
Control for Mobile Robots

Christopher Batten
Maslab IAP Robotics Course

January 11, 2006



Building a control system for 
a mobile robot can be very challenging

Mechanical Electrical Software

Mobile robots are very complex and involve 
many interacting components

Your control system must integrate these components 
so that your robot can achieve the desired goal



Building a control system for 
a mobile robot can be very challenging

• How will you debug and test your robot?
• What are the performance requirements?
• Can you easily improve aspects of your robot?
• Can you easily integrate new functionality?

Just as you must carefully design your 
robot chassis you must carefully design

your robot control system



Basic primitive 
of a control system is a behavior

Turn right 90° Go forward until reach obstacle

Capture a ball Explore playing field

Behaviors should be well-defined,           
self-contained, and independently testable



Key objective is to compose behaviors 
so as to achieve the desired goal



Outline
• High-level control system paradigms

– Model-Plan-Act Approach
– Behavioral Approach
– Finite State Machine Approach

• Low-level control loops
– PID controllers for motor velocity
– PID controllers for robot drive system

• Examples from past years



Model-Plan-Act Approach

1. Use sensor data to create model of the world
2. Use model to form a sequence of behaviors 

which will achieve the desired goal
3. Execute the plan (compose behaviors)
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Exploring the playing field 
using model-plan-act approach

Red dot is the mobile robot 
while the blue line is the mousehole



Exploring the playing field 
using model-plan-act approach

Robot uses sensors to create local map of the 
world and identify unexplored areas



Exploring the playing field 
using model-plan-act approach

Robot moves to midpoint of 
unexplored boundary



Exploring the playing field 
using model-plan-act approach

Robot performs a second sensor scan and 
must align the new data with the global map



Exploring the playing field 
using model-plan-act approach

Robot continues to explore 
the playing field



Exploring the playing field 
using model-plan-act approach

Robot must recognize when it starts to 
see areas which it has already explored



Finding a mousehole
using model-plan-act approach

Given the global map, 
the goal is to find the mousehole



Finding a mousehole
using model-plan-act approach

Transform world into configuration space 
by convolving robot with all obstacles



Finding a mousehole
using model-plan-act approach

Decompose world into convex cells
Trajectory within any cell is free of obstacles



Finding a mousehole
using model-plan-act approach

Connect cell edge midpoints and centroids to 
get graph of all possible paths



Finding a mousehole
using model-plan-act approach

Use an algorithm (such as the A* 
algorithm) to find shortest path to goal



Finding a mousehole
using model-plan-act approach

The choice of cell decomposition can 
greatly influence results



Advantages and disadvantages 
of the model-plan-act approach

• Advantages
– Global knowledge in the model enables optimization
– Can make provable guarantees about the plan

• Disadvantages
– Must implement all functional units before any testing
– Computationally intensive
– Requires very good sensor data for accurate models
– Models are inherently an approximation
– Works poorly in dynamic environments



Emergent Approach

Living creatures like honey bees are 
able to explore their surroundings 

and locate a target (honey)
Is this bee using the 

model-plan-act 
approach?

Used with permission, © William Connolley
http://wnconnolley.ork.uk



Emergent Approach

Living creatures like honey bees are 
able to explore their surroundings 

and locate a target (honey)

Probably not! Most likely 
bees layer simple 

reactive behaviors to 
create a complex 

emergent behavior

Used with permission, © William Connolley
http://wnconnolley.ork.uk



Emergent Approach

Should we design our robots so they act less 
like robots and more like honey bees?



Emergent Approach

ActuatorsSensors

Behavior C

Behavior B

Behavior A

Environment

As in biological systems, the emergent approach uses 
simple behaviors to directly couple sensors and actuators

Higher level behaviors are layered 
on top of lower level behaviors



To illustrate the emergent approach 
we will consider a simple mobile robot

Bump Switches

Infrared Rangefinders

Ball Detector Switch

Camera

Ball Gate



Layering simple behaviors can create 
much more complex emergent behavior

Cruise Motors

Cruise behavior simply moves robot forward



Layering simple behaviors can create 
much more complex emergent behavior

Cruise

AvoidInfrared

S Motors

Left motor speed inversely proportional to left IR range
Right motor speed inversely proportional to right IR range

If both IR < threshold stop and turn right 120 degrees

Subsumption



Layering simple behaviors can create 
much more complex emergent behavior

Cruise

Avoid
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Escape behavior stops motors, 
backs up a few inches, and turns right 90 degrees



Layering simple behaviors can create 
much more complex emergent behavior
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Avoid

Escape
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The track ball behavior adjusts the 
motor differential to steer the robot towards the ball



Layering simple behaviors can create 
much more complex emergent behavior

Cruise

Avoid

Escape

Track Ball

Hold Ball

Infrared

Bump

Camera

Ball 
Switch
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Gate

Hold ball behavior simply closes ball gate 
when ball switch is depressed



Layering simple behaviors can create 
much more complex emergent behavior

Cruise

Avoid

Escape

Track Ball

Hold Ball

Track Goal
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The track goal behavior opens the ball gate and 
adjusts the motor differential to steer the robot 

towards the goal



Layering simple behaviors can create 
much more complex emergent behavior

Cruise

Avoid

Escape

Track Ball

Hold Ball

Track Goal

Infrared

Bump
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All behaviors are always running in parallel and an 
arbiter is responsible for picking which behavior can 

access the actuators



Advantages and disadvantages 
of the behavioral approach

• Advantages
– Incremental development is very natural
– Modularity makes experimentation easier
– Cleanly handles dynamic environments

• Disadvantages
– Difficult to judge what robot will actually do
– No performance or completeness guarantees
– Debugging can be very difficult



Model-plan-act fuses sensor data, 
while emergent fuses behaviors
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Behavior C

Behavior B

Behavior A

Model-Plan-Act Emergent

Environment

Fixed plan of behaviors Layered behaviors
Lots of preliminary planning No preliminary planning

Lots of internal state Very little internal state



Finite State Machines offer another 
alternative for combining behaviors

Fwd
(dist)

TurnR
(deg)

Fwd behavior moves robot 
straight forward a given distance

TurnR behavior turns robot to the 
right a given number of degrees

FSMs have some preliminary planning and some state. 
Some transitions between behaviors are decided 
statically while others are decided dynamically.



TurnR
(90°)

Finite State Machines offer another 
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior 
instance - link them together to create 

an open loop control system



TurnR
(90°)

Finite State Machines offer another 
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior 
instance - link them together to create 

an open loop control system
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Finite State Machines offer another 
alternative for combining behaviors
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an open loop control system



TurnR
(90°)

Finite State Machines offer another 
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior 
instance - link them together to create 

an open loop control system



TurnR
(90°)

Finite State Machines offer another 
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Since the Maslab playing field is 
unknown, open loop control systems 

have no hope of success!



TurnR
(45°)

Finite State Machines offer another 
alternative for combining behaviors

Fwd
(1ft)

Closed loop finite state machines use 
sensor data as feedback to make 

state transitions

No Obstacle 

Obstacle 
Within 2ft

No 
Obstacle 

Obstacle 
Within 2ft
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Finite State Machines offer another 
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TurnR
(45°)

Finite State Machines offer another 
alternative for combining behaviors

Fwd
(1ft)

No Obstacle 

Obstacle 
Within 2ft

No 
Obstacle 

Obstacle 
Within 2ft

Closed loop finite state machines use 
sensor data as feedback to make 

state transitions



Implementing a 
Finite State Machine in Java

switch ( state ) {

case States.Fwd_1 : 
moveFoward(1);
if ( distanceToObstacle() < 2 )

state = TurnR_45;    
break;

case States.TurnR_45 : 
turnRight(45);
if ( distanceToObstacle() >= 2 )

state = Fwd_1;
break;

}

TurnR
(45°)

Fwd
(1ft)

No Obstacle 

Obstacle 
Within 2ft

Obstacle 
Within 2ft



• Implement 
behaviors as 
parameterized 
functions

• Each case 
statement  includes 
behavior instance 
and state transition

• Use enums for 
state variables

Implementing a 
FSM in Java

switch ( state ) {

case States.Fwd_1 : 
moveFoward(1);
if ( distanceToObstacle() < 2 )

state = TurnR_45;    
break;

case States.TurnR_45 : 
turnRight(45);
if ( distanceToObstacle() >= 2 )

state = Fwd_1;
break;

}



Turn
To

Open

Finite State Machines offer another 
alternative for combining behaviors

Fwd
Until
Obs

Can also fold closed loop feedback 
into the behaviors themselves



Simple finite state machine 
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost   
Ball Ball 

< 1ft

Ball 
> 1ft



Simple finite state machine 
to locate red balls
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Fwd
(1ft)
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To debug a FSM control system 
verify behaviors and state transitions

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost   
Ball Ball 

< 1ft

Ball 
> 1ft

Obstacle < 2ft

What if robot 
has trouble 

correctly 
approaching 

the ball?



To debug a FSM control system 
verify behaviors and state transitions

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost   
Ball Ball 

< 1ft

Ball 
> 1ft

Obstacle < 2ft

Independently 
verify Align 

Ball and Fwd 
behaviors



Improve FSM control system by replacing 
a state with a better implementation

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost   
Ball Ball 

< 1ft

Ball 
> 1ft

Obstacle < 2ft

Could replace 
random wander with 
one which is biased 
towards unexplored 

regions 



Improve FSM control system by replacing 
a state with a better implementation

What about integrating camera code into wander 
behavior so robot is always looking for red balls?

ball = false
turn both motors on
while ( !timeout and !ball )

capture and process image
if ( red ball ) ball = true

read IR sensor
if ( IR < thresh )

stop motors
rotate 90 degrees
turn both motors on

endif

endwhile

– Image processing is 
time consuming so 
might not check for 
obstacles until too late

– Not checking camera 
when rotating

– Wander behavior 
begins to become 
monolithic



Obstacle 
Sensors
Thread

Image
Compute
Thread

Controller
FSM

Multi-threaded 
finite state machine control systems

Drive Motors

Camera
Short IR 
+ Bump



Obstacle 
Sensors
Thread

Image
Compute
Thread

Controller
FSM

Multi-threaded 
finite state machine control systems

Drive Motors

Camera
Short IR 
+ Bump



Sensor
Stalk

Thread

Obstacle 
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Thread
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Mapping
Thread

Sensor
Stalk

Thread

Obstacle 
Sensors
Thread

Image
Compute
Thread

Controller
FSM

Multi-threaded 
finite state machine control systems

Drive Motors

Camera
Short IR 
+ Bump

Stalk 
Servo

Stalk
Sensors



FSMs in Maslab

Finite state machines can 
combine the model-plan-act and 
emergent approaches and are a 

good starting point for your 
Maslab robotic control system



Outline
• High-level control system paradigms

– Model-Plan-Act Approach
– Behavioral Approach
– Finite State Machine Approach

• Low-level control loops
– PID controller for motor velocity
– PID controller for robot drive system

• Examples from past years



Problem: How do we set 
a motor to a given velocity?

Open Loop Controller
– Use trial and error to create 

some kind of relationship 
between velocity and voltage

– Changing supply voltage or 
drive surface could result in 
incorrect velocity

MotorVelocity
To Volts

Desired
Velocity

Actual
Velocity



Controller

Problem: How do we set 
a motor to a given velocity?

Closed Loop Controller
– Feedback is used to adjust the 

voltage sent to the motor so 
that the actual velocity equals 
the desired velocity

– Can use an optical encoder to 
measure actual velocity

MotorDesired
Velocity

Actual
VelocityAdjusted 

Voltage
err



Step response 
with no controller

Time (sec)

V
el

oc
ity

• Naive velocity to volts
• Model motor with 

several differential 
equations

• Slow rise time
• Stead-state offset

MotorVelocity
To Volts

Desired
Velocity

Actual
Velocity



Step response 
with proportional controller

Time (sec)

V
el

oc
ity

( )actdesPdes VVKVX −⋅+=

• Big error big = big adj
• Faster rise time
• Overshoot
• Stead-state offset 

(there is still an error 
but it is not changing!)

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted 
Volts (X)

err



Step response 
with proportional-derivative controller

Time (sec)

V
el

oc
ity

dt
tdeKteKVX DPdes
)()( −+=

• When approaching desired 
velocity quickly, de/dt term 
counteracts proportional 
term slowing adjustment

• Faster rise time
• Reduces overshoot

Controller Motor
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Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted 
Volts (X)

err



Step response 
with proportional-integral controller

Time (sec)
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• Integral term eliminates 
accumulated error

• Increases overshoot

Controller Motor
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Step response 
with PID controller
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Choosing and tuning 
a controller

~Decrease~Derivative

EliminateIncreaseDecreaseIntegral

DecreaseIncreaseDecreaseProportional

SS ErrorOvershootRise Time

© 1996 Regents of UMich -- http://www.engin.umich.edu/group.ctm

Controller Motor
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Velocity
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Choosing and tuning 
a controller

• Use the simplest controller which 
achieves the desired result

• Tuning PID constants is very tricky, 
especially for integral constants

• Consult the literature for more 
controller tips and techniques

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted 
Volts (X)

err



Problem: How do we make 
our robots go in a nice straight line?

Model differential drive with slight motor mismatch
With an open loop controller, setting motors to same velocity 

results in a less than straight trajectory

Trajectory Motor Velocities vs Time



Problem: How do we make 
our robots go in a nice straight line?

With an independent PID controller for each motor,              
setting motors to same velocity results in a straight trajectory

but not necessarily straight ahead!

Trajectory Motor Velocities vs Time



We can synchronize the motors 
with a third PID controller

Left
Controller

Left
Motor

Desired
Velocity

Actual
Left

Velocityerr

Right
Controller

Right
Motor

err

Coupled
Controller

Actual
Right

Velocity

Inspired from “Mobile Robots”, Jones, Flynn, and Seiger, 1999 

Turning
Bias



We can synchronize the motors 
with a third PID controller

What should the coupled           
controller use as its error input?

Velocity Differential 
– Will simply help the robot                         

go straight but not                        
necessarily straight ahead

Cumulative Centerline Offset 
– Calculate by integrating motor 

velocities and assuming differential 
steering model for the robot

– Will help the robot go straight ahead 

Left
Controller

Left
Motor

Desired
Velocity

Actual
Left

Velocityerr

Right
Controller

Right
Motor

err

Coupled
Controller

Actual
Right

Velocity

Turning
Bias



The digital camera is a powerful sensor 
for estimating error in our control loops

– Track wall ticks to see 
how they move 
through the image

– Use analytical model 
of projection to 
determine an error 
between where they 
are and where they 
should be if robot is 
going straight

– Push error through 
PID controller



The digital camera is a powerful sensor 
for estimating error in our control loops

– Track how far ball 
center is from center of 
image

– Use analytical model of 
projection to determine 
an orientation error 

– Push error through    
PID controller

What if we just used a simple proportional 
controller? Could lead to steady-state error if 

motors are not perfectly matched! 



Outline
• High-level control system paradigms

– Model-Plan-Act Approach
– Behavioral Approach
– Finite State Machine Approach

• Low-level control loops
– PID controller for motor velocity
– PID controller for robot drive system

• Examples from past years



Team 15 in 2005 used a map-plan-act 
approach (well at least in spirit)

Multiple runs around
a mini-playing field

Odometry data from 
exploration round of contest



Team 10 in 2003 used odometry so Bob 
could retrace his steps and return home



Team 4 in 2005 used an emergent 
approach with four layered behaviors

– Boredom: If image 
doesn’t change then 
move randomly

– ScoreGoals: If image 
contains a goal the drive 
straight for it

– ChaseBalls: If image 
contains a ball then 
drive towards ball

– Wander: Turn away 
from walls or move to  
large open areas



Team 16 from 2004 used their gyro and a 
closed loop controller to turn exactly 180º



Poorly tuned PID controllers can cause 
your robot to oscillate “randomly”



Team 12 in 2004 learned the hard way 
how important testing is



Take Away Points
• Integrating feedback into your control system 

“closes the loop” and is essential for creating 
robust robots

• Simple finite state machines make a solid 
starting point for your Maslab control systems

• Spend time this week designing behaviors and 
deciding how you will integrate these behaviors 
to create your control system


