

Mapping and Navigation

Principles and Shortcuts

January 17th, 2006

Edwin Olson, eolson@mit.edu

Goals for this talk

■ Principles

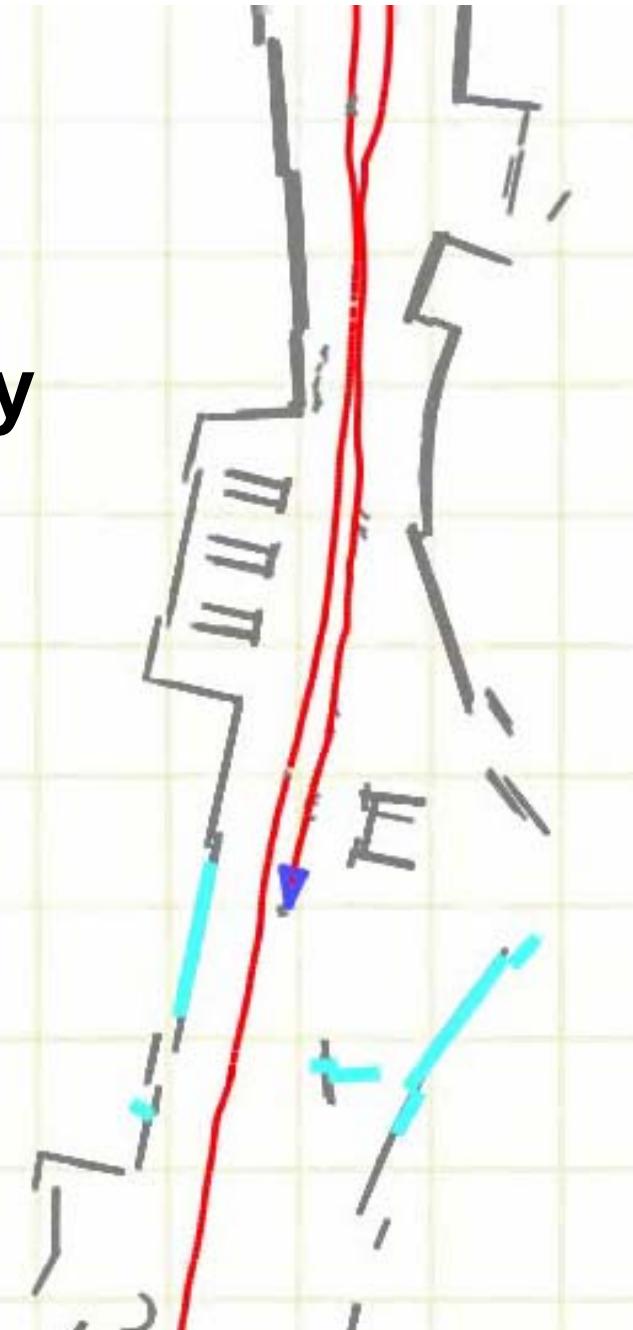
- Present fundamental concepts, algorithms
- Give an idea of how rigorous methods work

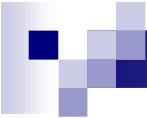
■ Shortcuts

- Present some simple but workable approaches

Attack Plan

- **Motivation and Terminology**
- Mapping Methods
 - Topological
 - Metrical
- Data Association
- Sensor Ideas and Tips





Why build a map?

- Time
 - Playing field is big, robot is slow
 - Driving around perimeter takes a minute!
 - Scoring takes time... often ~20 seconds to “line up” to a mouse hole.
- MASLab '06 scoring nonlinearity
 - Better to put balls in *different* goals, but which goals have been visited?

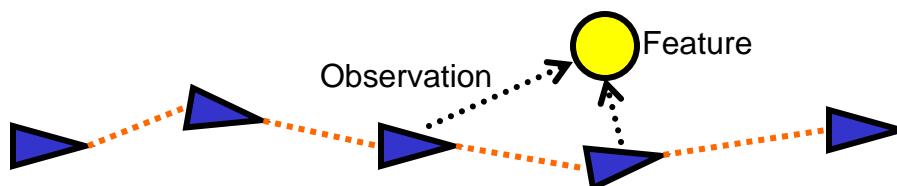
MASLab '06 Mapping Goals

1. Be able to efficiently move to specific locations that we have previously seen
 - I've got the bonus ball, now, where was that bonus gate?!
 - Where is the nearest gate?
- Be able to efficiently explore unseen areas
 - I just turned on. What do I do?
 - I don't know where the bonus ball/gate is
 - I've put too many balls in this gate; I need to find a new gate.

Note: Producing the map is not a goal in itself, but it might be a good way to win the MASLab Engineering Award!

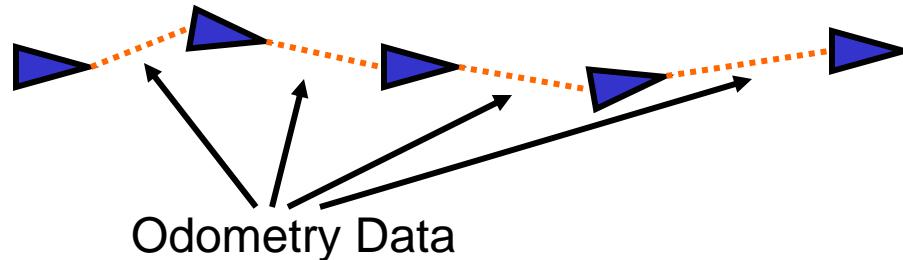
Definitions

- **Pose:** a place where the robot has been
 - ▶
- **Trajectory:** the linked set of poses
 - ▶
 - ▶
 - ▶
 - ▶
- **Feature:** Something in the world that we represent in our map that we can *observe*.

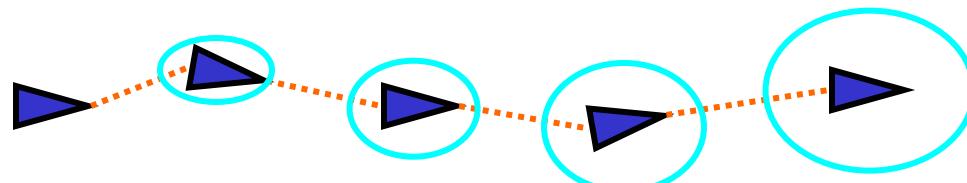


Odometry Trajectory

- Integrating odometry data yields a trajectory

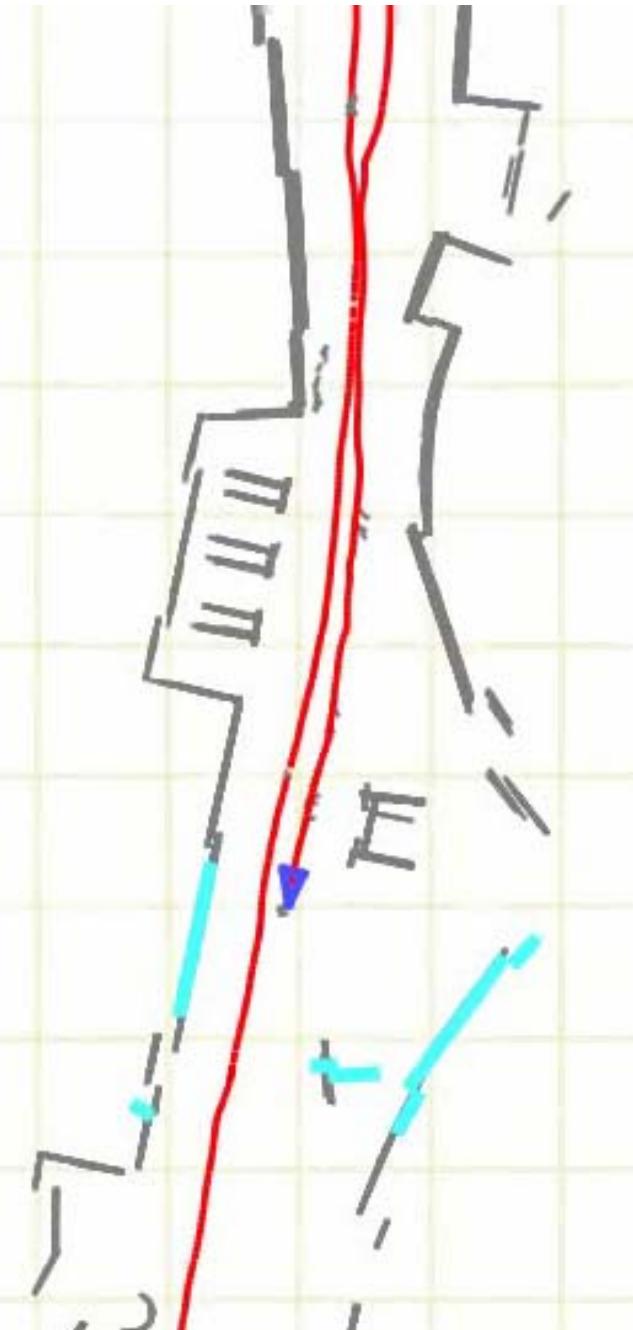


- Uncertainty of pose increases at every step



Attack Plan

- Motivation and Terminology
- **Mapping Methods**
 - Topological
 - Metrical
- Data Association
- Sensor Ideas and Tips



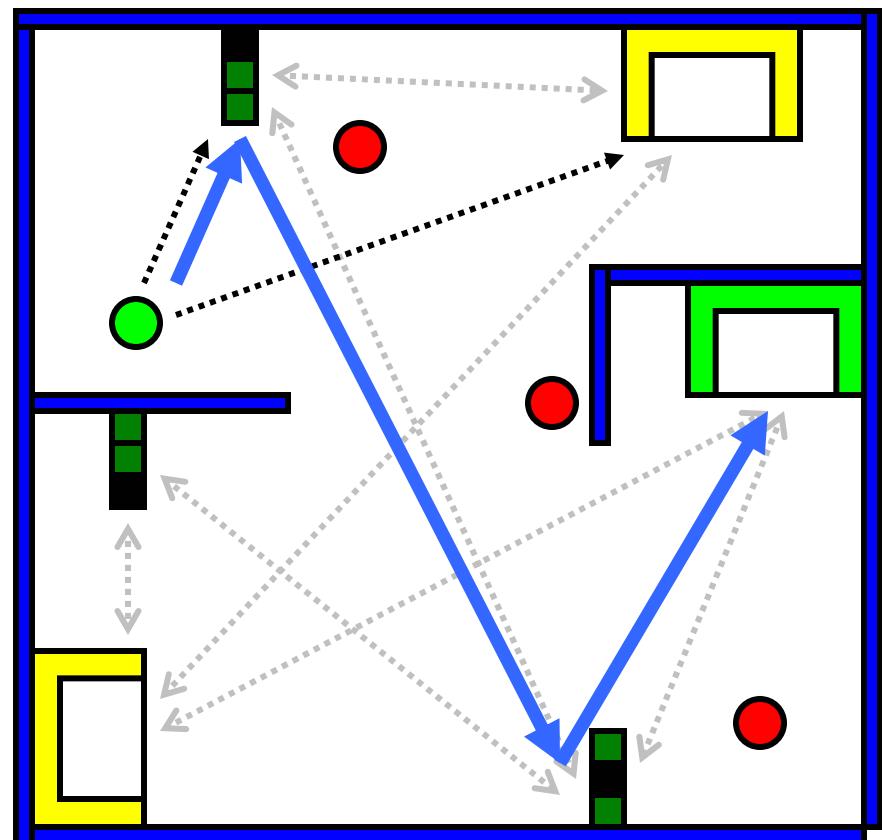
Visibility Graphs

- A type of “topological map”:
 - Which features can see each other?
 - Edges needn’t contain *any* distance/angle information.
- Easy to build/update
 - No math!
- Accumulated odometry error has no impact
- Provides a “highway system” allowing navigation from one feature to another



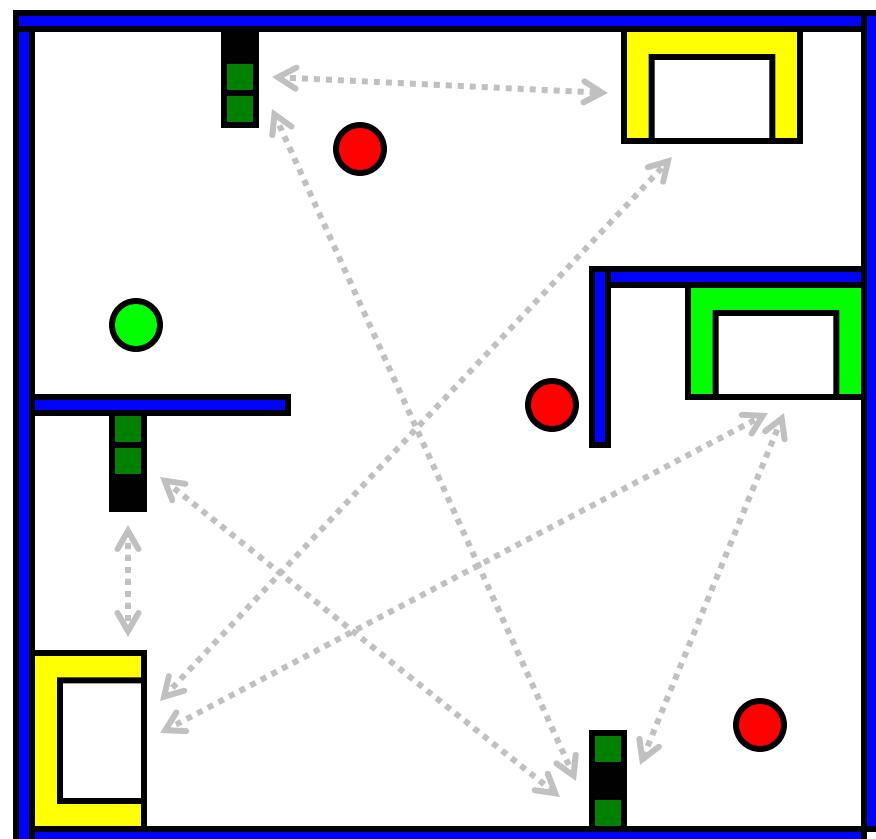
Visibility Graph: Example

- You've just grabbed the green ball
- Compute local visibility (do a 360)
 - You see a two features
- Do a tree search for the shortest path to the green goal
 - Shortest = fewest hops?
 - Edges can contain distance *estimates*
- Drive to the next visible target, search (do a 360) for next target on path...



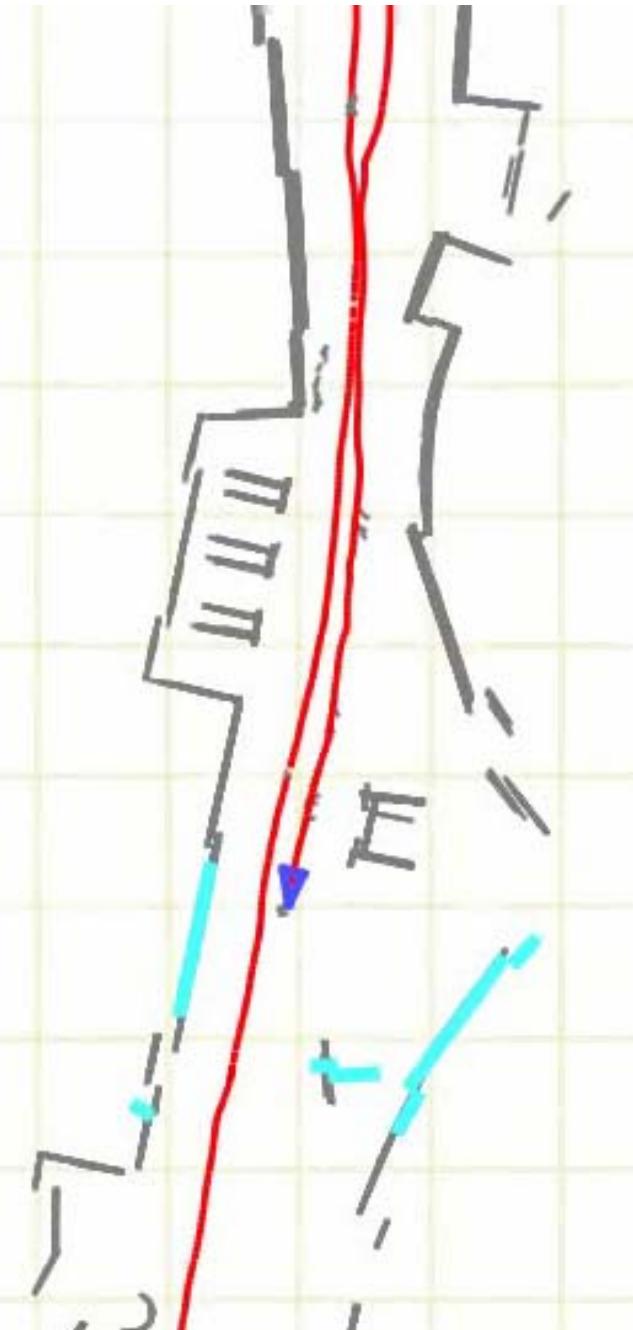
Visibility Graphs: Problems

- How to handle balls?
 - Use hints (“I last saw 3 red balls plus the power ball”)
 - Balls become features?
 - Are they identifiable by their visibility?
- Define “visible” (do I have to do 360s frequently?)
 - Do a 360 only once per feature, remembering the relative angles of other features.
- How do you know where unexplored areas are?
 - Random walk?
- Generated paths are suboptimal
- Data Association: is this goal the same as the one I saw over there?



Attack Plan

- Motivation and Terminology
- Mapping Methods
 - Topological
 - **Metrical**
- Data Association
- Sensor Ideas and Tips



Metrical Maps

- Try to find actual locations (or parameters) of features
 - Ball is at (x, y)
 - Wall is parameterized by (e.g.): $(x_1, y_1), (x_2, y_2)$
- Advantages
 - Know where unexplored territory is
 - Compute optimal paths
 - Location information makes data association easier
- Disadvantages
 - Accumulating odometry error makes this difficult
 - Math can be more difficult

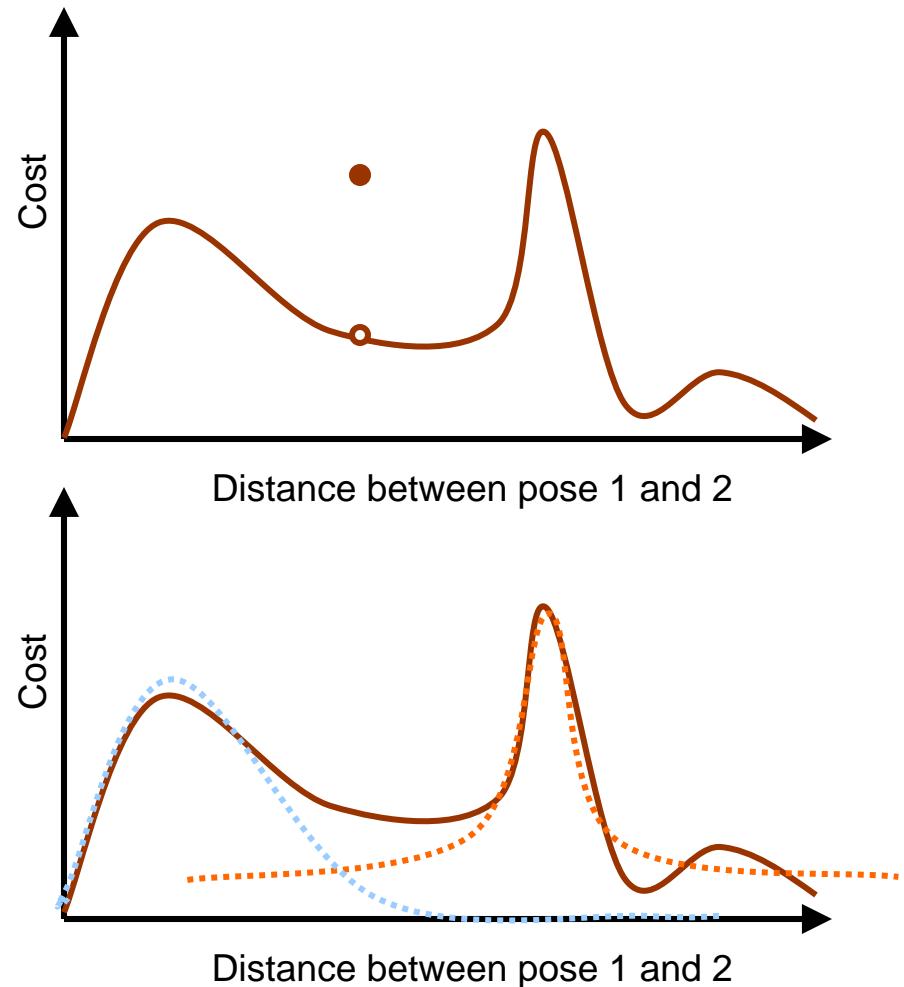
Metrical Maps

- Basic idea:

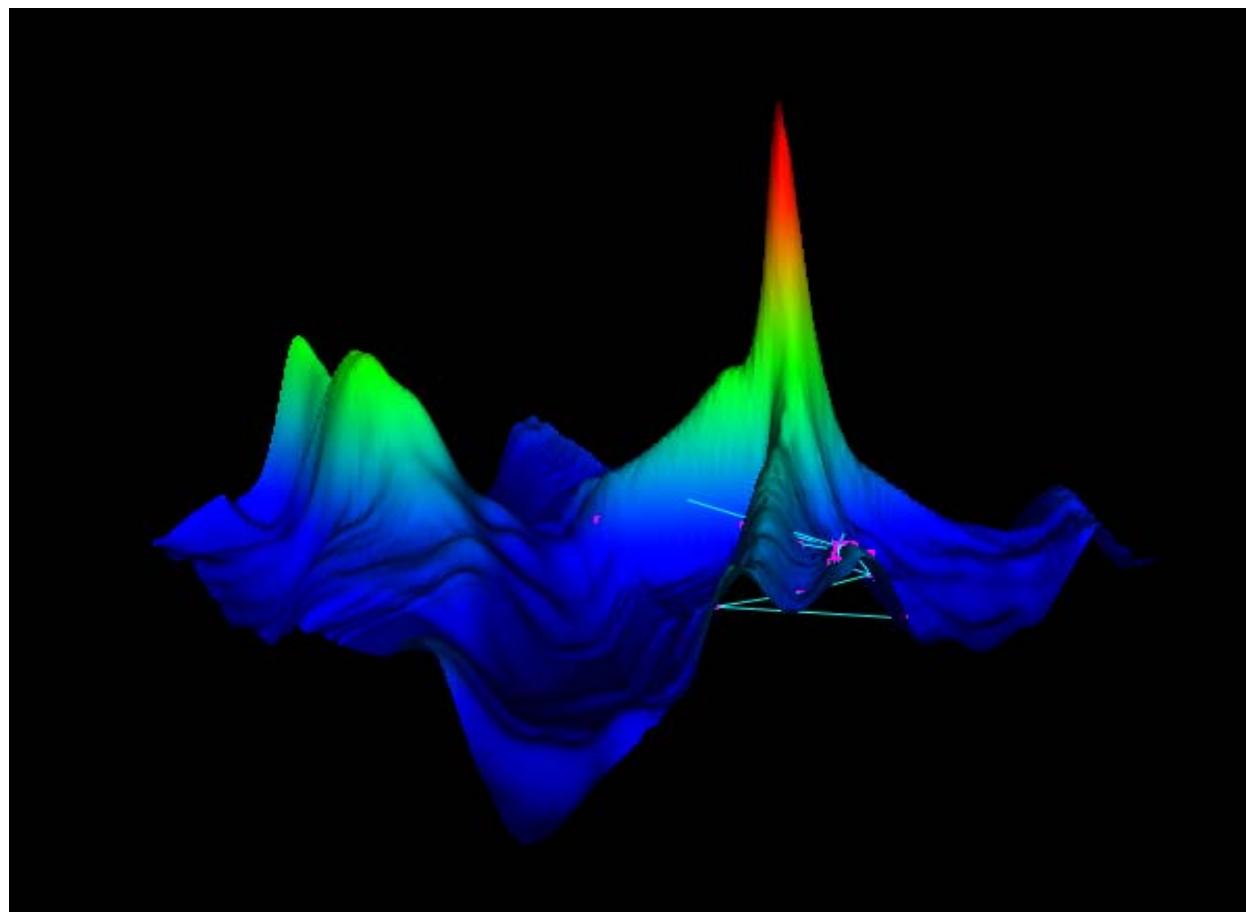
- Make all features and robot poses unknown variables
 - Make a big list of equations constraining the value of those variables
 - These come from observations, like “pose 14 is 3.2 meters from feature 37”
 - Equations compute a cost as a function of the poses
 - Solve for poses, minimizing the total cost

Metrical Map: Cost Function

- Cost function *could* be arbitrarily complicated
 - Optimization of these is intractable
- We can make a local approximation around *the current pose estimates*
 - Resembles the arbitrary cost function in that neighborhood
 - Typically Gaussian



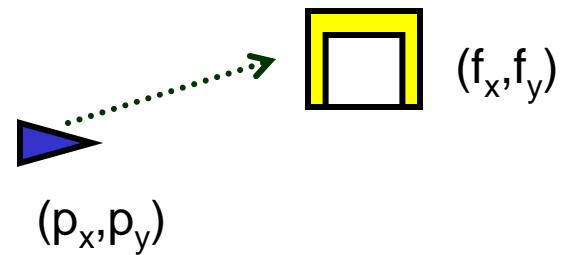
Metrical Map: Real World Cost Function



Cost function arising from aligning two LADAR scans

Metrical Map: Cost Example

- Suppose we observe the distance to a goal z_0
- Governing equation:
 - $z = [(p_x - f_x)^2 + (p_y - f_y)^2]^{1/2}$
 - z = prediction
 - z_0 = observation
- Assume (or approximate) cost:
 - Cost = $W(z - z_0)^2 = (z - z_0)^T W (z - z_0)$
 - W is a “weight” (related to covariance,
 - $W = \Sigma^{-1}$
- Linearize z :
 - $z = Jx + b$, $(z - z_0) = Jx + b - z_0 = Jx - r$
 - J is Jacobian of z with respect to all x
 - Cost = $(Jx - r)^T W (Jx - r)$
- Differentiate cost with respect to unknowns (p_x, p_y, f_x, f_y) , set to 0:
 - $J^T W J x = J^T W z_0$



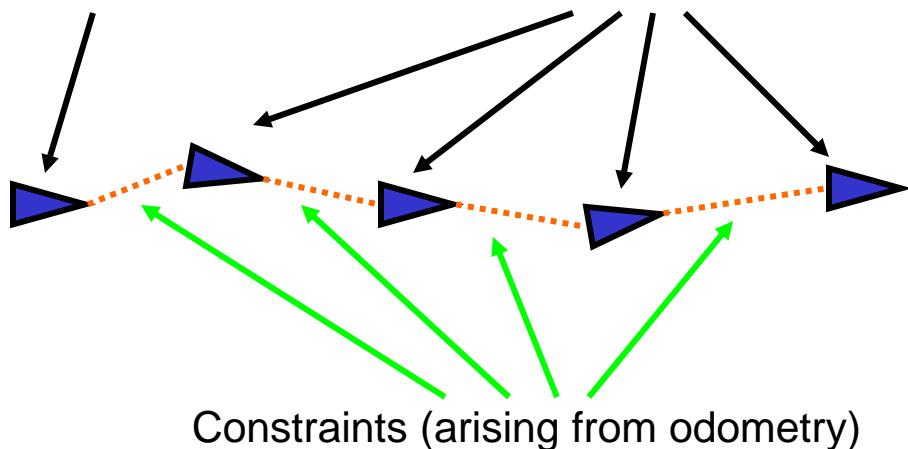
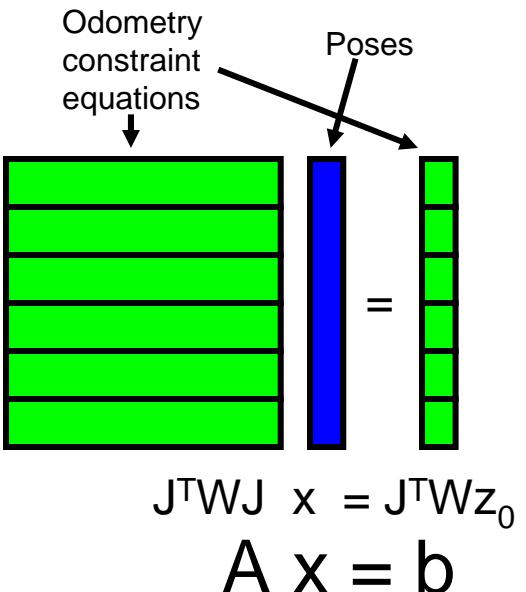
Jacobian Terms:

$$\begin{aligned} \frac{dz}{dp_x} &= z^{-1/2}(p_x - f_x) \\ \frac{dz}{dp_y} &= z^{-1/2}(p_y - f_y) \\ \frac{dz}{df_x} &= -z^{-1/2}(p_x - f_x) \\ \frac{dz}{df_y} &= -z^{-1/2}(p_y - f_y) \end{aligned}$$

Metrical Map example

By convention,
this pose is (0,0,0)

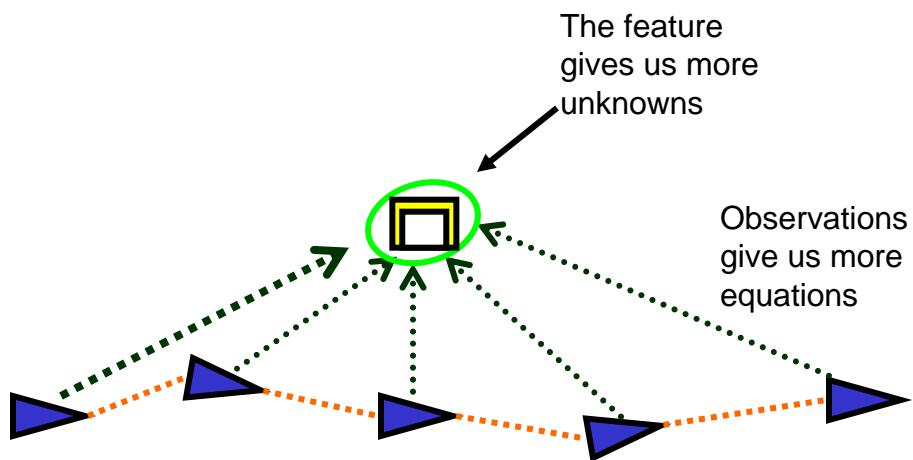
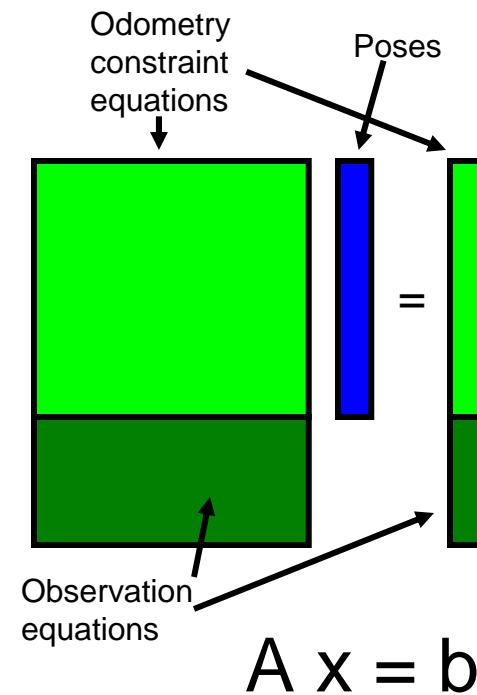
Unknown variables
(x,y,theta) per pose



number unknowns==number of equations, solution is critically determined.

$$x = A^{-1}b$$

Metrical Map example



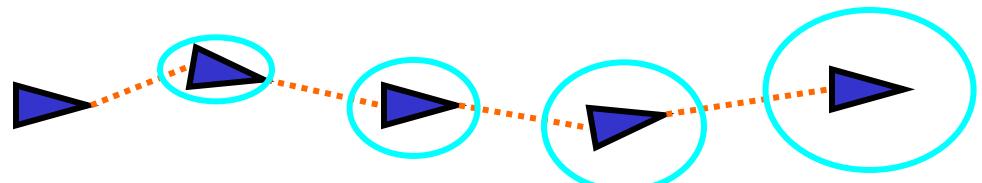
number unknowns < number of equations, solution is *over determined*.
Least-squares solution is:

$$x = (A^T A)^{-1} A^T b$$

More equations = better pose estimate

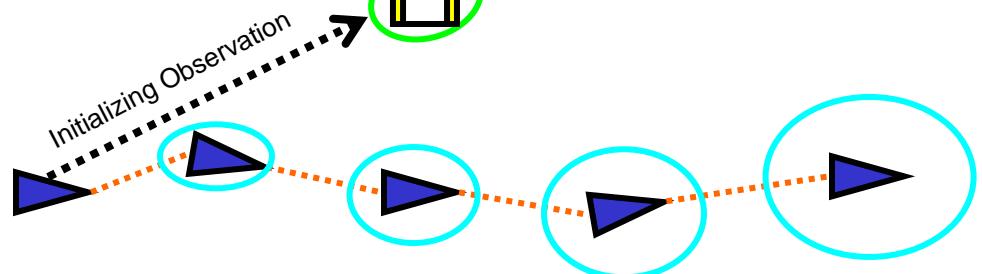
Metrical Map example

1. Original Trajectory with odometry constraints

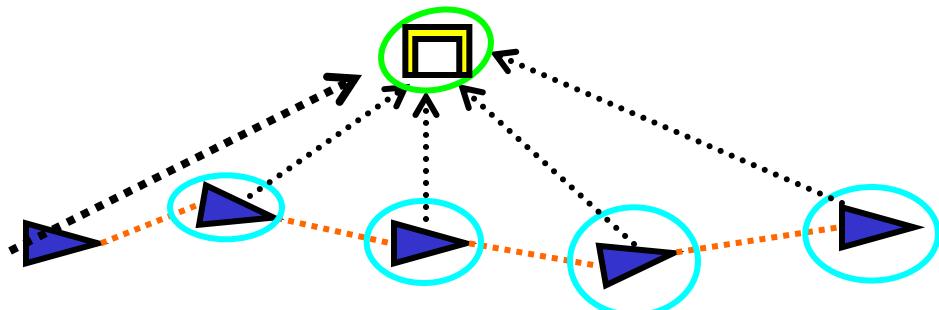


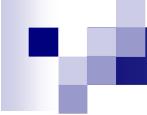
2. Observe external feature

Initial feature uncertainty =
pose uncertainty +
observation uncertainty



3. Reobserving feature helps subsequent pose estimates





Gotcha!

- The least-squares solution to the mapping problem:
$$x = (A^T A)^{-1} A^T b$$
- Must invert a matrix of size $3N \times 3N$ (N = number of poses.) Inverting this matrix costs $O(N^3)$!
- We can choose to “forget” robot trajectory, and use only most recent pose.
 - Reduces computational complexity
 - Lose valuable information?

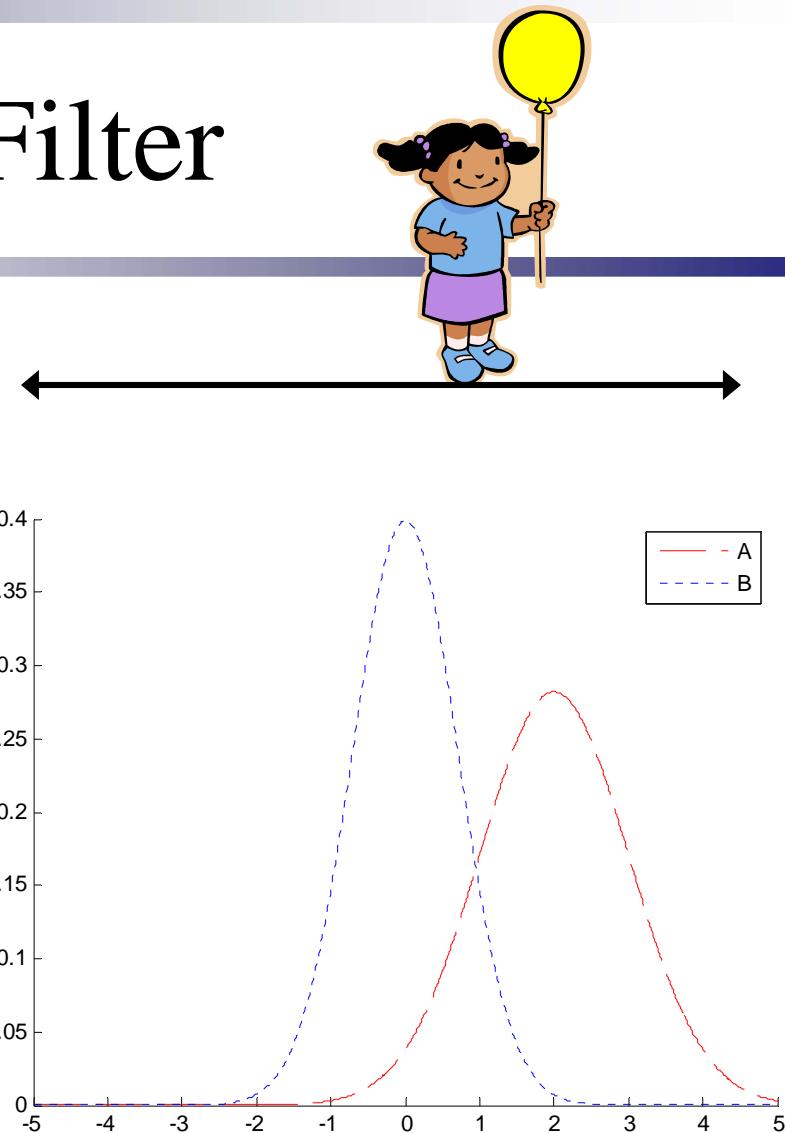
* We'd never actually invert it; that's numerically unstable. Instead, we'd use a Cholesky Decomposition or something similar. But it has the same computational complexity.

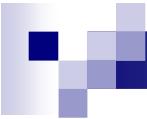
Extended Kalman Filter

- If we assume all error is Gaussian, Extended Kalman Filter reduces time complexity to $O(N^2)$.
- EKF allows us to add one observation at a time, rather than resolving the entire system.

Extended Kalman Filter

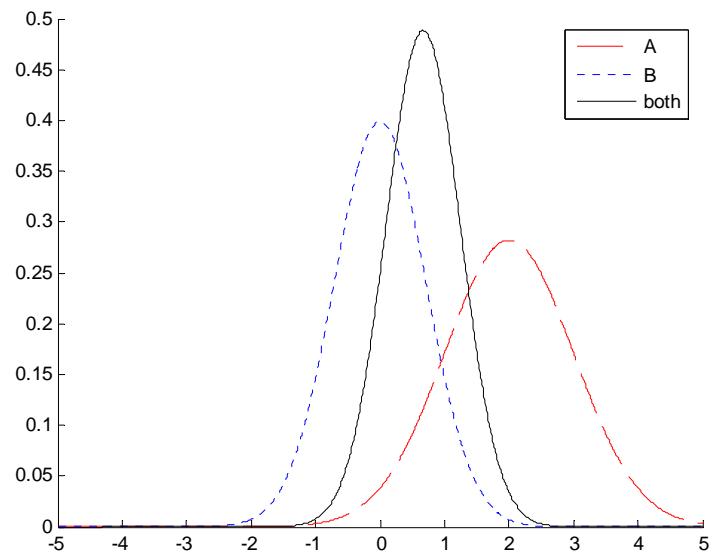
- Example: Estimating where Jill is standing:
 - Alice says: $x=2$
 - We think $\sigma^2 = 2$; she wears thick glasses
 - Bob says: $x=0$
 - We think $\sigma^2 = 1$; he's pretty reliable
- How do we combine these measurements?





Simple Kalman Filter

- Answer: algebra (and a little calculus)!
 - Compute mean by finding maxima of the log probability of the product $P_A P_B$.
 - Variance is messy; consider case when $P_A = P_B = N(0, 1)$
- *Try deriving these equations at home!*



$$\frac{1}{\sigma^2} = \frac{1}{{\sigma_A}^2} + \frac{1}{{\sigma_B}^2}$$

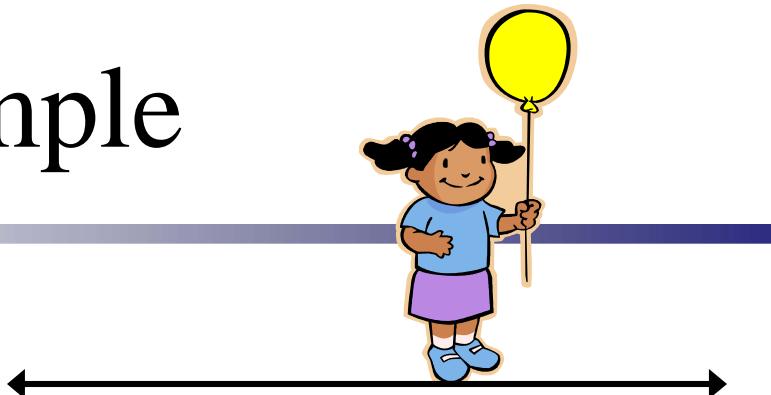
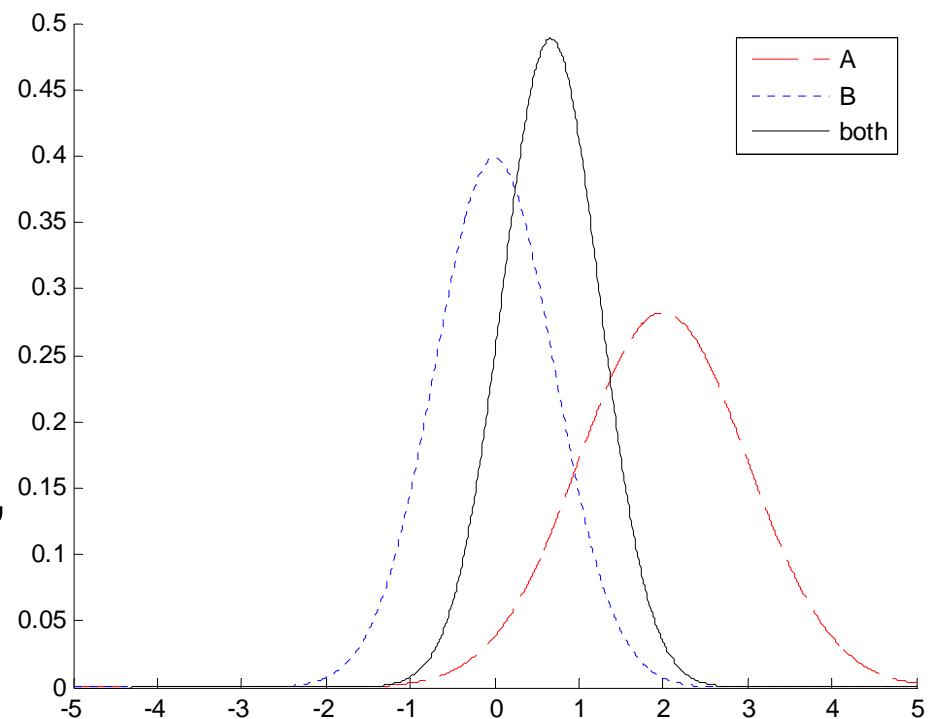
$$\mu = \frac{\mu_A {\sigma_B}^2 + \mu_B {\sigma_A}^2}{{\sigma_A}^2 + {\sigma_B}^2}$$

Kalman Filter Example

- We now think Jill is at:

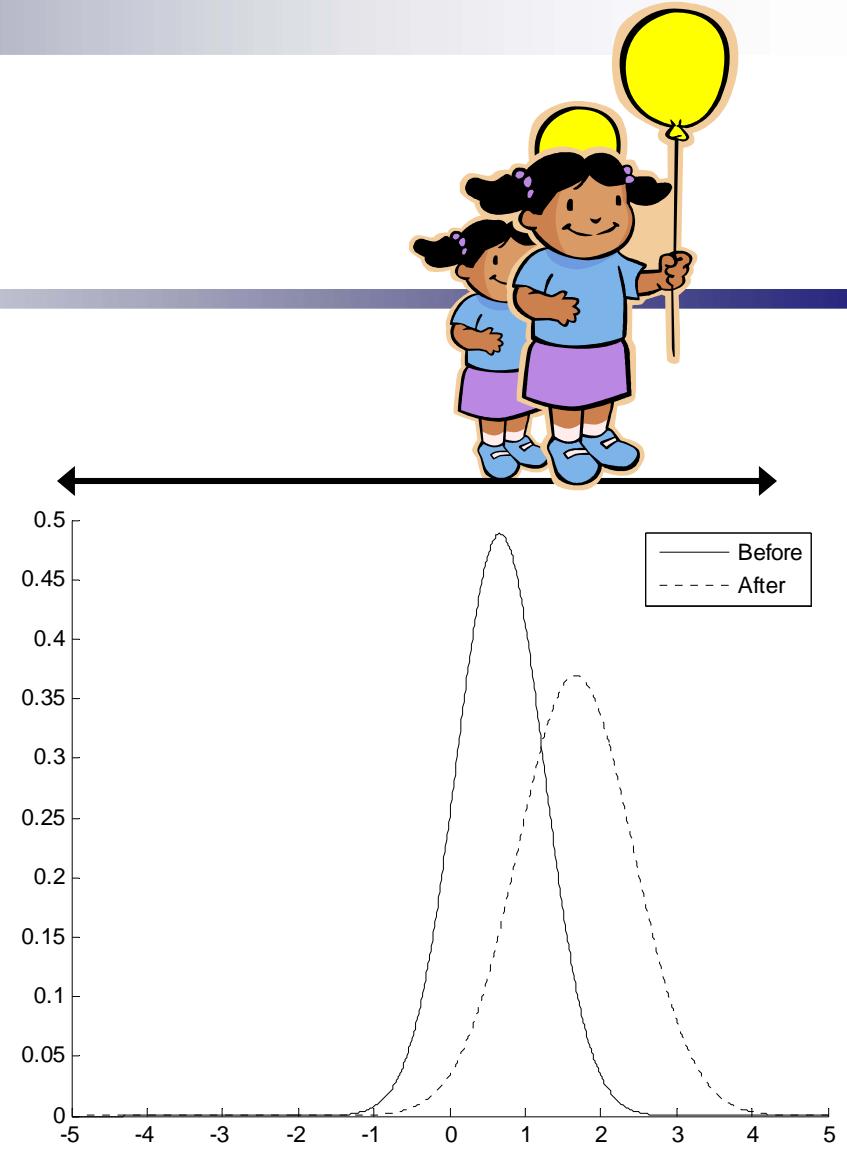
- $x = 0.66$
 - $\sigma^2 = 0.66$

- Note: Observations *always* reduce uncertainty
 - Even in the face of conflicting information, EKF never becomes less certain.



Kalman Filter

- Now Jill steps forward one step
- We think one of Jill's steps is about 1 meter, $\sigma^2 = 0.5$
- We estimate her position:
 - $X = X_{\text{before}} + X_{\text{change}}$
 - $\sigma^2 = \sigma_{\text{before}}^2 + \sigma_{\text{change}}^2$
- Uncertainty *increases*



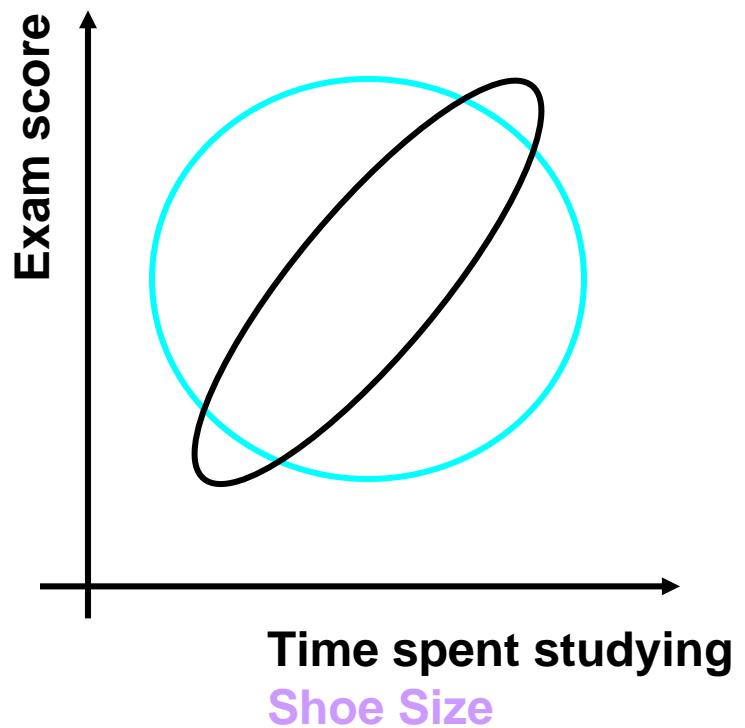
Kalman Filter: Properties

- You incorporate sensor observations one at a time.
- Each successive observation is the same amount of work (in terms of CPU).
- Yet, *the final estimate is the **global** optimal solution.*
 - The same solution we would have gotten using least-squares.

The Kalman Filter is an *optimal*,
recursive estimator.

Correlation/Covariance

- In multidimensional Gaussian problems, equal-probability contours are ellipsoids.
- Shoe size doesn't affect grades:
 $P(\text{grade}, \text{shoesize}) = P(\text{grade})P(\text{shoesize})$
- Studying helps grades:
 $P(\text{grade}, \text{studytime}) \neq P(\text{grade})P(\text{studytime})$
 - We must consider $P(x,y)$ jointly, respecting the correlation!
 - If I tell you the grade, you learn something about study time.

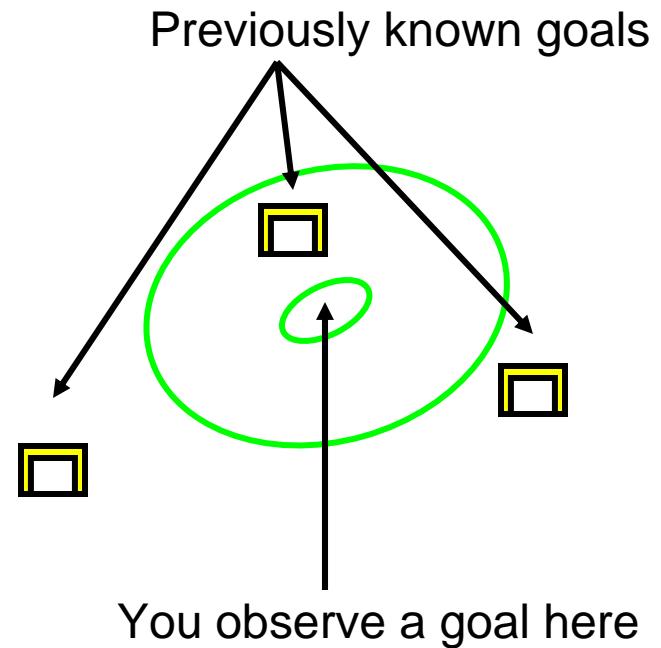


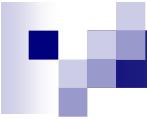
State Correlation/Covariance

- We observe features relative to the robot's current position
 - Therefore, feature location estimates *covary* (or correlate) with robot pose.
- Why do we care?
 - We get the wrong answer if we don't consider correlations
 - Covariance is useful!

Why is covariance useful?

- Loop Closing (and Data Association)
- Suppose you observe a goal (with some uncertainty)
 - Which previously-known goal is it?
 - Or is it a new one?
- Covariance information helps you decide





System Equations (EKF)

- Consider range/bearing measurements, differentially driven robot
- Let $x_k = f(x_{k-1}, u_{k-1}, w_{k-1})$ u =control inputs, w =noise
- Let $z_k = h(x_k, v_k)$ v =noise

$$f = \begin{pmatrix} x' = x + (u_d + w_d) \cos(\theta + w_\theta) \\ y' = y + (u_d + w_d) \sin(\theta + w_\theta) \\ \theta' = \theta + u_\theta + w_\theta \end{pmatrix}$$

$$h = \begin{pmatrix} z_d = [(x_f - x_r)^2 + (y_f - y_r)^2]^{1/2} + v_d \\ z_\theta = \arctan 2(y_f - y_r, x_f - x_r) - x_\theta + v_\theta \end{pmatrix}$$

EKF Update Equations

- Time update:
 - $x' = f(x, u, 0)$
 - $P = APA^T + WQW^T$
- Observation
 - $K = P H^T (H P H^T + V R V^T)^{-1}$
 - $x' = x + K(z - h(x, 0))$
 - $P = (I - K H) P$
- P is your covariance matrix
- They look scary, but once you compute your Jacobians, it just works!
 - $A = df/dx \quad W = df/dw \quad H = dh/dx \quad V = dh/dv$
 - Staff can help... (It's easy except for the atan!)

$$f = \begin{pmatrix} x' = x + (u_d + w_d) \cos(\theta + w_\theta) \\ y' = y + (u_d + w_d) \sin(\theta + w_\theta) \\ \theta' = \theta + u_\theta + w_\theta \end{pmatrix}$$

$$h = \begin{pmatrix} z_d = [(x_f - x_r)^2 + (y_f - y_r)^2]^{1/2} + v_d \\ z_\theta = \arctan 2(y_f - y_r, x_f - x_r) - x_\theta + v_\theta \end{pmatrix}$$

EKF Jacobians

$$f = \begin{pmatrix} x' = x + (u_d + w_d) \cos(\theta + w_\theta) \\ y' = y + (u_d + w_d) \sin(\theta + w_\theta) \\ \theta' = \theta + u_\theta + w_\theta \\ x_1' = x_1 \\ y_1' = y_1 \end{pmatrix}$$

$$A = \begin{vmatrix} 1 & 0 & -u_d \sin(\theta) & 0 & 0 \\ 0 & 1 & u_d \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$

$$W = \begin{vmatrix} \cos(\theta) & -u_d \sin(\theta) \\ \sin(\theta) & u_d \cos(\theta) \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{vmatrix}$$

$$d = [(x_f - x_r)^2 + (y_f - y_r)^2]^{1/2}$$

$$d_x = x_f - x_r$$

$$d_y = y_f - y_r$$

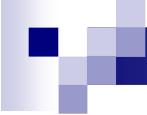
$$Q = \begin{vmatrix} \sigma_{w_d}^2 & 0 \\ 0 & \sigma_{w_\theta}^2 \end{vmatrix}$$

EKF Jacobians

$$h = \begin{pmatrix} z_d = [(x_f - x_r)^2 + (y_f - y_r)^2]^{1/2} + v_d \\ z_\theta = \arctan 2(y_f - y_r, x_f - x_r) - x_\theta + v_\theta \end{pmatrix}$$

$$\lambda = 1 / (1 + (d_y / d_x))^2$$

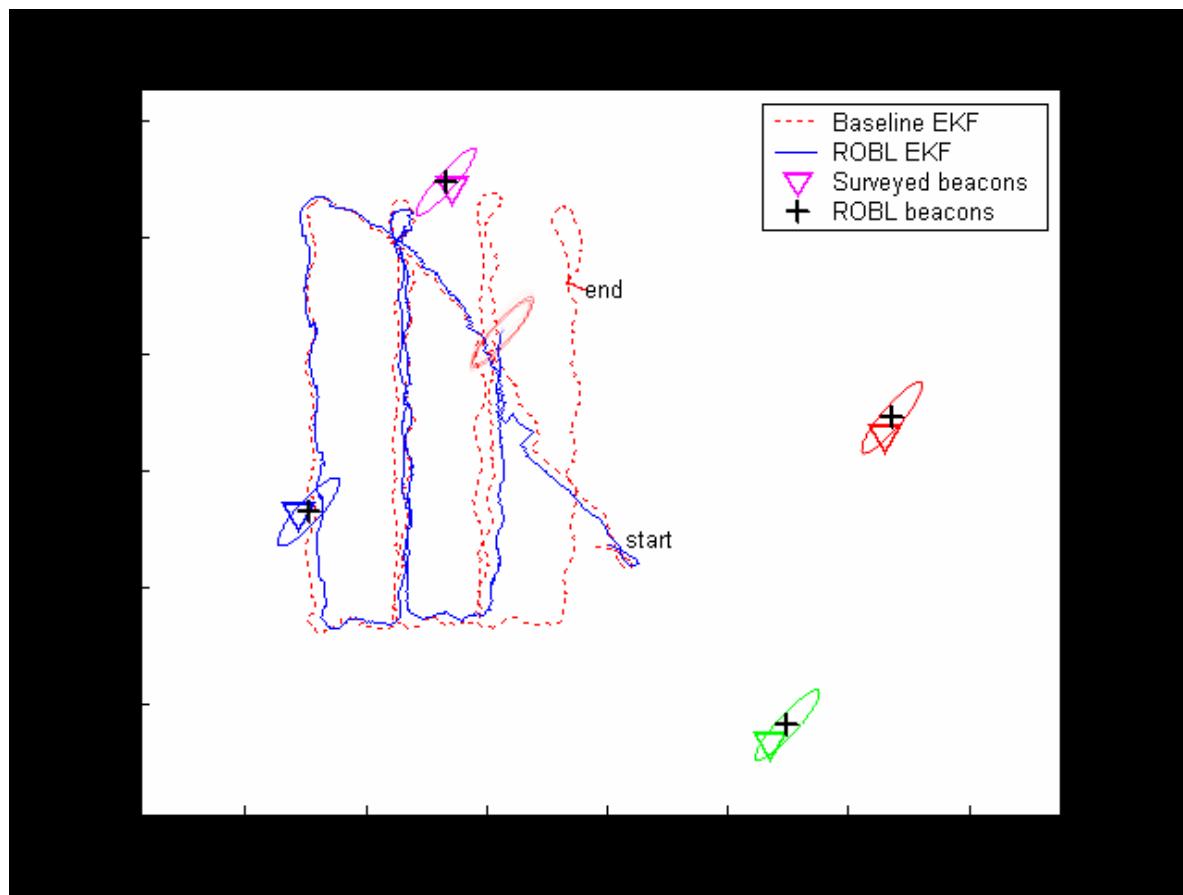
$$H = \begin{vmatrix} -d_x/d & -d_y/d & 0 & d_x/d & d_y/d \\ \lambda d_y/d_x^2 & -\lambda/d_x & -1 & -\lambda d_y/d_x^2 & \lambda/d_x \end{vmatrix} \quad VRV^T = \begin{vmatrix} \sigma_{v_d}^2 & 0 \\ 0 & \sigma_{v_\theta}^2 \end{vmatrix}$$



Kalman Filter: Properties

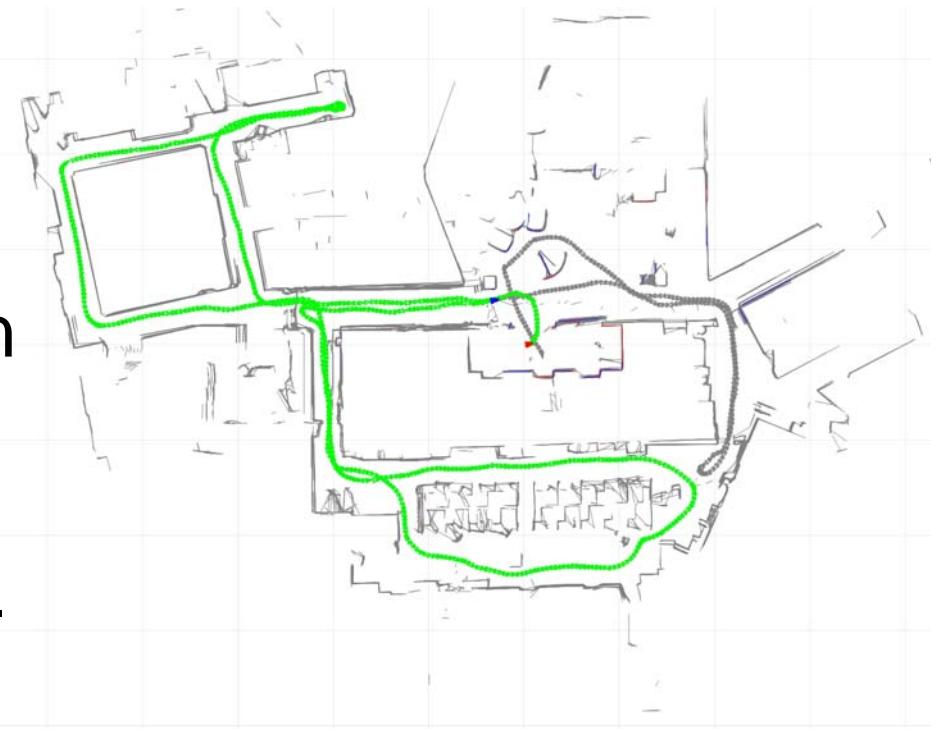
- In the limit, features become highly correlated
 - Because observing one feature gives information about other features
- Kalman filter computes the *posterior pose*, but **not** the posterior *trajectory*.
 - If you want to know the path that the robot traveled, you have to make an extra “backwards” pass.
 - Or you can maintain the entire robot trajectory as state.

Kalman Filter: a movie



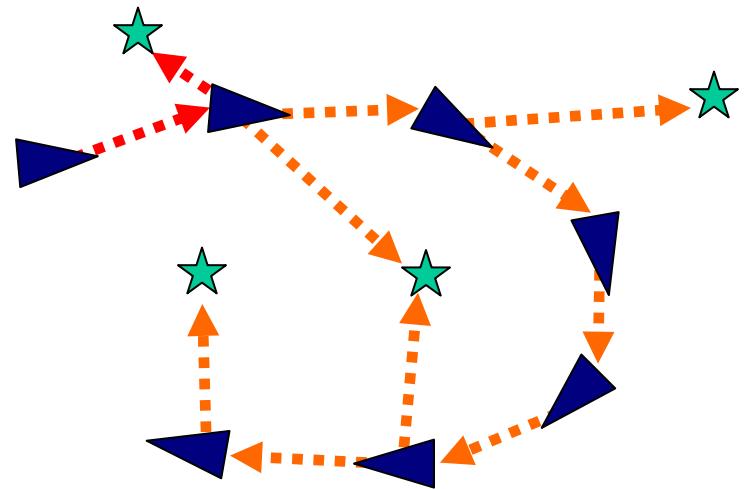
Kalman Filter: Shortcomings

- With N features, update time is still large: $O(N^2)$!
- For Maslab, N is small. Who cares?
- In the “real world”, N can be $>>10^6$.
- Linearization Error
- Current research: lower-cost mapping methods



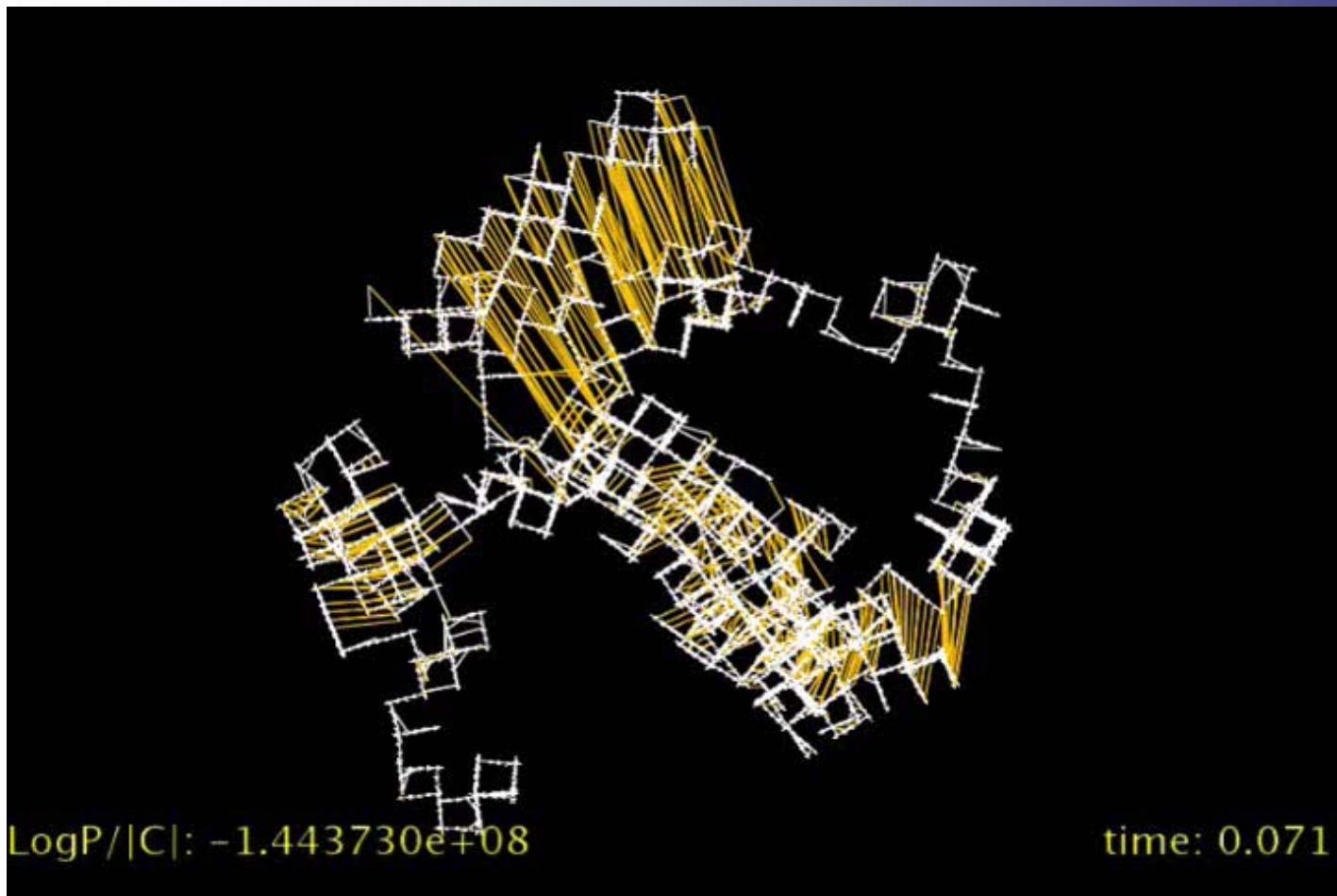
Nonlinear optimization: Relaxation

- Consider each pose/feature:
 - Fix all others features/poses
 - Solve for the position of the unknown pose
- Repeat many times
 - Will converge to minimum
 - Works well on small maps



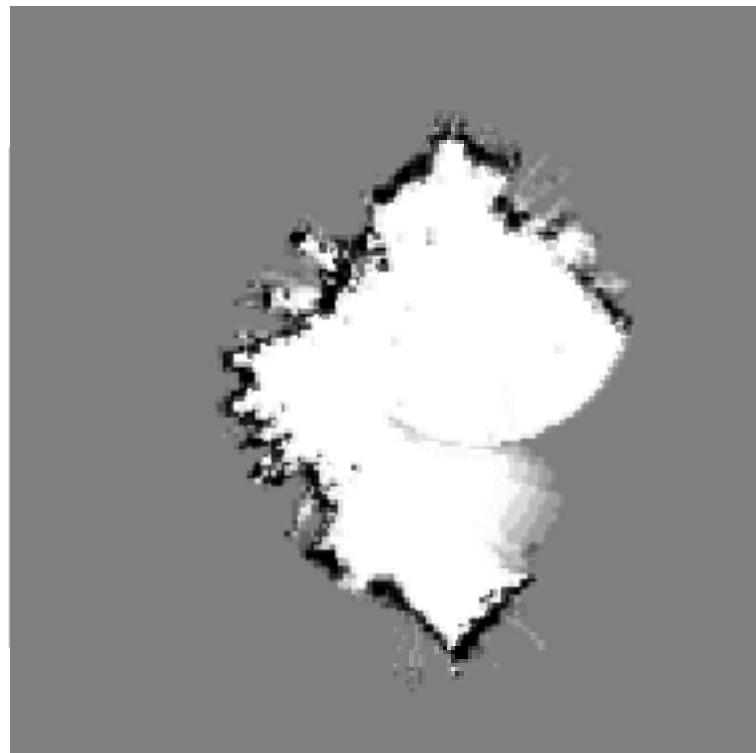
Pose/Feature Graph

Nonlinear Map Optimization



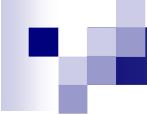
Occupancy Grids

- Divide the world into a grid
 - Each grid records whether there's something there or not
 - Usually as a probability
 - Use current robot position estimate to fill in squares according to sensor observations



Occupancy Grids

- Easy to generate, hard to maintain accuracy
 - Basically impossible to “undo” mistakes
- Convenient for high-quality path planning
- Relatively easy to tell how well you’re doing
 - Do your sensor observations agree with your map?

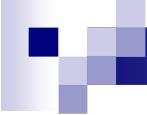


FastSLAM (Gridmap variant)

- Suppose you maintain a whole bunch of occupancy maps
 - Each assuming a slightly different robot trajectory
- When a map becomes inconsistent, throw it away.
- If you have enough occupancy maps, you'll get a good map at the end.

Gridmap, a la MASLab

- Number of maps you need increases *exponentially* with distance travelled. (Rate constant related to odometry error)
- Build grid maps until odometry error becomes too large, then start a new map.
- Try to find old maps which contain data about your current position
 - Relocalization is usually hard, but you have unambiguous features to help.



Occupancy Grid: Path planning

- Use A* search
 - Finds optimal path (subject to grid resolution)
 - Large search space, but optimum answer is easy to find

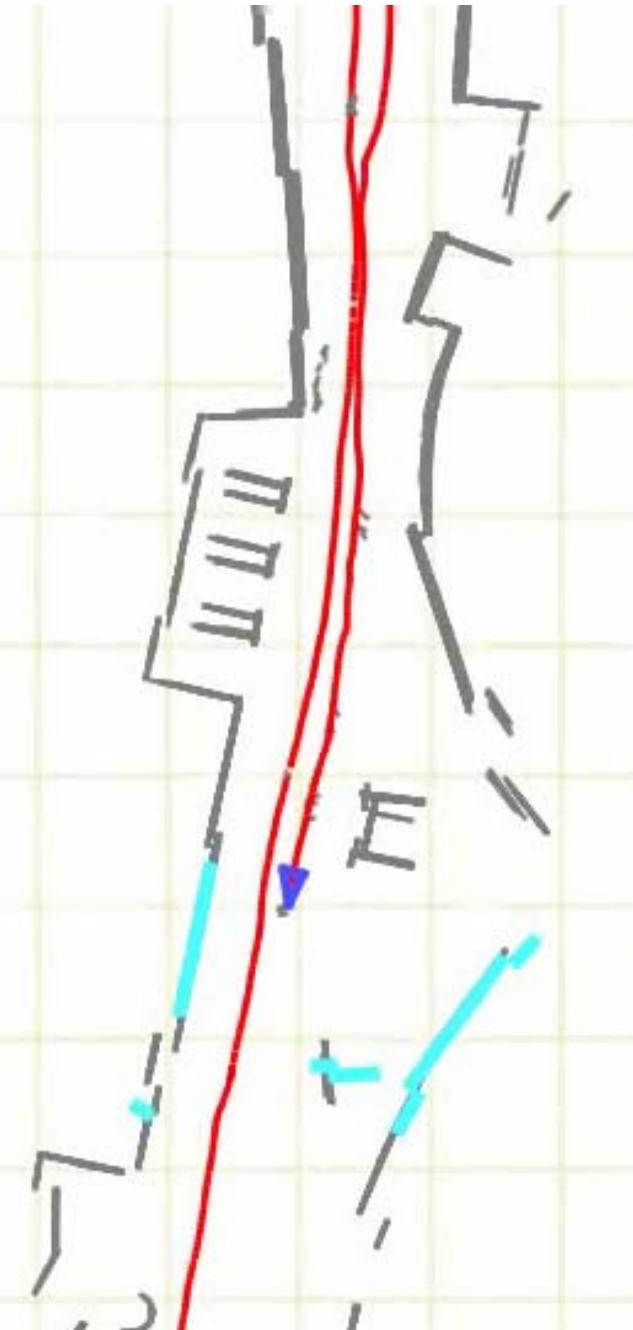
- **search(start, end)**
 - Initialize **paths** = set of all paths leading out of cell “start”
 - Loop:
 - let **p** be the best path in **paths**
 - Metric = distance of the path + straight-line distance from last cell in path to goal
 - if **p** reaches **end**, return **p**
 - Extend path **p** in all possible directions, adding those paths to **paths**

Occupancy Grid: Path planning

- How do we do path planning with EKFs?
- Easiest way is to rasterize an occupancy grid on demand
 - Either all walls/obstacles must be features themselves, or
 - Remember a local occupancy grid of where walls were at each pose.

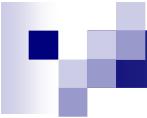
Attack Plan

- Motivation and Terminology
- Mapping Methods
 - Topological
 - Metrical
- **Data Association**
- Sensor Ideas and Tips



Data Association

- The problem of recognizing that an object you see now is the same one you saw before
 - Hard for simple features (points, lines)
 - Easy for “high-fidelity” features (barcodes, bunker hill monuments)
- With perfect data association, most mapping problems become “easy”



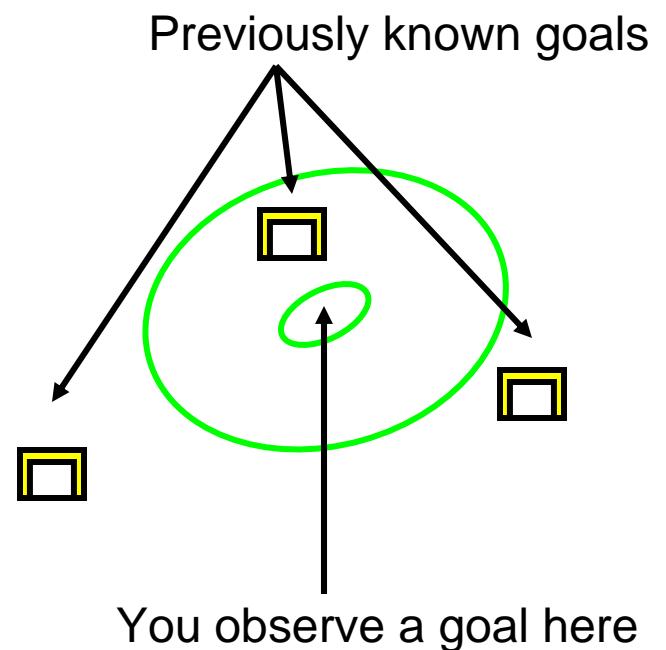
Data Association

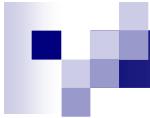
- If we can't tell when we're reobserving a feature, we don't learn anything!
 - We need to observe the same feature *twice* to generate a constraint

Data Association: Nearest Neighbor

■ Nearest Neighbor

- Simplest data association “algorithm”
- Only tricky part is determining when you’re seeing a brand-new feature.



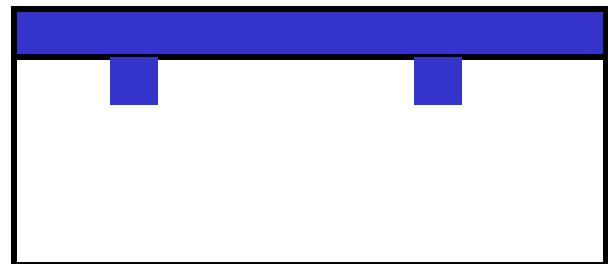


Data Association: Bar Codes

- Trivial!
- The Bar Codes have unique IDs;
read the ID.

Data Association: Tick Marks

- The blue tick marks can be used as features too.
 - Probably hard to tell that a particular tick mark is the one you saw 4 minutes ago...
 - You only need to reobserve the same feature *twice* to benefit!
 - If you can track them over short intervals, you can use them to improve your dead-reckoning.
 - Use nearest-neighbor. Your frame-to-frame uncertainty should only be a few pixels.

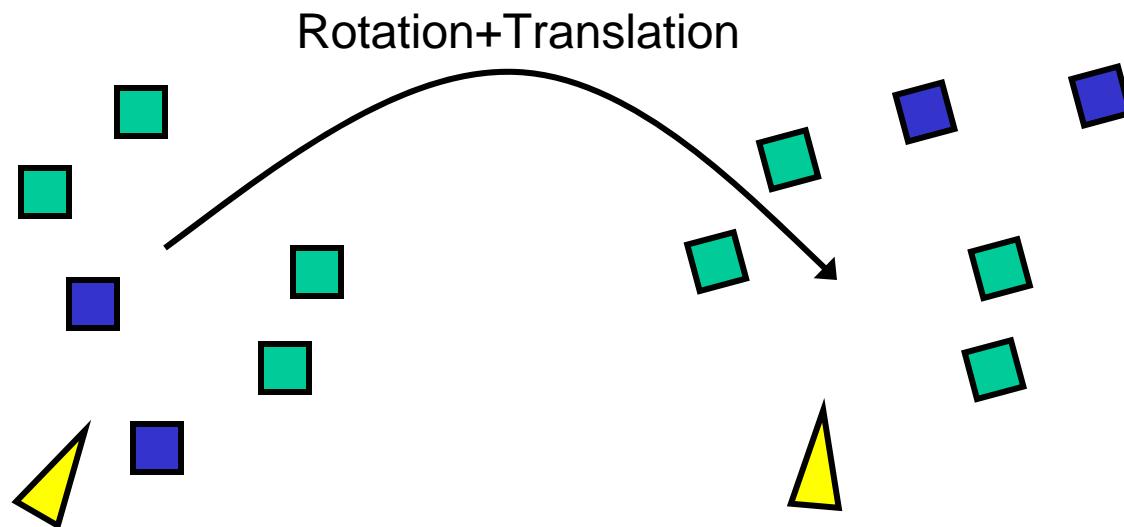


Data Association: Tick Marks

- Ideal situation:
 - Lots of tick marks, randomly arranged
 - Good position estimates on all tick marks
- Then we search for a *rigid-body-transformation* that best aligns the points.

Data Association: Tick Marks

- Find a rotation that aligns the most tick marks...
 - Gives you data association for matched ticks
 - Gives you rigid body transform for the robot!

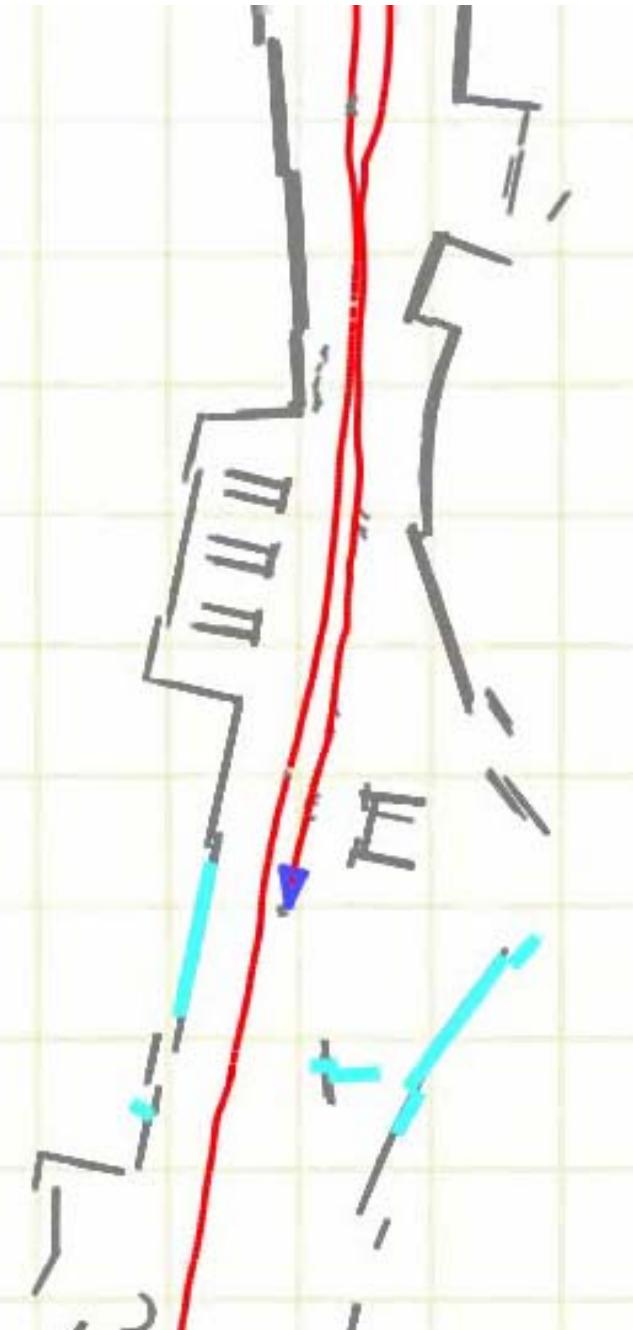


Finding a rigid-body transformation

- Method 1 (silly)
 - Search over all possible rigid-body transformations until you find one that works
 - Compare transformations using some “goodness” metric.
- Method 2 (smarter)
 - Pick two tick marks in both scene A and scene B
 - Compute the implied rigid body transformation, compute some “goodness” metric.
 - Repeat.
 - If there are N tick marks, M of which are in both scenes, how many trials do you need? Minimum: $(M/N)^2$
 - This method is called “RANSAC”, RANdom SAmple Consensus

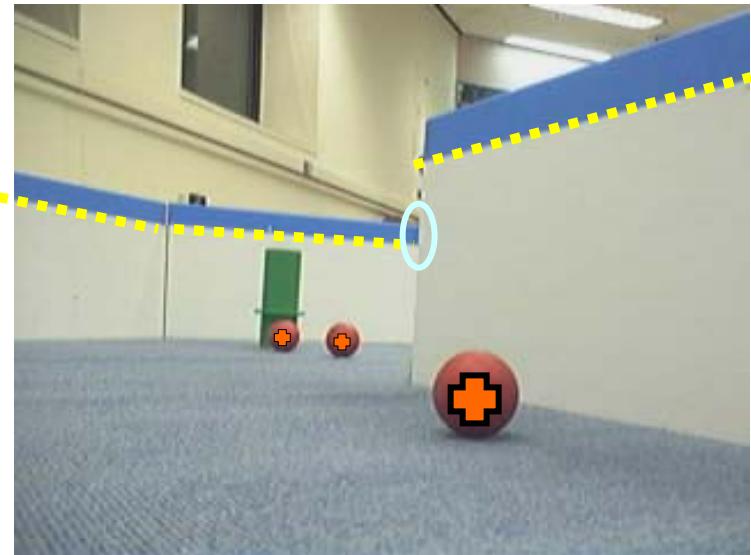
Attack Plan

- Motivation and Terminology
- Mapping Methods
 - Topological
 - Metrical
- Data Association
- **Sensor Ideas and Tips**



Use the Camera, Luke

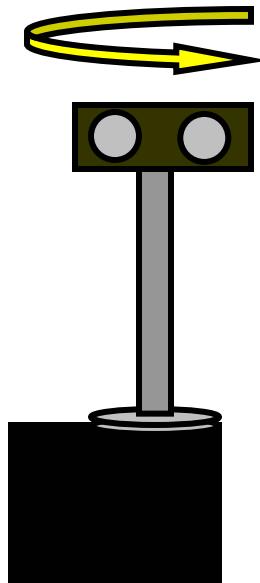
- Other useful features can be extracted!
 - Lines from white/blue boundaries
 - Balls (great point features! Just delete them after you've moved them.)
 - “Accidental features”
- You can estimate bearing *and* distance.
 - Camera mounting angle has effect on distance precision
- Triangulation
 - Make bearing measurement
 - Move robot a bit (keeping odom error small)
 - Make another bearing measurement



More features = better navigation performance

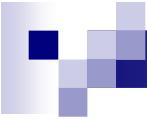
Range finders

- Range finders are most direct way of locating walls/obstacles.
- Build a “LADAR” by putting a range finder on a servo
 - High quality data! Great for mapping!
 - Terribly slow.
 - At least a second per scan.
 - With range of > 1 meter, you don't have to scan very often.
 - Two range-finders = twice as fast
 - Or alternatively, 360° coverage
 - Hack servo to read analog pot directly
 - Then slew the servo in one command at maximum speed instead of stepping.
 - Add gearbox to get 360° coverage with only one range finder.

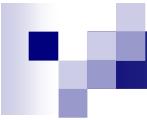


Debugging map-building algorithms

- You can't debug what you can't see.
- Produce a visualization of the map!
 - Metrical map: easy to draw
 - Topological map: draw the graph (using graphviz/dot?)
 - Display the graph via BotClient
- Write movement/sensor observations to a file to test mapping independently (and off-line)



Today's Lab Activities



Old Slides

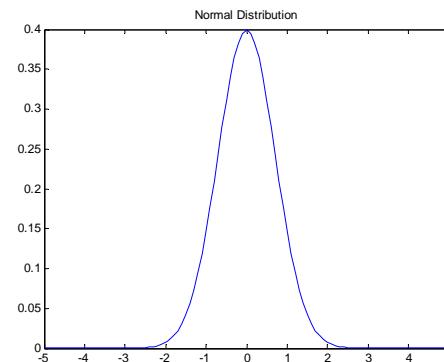
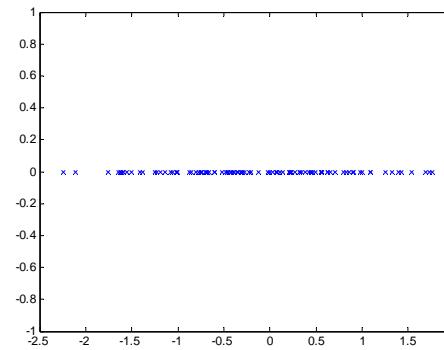
Bayesian Estimation

- Represent unknowns with probability densities

- Often, we assume the densities are Gaussian

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/\sigma^2}$$

- Or we represent arbitrary densities with particles
 - We won't cover this today



Metrical Map example

- Some constraints are better than others.
- Incorporate constraint “weights”

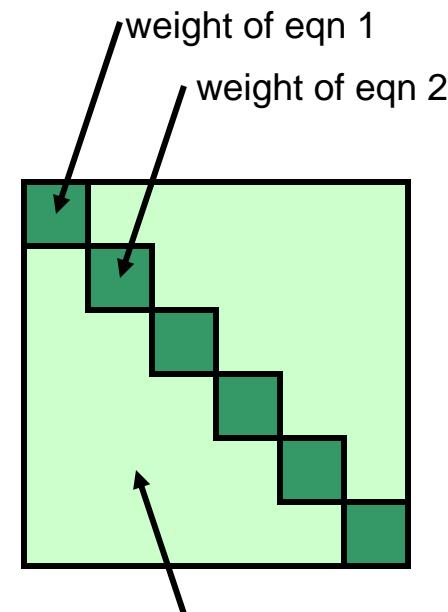
- Weights are closely related to covariance:

$$W = \Sigma^{-1}$$

- Covariance of poses is:

$$A^T W A$$

$$W =$$



In principle, equations might not represent independent constraints. But usually they are, so these terms are zero.

$$x = (A^T W A)^{-1} A^T W b$$

* Of course, “covariance” only makes good sense if we make a Gaussian assumption