Mapping and Navigation

Principles and Shortcuts

January 17t 2006

Edwin Olson, eolson@mit.edu

" A
Goals for this talk

m Principles
Present fundamental concepts, algorithms
Give an idea of how rigorous methods work
m Shortcuts

Present some simple but workable
approaches

" A
Attack Plan

 Motivation and Terminology

Why build a map?

 Time
— Playing field is big, robot is slow
— Driving around perimeter takes a minute!

— Scoring takes time... often ~20 seconds
to “line up” to a mouse hole.

« MASLab '06 scoring nonlinearity

— Better to put balls in different goals, but
which goals have been visited?

"
MASLab ‘06 Mapping Goals

1. Be able to efficiently move to specific locations that we have
previously seen

I've got the bonus ball, now, where was that bonus gate?!
Where is the nearest gate?

0 Be able to efficiently explore unseen areas
| just turned on. What do | do?
| don’t know where the bonus ball/gate is
I've put too many balls in this gate; | need to find a new gate.

Note: Producing the map is not a goal in itself, but it might be a
good way to win the MASLab Engineering Award!

I
Definitions

m Pose: a place where the robot has been
>

m Trajectory: the linked set of poses

m Feature: Something in the world that we
represent in our map that we can observe.

Feature
I Observation .7

" J
Odometry Trajectory

m Integrating odometry data yields a
trajectory

.
.
.
. ‘....
.....

»\ /?' ______ i

Odometry Data

m Uncertainty of pose increases at every
step

" A
Attack Plan

« Mapping Methods
— Topological

"
Visibility Graphs

m A type of “topological map”:

Which features can see each
other?

Edges needn’t contain any
distance/angle information.

m Easy to build/update
No math!

m Accumulated odometry error
has no impact

m Provides a “highway system”
allowing navigation from one
feature to another

"
Visibility Graph: Example

m You've just grabbed the
green ball

m Compute local visibility (do a A O
360) :

You see a two features

m Do a tree search for the o
shortest path to the green O
goal

Shortest = fewest hops?

Edges can contain distance
estimates

m Drive to the next visible
target, search (do a 360) for
next target on path...

.
s*
‘I
.
‘I
.
‘I
.
.t
*
.
.

.
.
s®
Y
)
*

" I
Visibility Graphs:

m How to handle balls?

Use hints (“I last saw 3 red balls
plus the power ball”)

Balls become features?

= Are they identifiable by their
visibility?
m Define “visible” (do | have to do
360s frequently?)

Do a 360 only once per feature,
remembering the relative angles
of other features.

m How do you know where
unexplored areas are?

Random walk?
m Generated paths are suboptimal

m Data Association: is this goal the
same as the one | saw over there?

Problems

'—
Attack Plan

e Motivation and Terminology

 Mapping Methods
— Topological
— Metrical

e Data Association

e Sensor Ideas and Tips

" J
Metrical Maps

m Try to find actual locations (or parameters) of features
Ball is at (X,y)
Wall is parameterized by (e.g.): (X;,¥1),(X5,Y>)

m Advantages

Know where unexplored territory is
Compute optimal paths
Location information makes data association easier

m Disadvantages

Accumulating odometry error makes this difficult
Math can be more difficult

" J
Metrical Maps

m Basic idea:
Make all features and robot poses unknown variables

Make a big list of equations constraining the value of
those variables

m These come from observations, like “pose 14 is 3.2 meters
from feature 37”

m Equations compute a cost as a function of the poses
Solve for poses, minimizing the total cost

Metrical Map: Cost Function

A

Cost function could be
arbitrarily complicated

Optimization of these is
Intractable

= We can make a local >
approximation around the A Distance between pose 1 and 2
current pose estimates
Resembles the arbitrary cost
function in that neighborhood
Typically Gaussian

Cost
[

Distance between pose 1 and 2

"
Metrical Map: Real World Cost Function

Cost function arising from aligning two LADAR scans

" J
Metrical Map: Cost Example

m Suppose we observe the distance to a goal z,
m Governing equation:

z = [(pyf)%+(p)M Y (f..f)
z = predicion e Xy
Z, = observation =

m Assume (or approximate) cost: (P, Py)
Cost = W(z-z,)? = (z-zp)"W(z-z)
W is a “weight” (related to covariance, Jacobian Terms:

n W= 3l

m Linearize z: dz/dp,= z'12(p,-f,)
z=JIx+b, (z-2g) =Ix+b—z,=Ix—r dz/dp,= z12(p 1))
J is Jacobian of z with respect to all x dz/df, = - z12(p,-f,)
Cost = (Ix-r)"W(JIx-r) dz/ dfy =-zV 2(py'fy)

m Differentiate cost with respect to unknowns
(PP, f,f,), set to O:

JTWJIx = JTWz,

" J
Metrical Map example

. . Odometry
By convention, Unknown variables consiraint

this pose is (0,0,0) (x,y,theta) per pose equatlons

JTWJ x =J"Wz,
Constraints (arising from odometry) AX=Db

Poses

number unknowns==number of equations, solution is critically determined.

x=A1b

" J
Metrical Map example

Odometr
The feature y Poses

_ constraint
g'vf e e equitions \A‘
/un nowns
- Observations
ST AR, give s more
. .0. °

equations

Observation /

equations
q Ax=Dhb

number unknowns < number of equations, solution is over determined.
Least-squares solution is:
x = (ATA)1ATb

More equations = better pose estimate

" J
Metrical Map example

1. Original Trajectory with - g Ny T
odometry constraints -~ \E T |
‘\\6&\0(\ ‘7 I_I
2. Observe external feature PR
‘\\.-\‘a\‘t“‘

Initial feature uncertainty = | \(\ | N B
pose uncertainty + .~/ T |
observation uncertainty

Cls...
4 o=
3. Reobserving feature helps R~ RS

subsequent pose estimates BB T N V

" A
Gotchal

m The least-squares solution to the mapping
problem:

x = (ATA)1ATh

m Must invert a matrix of size 3Nx3N (N = number
of poses.) Inverting this matrix costs O(N?)!

m \We can choose to “forget” robot trajectory, and
use only most recent pose.

Reduces computational complexity
Lose valuable information?

* We'd never actually invert it; that's numerically unstable. Instead,
we’'d use a Cholesky Decomposition or something similar. But it has
the same computational complexity.

" A
Extended Kalman Filter

m [f we assume all error i1Is Gaussian,
Extended Kalman Filter reduces time
complexity to O(N?).

m EKF allows us to add one observation at a

time, rather than resolving the entire
system.

" A
Extended Kalman Filter

<

« Example: Estimating where

Jill is standing:

— Alice says: x=2
* We think o2 =2; she wears
thick glasses

— Bob says: x=0
* We think o2 =1, he’s pretty
reliable

How do we combine these
measurements?

0.4-

0.35-

0.3F

0.25F

0.2+

0.15-

0.1-

0.05

"
Simple Kalman Filter

0.5

0.45+

 Answer: algebra (and a little
calculus)!

— Compute mean by finding
maxima of the log probability

of the product P,Pg.
— Variance is messy; consider SR
case when P,=Pz=N(0,1) 11) .

e Try deriving these
equations at home!

" J
Kalman Filter Example

e We now think Jill Is at:

- x=0.66 05
— 62=0.66 0.45
e Note: Observations 035
always reduce 03
uncertainty 0.25

— Even In the face of 02;
conflicting information, o=
EKF never becomes ot
less certain. 0.05

0

I
Kalman Filter

* Now Jill steps forward

one step +
* We think one of Jill's
steps is about 1 meter,
02 =0.5 0|

0.25¢

 \We estimate her position: **

0.15¢
- X_Xbefore+xchange o1l

- = 2 2
o Opefore + c’change 0,051

« Uncertainty increases

" J
Kalman Filter: Properties

m You Iincorporate sensor observations one at a time.

m Each successive observation Is the same amount of
work (in terms of CPU).

m Yet, the final estimate is the global optimal solution.
The same solution we would have gotten using least-squares.

The Kalman Filter is an optimal,
recursive estimator.

" A
Correlation/Covariance

= |n multidimensional Gaussian
problems, equal-probability
contours are ellipsoids.

Exam score

m Shoe size doesn'’t affect

grades:
P(grade,shoesize)=P(grade)P(shoesize)

m Studying helps grades:
P(grade,studytime)!=P(grade)P(studytime)

We must consider P(x,y) jointly,
respecting the correlation!

If | tell you the grade, you learn
something about study time.

Time spent studying

" A
State Correlation/Covariance

m \We observe features relative to the robot’s
current position

Therefore, feature location estimates covary
(or correlate) with robot pose.

m Why do we care?

We get the wrong answer if we don’t consider
correlations

Covariance Is useful!

"
Why Is covariance useful?

Previously known goals
m Loop Closing (and Data
Association)

m Suppose you observe a goal
(with some uncertainty)

Which previously-known goal is
it?

Oris it a new one?

m Covariance information helps
you decide

You observe a goal here

" J
System Equations (EKF)

e Consider range/bearing measurements,
differentially driven robot

e Let Xk:f(xk-l’uk-l’ Wk-l) u=control inputs, w=noise
e Let Zk:h(Xk,Vk) v=noise

y'=y+ (U, +wy)sin(@+w,)
0'=0+u,+w,

[x' X + (U, +wd)cos(9+w9)}
f=

i :[zd =[0; = %) +(yy =) T 4, }

Z,=arctan2(y; —Y,, X; =X,) =X, +V,

" J
EKF Update Equations

« Time update: (X'= X+ (uy +W,)cos(d+w,)
- x'=f(x,u,0) , .
— P=APAT+WQWT F=|y=y+(Ug+wy)sin(@+w,)
O'=0+u,+w,

e Observation

— K=PHT(HPHT + VRVT)1
— x'=x+K(z-h(x,0)) zg =[(X; =) 2+ (y; = ¥,)°T"2 +V,
—- P=(I-KH)P h=
Z,=arctan2(y; —y,, X, =X,)—X, +V,

e P s your covariance matrix

« They look scary, but once you compute your
Jacobians, it just works!

— A=df/dx W=df/dw H=dh/dx V=dh/dv
— Staff can help... (It's easy except for the atan!)

" A
EKF Jacobians

X'= X+ (Uuy +W,)cos(@+w,)

y'=y+ (U, +w,)sin(@+w,) d=[(¢; =x)"+(ys =¥)’]

1 dX - Xf _XI’
f=10'=0+u,+w,
X]_':X]_ dy:yf _yr
Yi' =Y
1 0 —-uysin(@) 0 O cos(d) —u, sin(6)
0 1 wuycos(d) 0 O sin(¢) u, cos(@) 0- Oy, >0
A=0 0 1 0 0 W= 0 1 0 o,°
00 0 10 0 0
00 0 01 0 0

" A
EKF Jacobians

i :[zd = [0 =) +(y; =¥,)°T +q]

Z,=arctan2(y, —Y,, X; =X,)—X, +V,

A=1/1+(d, /d,))?

~d,/d -d,/d 0 dJ/d d,/d

H:my/dx2 ~Ald, -1 —ad, /d}? 2ld,

VRV =|7

" J
Kalman Filter: Properties

m In the limit, features become highly correlated

Because observing one feature gives information
about other features

m Kalman filter computes the posterior pose, but
not the posterior trajectory.

If you want to know the path that the robot traveled,
you have to make an extra “backwards” pass.

Or you can maintain the entire robot trajectory as
state.

B
Kalman Filter: a movie

---- Baseline EKF
— ROBL EKF

57 Surveyed beacons
+ ROBL heacons

" J
Kalman Filter: Shortcomings

 With N features, update
time is still large: O(N?4)!

« For Maslab, N is small. |
Who cares?

 In the “real world”, N can -
he >>106,

e Linearization Error

o Current research: lower-
cost mapping methods

" S
Nonlinear optimization: Relaxation

m Consider each
pose/feature:

Fix all others
features/poses

Solve for the position of
the unknown pose

m Repeat many times Pose/Feature Graph
Will converge to minimum
Works well on small maps

" J
Nonlinear Map Optimization

time: 0.071

"
Occupancy Grids

e Divide the world into a
grid
— Each grid records whether
there’s something there or
not
» Usually as a probability

— Use current robot position
estimate to fill in squares
according to sensor
observations

Occupancy Grids

e Easy to generate, hard to maintain accuracy
— Basically impossible to “undo” mistakes

e Convenient for high-quality path planning

« Relatively easy to tell how well you're doing
— Do your sensor observations agree with your map?

" I
FastSLAM (Gridmap variant)

m Suppose you maintain a whole bunch of
occupancy maps
Each assuming a slightly different robot trajectory

m \When a map becomes inconsistent, throw It
away.

m If you have enough occupancy maps, you'll get a
good map at the end.

" J
Gridmap, a la MASLab

m Number of maps you need increases exponentially with
distance travelled. (Rate constant related to odometry

error)

m Build grid maps until odometry error becomes too large,
then start a new map.

m Try to find old maps which contain data about your
current position

Relocalization is usually hard, but you have unambiguous
features to help.

" J
Occupancy Grid: Path planning

m Use A* search

Finds optimal path (subject to grid resolution)
Large search space, but optimum answer is easy to find

m search(start, end)

Initialize paths = set of all paths leading out of cell “start”
Loop:
m let p be the best path in paths
Metric = distance of the path +
straight-line distance from last cell in path to goal
m If p reaches end, return p

m Extend path p in all possible directions, adding those paths to paths

Occupancy Grid: Path planning

m How do we do path planning with EKFs?
m Easiest way IS to rasterize an occupancy
grid on demand

Either all walls/obstacles must be features
themselves, or

Remember a local occupancy grid of where
walls were at each pose.

'—
Attack Plan

e Motivation and Terminology

 Mapping Methods
— Topological
— Metrical

« Data Association

e Sensor Ildeas and Tips

" A
Data Assoclation

m The problem of recognizing that an object
yOou see now IS the same one you saw
before

Hard for simple features (points, lines)
Easy for “high-fidelity” features (barcodes,
bunker hill monuments)

m With perfect data association, most
mapping problems become “easy”

" A
Data Assoclation

m [f we can’t tell when we’re reobserving a
feature, we don’t learn anything!

We need to observe the same feature twice to
generate a constraint

" S
Data Association: Nearest Neighbor

m Nearest Neighbor

Simplest data Previously known goals
association “algorithm”

Only tricky part is
determining when you'’re
seeing a brand-new
feature.

You observe a goal here

" A
Data Assoclation: Bar Codes

m Triviall

m The Bar Codes have unique IDs;
read the ID.

Data Assoclation: Tick Marks

m The blue tick marks can be
used as features too.

Probably hard to tell that a
particular tick mark is the one you
saw 4 minutes ago...

You only need to reobserve the
same feature twice to benefit!

If you can track them over short
Intervals, you can use them to
Improve your dead-reckoning.

m Use nearest-neighbor. Your frame-to-

frame uncertainty should only be a
few pixels.

F

" A
Data Assoclation: Tick Marks

m |[deal situation:
Lots of tick marks, randomly arranged
Good position estimates on all tick marks

m Then we search for a rigid-body-
transformation that best aligns the points.

" A
Data Assoclation: Tick Marks

m Find a rotation that aligns the most tick marks...
Gives you data association for matched ticks
Gives you rigid body transform for the robot!

Rotation+Translation ‘
[] B
m /\
g O = 2
O 2

4" A

" S
Finding a rigid-body transformation

m Method 1 (silly)

Search over all possible rigid-body transformations until you find one
that works

s Compare transformations using some “goodness” metric.

m Method 2 (smarter)
Pick two tick marks in both scene A and scene B

Compute the implied rigid body transformation, compute some
“goodness” metric.

Repeat.

= If there are N tick marks, M of which are in both scenes, how many trials do
you need? Minimum: (M/N)?

This method is called “RANSAC”, RANdom SAmple Consenus

" A
= |
Attack Plan Lr

: TN

e Sensor Ideas and Tips

'—
Use the Camera, Luke

m Other useful features can be
extracted!

1 Lines from white/blue boundaries

1 Balls (great point features! Just
delete them after you've moved
them.)

1 “Accidental features”

m You can estimate bearing and
distance.

-1 Camera mounting angle has effect
on distance precision

m Triangulation
1 Make bearing measurement

1 Move robot a bit (keeping odom
error small)

1 Make another bearing measurement

More features = better
navigation performance

" J
Range finders

m Range finders are most direct way of locating
walls/obstacles.

m Build a “LADAR” by putting a range finder on a :
servo S

High quality data! Great for mapping!

Terribly slow.

= At least a second per scan.

With range of > 1 meter, you don’t have to scan very
often.

= Two range-finders = twice as fast
Or alternatively, 360° coverage

s Hack servo to read analog pot directly

Then slew the servo in one command at maximum
speed instead of stepping.

= Add gearbox to get 360° coverage with only one range
finder.

" S
Debugging map-building algorithms

m You can’'t debug what you can’t see.

m Produce a visualization of the map!
Metrical map: easy to draw
Topological map: draw the graph (using graphviz/dot?)
Display the graph via BotClient

m \Write movement/sensor observations to a file to test
mapping independently (and off-line)

" J
Today’s Lab Activities

'__
Old Slides

" J
Bayesian Estimation

Represent unknowns with
probability densities

— Often, we assume the
densities are Gaussian

P(X) = g I
270

— Or we represent arbitrary B
densities with particles |
 We won't cover this today

" J
Metrical Map example

D
weight of egn 1

/weight of eqn 2

B Some constraints are
better than others.

m Incorporate constraint
“weights” W =
Weights are closely
related to covariance:

W = g \
In principle, equations might
. . not represent independent
COvarlanCG Of poses IS. constraints. But usually they

ATWA are, so these terms are zero.
x = (ATWA)LATWb

* Of course, “covariance” only makes good sense if we make a Gaussian assumption

