N

Control for Mobile Robots

/
7 I e S
A \ \\ ™
/ ‘ \ s < » N
AN S
\ sy —
/ \\\
d ~
-

Christopher Batten

Maslab IAP Robotics Course
January 11, 2006

N

N

<V

Building a control system for
a mobile robot can be very challenging

N

N

Mobile robots are very complex and involve
many interacting components

Mechanical Electrical Software

Your control system must integrate these components
so that your robot can achieve the desired goal

N

N

Building a control system for
a mobile robot can be very challenging

N

Just as you must carefully design your
robot chassis you must carefully design
your robot control system

 How will you debug and test your robot?
 What are the performance requirements?

e Can you easily improve aspects of your robot?
e Can you easlily integrate new functionality?

Basic primitive
of a control system is a behavior

N

N

Behaviors should be well-defined,
self-contained, and independently testable

¢

Turn right 90° Go forward until reach obstacle

el

Capture a ball Explore playing field

Key objective is to compose behaviors
S0 as to achieve the desired goal

N

Outline

* High-level control system paradigms
— Model-Plan-Act Approach
— Behavioral Approach
— Finite State Machine Approach

* Low-level control loops
— PID controllers for motor velocity
— PID controllers for robot drive system

* Examples from past years

N

Model-Plan-Act Approach

N

[— -
| © IS o |___
s||lz| <
Sensors Actuators
[Environment J

ﬁl. Use sensor data to create model of the world

2. Use model to form a sequence of behaviors
which will achieve the desired goal

\j3. Execute the plan (compose behaviors)

N

Exploring the playing field
using model-plan-act approach

N

N

-

Red dot I1s the mobile robot
while the blue line is the mousehole

N

Exploring the playing field
using model-plan-act approach

N

N

/

4

/

-

Robot uses sensors to create local map of the
world and identify unexplored areas

N

Exploring the playing field
using model-plan-act approach

N

N

/

Nt
\
N\

-

Robot moves to midpoint of
unexplored boundary

N

Exploring the playing field
using model-plan-act approach

N

N

7
N\ —~_ =
/ e N\
/ = N
7 —
[T
a
SERRESS

Robot performs a second sensor scan and
must align the new data with the global map

N

N

Exploring the playing field
using model-plan-act approach

N

/

/l

\\

\ > SRERREE

=1

Robot continues to explore

the playing field

N

Exploring the playing field
using model-plan-act approach

N

N

—

—

/ \\ \\ m
SN .~ N
J \\ ,/ R
/ VAN ///; —

-

Robot must recognize when it starts to
see areas which it has already explored

N

Finding a mousehole
using model-plan-act approach

N

N

-

Given the global map,
the goal is to find the mousehole

N

Finding a mousehole
using model-plan-act approach

N

N

Transform world into configuration space
by convolving robot with all obstacles

N

Finding a mousehole
using model-plan-act approach

N

N

Decompose world into convex cells
Trajectory within any cell is free of obstacles

N

Finding a mousehole
using model-plan-act approach

N

N

Connect cell edge midpoints and centroids to
get graph of all possible paths

N

Finding a mousehole
using model-plan-act approach

N

N

Use an algorithm (such as the A*
algorithm) to find shortest path to goal

N

Finding a mousehole
using model-plan-act approach

N

N

The choice of cell decomposition can
greatly influence results

N

Advantages and disadvantages
of the model-plan-act approach

N

* Advantages
— Global knowledge in the model enables optimization
— Can make provable guarantees about the plan

e Disadvantages

— Must implement all functional units before any testing
— Computationally intensive

— Requires very good sensor data for accurate models
— Models are inherently an approximation

— Works poorly in dynamic environments

N

N

Emergent Approach

Living creatures like honey bees are
able to explore their surroundings
and locate a target (honey)

Is this bee using the
model-plan-act
approach?

N

Emergent Approach

Living creatures like honey bees are
able to explore their surroundings
and locate a target (honey)

Probably not! Most likely
bees layer simple
reactive behaviors to
Create a complex
emergent behavior

Emergent Approach

N

Should we design our robots so they act less
like robots and more like honey bees?

N

N

Sensors

Behavior C

Behavior B

Emergent Approach

Behavior A

Actuators

y

[

Environment

|

As In biological systems, the emergent approach uses
simple behaviors to directly couple sensors and actuators

Higher level behaviors are layered
on top of lower level behaviors

N

To illustrate the emergent approach
we will consider a simple mobile robot

N

N

Ball Gate = = == = = =- =

Bump Switches - - - - - - > A /\

Infrared Rangefinders - - - - -

Ball Detector Switch = = = = =

Layering simple behaviors can create
much more complex emergent behavior

N

N

Cruise » Motors

Cruise behavior simply moves robot forward

Layering simple behaviors can create
much more complex emergent behavior

N

N

Subsumption

Infrared —» Avoid ¥

Left motor speed inversely pro
Right motor speed inversely pro

Cruise @ Motors

nortiona
nortiona

If both IR < threshold stop anc

turn rig

to left IR range
to right IR range

Nt 120 degrees

N

Layering simple behaviors can create
much more complex emergent behavior

N

N

| ‘—T

~ |

N\ |

— !

,/'
L
Q@
Bump — Escape flt
Infrared —» Avoid S
Cruise S Motors

Escape behavior stops motors,
backs up a few inches, and turns right 90 degrees

N

Layering simple behaviors can create
much more complex emergent behavior

N

N

Camera — Track Ball Pt D

Bump —» Escape

Infrared —» Avoid

Cruise Motors

The track ball behavior adjusts the
motor differential to steer the robot towards the ball

N

Layering simple behaviors can create
much more complex emergent behavior

N

N

itch —» |
Switch Hold Ball » Ball ~—1 |
Gate — I
Camera —»| Track Ball Pt /
Q@
Bump — Escape

Infrared —» Avoid

Cruise Motors

Hold ball behavior simply closes ball gate
when ball switch is depressed

N

Layering simple behaviors can create
much more complex emergent behavior

N
\d
*| Track Goal e ——
gall | F— —~ T
' >]
Switth 1 Ho1d Ball ., Ball ~—1 |
Gate — N
Camera —» Track Ball Pt Bra
@ ’,1’
Bump —»| Escape =
Infrared —{ Avoid
Cruise Motors

The track goal behavior opens the ball gate and
adjusts the motor differential to steer the robot
towards the goal

N

Layering simple behaviors can create
much more complex emergent behavior

N
\d
*| Track Goal e ——
gall | F— —~ T
' >]
Switth 1 Ho1d Ball ., Ball ~—1 |
Gate — N
Camera —» Track Ball Pt Bra
@ ’,1’
Bump —»| Escape =
Infrared —{ Avoid
Cruise Motors

All behaviors are always running in parallel and an
arbiter Is responsible for picking which behavior can
access the actuators

N

Advantages and disadvantages
of the behavioral approach

N

N

* Advantages
— Incremental development is very natural
— Modularity makes experimentation easier
— Cleanly handles dynamic environments

e Disadvantages
— Difficult to judge what robot will actually do
— No performance or completeness guarantees
— Debugging can be very difficult

N

Model-plan-act fuses sensor data,
while emergent fuses behaviors

N

N

— | Behavior C | —;
35| s -
— § Tl < | — | Behavior B | —
— | Behavior A | —]
[Environment] [Environment]
Model-Plan-Act Emergent
Lots of internal state Very little internal state

Lots of preliminary planning No preliminary planning
Fixed plan of behaviors Layered behaviors

N

Finite State Machines offer another
alternative for combining behaviors

N

N

FSMs have some preliminary planning and some state.
Some transitions between behaviors are decided
statically while others are decided dynamically.

Fwd behavior moves robot
straight forward a given distance

TurnR TurnR behavior turns robot to the
(deg) right a given number of degrees

Finite State Machines offer another
alternative for combining behaviors

N

N

s e

TurnR
(90°)

Each state Is just a specific behavior
iInstance - link them together to create
an open loop control system

Fwd
(2ft)

N

Finite State Machines offer another
alternative for combining behaviors

N

N

Fwd
(2ft)

TurnR
(90°)

Each state Is just a specific behavior
iInstance - link them together to create
an open loop control system

Fwd
(2ft)

N

Finite State Machines offer another
alternative for combining behaviors

N

N

TurnR
(90°)

Each state Is just a specific behavior
iInstance - link them together to create
an open loop control system

Fwd
(2ft)

N

Finite State Machines offer another
alternative for combining behaviors

N

N

Fwd
(2fty , TTTTTTTToS 1

TurnR “
(90°)

Each state Is just a specific behavior
iInstance - link them together to create

an open loop control system

N

Finite State Machines offer another
alternative for combining behaviors

N

N

s e

TurnR
(90°)

Since the Maslab playing field is
unknown, open loop control systems
have no hope of success!

Fwd
(2ft)

N

Finite State Machines offer another
alternative for combining behaviors

C\
No Obstacle
Obstacle
Within 2ft
No
Obstacle

Closed loop finite state machines use
sensor data as feedback to make
»\) state transitions

Obstacle
Within 2ft

N

Finite State Machines offer another
alternative for combining behaviors

C\
No Obstacle
@ Obstacle
Within 2ft
No
Obstacle

Closed loop finite state machines use
sensor data as feedback to make
»\) state transitions

Obstacle
Within 2ft

N

Finite State Machines offer another
alternative for combining behaviors

N

N

No Obstacle

)

Obstacle
Within 2ft

@

No

Obstacle
Closed loop finite state machines use
sensor data as feedback to make
»\) state transitions

Obstacle
Within 2ft

N

Finite State Machines offer another
alternative for combining behaviors

N

N

No Obstacle

)

Obstacle
Within 2ft

No

Obstacle
Closed loop finite state machines use
sensor data as feedback to make
O state transitions

Obstacle
Within 2ft

N

Finite State Machines offer another
alternative for combining behaviors

C\
No Obstacle
R |
Obstacle ”
Within 2ft
No
Obstacle

Closed loop finite state machines use
sensor data as feedback to make
»\) state transitions

Obstacle
Within 2ft

N

Implementing a

Finite State Machine in Java

N

N

No Obstacle

)

Obstacle
Within 2ft

)

Obstacle
Within 2ft

switch (state) {

case States.Fwd 1 :
moveFoward(1l);
1T (distanceToObstacle() < 2)
state = TurnR_45;
break;

case States.TurnR_45 :
turnRight(45);
iIT (distanceToObstacle() >= 2)
state = Fwd_1;
break;

N

Implementing a
FSM in Java

N

e Implement
behaviors as
parameterized
functions

e Each case

statement Includes
behavior instance
and state transition

e Use enums for
state variables

switch (state) {

case States.Fwd 1 :
moveFoward(1l);
iIT (distanceToObstacle() < 2)
state = TurnR_45;
break;

case States.TurnR_45 :
turnRight(45);
iIT (distanceToObstacle() >= 2)
state = Fwd_1;
break;

N

N

N

Finite State Machines offer another
alternative for combining behaviors

Turn
To
Open

-T .71
1
1

Can also fold closed loop feedback
Into the behaviors themselves

N

Simple finite state machine
to locate red balls

N

N
Found
Wander Ba”
(20sec) /v~

No Balls
Lost BaH
Ball
Align < 1ft
Ball
Ball
>]jt

N

N

Simple finite state machine
to locate red balls

N
Found
Wander Ba”
(20sec) /v~

No Balls
Lost BaII
Ball
Align < 1ft
Ball
Ball
> 1ft

Obstacle < 2ft

N

N

To debug a FSM control system
verify behaviors and state transitions

N

Found
Wander Ba”
(20sec) /v~

No Balls

Lost

What if robot
has trouble
correctly

approaching
the ball?

BaH
Ball
Align < 1ft
Ball
B

all
>]jt

N

N

To debug a FSM control system
verify behaviors and state transitions

N

Found
Wander Ba”
(20sec) /v~

No Balls

Los

Independently
verify Align
Ball and Fwd

behaviors

BaII
Ball
A“gn < 1ft
BaII
B

all
> 1ft

N

N

Improve FSM control system by replacing
a state with a better implementation

N
Found
=B
(20sec) J v~
. No Balls

Lost

BaH
Ball
Align < 1ft
Ball
B

all
>]jt

Could replace
random wander with

one which iIs biased
towards unexplored |
regions

N

Improve FSM control system by replacing
a state with a better implementation

N

N

What about integrating camera code into wander
behavior so robot is always looking for red balls?

— Image processing is o = e
time consuming so turn both motors on
: while (timeout and !ball)
mlght not Che_Ck for capture and process image
obstacles until too late if (red ball) ball = true
— Not checking camera res) LI szl
: iIT (IR < thresh)
when rotating stop motors
_ rotate 90 degrees
— Wander behavior turn both motors on

begins to become endit

monolithic endwhi le

Multi-threaded

finite state machine control systems

N

N

Short IR

+ Bump Camera
4 A /Obstacle\ Image

Sensors Compute

< Thread Thread
Controller - N /
FSM

(S)

Drive Motors

N

Multi-threaded

finite state machine control systems

N

N

Short IR

+ Bump Camera
4 A /Obstacle\ Image

Sensors Compute

< Thread Thread
Controller - N /
FSM

(S)

Drive Motors

N

Multi-threaded
finite state machine control systems

N

N

— Stalk
Servo

Short IR Stalk
+ Bump Camera Sensors
4 A /Obstacle\ C Image N Sensor A
Sensors Compute Stalk
< Thread Thread Thread
Controller | - — ~ /
FSM
N Y

Drive Motors

Multi-threaded
finite state machine control systems

N

N

— Stalk
Servo

Short IR Stalk
+ Bump Camera Sensors
4 A /Obstacle Image Sensor\
Sensors Compute Stalk
< Thread Thread Thread
Controller | - /
FSM \ l /
. Mapping
Thread
- Y

Drive Motors

FSMs I1n Maslab

Finite state machines can
combine the model-plan-act and
emergent approaches and are a

good starting point for your
Maslab robotic control system

Outline

| * High-level control system paradigms
— Model-Plan-Act Approach

— Behavioral Approach

— Finite State Machine Approach

* Low-level control loops
— PID controller for motor velocity
— PID controller for robot drive system

 Examples from past years

N

Problem: How do we set
a motor to a given velocity?

N

N

Open Loop Controller

— Use trial and error to create
some kind of relationship
between velocity and voltage

— Changing supply voltage or
drive surface could result in
Incorrect velocity

Desired _ | Velocity . Motor Actual
Velocity To Volts Velocity

N

Problem: How do we set
a motor to a given velocity?

N

N

Closed Loop Controller

the desired velocity

— Feedback is used to adjust the
voltage sent to the motor so
that the actual velocity equals

— Can use an optical encoder to

measure actual velocity

Desired
Velocity @err Controller

Adjusted
Voltage

A 4

Motor

~ Actual
Velocity

N

Step response
with no controller

(\
Desired _ | Velocity . Motor Actual

Velocity To Volts e Velocity
o Nalve VeIOCIty t() VOltS 1.0h
 Model motor with > [T
several differential g 08 o o
equatlonS g_) QB L _________________________________ _________________________________
. . 04_

* Slow rise time .

» Stead-state offset e
0 1 2 3

Time (sec)

N

Step response

N

Desired

X =V

des

with proportional controller

Velocity (>
(Vges) err

Controller

+ KP ° (Vdes _Vact)

 Big error big = big adj]

» Faster rise time

e Overshoot

» Stead-state offset
(there is still an error
but it is not changing!)

Actual
_ » Motor » Velocity
Adjusted (V..)
Volts (X)
1.2}

1 N P - - - - - -

08 L.

Velocity

el

oal o S

N R —
0 |

: 2
Time (sec)

Step response

with proportional-derivative controller

S
Desired
) — Actual
Velocity N . . .
V.. TQerr Controller Adjusted Motor V?\Iloctl)ty
Volts (X) =
de(t o -]
X = Vdes T er(t) D J '
dt o 17\ S _

» When approaching desired '§ o[o .
VGIOClty qUICkly, d@/dt term g_) o6t
COunteraCtS pl’OpOrtIOna| Q4N
term slowing adjustment 0.2

e Faster rise time % i > 3

e Reduces overshoot Time (sec)

.
N

Step response

N

Desired
Velocity

(Vdes)

X =V

des

with proportional-integral controller

—{)—{ Controller
=+ err

+ Koe() - K, [e(t) dt

 Integral term eliminates
accumulated error

e Increases overshoot

Actual
_ » Motor » Velocity
Adjusted \V/
(act)
Volts (X)
LI _________________________________ _________________________________
AEAN | |
=
G 0.8Ff
o
Q I T]
> %9
04H _________________________________ _________________________________
02i
00 i 2 3

Time (sec)

N

N

Step response
with PID controller

Desired
Velocity

(Vdes)

X

=V

O~

des

Controller

+ Ko e(t)
+ K,je(t) dt

de(t)

D

dt

Actual
_ » Motor » Velocity
Adjusted (V..)
Volts (X)
1ol _________________________________ _________________________________
1 :
P
'S 0.8t
=
Q | S T]
> 0
04 ...
02 ...
0
0 1 2 3
Time (sec)
D

Choosing and tuning

a controller

N

N

Desired

V(s/ljesty TCD_Q Controller Adiustod » Motor > V%\CI/;L::?L/
Volts (X) o
Rise Time Overshoot SS Error
Proportional | Decrease Increase Decrease
Integral Decrease Increase Eliminate
Derivative ~ Decrease ~

Choosing and tuning

a controller

Desired B

Velocity ()
(Vges) err

Controller

» Use the simplest controller which
achieves the desired result

 Tuning PID constants Is very tricky,

Adjusted
Volts (X)

A 4

Motor

Actual

especially for integral constants

e Consult the literature for more
controller tips and techniques

» Velocity
(Vact)

Problem: How do we make
our robots go In a nice straight line?

N

N

Trajectory Motor Velocities vs Time

002 Y S :_ Left M.Otor Ve|

| : — Right Motor Vel
0 i i 0 i ,
-20 -10 0 10 20 0 1 2 3

Model differential drive with slight motor mismatch

With an open loop controller, setting motors to same velocity
results in a less than straight trajectory

N

N

Problem: How do we make
our robots go In a nice straight line?

N

Trajectory

100

80

60+

40+

201

0 :
-20 -10 0 10 20

Motor Velocities vs Time

o208 :— Left M.o’[or Vel

— Right Motor Vel
0 i 1
0 1 2 3

With an independent PID controller for each motor,
setting motors to same velocity results in a straight trajectory
but not necessarily straight ahead!

N

We can synchronize the motors
with a third PID controller

S
Cl R Left . Left . Af(t;f |
+ ~"err | Controller Motor Velocity
_ +
Desired | Coupled | /’> Turning
Velocity Controller . Bias
|
v : : Actual
+<>ﬂ Right . Right . Right
I Controller Motor Velocity

We can synchronize the motors
with a third PID controller

N

N

What should the coupled

Velocity Differential

— WIll simply help the robot
go straight but not
necessarily straight ahead

controller use as its error input?

Desired

Velocity ~ |

Cumulative Centerline Offset

— Calculate by integrating motor

velocities and assuming differential

steering model for the robot

Left
Controller

\ 4

Left
Motor

Coupled

Controller |

»i

Right
Controller

A 4

Right
Motor

— WiIll help the robot go straight ahead

Actual
Left
Velocity

Turning
Bias

Actual
Right
Velocity

N

The digital camera is a powerful sensor
for estimating error in our control loops

N

_ v

— Track wall ticks to see
how they move
through the image

— Use analytical model
of projection to
determine an error
between where they
are and where they
should be if robot is
going straight

— Push error through
PID controller

The digital camera is a powerful sensor
for estimating error in our control loops

N

N

— Track how far ball
center is from center of
Image

— Use analytical model of
projection to determine
an orientation error

— Push error through
PID controller

What if we just used a simple proportional
controller? Could lead to steady-state error if
motors are not perfectly matched!

Outline

* High-level control system paradigms
— Model-Plan-Act Approach
— Behavioral Approach
— Finite State Machine Approach

* Low-level control loops
— PID controller for motor velocity
— PID controller for robot drive system

e Examples from past years

N

Team 15 in 2005 used a map-plan-act

N

approach (well at least Iin spirit)

-

Wk
L

//

S S AN
} y
[}
\._‘
""—n-—-"_,-'

T
___"'"-h.._""-\-.

Multiple runs around
a mini-playing field

Odometry data from
exploration round of contest

N

Team 10 in 2003 used odometry so Bob
could retrace his steps and return home

Team 4 in 2005 used an emergent
approach with four layered behaviors

N

— Boredom: If image
doesn’t change then
move randomly

| — ScoreGoals: Ifimage
contains a goal the drive
straight for it

| _ ChaseBalls: If Image
contains a ball then
drive towards ball

— Wander: Turn away
from walls or move to
large open areas

Team 16 from 2004 used their gyro and a
closed loop controller to turn exactly 180°

N

Poorly tuned PID controllers can cause
your robot to oscillate “randomly”

PD Controller Oscillation

N

N

N

Team 12 in 2004 learned the hard way
how Important testing IS

N

Take Away Points

N

* Integrating feedback into your control system
“closes the loop” and is essential for creating
robust robots

e Simple finite state machines make a solid
starting point for your Maslab control systems

e Spend time this week designing behaviors and
deciding how you will integrate these behaviors
to create your control system

