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The importance of |Vub|

• |Vub| determined by tree-level decays
Crucial for comparing tree-dominated
and loop-mediated processes

• |Vub|π`ν̄−LQCD = (3.5± 0.5)× 10−3

|Vub|incl−BLNP = (4.32± 0.35)× 10−3

|Vub|τν = (5.2± 0.5± 0.4fB)× 10−3

SM CKM fit, sin 2φ1, favors small value

• Fluctuation, bad theory, new physics?

• The level of agreement between the
measurements often misinterpreted
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• 10–20% non-SM contributions to most loop-mediated transitions are still possible
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|Vub| matters. . .

• Including B → τ ν̄, the SM is “disfavored” at >2σ
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ντ →w/o B 
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Parameterize NP in B0–B0 mixing: M12 = MSM
12 (1 + hd e

2iσd)

• 10–20% non-SM contributions to most loop-mediated transitions are still possible
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The challenge of inclusive |Vub| measurements

• Total rate known with ∼ 4% accuracy, similar to B(B → Xc`ν̄) [Hoang, ZL, Manohar]

• To remove the huge charm background
(|Vcb/Vub|2 ∼ 100), need phase space cuts

Phase space cuts can enhance perturbative
and nonperturbative corrections drastically
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• Endpoint region determined by b quark PDF in B; want to extract it from data to
make predictions — at lowest order ∝ B → Xsγ photon spectrum

[Bigi, Shifman, Uraltsev, Vainshtein; Neubert]

p.4



|Vub|: lepton endpoint vs. B → Xsγ

b quark decay
spectrum

with a model for
b quark PDF
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|Vub|: lepton endpoint vs. B → Xsγ

b quark decay
spectrum

with a model for
b quark PDF

0 0.5 1 1.5 2 2.5El

dΓ
dEl

 d
dEl
−

difference:

2 3 4

p.5



|Vub|: lepton endpoint vs. B → Xsγ

b quark decay
spectrum

with a model for
b quark PDF
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|Vub|: lepton endpoint vs. B → Xsγ

b quark decay
spectrum

with a model for
b quark PDF
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• Both of these spectra are determined at lowest order by the b quark PDF in the B

• Lots of work toward extending beyond leading order; many open issues...
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Past efforts: BLNP (best so far)

• Treated factorization & resummation
in shape function region correctly

• Use fixed functional forms to model
shape function (similar to PDF’s)

• Analysis tied to shape function
scheme for mb, λ1

(One scheme for each approach)

• Need for “tail gluing” to get correct
perturbative tail (other approaches
don’t even do this [DGE, GGOU, ADFR])

⇒ Hard to assess uncertainties

[Bosch, Lange, Neubert, Paz]
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Start with B → Xsγ

[ZL, Stewart, Tackmann, PRD 78 (2008) 114014, arXiv:0807.1926]



Regions of phase space

• B → Xsγ gives one of the strongest bounds on NP

• p+
X ≡ mB − 2Eγ <∼ 2 GeV, and <1 GeV at the peak

Three cases: 1) Λ ∼ mB − 2Eγ � mB

Three cases: 2) Λ� mB − 2Eγ � mB

Three cases: 3) Λ� mB − 2Eγ ∼ mB

[Sometimes called 1) SCET and 2) MSOPE]

• Neither 1) nor 2) is fully appropriate
 [GeV]γ
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• Include all known results in regions 1) – 2)

LL: 1–loop Γcusp, tree-level matching

NLL: 2–loop Γcusp, 1–loop matching, 1–loop γx

NNLL: 3–loop Γcusp, 2–loop matching, 2–loop γx

We can combine 1) – 2) without
expanding shape function in Λ/p+

X
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The shape function (b quark PDF in B)

• The shape function S(ω, µ) contains nonperturbative physics and obeys a RGE

If S(ω, µΛ) has exponentially small tail, any small
running gives a long tail and divergent moments

[Balzereit, Mannel, Kilian]

S(ω, µi) =

Z
dω
′
US(ω − ω′, µi, µΛ)S(ω

′
, µΛ)

Constraint: moments (OPE) + B → Xsγ shape
Constraint: How to combine these?

– Consistent setup at any order, in any scheme

– Stable results for varying µΛ

– (SF modeling scale, must be part of uncert.)

– Similar to how all matrix elements are defined
– e.g., BK(µ) = bBK [αs(µ)]2/9(1 + . . .)

Derive: [ZL, Stewart, Tackmann, 0807.1926]

S(ω, µΛ) =

Z
dk C0(ω−k, µΛ)F (k)
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The shape function (b quark PDF in B)

• The shape function S(ω, µ) contains nonperturbative physics and obeys a RGE

If S(ω, µΛ) has exponentially small tail, any small
running gives a long tail and divergent moments

[Balzereit, Mannel, Kilian]

S(ω, µi) =

Z
dω
′
US(ω − ω′, µi, µΛ)S(ω

′
, µΛ)

Constraint: moments (OPE) + B → Xsγ shape
Constraint: How to combine these?

– Consistent setup at any order, in any scheme

– Stable results for varying µΛ

– (SF modeling scale, must be part of uncert.)

– Similar to how all matrix elements are defined
– e.g., BK(µ) = bBK [αs(µ)]2/9(1 + . . .)

Derive: [ZL, Stewart, Tackmann, 0807.1926]
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• Consistent to impose moment constraints on F (k), but not on S(ω, µΛ) w/o cutoff
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Derivation of the magic formula (1)

• The shape function is the matrix element of a nonlocal operator:

S(ω, µ) = 〈B| b̄v δ(iD+ − δ + ω) bv| {z }
O0(ω,µ)

|B〉, δ = mB −mb

Integrated over a large enough region, 0 ≤ ω ≤ Λ, one can expand O0 as

O0(ω, µ) =
X

Cn(ω, µ) b̄v (iD+ − δ)n bv| {z }
Qn

+ . . . =
X

Cn(ω − δ, µ) b̄v (iD+)
n
bv| {z }eQn

+ . . .

The Cn are the same for Qn and Q̃n (since O0 only depends on ω − δ)

• Matching: 〈bv|O0(ω+δ, µ)|bv〉 =
X

Cn(ω, µ) 〈bv| eQn|bv〉 = C0(ω, µ), 〈bv| eQn|bv〉 = δ0n

〈bv(k+)|O0(ω + δ, µ)|bv(k+)〉 = C0(ω + k+, µ) =
X kn+

n!

dnC0(ω, µ)

dωn

〈bv(k+)|O0(ω + δ, µ)|bv(k+)〉 =
X

Cn(ω, µ)〈bv| eQn|bv〉 =
X

Cn(ω, µ) k
n
+

• Comparing last two lines: Cn(ω, µ) =
1
n!

dnC0(ω, µ)
dωn

[Bauer & Manohar]
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Derivation of the magic formula (2)

• Define the nonperturbative function F (k) by: [ZL, Stewart, Tackmann; Lee, ZL, Stewart, Tackmann]

S(ω, µΛ) =
∫

dk C0(ω − k, µΛ)F (k), C0(ω, µ) = 〈bv|O0(ω + δ, µ)|bv〉

uniquely defines F (k): F̃ (y) = S̃(y, µ)/C̃0(y, µ)

• Expand in k: S(ω, µ) =
∑
n

1
n!

dnC0(ω, µ)
dωn

∫
dk (−k)nF (k)

Compare with previous page ⇒
∫

dk knF (k) = (−1)n 〈B|Qn|B〉

〈B|Q0|B〉 = 1 , 〈B|Q1|B〉 = −δ , 〈B|Q2|B〉 = −
λ1

3
+ δ

2

More complicated situation for higher moments, so stop here

• This treatment is fully consistent with the OPE
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Changing schemes: mb

• Converting results to a short distance mass scheme removes dip at small ω:

• Want to define short distance
(hatted) quantities such that:

S(ω) =

Z
dk C0(ω − k)F (k)

S(ω) =

Z
dk bC0(ω − k) bF (k)

Switch from pole to short dis-
tance scheme:

mb = bmb + δmb

λ1 = bλ1 + δλ1
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• Can use any short distance mass scheme (1S, kinetic, PS, shape function, . . . )
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Changing schemes: λ1

• We find that kinetic scheme, µ2
π ≡ −λkin

1 , oversubtracts; similar to mb(mb) issues

• Introduce “invisible” scheme: λi
1 = λ1−0αs−R2 α

2
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• Yet to be seen if shape func-
tion scheme for λ1 gives good
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Scale (in)dependence of B → Xsγ spectrum

• Dependence on 3 scales in the problem:

µΛ = 1.2, 1.5, 1.9 GeV µi = 2.0, 2.5, 3.0 GeV µb = 2.35, 4.7, 9.4 GeV
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• In other approaches, using models for S(ω, µΛ) run up to µi, dependence on µΛ

ignored so far, but it must be considered an uncertainty ⇒ This is how to solve it
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Designer orthonormal functions

• Devise suitable orthonormal basis functions
(earlier: fit parameters of model functions to data)

F̂ (λx) = 1
λ

[∑
cnfn(x)

]2, n th moment ∼ΛnQCD

fn(x) ∼ Pn[y(x)] ← Legendre polynomials

• Approximating a model shape function

Better to add a new term in an orthonormal
basis than a new parameter to a model:
– less parameter correlations
– errors easier to quantify

“With four parameters I can fit an elephant, and with five
I can make him wiggle his trunk.” (John von Neumann)
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Back to the B → Xsγ spectrum

• 9 models: same 0th, 1st, 2nd moments

Including all NNLL contributions, find:

– Shape in peak region not determined
– at all by first few moments

– Smaller shape function uncertainty for
– Eγ <∼ 2.1 GeV than earlier studies 00
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• Not shown in this plot: subleading shape functions
Not shown in this plot: subleading corrections not in C incl
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Not shown in this plot: kinematic power corrections
Not shown in this plot: boost to Υ(4S) frame

• Same analysis can also be used for: B → Xs`
+`−, |Vub|
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More complicated: B → Xu`ν̄

[ZL, Stewart, Tackmann, to appear]



Regions of phase space (again)

• “Natural” kinematic variables: p±X = EX∓|~pX|— “jettyness” of hadronic final state

B → Xsγ: p+
X = mB − 2Eγ & p−X ≡ mB, but independent variables in B → Xu`ν̄

• Three cases: 1) Λ ∼ p+
X � p−X

Three cases: 2) Λ� p+
X � p−X

Three cases: 3) Λ� p+
X ∼ p

−
X

Make no assumptions how p−X compares to mB

• B → Xu`ν̄: 3-body final state, appreciable rate
in region 3), where hadronic final state not jet-like

E.g., m2
X < m2

D does not imply p+
X � p−X 0
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• Can combine 1) – 2) just as we did in B → Xsγ, by not expanding in Λ/p+
X
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Charmless B → Xu`ν̄ made charming

• To combine all 3 regions: do not expand in Λ/p+
X nor in p+

X/p
−
X (nontrivial!)

• Want to have: result accurate to NNLL and ΛQCD/mb in regions 1) – 2)
and to order α2

sβ0 and Λ2
QCD/m

2
b when phase space limits are in region 3)

Start with triple differential rate (involves a delta-fn at the parton level at O(α0
s),

which is smeared by the shape function)

The p+
X/p

−
X terms, which are not suppressed in local OPE region, start at O(αs)

Recently completed O(α2
s) matching computations [Ben’s & Guido’s talks]

[Bonciani & Ferroglia, 0809.4687; Asatrian, Greub, Pecjak, 0810.0987; Beneke, Huber, Li, 0810.1230; Bell, 0810.5695]
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SIMBA

[Bernlochner, Lacker, ZL, Stewart, Tackmann, Tackmann, to appear]



Fitting charmless inclusive decay spectra

• Fit strategy: F̂ (k) enters the spectra linearly ⇒ can calculate independently the
contribution of fm fn in the expansion of F̂ (k):

dΓ =
∑

cm cn︸ ︷︷ ︸
fit

dΓmn︸ ︷︷ ︸
compute

dΓmn = Γ0H(p
−

)

Z p+
X

0

dk
bP (p−, k)

λ
fm

„
p+
X − k
λ

«
fn

„
p+
X − k
λ

«
| {z }

basis functions

Fit the ci coefficients from the measured (binned) spectra

• What we hope to achieve:
– Correlation and error propagation of SF uncertainties
– Simultaneous fit using all available information
– Realistic estimate of model uncertainties (fit parameters c0,...,N constrained by
– data; vary N , the number of orthonormal basis functions in fit)
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A preliminary B → Xsγ fit

• Belle B → Xsγ spectrum in Υ(4S) restframe

For demonstration purposes only — there
are very strong correlations

Fit with 4 basis functions in the expansion of
the shape function

Shows that fit works (not as trivial as this plot
might indicate); still issues to resolve

[Belle, 0804.1580 + Preliminary; thanks to Antonio Limosani]
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• Next step: include various B → Xu`ν̄ measurements
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Conclusions

• Improving accuracy of |Vub| will remain important to constrain new physics
(Current situation unsettled, PDG in 2008 inflated error for the first time)

• Qualitatively better inclusive analyses possible than those that exist so far
– Modeling F (k) instead of S(ω, µ)
– Designer orthonormal functions
– Fully consistent combination of 3 phase space regions
– Decouple SF shape variation from mb variation

• Developments will allow combining all pieces of data with tractable uncertainties
– Consistently combine B → Xu`ν̄, B → Xsγ, B → Xc`ν̄ data to constrain SF’s
– Reduce role of shape function modeling

• To draw conclusions about new physics comparing sides and angles, we’ll want
≥2 extractions of |Vub| with different uncertainties (inclusive, exclusive, leptonic)
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