
Lecture 10: The four fundamental subspaces

In this lecture we discuss the four fundamental spaces associated with a matrix
and the relations between them.

Four subspaces

Any m by n matrix A determines four subspaces (possibly containing only the
zero vector):

Column space, C(A)

C(A) consists of all combinations of the columns of A and is a vector space in
Rm.

Nullspace, N(A)

This consists of all solutions x of the equation Ax = 0 and lies in Rn.

Row space, C(AT)

The combinations of the row vectors of A form a subspace of Rn. We equate
this with C(AT), the column space of the transpose of A.

Left nullspace, N(AT)

We call the nullspace of AT the left nullspace of A. This is a subspace of Rm.

Basis and Dimension

Column space

The r pivot columns form a basis for C(A)

dim C(A) = r.

Nullspace

The special solutions to Ax = 0 correspond to free variables and form a basis
for N(A). An m by n matrix has n− r free variables:

dim N(A) = n− r.

1



Row space

We could perform row reduction on AT , but instead we make use of R, the row
reduced echelon form of A.

A =

 1 2 3 1
1 1 2 1
1 2 3 1

→ · · · →
 1 0 1 1

0 1 1 0
0 0 0 0

 =

[
I F
0 0

]
= R

Although the column spaces of A and R are different, the row space of R is the
same as the row space of A. The rows of R are combinations of the rows of A,
and because reduction is reversible the rows of A are combinations of the rows
of R.

The first r rows of R are the ”echelon” basis for the row space of A:

dim C(AT) = r.

Left nullspace

The matrix AT has m columns. We just saw that r is the rank of AT , so the
number of free columns of AT must be m− r:

dim N(AT) = m− r.

The left nullspace is the collection of vectors y for which ATy = 0. Equiva-
lently, yT A = 0; here y and 0 are row vectors. We say “left nullspace” because
yT is on the left of A in this equation.

To find a basis for the left nullspace we reduce an augmented version of A:[
Am×n Im×n

]
−→

[
Rm×n Em×n

]
.

From this we get the matrix E for which EA = R. (If A is a square, invertible
matrix then E = A−1.) In our example,

EA =

 −1 2 0
1 −1 0
−1 0 1

 1 2 3 1
1 1 2 1
1 2 3 1

 =

 1 0 1 1
0 1 1 0
0 0 0 0

 = R.

The bottom m− r rows of E describe linear dependencies of rows of A, because
the bottom m− r rows of R are zero. Here m− r = 1 (one zero row in R).

The bottom m− r rows of E satisfy the equation yT A = 0 and form a basis
for the left nullspace of A.

New vector space

The collection of all 3 × 3 matrices forms a vector space; call it M. We can
add matrices and multiply them by scalars and there’s a zero matrix (additive
identity). If we ignore the fact that we can multiply matrices by each other,
they behave just like vectors.

Some subspaces of M include:
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• all upper triangular matrices

• all symmetric matrices

• D, all diagonal matrices

D is the intersection of the first two spaces. Its dimension is 3; one basis for D
is:  1 0 0

0 0 0
0 0 0

 ,

 1 0 0
0 3 0
0 0 0

 ,

 0 0 0
0 0 0
0 0 7

 .
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