, *, *¥>

But would not be received by someone subscribing to:

<FILSRV, PARIS.MIT.EDU, user @ ATHENA.MIT.EDU>

<FILSRV, *, user@ATHENA.MIT.EDU>

4.1.5. Subscription Authorization

It is possible for a notice to be authenticated using the Kerberos authentication system [2]. The method used to
do this is described in §5.7.5, “Sending Authenticated Notices.” When a notice is authenticated, a Zephyr server
can perform a number of tests to determine if a user is allowed to send notices to or subscribe to messages from
a particular class. The lists which determine these restrictions are kept on the server machines, and may not be
updated by users. They are not available for inspection by users.

Some of the restrictions that can be placed on a class are:

4 GENERAL CONCEPTS 7

Only specified users can send notices to this class

Only specified users can subscribe to notices from this class

Any notice sent to this class must be authenticated

Any notice sent to this class must have an instance equal to the sender of the notice

A complete list of restrictions and how they are implemented is available in the Zephyr design document [1].

4.1.6. Default Subscriptions

The Zephyr servers maintain a list of default subscriptions which are normally added automatically to all sub-
scriptions at the first subscription request for a given port (see §5.9 for details on when the default subscriptions
are not added). These subscriptions are intended to make sure that the Operations staff can easily notify all users.

4.2. The User Location Service

In addition to storing subscription information about each user, the Zephyr servers maintain a database of the
location of each currently logged-in user. This information is not used by the servers to determine where to send
notices—a client can subscribe to notices without being registered in the location database—but is made available
to other users for personal use.

Normally a user is registered by a standard client application (such as the WindowGram client) upon login,
and is deregistered at logout. However, an application may occasionally desire to modify or remove user location
information from the database. The ZSetLocation function (§6.1.1) will do this.

4.2.1. Location Information

The following information is stored by the Zephyr servers for each registered user:

e The name of the host the user is registered from.

e The name of the terminal the user is using; on a workstation that supports the X window system, this may
be the display name instead.

e The date and time the user was registered.

4.2.2. Exposure Levels

A user can register at any of a number of exposure levels. An exposure level tells the servers who will be able to
access information about the user’s location, and whether or not the registration will be announced to other users.
When a registration can be announced to other users, the Zephyr server sends it to users subscribing to <LOGIN,
user, ¥*>, where user is a fully qualified Kerberos principal (user @realm). If Kerberos is not in use, the user field
will be user@host.

The following exposure levels are defined:

e None: The user’s location information is completely hidden, and the registration is not announced.

e Opstaff: Only members of the site’s operational staff can retrieve the user’s location information, and the
registration is not announced.

4 GENERAL CONCEPTS 8

e Realm-Visible: Only users authenticated in the local Kerberos realm can retrieve the user’s location infor-
mation, and the registration is not announced.

e Realm-Announced: Only users authenticated in the local Kerberos realm can retrieve the user’s location
information, and the registration is announced to all interested users in the local realm.

e Net-Visible: All users can retrieve the user’s location information. The registration is announced to all
interested users in the local realm.

e Net-Announced: All users can retrieve the user’s location information, and the registration is announced

to all interested users.

When Kerberos is not enabled, each host is interpreted as a separate realm for purposes of exposure levels and
login notices.

5 PROGRAMMING STANDARD APPLICATIONS 9

5. Programming Standard Applications

The following sections describe the concepts involved in using the Zephyr library, and the function calls that
would be used in a standard Zephyr application.

5.1. The Zephyr Library and Include Files

Applications that want to use the features of Zephyr must link against the Zephyr library and the com_err library,
and possibly the Kerberos library and DES library. The Zephyr library contains the functions defined in the
later sections of this document. It is usually called 1ibzephyr.a, and may be included in an application by
specifying —1zephyr on the compile or link line.

The com_err library contains error-reporting functions (See the com_err design document [3].). It is usually
called 1ibcom_err. a, and may be included in an application by specifying —1com_err on the compile or
link line.

The Kerberos library contains Kerberos functions. It is usually called 1ibkrb. a, and may be included in
an application by specifying —1krb on the compile or link line.

The DES library contains DES functions. It is usually called 1ibdes . a, and may be included in an appli-
cation by specifying —1des on the compile or link line.

The main Zephyr include file, zephyr . h, must also be included in all source files that use Zephyr func-
tions. It contains many Zephyr-related definitions, and will automatically include zephyr_err.h, the file that
contains the error code definitions, plus the system include files <errno.h>, <sys/types.h>, <netinet/in.h>,
<sys/time.h>, and <stdio.h>, and if Kerberos is enabled, <krb.h>. zephyr .h may be included by specifying
the line #include <zephyr/zephyr.h> in the source file.

In order for your programs to interact properly with the Zephyr library provided on Project Athena, you must
specify the -DKERBEROS option to the C compiler when compiling your code.

5.1.1. Naming conventions

All routines internal to the Zephyr library are named beginning with “Z_". All routines intended to be used by
applications programmers are named beginning with “Z” and do not contain any underscores (_).

5.2. The ZNotice_t Structure

The ZNotice_t structure is the central data object of the Zephyr library. Outgoing notices are first represented in
a ZNotice_t structure, and incoming notices are returned in one. A Zephyr notice consists of two primary parts:
a header containing information about the notice and a data area. The ZNotice_t structure contains information
about both portions of the notice.

5.2.1. Components of the Header

All fields in the ZNotice_t structure are filled in with valid data when a notice is received. However, only some of
the fields need to be initialized when a notice is sent. The rest are either filled in automatically by the library, or
are filled in with default values if they are NULL. The ZNotice_t structure contains the following fields:

char *z_packet: If the notice has been formatted, or the notice was received, this field points to a buffer contain-
ing the formatted version of the notice.

5 PROGRAMMING STANDARD APPLICATIONS 10

char *z_version: The protocol version the notice was formatted with in the form ZEPHn.m where n is the major
version number and m is the minor version number. This manual discusses the functions related to version
ZEPHO0.2. If a notice is received by a client that supports a different major version, the client will refuse to
parse the notice. (This field is filled in automatically when the notice is sent.)

ZNotice_Kind_t z_kind: The type of the notice (see §5.2.2). (This field must be initialized by the client before
the notice is sent.)

ZUnique_Id_t z_uid: The unique ID of the notice. This ID is actually a per-transaction unique ID instead of a
per-notice unique ID. This is described in more detail in §5.3. (This field is filled in automatically when the
notice is sent.)

struct timeval z_time: The time the notice was sent. (This field is not actually part of the notice that is sent, but
is derived from the unique ID when the notice is received. Thus it does not need to be filled in at all when
the notice is sent.)

unsigned short z_port: The port number on the client from which the notice was sent. (This field must be filled
in before the notice is sent. If it is 0, it is automatically filled in with the client’s port number.)

int z_auth: An indication of how authentic the notice claims to be. 0 means not authenticated, 1 means authen-
ticated by Kerberos. Note this is an indication of the claim to authenticity, not an indication of the actual
authenticity. The function ZCheckAuthentication (§5.10.3.1) verifies or rejects this claim. (This field is
filled in automatically when the notice is sent.)

int z_authent_len: The length of the authenticator in z_ascii_authent. (This field is filled in automatically when
the notice is sent.)

char *z_ascii_authent: The authenticator. This data is used to determine the authenticity of the notice as it is
passed from the client program to the server. (It is filled in automatically when the notice is sent.)

char *z_class: The class of the notice. (This field must be filled in before the notice is sent.)
char *z_class_inst: The class instance of the notice. (This field must be filled in before the notice is sent.)

char *z_opcode: The opcode of the notice. This is an extra field with no specified purpose. It may be used to
provide extra information between a client and recipient about a notice’s contents. The name “opcode” is
derived from its initial creation as a place to put an “operation code” about what to do with the notice once
it was received. Some internal Zephyr functions use this field. Very few applications actually use it for this
purpose, however. (It must be filled in before the notice is sent.)

char *z_sender: The sender of the notice. (If this field is NULL, it will be filled in with the current user’s
username. It must be set to either a string or NULL before the notice is sent.)

char *z_recipient: The recipient of the notice. (This field must be filled in before the notice is sent.)

char *z_default_format: The default display format for the notice. See the Zephyr design document’s chapter
on the WindowGram client for more information about the default format string. (This field must be filled
in before the notice is sent.)

char *z_multinotice: An indication of what part of a fragmented notice this notice constitutes. (This field will
be filled in automatically.)

ZUnique_Id_t z_multiuid: An identification of which fragmented notice this notice is a part of. (This field will
be filled in automatically.)

ZChecksum_t z_checksum: The cryptographic checksum of various header fields, used to check the authenticity
of the notice as it is passed from the server to the recipient. (This field will be filled in automatically.)

int z_num_other fields: The number of extra user-defined or unknown fields present in this notice.

char *z_other_fields[Z_ MAXOTHERFIELDS]: An array of the extra fields (if any) for this notice.

5 PROGRAMMING STANDARD APPLICATIONS 11

int z_message len: The length, in bytes, of the message in z_message. (This field must be filled in before the
notice is sent. It may be 0 if no message is being included in the notice body.)

char *z_message: The body of the message. (This field must be filled in before the notice is sent. It may be
NULL if no message is being included in the message body.)

5.2.2. Notice Kinds

A ZNotice_Kind_t is an enumerated type of one of the following kinds. These kinds may be used in the z_kind
field of a ZNotice_t structure. Only the first three kinds, UNSAFE, UNACKED, and ACKED, will normally be
used by an application program. They are used to deliver a notice to a recipient. The other kinds are included
for internal communication between the various portions of a Zephyr system, and the notice is not delivered to a
recipient.

UNSAFE: The notice should be delivered. No user acknowledgments will be performed. No acknowledgment
is sent from the HostManager to the source client, and the HostManager will not forward the server ac-
knowledgment to the client. Note that the server still sends the HostManager an acknowledgment, and
the destination clients still send acknowledgments to the server. UNSAFE is used when a notice needs to
be sent, but the client can’t afford to wait around for acknowledgments (for example, a system shutdown
message).

UNACKED: The notice should be delivered. The HostManager will send an acknowledgment to the client, but
will not forward the server’s acknowledgment. This is used by clients which wish to make sure that the
notice has actually reached the HostManager safely, but don’t care if the server ever received it.

ACKED: The notice should be delivered. The HostManager will send an acknowledgment to the client, and will
forward the server’s acknowledgment. This is used by clients which want to make sure the notice got to the
server safely, and perhaps want to know if the server redistributed the notice to any recipients.

HMACK: The notice is an acknowledgment from the HostManager to a client.

HMCTL: The notice is a HostManager control packet, which may be sent to a HostManager to change its state.
See §6.7 for more information.

SERVACK: The notice is an acknowledgment from a server to a HostManager, and possibly to a client if the
HostManager forwards it.

SERVNAK: The notice is a negative acknowledgment from a server to a HostManager, and possibly to a client
if the HostManager forwards it. This notice means that something failed and the server was unable to
distribute the original notice.

CLIENTACK: The notice is an acknowledgment from a receiving client to a server. These notices are sent
automatically when a notice is received by the Zephyr library.

STAT: The notice contains a request for statistics information from a HostManager. See the section on Host-
Manager communication (§6.7) for more information.

5.2.3. Field Structure of the Notice Body
The z_message field of a notice can contain information in any format. The data may be ASCII text, or it may be

raw binary data. However, if a notice is to be displayed (by the WindowGram client or a similar application), it
should conform to the following standard:

o All data in the message body should be in printable ASCII form. Newline and tab characters are allowed.

5 PROGRAMMING STANDARD APPLICATIONS 12

e If the information can be conveniently broken into fields, the fields should be concatenated with a NULL
between each field and after the last field.

e The z_message_len should include all NULLSs, including the one after the last field.

The WindowGram client is capable of accepting a notice in this format and displaying it in a user-friendly
manner. See the Zephyr design document [1] for more information on the WindowGram client.

5.3. Acknowledgment Structure

An acknowledgment is a notice sent by either the HostManager, a server, or a receiving client to indicate that a
notice has been received at some step in the notice relay process. The acknowledgment is identical to the original
notice, except for the following differences:

e The z_Kkind field of the notice will be changed as follows:

— If the notice is a HostManager-to-sending-client acknowledgment, z_kind will be set to HMACK.

— If the notice is a server-to-HostManager acknowledgment, z_kind will be set to either SERVACK or
SERVNAK depending on whether the notice was handled successfully.

— If the notice is a receiving-client-to-server acknowledgment, z_kind will be set to CLIENTACK.

e Since the only purpose of an acknowledgment is to indicate that a notice has been received successfully,
it does not need to contain all of the information included in the original notice. Specifically, the message
field and the authenticator fields are left empty in most cases.

The preferred method for a client to determine which original notice the acknowledgment is referencing is
to use the z_uid field. The z_uid of the acknowledgment will be the same as the z_uid of the original notice. Thus
this field is not a per-packet unique ID, but a per-transaction unique ID.

When a server acknowledges a notice to the HostManager, it includes some additional information in the
message body in place of any message that was there before. This information takes the form of a single, NULL-
terminated string, as follows:

e ZSRVACK_SENT: The notice was sent to at least one recipient. This does not necessarily indicate that the
recipient received the notice, but is a good indication that someone is subscribing to the class and instance
of the notice.

e ZSRVACK_NOTSENT: The notice was not sent to any recipients. This means that no one is subscribing
to the class and instance of the notice.

e ZSRVACK FAIL: The processing of the notice failed for some reason, most likely because of a lack of
proper authentication. This may also be caused by an attempt to send a notice to a restricted class which
the user is not authorized to send to.

More information about processing acknowledgments can be found in §5.8.

5.4. Error Handling

Almost all routines in the Zephyr library return an error code of type Code_t. This error code may be a UNIX
error, a Kerberos error (if Kerberos authentication is enabled), or a Zephyr error. A Code_t may be treated as an
integer. Each type of error is in a different numeric range (so that they do not interfere with each other). This is

5 PROGRAMMING STANDARD APPLICATIONS 13

accomplished using the com_err library. If a routine succeeds, it will return the status ZERR_NONE, which is
defined to be zero. A complete list of Zephyr error codes and their meanings can be found in §B, “Error Codes.”

The following routines provided by the com_err library may be useful. A full description of the features of
the com_err library may be found in the com_err design document [3].

Function template for error_message:

char * error_message (code)
int code;

Return a string containing the error message associated with error code.
Function template for com_err:

void com_err (whoami, code, message)
char *whoami;
int code;
char *message;

Print an error message of the form:
<whoami>: <error> <message>

Thus if whoami were “zwrite”, code were the error code for “Internal error”, and message were “while sending
notice”, the error message printed would be:

zwrite: Internal error while sending notice

5.5. Initialization

5.5.1. ZlInitialize

Function template for ZInitialize:

Code_t Zlnitialize ()

Prerequisite functions: None
Possible errors: ZERR_HMPORT

The Zephyr library must be initialized before it can be used. Zlnitialize performs this function. It caches
information such as the user’s username, the host’s name, and the HostManager’s port number to speed up fu-
ture operations, and initializes other internal state variables. If the port for the HostManager is not found in
/etc/services, ZERR_HMPORT is returned.

5.5.2. ZOpenPort

Function template for ZOpenPort:
Code_t ZOpenPort (port)
unsigned short *port;
Prerequisite functions: ZlInitialize
Possible errors: UNIX errors, ZERR_PORTINUSE

Before the Zephyr library can perform any operations that require the sending or receiving of notices, a port

5 PROGRAMMING STANDARD APPLICATIONS 14

must be allocated for these transactions. The ZOpenPort function accomplishes this. It should be called before
any of the functions which send or receive notices. There are three ways to call ZOpenPort:

With port NULL: A port is allocated randomly.

With port pointing to an integer containing 0: A port is allocated randomly, and *port is set to the port
number.

With port pointing to a a non-zero integer: The port *port is allocated, if possible. If *port cannot be
allocated, ZERR_PORTINUSE is returned.

5.6. Cleaning Up

5.6.1. ZClosePort

Function template for ZClosePort:

Code_t ZClosePort ()

Prerequisite functions: None
Possible errors: None

The ZClosePort function closes the Zephyr port that was opened with the ZOpenPort function (§5.5.2). If no
port was opened with ZOpenPort, or a new file descriptor was set with ZSetFD (§6.2.2), no action is performed.
It is not really necessary to call ZClosePort before an application exits, since UNIX will automatically close all
open file descriptors when a program exits.

5.6.2. ZCancelSubscriptions

Before an application exits, it should cancel any subscriptions it has made. The ZCancelSubscriptions function
(§5.9.3) performs this task.

5.7. Sending Notices

There are a number of functions that will take a notice described by a ZNotice_t structure and transmit it to the
current destination address (usually the HostManager). Each of the functions requires the following fields to be
initialized in the ZNotice_t structure:

z Kkind

z_port (may be 0)
z_class

z_class_inst
z_opcode

z_sender (may be 0)
Z_recipient

z_default_format

5 PROGRAMMING STANDARD APPLICATIONS 15

The rest of the structure should be zeroed out, with code similar to this:

ZNotice_t notice;

bzero((char *)¬ice, sizeof (notice));
/* initialize the notice after zeroing the entire structure =/
notice.z_kind = acked;

In addition to the above fields, ZSendNotice requires the z_message and z_message_len fields to be initial-
ized. The contents of each of these fields, and the default values for those that have them, are described in detail
in the ZNotice_t section (§5.2).

5.7.1. ZSendNotice

Function template for ZSendNotice:

Code_t ZSendNotice (notice, cert_routine)
ZNotice_t *notice;
int (*cert_routine)();

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_HEADERLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR _BADPKT, ZERR_VERS, ZERR_QLEN

The ZSendNotice function takes the notice described by notice and sends it to the current destination address
(usually the HostManager). cert_routine is a function that will authenticate the message, or is NULL if no such
authentication is requested. See §5.7.5 for a description of notice authentication. The fields z_message and
z_message len must be set in notice. If no port has yet been allocated, ZOpenPort(0) (§5.5.2) is automatically
called.

If the total header size plus the length of the message exceeds the maximum packet size, the notice will be
fragmented into multiple packets; thus there is no limit' on notice size. This fragmentation is transparent to the
application program.

If the z_kind field of notice is UNACKED or ACKED, and server mode has not been set (see ZSetServer-
State, §6.5.1), the library will automatically wait for an acknowledgment from the HostManager. If the acknowl-
edgment does not arrive after thirty seconds, ZERR_HMDEAD is returned.

5.7.2. ZSendList

Function template for ZSendList:

Code_t ZSendList (notice, list, nitems, cert_routine)
ZNotice_t *notice;

char *list[];
int nitems;
int (*cert_routine)();

Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_HEADERLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

'Well, almost no limit. Sending very large notices (> 50K) will be very inefficient using this method. It would be much better to use
Zephyr as a rendezvous service (see §6.4).

5 PROGRAMMING STANDARD APPLICATIONS 16

The ZSendList function performs identically to the ZSendNotice function above, except that the message
body is taken from the list argument instead of the z_message field of notice. nitems is the number of items
(nitems > 0) in the list array. The items in list are concatenated in order with a NULL placed after each one.

5.7.3. Useful Information to Include in a Notice

The following functions provide information that it may be useful to include in the header of a notice.

5.7.3.1. ZGetSender

Function template for ZGetSender:

char * ZGetSender ()

Prerequisite functions: Zlnitialize
Possible errors: None

The ZGetSender function returns the name of the current user. If Kerberos is enabled, ZGetSender will return
the Kerberos principal (in the form username @realm). If Kerberos is not enabled, or the user is not authenticated,
the user’s username from /etc/passwd concatenated with ‘@’ and the official name of the current host (in the form
username @ hostname) will be returned.

5.7.3.2. ZGetRealm

Function template for ZGetRealm:

char * ZGetRealm ()

Prerequisite functions: Zlnitialize
Possible errors: None

The ZGetRealm function returns the realm of the current host. If Kerberos is enabled, ZGetRealm will return
the current Kerberos realm. Otherwise, the official name of the current host is returned.

5.7.4. Sending Binary Data

Occasionally it is useful to send binary data in a notice, but to represent the binary data in printable form (for
debugging or auditing purposes). The ZMakeAscii function makes this task easy.

5.7.4.1. ZMakeAscii

Function template for ZMakeAscii:

Code_t ZMakeAscii (buffer, buffer_len, field, field_len)

char *buffer;
int buffer_len;
unsigned char ~ *field;

int field_len;

Prerequisite functions: None

5 PROGRAMMING STANDARD APPLICATIONS 17

Possible errors: ZERR_FIELDLEN

The ZMakeAscii function converts field_len bytes of data stored in field into printable ASCII and stores
them in the buffer of length buffer_len. If the converted data is longer than buffer_len bytes, ZERR_FIELDLEN
is returned. The data generated by ZMakeAscii can be converted back to binary with ZReadAscii (§5.10.2.1).

The data generated by ZMakeAscii is in the format “Oxaabbccdd Oxeeffgghh...”, where aa is the
hexadecimal representation of the first byte in the buffer, bb is the second byte, etc.

5.7.5. Sending Authenticated Notices

A notice may be authenticated by the Kerberos authentication system [2]. When this is done, the recipient of the
notice is guaranteed that the Kerberos principal in the z_sender field is the actual sender of the notice. Note that
true authentication only works when Kerberos is enabled. If Kerberos is not in use, any notice claiming to be
authentic will appear authentic, and there is no guarantee of actual authenticity.

ZMakeAuthentication is the function in the Zephyr library which authenticates a packet under Kerberos.
Since this is an internal function and should never be called directly, its template is not given here. The symbols
ZAUTH and ZNOAUTH are defined to be ZMakeAuthentication and NULL, respectively. In this way one of
these abbreviations may be placed in the cert_routine parameter for ZFormatNotice, ZSendNotice, ZSendList
or ZSrvSendList to either enable or disable authentication. As new forms of authentication are developed, new
abbreviations will be provided.

Authenticated notices should be used only when necessary because of their greater overhead. The time
required to compute the DES encryptions is usually around % second at each step in the transmission: sender,
server, and recipient.

A notice can be checked for authentication with the ZCheckAuthentication function (§5.10.3.1).

5.7.6. Sample Application

This application demonstrates use of ZSendNotice. It initializes the Zephyr library, fills in a notice structure
(with the recipient set to the user executing the application), and calls ZSendNotice twice to send the notice, first
unauthenticated and then authenticated.

#include <zephyr/zephyr.h>

main ()

{
int status;
ZNotice_t notice;

/* Initialize the library x/

if ((status = ZInitialize()) != ZERR_NONE) {
com_err ("sample", status, "while initializing");
exit (1) ;

}

bzero ((char *)¬ice, sizeof (notice));
/+ initialize the notice after zeroing the entire structure x*/

notice.z_kind = UNACKED; /* We don’t care about acknowledgments =/
notice.z_port = 0; /x Will be filled in by HostManager =/
notice.z_class = "MESSAGE";

notice.z_class_inst = "PERSONAL";

notice.z_opcode = "";

/+ The sender will get filled in by the library if 0 */

5 PROGRAMMING STANDARD APPLICATIONS 18

notice.z_sender = (char =*)NULL;

notice.z_recipient = ZGetSender(); /x Send to myself «/
notice.z_default_format = "";

notice.z_message = "Hello - This is an example!";

/+ Make sure we include the trailing NULL in the length */
notice.z_message_len = strlen(notice.z_message)+1;

/+ First send the notice unauthenticated x/

/+ ZSendNotice will automatically open a port for us =*/

if ((status = ZSendNotice (¬ice, ZNOAUTH)) != ZERR_NONE)
com_err ("sample", status, "while sending notice");

/+ Send it again, authenticated =/

if ((status = ZSendNotice (¬ice, ZAUTH)) != ZERR_NONE) {
com_err ("sample", status, "while sending notice");
exit (1) ;

}

exit (0);

5.8. Receiving Acknowledgments

As mentioned in previous sections (§3 and §5.2.2) different kinds of notices trigger various levels of acknowledg-
ment. The acknowledgment from the HostManager to the sending client is handled internally. However, any other
acknowledgments that have been requested must be handled by the application program. These will normally
consist solely of acknowledgments from the server.

The structure of the returning acknowledgment is described in §5.3. Acknowledgments have the same unique
ID as the original notice. Thus, it is desirable to have some way to check or wait for incoming notices with known
characteristics (such as a certain unique ID). A simple application may perform the following sequence of tasks
repeatedly:

Send out a notice

Wait for a server acknowledgment for that notice

Take action based on the information contained in the acknowledgment

Repeat

The following functions make this a painless process.

5.8.1. Using Predicates

A predicate is a C function which takes a series of arguments and returns a true or false value indicating some
relationship (or lack of relationship) between the arguments. All predicates which can be used by the functions
described below must take the format:

int predicate (notice, arg)
ZNotice_t *notice;
char *arg;

The function should return 1 if the notice satisfies some prespecified relationship with arg, O otherwise.

5 PROGRAMMING STANDARD APPLICATIONS 19

5.8.1.1. ZCompareUIDPred and ZCompareMultiUIDPred

The only predicates supplied by the Zephyr library are ZCompareUIDPred and ZCompareMultiUIDPred. Both
take a notice and a pointer to a ZUnique_Id_t as arguments. ZCompareUIDPred returns 1 if the unique ID of the
notice is the same as the supplied unique ID, or O if they are different. ZCompareMultiUIDPred returns 1 if the
z_multiuid field of the notice is the same as the supplied unique ID, or O if they are different.

5.8.2. ZCheckIfNotice

Function template for ZCheckIfNotice:

Code_t ZCheckIfNotice (notice, from, predicate, args)

ZNotice_t *notice;

struct sockaddr_in *from;

int (*predicate)();
char *args;

Prerequisite functions: ZlInitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_BADPKT, ZERR_VERS, ZERR_PKTLEN, ZERR_NOPORT,
ZERR_QLEN, ZERR_NONOTICE

The ZCheckIfNotice function scans the notice input queue. For each notice, it calls the predicate func-
tion with the notice and arg. If the predicate returns 1, ZCheckIfNotice allocates a packet buffer and copies
the notice data into this buffer, then parses the packet into notice, removes the notice from the queue, and returns
ZERR _NONE. If no notice is found which is accepted by the predicate, ZCheckIfNotice returns ZERR_NONOTICE.
*from is filled in with the address of the host which sent the notice.

After a successful return from the ZCheckIfNotice function, ZFreeNotice (§5.8.3) should be called with
argument notice when the caller has finished using notice.

5.8.3. ZFreeNotice

Function template for ZFreeNotice:
void ZFreeNotice (notice)

ZNotice_t *notice;
Prerequisite functions: None
Possible errors: None

ZFreeNotice frees up the storage allocated for a notice by other library routines. ZFreeNotice should only be
used for notices returned by library functions whose documentation instructs the programmer to use ZFreeNotice.

5.8.4. ZIfNotice

Function template for ZIfNotice:

Code_t ZIfNotice (notice, from, predicate, args)

ZNotice_t *notice;
struct sockaddr_in *from;
int (*predicate)();

char *args;

5 PROGRAMMING STANDARD APPLICATIONS 20

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_BADPKT, ZERR_VERS, ZERR_PKTLEN, ZERR_NOPORT,
ZERR_QLEN

The ZIfNotice function performs identically to the ZCheckIfNotice function above, except that if there is
no notice in the input queue that fits the desired criteria as determined by predicate, ZIfNotice will wait until a
satisfying notice is received, and then perform as described above for ZCheckIfNotice.

After a successful return from the ZIfNotice function, ZFreeNotice (§5.8.3) should be called with argument
notice when the caller has finished using notice.

5.8.5. ZCompareUID

Function template for ZCompareUID:

int ZCompareUID (uid1, uid2)
ZUnique_Id_t *uidl;
ZUnique Id_t *uid2;

Prerequisite functions: None
Possible errors: None

There are times when the above routines may be inefficient. For example, an application may simply want to
accept incoming notices, and decide on the fly whether a notice is an acknowledgment to a previously sent notice.
The ZCompareUID function provides an easy means to determine if two unique ID’s are the same. It returns 1 if
they are the same, and O if they are different.

5.8.6. Sample Application

This application demonstrates use of ZSendNotice and ZIfNotice by sending a simple message to a username
specified on the command line. It verifies that a username was specified, initializes the library, fills in the notice,
sends it, and then waits for an acknowledgment. When the acknowledgment is received, it checks the response
and prints a message indicating the response type.

#include <zephyr/zephyr.h>

main (argc, argv)
int argc;
char xargvl[];

ZNotice_t notice, retnotice;
Code_t retval;

/* verify username is specified x/

if (argc < 2) {
fprintf (stderr, "No username specified!\n");
exit (1);

}

/* Initialize the library */

if ((retval = ZInitialize()) != ZERR_NONE) {
com_err ("sample", retval, "while initializing");
exit (1);

5 PROGRAMMING STANDARD APPLICATIONS 21

bzero ((char x)¬ice, sizeof (notice));
/+ initialize the notice after zeroing the entire structure */
/* Fill in the notice fields */

notice.z_kind = ACKED; /* ACKED since we want an acknowledgment =/
notice.z_port = 0; /x Will be filled in by HostManager =/
notice.z_class = "MESSAGE";

notice.z_class_inst = "PERSONAL";

notice.z_opcode = "";

/* The sender will get filled in by the library if 0 x/
notice.z_sender = (char =*)NULL;

/+ Send to the person named on the command line x/
notice.z_recipient = argv[l];

notice.z_default_format = "";

notice.z_message = "Hi there!\n";

/* Make sure we include the trailing NULL in the length */
notice.z_message_len = strlen(notice.z_message)+1;

/+ Send the notice unauthenticated =/

/+ ZSendNotice will automatically open a port for us */

if ((retval = ZSendNotice (¬ice, ZNOAUTH)) != ZERR_NONE) {
com_err ("sample", retval, "while sending notice");
exit (1);

/+ Wait for the server response. x/

if ((retval = ZIfNotice (&retnotice, (struct sockaddr_in)0,
ZCompareUIDPred,
(char x)¬ice.z_uid)) != ZERR_NONE) {

com_err ("sample", retval, "while waiting for ack");
exit (1);

/+ Was there an error? =/

if (retnotice.z_kind == SERVNAK) {
printf ("Received authentication failure while sending\n");
exit (1);

/+ Check the message body for the acknowledgment information =/
if (!strcmp(retnotice.z_message, ZSRVACK_SENT))

printf ("Message sent!\n");
else

printf ("$s not receiving messages!\n", argv[l]);

ZFreeNotice (&retnotice);
exit (0);

5.9. Subscribing to Notices

The following functions allow an application to subscribe to notices. The subscription service is described in §4.1.

ZSubscribeTo and ZUnsubscribeTo use the ZSubscription_t structure, which has the following fields:

e char *class: The class of the subscription.

e char *classinst: The instance of the subscription.

5 PROGRAMMING STANDARD APPLICATIONS 22

e char *recipient: The recipient of the subscription.

5.9.1. ZSubscribeTo

Function template for ZSubscribeTo:

Code_t ZSubscribeTo (sublist, nitems, port)
ZSubscription_t sublist[];
int nitems;
unsigned short port;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR _BADPKT, ZERR_VERS, ZERR_QLEN

The ZSubscribeTo function attempts to inform the Zephyr servers that subscriptions for the indicated port
on the current host should be added. The subscriptions are listed as class/instance/recipient triples in the sublist
array. nitems is the number of entries in the sublist array. port will usually be the port number of the current
application. If port is 0, the port number of the current application is substituted. If this request registers the
first subscriptions for the specified port, the resulting subscriptions maintained by the server are the union of the
default subscriptions (see §4.1.6) and the subscriptions specified in sublist. If this request supplements previously
registered subscriptions, this function will not remove any of those subscriptions (which may include default
subscriptions).

Function template for ZSubscribeToSansDefaults:

Code_t ZSubscribeToSansDefaults (sublist, nitems, port)
ZSubscription_t sublist[];
int nitems;
unsigned short port;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

The ZSubscribeToSansDefaults function works identically to the the ZSubscribeTo function (above), but
requests the server not to add the default subscriptions for the specified port. The omission of default subscriptions
will only work properly if there are no subscriptions registered for the specified port before this function is
called. If this request supplements previously registered subscriptions, this function will not remove any of those
subscriptions (which may include default subscriptions).

5.9.2. ZUnsubscribeTo

Function template for ZUnsubscribeTo:

Code_t ZUnsubscribeTo (sublist, nitems, port)
ZSubscription_t sublist[];
int nitems;
unsigned short port;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

5 PROGRAMMING STANDARD APPLICATIONS 23

The ZUnsubscribeTo function attempts to inform the Zephyr servers that the specified subscriptions for the
indicated port on the current host should be deleted. The subscriptions are listed as class/instance/recipient triples
in the sublist array. nitems is the number of entries in the sublist array. port will usually be the port number of
the current application. If port is 0, the port number of the current application is substituted.

ZUnsubscribeTo may be useful to remove the server default subscriptions (§4.1.6), which are automatically
recorded for every port which has been passed to the ZSubscribeTo function. See §5.15.2 to see how to examine
the default subscriptions.

5.9.3. ZCancelSubscriptions

Function template for ZCancelSubscriptions:
Code_t ZCancelSubscriptions (port)

unsigned short port;
Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

The ZCancelSubscriptions function removes all of the subscriptions for the indicated port. If port is 0, the
port number of the current application is substituted.

5.9.4. Subscribing for the WindowGram Client

The WindowGram client is the standard way for users to receive incoming notices. To accomodate this, applica-
tions will occasionally want to subscribe to notices on behalf of the WindowGram client; in this way an application
can easily add to the types of notices that the user will receive. The zctl command is an example of a program
that will subscribe on behalf of the WindowGram client.

5.94.1. ZGetWGPort

Function template for ZGetWGPort:

int ZGetWGPort ()

Prerequisite functions: None
Possible errors: -1 = No port number available

The ZGetWGPort function returns the port number associated with the user’s WindowGram client. It does
this by examining the WGFILE environment variable, and reading the file named by that variable. If WGFILE
is not set, /tmp/wg.uid, where uid is the UNIX user ID of the user, is examined instead. If neither file could be
found, -1 is returned.

The port number returned by ZGetWGPort can be cast to an unsigned short value and used as the port
argument to ZSubscribeTo, ZUnsubscribeTo, or ZCancelSubscriptions.

5.10. Receiving Notices

The following functions are used to receive and interpret incoming notices.

5 PROGRAMMING STANDARD APPLICATIONS 24

5.10.1. ZReceiveNotice

Function template for ZReceiveNotice:

Code_t ZReceiveNotice (notice, from)
ZNotice_t *notice;
struct sockaddr_in *from;

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_NOPORT, ZERR_PKTLEN, ZERR_QLEN, ZERR_BADPKT,
ZERR_VERS

The ZReceiveNotice function reads and removes the next notice from the input queue. If there are no notices
in the queue, it blocks until a notice arrives. A buffer to contain the notice is allocated automatically. notice
contains the parsed packet. All fields of notice are filled in as appropriate. The address from which the notice was
received is placed in *from if from is non-NULL.

After a successful return from the ZReceiveNotice function, ZFreeNotice (§5.8.3) should be called with
argument notice when the caller has finished using notice.

5.10.2. Receiving Binary Data
5.10.2.1. ZReadAscii

Function template for ZReadAscii:

Code_t ZReadAscii (buffer, buffer_len, field, field_len)
char “*buffer;
int buffer_len;
char *field;
int field_len;

Prerequisite functions: None

Possible errors: ZERR_BADFIELD

The ZReadAscii function reverses the action of the ZMakeAscii function (§5.7.4.1). It takes the field len
bytes in field, and converts them back into binary form in buffer. buffer len is the number of bytes available in
buffer. ZERR _BADFIELD is returned if field contains data in an improper format or the data will not fit into the
buffer.

5.10.3. Receiving Authenticated Notices
When a notice is received, there is no way to immediately discern if it is authenticated or not (the z_auth field in

the ZNotice_t structure is not necessarily accurate when a notice is received). The ZCheckAuthentication function
is provided to verify or deny the authenticity of a notice.

5.10.3.1. ZCheckAuthentication

Function template for ZCheckAuthentication:

Code_t ZCheckAuthentication (notice, from)

5 PROGRAMMING STANDARD APPLICATIONS 25

ZNotice_t *notice;
struct sockaddr_in *from,;

Prerequisite functions: ZlInitialize, ZReceiveNotice
Possible errors: None

The ZCheckAuthentication function verifies the Kerberos authentication in notice. It returns ZAUTH_NO if
the notice is not authentic, ZAUTH_FAILED if the notice claimed to be authentic but the authenticity could not be
verified, and ZAUTH_YES if the notice was verified to be authentic. *from should contain the the address from
which the notice was received.

When Kerberos is enabled, this verification uses Kerberos authentication information. When Kerberos is
disabled, notices claiming to be authentic cause ZCheckAuthentication to return ZAUTH_YES, and notices not
claiming to be authentic cause ZCheckAuthentication to return ZAUTH_NO.

5.10.4. Sample Application

This application demonstrates use of ZOpenPort, ZSubscribeTo, ZReceiveNotice, ZCheckAuthentication and
ZFreeNotice. It initializes the library, opens a port, subscribes to messages, and then loops, printing every notice
it receives. The program never terminates normally, so it does not cancel its subscriptions. NOTE: any messages
which contain NULL’s in them will not be printed in their entirety, due to the way printf() handles %s arguments.

#include <zephyr/zephyr.h>

main ()

{
ZSubscription_t sub;
ZNotice_t notice;
struct sockaddr_in from;
Code_t retval;

/* Initialize the library =/

if ((retval = ZInitialize()) != ZERR_NONE) {
com_err ("sample", retval, "while initializing");
exit (1);

/+ Open a port, so that ZSubscribeTo has a port to use */
if ((retval = ZOpenPort ((int %) 0)) != ZERR_NONE) {
com_err ("sample", retval, "while opening port");
exit (1);

/* Subscribe this client to personal messages =*/
sub.class = "MESSAGE";

sub.classinst = "PERSONAL";

sub.recipient = ZGetSender();

if ((retval = ZSubscribeTo(&sub, 1, 0)) != ZERR_NONE) {

com_err ("sample", retval, "while subscribing");
exit (1);

/+ Loop and accept incoming messages and print them out */

5 PROGRAMMING STANDARD APPLICATIONS

printf ("Now accepting messages...\n");

for (;;) |
if ((retval = ZReceiveNotice (¬ice, &from)) !=

exit (1);
}
retval = ZCheckAuthentication(¬ice, &from);
switch (retval) {
case ZAUTH_YES:
printf (" Authenticated message! **\n");
break;
case ZAUTH_NO:
printf ("+» Unauthenticated message! *x\n");
break;
case ZAUTH_FATLED:
printf ("+» Forged message! **\n");
break;
}

printf ("Message from: %$s\n", notice.z_sender);

printf ("$s\n", notice.z_message);
ZFreeNotice (¬ice);

/* We really should cancel subscriptions when we’re finished,

but this program never finishes, so... */

S5.11. Using the Input Queue

ZERR_NONE)
com_err ("sample", retval, "while receiving notice");

{

26

The Zephyr library keeps a queue of notices as they are received. When a packet arrives, it is placed into the
queue. If the packet is part of a fragmented notice, the notice is reassembled as the pieces arrive. When all
fragments have been received, the count of complete messages is incremented. If no fragments of an incomplete
notice arrive during a fixed, short interval after the last fragment was received, all the stored fragments of that

notice are discarded. In this way resources are reclaimed if a failure occurs.

The following functions allow an application to test the status of the input queue.

5.11.1. ZPending
Function template for ZPending:

int ZPending ()

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_MAXQLEN, ZERR_EOF

The ZPending function places any newly received packets into the input queue, and then returns the total
number of complete notices available in the queue. The value -1 is returned if an error occurs, with the error code

placed in the global variable errno.

5.11.2. ZQLength

Function template for ZQLength:

5 PROGRAMMING STANDARD APPLICATIONS 27

int ZQLength ()

Prerequisite functions: Zlnitialize, ZOpenPort
Possible errors: None

The ZQLength function returns the total number of complete notices in the input queue. No new packets are
placed into the input queue.

5.11.3. ZPeekNotice

Function template for ZPeekNotice:

Code_t ZPeekNotice (notice, from)
ZNotice_t *notice;
struct sockaddr_in *from;

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_NOPORT, ZERR_PKTLEN, ZERR_QLEN, ZERR_BADPKT,
ZERR_VERS

The ZPeekNotice function “peeks at” the next notice in the input queue, and returns that notice. It functions
identically to ZReceiveNotice (§5.10.1), except that the notice is left in the input queue.

After a successful return from the ZPeekNotice function, ZFreeNotice (§5.8.3) should be called with argu-
ment notice when the caller has finished using notice.

5.11.4. ZPeekIfNotice

Function template for ZPeekIfNotice:

Code_t ZPeekIfNotice (notice, from, predicate, args)

ZNotice_t *notice;

struct sockaddr_in *from;

int (*predicate)();
char *args;

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_BADPKT, ZERR_VERS, ZERR_PKTLEN, ZERR_NOPORT,
ZERR_QLEN

The ZPeeklIfNotice function acts identically to the ZCheckIfNotice function (§5.8.2), except that the notice
is left in the input queue.

After a successful return from the ZPeekIfNotice function, ZFreeNotice (§5.8.3) should be called with argu-
ment notice when the caller has finished using notice.

5.12. Using Packets

While notices, in the guise of ZNotice_t structures, are the objects most frequently manipulated by applications,
another representation, the “packet”, is available. A packet is a single buffer which contains all of the information
of a ZNotice_t structure. The packet is what is transmitted and received over the network, and is broken down into
its constituent fields to become a ZNotice_t structure.

5 PROGRAMMING STANDARD APPLICATIONS 28

The following functions are provided for applications that want to manipulate or store packets directly. This
may be useful since packets are generally easier to store than ZNotice_t structures.”

See §5.7 for a description of what fields in a notice need to be initialized before using the following routines.

5.12.1. ZFormatNotice

Function template for ZFormatNotice:

Code_t ZFormatNotice (notice, buffer, ret_len, cert_routine)
ZNotice_t *notice;

char **puffer;
int *ret_len;
int (*cert_routine)();

Prerequisite functions: Zlnitialize
Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL

The ZFormatNotice function takes notice and formats it into a packet. The packet is stored in a newly
allocated buffer. The address of this buffer is returned in *buffer. The length of the resulting packet is returned
in *ret_len. cert_routine is called, if non-NULL, as described in §5.7.5, to authenticate the notice and place
authentication information into the packet.

After a successful call to ZFormatNotice, the standard C library routine free() should be called with argument
*buffer when the caller is finished using the packet.

5.12.2. ZFormatNoticeList

Function template for ZFormatNoticeList:

Code_t ZFormatNoticeList (notice, list, nitems, buffer, ret_len, cert_routine)
ZNotice_t *notice;

char *list[];

int nitems;

char **puffer;

int *ret_len;

int (*cert_routine)();

Prerequisite functions: Zlnitialize
Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL

The ZFormatNoticeList function is a hybrid between the ZFormatNotice function (§5.12.1) and the ZSendList
function (§5.7.2). It formats the notice into a newly allocated packet like ZFormatNotice, but the message body
comes from the nitems fields of list. The fields are concatenated together with a NULL after each field.

After a successful call to ZFormatNoticeList, the standard C library routine free() should be called with
argument *buffer when the caller is finished using the packet.

5.12.3. ZSendPacket

Function template for ZSendPacket:

2The strings in a ZNotice_t structure always contain pointers into the original packet; thus they must stay together. However, a packet can
stand on its own and be parsed into a ZNotice_t structure when necessary.

5 PROGRAMMING STANDARD APPLICATIONS 29

Code_t ZSendPacket (packet, len, waitforack)
char *packet;
int len;
int waitforack;

Prerequisite functions: Zlnitialize

Possible errors: UNIX errors, ZERR_ILLVAL, ZERR_HMDEAD, ZERR_BADPKT, ZERR_VERS,
ZERR _PKTLEN, ZERR_QLEN

The ZSendPacket function simply transmits the len byte long packet in packet to the current destination
address. If the waitforack argument is non-zero, it will wait until it receives a HostManager acknowledgment
before returning.

5.12.4. ZReceivePacket

Function template for ZReceivePacket:

Code_t ZReceivePacket (buffer, ret_len, from)
ZPacket_t buffer;

int *ret_len;
struct sockaddr_in *from;

Prerequisite functions: Zlnitialize, ZOpenPort
Possible errors: UNIX errors, ZERR_NOPORT, ZERR_PKTLEN, ZERR_QLEN

The ZReceivePacket function reads and removes the next complete packet from the input queue and returns
it in buffer, which should be the standard Z_ MAXPKTLEN bytes long. The actual size of the received packet
is returned in *ret_len, and the address from which the packet was received is returned in *from. If the next
complete packet is larger than Z_ MAXPKTLEN, ZERR_PKTLEN is returned. If you need to use the packet
representation of a notice larger than Z_ MAXPTKLEN, use ZReceiveNotice (§5.10.1) and access the z_packet
field of the notice.

5.12.5. ZPeekPacket

Function template for ZPeekPacket:

Code_t ZPeekPacket (buffer, ret_len, from)
char **buffer;
int *ret_len;
struct sockaddr_in ~ *from;

Prerequisite functions: ZlInitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_NOPORT, ZERR_PKTLEN, ZERR_QLEN, ZERR_BADPKT,
ZERR_VERS

The ZPeekPacket function “peeks at” the next packet in the input queue. The packet is placed in a newly
allocated buffer. The address of the buffer is returned in *buffer. The size of the received packet is returned in
*ret_len, and the address from which the packet was received is returned in *from. The packet is not removed
from the input queue.

After a successful call to ZPeekPacket, the standard C library routine free() should be called with argument
*buffer when the caller is finished using the packet.

5 PROGRAMMING STANDARD APPLICATIONS

5.12.6. ZParseNotice

Function template for ZParseNotice:

Code_t ZParseNotice (buffer, buffer_len, notice)
char *buffer;
int buffer_len;
ZNotice_t *notice;

Prerequisite functions: ZlInitialize

Possible errors: ZERR_BADPKT, ZERR_VERS

30

The ZParseNotice function breaks a packet down into its constituent fields, and builds a ZNotice_t structure.

buffer contains the buffer_len byte long packet to be parsed. The resulting notice is returned in *notice.

5.12.7. Sample Application

This application demonstrates use of ZFormatNotice and ZParseNotice. It initializes the library, fills in a notice,
formats it, prints the formatted representation, parses the notice, prints the parsed notice, and frees the allocated

storage.

#include <zephyr/zephyr.h>

main ()
{
ZNotice_t notice, newnotice;
char xbuffer;
int buffer_len;
int retval;

/+ Initialize the library x/

if ((retval = ZInitialize()) != ZERR_NONE) {
com_err ("sample", retval, "while initializing");
exit (1) ;

bzero ((char *)¬ice, sizeof (notice));

/+ initialize the notice after zeroing the entire structure »*/
notice.z_kind = ACKED;

notice.z_port = 0; /+ Will be filled in by HostManager =/

notice.z_class = "MESSAGE";

notice.z_class_inst = "PERSONAL";

notice.z_opcode = "";

/+* The sender will get filled in by the library if 0 */
notice.z_sender = (char =*)NULL;

notice.z_recipient = ZGetSender(); /x myself =/
notice.z_default_format = "This is the default format\ns$l";
notice.z_message = "Hello - This is an example!";

/+ Make sure we include the trailing NULL in the length */
notice.z_message_len = strlen(notice.z_message)+1;

/* Format the notice x/

if ((retval = ZFormatNotice (¬ice, &buffer, &buffer_len, ZNOAUTH))
!= ZERR_NONE) {
com_err ("sample", retval, "while formatting notice");

5 PROGRAMMING STANDARD APPLICATIONS 31

exit (1) ;

/* print the formatted packet.
use write () here so that the entire buffer is printed. printf() would
stop at the first NULL.
Unfortunately, however, the NULL’s are normally invisible unless the
output is piped through /bin/cat -v */

write (1, buffer, buffer_len);

/+ Parse the notice =/

if ((retval = ZParseNotice (buffer, buffer_len, &newnotice)) != ZERR_NONE) ({
com_err ("sample", retval, "while parsing notice");
exit (1) ;

}
/+ Print the fields in the notice =/

printf ("\nversion = ’'%s’\nz_time = %d,%d\nz_port = %u\nz_auth = $d\n\
z_authent_len = %d\nz_ascii_authent = ’%s’\nz_class = ’'%s’\n\
z_class_inst = ’%s’\nz_opcode = ’%s’\nz_sender = ’'%s’\nz_recipient = ’%s’\n\
z_default_format = ’"%s’\nz_multinotice = ’%s’\nz_checksum = %lu\n\
z_num_other fields = %d\nz_other fields[0] = ’"%s’\nz_other fields[1l] = "%s’\n\
z_other_fields[2] = "%s’\nz_other_fields[3] = "%s’\n\
z_other fields[4] = "%$s’\nz_other fields[5] = "%s’\n\
z_other fields[6] = "%$s’\nz_other_ fields[7] = "%s’\n\
z_other_fields[8] = "%s’\nz_other_fields[9] = "%s’\n\
z_message_len = $d\nz_message = ’'%s’\n",

newnotice.z_version,
newnotice.z_time.tv_sec, newnotice.z_time.tv_usec,
newnotice.z_port,
newnotice.z_auth,
newnotice.z_authent_len,
newnotice.z_ascii_authent,
newnotice.z_class,
newnotice.z_class_inst,
newnotice.z_opcode,
newnotice.z_sender,
newnotice.z_recipient,
newnotice.z_default_format,
newnotice.z_multinotice,
newnotice.z_checksum,
newnotice.z_num_other_fields,
newnotice.z_other_fields[0],
newnotice.z_other_fields]|1
newnotice.z_other fields]
newnotice.z_other_fields]|
newnotice.z_other_fields]|
newnotice.z_other fields]
newnotice.z_other_fields]|
newnotice.z_other_fields]|
newnotice.z_other fields]
newnotice.z_other_fields]
newnotice.z_message_len,
newnotice.z_message) ;
/* Free storage allocated by ZFormatNotice =/
free (buffer);
exit (0);

5 PROGRAMMING STANDARD APPLICATIONS 32

5.13. Using Raw Notices

It is occasionally useful to be able to transmit packets without having the library fill in missing information for
you. For example, the library will usually initialize the z_uid and the authentication fields for you. However,
if you wanted to send a message with a specific unique ID, as is the case with an acknowledgment, you would
not want the library to interfere. The following routines allow an application to handle notices in their “raw”, or
untouched, form.

5.13.1. ZFormatRawNotice

Function template for ZFormatRawNotice:

Code_t ZFormatRawNotice (notice, buffer, ret_len)
ZNotice_t *notice;
char **puffer;
int *ret_len;

Prerequisite functions: ZlInitialize
Possible errors: ZERR_PKTLEN, ZERR_HEADERLEN

The ZFormatRawNotice function performs identically to the ZFormatNotice function (§5.12.1), except that
no part of the notice is changed when it is formatted. The notice in notice is formatted into a packet and placed
in a newly allocated buffer. The address of this buffer is returned in *buffer. The length of the resulting packet is
returned in *ret_len.

After a successful call to ZFormatRawNotice, the standard C library routine free() should be called with
argument *buffer when the caller is finished using the packet.

5.13.2. ZFormatSmallRawNotice

Function template for ZFormatSmallRawNotice:

Code_t ZFormatSmallRawNotice (notice, buffer, ret_len)
ZNotice_t *notice;
ZPacket_t buffer;
int *ret_len;

Prerequisite functions: ZInitialize
Possible errors: ZERR_PKTLEN, ZERR_HEADERLEN

The ZFormatSmallRawNotice function performs identically to the ZFormatRawNotice function above, ex-
cept that no packet fragmentation is allowed, and if the notice will not fit into a single ZPacket_t buffer, ZERR_PKTLEN
is returned. The caller must provide the packet buffer in buffer.

5.13.3. ZFormatRawNoticeList

Function template for ZFormatRawNoticeL.ist:

Code_t ZFormatRawNoticeList (notice, list, nitems, buffer, ret_len)

5 PROGRAMMING STANDARD APPLICATIONS 33

ZNotice_t *notice;

char *list[];
int nitems;
char **puffer;
int *ret_len;

Prerequisite functions: Zlnitialize
Possible errors: ZERR_PKTLEN, ZERR_HEADERLEN

The ZFormatRawNoticeList function performs identically to the ZFormatNoticeList function (§5.12.2), ex-
cept that no part of the notice is changed when it is formatted. The notice in notice is formatted into a packet and
placed in a newly allocated buffer. The address of this buffer is returned in *buffer. The body of the notice is take
from the nitems items in list, which are concatenated together with a NULL following each item. The length of
the resulting packet is returned in *ret_len.

After a successful call to ZFormatRawNoticeList, the standard C library routine free() should be called with
argument *buffer when the caller is finished using the packet.

5.13.4. ZFormatSmallRawNoticeList

Function template for ZFormatSmallRawNoticeList:

Code_t ZFormatSmallRawNoticeList (notice, list, nitems, buffer, ret_len)
ZNotice_t *notice;

char *list[];
int nitems;
ZPacket_t buffer;
int *ret_len;

Prerequisite functions: ZlInitialize
Possible errors: ZERR_PKTLEN, ZERR_HEADERLEN

The ZFormatSmallRawNoticeList function performs identically to the ZFormatRawNoticeList function above,
except that no packet fragmentation is allowed, and if the notice will not fit into a single ZPacket_t buffer,
ZERR _PKTLEN is returned. The caller must provide the packet buffer in buffer.

5.13.5. ZSendRawNotice

Function template for ZSendRawNotice:

Code_t ZSendRawNotice (notice)
ZNotice_t *notice;

Prerequisite functions: ZInitialize

Possible errors: UNIX errors, ZERR_PKTLEN, ZERR_HMDEAD, ZERR_BADPKT, ZERR_VERS,
ZERR_QLEN

The ZSendRawNotice function performs identically to the ZSendNotice function (§5.7.1), except that no part
of the notice is changed when it is formatted, and no authentication is performed.

5 PROGRAMMING STANDARD APPLICATIONS 34

5.13.6. ZSendRawList

Function template for ZSendRawList:

Code_t ZSendRawList (notice, list, nitems)
ZNotice_t *notice;
char *list[];
int nitems;

Prerequisite functions: ZlInitialize

Possible errors: UNIX errors, ZERR_PKTLEN, ZERR_HMDEAD, ZERR _BADPKT, ZERR_VERS,
ZERR_QLEN

The ZSendRawList function performs identically to the ZSendList function (§5.7.2), except that no part of
the notice is changed when it is formatted, and no authentication is performed.

5.14. Retrieving User Locations

The following functions allow an application to retrieve information from the user location service (§4.2).

5.14.1. ZLocateUser

Function template for ZLocateUser:

Code_t ZLocateUser (user, nlocs)
char *user;
int *nlocs;
Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

The ZLocateUser function queries the user location service for the location of user user. The locations are
stored in allocated storage. The number of locations retrieved is returned in *nlocs. If another ZLocateUser call
is done, the old storage is freed and new storage allocated as necessary.

An error return of ZERR_VERS usually indicates a version mismatch of the following types:

e A new application running on a host with an old HostManager.

e An old server.

The zstat program will display the version numbers of both the HostManager and server. Check to be sure the
Protocol Version numbers are the same as the protocol version of your application (inspect /ust/include/zephyr/zephyr.h
to find the protocol version numbers of your application).

5.14.2. ZNewLocateUser

Function template for ZNewLocateUser:

Code_t ZNewLocateUser (user, nlocs, cert_routine)

5 PROGRAMMING STANDARD APPLICATIONS 35

char *user;
int *nlocs;
int (*cert_routine)();

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR _BADPKT, ZERR_VERS, ZERR_QLEN

The ZNewLocateUser function queries the user location service for the location of user user. The locations
are stored in allocated storage. The number of locations retrieved is returned in *nlocs. If another ZNewLoca-
teUser call is done, the old storage is freed and new storage allocated as necessary. cert_routine is a function
that will authenticate the query, or NULL if no such authentication is requested. See §5.7.5 for a description of
authentication.

The possible error codes returned are the same as for ZLocateUser.

5.14.3. ZGetLocations

Function template for ZGetLocations:

Code_t ZGetLocations (location, numloc)
ZLocations_t location([];
int *numloc;

Prerequisite functions: Zlnitialize, ZLocateUser

Possible errors: ZERR_NOLOCATIONS, ZERR_NOMORELOCS

The ZGetLocations function returns the next user location entries that were retrieved with ZLocateUser. If
there are no stored locations, ZERR_NOLOCATIONS is returned. *numloc should initially contain the maximum
number of locations that can fit in the location buffer. On return, *numloc will contain the number of entries
actually returned. Subsequent calls to ZGetLocations will return additional location entries if possible. When
there are no more unseen locations in the internal storage, ZERR_NOMORELOCS is returned. As the pointers in
the filled-in ZLocations_t structure point into private storage used by ZLocateUser, the contents may change on
future calls to ZLocateUser. Thus they should be copied into other storage by the client if necessary.

5.14.4. ZFlushLocations

Function template for ZFlushLocations:

Code_t ZFlushLocations ()

Prerequisite functions: ZlInitialize, ZLocateUser
Possible errors: None

The ZFlushLocations function frees any storage allocated by the most recent ZLocateUser call.

5.14.5. Sample Application

This application demonstrates use of ZLocateUser and ZGetLocations. It verifies that a username was specified
on the command line, then initializes the library, queries the server for the locations of the specified user, and
prints out any locations found.

5 PROGRAMMING STANDARD APPLICATIONS 36

#include <zephyr/zephyr.h>

main (argc, argv)
int argc;
char xargvl[];

ZLocations_t location;
Code_t retval;
int i, totallocs, numlocs;

/+ verify a username was given on command line x/
if (argc < 2) {
fprintf (stderr, "No username specified!\n");
exit (1);

/% Initialize library =/

if ((retval = ZInitialize()) != ZERR_NONE) {
com_err ("sample", retval, "while initializing");
exit (1);

/+ Locate the user. =/

if ((retval = ZLocateUser(argv[l], &totallocs)) != ZERR_NONE) {
com_err ("sample", retval, "while locating user");
exit (1);

/+ complain if not logged in =/

if (totallocs == 0) {
printf ("$s not logged in.\n", argv[1l]);
exit (1) ;

/* retrieve each location, one at a time =*/
for (i=0; i<totallocs; i++) {
numlocs = 1;
if ((retval = ZGetLocations (&location, &numlocs)) != ZERR_NONE) {
com_err ("sample", retval, "while getting location");
exit (1);
}
printf ("$s at %s on %s\n", location.host, location.time,
location.tty);
}
exit (0);

5.15. Retrieving Subscriptions

The following functions allow an application to retrieve information about the user’s current subscriptions or the
system default subscriptions (§4.1).

5.15.1. ZRetrieveSubscriptions

Function template for ZRetrieveSubscriptions:

5 PROGRAMMING STANDARD APPLICATIONS 37

Code_t ZRetrieveSubscriptions (port, nsubs)
unsigned short port;
int *nsubs;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

The ZRetrieveSubscriptions function queries the server for the current subscriptions for port port. The
number of subscriptions retrieved is returned in *nsubs. If port is zero, the port of the current application is
substituted. The ZGetWGPort function (§5.9.4.1) can be used to return the port number associated with the user’s
WindowGram Client.

5.15.2. ZRetrieveDefaultSubscriptions

Function template for ZRetrieveDefaultSubscriptions:

Code_t ZRetrieveDefaultSubscriptions (nsubs)
int *nsubs;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

The ZRetrieveDefaultSubscriptions function queries the server for the default subscriptions. The number of
subscriptions retrieved is returned in *nsubs.

5.15.3. ZGetSubscriptions

Function template for ZGetSubscriptions:

Code_t ZGetSubscriptions (subscription, numsub)
ZSubscription_t *subscription;
int *numsub;

Prerequisite functions: Zlnitialize, ZRetrieveSubscriptions or ZRetrieveDefaultSubscriptions
Possible errors: ZERR_NOSUBSCRIPTIONS, ZERR_NOMORESUBSCRIPTIONS

The ZGetSubscriptions function returns the next subscription entries that were retrieved with ZRetrieveSub-
scriptions or ZRetrieveDefaultSubscriptions. *numsub should initially contain the maximum number of sub-
scriptions that can fit in the subscription buffer. On return, *numsub will contain the number of entries actually
returned. Subsequent calls to ZGetSubscriptions will return additional subscription entries if possible. As the
pointers in the ZSubscription_t structure may point into “private” storage filled in by ZRetrieveSubscriptions or
ZRetrieveDefaultSubscriptions, they may changed on future calls to these functions. Thus they should be copied
into other storage by the client if necessary.

5.15.4. ZFlushSubscriptions

Function template for ZFlushSubscriptions:

Code_t ZFlushSubscriptions ()

5 PROGRAMMING STANDARD APPLICATIONS 38

Prerequisite functions: ZlInitialize, ZRetrieveSubscriptions or ZRetrieveDefaultSubscriptions
Possible errors: None

The ZFlushSubscriptions function frees any storage allocated by the ZRetrieveSubscriptions or ZRetrieveDe-
faultSubscriptions functions. This will be automatically performed one of these functions is called again.

5.15.5. Sample Application

This application demonstrates use of ZGeWGPort, ZRetrieveSubscriptions and ZRetrieveDefaultSubscriptions.
It initializes the library, retrieves the WindowGram port (printing an error if it is not able to retrieve the port
number), retrieves and prints the subscriptions, and finally retrieves and prints the default subscriptions.

#include <zephyr/zephyr.h>

main ()

{
ZSubscription_t subscription;
Code_t retval;
int wgport, totalsubs;

/+ Initialize the library =/

if ((retval = ZInitialize()) != ZERR_NONE) {
com_err ("sample", retval, "while initializing");
exit (1);

wgport = ZGetWGPort () ;

if (wgport == -1)
printf ("Can’t retrieve current subscriptions\n");
else {
/* retrieve WindowGram’s subscriptions =/
if ((retval = ZRetrieveSubscriptions ((unsigned short)wgport,

&totalsubs)) != ZERR_NONE) {
com_err ("sample", retval, "while retrieving subscriptions");
exit (1);
}
printf ("Your current subscriptions:\n");
print_subs (totalsubs);

/+ retrieve default subscriptions */
if ((retval = ZRetrieveDefaultSubscriptions (&totalsubs)) != ZERR_NONE) {
com_err ("sample", retval,
"while retrieving default subscriptions");
exit (1);
}
printf ("Default subscriptions:\n");
print_subs (totalsubs);
exit (0);

print_subs (totalsubs)
int totalsubs;

ZSubscription_t subscription;
Code_t retval;

5 PROGRAMMING STANDARD APPLICATIONS 39

int i, numsubs;

for (i=0; i<totalsubs; i++) {

numsubs = 1;
if ((retval = ZGetSubscriptions (&subscription,
gnumsubs)) !'= ZERR_NONE) {

com_err ("sample", retval, "while getting subscription");
exit (1);
}
printf ("<%s, %s,%$s>\n", subscription.class, subscription.classinst,
subscription.recipient);

5.16. Variable Handling

5.16.1. ZGetVariable

Function template for ZGetVariable:

char * ZGetVariable (var)
char *var;

Prerequisite functions: None
Possible errors: NULL = variable not defined

The ZGetVariable function returns the value assigned to the variable var. Variable names are case insensitive.
Two variable files are searched: the user’s private variables file (7/.zephyr.vars) and the system default variables
file. If the variable is defined in the user’s variables file, any system default value is ignored. If the variable is not
defined in the user’s variables file, but is defined in the system default variables file, the system default value is
used. If the variable is not defined in either file, NULL is returned. Errors encountered while opening or reading
a variables file are not returned. The pointer returned points to storage internal to the library. The value should be
copied before ZGetVariable is called again.

5.16.2. ZSetVariable

Function template for ZSetVariable:

Code_t ZSetVariable (var, value)
char *var;
char *value;

Prerequisite functions: None
Possible errors: UNIX errors, ZERR_INTERNAL

The ZSetVariable function sets the value of the variable var to value in the user’s private variables file. If a
variable was already present with the same name, it is replaced. Variable names are case insensitive. If the library
can’t find the user’s home directory, an error message is printed and ZERR_INTERNAL is returned. A UNIX
error code is returned if an error is encountered while opening, reading, or writing the user’s variables file.

5 PROGRAMMING STANDARD APPLICATIONS 40

5.16.3. ZUnsetVariable

Function template for ZUnsetVariable:

Code_t ZUnsetVariable (var)

char *var;

Prerequisite functions: None

Possible errors: UNIX errors, ZERR_INTERNAL

The ZUnsetVariable function removes the definition of the variable var from the user’s variables file. If the

variable is not defined, no error is returned. Variable names are case insensitive. If the library can’t find the user’s
home directory, an error message is printed and ZERR_INTERNAL is returned. A UNIX error code is returned if
an error is encountered while opening, reading, or writing the variables file.

5.16.4. Sample Application

This application demonstrates use of ZSetVariable, ZUnsetVariable, and ZGetVariable. It plays with the “expo-
sure” variable, showing the value, unsetting any private value, showing any default value, and restoring any private
value.

#include <zephyr/zephyr.h>

main ()

{

char current[100]; /+ Assume the exposure is < 100 chars */
char xvalue;

Code_t status;

int had_exposure = 0;

/+ Retrieve and copy "exposure" variable x/

if ((value = ZGetVariable ("exposure")) == NULL)
printf ("No current value for ’exposure’\n");
else {

printf ("Your value for ’exposure’: %$s\n", value);
strcpy (current, value);
had_exposure = 1;

/+ Unset "exposure" variable =/
if ((status = ZUnsetVariable ("exposure")) != ZERR_NONE) ({
com_err ("sample", status,
"while unsetting variable ’exposure’");
exit (1);

/
* Retrieve "exposure" variable. If there is a system default,
* 1t should be retrieved here, since exposure was unset above.
*/
if ((value = ZGetVariable ("exposure")) == NULL)
printf ("No default value for ’exposure’\n");
else
printf ("System default value for ’exposure’: %$s\n", value);

/+ Re—set exposure if we saved it above x/

5 PROGRAMMING STANDARD APPLICATIONS

if (had_exposure) {
printf ("Setting ’'exposure’
if ((status = ZSetVariable ("exposure",

ZERR_NONE) {

com_err ("sample", status,
"while setting variable ’exposure’");

back to original value\n");
current))

exit (1);

}
/* Verify that the exposure was saved =/
if ((value = ZGetVariable ("exposure")) == NULL) {

printf ("Something went really wrong here...\n");

exit (1);

} else

printf ("New value for ’exposure’: %$s\n", value);

}
exit (0);

41

6 ADVANCED PROGRAMMING TOPICS 42

6. Advanced Programming Topics

The following sections describe functions that will not normally be used by applications, but are available for
advanced users.

6.1. Changing Your Location Information

The following functions allow an application to register a user, change a user’s exposure level, deregister a user,
and flush all locations associated with a certain user from the database.

6.1.1. ZSetLocation

Function template for ZSetLocation:
Code_t ZSetLocation (exposure)

char *exposure;
Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN, ZERR _SERVNAK, ZERR_AUTHFAIL,
ZERR_LOGINFAIL

The ZSetLocation function registers the current user with the Zephyr servers. The information that is regis-
tered is as follows:
e user: The user running the application.
e host: The host on which which the application is being run.

e tty: The name of the terminal controlling the application (e.g., ttyp5); if the workstation is running the X
window system, the display (such as “unix:0.0”) is used instead.

e time: The current time.

e exposure: As indicated by the exposure argument.
exposure may be one of the following constants (defined in zephyr.h):

EXPOSE_NONE - No exposure

EXPOSE_OPSTAFF - Operational staff exposure

EXPOSE_REALMVIS - Realm visible

EXPOSE_REALMANN - Realm announced

EXPOSE_NETVIS - Net-wide visible

EXPOSE_NETANN - Net-wide announced
More detailed information about the meaning of each exposure level can be found in the “Exposure Levels”
section (§4.2).

If the user is already registered, this function may be used to change the user’s time and exposure information.
Note, however, that calling ZSetLocation to change the exposure may generate spurious login notices. If the new

6 ADVANCED PROGRAMMING TOPICS 43

exposure is sufficiently broad to allow login notifications (see §4.2.2), a login notice will be sent to any users who
have subscribed to such notices.

This function uses an authenticated notice to present the information to the server.

ZERR_NONE is returned if there were no errors. ZERR_INTERNAL is returned if any consistency checks
on the acknowledgment failed. ZERR_AUTHFAIL is returned if the server rejected the authentication information
in the notice. ZERR_LOGINFAIL is returned if the location information which would have been modified was
not already present in the server database. ZERR_SERVNAK is returned if some other server failure occured.

6.1.2. ZUnsetLocation

Function template for ZUnsetLocation:

Code_t ZUnsetLocation ()

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN, ZERR_SERVNAK, ZERR_AUTHFAIL,
ZERR_LOGINFAIL

The ZUnsetLocation function deletes the user’s location information from the location database. Only the
information associated with the current host and terminal (or display) are deleted from the database. If the user’s
exposure was either EXPOSE_REALMANN or EXPOSE_NETANN, a deregistration notice is sent by the server
to the recipients subscribed to such notifications. The “Exposure Levels” section (§4.2.2) describes exposure
levels in detail.

The errors returned and their causes are the same as described above in ZSetLocation.

6.1.3. ZFlushMyLocations

Function template for ZFlushMyLocations:

Code_t ZFlushMyLocations ()

Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN, ZERR _SERVNAK, ZERR_AUTHFAIL,
ZERR_LOGINFAIL

The ZFlushMyLocations function removes all location information about the current user from the location
database. This may be used to remove stale data from the database. No deregistration messages are sent.

The errors returned and their causes are the same as described above in ZSetLocation.

6.2. Using Your Own Socket

Applications normally use the socket which is bound by ZOpenPort. However, in some cases it may be desirable to
make the Zephyr library to use a socket that the application has already bound. The following functions facilitate
this.

6 ADVANCED PROGRAMMING TOPICS 44

6.2.1. ZGetFD

Function template for ZGetFD:

int ZGetFD ()

Prerequisite functions: Zlnitialize or ZSetFD
Possible errors: -1 = No current file descriptor

The ZGetFD function returns file descriptor that the Zephyr library is currently using for the bound socket.
If no file descriptor has been assigned yet, -1 is returned.

6.2.2. ZSetFD

Function template for ZSetFD:
Code_t ZSetFD (fd)

int fd;
Prerequisite functions: None
Possible errors: None

The ZSetFD function first closes any port that was opened by ZOpenPort (§5.5.2) and then sets the file
descriptor that the Zephyr library will use for all communication to fd. This may be useful in an application
that needs to open and perform operations on its own port (e.g. binding a specific port number) before making it
available to the Zephyr library.

6.3. Changing the Destination Address

Applications normally want to send all outgoing notices to the HostManager, which will redistribute them to the
proper server. In some cases, though, an application may want to communicate directly with a specific client or
server, bypassing the normal routing mechanisms. The following functions facilitate this.

6.3.1. ZGetDestAddr

Function template for ZGetDestAddr:

struct sockaddr_in ZGetDestAddr ()

Prerequisite functions: ZlInitialize
Possible errors: None

The ZGetDestAddr function returns the current destination address used by the Zephyr library. This sock-
addr_in (internet address and port number) is the destination for all packets transmitted by the Zephyr library.

6.3.2. ZSetDestAddr

Function template for ZSetDestAddr:

Code_t ZSetDestAddr (addr)

6 ADVANCED PROGRAMMING TOPICS 45

struct sockaddr_in *addr;

Prerequisite functions: ZlInitialize
Possible errors: None

The ZSetDestAddr function sets the destination address for all packets transmitted by the Zephyr library.

6.4. Using Zephyr as a Rendezvous Service

Occasionally there are times when an application needs Zephyr’s ability to find and contact users, but needs to
send the user a large quantity of information instead of a single message.® In this case, Zephyr’s notice sending
functions (ZSendNotice, efc.) prove inefficient because of the overhead involved in packet fragmentation and
reassembly, as well as an acknowledgement scheme designed for simple, single-packet transactions. Instead of
using Zephyr for the transmission of the information, it can be used as a “rendezvous service.”

In this case, Zephyr’s notice sending capabilities can be used to transmit a host and port number (as part of
the message body in a notice). Once these are received, a more efficient TCP/IP connection can be established
for the actual data transmission. The IPC tutorial ([4]) gives an introduction describing how to establish a TCP/IP
connection under 4.3BSD.

6.5. Server Functions

The following functions are normally only used by the Zephyr server and the HostManager.

6.5.1. ZSetServerState

Function template for ZSetServerState:
Code_t ZSetServerState (state)

int state;
Prerequisite functions: Zlnitialize
Possible errors: None

If the Zephyr library is to be used to perform Server or Hostmanager functions, the behavior of various
internal routines needs to be modified. If state is non-zero, the server behavior is selected. If state is zero, the
server behavior is inhibited.

By default, the Zephyr library assumes non-server behavior is desired.

6.5.2. ZSrvSendNotice

Function template for ZSrvSendNotice:

Code_t ZSrvSendNotice (notice, cert_routine, send_routine)
ZNotice_t *notice;
int (*cert_routine)();
int (*send_routine)();

3 A good example of this is Project Athena’s On-Line Consulting System, which needs to send entire conversations between users.

6 ADVANCED PROGRAMMING TOPICS 46

Prerequisite functions: ZInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_HEADERLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

The ZSrvSendNotice function performs identically to the ZSendNotice function (§5.7.1), except that send _routine
is used to transmit each fragment of the resulting notice. send_routine will be called as follows:

Code_t send_routine (notice, buffer, len, waitforack)
ZNotice_t *notice;

h *buffer;
icmar let;: et notice points to the notice fragment corresponding to the formatted fragment. It
int waitforack;

is provided in case send_routine wishes to examine fields, such as uniqe ID’s, before transmitting. buffer points
to a formatted fragment to be transmitted. len is the length of the fragment. waitforack is non-zero if the notice
kind is UNACKED or ACKED and server mode has not been set.

6.5.3. ZSrvSendList

Function template for ZSrvSendList:

Code_t ZSrvSendList (notice, list, nitems, cert_routine, send_routine)
ZNotice_t *notice;

char *list[];

int nitems;

int (*cert_routine)();
int (*send_routine)();

Prerequisite functions: ZInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_HEADERLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

The ZSrvSendList function performs identically to the ZSendList function (§5.7.2), except that send_routine
is used to transmit each fragment of the resulting notice. send_routine will be called as described above for
ZSrvSendNotice.

6.5.4. ZSrvSendRawList

Function template for ZSrvSendRawL.ist:

Code_t ZSrvSendRawList (notice, list, nitems, send_routine)
ZNotice_t *notice;

char *list[];
int nitems;
int (*send_routine)();

Prerequisite functions: ZlInitialize

Possible errors: UNIX errors, ZERR_PKTLEN, ZERR_ HMDEAD, ZERR _BADPKT, ZERR_VERS,
ZERR_QLEN

The ZSrvSendRawList function performs identically to the ZSendRawList function (§5.13.6), except that
send _routine is used to transmit each fragment of the resulting notice. send_routine will be called as described
above for ZSrvSendNotice.

6 ADVANCED PROGRAMMING TOPICS 47

6.5.5. ZFormatAuthenticNotice

Function template for ZFormatAuthenticNotice:

Code_t ZFormatAuthenticNotice (notice, buffer, buffer_len, ret_len, session)
ZNotice_t *notice;

char *buffer;
int buffer_len;
int *ret_len;

C_Block session;

Prerequisite functions: Zlnitialize
Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_HEADERLEN, ZERR_ILLVAL

The ZFormatAuthenticNotice function takes notice and formats it into a packet. The packet is stored in the
user-supplied buffer *buffer. buffer_len should be the size of the buffer. If the notice will not fit in the buffer, an
error is returned. The length of the resulting packet is returned in *ret_len. The DES library routine quad_cksum
is called to checksum the appropriate portions of the notice, using session as the session key, thus generating a
cryptographic checksum. This checksum is stored as the checksum in the packet. When session is shared between
the sender and recipient of the notice, the authentication can be verified using ZCheckAuthentication (§5.10.3.1).

6.6. Communicating with the WindowGram Client

The following sections describe control notices that can be sent to a WindowGram client to ask it to perform
various functions.

6.6.1. Where to Send Notices

Notices should be sent to the WindowGram’s port on the local machine. Thus the destination address should be
set with code such as:

struct sockaddr_in newsin;

newsin = ZGetDestAddr () ;
newsin.sin_port = (unsigned short) ZGetWGPort ();
ZSetDestAddr (&newsin) ;

(Of course, suitable error checking should be included.)

6.6.2. Available Commands

The following functions are available. They are listed in the form [kind, class, instance, opcode]. The rest of the
notice (e.g. the message body) has no effect on the requested action.

e [UNSAFE, WG_CTL_CLASS, WG_CTL_USER, USER_REREAD]: Reread the user’s .zephyr.desc file.

e [UNSAFE, WG_CTL_CLASS, WG_CTL_USER, USER_SHUTDOWN]: Save subscriptions, unsubscribe
to all notices, and cease processing all incoming notices except a USER_STARTUP control notice.

e [UNSAFE, WG_CTL_CLASS, WG_CTL_USER, USER_STARTUP]: Re-subscribe to saved subscriptions,
and continue processing incoming notices (this is only useful after a USER_SHUTDOWN request.).

6 ADVANCED PROGRAMMING TOPICS 48

6.6.3. Sample Application

This application demonstrates sending a control notice to a WindowGram client to ask it to re-read the user’s
.zephyr.desc file. It initializes the library, changes the destination address to the WindowGram client’s port, fills
in the control notice, and sends it off. It does not wait for any acknowledgement.

#include <zephyr/zephyr.h>

main ()
{
ZNotice_t notice;
struct sockaddr_in newsin;
Code_t retval;
int newport;

/* Initialize the library =/

if ((retval = ZInitialize()) != ZERR_NONE) {
com_err ("sample", retval, "while initializing");
exit (1);

/* Change the destination to be the user’s WindowGram client =/
newsin = ZGetDestAddr () ;
if ((newport = ZGetWGPort()) == -1) {
fprintf (stderr, "Can’t find WindowGram port\n");
exit (1);
}
newsin.sin_port = (unsigned short) newport;
ZSetDestAddr (&newsin) ;

bzero ((char x)¬ice, sizeof (notice));

/+ initialize the notice after zeroing the entire structure =*/
/+* Fill in notice for a REREAD command x/

notice.z_kind = UNSAFE;

notice.z_port = 0;

notice.z_class = WG_CTL_CLASS;

notice.z_class_inst = WG_CTL_USER;

notice.z_opcode = USER_REREAD;

notice.z_sender = 0;
notice.z_recipient =
notice.z_default_format = "";
notice.z_message = "";
notice.z_message_len = 0;

nw .,
’

/+ Send the command =/

if ((retval = ZSendNotice (¬ice, ZNOAUTH)) != ZERR_NONE) {
com_err ("sample", retval, "while sending notice");
exit (1);

}

exit (0);

6.7. Communicating with the HostManager

The following sections describe control notices that can be sent to a HostManager to ask it to perform various
functions.

6 ADVANCED PROGRAMMING TOPICS 49

6.7.1. Where to Send Notices

Notices should be sent to the HostManager port on the desired host. Since the default destination is the HostMan-
ager on the local host, the destination need not be changed if the control message is destined for the local host’s
HostManager. Otherwise, the port may be found by looking up port name “zephyr-hm”, protocol “udp” using the
C library routine getservent().

6.7.2. Available Commands

The following functions are available. They are listed in the form [kind, class, instance, opcode]. The rest of the
notice (e.g. the message body) has no effect on the requested action. Functions which are only for internal use are
not described here.

e [HMCTL, HM_CTL_CLASS, HM_CTL_CLIENT, CLIENT_FLUSH]: Send a state-flush command to the
current server.

e [HMCTL, HM_CTL_CLASS, HM_CTL_CLIENT, CLIENT_NEW _SERVER]: Find a new server.

o [STAT, HM_STAT_CLASS, HM_STAT_CLIENT, HM_GIMMESTATS]: Reply with a notice containing
statistics information.

6.7.3. Sample Application

This application demonstrates sending a control notice to a HostManager, asking it to find a new server. The
application initializes the library, fills in the control notice, and sends it off. It does not wait for any acknowledge-
ment.

#include <zephyr/zephyr.h>

main ()

{
ZNotice_t notice;
Code_t retval;

/% Initialize library =/

if ((retval = ZInitialize()) != ZERR_NONE) {
com_err ("sample", retval, "while initializing");
exit (1);

}

bzero ((char *)¬ice, sizeof (notice));

/+ initialize the notice after zeroing the entire structure =/
/+* Fill in notice for a FIND-NEW-SERVER command =/
notice.z_kind = HMCTL;

notice.z_port = 0;

notice.z_class = HM_CTL_CLASS;

notice.z_class_inst = HM_CTL_CLIENT;

notice.z_opcode = CLIENT_NEW_SERVER;

notice.z_sender = 0;

notice.z_recipient =
notice.z_default_format = "";
notice.z_message = "";
notice.z_message_len = 0;

nw.,
’

/* send it off to the local HostManager =/

6 ADVANCED PROGRAMMING TOPICS

if ((retval = ZSendNotice (¬ice, ZNOAUTH)) != ZERR_NONE) {
com_err ("sample", retval, "while sending notice");
exit (1);

}

exit (0);

A ADDITIONAL EXAMPLES 51

A. Additional Examples

The following three sections contain the source code for three typical Zephyr applications: zwrite, zlocate, and
zstat.

A.l. zwrite

/+ This file is part of the Project Athena Zephyr Notification System.
* It contains code for the "zwrite" command.
*

* Created by: Robert French

Source: /mit/zephyr/src/clients/zwrite/RCS/zwrite.c,v
Author: jtkohl

* % ok X

*

Copyright (c) 1987,1988 by the Massachusetts Institute of Technology.
For copying and distribution information, see the file
"mit-copyright.h".

*

*
*/
#include <zephyr/mit-copyright.h>

#include <zephyr/zephyr.h>
#include <string.h>
#include <netdb.h>

#ifndef lint
static char rcsid_zwrite_c[] =

"Header: zwrite.c,v 1.24 88/08/01 14:13:55 jtkohl Exp ";
fendif lint

#define DEFAULT_CLASS "MESSAGE"
#define DEFAULT_INSTANCE "PERSONAL"
#define URGENT_INSTANCE "URGENT"
#define FILSRV_CLASS "FILSRV"

#define MAXRECIPS 100

int nrecips, msgarg, verbose, quiet;

char xwhoami, =xinst, =*class, x*recips[MAXRECIPS];
int (xauth) ();

void un_tabify();

extern char xmalloc (), *realloc();
char *fix_filsrv_inst();

main(argc, argv)
int argc;
char xargvl[];

ZNotice_t notice;

int retval, arg, nocheck, nchars, msgsize, filsys, tabexpand;
char bfr[BUFSIZ], =xmessage, =*signature;

char classbfr[BUFSIZ], instbfr[BUFSIZ], sigbfr[BUFSIZ];

whoami = argv([0];

A ADDITIONAL EXAMPLES

if ((retval = ZInitialize()) != ZERR_NONE) {
com_err (whoami, retval, "while initializing");
exit (1) ;

if (argc < 2)
usage (whoami) ;
bzero ((char *) ¬ice, sizeof (notice));

auth = ZAUTH;

verbose = quiet = msgarg = nrecips = nocheck = filsys

tabexpand = 1;

if (class = ZGetVariable ("zwrite-class")) {
(void) strcpy(classbfr, class);
class = classbfr;

}

else
class = DEFAULT_CLASS;

if (inst = ZGetVariable ("zwrite—-inst")) {
(void) strcpy(instbfr, inst);
inst = instbfr;

}

else
inst = DEFAULT_INSTANCE;

signature = ZGetVariable ("zwrite-signature");

if (signature) {
(void) strcpy(sigbfr, signature);
signature = sigbfr;

arg = 1;

for (;arg<argcé&&!msgarg;arg++) |

if (xargvlarg] !'= "-") {
recips[nrecips++] = argvlarg]l;
continue;

}

if (strlen(argvlarg]) > 2)
usage (whoami) ;

switch (argvlargl]l[1l]) {

case ’a’: /* Backwards compatibility =*/

break;
case ’'o’:
class = DEFAULT_CLASS;
inst = DEFAULT_INSTANCE;
break;
case ’'d’:
auth = ZNOAUTH;
break;
case 'v’:
verbose = 1;
break;
case "q’:
quiet = 1;
break;
case 'n’:

52

A ADDITIONAL EXAMPLES

nocheck = 1;
break;
case ’'t’:
tabexpand = 0;
break;
case ’'u’:
inst = URGENT_INSTANCE;
break;
case ’"i’:
if (arg == argc-1 || filsys == 1)
usage (whoami) ;
argt++;
inst = argvlarg];
filsys = -1;
break;
case ’'c’:
if (arg == argc-1 || filsys == 1)
usage (whoami) ;
arg++;
class = argvl[argl;
filsys = -1;
break;
case "f’:
if (arg == argc-1 || filsys == -1)
usage (whoami) ;
argt+;
class = FILSRV_CLASS;
inst = fix_filsrv_inst (argv[argl);
filsys = 1;
break;
case 'm’:
if (arg == argc-1)

usage (whoami) ;
msgarg = arg+l;
break;
default:
usage (whoami) ;

if (!nrecips && ! (strcmp(class, DEFAULT_CLASS) ||
stremp (inst, DEFAULT_INSTANCE))) {
fprintf (stderr, "No recipients specified.\n");
exit (1);

notice.z_kind
notice.z_port

ACKED;

0;
notice.z_class = class;
notice.z_class_inst = inst;
notice.z_opcode = "PING";

notice.z_sender = 0;

notice.z_message_len = 0;

notice.z_recipient = "";

if (filsys == 1)

notice.z_default_format = "\

@bold (Filesystem Operation Message for S$instance:)\n\
From: @bold($sender)\nSmessage";

else 1f (auth == ZAUTH)

A ADDITIONAL EXAMPLES

notice.z_default_format = "Class S$class,
@bold($Srecipient)) \n$message";

@center (To:
else

notice.z_default_format

"Q@bold (UNAUTHENTIC)

Class $Sclass,

Instance $instance:\n\

Instance $instance:\n$message";

if (!'nocheck && 'msgarg && filsys != 1)
send_off (¬ice, 0);

if (!'msgarg && isatty(0))
printf ("Type your message now. \

End with control-D or a dot on a line by itself.\n");

message = NULL;

msgsize = 0;

if (signature) {
message = malloc((unsigned) (strlen(signature)+sizeof ("From: ")+2));
(void) strcpy (message, "From: ");

(void) strcat (message,

signature);

msgsize = strlen(message)+1;

if (msgarg) {
int size = msgsize;

for (arg=msgarg;arg<argc;argtt)

size +=
size++;
if (message)

message = realloc (message,

else

message = malloc ((unsigned)

(strlen(argv(arg])

+ 1);
/* for the newline x/
(unsigned) size);

size);

for (arg=msgarg;arg<argc;arg++) {

(void) strcpy (messaget+msgsize, argvargl);
msgsize += strlen(argvlargl);
if (arg != argc-1) {
message [msgsize] = ' 7;
msgsize++;
}
}
message [msgsize] = "\n’;
message [msgsize+l] = "\0’;
msgsize += 2;
} else {
if (isatty(0)) {
for (;;) |
if (!'fgets(bfr, sizeof bfr, stdin))
break;
if (bfr[0] == "." &&
(bfr[1] == "\n’ || bfr[l] == "\0"))
break;
if (message)
message = realloc (message,
(unsigned) (msgsize+strlen (bfr)));
else
message = malloc((unsigned) (msgsize+strlen(bfr)));
(void) strcpy (message+msgsize, bfr);

msgsize += strlen(bfr);

}

message = realloc (message,

(unsigned) (msgsize+l));

54

A ADDITIONAL EXAMPLES

message [msgsize] = "\0’;
}
else { /x Use read so you can send binary messages... =/
while (nchars = read(fileno(stdin), bfr, sizeof bfr)) {
if (nchars == -1) {
fprintf (stderr, "Read error from stdin! Can’t continue!\n");
exit (1) ;
}
message = realloc(message, (unsigned) (msgsize+nchars));

bcopy (bfr, messagetmsgsize, nchars);
msgsize += nchars;

notice.z_opcode = "";
if (tabexpand)

un_tabify (&message, &msgsize);
notice.z_message = message;
notice.z_message_len = msgsize;

send_off (¬ice, 1);
exit (0);

send_off (notice, real)
ZNotice_t =*notice;
int real;

int i, success, retval;
char bfr[BUFSIZ];
ZNotice_t retnotice;

success = 0;
for (i=0;i<nrecips || !nrecips;i++) {
notice->z_recipient = nrecips?recips[i]:"";

if (verbose && real)
printf ("Sending %smessage, class %s, instance %s, to %s\n",
auth?"authenticated ":"",
class, inst,
nrecips?notice->z_recipient:"everyone");
if ((retval = ZSendNotice (notice, auth)) != ZERR_NONE) {
(void) sprintf (bfr, "while sending notice to %s",
nrecips?notice->z_recipient:inst);
com_err (whoami, retval, bfr);
break;
}
if ((retval = ZIfNotice (&retnotice, (struct sockaddr_in x) O,
ZCompareUIDPred,
(char =) ¬ice->z_uid)) !=
ZERR_NONE) {
ZFreeNotice (&retnotice);
(void) sprintf (bfr, "while waiting for acknowledgement for %s",
nrecips?notice->z_recipient:inst);
com_err (whoami, retval, bfr);
continue;
}
if (retnotice.z_kind == SERVNAK) {

A ADDITIONAL EXAMPLES 56

printf ("Received authorization failure while sending to %s\n",
nrecips?notice->z_recipient:inst);
ZFreeNotice (&retnotice);
break; /* 1if auth fails, punt =/
}
if (retnotice.z_kind != SERVACK || !retnotice.z_message_len) {
printf ("Detected server failure while receiving \
acknowledgement for %s\n",
nrecips?notice->z_recipient:inst);
ZFreeNotice (&retnotice);
continue;
}
if ('real || (!quiet && real))
if (!strcmp (retnotice.z_message, ZSRVACK_SENT)) {
if (real) {
if (verbose)
printf ("Successfull\n");
else
printf ("$s: Message sent\n",
nrecips?notice->z_recipient:inst);
}
else
success = 1;
}
else
if (!strcmp(retnotice.z_message,
7ZSRVACK_NOTSENT)) {
if (verbose && real) {
if (strcmp(class, DEFAULT_CLASS))
printf ("Not logged in or not subscribing to\
class %s, instance %s\n",
class, inst);
else
printf ("Not logged in or not subscribing to \
messages\n") ;
}
else
if (!nrecips)
printf ("No one subscribing to class %s, instance %s\n",
class, inst);
else {
if (strcmp(class, DEFAULT_CLASS))
printf ("$s: Not logged in or not subscribing\
to class %s, instance %s\n",
notice->z_recipient, class, inst);
else
printf ("$s: Not logged in or not subscribing \
to messages\n",
notice->z_recipient);

}
else
printf ("Internal failure - illegal message field \
in server response\n");
ZFreeNotice (&retnotice);
if (!nrecips)
break;
}

if (!real && !success)

A ADDITIONAL EXAMPLES

exit (1) ;

usage (s)
char *s;

printf ("Usage: %s [-a] [-d] [-v] [-gq] [-ul [-o] \

[-c class] [-1i inst] [-f fsname]\n\t[user ...] [-m message]\n", s);
printf ("\t-f and -c are mutually exclusive\n\

\t-f and -i are mutually exclusive\n");

exit (1);
}
/ *
if the —-f option is specified, this routine is called to canonicalize
an instance of the form hostname[:pack]. It turns the hostname into the
name returned by gethostbyname (hostname)
*/

char *fix_filsrv_inst (str)

char =*str;

{
static char fsinst [BUFSIZ];
char xptr;
struct hostent =xhp;

ptr = index(str,’:");
if (ptr)
*sptr = "\0’;

hp = gethostbyname (str);
if (thp) {

if (ptr)

*ptr = "5

return (str);
}
(void) strcpy(fsinst, hp->h_name);
if (ptr) |

(void) strcat (fsinst, ":");

ptr++;

(void) strcat(fsinst, ptr);
}

return (fsinst);

/+ convert tabs in the buffer into appropriate # of spaces.
slightly tricky since the buffer can have NUL’s in it. =/

#ifndef TABSTOP
#define TABSTOP 38 /* #chars between tabstops */
#endif /+ ! TABSTOP */

void

un_tabify (bufp, sizep)

char xxbufp;

register int x*sizep;

{
register char xcp, *cp2;
char xcp3;

57

A ADDITIONAL EXAMPLES

register int 1i;

register int column; /+ column of next character =/
register int size = *sizep;
for (cp = xbufp, 1 = 0; size; size-—, cp++)
if (xcp == "\t’)
i++; /* count tabs in buffer */
if (!'1i)
return; /* no tabs == no work x/

/+* To avoid allocation churning, allocate enough extra space to convert
every tab into TABSTOP spaces */

/+ only add (TABSTOP-1)x because we re-use the cell holding the
tab itself =/

cp = malloc((unsigned) (*sizep + (i * (TABSTOP-1))));
if (l!lcp) /x XXX %/
return; /+ punt expanding if memory fails =*/
cp3 = cp;
/+ Copy buffer, converting tabs to spaces as we go x/
for (cp2 = xbufp, column = 1, size = xsizep; size; cp2++, size--) {

switch (xcp2) {
case "\n’:
case "\0’:
/+* newline or null: reset column x/

column = 1;
*Cpt++ = xCcp2; /+ copy the newline */
break;

default:

/* copy the character =/
*Cp = xCpZ;

cp++;
column++;
break;
case ’"\t’:
/+ it’s a tab, compute how many spaces to expand into. x/
i = TABSTOP - ((column - 1) % TABSTOP);
for (; i > 0; 1i--) {
xcp+t+ =7 ' /+* f£i11l in the spaces */
column+t+;
(xsizep) ++; /* increment the size x/
}
(xsizep)-——; /+ remove one (we replaced the tab) =/
break;
}
}
free (xbufp) ; /+ free the old buf =/

*bufp = cp3;
return;

A ADDITIONAL EXAMPLES

A.2. zlocate

/+ This file is part of the Project Athena Zephyr Notification System.
* It contains code for the "zlocate" command.

*

* Created by: Robert French

*

* Source: /mit/zephyr/src/clients/zlocate/RCS/zlocate.c,v

* Author: jtkohl

*

* Copyright (c) 1987,1988 by the Massachusetts Institute of Technology.
* For copying and distribution information, see the file

* "mit-copyright.h".

*/

#include <zephyr/mit-copyright.h>

#include <zephyr/zephyr.h>
#include <string.h>

#ifndef lint
static char rcsid_zlocate_c[] =

"Header: zlocate.c,v 1.8 88/08/01 14:12:14 jtkohl Exp ";
#endif lint

main (argc,argv)
int argc;
char xargvl[];
int retval,numlocs, i, one,ourargc, found;
char *whoami,bfr [BUFSIZ],user[BUFSIZ];
ZLocations_t locations;

whoami = argv[0];

if (argc < 2) {

printf ("Usage: %s user ... \n",whoami);
exit (1);

}

if ((retval = ZInitialize()) != ZERR_NONE) ({
com_err (whoami, retval, "while initializing");
exit (1);

}

argv++;

argc——;

one = 1;

found = 0;

ourargc = argc;

for (;argc——;argv++) {
(void) strcpy(user, xargv);
if (!index (user,’@")) {
(void) strcat (user,"@");
(void) strcat (user,ZGetRealm());

A ADDITIONAL EXAMPLES

if ((retval = ZLocateUser (user, &numlocs)) != ZERR_NONE) {
(void) sprintf (bfr,"while locating user %s",user);
com_err (whoami, retval,bfr);
continue;

}

if (ourargc > 1)
printf ("\t%s:\n",user);

if (!numlocs) {
printf ("Hidden or not logged-in\n");
if (argc)
printf ("\n");
continue;

}
for (i=0;i<numlocs;i++) {
if ((retval = ZGetLocations (&locations, &one))
!= ZERR_NONE) {
com_err (whoami, retval,
"while getting location");

continue;
}
if (one != 1) {
printf ("\
%$s: internal failure while getting location\n",whoami);
exit (1) ;

}

/* just use printf; make the field widths one

* smaller to deal with the extra separation space.

*/
printf ("$-*s %$-xs %$s\n",
42, locations.host,
7, locations.tty,
locations.time);
found++;
}
if (argc)
printf ("\n");
(void) ZFlushLocations();
}
if (!found)
exit (1);
exit (0);

60

A ADDI

TIONAL EXAMPLES

A.3. 1zstat

/+ This file is part of the Project Athena Zephyr Notification System.

= It contains the zstat program.
*
* Created by: David C. Jedlinsky
*
* Source: /mit/zephyr/src/clients/zstat/RCS/zstat.c,v
* Author: jtkohl
*
* Copyright (c) 1987,1988 by the Massachusetts Institute of Technology.
* For copying and distribution information, see the file
* "mit-copyright.h".
*/
#include <zephyr/zephyr.h>
#include "../server/zserver.h"
#include <sys/param.h>
#include <sys/socket.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#ifndef lint
#ifndef SABER
static char rcsid_zstat_c[] =
"Header: zstat.c,v 1.6 88/06/28 10:42:54 jtkohl Exp ";
#fendif SABER
#endif lint
extern long atol();
char +«hm_head[] = { "Current server =",
"Items in queue:",
"Client packets received:",
"Server packets received:",
"Server changes:",
"Version:",
"Looking for a new server:",
"Time running:",
"Size:",
"Machine type:"
bi
#define HM_SIZE (sizeof (hm_head) / sizeof (char x))
char *srv_head[] = {
"Current server version =",
"Packets handled:",
"Uptime:",
"Server states:",
bi
#define SRV_SIZE (sizeof (srv_head) / sizeof (char x))
int serveronly = 0,hmonly = O;
int outoftime = 0;
u_short hm_port, srv_port;

main (argc, argv)

int argc;

61

A ADDITIONAL EXAMPLES

char xargvl[];

Code_t ret;

char hostname [MAXHOSTNAMELEN] ;
int optchar;

struct servent =*sp;

extern char *optarg;

extern int optind;

if ((ret = ZInitialize()) != ZERR_NONE) {
com_err ("zstat", ret, "initializing");
exit (-1);

if ((ret = ZOpenPort ((u_short x)0)) != ZERR_NONE) {
com_err ("zstat", ret, "opening port");
exit (-1);

while ((optchar = getopt (argc, argv, "sh")) != EOF) {

switch (optchar) {

case 's’:
serveronly++;
break;

case '"h’:
hmonly++;
break;

case '?':

default:
usage (argv[0]);
exit (1);

if (serveronly && hmonly) {
fprintf (stderr, "Only one of -s and -h may be specified\n");
exit (1);

if (! (sp = getservbyname ("zephyr—-hm", "udp"))) {
fprintf (stderr, "zephyr-hm/udp: unknown service\n");
exit (-1);

hm_port = sp—->s_port;

if (! (sp = getservbyname ("zephyr-clt", "udp"))) {
fprintf (stderr, "zephyr-clt/udp: unknown service\n");
exit (-1);

sSrv_port = sp—->s_port;

if (optind == argc) {
if (gethostname (hostname, MAXHOSTNAMELEN) < 0) {
com_err ("zstat",errno, "while finding hostname");
exit (-1);
}

do_stat (hostname) ;

A ADDITIONAL EXAMPLES

exit (0);

for (;optind<argc;optind++)

do_stat (argv[optind]);

exit (0);

do_stat (host)
char +*host;

char srv_host [MAXHOSTNAMELEN] ;

if (serveronly) {

(void) srv_stat (host);

return;

if (hm_stat (host,srv_host))
return;

if (!'hmonly)

(void) srv_stat (srv_host);

hm_stat (host, server)
char =*host, xserver;

char %x1line[20], *xmp;

int sock,i,nf, ret;
struct hostent xhp;
struct sockaddr_in sin;
long runtime;

struct tm *tim;
ZNotice_t notice;
extern int timeout ();

bzero ((char x)&sin,sizeof (struct sockaddr_in));

sin.sin_port = hm_port;
if ((sock = socket (PF_INET,

perror ("socket:");
exit (-1);

sin.sin_family = AF_INET;

SOCK_DGRAM, 0)) < 0) {

if ((hp = gethostbyname (host)) == NULL) {
fprintf (stderr, "Unknown host: %s\n",host);

exit (-1);
}
bcopy (hp—>h_addr, (char =)

printf ("Hostmanager stats:

&sin.sin_addr, hp->h_length);

%$s\n", hp—>h_name) ;

(void) bzero((char =*)¬ice, sizeof (notice));

notice.z_kind = STAT;

63

A ADDITIONAL EXAMPLES

notice.z_port = 0;

notice.z_class = HM_STAT_ CLASS;
notice.z_class_inst = HM_STAT_CLIENT;
notice.z_opcode = HM_GIMMESTATS;

notice.z_sender = "";
notice.z_recipient = "";
notice.z_default_format = "";
notice.z_message_len = 0;

if ((ret = ZSetDestAddr (&sin))
com_err ("zstat", ret,
exit (-1);

}

!= ZERR_NONE) {
"setting destination");

if ((ret = ZSendNotice (¬ice, ZNOAUTH)) != ZERR_NONE) ({

com_err ("zstat", ret,
exit (-1);

(void) signal (SIGALRM, timeout) ;

outoftime = 0;

(void) alarm(10);

if (((ret = ZReceiveNotice (¬ice,

!= ZERR_NONE) &&
ret != EINTR) {

com_err ("zstat", ret,
return (1);

}

(void) alarm(0);

if (outoftime) {

"sending notice");

(struct sockaddr_in *) 0))

"receiving notice");

fprintf (stderr, "No response after 10 seconds.\n");

return (1);

mp = notice.z_message;

for (nf=0;mp<notice.z_message+notice.z_message_len;nf++) {

line[nf] = mp;
mp += strlen (mp)+1;

(void) strcpy(server,line[0]);

printf ("HostManager protocol version

%s\n",notice.z_version);

for (i=0; (i < nf) && (i < HM_SIZE); i++) {
if (!strncmp ("Time",hm_head[i],4)) {
runtime = atol (line[i]);

tim = gmtime (&runtime) ;

printf ("$s %d days, %02d:%02d:%02d\n", hm_head[i],

tim->tm_yday,
tim->tm_hour,
tim->tm_min,

tim->tm_sec);

else

printf ("$s %$s\n",hm_head[i],line[i]);

printf ("\n");

64

A ADDITIONAL EXAMPLES

(void) close(sock);
ZFreeNotice (¬ice);
return (0) ;

srv_stat (host)
char =*host;

char *1line[20], *xmp;

int sock,i,nf, ret;
struct hostent xhp;
struct sockaddr_in sin;
ZNotice_t notice;

long runtime;

struct tm *tim;

extern int timeout ();

bzero((char) &sin,sizeof (struct sockaddr_in));
sin.sin_port = srv_port;
if ((sock = socket (PF_INET, SOCK_DGRAM, 0)) < 0)
perror ("socket:");
exit (-1);
sin.sin_family = AF_INET;

if ((hp = gethostbyname (host)) == NULL) {

fprintf (stderr, "Unknown host: %s\n",host);

exit (-1);
}

bcopy (hp—>h_addr, (char %) &sin.sin_addr, hp->h_length);

printf ("Server stats: %$s\n",hp->h_name);

(void) bzero((char #*)¬ice, sizeof (notice));
notice.z_kind = UNSAFE;

notice.z_port = 0;

notice.z_class = ZEPHYR_ADMIN_CLASS;
notice.z_class_inst = "";

notice.z_opcode = ADMIN_STATUS;
notice.z_sender = "";

notice.z_recipient = "";
notice.z_default_format = "";
notice.z_message_len = 0;

if ((ret = ZSetDestAddr (&sin)) != ZERR_NONE) {

com_err ("zstat", ret, "setting destination");

exit (-1);
}

if ((ret = ZSendNotice (¬ice, ZNOAUTH)) != ZERR_NONE)

com_err ("zstat", ret, "sending notice");
exit (-1);

(void) signal (SIGALRM, timeout) ;
outoftime = 0;
(void) alarm(10);

65

A ADDITIONAL EXAMPLES

if (((ret = ZReceiveNotice (¬ice, (struct sockaddr_in x) 0))
!= ZERR_NONE) &&
ret != EINTR) {

com_err ("zstat", ret, "receiving notice");
return (1);
}
(void) alarm(0);
if (outoftime) {
fprintf (stderr, "No response after 10 seconds.\n");
return (1);

mp = notice.z_message;
for (nf=0;mp<notice.z_message+notice.z_message_len;nf++) {
line[nf] = mp;

mp += strlen (mp)+1;

printf ("Server protocol version = %$s\n",notice.z_version);

for (i=0; 1 < nf; i++) {
if (1 < 2)
printf ("$s %$s\n",srv_head[i],line[i]);

else if (i == 2) { /*» uptime field =/
runtime = atol(line[i]);
tim = gmtime (&runtime) ;

printf ("%s %d days, %02d:%02d:%02d\n",
srv_head[i],
tim->tm_yday,
tim->tm_hour,
tim->tm_min,
tim->tm_sec);
} else if (i == 3) {
printf ("$s\n", srv_head[i]);
printf ("$s\n",line[i]);
} else printf ("$s\n",line[i]);
}
printf ("\n");

(void) close(sock);
return(0);

usage (s)
char xs;

{
fprintf (stderr, "usage: %s [-s] [-h] [host ...]\n",s);
exit (1);

}

timeout ()

{

outoftime = 1;

B ERROR CODES

B. Error Codes

67

The following error codes are defined in zephyr_err.h, which is included by zephyr.h:

ZERR_NONE

ZERR_PKTLEN

ZERR_HEADERLEN
ZERR_ILLVAL
ZERR_HMPORT
ZERR _PORTINUSE
ZERR_BADPKT

ZERR_VERS

ZERR_NOPORT

ZERR_NONOTICE

ZERR_QLEN
ZERR_HMDEAD

ZERR_INTERNAL

ZERR_NOLOCATIONS

ZERR_NOMORELOCS

ZERR_FIELDLEN
ZERR_BADFIELD

ZERR_SERVNAK

ZERR_AUTHFAIL

ZERR_LOGINFAIL

No error was detected.

A notice was too big to fit into the supplied buffer, or ran over the maxi-
mum allowed packet size.

A formatted notice header exceeded the maximum header length.

A member of the notice structure contained an illegal value.

The port number for the HostManager could not be found in /etc/services.
The port explicitly requested in a call to ZOpenPort couldn’t be bound.
The packet is badly formatted and can’t be parsed.

The packet was formatted using a version of the protocol which is incom-
patible with the protocol supported by this version of the library function.

A function which requires an open port was called before a port was
opened.

No notice which was accepted by the predicate was found by ZCheck-
IfNotice.

Too many notices have been read in to the input queue but not retrieved.
The HostManager did not send an acknowledgment to a packet.

Something really strange is going on, probably with the system instead
of with the application itself (for example, /etc/passwd can’t be read).

No locations were available to return using ZGetLocations or flush us-
ing ZFlushLocations. This usually means that ZLocateUser hasn’t been
called yet.

No more locations were available to return. This means that ZGetLoca-
tions wants to retrieve more locations than are available.

The data passed to ZMakeAscii exceeds the size of the supplied buffer.
The data passed to ZReadAscii is in an improper format.
A server negative-acknowledgment was received while performing a

privileged operation (such as subscribing). This usually means that user
authentication failed.

A login notice was not authenticated properly.

A login notice was not accepted by the server.

B ERROR CODES

ZERR_NOSUBSCRIPTIONS

ZERR_NOMORESUBSCRIPTIONS

ZERR_EOF

68

No subscriptions were available to return using ZGetSubscriptions or
flush using ZFlushSubscriptions. This usually means that ZRetrieveSub-
scriptions or ZRetrieveDefaultSubscriptions hasn’t been called yet.

No more subscriptions were available to return. This means that ZGet-
Subscriptions wants to retrieve more subscriptions than are available.

The file descriptor that the library is using to read its packets was inad-
vertently closed.

C FUNCTION TEMPLATES

C. Function Templates

Function template for Zlnitialize:

Code_t Zlnitialize ()

Prerequisite functions: None

Possible errors: ZERR_HMPORT

Function template for ZOpenPort:

Code_t ZOpenPort (port)
unsigned short *port;

Prerequisite functions: Zlnitialize

Possible errors: UNIX errors, ZERR_PORTINUSE

Function template for ZClosePort:

Code_t ZClosePort ()

Prerequisite functions: None

Possible errors: None

Function template for ZSendNotice:

Code_t ZSendNotice (notice, cert_routine)
ZNotice_t *notice;
int (*cert_routine)();

Prerequisite functions: ZInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_HEADERLEN, ZERR_ILLVAL,
ZERR_HMDEAD, ZERR _BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZSendList:

Code_t ZSendList (notice, list, nitems, cert_routine)
ZNotice_t *notice;
char *ist[];
int nitems;
int (*cert_routine)();

C FUNCTION TEMPLATES

Prerequisite functions: ZInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_HEADERLEN, ZERR _ILLVAL,
ZERR_HMDEAD, ZERR _BADPKT, ZERR_VERS, ZERR_QLEN

70

Function template for ZGetSender:

char * ZGetSender ()

Prerequisite functions: Zlnitialize

Possible errors: None

Function template for ZGetRealm:

char * ZGetRealm ()

Prerequisite functions: Zlnitialize

Possible errors: None

Function template for ZMakeAscii:

Code_t ZMakeAscii (buffer, buffer_len, field, field_len)

char *buffer;
int buffer_len;
unsigned char ~ *field;

int field_len;

Prerequisite functions: None

Possible errors: ZERR_FIELDLEN

Function template for ZCheckIfNotice:

Code_t ZCheckIfNotice (notice, from, predicate, args)

ZNotice_t *notice;

struct sockaddr_in *from;

int (*predicate)();
char *args;

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_BADPKT, ZERR_VERS, ZERR_PKTLEN, ZERR_NOPORT,
ZERR_QLEN, ZERR_NONOTICE

C FUNCTION TEMPLATES

Function template for ZFreeNotice:

void ZFreeNotice (notice)
ZNotice_t *notice;

Prerequisite functions: None

Possible errors: None

71

Function template for ZIfNotice:

Code_t ZIfNotice (notice, from, predicate, args)

ZNotice_t *notice;

struct sockaddr_in *from;

int (*predicate)();
char *args;

Prerequisite functions: ZlInitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_BADPKT, ZERR_VERS, ZERR_PKTLEN, ZERR_NOPORT,
ZERR_QLEN

Function template for ZCompareUID:

int ZCompareUID (uidl1, uid2)
ZUnique_Id_t *uidl;
ZUnique_Id_t *uid2;

Prerequisite functions: None

Possible errors: None

Function template for ZSubscribeTo:

Code_t ZSubscribeTo (sublist, nitems, port)
ZSubscription_t sublist[];
int nitems;
unsigned short port;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZSubscribeToSansDefaults:

Code_t ZSubscribeToSansDefaults (sublist, nitems, port)
ZSubscription_t sublist[];
int nitems;
unsigned short port;

C FUNCTION TEMPLATES

Prerequisite functions: ZInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

72

Function template for ZUnsubscribeTo:

Code_t ZUnsubscribeTo (sublist, nitems, port)
ZSubscription_t sublist[];
int nitems;
unsigned short port;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR _BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZCancelSubscriptions:

Code_t ZCancelSubscriptions (port)
unsigned short port;

Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZGetWGPort:

int ZGetWGPort ()

Prerequisite functions: None

Possible errors: -1 = No port number available

Function template for ZReceiveNotice:

Code_t ZReceiveNotice (notice, from)
ZNotice_t *notice;
struct sockaddr_in *from,;

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_NOPORT, ZERR_PKTLEN, ZERR_QLEN, ZERR_BADPKT,
ZERR_VERS

Function template for ZReadAscii:

C FUNCTION TEMPLATES

Code_t ZReadAscii (buffer, buffer_len, field, field_len)
char *buffer;
int buffer_len;
char *field;
int field_len;

Prerequisite functions: None

Possible errors: ZERR_BADFIELD

73

Function template for ZCheckAuthentication:

Code_t ZCheckAuthentication (notice, from)
ZNotice_t *notice;
struct sockaddr_in *from;

Prerequisite functions: Zlnitialize, ZReceiveNotice

Possible errors: None

Function template for ZPending:

int ZPending ()

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_MAXQLEN, ZERR_EOF

Function template for ZQLength:

int ZQLength ()

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: None

Function template for ZPeekNotice:

Code_t ZPeekNotice (notice, from)
ZNotice_t *notice;
struct sockaddr_in *from,;

Prerequisite functions: ZlInitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_NOPORT, ZERR_PKTLEN, ZERR_QLEN, ZERR_BADPKT,

ZERR_VERS

C FUNCTION TEMPLATES 74

Function template for ZPeekIfNotice:

Code_t ZPeekIfNotice (notice, from, predicate, args)

ZNotice_t *notice;

struct sockaddr_in *from;

int (*predicate)();
char *args;

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_BADPKT, ZERR_VERS, ZERR_PKTLEN, ZERR_NOPORT,
ZERR_QLEN

Function template for ZFormatNotice:

Code_t ZFormatNotice (notice, buffer, ret_len, cert_routine)
ZNotice_t *notice;

char **puffer;
int *ret_len;
int (*cert_routine)();

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL

Function template for ZFormatNoticeList:

Code_t ZFormatNoticeList (notice, list, nitems, buffer, ret_len, cert_routine)
ZNotice_t *notice;

char *ist[];

int nitems;

char **buffer;

int *ret_len;

int (*cert_routine)();

Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL

Function template for ZSendPacket:

Code_t ZSendPacket (packet, len, waitforack)
char *packet;
int len;
int waitforack;

Prerequisite functions: ZlInitialize

Possible errors: UNIX errors, ZERR_ILLVAL, ZERR_HMDEAD, ZERR _BADPKT, ZERR_VERS,
ZERR _PKTLEN, ZERR_QLEN

C FUNCTION TEMPLATES

75

Function template for ZReceivePacket:

Code_t ZReceivePacket (buffer, ret_len, from)
ZPacket_t buffer;

int *ret_len;
struct sockaddr_in *from;

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_NOPORT, ZERR_PKTLEN, ZERR_QLEN

Function template for ZPeekPacket:

Code_t ZPeekPacket (buffer, ret_len, from)
char **buffer;
int *ret_len;
struct sockaddr_in *from,;

Prerequisite functions: Zlnitialize, ZOpenPort

Possible errors: UNIX errors, ZERR_NOPORT, ZERR_PKTLEN, ZERR_QLEN, ZERR_BADPKT,
ZERR_VERS

Function template for ZParseNotice:

Code_t ZParseNotice (buffer, buffer_len, notice)
char *buffer;
int buffer_len;
ZNotice_t *notice;

Prerequisite functions: Zlnitialize

Possible errors: ZERR_BADPKT, ZERR_VERS

Function template for ZFormatRawNotice:

Code_t ZFormatRawNotice (notice, buffer, ret_len)
ZNotice_t *notice;
char **puffer;
int *ret_len;

Prerequisite functions: ZlInitialize

Possible errors: ZERR_PKTLEN, ZERR_HEADERLEN

Function template for ZFormatSmallRawNotice:

C FUNCTION TEMPLATES

Code_t ZFormatSmallRawNotice (notice, buffer, ret_len)
ZNotice_t *notice;
ZPacket_t buffer;
int *ret_len;

Prerequisite functions: ZlInitialize

Possible errors: ZERR_PKTLEN, ZERR_HEADERLEN

76

Function template for ZFormatRawNoticeL.ist:

Code_t ZFormatRawNoticeList (notice, list, nitems, buffer, ret_len)
ZNotice_t *notice;

char *ist[];
int nitems;
char **puffer;
int *ret_len;

Prerequisite functions: ZlInitialize

Possible errors: ZERR_PKTLEN, ZERR_HEADERLEN

Function template for ZFormatSmallRawNoticeList:

Code_t ZFormatSmallRawNoticeList (notice, list, nitems, buffer, ret_len)
ZNotice_t *notice;

char *list[];
int nitems;
ZPacket_t buffer;
int *ret_len;

Prerequisite functions: Zlnitialize

Possible errors: ZERR_PKTLEN, ZERR_HEADERLEN

Function template for ZSendRawNotice:

Code_t ZSendRawNotice (notice)
ZNotice_t *notice;

Prerequisite functions: Zlnitialize

Possible errors: UNIX errors, ZERR_PKTLEN, ZERR_HMDEAD, ZERR_BADPKT, ZERR_VERS,
ZERR_QLEN

Function template for ZSendRawList:

Code_t ZSendRawList (notice, list, nitems)

C FUNCTION TEMPLATES

ZNotice_t *notice;
char *ist[];
int nitems;

Prerequisite functions: ZInitialize

Possible errors: UNIX errors, ZERR_PKTLEN, ZERR_ HMDEAD, ZERR_BADPKT, ZERR_VERS,
ZERR_QLEN

77

Function template for ZLocateUser:

Code_t ZLocateUser (user, nlocs)
char *user;
int *nlocs;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZNewLocateUser:

Code_t ZNewLocateUser (user, nlocs, cert_routine)
char *user;
int *nlocs;
int (*cert_routine)();

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR _BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZGetLocations:

Code_t ZGetLocations (location, numloc)
ZLocations_t location[];
int *numloc;

Prerequisite functions: ZInitialize, ZLocateUser

Possible errors: ZERR_NOLOCATIONS, ZERR_NOMORELOCS

Function template for ZFlushLocations:

Code_t ZFlushLocations ()

Prerequisite functions: ZlInitialize, ZLocateUser

Possible errors: None

C FUNCTION TEMPLATES

78

Function template for ZRetrieveSubscriptions:

Code_t ZRetrieveSubscriptions (port, nsubs)
unsigned short port;
int *nsubs;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZRetrieveDefaultSubscriptions:

Code_t ZRetrieveDefaultSubscriptions (nsubs)
int *nsubs;

Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR _ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZGetSubscriptions:

Code_t ZGetSubscriptions (subscription, numsub)
ZSubscription_t *subscription;
int *numsub;

Prerequisite functions: ZlInitialize, ZRetrieveSubscriptions or ZRetrieveDefaultSubscriptions

Possible errors: ZERR_NOSUBSCRIPTIONS, ZERR_NOMORESUBSCRIPTIONS

Function template for ZFlushSubscriptions:

Code_t ZFlushSubscriptions ()

Prerequisite functions: ZlInitialize, ZRetrieveSubscriptions or ZRetrieveDefaultSubscriptions

Possible errors: None

Function template for ZGetVariable:

char * ZGetVariable (var)
char *var;

Prerequisite functions: None

C FUNCTION TEMPLATES

Possible errors: NULL = variable not defined

Function template for ZSetVariable:

Code_t ZSetVariable (var, value)
char *var;
char *value;

Prerequisite functions: None

Possible errors: UNIX errors, ZERR_INTERNAL

Function template for ZUnsetVariable:

Code_t ZUnsetVariable (var)
char *var;

Prerequisite functions: None

Possible errors: UNIX errors, ZERR_INTERNAL

Function template for ZSetLocation:

Code_t ZSetLocation (exposure)
char *exposure;

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN, ZERR_SERVNAK,
ZERR_AUTHFAIL, ZERR_LOGINFAIL

Function template for ZUnsetLocation:

Code_t ZUnsetLocation ()

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR _BADPKT, ZERR_VERS, ZERR_QLEN, ZERR_SERVNAK,
ZERR_AUTHFAIL, ZERR_LOGINFAIL

Function template for ZFlushMyLocations:

Code_t ZFlushMyLocations ()

C FUNCTION TEMPLATES

Prerequisite functions: ZInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_ILLVAL, ZERR_HMDEAD,
ZERR_BADPKT, ZERR_VERS, ZERR_QLEN, ZERR_SERVNAK,
ZERR_AUTHFAIL, ZERR_LOGINFAIL

Function template for ZGetFD:

int ZGetFD ()

Prerequisite functions: Zlnitialize or ZSetFD

Possible errors: -1 = No current file descriptor

Function template for ZSetFD:

Code_t ZSetFD (fd)
int fd;

Prerequisite functions: None

Possible errors: None

Function template for ZGetDestAddr:

struct sockaddr_in ZGetDestAddr ()

Prerequisite functions: Zlnitialize

Possible errors: None

Function template for ZSetDestAddr:

Code_t ZSetDestAddr (addr)
struct sockaddr_in *addr;

Prerequisite functions: ZlInitialize

Possible errors: None

Function template for ZSetServerState:

C FUNCTION TEMPLATES

Code_t ZSetServerState (state)
int state;

Prerequisite functions: Zlnitialize

Possible errors: None

81

Function template for ZSrvSendNotice:

Code_t ZSrvSendNotice (notice, cert_routine, send_routine)
ZNotice_t *notice;
int (*cert_routine)();
int (*send_routine)();

Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_HEADERLEN, ZERR _ILLVAL,
ZERR_HMDEAD, ZERR _BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZSrvSendList:

Code_t ZSrvSendList (notice, list, nitems, cert_routine, send_routine)
ZNotice_t *notice;

char *ist[];

int nitems;

int (*cert_routine)();
int (*send_routine)();

Prerequisite functions: Zlnitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_HEADERLEN, ZERR_ILLVAL,
ZERR_HMDEAD, ZERR_BADPKT, ZERR_VERS, ZERR_QLEN

Function template for ZSrvSendRawList:

Code_t ZSrvSendRawList (notice, list, nitems, send_routine)
ZNotice_t *notice;

char *ist[];
int nitems;
int (*send_routine)();

Prerequisite functions: Zlnitialize

Possible errors: UNIX errors, ZERR_PKTLEN, ZERR_HMDEAD, ZERR_BADPKT, ZERR_VERS,

ZERR_QLEN

Function template for ZFormatAuthenticNotice:

Code_t ZFormatAuthenticNotice (notice, buffer, buffer_len, ret_len, session)

C FUNCTION TEMPLATES

ZNotice_t *notice;

char *buffer;
int buffer_len;
int *ret_len;

C_Block session;
Prerequisite functions: ZlInitialize

Possible errors: Kerberos errors, UNIX errors, ZERR_PKTLEN, ZERR_HEADERLEN,
ZERR_ILLVAL

82

REFERENCES 83

References

[1] DellaFera, C. Anthony, et al. Zephyr Notification Service. MIT Project Athena Technical Plan, section E.4.1.
[2] Miller, Steven P. and Clifford Neuman. Kerberos. MIT Project Athena Technical Plan, section E.2.1.
[3] Raeburn, Kenneth. A Common Error Description Library for UNIX.

[4] Sechres, Stuart. An Introductory 4.3BSD Interprocess Communication Tutorial. UNIX Programmer’s Sup-
plementary Documents, Volume 1. 4.3 Berkeley Software Distribution.

	Introduction
	Manual Conventions
	Overview of the Zephyr System
	Major Divisions

	General Concepts
	The Subscription Service
	The class field
	The instance field
	The recipient field
	Examples
	Subscription Authorization
	Default Subscriptions

	The User Location Service
	Location Information
	Exposure Levels

	Programming Standard Applications
	The Zephyr Library and Include Files
	Naming conventions

	The ZNoticewidth.3emt Structure
	Components of the Header
	Notice Kinds
	Field Structure of the Notice Body

	Acknowledgment Structure
	Error Handling
	Initialization
	ZInitialize
	ZOpenPort

	Cleaning Up
	ZClosePort
	ZCancelSubscriptions

	Sending Notices
	ZSendNotice
	ZSendList
	Useful Information to Include in a Notice
	ZGetSender
	ZGetRealm

	Sending Binary Data
	ZMakeAscii

	Sending Authenticated Notices
	Sample Application

	Receiving Acknowledgments
	Using Predicates
	ZCompareUIDPred and ZCompareMultiUIDPred

	ZCheckIfNotice
	ZFreeNotice
	ZIfNotice
	ZCompareUID
	Sample Application

	Subscribing to Notices
	ZSubscribeTo
	ZUnsubscribeTo
	ZCancelSubscriptions
	Subscribing for the WindowGram Client
	ZGetWGPort

	Receiving Notices
	ZReceiveNotice
	Receiving Binary Data
	ZReadAscii

	Receiving Authenticated Notices
	ZCheckAuthentication

	Sample Application

	Using the Input Queue
	ZPending
	ZQLength
	ZPeekNotice
	ZPeekIfNotice

	Using Packets
	ZFormatNotice
	ZFormatNoticeList
	ZSendPacket
	ZReceivePacket
	ZPeekPacket
	ZParseNotice
	Sample Application

	Using Raw Notices
	ZFormatRawNotice
	ZFormatSmallRawNotice
	ZFormatRawNoticeList
	ZFormatSmallRawNoticeList
	ZSendRawNotice
	ZSendRawList

	Retrieving User Locations
	ZLocateUser
	ZNewLocateUser
	ZGetLocations
	ZFlushLocations
	Sample Application

	Retrieving Subscriptions
	ZRetrieveSubscriptions
	ZRetrieveDefaultSubscriptions
	ZGetSubscriptions
	ZFlushSubscriptions
	Sample Application

	Variable Handling
	ZGetVariable
	ZSetVariable
	ZUnsetVariable
	Sample Application

	Advanced Programming Topics
	Changing Your Location Information
	ZSetLocation
	ZUnsetLocation
	ZFlushMyLocations

	Using Your Own Socket
	ZGetFD
	ZSetFD

	Changing the Destination Address
	ZGetDestAddr
	ZSetDestAddr

	Using Zephyr as a Rendezvous Service
	Server Functions
	ZSetServerState
	ZSrvSendNotice
	ZSrvSendList
	ZSrvSendRawList
	ZFormatAuthenticNotice

	Communicating with the WindowGram Client
	Where to Send Notices
	Available Commands
	Sample Application

	Communicating with the HostManager
	Where to Send Notices
	Available Commands
	Sample Application

	Additional Examples
	zwrite
	zlocate
	zstat

	Error Codes
	Function Templates

