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Preface

This tutorial is based on lecture notes from the Fall 1990 course on Principles of
Programming Languages at the University of Michigan. (My young friend Quisani did
not attend the lectures.) The present version incorporates some changes provoked by
the necessity to update the bibliography. The main part of the paper is still the same,
however, and the examples are unchanged even though many things happened in the
meantime. In particular, we (the collective we) have learned how to build evolving
algebras by the method of successive refinements, and the current evolving algebra
description of the C programming language in [GH] doesn’t look much like the strcpy
example anymore. Now, we understand better how to compose evolving algebras and
how to prove things with evolving algebras. A typical misconception is that the
operational approach is necessarily too detailed. Some people think that an approach
suited for complexity analysis does not give a good high-level specification language. [
believein a high-level specification language based on evolving algebras; the successive
refinement method is then one tool to prove implementation correctness. But this and
various other issues (how to incorporate real time into evolving algebras for example)
will have to be addressed elsewhere.

*First published in Bulletin of European Assoc. for Theor. Computer Science, no. 43, Feb. 1991,
264-284. Reprinted in “Current Trends in Theoretical Computer Science”, Eds. G. Rozenberg and
A. Salomaa, World Scientific, 1993, 266-292. This version contains slight modifications to reflect
the one and only change in the definition of ealgebras that happened in the meantime, namely that
the basic EA machine is deterministic; the explanation for the change is found in Subsection 2.7 in

[Gud].



1. Another computation model

Quisani: Somebody told me that you are doing semantics these days.
Author: Somebody was right.
Q: Sure, somebody is usually right. Tell me about your semantics.

A: The original idea was to provide operational semantics for algorithms by elaborat-
ing upon what may be called the implicit Turing’s thesis: every algorithm is simulated
by an appropriate Turing machine [Gul]. Turing did not claim this explicitly; his the-
sis was: every computable function is computable by some Turing machine. But his
informal proof of the thesis [Tu] gives the stronger version. In the sense of the stronger
thesis, Turing machines give operational semantics to algorithms. Unfortunately, this
semantics is not very good (and of course I do not claim that semantics was Turing’s
goal). Turing machine simulation may be very clumsy. In particular, one step of the
algorithm may require a long sequence of steps of the simulating Turing machine. I
was looking for machines able to simulate algorithms much more closely. In partic-
ular, the simulation should be lock-step so that the simulating machine makes only
a bounded number of steps to simulate one step of the given algorithm. Evolving
algebras, or FAs, are supposed to be such machines.

Q: There are abstract machines in the literature better suited to simulate algorithms
than Turing machines: Kolmogorov-Uspensky machines [KU], storage modification
machines of Schénhage [Sch], various random access machines.

A: Each of these machine models has a fixed level of abstraction which may be very
low for some algorithms. An evolving algebra, on the other hand, may be tailored to
an arbitrary abstraction level. One may have a whole hierarchy of evolving algebras
of various abstraction levels for the same algorithm. See [GH] for an example where
you will find EAs for various abstraction levels of the C programming language. A
hierarchy of evolving algebras is constructed by Egon Boérger and Dean Rosenzweig
in [BRol] where the technique of successive refinements is used to reconstruct the
Warren Abstract Machine (a virtual machine model which underlies most of the
current Prolog implementations and incorporates crucial optimization techniques)
starting from a more abstract EA for Prolog developed by Borger in [Bol-Bo3].

Q: How do you tailor an EA machine to the abstraction level of an algorithm whose
individual steps are complicated algorithms all by themselves? For example, the
algorithm may be written in a high level language that allows, say, multiplying integer
matrices in one step.

A: You model the given algorithm modulo those algorithms needed to perform single
steps. In your case, matrix multiplication will be built in as an operation.

Q: Coming back to Turing, there could be a good reason for him to speak about
computable functions rather than algorithms. We don’t really know what algorithms
are.



A: T agree. Notice, however, that there are different notions of algorithm. On the one
hand, an algorithm is an intuitive idea which you have in your head before writing
code. The code then implements the algorithm. The same algorithm may be coded
in different programming languages. It may have many different abstraction levels.
In particular, a source program and the result of its compilation implement versions
of the same algorithm that differ in their abstraction levels. We can argue which, if
any, of the abstraction levels is the natural one. The question when two such intuitive
algorithms are the same may be hard.

On the other hand, there is a more naive notion according to which an algorithm
essentially is a program (together with some computing environment which is often
implicit). In particular, different programs give different algorithms. I do not want
to completely equate programs and algorithms though; one speaks usually about
programs in particular programming languages. The notion of algorithm is a little
more general. A programming language itself can be seen as an algorithm — a universal
algorithm that takes a given program as a part of its data.

Q: Do you want to capture the naive notion of algorithm by means of evolving
algebras?

A: The goal is good operational semantics, but it would be great to formalize properly
the notion of algorithms, wouldn’t it?

Q: To what extent is this formalization goal achieved?

A: Well, I will explain to you the notion of sequential evolving algebras. It seems
to me that it captures the notion of sequential algorithms, that every sequential
algorithm can be closely simulated by an appropriate sequential EA.

Q: What do you mean “closely simulated”?

A: The simulating EA is on the same abstraction level and does not use much more
resources than the given algorithm. In particular the simulation is lock-step.

Q: But who knows what kind of resources the given algorithm uses?

A: Well, give me a sequential algorithm and tell me which resources you care about.
Then we will be able, I think, to construct a sequential EA simulating your algorithm
closely with respect to the resources in question.

Q: What are your arguments?

A: Speculation and experimentation. In particular, EAs were constructed for a num-
ber of sequential programming languages, e.g., Modula-2 [GMr], Prolog [Bol-Bo3],
Prolog III [BS], Protos-L. [BB] and C [GH]. In this modeling of programming lan-
guages, the goal was direct and natural operational semantics. But these models
confirm the thesis as well.

Q: What about nonsequential, say distributed parallel, algorithms?

A: The notion of sequential EA has been generalized to the distributed parallel case
[GMs]. In particular, EAs were constructed for Occam [GMs], Parlog [BRil] and Con-
current Prolog [BRi2]. See also [GR]. I do not know any distributed parallel algorithm



that presents a conceptual challenge for EA formalization. There is, however, a dif-
ference between the sequential and distributed parallel cases. An arbitrary sequential
algorithm can be viewed as a sequential transition system; analyzing such systems,
you discover sequential evolving algebras and may justify to an extent the thesis. The
notion of distributed parallel algorithms seems open-ended at the moment.

Q: Even if one buys your thesis, he/she may not like your semantics.

A: T agree but hope that he/she will like it. EAs are relatively easy to understand and
design. [ use them in class. Even a very small program in an unusual language can be
difficult to understand directly. Sketching an appropriate EA on a blackboard may
help. You can define various machine models as special classes of evolving algebras.

Q: Do you have software to run an EA machine?

A: Yes. For this purpose, we use an EA interpreter written in C here at Michigan.
You can run your EA for a specified number of steps and then examine the resulting
state, you can run your EA until some predicate becomes true, and so on.

Q: Do you see any use for evolving algebras outside the classroom?

A: Yes. Here are some examples. [SO, the International Standards Organization,
adapted Egon Borger’s proposal [BD] of an EA based precise semantics of full Prolog
[WG1T7]. (Actually, Egon Borger is not completely happy with the adaptation. In
cooperation with Dean Rosenzweig, he prepared a simpler evolving algebra description
of full Prolog [BRo2].) Georg Gottlob, Gerti Kappel, and Michael Schrefl used EAs
to specify the semantics of characteristic features of object-oriented database models
[GKS, KS]. An EA based manual for a programming language could be precise and
relatively easy to read.

Q: Do you expect evolving algebras to be used for proving things about algorithms?

A: Yes. The possibility to tailor EAs to any given abstraction level is especially
useful. I have already mentioned Borger-Rosenzweig’s work on the Warren Abstract
Machine [BRol]. Starting from a Prolog evolving algebra on a high abstraction level
(essentially the level of SLD-resolution), a hierarchy of more and more refined evolving
algebras is constructed; the final algebra is the first formal abstract specification of
WAM in the literature. It is proved that, under appropriate assumptions, every
(1 + 1)-st algebra correctly implements the i-th algebra. This is a solid foundation
for constructing provably correct compilers from Prolog to WAM; the mentioned
proof assumptions give rise to conditions that guarantee correctness. Using similar
techniques, my student Jim Huggins is attempting to prove the correctness of the
Kermit file transfer protocol.

The EA approach is appropriate for the use of temporal and dynamic logics though
we have only started to explore this. In a sense, the EA approach provides a founda-
tion for the use of such logics. If you are looking for models of first-order temporal
and dynamic logics, think about evolving algebras of appropriate kinds. (By the way,
evolving algebras are called dynamic algebras sometimes, but the latter term is used
in the dynamic logic area in a very different sense; see [Pr] for example.)
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Q: Now tell me what evolving algebras are.

A: The basic ideais very simple, at least in the sequential case, when time is sequential
(the algorithm starts in some initial state Sy and goes through states Sy, Ss, etc.) and
only a bounded amount of work is done on each step. Each state can be represented
by a first-order structure: a set with relations and functions. (The term “first-order
structure” is misleading. It is logic that is first-order, not structures. Models of
second-order logic, for example, can be easily and naturally represented by “first-
order” structures. But the term is common and we will use it.) Thus, the run can
be seen as a succession of first-order structures, but this isn’t a very fruitful way to
see the process. How do we get from a state S; to the next state 5;1,7 Following
the algorithm, we perform a bounded number of changes in .S;. It turns out that the
whole algorithm can be rewritten as a finite number of transition rules of very simple
form.

By the way, I am thinking about states of the algorithm as something feasible.
Certainly, any computer executing the algorithm is able (all the time it is executing
correctly) to represent the states. On the other hand, the whole process may be huge,
unwieldy and infeasible to represent.

It isn’t obvious how to generalize the basic idea to the case of asynchronous dis-
tributed algorithms; see [GMs] in this connection.

Q: It seems that you have an evolving first-order structure. Why do you call it an
evolving algebra?

A: For technical reasons, it is convenient to replace relations by appropriate functions.
In universal algebra, a first-order structure without relations is called an algebra [Gr];
we will use the term “static algebra”.

2. Static algebras

Q: Please explain to me what static algebras are exactly.

A: Gladly. Let me start at the very beginning. The term signature will be used
to mean a finite collection of function names. It is supposed that each function
name comes with an indication of its arity, i.e., the number of arguments. A static
algebra of a signature o is a nonempty set S, called the superuniverse, together with
interpretations on § of function names in o. A function name of arity r is interpreted
as an r-ary function from S to &, i.e., a function from §" to §, and is called a
basic function of the algebra. A basic function of arity zero is called a distinguished
element.

Q: I thought a function is always a function of something so that the arity of a
function is at least one.

A: Stretching notions is not new to science; recall the notion of zero-speed motion
in physics for example. One may insist that zero-speed motion is no motion at all,



but it is more convenient to view zero-speed motion as a special case of motion. By
the way, in standard terminology, the term “universe”, rather than “superuniverse”,
is used. We reserve the term “universe” for other purposes.

Here is an example of a static algebra (which I will have to modify). Suppose that
a signature o contains zero-ary function names 0, 1 and binary function names 4 and
x. One static algebra of signature o is obtained as follows: Take the superuniverse
to be the set of integers and interpret the function names in the obvious way. There
are other natural static algebras of signature o, but in general a static algebra need
not be natural; it may be very arbitrary.

Q: I understand that static algebras will represent snapshots of computational pro-
cesses. Isn’t your definition too restrictive? For example, you may want to extend
that arithmetical static algebra by the division operation but the division operation
is partial.

A: Instead of generalizing the notion of a static algebra by permitting partial func-
tions, we will restrict attention to algebras with a distinguished element undef. In
particular, that arithmetical algebra above should be modified by adding a new ele-
ment undef. It can be further extended by adding the division function; we will have
a +b = undef unless both @ and b are integers and b divides a. Formally, every r-ary
basic function f is defined on every r-tuple a of elements of the superuniverse, but
we will say that f is undefined at a if f(a) = undef; the set of tuples a with f(a) #
undef will be called the domain of f.

Q: Still, your static algebras seem too restrictive to me. How do you deal with
different data types?

A: One possibility would be to generalize the notion of a static algebra and to consider
many-sorted algebras; such algebras are widely used. But this is not necessary. We
will suppose that every static algebra contains distinguished elements true and false.
A basic function U, defined on the whole superuniverse, with values in {true, false}
will be viewed as the set of elements a such that U(a) = true and called a universe.
We will say that a belongs to U if U(a) = true.

Further, we will suppose that every static algebra has the equality relation, a
universe Bool, comprising two elements true and false, and the usual boolean oper-
ations; the result of any boolean operation is undef if at least one of the arguments
is outside Bool. Thus the arithmetical algebra should be modified again; a universe
Integer comprising the integers can be declared as well. A relation R on a particular
universe U will be represented by (and identified with) the characteristic function of
R which is undefined (i.e. equal to undef) if at least one of the arguments is outside
of U. Now we may further augment the twice modified arithmetic algebra by the
standard ordering of integers.

Q: You can dispense with one of the two boolean values as it is done in Lisp. For
example, true may be dropped and then any element different from false, with the
possible exception of undef, will represent boolean truth.



A: Sure, but I prefer to distinguish between boolean truth and, say, numbers.

Q: Why do you need the trick of coding relations as functions? Why can’t a signature
contain relation names?

A: The reason is to make updates, introduced below, applicable to relations as well.
By the way, ever-present basic functions with predetermined domains and values are
called logical constants. Logical constants may be omitted when a static algebra is
described. For example, the thrice modified arithmetical algebra can be described as
follows. It has (1) a universe Integer comprising the integer numbers, (2) distinguished
integers 0 and 1, (3) the usual total binary operations + and X, the usual partial
operation - and the usual ordering < on Integer.

Q: Did we finish with logical constants?

A: Almost. Sometimes it is necessary to suppose that there is auxiliary infinite (or
sufficiently large finite) universe Reserve disjoint from other universes and a special
function that selects an element of Reserve. The role of Reserve will be clear soon.

Q: I'am confused. I thought that we will be dealing with finite feasible static algebras
reflecting snapshots of real computer computations. If this is the case, then there is
no room for infinite universes.

A: In principle it is possible to keep everything finite and feasible. For example, the
Reserve can reflect real computational resources. However, it is much more practical
to divide concerns. You permit whatever universes and basic functions are convenient
and, if necessary, you keep track of various resources.

Finally, let me recall the definition of closed terms of a given signature (the first
clause is superfluous but it seems to make comprehension easier):

e Every zero-ary function name is a closed term.

e If fis a function name of arity r and ¢4, ..., ¢, are closed terms then f(¢4,...,t,)
is a closed term.

We will use the usual abbreviations and conventions in order to increase readability.
Here are some terms in the arithmetical signature mentioned above:

0,1+ 1, (1+1)x(1+1).

3. Transition rules

Q: How do you program the evolution of an evolving algebra?

A: The basic language of transition rules is very modest and even minimal in some
justifiable sense. Think about static algebras as states of evolving algebras. What is
a simplest atomic change of a static algebra?

Q: To change one function at one place, I guess. There are, however, other atomic
changes: Adding an element to the superuniverse, removing an element from the
superuniverse, adding a new basic function, removing a new basic function.



A: Adding elements to the superuniverse can be avoided with the help of Reserve.
To extend a universe U, place a Reserve element a in U; technically, set U to true
and Reserve to false at a. To remove an element a from U, set U(a) = false.

Q: I see. And what about adding and removing basic functions.

A: 1 do not believe that this is ever necessary if your EA properly formalizes the
given algorithm.

Q: Suppose the algorithm is given by a program which declares new functions from
time to time. This isn’t unusual, right?

A: Right. But the new functions can be treated as data. For example, you may have
a whole universe F' of, say, unary operations on some universe /. To deal with this
situation, you may have a binary basic function Apply. If f € I and u € U then
Apply(f,u) will be the result of applying f to w.

Q: What if my program declares functions of a priori unbounded arities? Better yet,
it may declare a function that takes an arbitrary number of arguments.

A: Use the usual tricks. A function with arbitrarily many arguments can be viewed
as a unary function of lists, for example.

Q: Thus, your basic language allows no extension or contraction of either the signature
or the superuniverse.

A: That is right. Commands of the basic language will be called transition rules or
simply rules. The only primitive transition rule is a local function update of the form

Pt ot) = 1o

where f is (the name of) a basic function, r is the arity of f and every ¢; is a closed
term. Is the meaning clear?

Q: I think so. You evaluate all terms ¢;. If a; is the value of ¢; then you reset
flai,...,a;) to ag.

A: That is right. For brevity, let me call local function updates simply updates. A
slightly more complicated rule is a guarded update

tf b then u endif

where b (the guard) is any term and wu is any update. If b evaluates to true on the
given static algebra then perform w; otherwise do nothing. Let me stress that all
evaluations are done in the given static algebra.

Q: I think you can get rid of guarded updates. Introduce a logical constant, say,
Cond(z,y,z) interpreted in any static algebra as follows: If @ is true then the result
is y; otherwise the result is z. Then a guarded update above has exactly the same
effect as the unguarded update

f(tl,. . .,tT) J= COTLd(b, to,f(tl,. . .,tT))



A: You are right. With Cond, a guarded update is equivalent to (i.e. has exactly the
same effect on any static algebra as) some unguarded update. Unfortunately, the use
of Cond makes rules more difficult to read.

Q: By the way, Cond corresponds naturally to a command like this:

tf b then vy else uy endif

A: This command, which is a legal rule as well, is equivalent to a set of two regular
conditional updates:

tf b then u; endif
tf b # true then uy endif

A set of guarded updates, written usually as a list, is executed in parallel, so that
the order is immaterial. All guarded updates on the list are performed simultaneously.
For example, the rule

« = o)

= [{a)
sets @ and b to the same value. Imagine a demon who evaluates all relevant terms in
a given state and then makes the necessary changes; the result is a new state.

Q: But different guarded updates may contradict each other. For example, you may

have
a = true
b := false

where a and b evaluate to the same value. Better yet, you may have

a ;= true
a := false

What is the meaning then?

A: The computation halts. The basic EA machine is deterministic. There is an
extension of the basic model with explicit nondeterminism; see Subsection 4.1 in
[Gud].

Q: Why did you choose to interpret a list of rules as a set rather than a sequence?
The sequence approach is more usual, it is clear, it avoids nicely the problems of
contradicting updates and lends itself more naturally to the use of macros.

A: I admit that the sequence interpretation may work better in many situations
though the use of guards allows one to ensure the desired sequence of actions in the set
approach as well and the set interpretation has its own advantages. First, it permits
a certain concurrency; this is convenient and helps to achieve a better simulation



of the given algorithm. Second the set interpretation allows a natural transition to
asynchronous distributed computing, but let us stick to sequential computing for the
time being.

Q: Is it difficult to define basic transition rules in full generality?

A: No. Here is the definition.

e Any local function update is a rule.

o If £ is a natural number, by, ..., by are terms and Cl, ...,y are sets of rules
then

'Lf bo then CO
elseif b; then ('

elseif by then ()
else Cpiq
endif

as well as

'Lf bo then CO
elseif b; then ('

elseif by then ()
endif

is a rule.

I hope that the meaning is obvious. Every rule is equivalent to a set of guarded
updates; this is easy to check by induction. Therefore every set of rules is equivalent
to a set of guarded updates.

Q: And what is a program?

A: A program is a set of rules. Recall that we deal with sequential algorithms; only
a bounded amount of work is done at each step.

Q: Is the definition of sequential EAs complete?

A: No, not yet. Let us see an example.
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4. Example 1: A stack machine

A: Consider a stack machine for computing expressions given in reverse Polish no-
tation, or RPN. An expression (1 + 23) x (45 + 6) written in RPN would appear
as

1234456+ x

Q: Are you talking about arithmetical operations over integers?

A: Not necessarily. Suppose we have a nonempty set Data and a nonempty set Oper
of (for simplicity) total binary operations on Data. For example, Data may be the
set of integers and Oper may be {4, x}. We suppose that the RPN expression is
given to us in the form of a list where each entry denotes a datum or an operation.
The stack machine reads one entry of the list at a time from the input file. If the
entry denotes a datum, it is pushed onto the stack. If the entry denotes an operation,
the machine pops two items from the stack, applies the operation and pushes (the
notation for) the result onto the stack. At the beginning, the stack is empty. In the
case of the RPN expression above (with the usual operations), the stack goes through
the following states: (), (1), (23 1), (24), (45 24), (6 45 24), (51 24), (1224).

The desired evolving algebra has Data and Oper as universes. Argl and Arg2
are distinguished elements of Data. To handle operations in Oper, the EA has a
ternary function Apply such that Apply(fx,y) = f(x,y) for all f in Oper and all z,
y in Data. To handle the input, the EA has a universe List of all lists composed
of data and operations. The basic functions Head and Tail have the usual meaning.
If L is a list then Head(L) is the first element of L and Tail(L) is the remaining
list. EmptylList has the obvious meaning. F' is a distinguished list. Initially, F' is the
input. Finally, the evolving algebra has a universe Stack of all stacks of data with
the usual operations Push (from Data x Stack to Stack), Pop (from Stack to Stack)
and Top (from Stack to Data). S is a distinguished stack. Initially, S is empty.

Q: Since the stack machine deals with only one list and has only one stack, I do not
understand why you need the universes List and Stack.

A: The EA should be on the abstraction level of the given algorithm. Operations like
Push and Pop should be provided with their natural environment. We can manage
without the universes List and Stack by implementing the input and the stack as
arrays, but this would be a lower level of abstraction. Here are the transition rules.

of Head(F) is a datum then
S := Push(Head(F), S)
F = Tail(F)

endif
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of Head(F) is an operation then
tf Argl = undef then
Argl := Top(S)
S := Pop(S)
elseif Arg2 = undef then
Arg2 := Top(S)

S := Pop(S)
else := Push(Apply(Head(F), Argl, Arg2), S)
F = Tail(F)
Argl := undef
Arg?2 := undef
endif

endif

The phrase “Head(F) is a datum” means of course that Head(F) belongs to Data,
i.e., Data(Head(F)) = true. The meaning of the phrase “Head(F) is an operation” is
similar.

Q: You suppose that the input file contains a legal RPN expression.

A: That is true. When a given algorithm has an error handling routine, it can be
formalized as well.

Q: Assume that there is a bound Maz on the depth of the stack. What changes
should be made?

A: Let me suppose for simplicity that the machine simply freezes if it attempts to
push a datum onto a stack of the maximal depth. Then you may want to introduce a
universe of natural numbers with successor operation n+ 1 and predecessor operation
n — 1 and distinguished natural numbers Depth and Maz. Initially, Depth is zero.
Augment the guard of the first of the two rules above by the conjunct Depth < Max
and add updates Depth := Depth £1 in appropriate places.

5. Static, dynamic and external functions

Q: You speak about basic functions like a programmer; a function has a name and
may change. In mathematics, a function is a particular mapping. If you set sin(1) to
1/2 then the result isn’t the sin function anymore.

A: You are right. Basic functions are the current interpretations of the corresponding
function names. In every state of an EA, basic functions are particular mappings, but
the same function name may be interpreted differently in different states. Actually,
it is convenient to distinguish between static and dynamic basic functions. The
distinction is syntactical: Dynamic functions appear in function updates as subjects
for updating. Static functions do not change during the evolution of the algebra
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whereas dynamic functions may change. In the stack machine example, for instance,
the only dynamic functions are S, F, Argl and Arg2.

Q: I see a problem with evolving algebras. They are completely isolated. How do you
deal with input, output, interrupts and other interactions of the given algorithm with
the outside world? Do you want to pretend that all reactions of the outside world are
written in files ahead of time?

A: Let us examine the problem. In an attempt to formalize the given algorithm as an
evolving algebra, we may discover that some basic functions depend on the outside
world; let f be one of them. In the case that the algorithm is given by a program, f
may reflect, for example, whatever the user types at the keyboard or some activity of
the operating system. I presume that f is not a subject of updating by our transition
rules; in other words, f is syntactically static. Nevertheless f may have different
values in different states. One way to deal with this situation is to add another
argument to f which will allow us to distinguish between different evaluations. For
example, we may pretend, as you said, that f reads from a file and use the position in
the file as a new argument. The pretense creates the illusion that the program of an
evolving algebra is the only means to change its state. This illusion may be awkward
to maintain and we use the following more radical way to deal with the problem.
The basic functions of an evolving algebra A are partitioned into internal static
functions (in short, static functions), internal dynamic functions (in short, dynamic
functions), and external functions. External functions cannot be changed by rules of
A, but they may be different in different states of A. From the point of view of A,
an external function is an oracle, an unpredictable black box that is used but not

controlled by A.

Q: Let me see if | understand you. I imagine again the demon responsible for the
evolution of A, the one who executes the rules. In the case of an internal function
f, the demon knows exactly how to compute f. For example, he may have a fixed
algorithm for computing the default version of f and a complete table to account for
the deviation from the default. In the case of an external function f, the demon has
an unpredictable magic box for evaluating f. Whenever he needs to evaluate f, he
enters the appropriate number of arguments and miraculously gets the result.

A: That is right. From the point of view of the demon, an external function is a
nondeterministic function.

Q: I guess one can have rules like
QOutput :=t

too, right?

A: Sure. Nothing dramatic happens in the given algebra when this rule is fired;
syntactically your Qutput is just another distinguished element. But of course such
rules are extremely important for communication. You may have several communi-
cation channels (and distinguished elements like Output-on-channel-5) and even a
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whole universe of channels (and a basic output function with an argument that is
a channel). You may have a net of evolving algebras, but for the time being let us
concentrate on a single evolving algebra (possibly communicating with the outside

world).

Q: I have a question related to the types of basic functions. Formally, all r-ary
basic functions are of the same type: In each state, they map the r-th power of the
superuniverse to the superuniverse. It is clear, however, that you really think in
terms of multiple universes and try to specify the type of basic functions in terms of
universes.

A: This is very true. Essentially, we deal with many-sorted algebras though it is
convenient, technically speaking, to have the superuniverse around.

Q: The case of a static function seems clear; here typing, i.e. prescribing a type, is
a part of the initial state description. But what is the meaning of typing a dynamic
function? Is it a declaration of intent?

A: Tt is an integrity constraint. Integrity constraints are statements (in indicative
rather than imperative mood) that should be satisfied in any state during the evolu-
tion of a given KA. Often integrity constraints are implicit, but they can be stated
explicitly. In the stack machine example, for instance, we have the following integrity
constraints: Argl and Arg2 are data (i.e. belong to Data), F is a list, and S is a
stack. It is easy to see that these four statements indeed hold in every state of the

EA.
Are there other kinds of integrity constraints?
Yes, usually we expect external functions to have values of certain types.

What happens if an integrity constraint is violated?

oL

The ideal machine breaks down.

Q: Do you suppose that integrity constraints constitute a part of the description of
the EA?

A: This is not necessary. The effect of integrity constraints in question can be achieved
by additional rules. In practice, however, an integrity constraint may be a convenient
way to avoid writing boring transition rules. For example, stating a constraint that
an external function f produces values of certain type allows one to avoid writing
rules for what to do if f produces a value of a wrong type.

6. Example 2: A Turing machine

A: For the second example, I would like to describe a generic Turing machine as an
evolving algebra.

Three universes of the EA. called Control, Char and Displacement, are nonempty
finite sets. InitialState and CurrentState are distinguished elements of Control, Blank
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is a distinguished element of Char. CurrentState is a dynamic distinguished element;
initially, CurrentState = InitialState. Another universe, Tape, is a countable infinite
set; call its elements cells. Head is a dynamic distinguished cell. Move is a possibly
partial function from Tape x Displacement to Tape.

Q: What kind of Turing machines are you talking about? Is the tape linear? Is it
one-way infinite or two-way infinite?

A: The kind of Turing machine is determined by further restrictions on Displacement
and Move. You can choose Displacement = {+1, —1}, and Move to be such that Tape
with unary operations Move(¢,4+1), Move(c,—1) is isomorphic to natural numbers
with the successor and (partial) predecessor operations. This will give you a model
with a linear one-way infinite tape. You can choose Displacement and Move in a way
that gives rise to two linear tapes or to one two-dimensional tape, and so on.

We need some additional basic functions though. A dynamic function TapeCont
maps cells to characters, and functions NewState, NewChar and Shift map the carte-
sian product Control x Char to Control, Char and Displacement respectively. It is
required that TapeCont(c) = Blank for all but finitely many cells ¢. The transition
rules are as follows.

CurrentState := NewState(CurrentState, TapeCont(Head))
TapeCont(Head) := NewChar(CurrentState, TapeCont(Head))

Head := Move(Head, Shift(CurrentState, TapeCont(Head))

Recall that all rules fire every time in a simultaneous fashion.
Q: By the way, the usual definition of Turing machine is shorter.
A: What usual definition?

Q: A Turing machine is a quadruple, namely, a set of control states, a set of characters,
a transition function and the initial state.

A: In isolation, this short definition does not really define Turing machines. For
example, one cannot derive from that definition that a Turing machine has a tape.
Recall that after giving the short definition, one proceeds to define configurations,
etc. These additional definitions are absorbed by the general EA framework. The
short definition provides, however, a convenient notation for Turing machines.

Q: You did not define what your Turing machines compute.
A: I have to repeat the usual definitions.

Q: As an exercise, let me list the integrity constraints: CurrentState belongs to
Control, Head belongs to Tape, and TapeCont maps Tape to Char.

A: That is correct. Again all constraints are easy to check in advance and again they
can be stated in the form ¢ = true where ¢ is a closed term.
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Q: But the constraint on TapeCont is a universal statement: For every cell, the value
of TapeCont is a character.

A: Taking for granted that the constraint is satisfied initially, it reduces to the con-
straint Char(TapeCont(Head)) = true.

Q: I guess, it isn’t always so easy to check whether a constraint ¢t = true will be
eventually violated.

A: This is an undecidable problem. To prove this, modity the Turing machine exam-
ple by introducing a subuniverse Nonhalting of the universe Control. In an obvious
way, the halting problem for Turing machines reduces to the problem whether the
constraint CurrentState belongs to Nonhalting is violated. But of course the Non-
halting universe is very artificial and unnatural. Often, constraints are checkable in
advance. Certainly, your demon, able to evaluate a bounded number of closed terms
at a time, should have no trouble to check, in each state, the validity of a constraint
i = true.

Q: You defined the tape to be infinite. I prefer finite tapes growing if and when
necessary.

A: The predefined geometry of Turing tapes makes the distinction somewhat artificial.
In this connection it makes more sense to consider Kolmogorov-Uspensky machines
[KU] with (finite at every moment) tapes of changing geometry. (We discussed KU
machines once [Gu3].) The tape of a KU machine gives rise to a dynamic universe in a
very natural sense. To handle this situation, we may use a countable universe Reserve
(also dynamic) and an external distinguished element New subject to the integrity
constraint New € Reserve. Whenever it is required that the tape gets another cell,
New is deleted from Reserve and added to the tape. Of course, when we evaluate
New next time, it belongs to Reserve again. Actually, adding a new element to the
tape requires some work because, contrary to Reserve, the tape has a relatively rich
structure. Let me skip the details.

Q: By the way, the halting problem easily reduces to the following decision problem:
Given an EA| tell whether it will eventually reach a state with contradicting updates.
Thus, this consistency problem for FAs is undecidable. I imagine that for certain
applications only consistent K As are appropriate. What do you do?

A: Often very simple syntactic restrictions suffice to ensure consistency. Sometimes,
it may be appropriate to require that, for each basic function f, the guards of different
updates of f are mutually exclusive. This guarantees that no basic function is updated
twice at the same step. (Since the problem of mutual exclusivity of given boolean
formulas is co-NP complete, one may want to require some kind of explicit mutual
exclusivity.) In general, every evolving algebra A can be modified into a consistent
variant A’ making 2 steps per each step of A and halting (with setting an error flag to
true if desired) when A encounters inconsistency. The idea is to check the consistency
of A’s transition rules in given state of A before executing them.
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7. Example 3: The strcpy function

Q: Will you show me an example where the algorithm is given by a program?

A: Yes. Consider the piece P of C code in Figure 1 which is taken from Kernighan
and Ritchie’s book “The C Programming Language” [KR, page 105].

void strcpy (char *s, char *t)

{

while (ks++ = *xt++)

b

Figure 1: The strcpy function.

Q: I know too little about C. What does P do and what does this unpronounceable
“strepy” stand for? Is P well formed? The while loop does not seem to do anything.

A: P is well formed and defines an algorithm that copies a character string from
one place in memory to another. I guess, “strepy” abbreviates “string-copying”. The
pointer variables t and s point initially to the first memory locations in the original
place and the new place respectively; *s is the content of the memory location s.
The equality sign denotes assignment. The expression *s++ evaluates to the content
of the location s and has a side effect of resetting s to the next location. Kernighan
and Ritchie admit that the code is “cryptic at first sight” [KR, page 106].

I should make a remark about the notion of a string in C. Usually, people have
in mind strings of printable characters, but this is not important for us here. The
important restriction is that a string does not contain the so-called null character
which is used to indicate the end of a string representation in memory. The memory
can be viewed as a linearly ordered set of memory locations holding characters. Each
character fits into one location. (There isn’t much difference in C between characters,
bytes and very small integers. In particular, the null character corresponds to the
number zero.) Because of the necessary null character at the end, it takes [ + 1
memory locations to store a string of [ non-null characters.

Q: How can an assignment be the condition of a while loop?

A: An assignment statement returns the value assigned. Nonzero values represent
truth and 0 represents falsity in C. The value 0 is returned when the null character
is encountered.

We will construct an evolving algebra A modeling the strcpy algorithm. First,
we will describe the universes of A and most of the basic functions. Then we will
describe the transition rules and the remaining basic functions. Since P uses pointers
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to memory locations, A has universes Char, Loc and Addr. Elements of Char will be
called characters; null is a distinguished character. The universe Loc comes equipped
with a successor function. Elements of Loc will be called memory locations. ( C allows
more arithmetic on memory locations, but only the successor function is used in P.) A
dynamic function LocCont from Loc to Char assigns characters to memory locations.
Elements of Addr will be called addresses. A dynamic function AddrCont assigns
memory locations to addresses. (According to C, pointer addresses are composed of
memory locations and AddrCont is defined by LocCont, but this information is not
necessary for explaining P and will be ignored.) We assume that the two content
functions are total (on their respective domains).

Q: An address probably identifies a little block of a memory where the address of a
pointer can be stored. What is the difference between Addr and Loc?

A: You are right of course. The size of the block depends on the implementation.
For our purposes, there is no reason to go into these details.

To reflect (a somewhat simplified version of) the parse tree for P corresponding
to the official grammar of C and shown in Figure 2, A has a universe Parsetree that
comprises nodes of the parse tree. A distinguished element Root and unary functions
Child1, Child2, Child3, Parent have the obvious meaning. In addition, there is a
universe of labels. A function Label assigns labels to nodes as shown in Figure 2.
(The labels do not include expressions in parentheses which are added for greater
clarity.) Each label is a distinguished element and therefore can be mentioned in
rules.

In order to simulate P, we should know at each moment where we are in the
program. To this end, a dynamic distinguished element C' will be the currently
active node of Parsetree. Initially, C' is the root. It will be convenient to abbreviate
Child1(C), Child2(C), Child3(C) as C1, C2, C3 respectively. Let me write a few
transition rules governing the movement of C. I presume that C never stays two
moments in a row at the same place; in other words, it will never have the same value
at two consecutive states.

if C = Root then
of Val(Cl) = undef then C := C1
elseif Val(C?2) = undef then C := C2
elseif Val(C3) = undef then C := C3
endif

endif

Q: What is Val?

A: Val is a function on Parsetree. Think about each node n of the parse tree as the
root of the corresponding subtree. When the code corresponding to the subtree has
been executed, the resulting value is assigned to n. For example, the execution in
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@eclaration (char *s) @eclaration (char *t) (Whﬂe-statemenD
Cassignment (:)) null statement )
(dereference (*)> (dereference (*)>
| |
gost—increment (—I——I—) @st—increment (—I——I)
identifier (s) identifier (t)

Figure 2: Our parse tree for strcpy.

question may be an expression evaluation; then the value of the expression is assigned
to n. Initially, Val is nowhere defined.

Q: What if n corresponds to a statement that does not return any value?
A: When the statement has been executed, the value done will be assigned to n.
Q: What will be the value of a declaration node?

A: You'll see. Here are some additional rules governing the movement of €' and using
some obvious abbreviations.

of Cis aleaf then C := Parent(C) endif

if C has exactly one child then
of Val(Cl) = undef then C := C1
else C := Parent(C)
Val(C1) := undef
endif
endif

Q: I understand that the case of the while-statement node is an exception, but what
about the case of the assignment node? Is it treated the same way as the case of the
root node?
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A: No. The problem is that the definition of C does not specity whether the left or
the right expression is evaluated first. This was a deliberate decision [KR, pp. 53—
54]; the order of evaluation is left to the implementer. To reflect the implementer’s
decision, we use an external function ChooseChild.

tf Label(C) = assignment then
of Val(Cl) = undef and Val(C2) = undef then C:=ChooseChild(C)
elseif Val(C1) = undef then C := C1
elseif Val(C?2) = undef then C := C2
else C := Parent(C)
Val(C1) := undef
Val(C2) := undef
endif
endif

Q: Why do you reset the values of C'1, C2 to undef?

A: To have a proper environment when ' comes down to the assignment node next
time.

Q: I do not see why do you need ChooseChild. Since you have allowed nondeterminism
to resolve contradicting rules, you may as well use it. To choose a child, just say that
C gets C1 if Val(C1) is undefined and that C' gets C2 if Val(C2) is undefined. If
the values of both (' and (2 are undefined then one of them is nondeterministically
chosen.

A: You are right. As an implementor, [ would prefer the ChooseChild version though.
It is more explicit. Now, let me give you the remaining rules. They are grouped with
respect to the location of C'.

tf Label(C) = declaration then
Val(C) := ChooseAddr
AddrCont(ChooseAddr) := PredefinedLoc(C)
endif

Here ChooseAddr is a zero-ary external basic function that returns an address.
Q: Why should it be external?
A: P doesn’t tell us how to allocate addresses.

Q: You suppose, | guess, that both occurrences of ChooseAddr evaluate to the same
value.

A: Yes, ChooseAddr has a definite value in each state (where it is evaluated).
Q: And what is the PredefinedLoc function? You did not mention it earlier.

A: A call to strcpy should provide two parameters, namely, the initial values of s
and t. PredefinedLoc carries this information.
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Q: Is it an internal or external function?

A: In this case, the distinction does not matter. Since the two parameters should
be known when P starts, PredefinedLoc can as well be an internal function, a static
internal function. Further,

tf Label(C) = identifier then Val(C) := AddrCont(Val(Decl(C))) endif

Q: What is Decl?

A: Decl maps each identifier node to the declaration node where the identifier in
question is declared. The left identifier node is mapped to the left declaration node
and the right identifier node is mapped to the right declaration node. Here is the rule
for post-increment nodes.

tf Label(C) = post-increment and Val(Cl) # undef then
Val(C) := Val(C1)
AddrCont(Val(Decl(C1))) := Val(C1) + 1

endif

Q: Let me understand this complicated second update. It would be easier for me
to speak about a specific identifier node, say, the left one, which is related to the
pointer variable s. Then Decl(C1) is the left declaration node and Val(Decl(C1)) is
the address of s. On the other hand, Val(C1) is the memory location pointed to by
s. Thus, we are changing s to point to the next location (the successor of the old
value of s).

A: That is right. Notice that Val(C) does not reflect the change. But the next time
when our identifier node becomes active, it will have a new value.

The dereferencing operator (also known as the indirection operator) of C is formal-
ized by our LocCont function. However, in the case of the left child of the assignment
node, we are not really interested in dereferencing.

of Label(C) = dereference and Val(Cl) # undef then

tf C = Childl(Parent(C)) then Val(C) := Val(C1) endif

tf C = Child2(Parent(C)) then Val(C) := LocCont(Val(C1)) endif
endif

The assignment-node rule should be clear now.

tf Label(C) = assignment and Val(C1) # undef and Val(C2) # undef then
LocCont(Val(C1)) := Val(C2)
Val(C) := Val(C2)

endif
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Q: I do not understand why the result of the assignment statement is Val(C2) rather
than simply done.

A: As I mentioned before, an assignment statement returns the assigned value. This
feature allows C programmers to use commands like ¢ = b = ¢ = 0. We take
advantage of this feature to indicate when the string copy operation should halt.
When null has been copied, it is passed up to the while-statement node halting
execution of the while statement.

tf Label(C) = while-statement then
of Val(Cl) = undef then C := C1
elseif Val(C1) # null then
=02
Val(C1) := undef
else C := Parent(C)
Val(C) := done
Val(C1) := undef
endif
endif

Q: Is all that a part of your EA description of C?
A: No, not really, but the description used to look like that.

8. Sequential and nonsequential evolving algebras

Q: Now [ understand what the program of a sequential EA is; it is essentially a finite
set of conditional function updates. But I still do not understand what a sequential
EA is exactly. Do you identify a sequential EA with its program?

A: Tt is reasonable to identify sequential FAs and their programs and this is done
sometimes [GR]. Often it is convenient, however, to avoid a formal definition. For
example, many authors define precisely the language of a first-order theory, the set
of theorems, etc. but leave the notion of first-order theory itself informal.

Q: What do you gain by leaving the notion of sequential EAs informal?

A: Usually, constructing an EA for a given algorithm F involves more than just
writing a program. You indicate a class of static structures which includes presumably
the presentations of all possible or all relevant states of F. You may want also to
indicate a class of initial static structures. See for example how Turing machines are
formalized above. It may be convenient to view all that as a part of the definition of

the EA.
Q: What non-basic rules are most common?

A: Most common is the generalization of basic rules where the terms are allowed to
have free individual variables. This generalization is used even in the sequential case
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(as a syntactic sugar) to make the program more succinct [BRol and BRo2], but it
is indispensable in the case of unbounded parallelism. Consider, for example, a tree
algorithm that colors red — in one step — all children of the currently active node
whenever the active node is green. This may be expressed by the rule

tf Color(C) = green and « is a child of C then
Color(x) := red
endif

which is not equivalent to any (finite) set of basic rules. In the paper on Occam,
we used (limited) universal quantification [GMs, BRil]. To show why one may need
universal quantification, let us suppose that the tree algorithm, mentioned above,
colors the active node €' green if all children of C' are red. This may be expressed by
the rule

tf (V child x of C)(Color(z) = red) then
Color(C) := green
endif

Q: You mentioned asynchronous distributed computing a while ago. I have been
wondering; how do you deal with such computations? It seems that going from
one state to another is a basis of the EA approach. In the case of a distributed
asynchronous computation, it may be unclear what the states are.

A: Syntactically, an evolving algebra for a distributed asynchronous algorithm may
look like one that works in (discrete) sequential time. The difference is in the definition
of a run. Instead of one demon, you may have a multitude of demons responsible for
different rules. Whenever conditions are right, demons perform the required changes,
but some demons may work with lightning speed whereas some others may be lazy.
Let me again refer you to the paper [GMs] with Larry Moss on the programming
language Occam. By the way, the sequential interpretation and the parallel interpre-
tation of a list of commands coexist in Occam as well as in Parlog. This is one way
to generalize the basic language of transition rules.

Q: Can one compose evolving algebras?

A: Of course [GR], but this is a topic for another conversation.
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