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Goals for this talk

Principles
Present fundamental concepts, algorithms
Give an idea of how rigorous methods work

Shortcuts
Present some simple but workable 
approaches



Attack Plan

• Motivation and Terminology
• Mapping Methods

– Topological
– Metrical

• Data Association
• Sensor Ideas and Tips



Why build a map?

• Time
– Playing field is big, robot is slow
– Driving around perimeter takes a minute!
– Scoring takes time… often ~20 seconds 

to “line up” to a mouse hole.
• MASLab ’06 scoring nonlinearity

– Better to put balls in different goals, but 
which goals have been visited?



MASLab ‘06 Mapping Goals

1. Be able to efficiently move to specific locations that we have 
previously seen

I’ve got the bonus ball, now, where was that bonus gate?!
Where is the nearest gate?

Be able to efficiently explore unseen areas
I just turned on. What do I do?
I don’t know where the bonus ball/gate is
I’ve put too many balls in this gate; I need to find a new gate.

Note: Producing the map is not a goal in itself, but it might be a 
good way to win the MASLab Engineering Award!



Definitions

Pose: a place where the robot has been

Trajectory: the linked set of poses

Feature: Something in the world that we 
represent in our map that we can observe.

Feature
Observation



Odometry Trajectory

Integrating odometry data yields a 
trajectory

Uncertainty of pose increases at every 
step

Odometry Data



Attack Plan

• Motivation and Terminology
• Mapping Methods

– Topological
– Metrical

• Data Association
• Sensor Ideas and Tips



Visibility Graphs

A type of “topological map”: 
Which features can see each 
other?
Edges needn’t contain any
distance/angle information.

Easy to build/update
No math!

Accumulated odometry error 
has no impact
Provides a “highway system”
allowing navigation from one 
feature to another



Visibility Graph: Example

You’ve just grabbed the 
green ball
Compute local visibility (do a 
360)

You see a two features
Do a tree search for the 
shortest path to the green 
goal

Shortest = fewest hops?
Edges can contain distance 
estimates

Drive to the next visible 
target, search (do a 360) for 
next target on path…



Visibility Graphs: Problems

How to handle balls?
Use hints (“I last saw 3 red balls 
plus the power ball”)
Balls become features?

Are they identifiable by their 
visibility?

Define “visible” (do I have to do 
360s frequently?)

Do a 360 only once per feature, 
remembering the relative angles 
of other features.

How do you know where 
unexplored areas are?

Random walk?
Generated paths are suboptimal
Data Association: is this goal the 
same as the one I saw over there?



Attack Plan

• Motivation and Terminology
• Mapping Methods

– Topological
– Metrical

• Data Association
• Sensor Ideas and Tips



Metrical Maps

Try to find actual locations (or parameters) of features
Ball is at (x,y)
Wall is parameterized by (e.g.): (x1,y1),(x2,y2)

Advantages
Know where unexplored territory is
Compute optimal paths
Location information makes data association easier

Disadvantages
Accumulating odometry error makes this difficult
Math can be more difficult



Metrical Maps

Basic idea:
Make all features and robot poses unknown variables
Make a big list of equations constraining the value of 
those variables

These come from observations, like “pose 14 is 3.2 meters 
from feature 37”
Equations compute a cost as a function of the poses

Solve for poses, minimizing the total cost



Metrical Map: Cost Function

Cost function could be 
arbitrarily complicated

Optimization of these is 
intractable

We can make a local 
approximation around the 
current pose estimates

Resembles the arbitrary cost 
function in that neighborhood
Typically Gaussian

Distance between pose 1 and 2
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Metrical Map: Real World Cost Function

Cost function arising from aligning two LADAR scans



Metrical Map: Cost Example

Suppose we observe the distance to a goal z0

Governing equation:
z = [(px-fx)2+(py-fy)2]1/2

z = prediction
z0 = observation

Assume (or approximate) cost:
Cost = W(z-z0)2   =  (z-z0)TW(z-z0)
W is a “weight” (related to covariance,

W = Σ-1

Linearize z:
z = Jx + b, (z-z0) = Jx + b – z0 = Jx – r
J is Jacobian of z with respect to all x
Cost = (Jx-r)TW(Jx-r)

Differentiate cost with respect to unknowns 
(px,py,fx,fy), set to 0:

JTWJx = JTWz0

(px,py)

(fx,fy)

Jacobian Terms:

dz/dpx= z-1/2(px-fx)
dz/dpy= z-1/2(py-fy)
dz/dfx = - z-1/2(px-fx)
dz/dfy = - z-1/2(py-fy) 



Metrical Map example

By convention,
this pose is (0,0,0)

Unknown variables
(x,y,theta) per pose

Constraints (arising from odometry)

=

JTWJ  x  = JTWz0

Odometry
constraint 
equations

Poses

number unknowns==number of equations, solution is critically determined.

x = A-1b

A x = b



Metrical Map example
The feature 
gives us more 
unknowns

Observations 
give us more 
equations =

Odometry
constraint 
equations

Poses

Observation 
equations

number unknowns < number of equations, solution is over determined. 
Least-squares solution is:

x = (ATA)-1ATb

More equations = better pose estimate

A x = b



Metrical Map example

1. Original Trajectory with 
odometry constraints

2. Observe external feature
Initial feature uncertainty = 

pose uncertainty + 
observation uncertainty

3. Reobserving feature helps 
subsequent pose estimates

Initializing Observation



Gotcha!

The least-squares solution to the mapping 
problem:

Must invert a matrix of size 3Nx3N (N = number 
of poses.) Inverting this matrix costs O(N3)!

We can choose to “forget” robot trajectory, and 
use only most recent pose.

Reduces computational complexity
Lose valuable information?

x = (ATA)-1ATb

•* We’d never actually invert it; that’s numerically unstable. Instead, 
we’d use a Cholesky Decomposition or something similar. But it has 
the same computational complexity.



Extended Kalman Filter

If we assume all error is Gaussian, 
Extended Kalman Filter reduces time 
complexity to O(N2).
EKF allows us to add one observation at a 
time, rather than resolving the entire 
system.



Extended Kalman Filter

• Example: Estimating where 
Jill is standing:

– Alice says: x=2
• We think σ2 =2; she wears 

thick glasses
– Bob says: x=0

• We think σ2 =1; he’s pretty 
reliable

• How do we combine these 
measurements?
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Simple Kalman Filter

• Answer: algebra (and a little 
calculus)!
– Compute mean by finding 

maxima of the log probability 
of the product PAPB.

– Variance is messy; consider 
case when PA=PB=N(0,1)

• Try deriving these 
equations at home!
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Kalman Filter Example

• We now think Jill is at:
– x = 0.66
– σ2 =0.66

• Note: Observations 
always reduce 
uncertainty
– Even in the face of 

conflicting information, 
EKF never becomes 
less certain.
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Kalman Filter

• Now Jill steps forward 
one step

• We think one of Jill’s 
steps is about 1 meter,
σ2 =0.5

• We estimate her position:
– x=xbefore+xchange
– σ2 =  σbefore

2 + σchange
2
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Kalman Filter: Properties

You incorporate sensor observations one at a time.
Each successive observation is the same amount of 
work (in terms of CPU).
Yet, the final estimate is the global optimal solution.

The same solution we would have gotten using least-squares.

The Kalman Filter is an optimal, 
recursive estimator.



Correlation/Covariance

In multidimensional Gaussian 
problems, equal-probability 
contours are ellipsoids.

Shoe size doesn’t affect 
grades:
P(grade,shoesize)=P(grade)P(shoesize)

Studying helps grades:
P(grade,studytime)!=P(grade)P(studytime)

We must consider P(x,y) jointly, 
respecting the correlation!
If I tell you the grade, you learn 
something about study time.

Time spent studying
Shoe Size

Ex
am
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State Correlation/Covariance

We observe features relative to the robot’s 
current position

Therefore, feature location estimates covary
(or correlate) with robot pose.

Why do we care?
We get the wrong answer if we don’t consider 
correlations
Covariance is useful!



Why is covariance useful?

Loop Closing (and Data 
Association)
Suppose you observe a goal 
(with some uncertainty)

Which previously-known goal is 
it?
Or is it a new one?

Covariance information helps 
you decide

You observe a goal here

Previously known goals



System Equations (EKF)

• Consider range/bearing measurements, 
differentially driven robot

• Let xk=f(xk-1,uk-1, wk-1)    u=control inputs, w=noise

• Let zk=h(xk,vk) v=noise
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EKF Update Equations

• Time update:
– x’=f(x,u,0)
– P=APAT+WQWT

• Observation
– K=PHT(HPHT + VRVT)-1

– x’=x+K(z-h(x,0))
– P=(I-KH)P

• P is your covariance matrix

• They look scary, but once you compute your 
Jacobians, it just works! 

– A=df/dx W=df/dw H=dh/dx V=dh/dv
– Staff can help… (It’s easy except for the atan!)
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EKF Jacobians
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EKF Jacobians
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Kalman Filter: Properties

In the limit, features become highly correlated
Because observing one feature gives information 
about other features

Kalman filter computes the posterior pose, but 
not the posterior trajectory.

If you want to know the path that the robot traveled, 
you have to make an extra “backwards” pass.
Or you can maintain the entire robot trajectory as 
state.



Kalman Filter: a movie



Kalman Filter: Shortcomings

• With N features, update 
time is still large: O(N2)!

• For Maslab, N is small. 
Who cares?

• In the “real world”, N can 
be >>106.

• Linearization Error
• Current research: lower-

cost mapping methods



Nonlinear optimization: Relaxation

Consider each 
pose/feature:

Fix all others 
features/poses
Solve for the position of 
the unknown pose

Repeat many times
Will converge to minimum
Works well on small maps

Pose/Feature Graph



Nonlinear Map Optimization

Movie goes 
here



Occupancy Grids

• Divide the world into a 
grid
– Each grid records whether 

there’s something there or 
not

• Usually as a probability
– Use current robot position 

estimate to fill in squares 
according to sensor 
observations



Occupancy Grids

• Easy to generate, hard to maintain accuracy
– Basically impossible to “undo” mistakes

• Convenient for high-quality path planning

• Relatively easy to tell how well you’re doing
– Do your sensor observations agree with your map?



FastSLAM (Gridmap variant)

Suppose you maintain a whole bunch of 
occupancy maps

Each assuming a slightly different robot trajectory

When a map becomes inconsistent, throw it 
away.

If you have enough occupancy maps, you’ll get a 
good map at the end.



Gridmap, a la MASLab

Number of maps you need increases exponentially with 
distance travelled. (Rate constant related to odometry
error)

Build grid maps until odometry error becomes too large, 
then start a new map.

Try to find old maps which contain data about your 
current position

Relocalization is usually hard, but you have unambiguous 
features to help.



Occupancy Grid: Path planning

Use A* search
Finds optimal path (subject to grid resolution)
Large search space, but optimum answer is easy to find

search(start, end)
Initialize paths = set of all paths leading out of cell “start”
Loop:

let p be the best path in paths
Metric = distance of the path + 

straight-line distance from last cell in path to goal
if p reaches end, return p
Extend path p in all possible directions, adding those paths to paths



Occupancy Grid: Path planning

How do we do path planning with EKFs?
Easiest way is to rasterize an occupancy 
grid on demand

Either all walls/obstacles must be features 
themselves, or
Remember a local occupancy grid of where 
walls were at each pose.



Attack Plan

• Motivation and Terminology
• Mapping Methods

– Topological
– Metrical

• Data Association
• Sensor Ideas and Tips



Data Association

The problem of recognizing that an object 
you see now is the same one you saw 
before

Hard for simple features (points, lines)
Easy for “high-fidelity” features (barcodes, 
bunker hill monuments)

With perfect data association, most 
mapping problems become “easy”



Data Association

If we can’t tell when we’re reobserving a 
feature, we don’t learn anything!

We need to observe the same feature twice to 
generate a constraint



Data Association: Nearest Neighbor

Nearest Neighbor
Simplest data 
association “algorithm”
Only tricky part is 
determining when you’re 
seeing a brand-new 
feature.

You observe a goal here

Previously known goals



Data Association: Bar Codes

Trivial!

The Bar Codes have unique IDs; 
read the ID.



Data Association: Tick Marks

The blue tick marks can be 
used as features too.

Probably hard to tell that a 
particular tick mark is the one you 
saw 4 minutes ago…
You only need to reobserve the 
same feature twice to benefit!
If you can track them over short 
intervals, you can use them to 
improve your dead-reckoning.

Use nearest-neighbor. Your frame-to-
frame uncertainty should only be a 
few pixels.



Data Association: Tick Marks

Ideal situation:
Lots of tick marks, randomly arranged
Good position estimates on all tick marks

Then we search for a rigid-body-
transformation that best aligns the points.



Data Association: Tick Marks

Find a rotation that aligns the most tick marks…
Gives you data association for matched ticks
Gives you rigid body transform for the robot!

Rotation+Translation



Finding a rigid-body transformation

Method 1 (silly)
Search over all possible rigid-body transformations until you find one 
that works

Compare transformations using some “goodness” metric.

Method 2 (smarter)
Pick two tick marks in both scene A and scene B
Compute the implied rigid body transformation, compute some 
“goodness” metric.
Repeat. 

If there are N tick marks, M of which are in both scenes, how many trials do 
you need? Minimum: (M/N)2

This method is called “RANSAC”, RANdom SAmple Consenus
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Use the Camera, Luke

Other useful features can be 
extracted!

Lines from white/blue boundaries
Balls (great point features! Just 
delete them after you’ve moved 
them.)
“Accidental features”

You can estimate bearing and
distance.

Camera mounting angle has effect 
on distance precision

Triangulation
Make bearing measurement
Move robot a bit (keeping odom
error small)
Make another bearing measurement

More features = better 
navigation performance



Range finders

Range finders are most direct way of locating 
walls/obstacles.

Build a “LADAR” by putting a range finder on a 
servo

High quality data! Great for mapping!
Terribly slow.

At least a second per scan.
With range of > 1 meter, you don’t have to scan very 
often.

Two range-finders = twice as fast
Or alternatively, 360o coverage

Hack servo to read analog pot directly
Then slew the servo in one command at maximum 
speed instead of stepping.

Add gearbox to get 360o coverage with only one range 
finder.



Debugging map-building algorithms

You can’t debug what you can’t see.

Produce a visualization of the map!
Metrical map: easy to draw
Topological map: draw the graph (using graphviz/dot?)
Display the graph via BotClient

Write movement/sensor observations to a file to test 
mapping independently (and off-line)



Today’s Lab Activities



Old Slides



Bayesian Estimation

• Represent unknowns with 
probability densities
– Often, we assume the 

densities are Gaussian

– Or we represent arbitrary 
densities with particles

• We won’t cover this today
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Metrical Map example

Some constraints are 
better than others.
Incorporate constraint 
“weights”

Weights are closely 
related to covariance:

W = Σ-1

Covariance of poses is:
ATWA

W =

x = (ATWA)-1ATWb

weight of eqn 1
weight of eqn 2

In principle, equations might 
not represent independent 
constraints. But usually they 
are, so these terms are zero.

* Of course, “covariance” only makes good sense if we make a Gaussian assumption


