Lecture 17: Orthogonal matrices and Gram-Schmidt

In this lecture we finish introducing orthogonality. Using an orthonormal ba-
sis or a matrix with orthonormal columns makes calculations much easier. The
Gram-Schmidt process starts with any basis and produces an orthonormal ba-
sis that spans the same space as the original basis.

Orthonormal vectors

The vectors q1, q2, ...qx are orthonormal if:

[0 ifi#]
qiqf_{1 ifi=j.

In other words, they all have (normal) length 1 and are perpendicular (ortho)
to each other. Orthonormal vectors are always independent.

Orthonormal matrix

If the columns of Q = [ q1 .. qu | are orthonormal, then QTQ = I is the
identity.

Matrices with orthonormal columns are a new class of important matri-
ces to add to those on our list: triangular, diagonal, permutation, symmetric,
reduced row echelon, and projection matrices. We'll call them “orthonormal
matrices”.

A square orthonormal matrix Q is called an orthogonal matrix. If Q is square,
then QT Q = I tells us that QT = Q1.

0 0 1 01 0
For example, if Q = [ 1 00 ] then QT = [ 0 0 1 1 Both Q and QT
01 0 1 0 0

are orthogonal matrices, and their product is the identity.
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The matrix Q = [ } is orthogonal. The matrix [ 1 71 ] is
1

1 1
V2|1 -1
We can use the same tactic to find some larger orthogonal matrices called
Hadamard matrices:

not, but we can adjust that matrix to get the orthogonal matrix Q =

1 1 1 1
111 -1 1 -1
Q=511 1 -1 41
1 -1 -1 1

An example of a rectangular matrix with orthonormal columns is:

1 -2
Q:%Z—l
2 2

J



We can extend this to a (square) orthogonal matrix:

1 -2 2
% 2 -1 -2
2 2 1

These examples are particularly nice because they don’t include compli-
cated square roots.

Orthonormal columns are good

Suppose Q has orthonormal columns. The matrix that projects onto the column
space of Q is:
P=Q'(Q"Q)Q"

If the columns of Q are orthonormal, then Q7Q = I and P = QQT. If Q is
square, then P = I because the columns of () span the entire space.

Many equations become trivial when using a matrix with orthonormal columns.
If our basis is orthonormal, the projection component £; is just q/ b because
ATA% = ATb becomes & = QTb.

Gram-Schmidt

With elimination, our goal was “make the matrix triangular”. Now our goal is
“make the matrix orthonormal”.

We start with two independent vectors a and b and want to find orthonor-
mal vectors q; and q; that span the same plane. We start by finding orthogonal
vectors A and B that span the same space as a and b. Then the unit vectors

= A and q; = B form the desired orth I basi
q1 = a7 and q2 = ppy form the desired orthonormal basis.

Let A = a. We get a vector orthogonal to A in the space spanned by a and
b by projecting b onto a and letting B = b — p. (B is what we previously called
e.)
ATpb
B=b- —A.
ATA
If we multiply both sides of this equation by AT, we see that ATB = 0.
What if we had started with three independent vectors, a, b and ¢? Then
we’d find a vector C orthogonal to both A and B by subtracting from c its
components in the A and B directions:



1 1
For example, suppose a = [ 1 ] and b = [ 0 ] . Then A = a and:
1 2
[ 1] 1
A'b
B = ——— |1
ATA |
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Normalizing, we get:

1//3 0
Q=@ q|=|1/Vv3 -1/v2 |.
1/V3  1/V2

The column space of Q is the plane spanned by a and b.

When we studied elimination, we wrote the process in terms of matrices
and found A = LU. A similar equation A = QR relates our starting matrix A
to the result Q of the Gram-Schmidt process. Where L was lower triangular, R
is upper triangular.

Suppose A = [ a; ap |. Then:

A Q R

T T
_ aq1 aqr | -
[ a a } = [ qa 92 ] [ aquz ang }

If R is upper triangular, then it should be true that al q; = 0. This must be true
because we chose qj to be a unit vector in the direction of a;. All the later q;

were chosen to be perpendicular to the earlier ones.
Notice that R = QT A. This makes sense; QTQ = I.



