
Lecture 24b: Exam 2 Review

Material covered by the exam

• Orthogonal matrices Q =
[

q1 ... qn
]
. QTQ = I.

Projections – Least Squares “best fit” solution to Ax = b.

Gram-Schmidt process for getting an orthonormal basis from any basis.

• det A

Properties 1-3 that define the determinant.

Big formula for the determinant with n! terms, each with + or −.

Cofactors formula, leading to a formula for A−1.

• Eigenvalues Ax = λx.

det(A− λI) = 0.

Diagonalization: If A has n independent eigenvectors, then S−1 AS = Λ
(this is Ax = λx for all n eigenvectors at once).

Powers of A: Ak = (SΛS−1)k = SΛkS−1.

Sample questions

1. Let a =

[
2
1
2

]
.

a) Find the projection matrix P that projects onto a.
To answer this, we just use the formula for P. Ordinarily P = A(AT A)−1 AT ,
but here A is a column vector so:

P =
a aT

aTa
=

1
9

 4 2 4
2 1 2
4 2 4

 .

b) What is the rank of P?
P has rank 1 because each of its columns is some multiple of its second
column, or because it projects onto a one dimensional subspace.

c) What is the column space of P?
The line determined by a.

d) What are the eigenvalues of P?
Since P has rank 1 we know it has a repeated eigenvalue of 0. We can
use its trace or the fact that it’s a projection matrix to find that P has
the eigenvalue 1.
The eigenvalues of P are 0, 0 and 1.
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e) Find an eigenvector of P that has eigenvalue 1.

Eigenvector a =

[
2
1
2

]
has eigenvalue one. Because P is a projection

matrix, any vector in the space it’s projecting onto will be an eigen-
vector with eigenvalue 1.

f) Suppose uk+1 = Puk with initial condition u0 =

[
9
9
0

]
. Find uk.

We’re repeatedly projecting a vector onto a line:

u1 = Pu0 = a
aTu0

aTa
= a

27
9

= 3a =

[
6
3
6

]
.

u2 is the projection of u1 onto the line determined by a. But u1 already

lies on the line through a. In fact, uk = Pku0 = Pu0 =

[
6
3
6

]
.

g) The exam might have a difference equation uk+1 = Auk in which A
is not a projection matrix with Pk = P. In that case we would find
its eigenvalues and eigenvectors to calculate u0 = c1x1 + c2x2 + c3x3.
Then uk = c1λk

1x1 + c2λk
2x2 + c3λk

3x3. (For the projection matrix P
above, two eigenvalues are 0 and the third is 1, so two terms vanish
and for the third λk = 1. Then u1 = u2 = u3 = · · · .)

2. We’re given the following data points:

t y
1 4
2 5
3 8

.

a) Find the straight line through the origin that best fits these points.
The equation of this line will be y = Dt. There’s only one unknown,
D. We would like a solution to the 3 equations:

1 · D = 4
2 · D = 5
3 · D = 8.

or

[
1
2
3

]
D =

[
4
5
8

]
, if we put this in the form Ax = b. To find the

best value for D we solve the equation:

AT AD̂ = ATb
14D̂ = 38

D̂ =
38
14

=
19
7

.
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We conclude that the best fit line through the origin is y = 19
7 t. We can

roughly check our answer by noting that the line y = 3t runs fairly
close to the data points.

b) What vector did we just project onto what line?
There are two ways to think about least squares problems. The first is
to think about the best fit line in the ty-plane. The other way is to think

in terms of projections – we’re projecting b =

[
4
5
8

]
onto the column

space of A (the line through (1, 2, 3)) to get as close as possible to a
solution to Ax = b.

3. The vectors a1 =

 1
2
3

 and a2 =

 1
1
1

 determine a plane. Find two

orthogonal vectors in the plane.

To answer this question we use the Gram-Shmidt process. We start with
a1 and find a second vector B perpendicular to a1 by subtracting the com-
ponent of a2 that lies in the a1 direction.

B = a2 −
aT

1 a2

aT
1 a1

a1

=

 1
1
1

− 6
14

 1
2
3


=

 1
1
1

−
 3/7

6/7
9/7


=

 4/7
1/7
−2/7

 .

Because the dot product of a1 and B is zero, we know this answer is
correct. These are our orthogonal vectors.

4. We’re given a 4 by 4 matrix A with eigenvalues λ1, λ2, λ3, λ4.

a) What conditions must the λi satisfy for the matrix to be invertible?
A is invertible if and only if none of the λi are 0.
If one of the λi is zero, then there is a non-zero vector in the nullspace
of A and A is not invertible.

b) What is det A−1?
The eigenvalues of A−1 are the inverses of the eigenvalues of A, so

det A−1 =

(
1

λ1

)(
1

λ2

)(
1

λ3

)(
1

λ4

)
.
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c) What is trace(A + I)?
We know the trace of A is the sum of the eigenvalues of A, so trace(A+
I) = (λ1 + 1)+ (λ2 + 1)+ (λ3 + 1)+ (λ4 + 1) = λ1 +λ2 +λ3 +λ4 + 4.

5. Remember the family of tridiagonal matrices; for example:

A4 =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 .

Let Dn = det An.

a) Use cofactors to show that Dn = aDn−1 + bDn−2 and find values for a
and b.
Using the cofactor formula we find that the determinant of A4 is:

D4 = 1

∣∣∣∣∣∣
1 1 0
1 1 1
0 1 1

∣∣∣∣∣∣− 1

∣∣∣∣∣∣
1 1 0
0 1 1
0 1 1

∣∣∣∣∣∣+ 0− 0

= 1D3 − 1 · 1D2

= D3 − D2.

In general, Dn = Dn−1 − Dn−2. The answer is a = 1 and b = −1.

b) In part (a) you found a recurrence relation Dn = aDn−1 + bDn−2. Find
a way to predict the value of Dn for any n. Note: if your computations
are all correct it should be true that λ6

1 = λ6
2 = 1.

We can quickly compute D1 = 1 and D2 =

∣∣∣∣ 1 1
1 1

∣∣∣∣ = 0.

We set up the system for Dn = Dn−1 − Dn−2:[
Dn

Dn−1

]
=

[
1 −1
1 0

] [
Dn−1
Dn−2

]
to get an equation of the form uk = Auk−1.
To find the eigenvalues λi, solve det(A− λI) = 0:∣∣∣∣ 1− λ −1

1 −λ

∣∣∣∣ = λ2 − λ + 1 = 0.

The quadratic formula gives us λ =
1±
√

1− 4
2

, so:

λ1 =
1 +
√

3i
2

= eiπ/3 and λ2 =
1−
√

3i
2

= e−iπ/3.
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The magnitude of these complex numbers is 1. This tells us that the
system is stable. The fact that λ6

1 = λ6
2 tells us that A6 = I and so the

sequence of vectors uk = Akuk−1 will repeat every 6 steps.
To finish answering the problem, we can use the recurrence relation
Dn = Dn−1−Dn−2 starting from D1 = 1 and D2 = 0 to find D3 = −1,
D4 = −1, D5 = 0 and D6 = 1. The sequence will then repeat, with
D7 = D1 = 1, D8 = D2 = 0 and so on. If n = 6j + k for positive
integers j and k, then Dn = Dk.

6. Consider the following family of symmetric matrices:

A2 =

[
0 1
1 0

]
, A3 =

 0 1 0
1 0 2
0 2 0

 , A4 =


0 1 0 0
1 0 2 0
0 2 0 3
0 0 3 0

 , ...

a) Find the projection matrix P onto the column space of A3.
We know that A3 is singular because column 3 is a multiple of column
1, so P is a projection matrix onto a plane. Columns 1 and 2 form a
basis for the column space of A3, so we could use the formula P =

A(AT A)−1 AT with A =

[
0 1
1 0
0 2

]
to find:

P =

 1/5 0 2/5
0 1 0

2/5 0 4/5

 .

However, there may be a quicker way to solve this problem.
To check our work we multiply P by the column vectors of A to see
that PA = A.

b) What are the eigenvalues and eigenvectors of A3?

|A3 − λI| =

∣∣∣∣∣∣
−λ 1 0

1 −λ 2
0 2 −λ

∣∣∣∣∣∣ = −λ3 + 5λ.

Setting |A3 − λI| = 0 gives us λ(−λ2 + 5) = 0, so λ1 = 0, λ2 =
√

5,
λ3 = −

√
5.

We check that the trace of A3 equals the sum of its eigenvalues.
Next we solve (A3 − λI)x = 0 to find our eigenvectors. A good strat-
egy for doing this is to choose one component of x to set equal to 1,
then determine what the other components of x must be for the prod-
uct to equal the zero vector.

(A3 − 0I)x = 0 has the solution x1 =

 −2
0
1

.
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(A3 −
√

5I)x = 0 has the solution x2 =

 1√
5
2

.

(A3 +
√

5I)x = 0 has the solution x2 =

 1
−
√

5
2

.

If time permits, we can check this answer by multiplying each eigen-
vector by A3.

c) (This is not difficult.) What is the projection matrix onto the column
space of A4?
How could this not be difficult? If A4 is invertible, then its column
space is R4 and the answer is P = I.
To confirm that A4 is invertible, we can check that its determinant is
non-zero. This is not difficult if we use cofactors:

det A4 = (−1)
(

1 ·
∣∣∣∣ 0 3

3 0

∣∣∣∣+ 2 ·
∣∣∣∣ 0 3

0 0

∣∣∣∣) = 9.

Because A4 is invertible, the projection matrix onto its column space
is I.

d) Bonus question: Prove or disprove that An is singular if n is odd and
invertible if n is even.
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