
Mapping and Navigation
Principles and Shortcuts

January 17th, 2006
Edwin Olson, eolson@mit.edu

Goals for this talk

Principles
Present fundamental concepts, algorithms
Give an idea of how rigorous methods work

Shortcuts
Present some simple but workable
approaches

Attack Plan

• Motivation and Terminology
• Mapping Methods

– Topological
– Metrical

• Data Association
• Sensor Ideas and Tips

Why build a map?

• Time
– Playing field is big, robot is slow
– Driving around perimeter takes a minute!
– Scoring takes time… often ~20 seconds

to “line up” to a mouse hole.
• MASLab ’06 scoring nonlinearity

– Better to put balls in different goals, but
which goals have been visited?

MASLab ‘06 Mapping Goals

1. Be able to efficiently move to specific locations that we have
previously seen

I’ve got the bonus ball, now, where was that bonus gate?!
Where is the nearest gate?

Be able to efficiently explore unseen areas
I just turned on. What do I do?
I don’t know where the bonus ball/gate is
I’ve put too many balls in this gate; I need to find a new gate.

Note: Producing the map is not a goal in itself, but it might be a
good way to win the MASLab Engineering Award!

Definitions

Pose: a place where the robot has been

Trajectory: the linked set of poses

Feature: Something in the world that we
represent in our map that we can observe.

Feature
Observation

Odometry Trajectory

Integrating odometry data yields a
trajectory

Uncertainty of pose increases at every
step

Odometry Data

Attack Plan

• Motivation and Terminology
• Mapping Methods

– Topological
– Metrical

• Data Association
• Sensor Ideas and Tips

Visibility Graphs

A type of “topological map”:
Which features can see each
other?
Edges needn’t contain any
distance/angle information.

Easy to build/update
No math!

Accumulated odometry error
has no impact
Provides a “highway system”
allowing navigation from one
feature to another

Visibility Graph: Example

You’ve just grabbed the
green ball
Compute local visibility (do a
360)

You see a two features
Do a tree search for the
shortest path to the green
goal

Shortest = fewest hops?
Edges can contain distance
estimates

Drive to the next visible
target, search (do a 360) for
next target on path…

Visibility Graphs: Problems

How to handle balls?
Use hints (“I last saw 3 red balls
plus the power ball”)
Balls become features?

Are they identifiable by their
visibility?

Define “visible” (do I have to do
360s frequently?)

Do a 360 only once per feature,
remembering the relative angles
of other features.

How do you know where
unexplored areas are?

Random walk?
Generated paths are suboptimal
Data Association: is this goal the
same as the one I saw over there?

Attack Plan

• Motivation and Terminology
• Mapping Methods

– Topological
– Metrical

• Data Association
• Sensor Ideas and Tips

Metrical Maps

Try to find actual locations (or parameters) of features
Ball is at (x,y)
Wall is parameterized by (e.g.): (x1,y1),(x2,y2)

Advantages
Know where unexplored territory is
Compute optimal paths
Location information makes data association easier

Disadvantages
Accumulating odometry error makes this difficult
Math can be more difficult

Metrical Maps

Basic idea:
Make all features and robot poses unknown variables
Make a big list of equations constraining the value of
those variables

These come from observations, like “pose 14 is 3.2 meters
from feature 37”
Equations compute a cost as a function of the poses

Solve for poses, minimizing the total cost

Metrical Map: Cost Function

Cost function could be
arbitrarily complicated

Optimization of these is
intractable

We can make a local
approximation around the
current pose estimates

Resembles the arbitrary cost
function in that neighborhood
Typically Gaussian

Distance between pose 1 and 2

C
os

t

Distance between pose 1 and 2

C
os

t

Metrical Map: Real World Cost Function

Cost function arising from aligning two LADAR scans

Metrical Map: Cost Example

Suppose we observe the distance to a goal z0

Governing equation:
z = [(px-fx)2+(py-fy)2]1/2

z = prediction
z0 = observation

Assume (or approximate) cost:
Cost = W(z-z0)2 = (z-z0)TW(z-z0)
W is a “weight” (related to covariance,

W = Σ-1

Linearize z:
z = Jx + b, (z-z0) = Jx + b – z0 = Jx – r
J is Jacobian of z with respect to all x
Cost = (Jx-r)TW(Jx-r)

Differentiate cost with respect to unknowns
(px,py,fx,fy), set to 0:

JTWJx = JTWz0

(px,py)

(fx,fy)

Jacobian Terms:

dz/dpx= z-1/2(px-fx)
dz/dpy= z-1/2(py-fy)
dz/dfx = - z-1/2(px-fx)
dz/dfy = - z-1/2(py-fy)

Metrical Map example

By convention,
this pose is (0,0,0)

Unknown variables
(x,y,theta) per pose

Constraints (arising from odometry)

=

JTWJ x = JTWz0

Odometry
constraint
equations

Poses

number unknowns==number of equations, solution is critically determined.

x = A-1b

A x = b

Metrical Map example
The feature
gives us more
unknowns

Observations
give us more
equations =

Odometry
constraint
equations

Poses

Observation
equations

number unknowns < number of equations, solution is over determined.
Least-squares solution is:

x = (ATA)-1ATb

More equations = better pose estimate

A x = b

Metrical Map example

1. Original Trajectory with
odometry constraints

2. Observe external feature
Initial feature uncertainty =

pose uncertainty +
observation uncertainty

3. Reobserving feature helps
subsequent pose estimates

Initializing Observation

Gotcha!

The least-squares solution to the mapping
problem:

Must invert a matrix of size 3Nx3N (N = number
of poses.) Inverting this matrix costs O(N3)!

We can choose to “forget” robot trajectory, and
use only most recent pose.

Reduces computational complexity
Lose valuable information?

x = (ATA)-1ATb

•* We’d never actually invert it; that’s numerically unstable. Instead,
we’d use a Cholesky Decomposition or something similar. But it has
the same computational complexity.

Extended Kalman Filter

If we assume all error is Gaussian,
Extended Kalman Filter reduces time
complexity to O(N2).
EKF allows us to add one observation at a
time, rather than resolving the entire
system.

Extended Kalman Filter

• Example: Estimating where
Jill is standing:

– Alice says: x=2
• We think σ2 =2; she wears

thick glasses
– Bob says: x=0

• We think σ2 =1; he’s pretty
reliable

• How do we combine these
measurements?

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
A
B

Simple Kalman Filter

• Answer: algebra (and a little
calculus)!
– Compute mean by finding

maxima of the log probability
of the product PAPB.

– Variance is messy; consider
case when PA=PB=N(0,1)

• Try deriving these
equations at home!

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
A
B
both

222

111

BA σσσ
+=

22

22

BA

ABBA

σσ
σμσμμ

+
+

=

Kalman Filter Example

• We now think Jill is at:
– x = 0.66
– σ2 =0.66

• Note: Observations
always reduce
uncertainty
– Even in the face of

conflicting information,
EKF never becomes
less certain.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
A
B
both

Kalman Filter

• Now Jill steps forward
one step

• We think one of Jill’s
steps is about 1 meter,
σ2 =0.5

• We estimate her position:
– x=xbefore+xchange
– σ2 = σbefore

2 + σchange
2

• Uncertainty increases -5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Before
After

Kalman Filter: Properties

You incorporate sensor observations one at a time.
Each successive observation is the same amount of
work (in terms of CPU).
Yet, the final estimate is the global optimal solution.

The same solution we would have gotten using least-squares.

The Kalman Filter is an optimal,
recursive estimator.

Correlation/Covariance

In multidimensional Gaussian
problems, equal-probability
contours are ellipsoids.

Shoe size doesn’t affect
grades:
P(grade,shoesize)=P(grade)P(shoesize)

Studying helps grades:
P(grade,studytime)!=P(grade)P(studytime)

We must consider P(x,y) jointly,
respecting the correlation!
If I tell you the grade, you learn
something about study time.

Time spent studying
Shoe Size

Ex
am

 s
co

re

State Correlation/Covariance

We observe features relative to the robot’s
current position

Therefore, feature location estimates covary
(or correlate) with robot pose.

Why do we care?
We get the wrong answer if we don’t consider
correlations
Covariance is useful!

Why is covariance useful?

Loop Closing (and Data
Association)
Suppose you observe a goal
(with some uncertainty)

Which previously-known goal is
it?
Or is it a new one?

Covariance information helps
you decide

You observe a goal here

Previously known goals

System Equations (EKF)

• Consider range/bearing measurements,
differentially driven robot

• Let xk=f(xk-1,uk-1, wk-1) u=control inputs, w=noise

• Let zk=h(xk,vk) v=noise

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++=
+++=
+++=

=

θθ

θ

θ

θθ
θ
θ

wu
wwuyy
wwuxx

f dd

dd

'
)sin()('
)cos()('

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−−−=

+−+−=
=

θθθ vxxxyyz

vyyxxz
h

rfrf

drfrfd

),(2arctan

])()[(2/122

EKF Update Equations

• Time update:
– x’=f(x,u,0)
– P=APAT+WQWT

• Observation
– K=PHT(HPHT + VRVT)-1

– x’=x+K(z-h(x,0))
– P=(I-KH)P

• P is your covariance matrix

• They look scary, but once you compute your
Jacobians, it just works!

– A=df/dx W=df/dw H=dh/dx V=dh/dv
– Staff can help… (It’s easy except for the atan!)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++=
+++=
+++=

=

θθ

θ

θ

θθ
θ
θ

wu
wwuyy
wwuxx

f dd

dd

'
)sin()('
)cos()('

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−−−=

+−+−=
=

θθθ vxxxyyz

vyyxxz
h

rfrf

drfrfd

),(2arctan

])()[(2/122

EKF Jacobians

10000
01000
00100
00)cos(10
00)sin(01

θ
θ

d

d

u
u

A

−

= 2

2

0
0

θ
σ

σ

w

wdQ =

00
00
10

)cos()sin(
)sin()cos(

θθ
θθ

d

d

u
u

W

−

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
=

++=
+++=
+++=

=

11

11

'
'
'

)sin()('
)cos()('

yy
xx

wu
wwuyy
wwuxx

f
dd

dd

θθ

θ

θ

θθ
θ
θ

rfy

rfx

rfrf

yyd

xxd

yyxxd

−=

−=

−+−= 2/122])()[(

EKF Jacobians

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−−−=

+−+−=
=

θθθ vxxxyyz

vyyxxz
h

rfrf

drfrfd

),(2arctan

])()[(2/122

xxyxxy

yxyx

dddddd
dddddddd

H
//1//
//0//

22 λλλλ −−−
−−

= 2

2

0
0

θ
σ

σ

v

vT dVRV =

2))/(1/(1 xy dd+=λ

Kalman Filter: Properties

In the limit, features become highly correlated
Because observing one feature gives information
about other features

Kalman filter computes the posterior pose, but
not the posterior trajectory.

If you want to know the path that the robot traveled,
you have to make an extra “backwards” pass.
Or you can maintain the entire robot trajectory as
state.

Kalman Filter: a movie

Kalman Filter: Shortcomings

• With N features, update
time is still large: O(N2)!

• For Maslab, N is small.
Who cares?

• In the “real world”, N can
be >>106.

• Linearization Error
• Current research: lower-

cost mapping methods

Nonlinear optimization: Relaxation

Consider each
pose/feature:

Fix all others
features/poses
Solve for the position of
the unknown pose

Repeat many times
Will converge to minimum
Works well on small maps

Pose/Feature Graph

Nonlinear Map Optimization

Movie goes
here

Occupancy Grids

• Divide the world into a
grid
– Each grid records whether

there’s something there or
not

• Usually as a probability
– Use current robot position

estimate to fill in squares
according to sensor
observations

Occupancy Grids

• Easy to generate, hard to maintain accuracy
– Basically impossible to “undo” mistakes

• Convenient for high-quality path planning

• Relatively easy to tell how well you’re doing
– Do your sensor observations agree with your map?

FastSLAM (Gridmap variant)

Suppose you maintain a whole bunch of
occupancy maps

Each assuming a slightly different robot trajectory

When a map becomes inconsistent, throw it
away.

If you have enough occupancy maps, you’ll get a
good map at the end.

Gridmap, a la MASLab

Number of maps you need increases exponentially with
distance travelled. (Rate constant related to odometry
error)

Build grid maps until odometry error becomes too large,
then start a new map.

Try to find old maps which contain data about your
current position

Relocalization is usually hard, but you have unambiguous
features to help.

Occupancy Grid: Path planning

Use A* search
Finds optimal path (subject to grid resolution)
Large search space, but optimum answer is easy to find

search(start, end)
Initialize paths = set of all paths leading out of cell “start”
Loop:

let p be the best path in paths
Metric = distance of the path +

straight-line distance from last cell in path to goal
if p reaches end, return p
Extend path p in all possible directions, adding those paths to paths

Occupancy Grid: Path planning

How do we do path planning with EKFs?
Easiest way is to rasterize an occupancy
grid on demand

Either all walls/obstacles must be features
themselves, or
Remember a local occupancy grid of where
walls were at each pose.

Attack Plan

• Motivation and Terminology
• Mapping Methods

– Topological
– Metrical

• Data Association
• Sensor Ideas and Tips

Data Association

The problem of recognizing that an object
you see now is the same one you saw
before

Hard for simple features (points, lines)
Easy for “high-fidelity” features (barcodes,
bunker hill monuments)

With perfect data association, most
mapping problems become “easy”

Data Association

If we can’t tell when we’re reobserving a
feature, we don’t learn anything!

We need to observe the same feature twice to
generate a constraint

Data Association: Nearest Neighbor

Nearest Neighbor
Simplest data
association “algorithm”
Only tricky part is
determining when you’re
seeing a brand-new
feature.

You observe a goal here

Previously known goals

Data Association: Bar Codes

Trivial!

The Bar Codes have unique IDs;
read the ID.

Data Association: Tick Marks

The blue tick marks can be
used as features too.

Probably hard to tell that a
particular tick mark is the one you
saw 4 minutes ago…
You only need to reobserve the
same feature twice to benefit!
If you can track them over short
intervals, you can use them to
improve your dead-reckoning.

Use nearest-neighbor. Your frame-to-
frame uncertainty should only be a
few pixels.

Data Association: Tick Marks

Ideal situation:
Lots of tick marks, randomly arranged
Good position estimates on all tick marks

Then we search for a rigid-body-
transformation that best aligns the points.

Data Association: Tick Marks

Find a rotation that aligns the most tick marks…
Gives you data association for matched ticks
Gives you rigid body transform for the robot!

Rotation+Translation

Finding a rigid-body transformation

Method 1 (silly)
Search over all possible rigid-body transformations until you find one
that works

Compare transformations using some “goodness” metric.

Method 2 (smarter)
Pick two tick marks in both scene A and scene B
Compute the implied rigid body transformation, compute some
“goodness” metric.
Repeat.

If there are N tick marks, M of which are in both scenes, how many trials do
you need? Minimum: (M/N)2

This method is called “RANSAC”, RANdom SAmple Consenus

Attack Plan

• Motivation and Terminology
• Mapping Methods

– Topological
– Metrical

• Data Association
• Sensor Ideas and Tips

Use the Camera, Luke

Other useful features can be
extracted!

Lines from white/blue boundaries
Balls (great point features! Just
delete them after you’ve moved
them.)
“Accidental features”

You can estimate bearing and
distance.

Camera mounting angle has effect
on distance precision

Triangulation
Make bearing measurement
Move robot a bit (keeping odom
error small)
Make another bearing measurement

More features = better
navigation performance

Range finders

Range finders are most direct way of locating
walls/obstacles.

Build a “LADAR” by putting a range finder on a
servo

High quality data! Great for mapping!
Terribly slow.

At least a second per scan.
With range of > 1 meter, you don’t have to scan very
often.

Two range-finders = twice as fast
Or alternatively, 360o coverage

Hack servo to read analog pot directly
Then slew the servo in one command at maximum
speed instead of stepping.

Add gearbox to get 360o coverage with only one range
finder.

Debugging map-building algorithms

You can’t debug what you can’t see.

Produce a visualization of the map!
Metrical map: easy to draw
Topological map: draw the graph (using graphviz/dot?)
Display the graph via BotClient

Write movement/sensor observations to a file to test
mapping independently (and off-line)

Today’s Lab Activities

Old Slides

Bayesian Estimation

• Represent unknowns with
probability densities
– Often, we assume the

densities are Gaussian

– Or we represent arbitrary
densities with particles

• We won’t cover this today

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Normal Distribution

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2/2)(

22

1)(σμ

πσ

−−= xexP

Metrical Map example

Some constraints are
better than others.
Incorporate constraint
“weights”

Weights are closely
related to covariance:

W = Σ-1

Covariance of poses is:
ATWA

W =

x = (ATWA)-1ATWb

weight of eqn 1
weight of eqn 2

In principle, equations might
not represent independent
constraints. But usually they
are, so these terms are zero.

* Of course, “covariance” only makes good sense if we make a Gaussian assumption

