
Lecture 17: Orthogonal matrices and Gram-Schmidt

In this lecture we finish introducing orthogonality. Using an orthonormal ba-
sis or a matrix with orthonormal columns makes calculations much easier. The
Gram-Schmidt process starts with any basis and produces an orthonormal ba-
sis that spans the same space as the original basis.

Orthonormal vectors

The vectors q1, q2, ...qn are orthonormal if:

qT
i qj =

{
0 if i 6= j
1 if i = j.

In other words, they all have (normal) length 1 and are perpendicular (ortho)
to each other. Orthonormal vectors are always independent.

Orthonormal matrix

If the columns of Q =
[

q1 ... qn
]

are orthonormal, then QTQ = I is the
identity.

Matrices with orthonormal columns are a new class of important matri-
ces to add to those on our list: triangular, diagonal, permutation, symmetric,
reduced row echelon, and projection matrices. We’ll call them “orthonormal
matrices”.

A square orthonormal matrix Q is called an orthogonal matrix. If Q is square,
then QTQ = I tells us that QT = Q−1.

For example, if Q =

[
0 0 1
1 0 0
0 1 0

]
then QT =

[
0 1 0
0 0 1
1 0 0

]
. Both Q and QT

are orthogonal matrices, and their product is the identity.

The matrix Q =

[
cos θ − sin θ
sin θ cos θ

]
is orthogonal. The matrix

[
1 1
1 −1

]
is

not, but we can adjust that matrix to get the orthogonal matrix Q = 1√
2

[
1 1
1 −1

]
.

We can use the same tactic to find some larger orthogonal matrices called
Hadamard matrices:

Q =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

An example of a rectangular matrix with orthonormal columns is:

Q =
1
3

 1 −2
2 −1
2 2

 .
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We can extend this to a (square) orthogonal matrix:

1
3

 1 −2 2
2 −1 −2
2 2 1

 .

These examples are particularly nice because they don’t include compli-
cated square roots.

Orthonormal columns are good

Suppose Q has orthonormal columns. The matrix that projects onto the column
space of Q is:

P = QT(QTQ)−1QT .

If the columns of Q are orthonormal, then QTQ = I and P = QQT . If Q is
square, then P = I because the columns of Q span the entire space.

Many equations become trivial when using a matrix with orthonormal columns.
If our basis is orthonormal, the projection component x̂i is just qT

i b because
AT Ax̂ = ATb becomes x̂ = QTb.

Gram-Schmidt

With elimination, our goal was “make the matrix triangular”. Now our goal is
“make the matrix orthonormal”.

We start with two independent vectors a and b and want to find orthonor-
mal vectors q1 and q2 that span the same plane. We start by finding orthogonal
vectors A and B that span the same space as a and b. Then the unit vectors
q1 = A

||A|| and q2 = B
||B|| form the desired orthonormal basis.

Let A = a. We get a vector orthogonal to A in the space spanned by a and
b by projecting b onto a and letting B = b− p. (B is what we previously called
e.)

B = b− ATb
ATA

A.

If we multiply both sides of this equation by AT , we see that ATB = 0.
What if we had started with three independent vectors, a, b and c? Then

we’d find a vector C orthogonal to both A and B by subtracting from c its
components in the A and B directions:

C = c− ATc
ATA

A− BTc
BTB

B.
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For example, suppose a =

[
1
1
1

]
and b =

[
1
0
2

]
. Then A = a and:

B =

 1
0
2

− ATb
ATA

 1
1
1


=

 1
0
2

− 3
3

 1
1
1


=

 0
−1

1

 .

Normalizing, we get:

Q =
[

q1 q2
]
=

 1/
√

3 0
1/
√

3 −1/
√

2
1/
√

3 1/
√

2

 .

The column space of Q is the plane spanned by a and b.

When we studied elimination, we wrote the process in terms of matrices
and found A = LU. A similar equation A = QR relates our starting matrix A
to the result Q of the Gram-Schmidt process. Where L was lower triangular, R
is upper triangular.

Suppose A =
[

a1 a2
]
. Then:

A Q R[
a1 a2

]
=

[
q1 q2

] [
aT

1 q1 aT
2 q1

aT
1 q2 aT

2 q2

]
.

If R is upper triangular, then it should be true that aT
1 q2 = 0. This must be true

because we chose q1 to be a unit vector in the direction of a1. All the later qi
were chosen to be perpendicular to the earlier ones.

Notice that R = QT A. This makes sense; QTQ = I.
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