
Lecture 34: Final course review

Once more, we review questions from a previous exam to prepare ourselves
for an upcoming exam.

1. Suppose we know that A is an m by n matrix of rank r, Ax =

[

1
0
0

]

has

no solution, and Ax =

[

0
1
0

]

has exactly one solution.

a) What can we say about m, n and r?

The product Ax is a vector in three dimensions, so m = 3.

The fact that Ax =

[

1
0
0

]

has no solution tells us that the column

space is not all of R
3. In addition, we know that the column space

contains

[

0
1
0

]

, so r is not zero: 1 ≤ r < 3.

The fact that Ax =

[

0
1
0

]

has exactly one solution tells us that the

nullspace of A contains only the zero vector and so n = r. Hence
1 ≤ n < 3.

b) Write down an example of a matrix A that fits this description.

The vector





0
1
0



 must be in the column space, so we’ll make it a

column of A. The simplest way to answer this question is to stop
here.

A =





0
1
0



 .

In this solution, n = r = 1 and m = 3.

To find a solution in which n = r = 2, add a second column. Make

sure that

[

1
0
0

]

is not in the column space:

A =





0 0
1 0
0 1



 .

There are many other correct answers to this question.

1



c) Cross out all statements that are false about any matrix with the given
properties (which are 1 ≤ r = n, m = 3).

i. detATA = detAAT

ii. ATA is invertible

iii. AAT is positive definite

One good approach to this problem is to use our sample matrix to test
each statement.

i. If we leave this part to last, we can quickly answer it (false) using
what we learn while answering the following two parts.

ii. The matrix ATA is invertible if r = n; i.e. if the columns of A are
independent.
The nullspace of our A contains only the zero vector, so this state-
ment is true.
For each of our sample matrices, ATA equals the identity and so
is invertible.
Note that this means detATA 6= 0.

iii. We know that m = 3 and r < 3, so AAT will be a 3 by 3 ma-
trix with rank less than 3; it can’t be positive definite. (It is true
that for any matrix A with real valued entries, AAT is positive
semidefinte.)
For our test matrices, AAT has at least one row that’s all zeros, so
0 is an eigenvalue (and is not positive).

Note also that detAAT = 0 and so statement (i) must be false.
(However, if A and B are squarematrices then det BA = detAB =
detAdet B.)

d) Prove that ATy = c has at least one solution for every right hand side
c, and in fact has infinitely many solutions for every c.

We know AT is an n by m matrix with m = 3 and rank r = n < m.
If AT has full row rank, the equation ATy = c is always solvable.
We have n rows and rank r = n, so AT has full row rank. Therefore
ATy = c has a solution for every vector c.

The solvable system ATy = c will have infinitely many solutions if
the nullspace of AT has positive dimension. We know dim(N(AT)) =
m− r > 0, so ATy = c has infinitely many solutions for every c.

2. Suppose the columns of A are v1, v2 and v3.

a) Solve Ax = v1 − v2 + v3.

This is just the “column method” of multiplying matrices from the

first lecture. Choose x =

[

1
−1
1

]

.
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b) True or false: if v1 − v2 + v3 = 0, then the solution to (2a) is not
unique. Explain your answer.

True. Any scalar multiple of x =





1
−1
1



 will be a solution.

Another way of answering this is to note that AT has a nontrivial null-
space, andwe can always add any vector in the nullspace to a solution
x to get a different solution.

c) Suppose v1, v2 and v3 are orthonormal (forget about (2b)). What com-
bination of v1 and v2 is closest to v3?

If we imagine the right triangle out from the origin formed by av1 +
bv2 and v3, the Pythagorean theorem tells us that 0v1 + 0v2 = 0 is the
closest point to v3 in the plane spanned by v1 and v2.

3. Suppose we have the Markov matrix

A =





.2 .4 .3

.4 .2 .3

.4 .4 .4



 .

Note that the sum of the first two columns of A equals twice the third
column of A.

a) What are the eigenvalues of A?

Zero is an eigenvalue because the columns of A are dependent. (A is
singular.)

One is an eigenvalue because A is a Markov matrix.

The third eigenvalue is −.2 because the trace of A is .8. So λ =
0, 1,−.2.

b) Let uk = Aku(0). If u(0) =

[

0
10
0

]

, what is limk→∞ uk?

We’ll start by computing uk and then find the steady state. This means
finding a general expression of the form:

uk = c1λ
k
1x1 + c2λ

k
2x2 + c3λ

k
3x3.

When we plug in the eigenvalues we found in part (3a), this becomes

uk = 0+ c2x2 + c3(−.2)kx3.

We see that as k approaches infinity, c2x2 is the only term that does
not go to zero.

The key eigenvector in anyMarkov process is the one with eigenvalue
one.
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To find x2, solve (A− 1I)x2 = 0:




−.8 .4 .3
.4 −.8 .3
.4 .4 −.6



 x2 = 0.

The best way to solve this might be by elimination. However, because
the first two columns look like multiples of 4 and the third column

looks like a multiple of 3, we might get lucky and guess x2 =

[

3
3
4

]

.

This gives us u∞ = c2

[

3
3
4

]

. We know that in a Markov process, the

sum of the entries of uk is the same for all k. The sum of the entries of

u(0) is 10, so c2 = 1 and u∞ =

[

3
3
4

]

.

4. Find a two by two matrix that:

a) projects onto the line spanned by a =

[

4
−3

]

.

The formula for this matrix is P =
aaT

aTa
. This gives us

P =

[

16/25 −12/25
−12/25 9/25

]

.

(To test this answer, we can quickly check that det P = 0.)

b) has eigenvalues λ1 = 0 and λ2 = 3 and eigenvectors x1 =

[

1
2

]

and

x2 =

[

2
1

]

.

Here the formula we need is A = SΛS−1.

A =

[

1 2
2 1

] [

0 0
0 3

] [

1 2
2 1

]−1

=

[

1 2
2 1

] [

0 0
0 3

] [

−1/3 2/3
2/3 −1/3

]

A =

[

4 −2
2 −1

]

.

If time permits, we can check this by computing the products Axi.

c) has real entries and cannot be factored as BTB for any B.

We know that BTB will always be symmetric, so any asymmetric ma-

trix has this property. For example, we could choose

[

0 0
1 0

]

.
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d) is not symmetric, but has orthogonal eigenvectors.

We know that symmetric matrices have orthogonal eigenvectors, but
so do other types of matrices (e.g. skew symmetric and orthogonal)
when we allow complex eignevectors.

Two possible answers are:

[

0 1
−1 0

]

(skew symmetric)

[

cos θ − sin θ

sin θ cos θ

]

(orthogonal).

5. Applying the least squares method to the system





1 0
1 1
1 2





[

c
d

]

=





3
4
1



 = b

gives the best fit vector

[

ĉ

d̂

]

=

[

11/3
−1

]

.

a) What is the projection p of b =

[

3
4
1

]

onto the column space of

A =

[

1 0
1 1
1 2

]

?

We know that 11/3 times the first column minus 1 times the second

column is the closest point P in the column space to

[

3
4
1

]

, so the

answer is

A

[

ĉ

d̂

]

=
11

3





1
1
1



−





0
1
2



 =





11/3
8/3
5/3



 .

b) Draw the straight line problem that corresponds to this system.

Plotting the entries of the second column of A against the entries of b

we get the three points shown in Figure 1. The best fit line is ĉ+ d̂t.

c) Find a different vector b 6= 0 ∈ R
3 so that the least squares solution is

[

ĉ

d̂

]

=

[

0
0

]

.

We know that

[

ĉ

d̂

]

is the projection of b onto the column space, so to

get a zero projection we need to find a vector orthogonal to the columns.
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Figure 1: Three data points and their “best fit” line 11
3 − t.

We could get the answer b =

[

1
−2
1

]

by inspection, or we could use

the cross product of the columns to find a value for b.

Thank you for taking this course!
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