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In this experiment we observe the distribution of radiation emitted by a 137Cs source. Using a
scintillation counter, we count the number of gamma rays emitted by the radiation source at four
different mean count rates: 1 sec−1, 4 sec−1, 10 sec−1, and 100 sec−1. From this we can plot the
distribution of counts/sec versus the frequency of count rate. We find the distributions for the
different mean count rates comparable to Poisson and Gaussian distributions. We also find that the
Gaussian distribution can approximate the Poisson distribution very well at high mean rates.

INTRODUCTION

A 137Cs source is an excellent, predictable gamma ray
source. It randomly releases radiation at a predictable
average rate. Because the radiation releases are inde-
pendent events, we should be able to model radioactive
decay of 137Cs with a Poisson distribution. If we are able
to do this, we can make predictions about the spread of
radiation over time from such a radioactive source if we
can determine the mean rate of emitted radiation.

THEORY

A useful model for predicting the outcome of random,
independent events is the Poisson distribution, defined
by the equation:

P (x;µ) =
µxe−µ

x!
(1)

This distribution has its origins in the Binomial distribu-
tion, which models the success of an event x with a given
probability p over n measurements, and is given by the
equation:

Pr(x) =
n!

x!(n− x)!
px(1− p)n−x (2)

If we take µ, the mean rate of events, to equal pn, we can
then evaluate Pr(x) as n goes to infinity:
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≈ µxe−µ
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In order to apply the Poisson distribution to a certain
process, we must first determine whether or not the pro-
cess is in ”steady state with mean rate µ.” If we take X
to be the number of events occurring over a time T , then

lim
x→∞

(X
T

)
= µ (6)
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FIG. 1: The setup for measuring the number of counts from a
random process (radioactive decay) in a given time interval.
An oscilloscope (not shown) is used to monitor the proper
functioning of the system.

be compared with the theoretical distributions and their
standard deviations.

Later, you will generate Poisson distributions by
Monte Carlo simulations on a Junior Lab PC and will
also compare them with the ones produced by nature in
your counting measurements.

3.1. Setup to Measure Poisson Statistics

Set up the scintillation counter as shown in Figure 1.
Expose the detector to the gamma rays from a 137Cs
or 60Co laboratory calibration source (a 1/2′′ × 5′′ plas-
tic rod with the source embedded in the colored end).
The voltage applied to the photomultiplier should be ≈
+1000 volts. The output of the photomultiplier is fed to
the “INPUT” connector on charge-sensitive preamplifier.
Use the oscilloscope to record the voltage waveform taken
from the output of the preamplifier and draw it in your
lab notebook. Note especially the rise and decay time of
the signal as well as the peak amplitude and polarity.

The output of the preamplifier is then connected to
the “INPUT” (connector on the back or front of the am-
plifier). The amplified signal should be taken from the
“UNIPOLAR OUT” connector on the front of the ampli-
fier, and fed to the “POS IN(A)” connector on the scaler.
Set the amplifier to have a moderate gain and for posi-
tive pulses. Start with the scaler’s discriminator set at its
lowest value (0.1V). Set the scaler to repeatedly acquire
for 5 seconds, display the result and then start again.

Note: Throughout Junior Lab, you should pay close at-
tention to the polarities of applied and detected voltages.
Incorrectly setting the polarity on an oscilloscope trigger
can be very frustrating!

3.2. Procedure

Examine the output of the amplifier on the oscil-
loscope (sweep speed ∼ 1µsec/cm, vertical amplitude
∼ 1 volt/cm) to confirm the proper performance of the
measurement chain. Adjust the gain of the amplifier to
produce signal pulses of ∼ +3 volts. If you trigger the
scope on the “rising edge” of the pulses and set the trigger
level to ∼ +3 volts, you should see a signal which starts
on the left-hand side of the scope display at ∼ 3 volts,
rises to a maximum of about ∼ 5 volts, goes negative and
finally levels off at zero. If you also set the discriminator
on the counter to 3 volts, there should be an approxi-
mate one-to-one correspondence between pulses counted
and pulses displayed. Ask for assistance on this step if
you are unfamiliar with the operation of an oscilloscope.

Incidently, even without a “check source” nearby, you
should see signals due to “cosmic-rays” at the rate of ≈ 1
cm−2 min−1.

You can control the counting rate by adjusting the dis-
tance of the source from the scintillator, by varying the
high voltage supplied to the photomultiplier, varying the
gain of the amplifier, or changing the threshold level of
the discriminator. Arrange things to yield four different
mean count rates of approximately 1 sec−1, 4 sec−1, 10
sec−1, and 100 sec−1.

Record your instrumental settings and prepare
tables in your lab notebook for recording the
count data in neat and compact form.

At each of these approximate rates, record the counts
for jmax = 100 repeated one-second intervals directly into
your lab notebook. For each of the four settings, record
the number of events in one consecutive run of 100 sec-
onds as well.

3.3. Analysis

The following analysis requires the use of repetitive
arithmetic on the collected data set. You could use either
Matlab or any other preferred tool on Athena.

a) For each of the four runs calculate and plot the cu-
mulative average, rc(j), of the rate as a function of
the sequence number, j, of the count. By “cumu-
lative average” is meant the quantity

rc(j) =
∑i=j

i=1 xi∑i=j
i=1 ti

. (3)

where xi is the number of counts detected in time
ti. For a process which is truly steady with mean
rate µ, rc(j) should converge to µ in the asymp-
totic limit. Include error bars to demonstrate con-
vergence.

b) Calculate the mean and standard deviation of each
of the four 100-trial distributions and compare to

FIG. 1: Diagram of experimental setup showing the source,
scintillator, photomultiplier tube, preamplifier, and amplifier.
(source: Poisson Statistics 8.13 lab guide)

Additionally, if a process follows a Poisson distribution,
we will also find that the standard deviation should equal,
or come close to,

√
µ.

EXPERIMENTAL SETUP

We used a scintillation counter (Fig. 1) and exposed it
to a 137Cs source to measure its radioactive decay. Each
time the 137Cs source gives off a burst of gamma radia-
tion, the radiation excites some of the NaI molecules in
the scintillator. During this excitation, a photon is emit-
ted. The number of photons emitted is dependent on the
energy of the exciting radiation. The photons then strike
the photocathode of the photomultiplier tube, produc-
ing electrons. Each electron travels through a series of
dynode layers, which multiply the number of electrons,
resulting in a slightly amplified signal at the output of the
photomultiplier. This output is then fed into a pream-
plifier, where we inverted the signal, and then to the
amplifier, where we made signal gain adjustments that
coincided with our voltage threshold on the counter.

We achieved our mean count rates of ≈ 1 sec−1, 4
sec−1, 10 sec−1, and 100 sec−1 by varying the distance



2

from the source to the scintillator and by adjusting the
gain on the amplifier.

PROCEDURE

Using the setup described above, we recorded the num-
ber of counts in one second for each mean rate of approx-
imately 1 sec−1, 4 sec−1, 10 sec−1, and 100 sec−1 one
hundred times. We then recorded the number of counts
over a period of 100 seconds for each of those mean count
rates.

We achieved each mean count rate by adjusting the
distance from the 137Cs source to the scintillator and
changing the gain on the amplifier.

ANALYSIS

First, we plotted the cumulative average, rc(j), for
each of our mean count rates. For each count at sequence
number j we calculated

rc(j) =
j∑

i=1

xi
ti

(7)

where xi is the number of counts recorded at time ti and
plotted the cumulative average along a counts/sec versus
time graph (Fig. 2). We found that after recording the
count rate 100 times, the mean count rate µ approached
a steady state, which approximately equaled each of our
target mean rates.

We then plotted our data along counts/sec versus
the frequency of count rate and fitted it to a Poisson
distribution (Fig. 3). For each of the four means, the
actual standard deviation observed closely matched the
standard deviation expected,

√
µ for a Poisson distribu-

tion. Additionally, both Poisson and Gaussian distribu-
tions appeared to fit well to the data, except for the 100
sec−1 rate where further binning could be applied to pro-
duce a better χ2.

Alongside the Poisson distribution in Figure 3, we also
plotted a fit for the Gaussian distribution. We noted that
as the mean count rate increased, the Gaussian distribu-
tion closely approximated the Poisson distribution. This
is clearly evident when comparing the χ2 of both distri-
butions for the 100 sec−1 count rate. This is expected,
since

lim
µ→∞

µxe−µ

x!
≈ 1√

2πµ
e
−(x−µ)2

2µ (8)

which is, essentially, the Gaussian distribution.

RESULTS

Based on the close fit of the Poisson distribution to our
data and the additional fact that the calculated standard
deviation closely coincided with the theoretical standard
deviation,

√
µ, we determined that the radioactive decay

produced by the 137Cs source followed a Poisson distri-
bution.

Additionally, if we take the mean and expected stan-
dard deviation (based on a Poisson fit) for each of the
100 second recordings

Count Rate Counts in 100 sec µ σ =
√
µ

1 sec−1 56 0.56 0.75
4 sec−1 283 2.83 1.68
10 sec−1 1144 11.44 3.38
100 sec−1 10519 105.19 10.23

we find that the values for µ and σ correspond to the
values calculated from our previous data of one hundred
1 sec count recordings.

ERRORS

For the graph showing the cumulative mean count
rates (Fig. 2), we used

err(j) =

√
rc(j)
j

(9)

=
(

1√
j

)( j∑

i=1

xi
ti

) 1
2

(10)

where rc(j) is the cumulative average at sequence number
j, to determine our error bars.

At each point in Figure 3, we took the square root of
that count rate’s occurrence to determine the error bars.
Since we assumed a Poisson distribution, the frequency of
occurrence for each point is the mean, µ, for that point.

CONCLUSIONS

We were able to fit a Poisson distribution to the ra-
dioactive decay of a 137Cs source emitting gamma rays.
Additionally, we further verified the Poisson fit by com-
paring the experimental standard deviation to the theo-
retical standard deviation of

√
µ and found them closely

related.
If we perform additional 100 sequence recordings of

this data at the same count rates, we will likely see a
better Poisson distribution. The error bars for each fre-
quency bin will likely be reduced by taking the standard
deviation of the frequency bins at each count rate from
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FIG. 2: Graphs for each of the mean rates showing that the mean µ approaches a steady state after a long time: 0.66 sec−1

(top left), 2.83 sec−1 (top right), 10.32 sec−1 (bottom left), and 105.37 sec−1 (bottom right).

the repeated 100 sequence recordings. Another way of
verifying a better Poisson fit for radioactive decay would
be to take a sequence of recordings much greater than
than 100.
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FIG. 3: Graphs for each mean count rate showing a decent fit for both Poisson and Gaussian Distributions. Additionally, the
standard deviation for each count rate is ≈ √µ (compare σ and Theoretical σ).


