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1 Introduction

1.1 What is the Modulation Toolbox?

The Modulation Toolbox is a set of MATLAB functions for analyzing and modifying
modulation frequency spectra in speech, music and other natural sounds. In an
acoustic signal, we assume that information-bearing components are of the form

x(t) = m(t) · c(t) (1)

where x(t) is an observed time-domain signal, and m(t) is a low-frequency modula-
tor multiplied by a high-frequency carrier c(t). The toolbox provides functions that
estimate discrete-time m[n] and c[n] from the samples of the observed signal x[n], a
problem known as demodulation. Once estimated, m[n] represents time-domain en-
velope fluctuations that are subject to modulation-frequency analysis via the Fourier
transform and filtering theory [1][2][3].

As of April 2009, version 2.x of the Modulation Toolbox is a significant expansion
on the previous release with the inclusion of new coherent demodulation algorithms.
Unlike the conventional Hilbert envelope, coherent demodulation explicitly estimates
narrowband carriers of a signal in order to compute the modulators. With the
appropriate constraints, coherent carrier detection guarantees properties for effective
and distortion-free filtering of modulators [1]. Version 2.1 is the latest release of the
Modulation Toolbox encompassing multiple demodulation algorithms, coherent and
non-coherent, for comparison in signal processing applications.

The Modulation Toolbox is the result of many contributors under the supervision
of Professor Les Atlas. Versions 2.0 and 2.1 were authored between 2008 and 2010
by Pascal Clark with major contributions from Adam Greenhall, Elliot Saba, Brian
King, and Xing Li. It is built upon the earlier version (v1.23) authored by Steven
Schimmel, Chad Heinemann, and Jeff Thompson.

1.2 Who Should Use the Modulation Toolbox?

The Modulation Toolbox is intended for researchers and students. It is freely avail-
able for non-profit purposes from the ISDL website at

http://isdl.ee.washington.edu/projects/modulationtoolbox

To use the Modulation Toolbox, we recommend having a basic understanding of
Fourier transforms, filters, and spectrograms. The Modulation Toolbox was written
and tested with MATLAB version R2007b in Windows, and it requires the MATLAB
Signal Processing Toolbox.

If you are using version 2.0 then there a few things to keep in mind when decid-
ing to upgrade to version 2.1. First, version 2.1 is largely the same as 2.0 in terms of
signal processing. The difference is that 2.1 includes new high-level functions with
flexible user interfaces and built-in default parameter settings. These new functions
represent the primary elements of decomposition (moddecomp), modulation spec-
tral analysis (modspectrum), modulation filtering (modfilter), and audio synthesis
(modsynth). However, version 2.1 is not entirely backward-compatible with 2.0. As
a result of small changes throughout the toolbox codebase, version 2.1 may not be
compatible with your existing scripts. Refer to Section 7 for details.
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1.3 Terms of Use

The University of Washington and Prof. Les Atlas and Pascal Clark give permission
for you and your institution to use the Modulation Spectral Analysis software de-
veloped at the University of Washington for internal, non-profit research purposes,
on the following conditions:

• The software remains at your institution and is not published, distributed,
or otherwise transferred or made available to anyone other than institution
personnel involved in research or instruction under your supervision.

• You acknowledge your use of the software in publications. In return we will
acknowledge your contributions made to our research involving the software.

• You provide Prof. Les Atlas (atlas@u.washington.edu ) with feedback on the
use of the software in your research and instruction, and that Prof. Les Atlas
and the University of Washington are freely permitted to use any information
you provide in making changes to the software, and are permitted to have
control over when and how new versions of the software will be made available
for research and/or commercial use.

• Any risk associated with using the software at your institution is with you and
your institution.

1.4 Contact Information

The Modulation Toolbox is designed to further the field of modulation research
through experimentation and collaboration. We welcome any questions, suggestions,
or comments that you might have. Please direct your feedback to Pascal Clark
[clarkcp@u.washington.edu] and Professor Les Atlas [atlas@u.washington.edu].

If you publish results obtained from the toolbox software, please use the following
format for your citation:

Les Atlas, Pascal Clark, and Steven Schimmel, Modulation Toolbox
Version 2.1 for MATLAB, September 2010, University of Washington,
http://isdl.ee.washington.edu/projects/modulationtoolbox/

1.5 Overview

The contents of this user guide and tutorial are as follows. Section 2 introduces
and motivates the need for coherent demodulation in modulation spectral analysis.
Section 3 provides a working knowledge of demodulation, analysis, and modification
as implemented by the toolbox. Then, Section 4 discusses the real-world meaning
of complex-valued coherent modulators. Sections 5 and 6 give an overview of the
Modulation Toolbox codebase, followed by a summary of new developments in ver-
sion 2.1 in Section 7. A list of references appears at the end, prior to appendices
related to coherent carrier estimation.
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2 Modulation Spectral Analysis and Filtering

This section motivates and introduces the basics of modulation spectral analysis
and filtering by way of a synthetic example and an actual speech example. Refer to
tutorial1 modulationFrequency.m for the source code.

2.1 A Synthetic Example

Consider the following test signal consisting of a low-frequency modulator multiplied
by a linear chirp (starting at 800 Hz and increasing at a rate of 100 Hz/sec).

m(t) = sin(2π2t) + sin(2π6t) (2)
c(t) = sin(2π(800t + 50t2))
x(t) = m(t) · c(t)

Let the vector x contain samples of x(t) at a rate of 16000 Hz over a period of
4 seconds. The modulation spectrum of this signal depends on how we choose to
demodulate it. We can plot the coherent modulation spectrum in 500-Hz wide
subbands with the command

modspectrum( x, 16000, ‘cog’, 500 );

and compare it to the non-coherent (Hilbert envelope) modulation spectrum gener-
ated by

modspectrum( x, 16000, ‘hilbert’, 500 );

We will describe the spectral center-of-gravity (COG) and the Hilbert envelope
methods in more detail in Section 3. For now it suffices to understand that co-
herent demodulation estimates bandlimited components without the interference
introduced by the conventional Hilbert envelope.

The results of the above function-calls appear in Figure 1. Note that the coherent
spectrum accurately represents the peaks in modulation frequency corresponding to
the 2-Hz and 6-Hz components of our defined modulator m(t). Conversely, the
non-coherent spectrum shows phantom cross-terms at 0, 4 and 8 Hz.

Next we will attempt to filter the modulator in order to isolate the 2-Hz compo-
nent. One way to do this is with a coherent modulation filter with a 4-Hz lowpass
cutoff via

yCOG = modfilter( x, 16000, [0 4], ‘pass’, ‘cog’, 500 );

and non-coherently via

yHilb = modfilter( x, 16000, [0 4], ‘pass’, ‘hilbert’, 500 );

The modulation-filter operation is defined as the time-domain multiplication of
a filtered modulator with the original detected carrier signal. Thus we expect the

5



Modulation frequency (Hz)

A
co

us
tic

 fr
eq

ue
nc

y 
(H

z)

Non−coherent Modulation Spectrum (before filtering)

 

 

−10 −5 0 5 10
0

500

1000

1500

2000

−5

0

5

10

15

Modulation frequency (Hz)

A
co

us
tic

 fr
eq

ue
nc

y 
(H

z)

Coherent Modulation Spectrum (before filtering)

 

 

−10 −5 0 5 10
0

500

1000

1500

2000

−5

0

5

10

15

Figure 1: Modulation spectra generated by non-coherent Hilbert envelope demod-
ulation (top) and coherent spectral COG demodulation (bottom). With respect to
the modulator definition given in (3) the coherent spectrum correctly displays 2-
and 6-Hz modulations. The colormap is in dB.

output of the modulation filter to be

m̂(t) = sin(2π2t) (3)
y(t) = m̂(t) · c(t)

A visual comparison of the time-domain signals in Figure 2 reveals that the co-
herently modulation-filtered result, yCOG, more accurately preserves the desired 2-Hz
modulation as judged by both the shape, depth, and phase of the beat pattern. An-
other reason to choose the coherent approach is that yCOG is free of bandwidth distor-
tion, unlike yHilb. As seen in Figure 3, the output of the non-coherent modulation
filter shows a periodic artifact at a rate of 8 Hz – well above the modulation filter
cutoff frequency! The non-coherent filtering artifact is an audible distortion that the
reader can verify by running the experiment in tutorial1 modulationFrequency.m.

For a more thorough discussion on coherent modulation filtering, refer to [4], [1]
and [5].
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Figure 2: Time-domain plots before and after modulation filtering. Top left: the
original synthetic signal with modulator overlaid in red. Bottom left: the desired
signal with the 6-Hz modulation removed. Top right: non-coherently filtered signal
which shows an incorrect envelope. Bottom right: coherently filtered signal with an
envelope qualitatively closer to that of the ideal desired signal.
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Figure 3: Spectrogram plots before and after modulation filtering, in the same
arrangement as Figure 2. Note the 8-Hz transient artifact present in the non-
coherently filtered signal in the top right.
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Estimate Carriersx[n]

Demodulate Filter

Synthesize y[n]

c [n]k

m [n]k

Figure 4: Modulation filtering system block diagram.

2.2 A Speech Example

The previous section demonstrated the shortcomings of the non-coherent Hilbert
envelope in a synthetic modulation filtering task. An example of a naturally modu-
lated signal is speech, in which temporal modulations are related to the articulations
of the vocal tract. In this section we argue that, compared to the commonly used
non-coherent Hilbert envelope, coherent methods more effectively represent speech
modulations for the purpose of modulation spectral analysis and filtering.

In the following it is important to understand that modulation spectral analysis
assumes the modulators can be studied and modified independent of the carriers.
This concept is embodied by the modulation-filtering block diagram in Figure 4, in
which filtered modulator waveforms recombine with the original carrier estimates to
form a new signal y[n]. The synthetic example in Section 2.1 was a particular case
where x[n] consisted of a single modulated carrier. For a rich signal such as speech,
the system in Figure 4 generalizes to a multitude of modulator-carrier pairs which
can nonetheless be modified separately and recombined.

The effectiveness of modulation filtering is one way to test the separability
of modulation frequencies from the carriers, whether they are coherently or non-
coherently estimated. Consider the following comparison (The reader may refer to
tutorial1 modulationFrequency.m for implementation details.) We apply a 2-Hz
lowpass modulation filter on a 16 kHz speech signal x[n] using coherent harmonic
demodulation,

yHarm = modfilter( x, 16000, [0 2], ‘pass’, {‘harm’,[],0.3}, 150 );

coherent subband demodulation,

yCOG = modfilter( x, 16000, [0 2], ‘pass’, ‘cog’, 250 );

and non-coherent Hilbert demodulation,

yHilb = modfilter( x, 16000, [0 2], ‘pass’, ‘hilb’, 250 );

As in Section 2.1, the non-coherent output yHilb is noisy as a result of bandwidth
distortion. Both coherently filtered signals, however, shows temporal smoothing
without bandwidth expansion of the harmonics, which can be verified audibly as
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Figure 5: Spectrogram plots before and after modulation filtering. Note the spectral
distortion present in the non-coherently filtered signal (top right), compared to the
bandlimited coherently filtered signals (bottom left and right).

well as visually in the spectrograms in Figure 5.
With the conclusion of these motivating examples, the next section goes into

more detail about the estimation of coherent and non-coherent modulators and
carriers.
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3 Estimating and Modifying Modulators and Carriers

This section describes coherent and non-coherent demodulation as estimators with
an underlying signal product model given by

x[n] =
K−1∑

k=0

mk[n] · ck[n] (4)

where x[n] is an observed, discrete-time fullband signal, mk[n] and ck[n] are the
respective kth modulator and carrier waveforms, the (·) operator denotes sample-
by-sample multiplication, and K is a finite number. We refer to demodulation as
the process of estimating mk[n] and ck[n] given some x[n] for all n and k. For this
task it is helpful to define

sk[n] = mk[n] · ck[n] (5)

where sk[n] is the kth analytic bandpass subband signal1, possibly a filterbank
subband signal, comprising x[n].

Defining sk[n] to be analytic means that it is complex-valued. We also define
carriers to be complex, as in

ck[n] = exp(jφk[n]) (6)

where j 2 = −1. Although complex time-domain signals are difficult to visualize,
there are a number of advantages for using complex expansion. We cover these in
Section 4. For now, the reader can take comfort in realizing that the complex factor-
izations in the Modulation Toolbox eventually project back onto the real numbers,
since each analytic subband sk[n] corresponds uniquely to a real-valued bandpass
signal.

Whether a demodulation operation is coherent or non-coherent depends on how
mk[n] and ck[n] are estimated from a single subband signal sk[n]. We refer to this
as “subband demodulation.” Alternatively, ck[n] can be estimated directly from
x[n] without an intermediate sk[n], which is the basis for coherent harmonic de-
modulation. In the following we give a user’s overview of these methods within the
Modulation Toolbox, discussing first coherent and non-coherent subband demod-
ulation, followed by coherent harmonic demodulation, and then concluding with
modification and audio synthesis.

3.1 Coherent and Non-Coherent Subband Demodulation

Subband demodulation begins by filtering x[n] into bandpass analytic signals sk[n]
defined by a filterbank. Finding the modulator and carrier for each subband signal
is an under-determined problem, however, because there are infinitely many factor-
izations that produce a valid modulator and carrier such that sk[n] = mk[n] · ck[n].
Basic axiomatic assumptions can disambiguate the solution [6] [7], and fall into one
of two categories: coherent and non-coherent.

1The use of analytic signals assumes that x[n] is real-valued. However, the Modulation Toolbox
can also decompose complex-valued x[n] by complementing each analytic subband signal with an
anti-analytic subband signal.
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Figure 6: Comparison of subband instantaneous frequency estimates (colored lines)
overlaid on top of a speech signal spectrogram (grayscale), for non-coherent (left)
and coherent (right) methods.

Perhaps the easiest method to understand is non-coherent subband demodula-
tion, which defines

mk[n] = |sk[n]|
ck[n] = exp(j 6 sk[n]) (7)

The magnitude of the analytic signal is also known as the Hilbert envelope of sk[n].
The modulator is thus real-valued and non-negative, and the carrier is phase-only
and unit-magnitude. Although intuitive and simply implemented, the modulator
and carrier are not bandlimited and not individually modifiable (see the examples
in Section 2, and more detail in [1]).

Coherent subband demodulation, however, enforces bandwidth constraints on
the modulator and carrier in order to allow distortion-free modification of each.
The Modulation Toolbox uses the spectral center-of-gravity (COG) method [6] to
smoothly track spectral concentration within the subband over time as an estimate
of the instantaneous frequency fk[n]. This defines the carrier phase via

φk[n] =
n∑

p=0

fk[n] (8)

Coherent demodulation then generalizes (7) by defining the modulator with respect
to the estimated carrier:

ck[n] = exp(jφk[n])
mk[n] = sk[n] · c∗k[n] (9)

For more details, refer to Appendix A.
With the appropriate settings, coherent demodulation has the immediate benefit

of yielding bandlimited carriers and modulators. Using the default carrier estimation
settings, Figure 6 compares subband instantaneous frequency trajectories between
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[M C data] = moddecomp( x, fs, {demodType,...}, subbands, dFactor );
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Figure 7: MATLAB function call and system block diagram for multirate subband
demodulation.

non-coherent Hilbert and coherent spectral COG. Each colored line corresponds to
fk[n] for a single k over time. The coherent trajectories are noticeably smoother and
adhere more closely to the narrowband spectral components in the speech signal.

To summarize, subband demodulation begins with a filterbank decomposition
followed by coherent or non-coherent modulator and carrier estimation on each sub-
band signal. The Modulation Toolbox implements this operation with the moddecomp
command, shown conceptually in Figure 7. The parameter demodType is a string
equal to ‘cog’ for coherent or ‘hilbert’ for non-coherent. For the purpose of compu-
tational efficiency, moddecomp provides a decimation option with the user-specified
parameter dFactor. Note that the coherent option will return complex-valued mod-
ulator signals. For an interpretation of complex modulation, refer to Section 4.

3.2 Coherent Harmonic Demodulation

An alternative to subband demodulation is to coherently estimate the carriers di-
rectly from the signal itself. The general form for this approach is given by the
convolved product

mk[n] =
n∑

p=0

h[n− p] · x[p] · c∗k[p] (10)
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Figure 8: Comparison of subband instantaneous frequency estimates (colored lines)
overlaid on top of a speech signal spectrogram (grayscale), for non-coherent (left)
and coherent (right) methods.

where ck[n] is the kth complex carrier signal, x[n] is real- or complex-valued, and
h[n] is the impulse-response of a lowpass filter. The expression in (10) is similar
to (9) except the convolution follows the product instead of the other way around.
Equation (10) reveals demodulation for what it really is: a frequency-shift operation
that brings a spectral band in x[n] to baseband where it can be extracted as a lowpass
modulator signal.

In the case of harmonic demodulation, the spectral band is related to an integer-
multiple of the time-varying fundamental frequency of x[n]. This model is appro-
priate for many musical signals and for voiced speech. As implemented by the
Modulation Toolbox, the kth carrier is defined as

ck[n] = exp(jkφ0[n]) (11)

where

φ0[n] =
n∑

p=0

F0[n] (12)

and F0[n] is the detected fundamental frequency or “pitch” of the signal x[n]. If
x[n] is unvoiced or weakly voiced during some time interval n1 < n < n2 then the
built-in pitch detector will fill in the gap by interpolating F0[n] between the valid
detections at F0[n1] and F0[n2]. For details, refer to Appendix B.

Like coherent subband demodulation, a sufficiently smooth estimate of F0[n]
ensures bandlimited modulators and carriers. Figure 8 compares non-coherent sub-
band instantaneous frequencies to those obtained from coherent harmonic demod-
ulation. The primary difference is that harmonic instantaneous frequencies (as a
function of pitch-detection parameters) are smooth and bandlimited. Harmonic car-
riers are also not restricted to artificial subband boundaries, which is an advantage
over both coherent and non-coherent subband demodulation strategies.

The Modulation Toolbox implements this operation with the moddecomp com-
mand, shown conceptually in Figure 9. For the purpose of computational efficiency,
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[M C data] = moddecomp( x, fs, {'harmonic',...}, bandwidth, dFactor );
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Figure 9: MATLAB function call and system block diagram for multirate harmonic
demodulation.

moddecomp provides a decimation option with the user-specified parameter dFactor.
Note that this option will return complex-valued modulator signals. For an inter-
pretation of complex modulation, refer to Section 4.

3.3 Analysis, Modification and Synthesis

The previous sub-sections discussed demodulation as the first step in any modulation-
based analysis or synthesis operation. After obtaining the estimated modulators,
the Modulation Toolbox provides methods for analyzing the modifying mk[n] in
the spectral domain. The modulation spectrum is the windowed Fourier transform
across time

Pk[i] =
N−1∑

n=0

w[n] mk[n] e−j 2πi
N

n (13)

where w[n] is a data taper such as a rectangular or Hamming window, and N is
greater or equal to the number of time dimensions in the array mk[n]. Modulation
spectral analysis is closely related to modulation filtering, defined as

m̃k[n] =
n∑

q=0

g[n− q] mk[q] (14)

or, in the modulation-spectral domain

m̃k[n] =
N−1∑

i=0

G[i]Pk[i] ej 2πn
N

i (15)

where g[n] is the impulse response of a linear filter that is time-invariant with respect
to mk[n] (although time-varying with respect to x[n]).

The Modulation Toolbox command for modulation spectral analysis is

P = modspectrum( x, fs, demodParams, subbands, specOptions );

14



which internally performs demodulation by calling moddecomp. The demodParams
and subbands parameters work in the same way as for moddecomp and cover subband
demodulation (coherent and non-coherent) as well as coherent harmonic demodula-
tion. Calling modspectrum without specifying an output will automatically plot the
magnitude of the modulation spectrum, as seen in Section 2. Refer to the MATLAB
m-file header for usage information.

Similarly, the MATLAB command for modulation filtering is

y = modfilter( x, fs, filterBand, filterType, demodParams, subbands );

where the parameters filterBand and filterType together specify the frequency
response of the modulation filter g[n]. Note that modfilter returns a vector y,
which is the synthesized audio signal y[n] after modulation filtering. This means
that modfilter implicitly makes a call to modsynth in order to execute the synthesis
operation

y[n] =
K−1∑

k=0

m̃k[n] · ck[n]. (16)

Modulation filtering is represented schematically in Figure 4.
Should you choose to create your own modulator and carrier modifications, the

modsynth function allows you to combine almost arbitrary M and C arrays to create
an audio signal. The MATLAB function-call is

y = modsynth( M, C, data );

where data is a data structure, returned by moddecomp, containing decomposition
implementation details. For example, you may want to use different modulation fil-
ters for different subbands of a single audio signal. Mathematically this is equivalent
to

m̃k[n] =
N−1∑

i=0

Gk[i] Pk[i] ej 2πn
N

i. (17)

The generalized modulation filter in (17) can be visualized as the multiplication
of two-dimensional surfaces in the joint-frequency domain [3] [2]. Instead of using
modfilter, one way to carry this out is with the following toolbox commands:

[M C data] = moddecomp( x, fs, demodParams, subbands );
M2 = ifft( G.*fft( M, [ ], 2 ), [ ], 2 );
y = modsynth( M2, C, data );

where G is some two-dimensional array containing the discrete samples of the desired
masking function Gk[i].

So far we have covered the four major operations implemented by the Mod-
ulation Toolbox: demodulation, spectral analysis, filtering and synthesis. All of
these capabilities can be explored using the modulation spectrogram graphical user
interface (GUI), which we introduce in the next section.
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3.4 Modulation Spectrogram GUI

The modulation spectrogram computes the modulation spectrum within a sliding
window, usually on the order of hundreds of milliseconds or seconds in duration. To
open the modulation spectrogram GUI, type

modspecgramgui;

into the MATLAB command line. Go to File -> Open and select a .wav audio file.
Using speech male.wav in the sounds folder, for example, will produce the display
in Figure 10.

The GUI consists of three main plotting areas. In order from top to bottom
they are the time-domain waveform, the time-frequency spectrogram, and finally the
joint-frequency modulation spectrum. Clicking anywhere within the time-domain
plot or within the spectrogram re-centers the analysis window (shown with a dotted
rectangle). With each repositioning the modulation spectrum updates accordingly.

Now click Options -> Demodulation Options. A new dialog box should ap-
pear as seen in Figure 11. Here is where you can change the demodulation settings
related to filterbank design (for coherent or non-coherent subband demodulation),
pitch-detection settings (for coherent harmonic demodulation), and analysis window
duration and overlap. Each of the coherent methods can also be tuned by carrier-
detection parameters related to the arguments of the functions moddecompcog.m and
moddecompharm.m.

Select the “Pitch-harmonic (coherent)” demodulation option and click Ok. You
should see a new modulation spectrogram appear, as in Figure 12.

You can use the mouse cursor to make selections within the modulation spectrum
as a means of applying modulation filters. As an exercise, click and drag to select
an area to the right of 0 Hz in modulation frequency, and then click Set to Zero
under the “Selection” menu. Next, click Symmetrize and finally click Apply. The
result is a lowpass modulation filter operation on the signal, which should look like
the example in Figure 13. Listen to the modulation-filtered audio by clicking Play
Masked. With a sufficiently low modulation-frequency cutoff, the speech will sound
slurred as high-frequency articulations are systematically removed.

Broadly speaking, modulation-frequency domain modification has potential ap-
plications in speaker separation [2] and audio compression [3], as well as general
signal enhancement and separation problems. The purpose of the modulation spec-
trogram GUI and the associated modulation codebase is to provide tools for the
continuing investigation of such fields of research.
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Figure 10: The modulation spectrogram graphical user interface, loaded with a
speech signal using default settings.

Figure 11: Demodulation options dialog screen.
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Figure 12: Modulation spectrogram using coherent harmonic demodulation.

Figure 13: Modulation spectrogram with a lowpass “mask” or modulation filter
applied uniformly to all modulators.
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4 Interpretation of Complex Modulators

A consequence of bandlimited coherent demodulation is that the modulators are
generally complex-valued. It is difficult at first to understand what a complex time-
domain signal could mean in the “real world.” However, the notion of a complex
envelope is common in communications theory, and has a tangible effect on a corre-
sponding real-valued representation. The intent of this section is to illustrate these
concepts without overbearing mathematics, and to convince the reader that complex
modulators are relevant to the analysis of natural signals such as speech.

The first thing to realize is that everything the Modulation Toolbox does in
the complex-number domain eventually projects back onto real numbers. Each
analytic subband signal sk[n] is uniquely related to a real-valued bandpass signal
xk[n] = Re{sk[n]} by the relation

sk[n] = xk[n] + jH{xk[n]} (18)

where H denotes the Hilbert transform. As discussed in Section 3, we assume a
product model for the analytic subband

sk[n] = mk[n] · ck[n], ck[n] = exp(jφk[n]). (19)

For the sake of argument, let us allow mk[n] to be complex-valued and of the form
mk[n] = ik[n] + jqk[n], where ik[n] and qk[n] are each real-valued. Euler’s formula
for complex exponentials leads to Rice’s representation for a bandpass signal [8]:

xk[n] = Re{sk[n]} = ik[n] · cos(φk[n])− qk[n] · sin(φk[n]) (20)

which is simply the superposition of two modulated carriers in quadrature. Equiv-
alently,

xk[n] = Re{sk[n]} = |mk[n]| · cos(φk[n] + 6 mk[n]). (21)

where the 6 operator returns the angle of its complex argument.
When inside the cosine term in (21), the modulator phase acts as “phase-

modulation” or perturbations of the fine structure of xk[n]. Furthermore, the phase-
modulation arises from the interaction between quadrature envelopes ik[n] and qk[n]
in (20). The difference between coherent and non-coherent demodulation is in the
allocation of phase between the envelope and carrier. Whereas the Hilbert envelope
places all of the subband phase in the carrier, that is,

cHilb
k [n] = exp(j 6 sk[n]) (22)

coherent demodulation makes the important distinction between carrier and modu-
lator phase by defining

6 sk[n] = φk[n] + 6 mk[n] (23)

in conjunction with (19).
The benefit of coherent demodulation is that the separation of phase can lead

to bandlimited solutions for both ck[n] and mk[n], unlike the bandwidth-expanding
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Figure 14: Non-coherent and coherent representations of amplitude modulation
(red), carrier fine structure (blue) and phase modulation (black). Note how the
phase inversion around 1.4 seconds is reflected smoothly in the coherent case (black
curve) while manifesting as an abrupt compression in the non-coherent carrier wave-
form on the left.

Hilbert envelope. This results from the flexibility of Rice’s representation in (20)
through the use of a complex abstraction established in (18) and (19).

We can directly observe the effect of complex modulation in the time-domain,
as seen in Figure 14. In both cases, the red curve is the subband magnitude,
or |mk[n]|. For the non-coherent case the blue curve is the real-valued carrier
cHilb
k = cos(φk[n] + 6 mk[n]), which shows high-bandwidth irregularities around 1.4

and 1.42 seconds. In the right-hand panels, however, the blue curve is the cosine
carrier from Rice’s representation, or ck[n] = cos(φk[n]). The black curve is the
corresponding phase-modulation term cos(6 mk[n]), which switches polarity at 1.4
and 1.42 seconds. In the non-coherent case on the left, these phase inversions appear
as a high-bandwidth frequency modulation. Conversely, the coherent case smoothly
encodes phase inversion as rotations of mk[n] in the complex plane. This example
reveals how the complex modulator mk[n] combines the red amplitude modulation
and the black phase modulation into a single term, while maintaining bandwidth
constraints in (19).
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5 Toolbox Function Overview

The primary functions in the Modulation Toolbox – modspecgramgui, moddecomp,
modspectrum, modfilter, and modsynth – make calls to a codebase of modular
functions that you may want to use or modify for your own algorithms. Here is a
listing of the Modulation Codebase, with brief descriptions of each function. More
details can be found in the individual m-file headers.

• High-Level Modification and Analysis

modspecgramgui : Opens a graphical user interface that allows sig-
nal analysis and modification in the modulation fre-
quency domain.

modspectrum : Plots the joint-frequency modulation spectrum of a
signal.

mospecgram : Legacy version of the modulation spectrum. Al-
though it is still supported, use of modspectrum in-
stead is encouraged.

modfilter : Filters the modulators of a signal while keeping the
original carriers unchanged.

moddecomp : Demodulates an audio signal, returning a collection
of modulator and carrier signals.

modsynth : Recombines modulator and carrier signals to form an
audio signal.

modop shell : A template function for designing your own modula-
tion analysis/modification/synthesis routines.

• Demodulation
moddecompharm : Coherently demodulates a signal based on a pitch

estimate and an assumption of harmonic carriers.
moddecompcog : Coherently demodulates subband signals using car-

riers based on time-varying spectral center-of-
gravity.

moddecompharmcog : Coherently demodulates a signal with COG-
refined, quasi-harmonic carriers.

moddecomphilb : Incoherently demodulates subband signals using
magnitude Hilbert envelopes.

modrecon : Reconstructs subband signals from modula-
tor/carrier pairs.

modreconharm : Reconstructs a signal from modulators and har-
monic carriers.

detectpitch : Detects the fundamental frequency of a signal, as-
suming a harmonic signal model.

viewcarriers : Overlays carrier frequencies with a spectrogram of
the original audio signal for comparison.

if2carrier : Converts instantaneous frequency track(s) into
complex-exponential carrier signal(s).

carrier2if : Extracts the instantaneous frequency track(s) from
the phase of complex-exponential carrier signal(s).
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• Filtering

designfilter : Designs a narrowband multirate FIR filter.
filterfreqz : Plots the frequency response of a multirate filter.

narrowbandfilter : Performs a multirate filter operation.

• Filterbank
cutoffs2fbdesign : Generates filterbank design parameters from

a list of subband cutoff frequencies.
designfilterbankgui : Runs a graphical user interface for design-

ing a filterbank with equispaced subbands and
near-perfect synthesis.

designfilterbank : Designs a filterbank with arbitrary subband
spacing and bandwidths.

designfilterbankstft : Designs a filterbank with equispaced sub-
bands based on the short-time Fourier trans-
form.

filterbankfreqz : Plots the frequency responses of the subbands
in a filterbank design.

filtersubbands : Use a filterbank design to extract subband sig-
nals from an audio signal.

filterbanksynth : Recombine subband signals to form an audio
signal.
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6 Helpful Tips (Toolbox Conventions)

When using the Modulation Toolbox functions, it is helpful to keep in the mind the
following:

• Demodulation functions return a modulator matrix M, carrier matrix C and
instantaneous-frequency matrix F with the kth row corresponding to the kth
time-domain signal component. There is always one modulator for every car-
rier.

• If you demodulate a real-valued signal x, then real(M.*C) will approximate
x. Hence real(M(k,:).*C(k,:)) is a real-valued kth subband signal with
0-dB gain. You can achieve more accurate re-synthesis using modsynth or
filterbanksynth.

• Instantaneous frequency matrices F and fundamental frequency estimates F0
are mapped from the range [0, fs] to [0, 2], where fs is the audio sampling
rate. This is the same convention used by MATLAB filter design functions in
the Signal Processing Toolbox. To convert back to Hertz, use F/2*fs.

• Modulation Toolbox functions have some required and some optional input
parameters. In the m-file headers, optional parameters are bracketed as in
<optionalParam>. Optional parameters default to internally defined values if
left undefined. Also, use the empty array [ ] to activate the default value for
any optional parameter. For example:

foo( x, param1, [ ], optionalParam2, [ ] optionalParam4 );

• The high-level functions moddecomp, modspectrum, modfilter, and modsynth
have a “verbose” mode which outputs helpful diagnostics and plots. To ac-
tivate, simply type the string ‘verbose’ at the end of the input arguments.
For example:

moddecomp( x, fs, ‘verbose’ );
moddecomp( x, fs, demodParams, ‘verbose’ );
moddecomp( x, fs, demodParams, subbands, ‘verbose’ );

• By default, modulators are not downsampled. Hence the filterbank-design
functions also default to a downsampling factor of 1. To improve run-time
and reduce memory usage, you may want to use the downsampling options
available in the toolbox functions. For subband demodulation methods, the
carriers will be downsampled as well. For harmonic demodulation, the carriers
will remain at the original audio sampling rate.

• The “harmonic reconstruction” function modreconharm can actually remodu-
late any arbitrary modulator array M with some carrier array C. Both arrays
must have the same number of rows.

• Bandwidth is measured between -6 dB cutoff points for bandpass and lowpass
filters. So a lowpass filter with cutoff located at B Hz will have a bandwidth
of 2B or 4B/fs in normalized units.
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7 Version Info

The Modulation Toolbox has gone through several revisions since its inception. The
most recent release is version 2.1, following 2.0 and 1.23. Version 1.23 consisted
of the modulation spectrogram GUI and the modspecgram function. Versions 2.x
extend the functionality of 1.23 with a codebase for coherent demodulation and
filtering functions.

Versions 2.1 and 2.0 are very similar algorithmically. The main difference is
that 2.1 has been revised substantially with high-level demodulation functions and
simplified user interfaces. We recommend using the latest version of the toolbox, but
users of version 2.0 should be aware that 2.1 is not entirely backwards compatible
with 2.0 and may not work with your existing scripts. The following is a list of
notable (but not comprehensive) changes in 2.1 since 2.0:

• There are new high-level functions for one-line demodulation operations:
moddecomp, modspectrum, modfilter, modsynth.

• The modspecgram function is still supported but has been replaced by
modspectrum.

• The pitch-detection algorithm in detectpitch has been substantially revised
for increased accuracy and parameter control. The new user interface for pitch-
detection is also reflected in moddecomp and the modulation spectrogram GUI.

• The functions modfilt, modfiltdesign, and modfiltfreqz have been re-
named narrowbandfilter, designfilter and filterfreqz since they are
not necessarily related to modulation.

• The viewcog, viewhilb, and viewpitch functions have been replaced with
the more general viewcarriers.

• There are new functions for conversion between instantaneous frequencies and
carrier signals (if2carrier and carrier2if).

• designfilterbank only allows a single downsampling factor across all sub-
bands.

• The input parameters for moddecompharm and moddecompharmcog have changed
order for consistency with the rest of the toolbox (particulary with moddecomp).

• moddecompharm and moddecompharmcog return one carrier for each modulator.

• The carrier-detection window length is a required parameter in moddecompcog
and moddecompharmcog.

• detectpitch returns F0 values in normalized frequency which interface di-
rectly with moddecompharm and moddecompharmcog.

• The truncate option in filterbanksynth has been removed and replaced
with a keeptransients option in designfilterbank and
designfilterbankstft.
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• The Hierarchical Lapped Transform (HLT) option has been replaced by Dis-
crete Wavelet Transforms in the modulation spectrogram GUI.

• filterbanksynth discards imaginary quantization error if below a heuristic
threshold.

• filtersubbands and filterbanksynth can accurately process complex input
signals.
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8 Further Reading

The following references provide background for modulation analysis and modifica-
tion as implemented by the Modulation Toolbox.

Modulation filtering theory:

• P. Clark and L. Atlas, “A sum-of-products model for effective coherent mod-
ulation filtering,” Proc. IEEE ICASSP, Taipei, pp.4485-4488, 2009.

• P. Clark and L. Atlas, “Time-frequency coherent modulation filtering of non-
stationary signals,” IEEE Trans. Sig. Process., vol. 57, no. 11, pp. 4323-4332,
Nov. 2009.

• S.M. Schimmel, “Theory of Modulation Frequency Analysis and Modulation
Filtering, with Applications to Hearing Devices,” Ph.D. dissertation, Univer-
sity of Washington, 2007.

• S. Schimmel and L. Atlas, “Coherent envelope detection for modulation Fil-
tering of speech,” Proc. IEEE ICASSP, vol. 1, pp. 221-224, March 18-23,
2005.

Harmonic coherent modulation filtering:

• B. King and L. Atlas, “Coherent Modulation Comb Filtering for Enhancing
Speech in Wind Noise,” International Workshop on Acoustic Echo and Noise
Control, Seattle, WA, 2008.

• Q. Li and L. Atlas, “Coherent Modulation Filtering for Speech,” Proc. IEEE
ICASSP, Las Vegas, 2008.

• S. Schimmel and L. Atlas, “Target Talker Enhancement in Hearing Devices,”
Proc. IEEE ICASSP, Las Vegas, 2008.

Modulation-frequency domain analysis and modification:

• S.M. Schimmel, L.E. Atlas, and K. Nie, “Feasibility of single channel speaker
separation based on modulation frequency analysis,” Proc. IEEE ICASSP,
vol. 4, pp. 605-608, April 2007.

• M.S. Vinton and L.E. Atlas, “Scalable and progressive audio codec,” Proc.
IEEE ICASSP, vol. 5, pp. 3277-3280, 2001.
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A Spectral Center-of-Gravity (COG) Demodulation

As mentioned in Section 3, we begin with an analytic subband signal sk[n]. This
means that sk[n] is uniquely related to a real-valued bandpass signal xk[n] through
the Hilbert transform H via

sk[n] = xk[n] + jH{xk[n]} (24)

The modulation product model assumes that sk[n] is of the form

sk[n] = mk[n] · ck[n], ck[n] = exp(jφk[n]). (25)

Hence, we obtain the complex modulator via the demodulation rule:

mk[n[= xk[n] · c∗k[n]. (26)

To find the modulator, we need only define the phase of the carrier, φk[n[.
Traditionally, the so-called instantaneous frequency of an oscillating signal ck[n] is
the derivative of the phase. In discrete-time we approximate the derivative with a
first-order difference,

fk[n] = φk[n]− φk[n− 1], φk[−1] = 0 (27)

where the carrier frequency at each time fk[n] is in radians/sample. The first-order
difference is a rather crude approximation to the derivative, but it has the advantage
of being invertible via the cumulative sum

φk[n] =
n∑

p=0

fk[p]. (28)

From these equations we have a procedure for coherently demodulating the band-
pass signal sk[n]:

1. Detect the subband instantaneous frequency fk[n] (more details below),

2. Integrate via (28) to obtain φk[n],

3. Exponentiate to obtain ck = exp(jφk[n]),

4. Demodulate via (26) to obtain mk[n].

As required by Step 1 above, we still need the instantaneous frequency of the
subband. The center-of-gravity approach defines fk[n] as the average frequency of
the instantaneous spectrum of sk[n] at time n [6]. Conceptually we estimate the
instantaneous spectrum with a short-time Fourier transform,

Sk(ω, n) =
∑

p

g(p)sk(n + p) e−jωp (29)

where g[p] is a short spectral-estimation window, for example a Hamming or Hann
window. Then, the center-of-gravity is defined as

fk[n] =

∫ π
−π ω|Sk(ω, n)|2 dω∫ π
−π |Sk(ω, n)|2 dω

. (30)
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Of course, we must discretize the Fourier transform in practice by using the
DFT. The short-time Fourier transform for the subband is actually

Sk[i, n] =
∑

p

g[p]sk[n + p]e−j2π(i/L)p, i = 0...L− 1 (31)

where L is the DFT size. The corresponding center-of-gravity estimate is then

fk[n] =
∑L−1

i=0 r[i] |Sk[i, n]|2∑L−1
i=0 |Sk[i, n]|2 (32)

where r[i] is a weighting function that acts like the ω term in (30) while accounting
for the circularity of the DFT. It is defined as

r[i] =





2πi/L, 0 ≤ i ≤ L/2

2πi/L− 2π, L/2 < i < L
. (33)
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B F0 Detection for Harmonic Demodulation

In this section we summarize the most important aspects of the detectpitch algo-
rithm in regards to demodulation processing.

Given an audio signal x[n], n ∈ [0, N − 1], the first step of the algorithm is to
block x[n] into 50-millisecond frames every 25 milliseconds,

xi[n] = w[n− iR] · x[n] (34)

where w[n] is a Hamming window of length 2R and R = fs/40. The algorithm
then makes a binary voicing decision for each i ∈ [0, N/R − 1], referred to here as
v[i]. If the ith frame contains enough signal energy (relative to an automatically
signal-adaptive threshold), then the frame is considered “voiced,” v[i] = 1, and
F0[iR] = f [i]. Otherwise, v[i] = 0 and F0[iR] = 0.

Next, interpolation yields F0[n] for all n. Interpolation consists of two sub-steps.
First, the unvoiced portions are filled in based on straight-line interpolation between
voiced segments of F0[iR]. Then, a sampling-rate conversion yields the upsampled-
by-R fundamental frequency estimate F0[n]. Figure 15 shows F0[iR] before and
after interpolation.

In each voiced frame, the estimate f [i] results from 1) peak-finding in the signal
autocorrelation and 2) refinement based on fitting to a least-squares harmonic model
with the fundamental frequency as the free parameter. These methods are well
established in the pitch-estimation literature, and the comments for detectpitch.m
contain references for further reading.
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Figure 15: Top: Overlay of a signal spectrogram and the estimated fundamental
frequency, where nonzero portions of the blue curve correspond to voiced regions.
Bottom: The interpolated version of the fundamental frequency, with unvoiced re-
gions filled in.
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