

Page 1 of 10

Postman Hybrid Printer Driver

Technical Solution Overview

PRELIMINARY

Abstract

 This document contains a broad discussion of the technical issues and design constraints involved in developing the Win32 hybrid print driver planned for letterpost.com, and proposes solutions or solution options for these issues and constraints.

1. Integrating with the Windows print architecture

[image: image1.wmf]B. Postman Core Logic

Most non-UI and non-data access logic

A. Postman Port Monitor

Abstracts operating system hooks

Contact Provider #1

Microsoft Outlook

{COM Interfaces}

D. Postman Contact Provider Broker

Dynamically integrates contact providers

Provides normalized interface to Postman logic

Contact Provider #2

Windows Address Book

{COM Interfaces + DLL calls}

Contact Provider #3

Letterpost.com online database

{ TCP/IP, HTTP, ?}

Contact Provider #4

Netscape Communicator database

{ COM Interfaces or DLL calls }

Contact Provider #5

Customer's SQL Server database

{ Customer-built provider written in VB }

C. Postman UI

Dialogs and windows

W: Windows Printing Framework

Manages print job flow

Spools output of driver to disk

Invokes Port Monitor after output is spooled

P: Windows Postscript Driver

Renders Application GDI calls

 The Windows print architecture for both Win9x and NT 4.x provides a framework into which 3rd party components can be integrated to support custom printers or printer management protocols. A review of the available extension points in the print job data flow shows that the most appropriate way to integrate our product with the Windows print architecture is to provide a Port Monitor DLL.

Port Monitor DLL

The Port Monitor is responsible for managing and interacting with the printer hardware or virtual device. This component is responsible for providing the user interface to configure a printer, as well as abstracting the details of communicating with the physical print hardware – or in our case, communicating with the Letterpost host server(s).

 In the diagram to the right, the port monitor is the last user mode link in the print job flow before the actual hardware device drivers.

A port monitor provides the following interface to the Windows print framework:

	PORT MONITOR FUNCTIONS
	Description

	AddPort: A port management function that adds a port to the list of currently supported ports in the spooler environment.
	Called by the spooler in order to add a port to the set of ports maintained by the monitor. The spooler calls this entry point when the user chooses the AddPort button from the Printer Properties dialog. We have to implement user interface code to get the information the AddPort function needs to create a port, i.e. the Letterpost user name and password.

	ClosePort: Closes a previously-opened port when no printers are connected to the port.
	Called by the spooler to allow the monitor to clean up any resources associated the port.

	ConfigurePort: A port management function that configures the port.
	Called by the spooler when the user chooses the Port Settings button from the Printer Properties dialog. This enables out port monitor to present a user interface that allows the user to configure global preferences, etc.

	DeletePort: A port management function that frees the port monitor of any responsibility for managing the port or monitoring print jobs on the port.
	Called by the spooler when the user chooses the Delete Port button from the Windows Printer Properties dialog. When the DeletePort function is called in we must delete all knowledge of the specified port from the monitor. (This function will never be called when the port is in use)

	EndDocPort: Performs end-of-print-job tasks on the specified port.
	EndDocPort is called after all the data in a print job has been passed to the port monitor using WritePort function calls. We will use this opportunity to build the message to be transmitted to Letterpost.com.

	EnumPorts: A port management function that provides a list of all the ports available for printing on the local machine through the port monitor.
	Called by the spooler to get the list of ports maintained by the port monitor. At this time, we will likely return a single entry consisting of information about the Letterpost server(s).

	InitializeMonitorEx: Sets up the function pointer table that registers with the spooler all the other entry points provided by your port monitor.
	The port monitor will establish function pointers for a set of port management functions (AddPort, ConfigurePort, DeletePort, and EnumPorts) and a set of printer and print job monitoring functions (OpenPort, ClosePort, StartDocPort, EndDocPort, WritePort, and ReadPort).

	OpenPort: Opens the specified port.
	When the OpenPort function is called, we will allocate data structures and temporary files which are needed to complete the print operation.

	ReadPort: Reads data from the printer.
	The Postman port monitor will not need to implement this function

	SetPortTimeOuts: Sets a time out value on an open port.
	The Postman port monitor will not need to implement this function

	StartDocPort: Performs the tasks to start a print job on the specified port.
	The StartDocPort function is called at the start of a print job. We will take this opportunity to present a user interface which allows the user to select destination the address(es).

	WritePort: Writes data to the printer.
	The WritePort function is called repeatedly to send blocks of data to the printer. We will queue these blocks in a temporary file during the course of a print job. The EndDocPort function will attach this temporary file to the resulting message.

Note: these function represent the Win9x requirements. Windows NT has a similar interface to port monitors, with some differences.

The Postman port monitor DLL needs to:

· provide a user interface for configuring the user’s machine to work with the Letterpost server(s);

· implement the StartDocPort() call by prompting the user for addressing information;

· provide a state machine which collects the data in WritePort() calls and build an email package representing the document and addressing information;

Postscript Printer Driver

 In addition to providing a custom port monitor, the Postman solution will use the Windows Postscript printer driver to format application print jobs for transmission. The postscript drivers for Win9x and NT both use Adobe Postscript Printer Definition files (.PPD – or .SPD) which describe the detailed printer options such as paper source, resolution, available page layouts, etc. The printer definition file determines the options that the user will see on the standard Windows Postscript print setup dialog.

 When printer manufacturers develop a new printer, they generally provide one of these printer definition files for use with the standard Postscript driver supplied with Windows. This saves the manufacturer considerable effort – they do not need to develop their own postscript driver for Windows.

 Modern Postscript printers provide a spectacular array of print options. While this is good news for the printer purchaser, it is probably bad news for Letterpost.com. Since the printers used by Letterpost will be inaccessible to the end user, s(he) will have no way to verify that the printed output meets expectations. One way to keep customer complaints to a minimum is to keep the printer options as simple as possible. Fewer options implies less complexity, with fewer opportunities for user mistakes and confusion.

 This line of reasoning leads to the proposal that our solution should include a custom printer definition file that defines a subset of the options available on the actual printer(s) to be used by the Letterpost server(s). This printer definition file can be produced by editing the printer definition file provided by the printer manufacturer.

Address Information Sources

 Potential customers may have existing contact databases in many different forms. Some examples:

· Microsoft Outlook
· Windows Address Book (.wab – used by Outlook Express)
· Act! (or dozens of other contact managers)
· Netscape communicator
· Microsoft Active Directory Service providers
· Custom Access databases (.mdb)
· Letterpost.com’s online contact database
· Excel spreadsheets
· ODBC / OLEDB Data Sources
· etc.
 This array of possible contact data sources presents design and implementation problems: If we constrain ourselves to integrating Postman with a specific product or set of products only, a large portion of the market for customers will be unserved or underserved – many potential customers are not going to be willing to switch contact management systems. In addition, most of these products, (like everything in the computer industry) change frequently. The struggle to maintain a close coupling/integration with multiple versions of products from 3rd parties presents a serious challenge.

 The above reasoning leads to the recommendation that the Postman solution should avoid tight coupling to a contact data source. By designing an architecture that abstracts our core logic from the mechanics of accessing contact information, we can develop a robust and maintainable product without being constantly at the mercy of the whims (and bugs) of 3rd parties.

 The benefits of this abstraction are:

· Adding support for new data sources is relatively simple, because we only need to develop an appropriate Contact Provider DLL, we don’t need to change and redistribute the rest of the system components. This also minimizes the risk of introducing new bugs into the core system code when adding support for new data sources;

· Most bugs in contact data source code (e.g. COM objects or 3rd party DLLs) can be isolated with Win32 structured exception handling so they don’t propagate to the rest of our code;

· Contact Provider DLLs can be developed and maintained independently, e.g. by Letterpost staff, contractors, or sophisticated end-users, using any COM-capable language.

· The core system logic is freed to concentrate on managing the print job – it will be simpler to build and maintain than if it had to concern itself with the details of various contact data sources.

· The user may interact with either our user interface or the UI native to the contact data source. Since our UI will be consistent among all sources, our documentation and support problems are simplified (e.g. we don’t need to explain to customers how to use their existing contact manager properly...)

 Following is a diagram of a portion of the proposed architecture that focuses on this contact data abstraction. The symbols identified as “Contact Provider #N” represent DLLs that provide integration with a single contact data source. These DLLs understand the details of dealing with that source, i.e. create/retrieve/update/delete the individual contact data records. The Contact Provider DLLs also provide a user interface used to manage the connection to the contact data source. For example, a Contact Provider DLL for the Windows Address Book would need to supply a property page that allows the user to choose the .WAB file(s) which contain the contact data. This property page would be displayed in a dialog owned by the Postman UI DLL when the user invokes the contact management functions.

Abstracting Contact Data Providers:

[image: image6.png]= Spooler
Application
Pl [Prmer Print
Tormmon Oriver Ut | | Processar
Prope
ooz | PR | winspool Tanguags Monitor
i] Porttonitor
User fode
Rernel Mode
5] ;
(Graphics Engine) Serfa, Paralll,
I L or Network Driver
Printer Difver

ToPrinter

Integration with Letterpost.com

 After the Postman print driver has completed construction and packaging of a print job with addressing information, it must be delivered to Letterpost’s server. There are several protocols which could be used accomplish this delivery (e.g. SMTP, FTP, HTTP POST). I see no particular reason to favor one over the other; all are relatively easy to integrate into application code using 3rd party or Microsoft-supplied libraries.

 The Postman requirements call for authenticating end-users and encrypting the print jobs transmitted to the Letterpost server. The recommended solution for this requirement is to perform all print job delivery over a Secured Socket Layer (SSL). SSL is widely supported and well document. Detailed definition of the Postman support for this requirement can be deferred to a late stage of development, as there is little risk that the addition of SSL will disrupt the architecture.

 A significant amount of attention should be paid to the design of the bi-directional communication between Letterpost and the end-user. In particular, it seems important that the solution should:

· Notify end-users of their print job(s) status, including error reporting;

· Allow re-submission of print jobs which failed for some correctable reason (e.g. invalid zip code detected, document format error, unrecognized email alias, insufficient postage, etc.) without requiring the user to completely rebuild the print job from the original source documents;

· Allow for future extensions to the protocol: e.g. offline Letterpost user account management;

· Allow asynchronous generation of print jobs – this means that the user should be able to generate print jobs without establishing an Internet connection to Letterpost. The user should have the option to transmit the print job(s) immediately or queue them for a future Internet connection session. This implies that there should be a mechanism for the Letterpost server to notify the driver on the end user’s system when a job has been completed so it can be discarded from local storage.

· Provide protocol visibility for problem resolution: during development and operation, we need to be able to monitor the communication between the client and server so that problems can be analyzed;

· Support development and maintenance by allowing disconnected simulation on both client and server;

· Be platform-neutral, allowing the server and client to run different operating systems and hardware without problems.

 Given these issues, I suggest that the solution needs a custom print job management protocol that defines the rules by which the client and server will exchange information. To allow for platform neutrality and diagnostic visibility, I believe that this protocol should be based on the exchange of ASCII text blocks. These blocks should use a format that is simple and allows for future extensions without sacrificing backward compatibility. The recommended format is a structured and nested key/value layout with a simple grammar. An example of a message block exchange using the suggested format is shown here:

Example client request for print job status:

{

ProtocolVersion=1.0.0

Sender=Johnson,Eric

UserID=lps11941

MsgType=JobStatusInquiry

MsgDate=1999-08-13 17:25:15

JobDate=1999-08-11 18:32:10

JobID=BEA57290-5342-11d3-BC06-00105A1FADE0

}

Example server response:

{

ProtocolVersion=1.0.1

Sender=Server

MsgType=JobStatusReport

MsgDate=1999-08-13 17:25:42

JobID=BEA57290-5342-11d3-BC06-00105A1FADE0

JobStatus(propset) =

{

!Addressee(propset) =

{

Name=John Davidson, DDS

!Addr=18352 West Dr.

!Addr=Anaheim, CA 92241

DestinationType=POSTAL_MAIL

Status=PRINTED_OK, PENDING_MAILOUT

JobComplete=0

}

!Addressee(propset) =

{

Name=Marsha Woods, DDS

!Addr=1241 N. Highlander Ave.

!Addr=Washington, D.C. 22209

Status=PRINTED_OK, MAILED_USPO(1999-08-12 12:00:00)

JobComplete=1

}

}

}
 Benefits of this approach:

· Message blocks can be constructed manually with a text editor for development and testing;

· ASCII text is supported on all platforms;

· Key-value pairs allow unlimited flexibility for future extension;

· Code that parses and generates this grammar to and from a C++ tree structure is already available and has been thoroughly tested on both Windows and UNIX platforms in several systems. .

An alternate approach could be to use XML as the message language, which would be an acceptable solution that might provide unforseen advantages in the future, at the cost of somewhat more development time.

 Letterpost communication service

 To facilitate asynchronous print job management, it is recommended that we provide a daemon EXE which runs as a hidden program in Win9x and as a Service in NT. This daemon performs all the actual communication with Letterpost.com. This daemon would provide the following types of services:

· Coordinate the Internet connection and disconnection logic needed by our system;

· Transmit print jobs to Letterpost.com;

· Receive and manage print job status messages;

· Synchronize the local machine’s driver files (e.g. auto-upgrade);

· Resend print jobs on error correction;

Driver administration applet

 A number of administrative task dialogs should be made available to the user as a Control Panel applet. Examples of these tasks would be:

· Checking status of print jobs which have been sent to Letterpost.com;

· Requesting an upgrade of print driver software via Internet download;

· Verifying the correct installation of the software;

· Configuring, adding, and deleting Contact Providers;

· Starting and stopping the service daemon.

Component Overview

 The diagram below summarizes the components in the proposed solution and their relationships.

[image: image2.wmf]Port Monitor

- LpsPort.dll

<<DLL>>

Service Daemon -

LpsServ.exe

<<Service EXE>>

Core Logic -

LpsCore.dll

<<DLL>>

Windows Print

Framework

<<Operating System>>

User Interface

- LpsUI.dll

<<UI DLL>>

Postscript Driver -

PSCRIPT.*

<<Driver>>

Most logic is in LpsCore.dll

Contact Provider

Broker - LpsCon.dll

Most logic is in LpsCore.DLL

{ contact

provider DLLs}

Letterpost Manager

<<Control Panel Applet>>

A sample printing scenario

 This start-to-finish event sequence is intended to aid in understanding the proposed solution:

1. The user completes edits on a Microsoft Word document, and chooses /File /Print.

2. Windows displays the common print dialog, and the s(he) changes the printer selection to “Letterpost.com”

3. The user clicks the “Properties” button, and is presented with the Windows Common Printer Properties dialog. The available selections on this dialog are limited by our custom Postscript Printer Definition file. The user changes the duplex printing option to “Print both sides/long side” and clicks OK to close the dialog.

4. Returned to the common print dialog, the user clicks OK to execute the print job.

5. Windows invokes the normal print spooling process, using the standard Postscript driver (PSCRIPT.*) to render Word’s GDI calls to a temporary file.

6. When the rendering is complete, Windows loads our Port Monitor DLL and calls StartDocPort(), which we have implemented in our core logic DLL.

7. Our StartDocPort implementation prepares to receive the document content by creating an appropriate unique Job ID and opening a file in our Queue directory to place the data.

8. Windows calls our WritePort implementation repeatedly until all the spooled data is passed. Our implementation of WritePort copies the data to the queue file.

9. Windows calls our EndDocPort function. Our Port Monitor DLL takes this opportunity to present the addressing user interface. To do this, it queries each of the installed Contact Provider DLLs and asks them for a summary list of available contacts.

10. The Port Monitor presents a dialog to the user something like this:

[image: image3.png]Letterpost com Addressee Selection

=)) X ke | =] &

New Propeties Delete FindPeople Print Ation

- [on Davidson {Postal 1236. } Berrand Russeli{Postal12 Park.
Narme Address Provider

Davidson, John

Crow,_Chen/|

Killebrew; Harmon

Fex (306) 426-2435
Ernail: corow@at

12 Park Cir
1935 E. Canary.

Microsoft Oulook {Contact!
\Windaws Address Book {d

Letierpost.com Online Dats

[Microsoft Outook.

Open Provider.

Caver Sheet,

oK

Cancel

11. The contact list represents the aggregate / sorted summary information from all installed Contact Providers. The user selects the addressees from this list, and clicks OK.

12. EndPortDoc() saves the addressee information with the queued print job, and then notifies the service daemon. At this point EndPortDoc() returns and Windows closes the print job.

13. The service daemon calls InternetGetConnectedState() in the Windows WININET API to determine whether the computer is currently connected to the Internet. If an Internet connection is not found, the user is asked if s(he) wishes to connect now or wait until the next Internet connection is established. If the user chooses to connect immediately, the service daemon will use the Windows Dialup Networking API to establish an Internet connection.

14. When the Internet connection has been established, the service daemon transmits the queued print job(s) to Letterpost.com and obtains a transmission receipt. The service daemon moves the queued print job to the Pending subdirectory and attaches the transmission receipt to the file.

15. The service daemon disconnects from Letterpost.com. If a Dialup Internet connection was initiated by the service daemon, the daemon displays a message box which asks the user if s(he) wishes to close the Dialup Networking connection. This message box will automatically time out and terminate the connection if the user does not respond within 30 seconds.

16. If the job is queued for transmission, the service daemon periodically polls for an Internet connection. When a connection is found, it sends a JobStatusRequest message to Letterpost.com, and obtains an updated status report. This status report is saved with the print job file in the Pending subdirectory.

17. Later in the day, the user uses the Letterpost Control Panel applet to view the state of their print job. S(he) sees a form something like the following:

Letterpost Control Panel Applet

[image: image4.png]LI Letterpost Manager -]

Diver Y Print Jobs Y Postage Stanps
g &g s X

Pint Addesses Send/ecy Find Delete
Document | Addressee [Time Pinted [Status

B [JohrLeter.dos |Davidson, John..__[8/13/33 8 3200 AN |Queved for iansmision (o Leterpost o]
Cooking s |ussel, Berrand | 8/11/33 2.02.00 PM | Prosessed by Lettepostcom
<uniilec>——jmd dad@ietterpost | 7723/33 10:16:13 AM Prosessed by Letterpost com

Print Job Lifecycle

The state diagram below shows the proposed states of a print job and the events which can occur in its lifecycle:

[image: image5.wmf]Rendering + spooling

Application calls

StartDoc

Queuing

do: Copy to .\Queue

OS calls StartPortDoc /

Create queue file

Pending

entry: Copy to .\Pending

Queued

do: Wait for Internet connection

Processed

Letterpost notifies: processed OK /

Move to .\Processed

Addressing

Internet connected / transmit

Internet NOT connected

OS calls EndPortDoc /

display addressing window

User cancels print job /

cleanup

Internet connected / transmit

User delete

User chooses 'Change

Addressing'

User delete / purge job

.\Processed disk space exceeds quota / purge job

Conclusion

 In software, there are usually many ways to solve a particular problem. The approach illustrated here is intended to balance a variety of design constraints and values, but it is by no means the only way to get the job done. Many variations on this solution are worthy of consideration.

 As with all software projects, it is critically important to build on a solid, extensible core architecture. This design enables that goal to be realized.

 I suggest that development efforts should concentrate on delivering an essential subset of the functionality proposed here as a first step. This suggestion is made with the confidence that the core architecture will scale up gracefully to handle new features in the future.

Les Matheson

Integral Vision SDS

lmath@pacbell.net
\\ivsds_main\d\letterpost\TechnicalSolutionOverview.doc
19 August 1999

