
Control for Mobile Robots

Christopher Batten
Maslab IAP Robotics Course

January 11, 2006

Building a control system for
a mobile robot can be very challenging

Mechanical Electrical Software

Mobile robots are very complex and involve
many interacting components

Your control system must integrate these components
so that your robot can achieve the desired goal

Building a control system for
a mobile robot can be very challenging

• How will you debug and test your robot?
• What are the performance requirements?
• Can you easily improve aspects of your robot?
• Can you easily integrate new functionality?

Just as you must carefully design your
robot chassis you must carefully design

your robot control system

Basic primitive
of a control system is a behavior

Turn right 90° Go forward until reach obstacle

Capture a ball Explore playing field

Behaviors should be well-defined,
self-contained, and independently testable

Key objective is to compose behaviors
so as to achieve the desired goal

Outline
• High-level control system paradigms

– Model-Plan-Act Approach
– Behavioral Approach
– Finite State Machine Approach

• Low-level control loops
– PID controllers for motor velocity
– PID controllers for robot drive system

• Examples from past years

Model-Plan-Act Approach

1. Use sensor data to create model of the world
2. Use model to form a sequence of behaviors

which will achieve the desired goal
3. Execute the plan (compose behaviors)

M
od

el

ActuatorsSensors

P
la

n

A
ct

Environment

Exploring the playing field
using model-plan-act approach

Red dot is the mobile robot
while the blue line is the mousehole

Exploring the playing field
using model-plan-act approach

Robot uses sensors to create local map of the
world and identify unexplored areas

Exploring the playing field
using model-plan-act approach

Robot moves to midpoint of
unexplored boundary

Exploring the playing field
using model-plan-act approach

Robot performs a second sensor scan and
must align the new data with the global map

Exploring the playing field
using model-plan-act approach

Robot continues to explore
the playing field

Exploring the playing field
using model-plan-act approach

Robot must recognize when it starts to
see areas which it has already explored

Finding a mousehole
using model-plan-act approach

Given the global map,
the goal is to find the mousehole

Finding a mousehole
using model-plan-act approach

Transform world into configuration space
by convolving robot with all obstacles

Finding a mousehole
using model-plan-act approach

Decompose world into convex cells
Trajectory within any cell is free of obstacles

Finding a mousehole
using model-plan-act approach

Connect cell edge midpoints and centroids to
get graph of all possible paths

Finding a mousehole
using model-plan-act approach

Use an algorithm (such as the A*
algorithm) to find shortest path to goal

Finding a mousehole
using model-plan-act approach

The choice of cell decomposition can
greatly influence results

Advantages and disadvantages
of the model-plan-act approach

• Advantages
– Global knowledge in the model enables optimization
– Can make provable guarantees about the plan

• Disadvantages
– Must implement all functional units before any testing
– Computationally intensive
– Requires very good sensor data for accurate models
– Models are inherently an approximation
– Works poorly in dynamic environments

Emergent Approach

Living creatures like honey bees are
able to explore their surroundings

and locate a target (honey)
Is this bee using the

model-plan-act
approach?

Used with permission, © William Connolley
http://wnconnolley.ork.uk

Emergent Approach

Living creatures like honey bees are
able to explore their surroundings

and locate a target (honey)

Probably not! Most likely
bees layer simple

reactive behaviors to
create a complex

emergent behavior

Used with permission, © William Connolley
http://wnconnolley.ork.uk

Emergent Approach

Should we design our robots so they act less
like robots and more like honey bees?

Emergent Approach

ActuatorsSensors

Behavior C

Behavior B

Behavior A

Environment

As in biological systems, the emergent approach uses
simple behaviors to directly couple sensors and actuators

Higher level behaviors are layered
on top of lower level behaviors

To illustrate the emergent approach
we will consider a simple mobile robot

Bump Switches

Infrared Rangefinders

Ball Detector Switch

Camera

Ball Gate

Layering simple behaviors can create
much more complex emergent behavior

Cruise Motors

Cruise behavior simply moves robot forward

Layering simple behaviors can create
much more complex emergent behavior

Cruise

AvoidInfrared

S Motors

Left motor speed inversely proportional to left IR range
Right motor speed inversely proportional to right IR range

If both IR < threshold stop and turn right 120 degrees

Subsumption

Layering simple behaviors can create
much more complex emergent behavior

Cruise

Avoid

Escape

Infrared

Bump

S

S

Motors

Escape behavior stops motors,
backs up a few inches, and turns right 90 degrees

Layering simple behaviors can create
much more complex emergent behavior

Cruise

Avoid

Escape

Track Ball

Infrared

Bump

Camera

S S

S

Motors

The track ball behavior adjusts the
motor differential to steer the robot towards the ball

Layering simple behaviors can create
much more complex emergent behavior

Cruise

Avoid

Escape

Track Ball

Hold Ball

Infrared

Bump

Camera

Ball
Switch

S S

S

Motors

Ball
Gate

Hold ball behavior simply closes ball gate
when ball switch is depressed

Layering simple behaviors can create
much more complex emergent behavior

Cruise

Avoid

Escape

Track Ball

Hold Ball

Track Goal

Infrared

Bump

Camera

Ball
Switch

S S S

S

S

Motors

Ball
Gate

The track goal behavior opens the ball gate and
adjusts the motor differential to steer the robot

towards the goal

Layering simple behaviors can create
much more complex emergent behavior

Cruise

Avoid

Escape

Track Ball

Hold Ball

Track Goal

Infrared

Bump

Camera

Ball
Switch

S S S

S

S

Motors

Ball
Gate

All behaviors are always running in parallel and an
arbiter is responsible for picking which behavior can

access the actuators

Advantages and disadvantages
of the behavioral approach

• Advantages
– Incremental development is very natural
– Modularity makes experimentation easier
– Cleanly handles dynamic environments

• Disadvantages
– Difficult to judge what robot will actually do
– No performance or completeness guarantees
– Debugging can be very difficult

Model-plan-act fuses sensor data,
while emergent fuses behaviors

M
od

el

P
la

n

A
ct

Environment

Behavior C

Behavior B

Behavior A

Model-Plan-Act Emergent

Environment

Fixed plan of behaviors Layered behaviors
Lots of preliminary planning No preliminary planning

Lots of internal state Very little internal state

Finite State Machines offer another
alternative for combining behaviors

Fwd
(dist)

TurnR
(deg)

Fwd behavior moves robot
straight forward a given distance

TurnR behavior turns robot to the
right a given number of degrees

FSMs have some preliminary planning and some state.
Some transitions between behaviors are decided
statically while others are decided dynamically.

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior
instance - link them together to create

an open loop control system

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior
instance - link them together to create

an open loop control system

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior
instance - link them together to create

an open loop control system

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior
instance - link them together to create

an open loop control system

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Since the Maslab playing field is
unknown, open loop control systems

have no hope of success!

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

Closed loop finite state machines use
sensor data as feedback to make

state transitions

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

Implementing a
Finite State Machine in Java

switch (state) {

case States.Fwd_1 :
moveFoward(1);
if (distanceToObstacle() < 2)

state = TurnR_45;
break;

case States.TurnR_45 :
turnRight(45);
if (distanceToObstacle() >= 2)

state = Fwd_1;
break;

}

TurnR
(45°)

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

Obstacle
Within 2ft

• Implement
behaviors as
parameterized
functions

• Each case
statement includes
behavior instance
and state transition

• Use enums for
state variables

Implementing a
FSM in Java

switch (state) {

case States.Fwd_1 :
moveFoward(1);
if (distanceToObstacle() < 2)

state = TurnR_45;
break;

case States.TurnR_45 :
turnRight(45);
if (distanceToObstacle() >= 2)

state = Fwd_1;
break;

}

Turn
To

Open

Finite State Machines offer another
alternative for combining behaviors

Fwd
Until
Obs

Can also fold closed loop feedback
into the behaviors themselves

Simple finite state machine
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Simple finite state machine
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Obstacle < 2ft

To debug a FSM control system
verify behaviors and state transitions

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Obstacle < 2ft

What if robot
has trouble

correctly
approaching

the ball?

To debug a FSM control system
verify behaviors and state transitions

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Obstacle < 2ft

Independently
verify Align

Ball and Fwd
behaviors

Improve FSM control system by replacing
a state with a better implementation

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Obstacle < 2ft

Could replace
random wander with
one which is biased
towards unexplored

regions

Improve FSM control system by replacing
a state with a better implementation

What about integrating camera code into wander
behavior so robot is always looking for red balls?

ball = false
turn both motors on
while (!timeout and !ball)

capture and process image
if (red ball) ball = true

read IR sensor
if (IR < thresh)

stop motors
rotate 90 degrees
turn both motors on

endif

endwhile

– Image processing is
time consuming so
might not check for
obstacles until too late

– Not checking camera
when rotating

– Wander behavior
begins to become
monolithic

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller
FSM

Multi-threaded
finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller
FSM

Multi-threaded
finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Sensor
Stalk

Thread

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller
FSM

Multi-threaded
finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Stalk
Servo

Stalk
Sensors

Mapping
Thread

Sensor
Stalk

Thread

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller
FSM

Multi-threaded
finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Stalk
Servo

Stalk
Sensors

FSMs in Maslab

Finite state machines can
combine the model-plan-act and
emergent approaches and are a

good starting point for your
Maslab robotic control system

Outline
• High-level control system paradigms

– Model-Plan-Act Approach
– Behavioral Approach
– Finite State Machine Approach

• Low-level control loops
– PID controller for motor velocity
– PID controller for robot drive system

• Examples from past years

Problem: How do we set
a motor to a given velocity?

Open Loop Controller
– Use trial and error to create

some kind of relationship
between velocity and voltage

– Changing supply voltage or
drive surface could result in
incorrect velocity

MotorVelocity
To Volts

Desired
Velocity

Actual
Velocity

Controller

Problem: How do we set
a motor to a given velocity?

Closed Loop Controller
– Feedback is used to adjust the

voltage sent to the motor so
that the actual velocity equals
the desired velocity

– Can use an optical encoder to
measure actual velocity

MotorDesired
Velocity

Actual
VelocityAdjusted

Voltage
err

Step response
with no controller

Time (sec)

V
el

oc
ity

• Naive velocity to volts
• Model motor with

several differential
equations

• Slow rise time
• Stead-state offset

MotorVelocity
To Volts

Desired
Velocity

Actual
Velocity

Step response
with proportional controller

Time (sec)

V
el

oc
ity

()actdesPdes VVKVX −⋅+=

• Big error big = big adj
• Faster rise time
• Overshoot
• Stead-state offset

(there is still an error
but it is not changing!)

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Volts (X)

err

Step response
with proportional-derivative controller

Time (sec)

V
el

oc
ity

dt
tdeKteKVX DPdes
)()(−+=

• When approaching desired
velocity quickly, de/dt term
counteracts proportional
term slowing adjustment

• Faster rise time
• Reduces overshoot

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Volts (X)

err

Step response
with proportional-integral controller

Time (sec)

V
el

oc
ity

∫−+= dtteKteKVX IPdes)()(

• Integral term eliminates
accumulated error

• Increases overshoot

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Volts (X)

err

Step response
with PID controller

Time (sec)

V
el

oc
ity

dt
tdeK

dtteK

teKVX

D

I

Pdes

)(

)(

)(

−

+

+=

∫

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Volts (X)

err

Choosing and tuning
a controller

~Decrease~Derivative

EliminateIncreaseDecreaseIntegral

DecreaseIncreaseDecreaseProportional

SS ErrorOvershootRise Time

© 1996 Regents of UMich -- http://www.engin.umich.edu/group.ctm

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Volts (X)

err

Choosing and tuning
a controller

• Use the simplest controller which
achieves the desired result

• Tuning PID constants is very tricky,
especially for integral constants

• Consult the literature for more
controller tips and techniques

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Volts (X)

err

Problem: How do we make
our robots go in a nice straight line?

Model differential drive with slight motor mismatch
With an open loop controller, setting motors to same velocity

results in a less than straight trajectory

Trajectory Motor Velocities vs Time

Problem: How do we make
our robots go in a nice straight line?

With an independent PID controller for each motor,
setting motors to same velocity results in a straight trajectory

but not necessarily straight ahead!

Trajectory Motor Velocities vs Time

We can synchronize the motors
with a third PID controller

Left
Controller

Left
Motor

Desired
Velocity

Actual
Left

Velocityerr

Right
Controller

Right
Motor

err

Coupled
Controller

Actual
Right

Velocity

Inspired from “Mobile Robots”, Jones, Flynn, and Seiger, 1999

Turning
Bias

We can synchronize the motors
with a third PID controller

What should the coupled
controller use as its error input?

Velocity Differential
– Will simply help the robot

go straight but not
necessarily straight ahead

Cumulative Centerline Offset
– Calculate by integrating motor

velocities and assuming differential
steering model for the robot

– Will help the robot go straight ahead

Left
Controller

Left
Motor

Desired
Velocity

Actual
Left

Velocityerr

Right
Controller

Right
Motor

err

Coupled
Controller

Actual
Right

Velocity

Turning
Bias

The digital camera is a powerful sensor
for estimating error in our control loops

– Track wall ticks to see
how they move
through the image

– Use analytical model
of projection to
determine an error
between where they
are and where they
should be if robot is
going straight

– Push error through
PID controller

The digital camera is a powerful sensor
for estimating error in our control loops

– Track how far ball
center is from center of
image

– Use analytical model of
projection to determine
an orientation error

– Push error through
PID controller

What if we just used a simple proportional
controller? Could lead to steady-state error if

motors are not perfectly matched!

Outline
• High-level control system paradigms

– Model-Plan-Act Approach
– Behavioral Approach
– Finite State Machine Approach

• Low-level control loops
– PID controller for motor velocity
– PID controller for robot drive system

• Examples from past years

Team 15 in 2005 used a map-plan-act
approach (well at least in spirit)

Multiple runs around
a mini-playing field

Odometry data from
exploration round of contest

Team 10 in 2003 used odometry so Bob
could retrace his steps and return home

Team 4 in 2005 used an emergent
approach with four layered behaviors

– Boredom: If image
doesn’t change then
move randomly

– ScoreGoals: If image
contains a goal the drive
straight for it

– ChaseBalls: If image
contains a ball then
drive towards ball

– Wander: Turn away
from walls or move to
large open areas

Team 16 from 2004 used their gyro and a
closed loop controller to turn exactly 180º

Poorly tuned PID controllers can cause
your robot to oscillate “randomly”

Team 12 in 2004 learned the hard way
how important testing is

Take Away Points
• Integrating feedback into your control system

“closes the loop” and is essential for creating
robust robots

• Simple finite state machines make a solid
starting point for your Maslab control systems

• Spend time this week designing behaviors and
deciding how you will integrate these behaviors
to create your control system

