
Extensible Firmware Interface
Specification

Version 1.02

December 12, 2000

Extensible Firmware Interface Specification

ii 12/12/00 Version 1.02

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING
OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

A license is hereby granted to copy and reproduce this specification for internal use only.

No other license, express or implied, by estoppel or otherwise, to any other intellectual property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document contains information on products in the design phase of development. Do not finalize a design with this
information. Revised information will be published when the product is available. Verify with your local sales office that you
have the latest datasheet or specification before finalizing a design.

† Third-party trademarks are the property of their respective owners.

Intel order number 731843-001

Copyright 1998, 1999, 2000 Intel Corporation. All Rights Reserved.

Version 1.02 12/12/00 iii

Revision History

Revision Revision History Date
1.01 Original Issue. 12/01/00
1.02 Update for legal and trademarking requirements. 12/12/00

Extensible Firmware Interface Specification

iv 12/12/00 Version 1.02

Version 1.02 12/12/00 v

Table of Contents

1 Introduction
1.1 Overview.. 2

1.2 Goals ... 3

1.3 Target Audience .. 5

1.4 Related Information ... 6

1.5 Prerequisite Specifications .. 8

1.5.1 ACPI Specification... 8

1.5.2 WfM Specification.. 8

1.5.3 Additional Considerations for Itanium™-based Platforms.................. 9

1.6 EFI Design Overview... 9

1.7 Migration Requirements... 11

1.7.1 Legacy Operating System Support .. 11

1.7.2 Supporting the EFI Specification on a Legacy Platform................... 11

1.8 Conventions Used in This Document... 12

1.8.1 Data Structure Descriptions... 12

1.8.2 Typographic Conventions .. 12

1.9 Guidelines for Use of the Term “Extensible Firmware Interface” 12

2 Overview
2.1 Boot Manager .. 14

2.2 Firmware Core... 14

2.2.1 EFI Services .. 14

2.2.2 Runtime Services .. 15

2.3 Calling Conventions... 16

2.3.1 Data Types .. 16

2.3.2 IA-32 Platforms.. 18

2.3.3 Itanium-based Platforms.. 18

2.4 Protocols.. 19

2.5 Requirements .. 21

2.5.1 Required Elements .. 21

2.5.2 Optional Elements ... 22

2.5.3 Appendixes.. 23

Extensible Firmware Interface Specification

vi 12/12/00 Version 1.02

3 Services
3.1 Event, Timer, and Task Priority Services... 26

3.1.1 CreateEvent() .. 29

3.1.2 CloseEvent().. 33

3.1.3 SignalEvent() ... 34

3.1.4 WaitForEvent() .. 35

3.1.5 CheckEvent()... 36

3.1.6 SetTimer().. 37

3.1.7 RaiseTPL() .. 39

3.1.8 RestoreTPL() ... 41

3.2 Memory Allocation Services .. 42

3.2.1 AllocatePages() ... 45

3.2.2 FreePages()... 48

3.2.3 GetMemoryMap() .. 49

3.2.4 AllocatePool() .. 53

3.2.5 FreePool().. 54

3.3 Protocol Handler Services ... 55

3.3.1 InstallProtocolInterface().. 57

3.3.2 UninstallProtocolInterface() ... 59

3.3.3 ReinstallProtocolInterface() ... 60

3.3.4 RegisterProtocolNotify()... 61

3.3.5 LocateHandle() .. 62

3.3.6 HandleProtocol().. 64

3.3.7 LocateDevicePath() ... 65

3.4 Image Services.. 67

3.4.1 LoadImage() .. 69

3.4.2 StartImage()... 71

3.4.3 UnloadImage()... 72

3.4.4 EFI_IMAGE_ENTRY_POINT .. 73

3.4.5 Exit() .. 74

3.4.6 ExitBootServices() ... 76

Contents

Version 1.02 12/12/00 vii

3.5 Variable Services... 77

3.5.1 GetVariable() ... 78

3.5.2 GetNextVariableName() .. 80

3.5.3 SetVariable().. 82

3.6 Time Services.. 84

3.6.1 GetTime() .. 85

3.6.2 SetTime()... 88

3.6.3 GetWakeupTime() ... 89

3.6.4 SetWakeupTime().. 90

3.7 Virtual Memory Services.. 91

3.7.1 SetVirtualAddressMap()... 92

3.7.2 ConvertPointer() .. 94

3.8 Miscellaneous Services ... 95

3.8.1 ResetSystem()... 96

3.8.2 SetWatchdogTimer().. 98

3.8.3 Stall() ... 100

3.8.4 GetNextMonotonicCount() ... 101

3.8.5 GetNextHighMonotonicCount().. 102

3.8.6 InstallConfigurationTable()... 103

4 EFI Image
4.1 LOADED_IMAGE Protocol .. 105

4.1.1 LOADED_IMAGE.Unload().. 108

4.2 EFI Image Header ... 109

4.3 EFI Applications... 110

4.4 EFI OS Loaders... 110

4.5 EFI Drivers... 110

4.5.1 EFI Image Handoff State ... 111

4.5.1.1 IA-32 Handoff State.. 115

4.5.1.2 Handoff State, Itanium-based Operating Systems 116

5 Device Path Protocol ..117
5.1 Device Path Overview ... 117

5.2 EFI_DEVICE_PATH Protocol .. 118

Extensible Firmware Interface Specification

viii 12/12/00 Version 1.02

5.3 Device Path Nodes.. 119

5.3.1 Generic Device Path Structures .. 119

5.3.2 Hardware Device Path... 120

5.3.2.1 PCI Device Path ... 121

5.3.2.2 PCCARD Device Path.. 121

5.3.2.3 Memory Mapped Device Path .. 122

5.3.2.4 Vendor Device Path ... 122

5.3.2.5 Controller Device Path.. 122

5.3.3 ACPI Device Path.. 123

5.3.4 Messaging Device Path... 123

5.3.4.1 ATAPI Device Path... 124

5.3.4.2 SCSI Device Path... 124

5.3.4.3 Fibre Channel Device Path... 124

5.3.4.4 1394 Device Path ... 125

5.3.4.5 USB Device Path.. 125

5.3.4.6 USB Class Device Path.. 126

5.3.4.7 I2O Device Path ... 126

5.3.4.8 MAC Address Device Path ... 126

5.3.4.9 IPv4 Device Path.. 127

5.3.4.10 IPv6 Device Path.. 127

5.3.4.11 InfiniBand† Device Path.. 128

5.3.4.12 UART Device Path ... 128

5.3.4.13 Vendor-Defined Messaging Device Path.................................... 129

5.3.5 Media Device Path .. 129

5.3.5.1 Hard Drive .. 129

5.3.5.2 CD-ROM Media Device Path.. 131

5.3.5.3 Vendor-Defined Media Device Path ... 131

5.3.5.4 File Path Media Device Path .. 132

5.3.5.5 Media Protocol Device Path ... 132

5.3.6 BIOS Boot Specification Device Path .. 133

5.4 Device Path Generation Rules .. 133

5.4.1 Housekeeping Rules ... 133

5.4.2 Rules with ACPI _HID and _UID ... 134

5.4.3 Rules with ACPI _ADR .. 135

Contents

Version 1.02 12/12/00 ix

5.4.4 Hardware vs. Messaging Device Path Rules................................. 135

5.4.5 Media Device Path Rules .. 136

5.4.6 Other Rules ... 136

6 Device I/O Protocol
6.1 Device I/O Overview.. 137

6.2 DEVICE_IO Protocol ... 138

6.2.1 DEVICE_IO.Mem(), .Io(), and .Pci()... 141

6.2.2 DEVICE_IO.PciDevicePath()... 143

6.2.3 DEVICE_IO.Map() ... 144

6.2.4 DEVICE_IO.Unmap()... 146

6.2.5 DEVICE_IO.AllocateBuffer().. 147

6.2.6 DEVICE_IO.Flush() ... 149

6.2.7 DEVICE_IO.FreeBuffer() ... 150

7 Console I/O Protocol
7.1 Console I/O Overview.. 151

7.2 ConsoleIn Definition... 152

7.3 SIMPLE_INPUT Protocol... 154

7.3.1 SIMPLE_INPUT.Reset() .. 155

7.3.2 SIMPLE_INPUT.ReadKeyStroke... 156

7.4 ConsoleOut or StandardError .. 157

7.5 SIMPLE_TEXT_OUTPUT Protocol.. 157

7.5.1 SIMPLE_TEXT_OUTPUT.Reset() ... 160

7.5.2 SIMPLE_TEXT_OUTPUT.OutputString() 161

7.5.3 SIMPLE_TEXT_OUTPUT.TestString() .. 164

7.5.4 SIMPLE_TEXT_OUTPUT.QueryMode().. 165

7.5.5 SIMPLE_TEXT_OUTPUT.SetMode() .. 166

7.5.6 SIMPLE_TEXT_OUTPUT.SetAttribute().. 167

7.5.7 SIMPLE_TEXT_OUTPUT.ClearScreen() 169

7.5.8 SIMPLE_TEXT_OUTPUT.SetCursorPosition() 170

7.5.9 SIMPLE_TEXT_OUTPUT.EnableCursor() 171

Extensible Firmware Interface Specification

x 12/12/00 Version 1.02

8 Block I/O Protocol
8.1 BLOCK_IO Protocol... 173

8.1.1 EFI_BLOCK_IO.Reset() .. 176

8.1.2 EFI_BLOCK_IO.ReadBlocks()... 177

8.1.3 EFI_BLOCK_IO.WriteBlocks()... 179

8.1.4 BLOCK_IO.FlushBlocks() .. 181

9 Disk I/O Protocol
9.1 DISK_IO Protocol .. 183

9.1.1 EFI_DISK_IO.ReadDisk() .. 185

9.1.2 EFI_DISK_IO.WriteDisk() .. 186

10 File System Protocol
10.1 Simple File System Protocol.. 187

10.1.1 EFI_FILE_IO_INTERFACE.OpenVolume() 189

10.2 EFI_FILE Protocol ... 190

10.2.1 EFI_FILE.Open() ... 192

10.2.2 EFI_FILE.Close()... 195

10.2.3 EFI_FILE.Delete().. 196

10.2.4 EFI_FILE.Read() ... 197

10.2.5 EFI_FILE.Write().. 198

10.2.6 EFI_FILE.SetPosition() .. 199

10.2.7 EFI_FILE.GetPosition().. 200

10.2.8 EFI_FILE.GetInfo() .. 201

10.2.9 EFI_FILE.SetInfo()... 202

10.2.10 EFI_FILE.Flush() ... 203

10.2.11 EFI_FILE_INFO... 204

10.2.12 EFI_FILE_SYSTEM_INFO .. 206

10.2.13 EFI_FILE_SYSTEM_VOLUME_LABEL... 207

11 Load File Protocol
11.1 LOAD_FILE Protocol ... 209

11.1.1 LOAD_FILE.LoadFile() .. 210

Contents

Version 1.02 12/12/00 xi

12 Serial I/O Protocol
12.1 SERIAL_IO Protocol .. 213

12.1.1 SERIAL_IO.Reset() ... 217

12.1.2 SERIAL_IO.SetAttributes() .. 218

12.1.3 SERIAL_IO.SetControl().. 220

12.1.4 SERIAL_IO.GetControl() ... 222

12.1.5 SERIAL_IO.Write() .. 223

12.1.6 SERIAL_IO.Read() .. 224

13 Unicode Collation Protocol
13.1 UNICODE_COLLATION Protocol.. 225

13.1.1 UNICODE_COLLATION.StriColl() ... 227

13.1.2 UNICODE_COLLATION.MetaiMatch() .. 228

13.1.3 UNICODE_COLLATION.StrLwr() .. 230

13.1.4 UNICODE_COLLATION.StrUpr() .. 231

13.1.5 UNICODE_COLLATION.FatToStr()... 232

13.1.6 UNICODE_COLLATION.StrToFat()... 233

14 PXE Base Code Protocol35
14.1 EFI_PXE_BASE_CODE Protocol .. 235

14.1.1 EFI_PXE_BASE_CODE.Start() ... 247

14.1.2 EFI_PXE_BASE_CODE.Stop() ... 250

14.1.3 EFI_PXE_BASE_CODE.Dhcp() .. 251

14.1.4 EFI_PXE_BASE_CODE.Discover()... 253

14.1.5 EFI_PXE_BASE_CODE.Mtftp()... 257

14.1.6 EFI_PXE_BASE_CODE.UdpWrite().. 261

14.1.7 EFI_PXE_BASE_CODE.UdpRead().. 263

14.1.8 EFI_PXE_BASE_CODE.SetIpFilter() .. 266

14.1.9 EFI_PXE_BASE_CODE.Arp() ... 267

14.1.10 EFI_PXE_BASE_CODE.SetParameters()..................................... 268

14.1.11 EFI_PXE_BASE_CODE.SetStationIp() ... 270

14.1.12 EFI_PXE_BASE_CODE.SetPackets()... 271

14.2 EFI_PXE_BASE_CODE_CALLBACK Protocol 273

14.2.1 EFI_PXE_BASE_CODE_CALLBACK.Callback() 274

Extensible Firmware Interface Specification

xii 12/12/00 Version 1.02

15 Simple Network Protocol
15.1 EFI_SIMPLE_NETWORK Protocol.. 277

15.1.1 EFI_SIMPLE_NETWORK.Start() ... 282

15.1.2 EFI_SIMPLE_NETWORK.Stop() ... 283

15.1.3 EFI_SIMPLE_NETWORK.Initialize().. 284

15.1.4 EFI_SIMPLE_NETWORK.Reset() ... 285

15.1.5 EFI_SIMPLE_NETWORK.Shutdown()... 286

15.1.6 EFI_SIMPLE_NETWORK.ReceiveFilters() 287

15.1.7 EFI_SIMPLE_NETWORK.StationAddress() 289

15.1.8 EFI_SIMPLE_NETWORK.Statistics() .. 290

15.1.9 EFI_SIMPLE_NETWORK.MCastIPtoMAC() 293

15.1.10 EFI_SIMPLE_NETWORK.NvData()... 294

15.1.11 EFI_SIMPLE_NETWORK.GetStatus()... 296

15.1.12 EFI_SIMPLE_NETWORK.Transmit()... 298

15.1.13 EFI_SIMPLE_NETWORK.Receive().. 300

15.2 NETWORK_INTERFACE_IDENTIFIER Protocol 302

16 File System Format
16.1 System Partition .. 305

16.1.1 File System Format ... 306

16.1.2 File Names .. 306

16.1.3 Directory Structure... 306

16.2 Partition Discovery... 308

16.2.1 EFI Partition Header .. 309

16.2.2 ISO-9660 and El Torito .. 314

16.2.3 Legacy Master Boot Record .. 314

16.2.4 Legacy Master Boot Record and GPT Partitions 316

16.3 Media Formats... 317

16.3.1 Removable Media.. 317

16.3.2 Diskette.. 317

16.3.3 Hard Drive ... 317

16.3.4 CD-ROM and DVD-ROM... 318

16.3.5 Network ... 318

Contents

Version 1.02 12/12/00 xiii

17 Boot Manager
17.1 Firmware Boot Manager .. 319

17.2 Globally-Defined Variables .. 323

17.3 Boot Option Variables Default Behavior .. 325

17.4 Boot Mechanisms .. 325

17.4.1 Boot via Simple File Protocol... 325

17.4.1.1 Removable Media Boot Behavior ... 325

17.4.2 Boot via LOAD_FILE Protocol ... 326

17.4.2.1 Network Booting ... 326

17.4.2.2 Future Boot Media.. 326

18 PCI Expansion ROM
18.1 Standard PCI Expansion ROM Header ... 327

18.2 EFI PCI Expansion ROM Header .. 328

18.3 Multiple Image Format Support ... 329

18.4 EFI PCI Expansion ROM Driver .. 329

A GUID and Time Formats .. 331

B Console3
B.1 SIMPLE_INPUT... 333

B.2 SIMPLE_TEXT_OUTPUT.. 334

C Device Path Examples
C.1 Example Computer System... 337

C.2 Legacy Floppy ... 338

C.3 IDE Disk... 339

C.4 Secondary Root PCI Bus with PCI to PCI Bridge 341

C.5 ACPI Terms ... 342

C.6 EFI Device Path as a Name Space ... 343

D Status Codes ... 345

E Alphabetic Function Lists ... 347

F Glossary .. 359

Extensible Firmware Interface Specification

xiv 12/12/00 Version 1.02

G 32/64-Bit UNDI Specification
G.1 Introduction.. 373

G.1.1 Definitions.. 373

G.1.2 Referenced Specifications ... 374

G.1.3 OS Network Stacks ... 376

G.2 Overview.. 378

G.2.1 32/64-bit UNDI Interface.. 378

G.2.2 UNDI Command Format .. 384

G.3 UNDI C Definitions... 386

G.3.1 Portability Macros .. 386

G.3.2 Miscellaneous Macros ... 390

G.3.3 Portability Types .. 390

G.3.4 Simple Types... 392

G.3.5 Compound Types .. 409

G.4 UNDI Commands... 416

G.4.1 Command Linking & Queuing.. 417

G.4.2 Get State ... 418

G.4.3 Start ... 420

G.4.4 Stop ... 422

G.4.5 Get Init Info .. 423

G.4.6 Get Config Info .. 427

G.4.7 Initialize.. 430

G.4.8 Reset ... 434

G.4.9 Shutdown... 435

G.4.10 Interrupt Enables ... 437

G.4.11 Receive Filters... 439

G.4.12 Station Address ... 442

G.4.13 Statistics .. 444

G.4.14 MCast IP To MAC.. 448

G.4.15 NvData... 449

G.4.16 Get Status.. 454

G.4.17 Fill Header ... 456

Contents

Version 1.02 12/12/00 xv

G.4.18 Transmit... 460

G.4.19 Receive.. 464

G.5 UNDI as an EFI Runtime Driver... 466

Index .. 469

Figures
1-1. EFI Conceptual Overview .. 10

2-1. Booting Sequence ... 13

2-2. Construction of a Protocol ... 19

3-1. Device Handle to Protocol Handler Mapping ... 56

4-1. Stack after ImageEntryPoint Called, IA-32 .. 115

4-2. Stack after ImageEntryPoint Called, Itanium-based Systems................ 116

16-1. Nesting of Legacy MBR Partition Records... 308

16-2. GUID Partition Table (GPT) Scheme... 310

C-1. Example Computer System... 337

C-2. Partial ACPI Name Space for Example System 338

C-3. EFI Device Path Displayed As a Name Space 343

G-1. Network Stacks with Three Classes of Drivers 376

G-2. !PXE Structures for H/W and S/W UNDI.. 378

G-3. Issuing UNDI Commands .. 383

G-4. UNDI Command Descriptor Block (CDB) .. 384

G-5. Storage Types ... 390

G-6. UNDI States, Transitions & Valid Commands.. 416

G-7. Linked CDBs.. 417

G-8. Queued CDBs ... 418

Tables
1-1. Organization of EFI Specification .. 2

2-1. EFI Runtime Services .. 15

2-2. Common EFI Data Types .. 16

2-3. Modifiers for Common EFI Data Types.. 17

2-4. EFI Protocols ... 20

2-5. Required EFI Implementation Elements .. 21

2-6. Optional EFI Implementation Elements ... 22

3-1. Event, Timer, and Task Priority Functions ... 26

Extensible Firmware Interface Specification

xvi 12/12/00 Version 1.02

3-3. TPL Usage... 27

3-5. TPL Restrictions .. 28

3-7. Memory Allocation Functions... 42

3-9. Memory Type Usage Before ExitBootServices() 43

3-11. Memory Type Usage After ExitBootServices() .. 44

3-13. Protocol Interface Functions .. 55

3-15. Image Type Differences Summary .. 67

3-17. Image Functions .. 68

3-19. Variable Services Functions .. 77

3-21. Time Services Functions ... 84

3-23. Virtual Memory Functions .. 91

3-25. Miscellaneous Services Functions... 95

5-1. Generic Device Path Node Structure... 119

5-3. Device Path End Structure .. 120

5-5. PCI Device Path .. 121

5-6. PCCARD Device Path ... 121

5-7. Memory Mapped Device Path ... 122

5-8. Vendor-Defined Device Path ... 122

5-9. Controller Device Path... 122

5-10. ACPI Device Path.. 123

5-11. ATAPI Device Path.. 124

5-12. SCSI Device Path.. 124

5-13. Fibre Channel Device Path.. 124

5-14. 1394 Device Path .. 125

5-15. USB Device Path... 125

5-16. USB Class Device Path ... 126

5-17. I2O Device Path ... 126

5-18. MAC Address Device Path .. 126

5-19. IPv4 Device Path ... 127

5-20. IPv6 Device Path ... 127

5-21. InfiniBand† Device Path .. 128

5-22. UART Device Path... 128

5-23. Vendor-Defined Messaging Device Path ... 129

5-24. Hard Drive Media Device Path .. 130

Contents

Version 1.02 12/12/00 xvii

5-25. CD-ROM Media Device Path... 131

5-26. Vendor-Defined Media Device Path... 131

5-27. File Path Media Device Path ... 132

5-28. Media Protocol Media Device Path.. 132

5-29. BIOS Boot Specification Device Path .. 133

5-30. ACPI _CRS to EFI Device Path Mapping .. 134

5-31. ACPI _ADR to EFI Device Path Mapping .. 135

6-1. PCI Address .. 142

7-1. Supported Unicode Control Characters ... 152

7-3. EFI Scan Codes for SIMPLE_INPUT_INTERFACE 152

14-1. PXE Tag Definitions for EFI... 245

14-2. Destination IP Filter Operation... 264

14-3. Destination UDP Port Filter Operation ... 264

14-4. Source IP Filter Operation ... 265

14-5. Source UDP Port Filter Operation ... 265

16-1. GUID Partition Table Header... 311

16-2. GUID Partition Entry .. 312

16-3. Defined GUID Partition Entry - Partition Type GUIDs............................ 313

16-4. Defined GUID Partition Entry - Attributes... 313

16-5. Legacy Master Boot Record .. 315

16-6. Legacy Master Boot Record Partition Record.. 315

16-7. PMBR Entry to Precede a GUID Partition Table Header 316

17-1 Global Variables .. 323

17-2 EFI Image Types ... 326

18-1. Standard PCI Expansion ROM Header ... 327

18-2. PCI Data Structure... 328

18-3. EFI PCI Expansion ROM Header .. 329

A-1. EFI GUID Format... 331

B-1. EFI Scan Codes for SIMPLE_INPUT... 333

B-2. Control Sequences that Can Be Used to Implement
SIMPLE_TEXT_OUTPUT.. 334

C-1. Legacy Floppy Device Path ... 339

C-2. IDE Disk Device Path .. 340

C-3. Secondary Root PCI Bus with PCI to PCI Bridge Device Path 341

Extensible Firmware Interface Specification

xviii 12/12/00 Version 1.02

D-1. EFI_STATUS Codes Ranges .. 345

D-2. EFI_STATUS Success Codes (High bit clear)....................................... 345

D-3. EFI_STATUS Error Codes (High bit set) ... 345

D-4. EFI_STATUS Warning Codes (High bit clear) 346

E-1. Functions Listed in Alphabetic Order ... 347

E-2. Functions Listed Alphabetically Within Service or Protocol 354

G-1. Definitions.. 373

G-2. Referenced Specification... 374

G-3. Driver Types: Pros and Cons.. 377

G-4. !PXE Structure Field Definitions .. 379

G-5. UNDI CDB Field Definitions... 384

Version 1.02 12/12/00 1

1
Introduction

This Extensible Firmware Interface (hereafter known as EFI) Specification describes an interface
between the operating system (OS) and the platform firmware. The interface is in the form of data
tables that contain platform-related information, and boot and runtime service calls that are
available to the OS and its loader. Together, these provide a standard environment for booting
an OS.

The EFI specification is designed as a pure interface specification. As such, the specification
defines the set of interfaces and structures that platform firmware must implement. Similarly, the
specification defines the set of interfaces and structures that the OS may use in booting. How either
the firmware developer chooses to implement the required elements or the OS developer chooses to
make use of those interfaces and structures is an implementation decision left for the developer.

The intent of this specification is to define a way for the OS and platform firmware to communicate
only information necessary to support the OS boot process. This is accomplished through a formal
and complete abstract specification of the software-visible interface presented to the OS by the
platform and firmware.

Using this formal definition, a shrink-wrap OS intended to run on Intel® architecture-based
platforms will be able to boot on a variety of system designs without further platform or OS
customization. The definition will also allow for platform innovation to introduce new features and
functionality that enhance platform capability without requiring new code to be written in the OS
boot sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and firmware code
over time. New device types and associated code can provide equivalent functionality through the
same defined abstract interface, again without impact on the OS boot support code.

The EFI specification is primarily intended for the next generation of IA-32 and Itanium™-based

computers. Thus, the specification is applicable to a full range of hardware platforms from mobile
systems to servers. The specification provides a core set of services along with a selection of
protocol interfaces. The selection of protocol interfaces can evolve over time to be optimized for
various platform market segments. At the same time the specification allows maximum
extensibility and customization abilities for OEMs to allow differentiation. In this, the purpose of
EFI is to define an evolutionary path from the traditional “PC-AT†”-style boot world into a legacy-
API free environment.

Extensible Firmware Interface Specification

2 12/12/00 Version 1.02

1.1 Overview

This specification is organized as follows:

Table 1-1. Organization of EFI Specification

Chapter/Appendix Description

1. Introduction Provides an overview of the EFI Specification.

2. Overview Describes the major components of EFI, including the boot manager,
firmware core, calling conventions, protocols, and requirements.

3. Services Contains definitions for the fundamental services that are present in an
EFI-compliant system.

4. EFI Image Defines EFI images, a class of files that contain executable code.

5. Device Path Protocol Defines the device path protocol and provides the information needed to
construct and manage device paths in the EFI environment.

6. Device I/O Protocol Defines the Device I/O protocol, which is used by code running in the
EFI boot services environment to access memory and I/O.

7. Console I/O Protocol Defines the Console I/O protocol, which handles input and output of text-
based information intended for the system user while executing in the
EFI boot services environment.

8. Block I/O Protocol Defines the Block I/O protocol, which is used to abstract mass storage
devices to allow code running in the EFI boot services environment to
access the devices without specific knowledge of the type of device or
controller that manages the device.

9. Disk I/O Protocol Defines the Disk I/O protocol, which is used to abstract Block I/O devices
to allow non-block sized I/O operations.

10. File System Protocol Defines the File System protocol, which allows code running in the EFI
boot services environment to obtain file based access to a device.

11. Load File Protocol Defines the Load File protocol, which allows code running in the EFI boot
services environment to find and load other modules of code.

12. Serial I/O Protocol Defines the Serial I/O protocol, which is used to abstract byte stream
devices.

13. Unicode Collation Protocol Defines the Unicode Collation protocol, which is used to allow code
running in the EFI boot services environment to perform lexical
comparison functions on Unicode strings for given languages.

14. PXE Base Code Protocol Defines the PXE Base Code protocol, which is used perform network
boot operations.

continued

Introduction

Version 1.02 12/12/00 3

Table 1-1. Organization of EFI Specification (continued)

Chapter/Appendix Description

15. Simple Network Protocol Defines the Simple Network Protocol, which provides a packet level
interface to a network device. Also defines the Network Interface
Identifier Protocol, which is an optional protocol used to describe details
about the software layer used to produce the Simple Network Protocol.

16. File System Format Defines the EFI file system.

17. Boot Manager Describes the boot manager, which is used to load EFI drivers and EFI
applications.

18. PCI Expansion ROM Describes how to provide an EFI driver image within a PCI
expansion ROM.

A. GUID and Time Formats Explains format of EFI GUIDs (Guaranteed Unique Identifiers).

B. Console Describes the requirements for a basic text-based console required by
EFI-conformant systems to provide communication capabilities.

C. Device Path Examples Examples of use of the data structures that defines various hardware
devices to the EFI boot services.

D. Status Codes Lists success, error, and warning codes returned by EFI interfaces.

E. Alphabetic Function List Lists all EFI interface functions alphabetically.

F. Glossary Briefly describes terms defined or referenced by this specification.

G. 32/64-Bit UNDI Specification This appendix defines the 32/64-bit H/W and S/W Universal Network
Driver Interfaces (UNDIs).

H. Index Provides an index to the key terms and concepts in the specification.

1.2 Goals

The “PC-AT” boot environment presents significant challenges to innovation within the industry.
Each new platform capability or hardware innovation requires firmware developers to craft
increasingly complex solutions, and often requires OS developers to make changes to their boot
code before customers can benefit from the innovation. This can be a time-consuming process
requiring a significant investment of resources.

The primary goal of the EFI specification is to define an alternative boot environment that can
alleviate some of these considerations. In this goal, the specification is similar to other existing
boot specifications. The main properties of this specification and similar solutions can be
summarized by these attributes:

• Coherent, scalable platform environment. The specification defines a complete solution for the
firmware to completely describe platform features and surface platform capabilities to the OS
during the boot process. The definitions are rich enough to cover the full range of
contemporary Intel® architecture-based system designs.

Extensible Firmware Interface Specification

4 12/12/00 Version 1.02

• Abstraction of the OS from the firmware. The specification defines interfaces to platform
capabilities. Through the use of abstract interfaces, the specification allows the OS loader to be
constructed with far less knowledge of the platform and firmware that underlie those interfaces.
The interfaces represent a well-defined and stable boundary between the underlying platform
and firmware implementation and the OS loader. Such a boundary allows the underlying
firmware and the OS loader to change provided both limit their interactions to the defined
interfaces.

• Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces require the
OS loader to have specific knowledge of the workings of certain hardware devices. This
specification provides OS loader developers with something different — abstract interfaces that
make it possible to build code that works on a range of underlying hardware devices without
having explicit knowledge of the specifics for each device in the range.

• Architecturally shareable system partition. Initiatives to expand platform capabilities and add
new devices often require software support. In many cases, when these platform innovations
are activated before the OS takes control of the platform, they must be supported by code that is
specific to the platform rather than to the customer’s choice of OS. The traditional approach to
this problem has been to embed code in the platform during manufacturing (for example, in
flash memory devices). Demand for such persistent storage is increasing at a rapid rate. This
specification defines persistent store on large mass storage media types for use by platform
support code extensions to supplement the traditional approach. The definition of how this
works is made clear in the specification to ensure that firmware developers, OEMs, operating
system vendors, and perhaps even third parties can share the space safely while adding to
platform capability.

Defining a boot environment that delivers these attributes could be accomplished in many ways.
Indeed several alternatives, perhaps viable from an academic point of view, already existed at the
time this specification was written. These alternatives, however, typically presented high barriers
to entry given the current infrastructure capabilities surrounding Intel architecture platforms. This
specification is intended to deliver the attributes listed above while also recognizing the unique
needs of an industry that has considerable investment in compatibility and a large installed base of
systems that cannot be abandoned summarily. These needs drive the requirements for the
additional attributes embodied in this specification:

• Evolutionary, not revolutionary. The interfaces and structures in the specification are designed
to reduce the burden of an initial implementation as much as possible. While care has been
taken to ensure that appropriate abstractions are maintained in the interfaces themselves, the
design also ensures that reuse of BIOS code to implement the interfaces is possible with a
minimum of additional coding effort. In other words, on IA-32 platforms the specification can
be implemented initially as a thin interface layer over an underlying implementation based on
existing code. At the same time, introduction of the abstract interfaces provides for migration
away from legacy code in the future. Once the abstraction is established as the means for the
firmware and OS loader to interact during boot, developers are free to replace legacy code
underneath the abstract interfaces at leisure. A similar migration for hardware legacy is also
possible. Since the abstractions hide the specifics of devices, it is possible to remove
underlying hardware, and replace it with new hardware that provides improved functionality,
reduced cost, or both. Clearly this requires that new platform firmware be written to support
the device and present it to the OS loader via the abstract interfaces. However, without the
interface abstraction, removal of the legacy device might not be possible at all.

Introduction

Version 1.02 12/12/00 5

• Compatibility by design. The design of the system partition structures also preserves all the
structures that are currently used in the “PC-AT” boot environment. Thus it is a simple matter
to construct a single system that is capable of booting a legacy OS or an EFI-aware OS from
the same disk.

• Simplifies addition of OS-neutral platform value-add. The specification defines an open
extensible interface that lends itself to the creation of platform “drivers.” These may be
analogous to OS drivers, providing support for new device types during the boot process, or
they may be used to implement enhanced platform capabilities like fault tolerance or security.
Furthermore this ability to extend platform capability is designed into the specification from the
outset. This is intended to help developers avoid many of the frustrations inherent in trying to
squeeze new code into the traditional BIOS environment. As a result of the inclusion of
interfaces to add new protocols, OEMs or firmware developers have an infrastructure to add
capability to the platform in a modular way. Such drivers may potentially be implemented
using high level coding languages because of the calling conventions and environment defined
in the specification. This in turn may help to reduce the difficulty and cost of innovation. The
option of a system partition provides an alternative to non-volatile memory storage for such
extensions.

• Built on existing investment. Where possible, the specification avoids redefining interfaces and
structures in areas where existing industry specifications provide adequate coverage. For
example, the ACPI specification provides the OS with all the information necessary to discover
and configure platform resources. Again, this philosophical choice for the design of the
specification is intended to keep barriers to its adoption as low as possible.

1.3 Target Audience

This document is intended for the following readers:

• OEMs who will be creating Intel architecture-based platforms intended to boot shrink-wrap
operating systems.

• BIOS developers, either those who create general-purpose BIOS and other firmware products
or those who modify these products for use in Intel architecture-based products.

• Operating system developers who will be adapting their shrink-wrap operating system products
to run on Intel architecture-based platforms.

Extensible Firmware Interface Specification

6 12/12/00 Version 1.02

1.4 Related Information

The following publications and sources of information may be useful to you or are referred to by
this specification:

• ACPI Implementers’ Guide, Intel Corporation, Microsoft Corporation, Toshiba Corporation,
version 0.5, 1998, http://www.teleport.com/~acpi

• Advanced Configuration and Power Interface Specification, http://www.teleport.com/~acpi
• BIOS Boot Specification Version 1.01, Compaq Computer Corporation, Phoenix Technologies

Ltd., Intel Corporation, 1996, http://www.phoenix.com/products/specs.html
• CAE Specification [UUID], DCE 1.1:Remote Procedure Call, Document Number C706,

Universal Unique Identifier Appendix, Copyright © 1997, The Open Group,
http://www.opengroup.org/onlinepubs/9629399/toc.htm

• Clarification to Plug and Play BIOS Specification Version 1.0,
http://www.microsoft.com/hwdev/respec/pnpspecs.htm

• “El Torito” Bootable CD-ROM Format Specification, Version 1.0, Phoenix Technologies,
Ltd., IBM Corporation, 1994, http://www.phoenix.com/products/specs.html

• File Verification Using CRC, Mark R. Nelson, Dr. Dobbs, May 1994
• Hardware Design Guide Version 2.0 for Microsoft Windows NT† Server, Intel Corporation,

Microsoft Corporation, 1998, http://developer.intel.com/design/servers/desguide/index.htm
• Intel Architecture Software Developer’s Manual,

http://developer.intel.com/design/mmx/manuals
• IA-64 Architecture Software Developer’s Manual, Volume 1: Application Architecture,

Rev. 1.0, Order number 245317, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/ia-64

• IA-64 Architecture Software Developer’s Manual, Volume 2: System Architecture, Rev. 1.0,
Order number 245318, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/ia-64

• IA-64 Architecture Software Developer’s Manual, Volume 3: Instruction Set Reference,
Rev. 1.0, Order number 245319, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/ia-64

• IA-64 Architecture Software Developer’s Manual, Volume 4: Itanium Processor Programmer’s
Guide, Rev. 1.0, Order number 245320, Intel Corporation, January, 2000. Also available at
http://developer.intel.com/design/ia-64

• IA-64 Software Conventions and Runtime Architecture Guide, Order number 245358, Intel
Corporation, January, 2000. Also available at http://developer.intel.com/design/ia-64

• IA-64 System Abstraction Layer Specification, Available at
http://developer.intel.com/design/ia-64

• IEEE 1394 Specification, http://www.1394ta.org/
• ISO/IEC 3309:1991(E), Information Technology - Telecommunications and information

exchange between systems - High-level data link control (HDLC) procedures - Frame
structure, International Organization For Standardization, Fourth edition 1991-06-01

• ITU-T Rec. V.42, Error-Correcting Procedures for DCEs using asynchronous-to-synchronous
conversion, October, 1996

http://www.teleport.com/~acpi
http://www.teleport.com/~acpi
http://www.phoenix.com/products/specs.html
http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.microsoft.com/hwdev/respec/pnpspecs.htm
http://www.phoenix.com/products/specs.html
http://developer.intel.com/design/servers/desguide/index.htm
http://developer.intel.com/design/mmx/manuals
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://developer.intel.com/design/ia-64
http://www.1394ta.org/

Introduction

Version 1.02 12/12/00 7

• Microsoft Extensible Firmware Initiative FAT32 File System Specification, Version 1.03,
Microsoft Corporation, December 6, 2000

• OSTA Universal Disk Format Specification, Revision 2.00, Optical Storage Technology
Association, 1998, http://www2.osta.org/osta/html/ostatech.html#udf

• PCI BIOS Specification, Revision 2.1, PCI Special Interest Group, Hillsboro, OR,
http://www.pcisig.com/tech/index.html

• PCI Local Bus Specification Revision 2.2, PCI Special Interest Group, Hillsboro, OR,
http://www.pcisig.com/tech/index.html

• Portable Executable and Common Object File Format Specification. See
http://msdn.microsoft.com/library/specs/msdn_pecoff.htm

• Preboot Execution Environment (PXE) Specification, Version 2.1. Intel Corporation, 1999.
Available at ftp://download.intel.com/ial/wfm/pxespec.pdf.

• Plug and Play BIOS Specification, Version 1.0A, Compaq Computer Corporation, Phoenix
Technologies, Ltd., Intel Corporation, 1994, ftp://download.intel.com/ial/wfm/bio10a.pdf or
http://www.microsoft.com/hwdev/respec/pnpspecs.htm

• POST Memory Manager Specification, Version 1.01, Phoenix Technologies Ltd., Intel
Corporation, 1997, http://www.phoenix.com/products/specs.html

• [RFC 791] Internet Protocol DARPA Internet Program Protocol (IPv4) Specification,
September 1981, http://www.faqs.org/rfcs/rfc791.html

• [RFC 1700] J. Reynolds, J. Postel: Assigned Numbers | ISI, October 1994
• [RFC 2460] Internet Protocol, Version 6 (IPv6) Specification,

http://www.faqs.org/rfcs/rfc2460.html
• SYSID BIOS Support Interface Requirements, Version 1.2, Intel Corporation, 1997,

http://developer.intel.com/ial/WfM/design/mapxe/pxespec.htm
• SYSID Programming Interface Version 1.2,

http://developer.intel.com/ial/WfM/design/mapxe/pxespec.htm
• System Management BIOS Reference Specification, Version 2.3, American Megatrends Inc.,

Award Software International Inc., Compaq Computer Corporation, Dell Computer
Corporation, Hewlett-Packard Company, Intel Corporation, International Business Machines
Corporation, Phoenix Technologies Limited, and SystemSoft Corporation, 1977, 1998,
http://developer.intel.com/ial/WfM/design/BIBLIOG.HTM or
http://www.phoenix.com/products/specs.html

• The Unicode Standard, Version 2.1, Unicode Consortium, http://www.unicode.org/
• ISO 639-2:1998. Codes for the Representation of Names of Languages – Part2: Alpha-3 code,

http://www.iso.ch/
• Universal Serial Bus PC Legacy Compatibility Specification, Version 0.9,

http://www.usb.org/developers/index.html
• Wired for Management Baseline, Version 2.0 Release Candidate. Intel Corporation, 1998,

http://developer.intel.com/ial/WfM

http://www2.osta.org/osta/html/ostatech.html#udf
http://msdn.microsoft.com/library/specs/msdn_pecoff.htm
ftp://download.intel.com/ial/wfm/pxespec.pdf
ftp://download.intel.com/ial/wfm/bio10a.pdf
http://www.microsoft.com/hwdev/respec/pnpspecs.htm
http://www.phoenix.com/products/specs.html
http://developer.intel.com/ial/WfM/design/mapxe/pxespec.htm
http://developer.intel.com/ial/WfM/design/mapxe/pxespec.htm
http://developer.intel.com/ial/WfM/design/BIBLIOG.HTM
http://www.phoenix.com/products/specs.html
http://www.usb.org/developers/index.html
http://developer.intel.com/ial/WfM

Extensible Firmware Interface Specification

8 12/12/00 Version 1.02

1.5 Prerequisite Specifications

In general, this specification requires that functionality defined in a number of other existing
specifications be present on a system that implements this specification. This specification requires
that those specifications be implemented at least to the extent that all the required elements are
present.

This specification prescribes the use and extension of previously established industry specification
tables whenever possible. The trend to remove runtime call-based interfaces is well documented.
The ACPI (Advanced Configuration and Power Interface) specification and the SAL (System
Access Layer) specification are two examples of new and innovative firmware technologies that
were designed on the premise that OS developers prefer to minimize runtime calls into firmware.
ACPI focuses on no runtime calls to the BIOS, and the SAL specification only supports runtime
services that make the OS more portable.

1.5.1 ACPI Specification
The interface defined by the Advanced Configuration and Power Interface (ACPI) Specification is
the current state-of-the-art in the platform-to-OS interface. ACPI fully defines the methodology
that allows the OS to discover and configure all platform resources. ACPI allows the description of
non-Plug and Play motherboard devices in a plug and play manner. ACPI also is capable of
describing power management and hot plug events to the OS. (For more information on ACPI,
refer to the ACPI web site at http://www.teleport.com/~acpi).

1.5.2 WfM Specification
The Wired for Management (WfM) Specification defines a baseline for manageability that can be
used to lower the total cost of ownership of a computer system. WfM includes the System
Management BIOS (SMBIOS) table-based interface that is used by the platform to relate platform-
specific management information to the OS or an OS-based management agent. The format of the
data is defined in the System Management BIOS Reference Specification, and it is up to higher level
software to map the information provided by the platform into the appropriate schema. Examples
of schema would include CIM (Common Information Model) and DMI (Desktop Management
Interface). For more information on WfM or to obtain a copy of the WfM Specification, visit
http://developer.intel.com/ial/WfM. To obtain the System Management BIOS Reference
Specification, visit http://developer.intel.com/ial/WfM/design/BIBLIOG.HTM.

http://www.teleport.com/~acpi
http://developer.intel.com/ial/WfM
http://developer.intel.com/ial/WfM/design/BIBLIOG.HTM

Introduction

Version 1.02 12/12/00 9

1.5.3 Additional Considerations for Itanium™-based Platforms
Any information or service that is available via Itanium-based firmware architecture specifications
supercedes any requirement in the common IA-32 and Itanium-based specifications listed above.
The Itanium-based firmware architecture specifications (currently the IA-64 System Abstraction
Layer Specification and portions of the IA-64 Architecture Software Developer’s Manual, Volumes
1-4) define the baseline functionality required for all Itanium-based platforms. The major addition
that EFI makes to these Itanium-based firmware architecture specifications is that it defines a boot
infrastructure and a set of services that constitute a common platform definition for high volume
Itanium-based systems to implement based on the more generalized Itanium-based firmware
architecture specifications.

The following specifications are the required Intel Itanium architecture specifications for all
Itanium-based platforms:

• IA-64 System Abstraction Layer Specification.
• IA-64 Architecture Software Developer’s Manual, Volumes 1-4.

Both documents are available at http://developer.intel.com/design/ia-64.

1.6 EFI Design Overview

The design of EFI is based on the following fundamental elements:

• Reuse of existing table-based interfaces. In order to preserve investment in existing
infrastructure support code, both in the OS and firmware, a number of existing specifications
that are commonly implemented on Intel architecture platforms must be implemented on
platforms wishing to comply with the EI specification. (See Section 1.5 for additional
information.)

• System partition. The System Partition defines a partition and file system that are designed to
allow safe sharing between multiple vendors, and for different purposes. The ability to include
a separate sharable system partition presents an opportunity to increase platform value-add
without significantly growing the need for non-volatile platform memory.

• Boot services. Boot Services provides interfaces for devices and system functionality that can
be used during boot time. Device access is abstracted through “handles” and “protocols.” This
facilitates reuse of investment in existing BIOS code by keeping underlying implementation
requirements out of the specification without burdening the consumer accessing the device.

• Runtime services. A minimal set of runtime services is presented to ensure appropriate
abstraction of base platform hardware resources that may be needed by the OS during its
normal operations.

http://developer.intel.com/design/ia-64

Extensible Firmware Interface Specification

10 12/12/00 Version 1.02

Figure 1-1 shows the principal components of EFI and their relationship to platform hardware and
OS software.

EFI BOOT SERVICES EFI RUNTIME
SERVICES

EFI OS LOADER

OPERATING SYSTEM

INTERFACES
FROM

OTHER
REQUIRED

SPECS

ACPI

SMBIOS

[OTHER]

PLATFORM HARDWARE

EFI OS
LOADER

EFI SYSTEM PARTITION

Figure 1-1. EFI Conceptual Overview

This diagram illustrates the interactions of the various components of an EFI specification-
compliant system that are used to accomplish platform and OS boot.

The platform firmware is able to retrieve the OS loader image from the EFI System Partition. The
specification provides for a variety of mass storage device types including disk, CD-ROM and
DVD as well as remote boot via a network. Through the extensible protocol interfaces, it is
possible to envision other boot media types being added, although these may require OS loader
modifications if they require use of protocols other than those defined in this document

Once started, the OS loader continues to boot the complete operating system. To do so, it may use
the EFI boot services and interfaces defined by this or other required specifications to survey,
comprehend and initialize the various platform components and the OS software that manages
them. EFI runtime services are also available to the OS loader during the boot phase.

Introduction

Version 1.02 12/12/00 11

1.7 Migration Requirements

Migration requirements cover the transition period from initial implementation of this specification
to a future time when all platforms and operating systems implement to this specification. During
this period, two major compatibility considerations are important:

1. The ability to continue booting legacy operating systems;
and

2. The ability to implement EFI on existing platforms by reusing as much existing firmware code
to keep development resource and time requirements to a minimum.

1.7.1 Legacy Operating System Support
The EFI specification represents the preferred means for a shrink-wrap OS and firmware to
communicate during the Intel architecture platform boot process. However, choosing to make a
platform that complies with this specification in no way precludes a platform from also supporting
existing legacy OS binaries that have no knowledge of the EFI specification.

The EFI specification does not restrict a platform designer who chooses to support both the EFI
specification and a more traditional “PC-AT” boot infrastructure. If such a legacy infrastructure is
to be implemented it should be developed in accordance with existing industry practice that is
defined outside the scope of this specification. The choice of legacy operating systems that are
supported on any given platform is left to the manufacturer of that platform.

1.7.2 Supporting the EFI Specification on a Legacy Platform
The EFI specification has been carefully designed to allow for existing systems to be extended to
support it with a minimum of development effort. In particular, the abstract structures and services
defined in the EFI specification can all be supported on legacy platforms.

For example, to accomplish such support on an existing IA-32 platform that uses traditional BIOS
to support operating system boot, an additional layer of firmware code would need to be provided.
This extra code would be required to translate existing interfaces for services and devices into
support for the abstractions defined in this specification.

Extensible Firmware Interface Specification

12 12/12/00 Version 1.02

1.8 Conventions Used in This Document

This document uses typographic and illustrative conventions described below.

1.8.1 Data Structure Descriptions
The Intel architecture processors of the IA-32 family are “little endian” machines. This means that
the low-order byte of a multi-byte data item in memory is at the lowest address, while the high-
order byte is at the highest address. Intel® Itanium™ processors may be configured for both “little
endian” and “big endian” operation. All implementations designed to conform to this specification
will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero, and ignore them when read. On an update operation, software must preserve
any reserved field.

1.8.2 Typographic Conventions
The following typographic conventions are used in this document to illustrate programming
concepts:

Prototype This typeface is use to indicate prototype code.

Argument This typeface is used to indicate arguments.

Name This typeface is used to indicate actual code or a programming construct.

register This typeface is used to indicate a processor register.

1.9 Guidelines for Use of the Term “Extensible Firmware Interface”

The following recommendations are offered for developers creating products or documentation that
have the need to make reference to this specification. The intent of these recommendations is to
ensure consistent usage of the name of the specification in the industry and to avoid ambiguous or
out of context use that might otherwise cause confusion.

• In any given piece of collateral or other materials where it is necessary to abbreviate
“Extensible Firmware Interface,:” the first use and all prominent uses of “Extensible Firmware
Interface” should be fully spelled out and immediately followed by “EFI” in parentheses. This
will establish that EFI is being used only as an abbreviation. For example, “The Extensible
Firmware Interface (hereafter “EFI”) is an architecture specification.”

• After the first use where “Extensible Firmware Interface” is fully spelled out, “EFI” may be
used standalone. As indicated above, the abbreviation should only be used where necessary,
e.g. where space constrained or to avoid excessive repetition in text and the abbreviation should
not be used in any prominent places, such as in titles or paragraph headings.

Version 1.02 12/12/00 13

2
Overview

EFI allows the extension of platform firmware by loading EFI driver and EFI application images.
When EFI drivers and EFI applications are loaded they have access to all EFI defined runtime and
boot services. See Figure 2-1.

Figure 2-1. Booting Sequence

EFI allows the consolidation of boot menus from the OS loader and platform firmware into a single
platform firmware menu. These platform firmware menus will allow the selection of any EFI OS
loader from any partition on any boot medium that is supported by EFI boot services. An EFI OS
loader can support multiple options that can appear on the user interface. It is also possible to
include legacy boot options, such as booting from the A: or C: drive in the platform firmware boot
menus.

EFI supports booting from media that contain an EFI OS loader or an EFI-defined System Partition.
An EFI-defined System Partition is required by EFI to boot from a block device. EFI does not
require any change to the first sector of a partition, so it is possible to build media that will boot on
both legacy Intel architecture and EFI platforms.

Extensible Firmware Interface Specification

14 12/12/00 Version 1.02

2.1 Boot Manager

EFI contains a boot manager that allows the loading of EFI applications (including OS 1st stage
loader) or EFI drivers from any file on an EFI defined file system or through the use of an EFI
defined image loading service. EFI defines NVRAM variables that are used to point to the file to
be loaded. These variables also contain application specific data that are passed directly to the EFI
application. The variables also contain a human readable Unicode string that can be displayed to
the user in a menu.

The variables defined by EFI allow the system firmware to contain a boot menu that can point to all
the operating systems, and even multiple versions of the same operating systems. The design goal
of EFI was to have one set of boot menus that could live in platform firmware. EFI only specifies
the NVRAM variables used in selecting boot options. EFI leaves the implementation of the menu
system as value added implementation space.

EFI greatly extends the boot flexibility of a system over the current state of the art in the
PC-AT-class system. The PC-AT-class systems today are restricted to boot from the first floppy,
hard drive, CD-ROM, or network card attached to the system. Booting from a common hard drive
can cause lots of interoperability problems between operating systems, and different versions of
operating systems from the same vendor

2.2 Firmware Core

This section provides an overview of the services defined by EFI. These include boot services and
runtime services.

2.2.1 EFI Services
The purpose of the EFI interfaces is to define a common boot environment abstraction for use by
loaded EFI images, which include EFI drivers, EFI applications, and EFI OS loaders. The calls are
defined with a full 64-bit interface, so that there is headroom for future growth. The goal of this set
of abstracted platform calls is to allow the platform and OS to evolve and innovate independently of
one another. Also, a standard set of primitive runtime services may be used by operating systems.

Platform interfaces defined in this chapter allow the use of standard Plug and Play Option ROMs as
the underlying implementation methodology for the boot services. The PC industry has a huge
investment in Intel Architecture Option ROM technology, and the obsolescence of this installed
base of technology is not practical in the first generation of EFI-compliant systems. The interfaces
have been designed in such as way as to map back into legacy interfaces. These interfaces have in
no way been burdened with any restrictions inherent to legacy Option ROMs.

The EFI platform interfaces are intended to provide an abstraction between the platform and the OS
that is to boot on the platform. The EFI specification also provides abstraction between diagnostics
or utility programs and the platform; however, it does not attempt to implement a full diagnostic OS
environment. It is envisioned that a small diagnostic OS-like environment can be easily built on
top of an EFI system. Such a diagnostic environment is not described by this specification.

Overview

Version 1.02 12/12/00 15

Interfaces added by this specification are divided into the following categories and are detailed later
in this document:

• Runtime services
• Boot services interfaces, with the following sub-categories:

 Global boot service interfaces
 Device handle-based boot service interfaces
 Device protocols
 Protocol services

2.2.2 Runtime Services
This section describes EFI runtime service functions. The primary purpose of the EFI runtime
services is to abstract minor parts of the hardware implementation of the platform from the OS.
EFI runtime service functions are available during the boot process and also at runtime provided the
OS switches into flat physical addressing mode to make the runtime call. However, if the OS
loader or OS uses the SetVirtualAddressMap() service, the OS will only be able to call EFI
runtime services in a virtual addressing mode. All runtime interfaces are non-blocking interfaces
and can be called with interrupts disabled if desired.

In all cases memory used by the EFI runtime services must be reserved and not used by the OS.
EFI runtime services memory is always available to an EFI function and will never be directly
manipulated by the OS or its components. EFI is responsible for defining the hardware resources
used by runtime services, so the OS can synchronize with those resources when runtime service
calls are made, or guarantee that those resources are never used by the OS.

The following table lists the Runtime Services functions:

Table 2-1. EFI Runtime Services

Name Description

GetTime Returns the current time, time context, and time keeping capabilities.

SetTime Sets the current time and time context.

GetWakeupTime Returns the current wakeup alarm settings.

SetWakeupTime Sets the current wakeup alarm settings.

GetVariable Returns the value of a named variable.

GetNextVariableByName Enumerates variable names.

SetVariable Sets, and if needed creates, a variable.

SetVirtualAddressMap Switches all runtime functions from physical to virtual addressing.

ConvertPointer Used to convert a pointer from physical to virtual addressing.

GetNextHighMonotonicCount Subsumes the platform’s monotonic counter functionality.

ResetSystem Resets all processors and devices and reboots the system.

Extensible Firmware Interface Specification

16 12/12/00 Version 1.02

2.3 Calling Conventions

Unless otherwise stated, all functions defined in the EFI specification are called through pointers in
common, architecturally defined, calling conventions found in C compilers. Pointers to the various
global EFI functions are found in the EFI_RUNTIME_SERVICES and EFI_BOOT_SERVICES
tables that are located via the EFI system table. Pointers to other functions defined in this
specification are located dynamically through device handles. In all cases, all pointers to EFI
functions are cast with the word EFIAPI. This allows the compiler for each architecture to supply
the proper compiler keywords to achieve the needed calling conventions. When passing pointer
arguments to Boot Services, Runtime Services, and Protocol Interfaces, the caller has the following
responsibilities:

1. It is the caller’s responsibility to pass pointer parameters that reference physical memory
locations. If a pointer is passed that does not point to a physical memory location(i.e. a
memory mapped I/O region), the results are unpredictable and the system may halt.

2. It is the caller’s responsibility to pass pointer parameters with correct alignment. If an
unaligned pointer is passed to a function, the results are unpredictable and the system may halt.

3. It is the caller’s responsibility to not pass in a NULL parameter to a function unless it is
explicitly allowed. If a NULL pointer is passed to a function, the results are unpredictable and
the system may hang.

IA-32 and Itanium-based calling conventions are described in more detail below. Any function or
protocol may return any valid return code.

2.3.1 Data Types
Table 2-2 lists the common data types that are used in the interface definitions, and Table 2-3 lists
their modifiers. Unless otherwise specified all data types are naturally aligned. Structures are
aligned on boundaries equal to the largest internal datum of the structure and internal data are
implicitly padded to achieve natural alignment.

Table 2-2. Common EFI Data Types

Mnemonic Description

BOOLEAN Logical boolean. 1 byte value containing a 0 for FALSE or a 1 for TRUE. Other
values are undefined.

INTN Signed value of native width. (4 bytes on IA-32, 8 bytes on Itanium-based
operations)

UINTN Unsigned value of native width. (4 bytes on IA-32, 8 bytes on Itanium-based
operations)

INT8 1 byte signed value.

UINT8 1 byte unsigned value.

INT16 2 byte signed value.

UINT16 2 byte unsigned value.

INT32 4 byte signed value.

UINT32 4 byte unsigned value.

INT64 8 byte signed value.

continued

Overview

Version 1.02 12/12/00 17

Table 2-2. Common EFI Data Types (continued)

Mnemonic Description

UINT64 8 byte unsigned value.

CHAR8 1 byte Character.

CHAR16 2 byte Character. Unless otherwise specified all strings are stored in the
UTF-16 encoding format as defined by Unicode 2.1 and ISO/IEC 10646 standards.

VOID Undeclared type.

EFI_GUID 128 bit buffer containing a unique identifier value. Unless otherwise specified,
aligned on a 64 bit boundary.

EFI_STATUS Status code. Type INTN.

EFI_HANDLE A collection of related interfaces. Type VOID *.

EFI_EVENT Handle to an event structure Type VOID *.

EFI_LBA Logical block address. Type UINT64.

EFI_TPL Task priority level. Type UINTN.

EFI_MAC_ADDRESS 32 byte buffer containing a network Media Access Control address.

EFI_IPv4_ADDRESS 4 byte buffer. An IPv4 internet protocol address.

EFI_IPv6_ADDRESS 16 byte buffer. An IPv6 internet protocol address.

EFI_IP_ADDRESS 16 byte buffer aligned on a 4 byte boundary. An IPv4 or IPv6 internet protocol
address.

<Enumerated Type> Element of an enumeration. Type INTN.

Table 2-3. Modifiers for Common EFI Data Types

Mnemonic Description

IN Datum is passed to the function.

OUT Datum is returned from the function.

OPTIONAL Passing the datum to the function is optional, and a NULL may be

passed if the value is not supplied.

UNALIGNED Datum is byte packed and is not naturally aligned.

EFIAPI Defines the calling convention for EFI interfaces.

Extensible Firmware Interface Specification

18 12/12/00 Version 1.02

2.3.2 IA-32 Platforms
All functions are called with the C language calling convention. The general-purpose registers that
are volatile across function calls are eax, ecx, and edx. All other general-purpose registers are non-
volatile and are preserved by the target function. In addition, unless otherwise specified by the
function definition, all other registers are preserved. For example, this would include the entire
floating point and Intel® MMX™ technology state.

During boot services time the processor is in the following execution mode:

• Uniprocessor
• Protected mode
• Paging mode not enabled
• Selectors are set to be flat and are otherwise not used
• Interrupts are enabled – though no interrupt services are supported other than the EFI boot

services timer functions (All loaded device drivers are serviced synchronously by “polling.”)
• Direction flag in EFLAGs is clear
• Other general purpose flag registers are undefined
• 128 KB, or more, of available stack space

For an operating system to use any EFI runtime services, it must:

• Preserve all memory in the memory map marked as runtime code and runtime data
• Call the runtime service functions, with the following conditions:

 Called from the boot processor
 In protected mode
 Paging not enabled
 All selectors set to be flat with virtual = physical address. If the OS Loader or OS used

SetVirtualAddressMap() to relocate the runtime services in a virtual address
space, then this condition does not have to be met.

 Direction flag in EFLAGs clear
 4 KB, or more, of available stack space
 Interrupts disabled

• Synchronize processor access to the legacy CMOS registers (if there are multiple processors).
Only one processor can access the registers at any given time.

2.3.3 Itanium-based Platforms
EFI executes as an extension to the SAL execution environment with the same rules as laid out by
the SAL specification.

During boot services time the processor is in the following execution mode:

• Uniprocessor
• Physical mode
• 128 KB, or more, of available stack space
• 16 KB, or more, of available backing store space
• May only use the lower 32 floating point registers

Overview

Version 1.02 12/12/00 19

The EFI Image may invoke both SAL and EFI procedures. Once in virtual mode, the EFI OS must
switch back to physical mode to call any boot services. If SetVirtualAddressMap() has
been used, then runtime service calls are made in virtual mode.

Refer to the IA-64 System Abstraction Layer Specification for details.

EFI procedures are invoked using the P64 C calling conventions defined for Itanium-based
applications. Refer to the document 64 Bit Runtime Architecture and Software Conventions for
IA-64 for more information.

2.4 Protocols

The protocols that a device handle supports are discovered through the HandleProtocol()
service. Each protocol has a specification that includes:

• The protocol’s globally unique ID (GUID)
• The Protocol Interface structure
• The Protocol Services

To determine if the handle supports any given protocol, the protocol’s GUID is passed to
HandleProtocol(). If the device supports the requested protocol, a pointer to the defined
Protocol Interface structure is returned. The Protocol Interface structure links the caller to the
protocol-specific services to use for this device.

Figure 2-2 shows the construction of a protocol. The EFI driver contains functions specific to one
or more protocol implementations, and registers them with InstallProtocolInterface()
service. The firmware returns the Protocol Interface for the protocol that is then used to invoke the
protocol specific services. The EFI driver keeps private, device-specific context with protocol
interfaces.

Protocol
specific

functions

Protocol
specific

functions

GUID 1

GUID 2

Function pointer
Function pointer
Function pointer
...

Device specific
context

Function pointer
Function pointer
Function pointer
...

Device specific
context

EFI Driver

Invoking one of
the protocol
services

HandleProtocol (GUID, ...)

Function pointer
Function pointer
Function pointer
...

Protocol Interface

Device specific
context

Device, or
next Driver

Handle

Figure 2-2. Construction of a Protocol

Extensible Firmware Interface Specification

20 12/12/00 Version 1.02

The following C code fragment illustrates the use of protocols:

// There is a global “EffectsDevice” structure. This
// structure contains information pertinent to the device.

// Connect to the ILLUSTRATION_PROTOCOL on the EffectsDevice,
// by calling HandleProtocol with the device’s EFI device handle
// and the ILLUSTRATION_PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;
Status = HandleProtocol (

EffectsDevice.EFIHandle,
&IllustrationProtocolGuid,
&EffectsDevice.IllustrationProtocol
);

// Use the EffectsDevice illustration protocol’s “MakeEffects”
// service to make flashy and noisy effects.

Status = EffectsDevice.IllustrationProtocol->MakeEffects (
EffectsDevice.IllustrationProtocol,
TheFlashyAndNoisyEffect
);

Table 2-4 lists the EFI protocols defined by this specification.

Table 2-4. EFI Protocols

Protocol Name Description

BLOCK_IO Protocol interfaces for devices that support block I/O style accesses.

DEVICE_IO Protocol interfaces for performing device I/O.

DEVICE_PATH Provides the location of the device.

DISK_IO A protocol interface that layers onto any BLOCK_IO interface.

SIMPLE_FILE_SYSTEM Protocol interfaces for opening disk volume containing an EFI file system.

EFI_FILE_HANDLE Provides access to supported file systems.

LOAD_FILE Protocol interface for reading a file from an arbitrary device.

LOADED_IMAGE Provides information on the image.

PXE_BC Protocol interfaces for devices that support network booting.

SERIAL_IO Protocol interfaces for devices that support serial character transfer.

SIMPLE_INPUT Protocol interfaces for devices that support simple console style text input.

SIMPLE_TEXT_OUTPUT Protocol interfaces for devices that support console style text displaying.

SIMPLE_NETWORK Provides interface for devices that support packet based transfers.

UNICODE_COLLATION Protocol interfaces for Unicode string comparison operations.

Overview

Version 1.02 12/12/00 21

2.5 Requirements

This document is an architectural specification. As such, care has been taken to specify
architecture in ways that allow maximum flexibility in implementation. However, there are certain
requirements on which elements of this specification must be implemented to ensure that operating
system loaders and other code designed to run with EFI boot services can rely upon a consistent
environment.

For the purposes of describing these requirements, the specification is broken up into required and
optional elements. In general, an optional element is completely defined in the section that matches
the element name. For required elements however, the definition may in a few cases not be entirely
self contained in the section that is named for the particular element. In implementing required
elements, care should be taken to cover all the semantics defined in this specification that relate to
the particular element.

2.5.1 Required Elements
Table 2-5 lists the required elements. Any system that is designed to conform to the EFI
specification must provide a complete implementation of all these elements. This means that all the
required service functions and protocols must be present and the implementation must deliver the
full semantics defined in the specification for all combinations of calls and parameters. A system
must provide the LOAD_FILE protocol or the SIMPLE_FILE_SYSTEM protocol or both. It is
possible for a system to boot an OS using just the LOAD_FILE protocol. In this case, the
SIMPLE_FILE_SYSTEM, EFI_FILE_HANDLE, DISK_IO, and BLOCK_IO protocols would not
be required.

Table 2-5. Required EFI Implementation Elements

Element Description

Boot Services All functions defined as boot services.

Runtime Services All functions defined as runtime services.

Partitioning1 Functionality to provide BLOCK_IO interfaces for logical block devices
as defined by partition table, or El Torito “no emulation” device.

BLOCK_IO protocol1 Protocol interfaces for devices that support block I/O style accesses.

DEVICE_IO protocol Protocol interfaces for performing device I/O.

DEVICE_PATH protocol Provides the location of the device.

DISK_IO protocol1 Protocol interfaces for providing disk IO from a BLOCK_IO interface.

LOAD_FILE protocol Protocol interface for reading a file from an arbitrary device.

LOADED_IMAGE protocol Provides information on the image.

SIMPLE_FILE_SYSTEM protocol1 Protocol interfaces for opening disk volumes through a DISK_IO
interface.

EFI_FILE_HANDLE protocol1 Protocol interfaces for accessing the device with file I/O style accesses
through a DISK_IO interface.

continued

Extensible Firmware Interface Specification

22 12/12/00 Version 1.02

Table 2-5. Required EFI Implementation Elements (continued)

Element Description

SIMPLE_INPUT protocol Protocol interfaces for devices that support simple console style text
input.

SIMPLE_TEXT_OUTPUT protocol Protocol interfaces for devices that support console style text
displaying.

UNICODE_COLLATION protocol1 Protocol interfaces for Unicode string comparison operations.
1
 These protocols are not required if the implementation can operate using on the LOAD_FILE protocol.

2.5.2 Optional Elements
Table 2-6 lists the optional elements. Any system that is designed to conform to the EFI
specification may choose whether or not to provide a complete implementation of all these
elements. However, any system choosing to provide an implementation of one of these optional
elements must do so to the same extent as for required elements. In other words, an
implementation of any single optional element of this specification must include all the functions
defined as part of the option and must deliver the full semantics defined for the services for all
combinations of calls and parameters.

Table 2-6. Optional EFI Implementation Elements

Element Description

SERIAL_IO protocol Protocol interfaces for byte stream devices.

SIMPLE_NETWORK protocol Protocol interfaces for devices that support packet based transfers.

PXE_BC protocol Protocol interfaces for devices that support PXE I/O network access.

Partitioning1 Functionality to provide BLOCK_IO interfaces for logical block
devices as defined by partition table, or El Torito “no emulation”
device.

BLOCK_IO protocol1 Protocol interfaces for devices that support block I/O style accesses.

DISK_IO protocol1 Protocol interfaces for providing disk IO from a BLOCK_IO interface.

SIMPLE_FILE_SYSTEM protocol1 Protocol interfaces for opening disk volumes through a DISK_IO
interface.

EFI_FILE_HANDLE protocol1 Protocol interfaces for accessing the device with file I/O style
accesses through a DISK_IO interface.

UNICODE_COLLATION protocol1 Protocol interfaces for Unicode string comparison operations.

1
These protocols are not optional if the implementation requires them to support SIMPLE_FILE_SYSTEM
protocol.

Overview

Version 1.02 12/12/00 23

2.5.3 Appendixes
The content of Appendixes B, C, D, E of this specification is largely intended as informational. In
other words, semantic information contained in these sections need not be considered part of the
formal definition of either required or optional elements of the specification.

The content of Appendix A is a set of definitions that are used extensively by other interfaces in the
specification. As such, implementations are required to use the time and GUID formats defined
therein.

Extensible Firmware Interface Specification

24 12/01/00 Version 1.02

Version 1.02 12/12/00 25

3
Services

This chapter discusses the fundamental services that are present in an EFI-compliant system. The
services are defined by interface functions that may be used by code running in the EFI
environment. Such code may include protocols that manage device access or extend platform
capability, as well as EFI applications running in the pre-boot environment and EFI OS loaders.

Two types of services are described here:

• Boot Services. Functions that are available before a successful call to
ExitBootServices().

• Runtime Services. Functions that are available before and after any call to
ExitBootServices().

During boot, system resources are owned by the firmware and are controlled through boot services
interface functions. These functions can be characterized as “global” or ‘handle-based”. The term
“global” simply means that a function accesses system services and is available on all platforms
(since all platforms support all system services). The term “handle-based” means that the function
accesses a specific device or device functionality and may not be available on some platforms
(since some devices are not available on some platforms). Protocols are created dynamically. This
chapter discusses the “global” functions and runtime functions; subsequent chapters discuss the
"handle-based".

EFI applications (including OS loaders) must use boot services functions to access devices and
allocate memory. On entry, an EFI Image is provided a pointer to an EFI system table which
contains the Boot Services dispatch table and the default handles for accessing the console. All
boot services functionality is available until an EFI OS loader loads enough of its own environment
to take control of the system’s continued operation and then terminates boot services with a call to
ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform resource
management. Thus boot services are available up to this point to assist the OS loader in preparing
to boot the operating system. Once the OS loader takes control of the system and completes the
operating system boot process, only runtime services may be called. Code other than the OS
loader, however, may or may not choose to call ExitBootServices(). This choice may in
part depend upon whether or not such code is designed to make continued use of EFI boot services
or the boot services environment.

Extensible Firmware Interface Specification

26 12/12/00 Version 1.02

The rest of this chapter discusses individual functions. Global boot services functions fall into
these categories:

• Event, Timer, and Task Priority Services (Section 3.1)
• Memory Allocation Services (Section 3.2)
• Protocol Handler Services (Section 3.3)
• Image Services (Section 3.4)
• Miscellaneous Services (Section 3.8)

Runtime Services fall into these categories:

• Variable Services (Section 3.5)
• Time Services (Section 3.6)
• Virtual Memory Services (Section 3.7)
• Miscellaneous Services (Section 3.8)

3.1 Event, Timer, and Task Priority Services

The functions that make up the Event, Timer, and Task Priority Services are used during pre-boot
to create, close, signal, and wait for events; to set timers; and to raise and restore task priority
levels. See Table 3-1.

Table 3-1. Event, Timer, and Task Priority Functions

Name Type Description

CreateEvent Boot Creates a general-purpose event structure.

CloseEvent Boot Closes and frees an event structure.

SignalEvent Boot Signals an event.

WaitForEvent Boot Stops execution until an event is signaled.

CheckEvent Boot Checks whether an event is in the signaled state.

SetTimer Boot Sets an event to be signaled at a particular time.

RaiseTPL Boot Raises the task priority level.

RestoreTPL Boot Restores/lowers the task priority level.

Services

Version 1.02 12/12/00 27

Execution in the boot services environment occurs at different task priority levels, or TPLs. The
boot services environment exposes only three of these levels to EFI applications and drivers:

• TPL_APPLICATION, the lowest priority level
• TPL_CALLBACK, an intermediate priority level
• TPL_NOTIFY, the highest priority level

Tasks that execute at a higher priority level may interrupt tasks that execute at a lower priority
level. For example, tasks that run at the TPL_NOTIFY level may interrupt tasks that run at the
TPL_APPLICATION or TPL_CALLBACK level. While TPL_NOTIFY is the highest level
exposed to the boot services applications, the firmware may have higher task priority items it deals
with. For example, the firmware may have to deal with tasks of higher priority like timer ticks and
internal devices. Consequently, there is a fourth TPL, TPL_HIGH_LEVEL, designed for use
exclusively by the firmware.

The intended usage of the priority levels is shown in Table 3-2 from the lowest level
(TPL_APPLICATION) to the highest level (TPL_HIGH_LEVEL). As the level increases, the
duration of the code and the amount of blocking allowed decrease. Execution generally occurs at
the TPL_APPLICATION level. Execution occurs at other levels as a direct result of the triggering
of an event notification function(this is typically caused by the signaling of an event). During timer
interrupts, firmware signals timer events when an event’s “trigger time” has expired. This allows
event notification functions to interrupt lower priority code to check devices (for example). The
notification function can signal other events as required. After all pending event notification
functions execute, execution continues at the TPL_APPLICATION level.

Table 3-2. TPL Usage

Task Priority Level Usage
TPL_APPLICATION This is the lowest priority level. It is the level of execution which occurs when

no event notifications are pending and which interacts with the user. User I/O
(and blocking on User I/O) can be performed at this level. The boot manager
executes at this level and passes control to other EFI applications at this level.

TPL_CALLBACK Interrupts code executing below TPL_CALLBACK level. Long term

operations (such as file system operations and disk I/O) can occur at this level.
TPL_NOTIFY Interrupts code execting below TPL_NOTIFY level. Blocking is not allowed

at this level. Code executes to completion and returns. If code requires more
processing, it needs to signal an event to wait to reobtain control at whatever
level it requires. This level is typically used to process low level IO to or from a
device.

continued

Extensible Firmware Interface Specification

28 12/12/00 Version 1.02

Table 3-2. TPL Usage (continued)

Task Priority Level Usage

(Firmware Interrupts) This level is internal to the firmware. It is the level at which internal interrupts
occur. Code running at this level interrupts code running at the
TPL_NOTIFY level (or lower levels). If the interrupt requires extended time

to complete, firmware signals another event (or events) to perform the longer
term operations so that other interrupts can occur.

TPL_HIGH_LEVEL Interrupts code executing below TPL_HIGH_LEVEL. This is the highest

priority level. It is not interruptable (interrupts are disabled) and is used
sparingly by firmware to synchronize operations that need to be accessible
from any priority level. For example, it must be possible to signal events while
executing at any priority level. Therefore, firmware manipulates the internal
event structure while at this priority level.

Executing code can temporarily raise its priority level by calling the RaiseTPL() function.
Doing this masks event notifications from code running at equal or lower priority levels until the
RestoreTPL() function is called to reduce the priority to a level below that of the pending event
notifications. There are restrictions on the TPL levels at which many EFI service functions and
protocol interface functions can execute. Table 3-3 summarizes the restrictions.

Table 3-3. TPL Restrictions

Name Restriction Task Priority Level

Memory Allocation Services <= TPL_NOTIFY

Variable Services <= TPL_CALLBACK

ExitBootServices() = TPL_APPLICATION

LoadImage() <= TPL_CALLBACK

WaitForEvent() = TPL_APPLICATION

SignalEvent() <= TPL_HIGH_LEVEL

Event Notification Levels >
<=

TPL_APPLICATION
TPL_HIGH_LEVEL

Protocol Interface Functions <= TPL_NOTIIFY

Block I/O Protocol <= TPL_CALLBACK

Disk I/O Protocol <= TPL_CALLBACK

Simple File System Protocol <= TPL_CALLBACK

Simple Input Protocol <= TPL_APPLICATION

Simple Text Output Protocol <= TPL_NOTIFY

Serial I/O Protocol <= TPL_CALLBACK

PXE Base Code Protocol <= TPL_CALLBACK

Simple Network Protocol <= TPL_CALLBACK

Services

Version 1.02 12/12/00 29

3.1.1 CreateEvent()

Summary

Creates an event.

Prototype

EFI_STATUS
CreateEvent (

IN UINT32 Type,
IN EFI_TPL NotifyTpl,
IN EFI_EVENT_NOTIFY NotifyFunction,
IN VOID *NotifyContext,
OUT EFI_EVENT *Event
);

Parameters

Type The type of event to create and its mode and attributes. The
“#define” statements in “Related Definitions” can be used to
specify an event’s mode and attributes.

NotifyTpl The task priority level of event notifications. See Section 3.1.7.

NotifyFunction Pointer to the event’s notification function. See “Related
Definitions”.

NotifyContext Pointer to the notification function’s context; corresponds to
parameter Context in the notification function.

Event Pointer to the newly created event if the call succeeds; undefined
otherwise.

Extensible Firmware Interface Specification

30 12/12/00 Version 1.02

Related Definitions

//***
// EFI_EVENT
//***
typedef VOID *EFI_EVENT

//***
// Event Types
//***
// These types can be “ORed” together as needed – for example,
// EVT_TIMER might be “Ored” with EVT_NOTIFY_WAIT or
// EVT_NOTIFY_SIGNAL.
#define EVT_TIMER 0x80000000
#define EVT_RUNTIME 0x40000000
#define EVT_RUNTIME_CONTEXT 0x20000000

#define EVT_NOTIFY_WAIT 0x00000100
#define EVT_NOTIFY_SIGNAL 0x00000200

#define EVT_SIGNAL_EXIT_BOOT_SERVICES 0x00000201
#define EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE 0x60000202

EVT_TIMER The event is a timer event and may be passed to SetTimer().
Note that timers only function during boot services time.

EVT_RUNTIME The event is allocated from runtime memory. If an event is to be
signaled after the call to ExitBootServices(), the event’s data
structure and notification function need to be allocated from runtime
memory. For more information, see
SetVirtualAddressMap() (Section 3.7.1).

EVT_RUNTIME_CONTEXT The event’s NotifyContext pointer points to a runtime memory
address. See the discussion of EVT_RUNTIME.

EVT_NOTIFY_WAIT The event’s NotifyFunction is to be invoked whenever the
event is being waited on via WaitForEvent() or
CheckEvent().

EVT_NOTIFY_SIGNAL The event’s NotifyFunction is to be invoked whenever the
event is signaled via SignalEvent().

EVT_SIGNAL_EXIT_BOOT_SERVICES
This event is to be notified by the system when
ExitBootServices() is invoked. This type can not be used
with any other EVT bit type. The notification function for this
event is not allowed to use the Memory Allocation Services, or call
any functions that use the Memory Allocation Services, because
these services modify the current memory map.

Services

Version 1.02 12/12/00 31

EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
The event is to be notified by the system when
SetVirtualAddressMap() is performed. This type can not be
used with any other EVT bit type. See the discussion of
EVT_RUNTIME.

//***
// EFI_EVENT_NOTIFY
//***
typedef
VOID
(EFIAPI *EFI_EVENT_NOTIFY) (

IN EFI_EVENT Event,
IN VOID *Context
);

Event Event whose notification function is being invoked.

Context Pointer to the notification function’s context, which is
implementation-dependent. Context corresponds to
NotifyContext in CreateEvent().

Description

The CreateEvent() function creates a new event of type Type and returns it in the location
referenced by Event. The event’s notification function, context, and task priority level are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively.

Events exist in one of two states, “waiting” or “signaled”. When an event is created, firmware puts
it in the “waiting” state. When the event is signaled, firmware changes its state to “signaled” and, if
EVT_NOTIFY_SIGNAL is specified, places a call to its notification function in a FIFO queue.
There is a queue for each of the “basic” task priority levels defined in Section 3.1
(TPL_APPLICATION, TPL_CALLBACK, and TPL_NOTIFY). The functions in these queues are
invoked in FIFO order, starting with the highest priority level queueand proceeding to the lowest
priority queue that is unmasked by the current TPL. If the current TPL is equal to or greater than
the queued notification, it will wait until the TPL is lowered via RestoreTPL().

In a general sense, there are two “types” of events, synchronous and asynchronous. Asynchronous
events are closely related to timers and are used to support periodic or timed interruption of
program execution. This capability is typically used with device drivers. For example, a network
device driver that needs to poll for the presence of new packets could create an event whose type
includes EVT_TIMER and then call the SetTimer() function. When the timer expires, the
firmware signals the event.

Synchronous events have no particular relationship to timers. Instead, they are used to ensure that
certain activities occur following a call to a specific interface function. One example of this is the
cleanup that needs to be performed in response to a call to the ExitBootServices() function.
ExitBootServices() can clean up the firmware since it understands firmware internals, but it

Extensible Firmware Interface Specification

32 12/12/00 Version 1.02

can’t clean up on behalf of drivers that have been loaded into the system. The drivers have to do
that themselves by creating an event whose type is EVT_SIGNAL_EXIT_BOOT_SERVICES and
whose notification function is a function within the driver itself. Then, when
ExitBootServices() has finished its cleanup, it signals each event of type
EVT_SIGNAL_EXIT_BOOT_SERVICES.

Another example of the use of synchronous events occurs when an event of type
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE is used in conjunction with the
SetVirtualAddressmap() function. For more information, see Section 3.7.1.

The EVT_NOTIFY_WAIT and EVT_NOTIFY_SIGNAL flags are exclusive. If neither flag is
specified, the caller does not require any notification concerning the event and the NotifyTpl,
NotifyFunction, and NotifyContext parameters are ignored. If EVT_NOTIFY_WAIT is
specified, then the event is signaled and its notify function is queued whenever a consumer of the
event is waiting for it (via WaitForEvent() or CheckEvent()). If the
EVT_NOTIFY_SIGNAL flag is specified then the event’s notify function is queued whenever the
event is signaled.

Note: Since its internal structure is unknown to the caller, Event cannot be modified by the caller.
The only way to manipulate it is to use the published event interfaces.

Status Codes Returned
EFI_SUCCESS The event structure was created.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_OUT_OF_RESOURCES The event could not be allocated.

Services

Version 1.02 12/12/00 33

3.1.2 CloseEvent()

Summary

Closes an event.

Prototype

EFI_STATUS
CloseEvent (

IN EFI_EVENT Event
);

Parameters

Event The event to close. Type EFI_EVENT is defined in Section 3.1.1.

Description

The CloseEvent() function removes the caller’s reference to the event and closes it. Once the
event is closed, the event is no longer valid and may not be used on any subsequent function calls.

Status Codes Returned
EFI_SUCCESS The event has been closed.

Extensible Firmware Interface Specification

34 12/12/00 Version 1.02

3.1.3 SignalEvent()

Summary

Signals an event.

Prototype

EFI_STATUS
SignalEvent (

IN EFI_EVENT Event
);

Parameters

Event The event to signal. Type EFI_EVENT is defined in Section 3.1.1.

Description

The supplied Event is signaled and, if the event has a signal notification function, it is scheduled
to be invoked at the event’s notificiation task priority level. SignalEvent() may be invoked
from any task priority level.

Status Codes Returned
EFI_SUCCESS The event was signaled.

Services

Version 1.02 12/12/00 35

3.1.4 WaitForEvent()

Summary

Stops execution until an event is signaled.

Prototype

EFI_STATUS
WaitForEvent (

IN UINTN NumberOfEvents,
IN EFI_EVENT *Event,
OUT UINTN *Index
);

Parameters

NumberOfEvents The number of events in the Event array.

Event An array of EFI_EVENT. Type EFI_EVENT is defined in
Section 3.1.1.

Index Pointer to the index of the event which satisfied the wait condition.

Description

The WaitForEvent()function waits for any event in the Event array to be signaled. On
success, the signaled state of the event is cleared and execution is returned with Index indicating
which event caused the return. It is possible for an event to be signaled before being waited on. In
this case, the next wait operation for that event would immediately return with the signaled event.

Waiting on an event of type EVT_NOTIFY_SIGNAL is not permitted. If any event in Event is of
type EVT_NOTIFY_SIGNAL, WaitForEvent()returns EFI_INVALID_PARAMETER and
sets Index to indicate which event caused the failure. This function must be called at priority
level TPL_APPLICATION. If an attempt is made to call it at any other priority level,
EFI_UNSUPPORTED is returned.

To wait for a specified time, a timer event must be included in the Event array.

WaitForEvent() will always check for signaled events in order, with the first event in the array
being checked first. To check if an event is signaled without waiting, an already signaled event can
be used as the last event in the list being checked, or the CheckEvent() interface may be used.

Status Codes Returned
EFI_SUCCESS The event indicated by Index was signaled.

EFI_INVALID_PARAMETER The event indicated by Index has a notification function or
Event was not a valid type.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.

Extensible Firmware Interface Specification

36 12/12/00 Version 1.02

3.1.5 CheckEvent()

Summary

Checks whether an event is in the signaled state.

Prototype

EFI_STATUS
CheckEvent (

IN EFI_EVENT Event
);

Parameters

Event The event to check. Type EFI_EVENT is defined in Section 3.1.1.

Description

The CheckEvent() function checks to see whether Event is in the signaled state. If Event is
of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is returned. If Event is of
type EFI_NOTIFY_WAIT, there are three possibilities:

• If Event is in the signaled state, it is cleared and EFI_SUCCESS is returned.

• If Event is not in the signaled state and has no notification function, EFI_NOT_READY is
returned.

• If Event is not in the signaled state but does have a notification function, the function is
executed. If that causes Event to be signaled, it is cleared and EFI_SUCCESS is returned; if
it does not cause Event to be signaled, EFI_NOT_READY is returned.

Status Codes Returned
EFI_SUCCESS The event is in the signaled state.

EFI_NOT_READY The event is not in the signaled state.

Services

Version 1.02 12/12/00 37

3.1.6 SetTimer()

Summary

Sets the type of timer and the trigger time for a timer event.

Prototype

EFI_STATUS
SetTimer (

IN EFI_EVENT Event,
IN EFI_TIMER_DELAY Type,
IN UINT64 TriggerTime
);

Parameters

Event The timer event that is to be signaled at the specified time. Type
EFI_EVENT is defined in Section 3.1.1.

Type The type of time that is specified in TriggerTime. See the timer
delay types in “Related Definitions”.

TriggerTime The number of 100ns units until the timer expires.

Related Definitions

//***
//EFI_TIMER_DELAY
//***
typedef enum {

TimerCancel,
TimerPeriodic,
TimerRelative

} EFI_TIMER_DELAY;

TimerCancel The event’s timer setting is to be cancelled and no timer trigger is
to be set. TriggerTime is ignored when canceling a timer.

TimerPeriodic The event is to be signaled periodically at TriggerTime
intervals from the current time. This is the only timer trigger
Type for which the event timer does not need to be reset for each
notification. All other timer trigger types are “one shot.”

TimerRelative The event is to be signaled in TriggerTime 100ns units.

Extensible Firmware Interface Specification

38 12/12/00 Version 1.02

Description

The SetTimer() function cancels any previous time trigger setting for the event, and sets the
new trigger time for the event. This function can only be used on events of type EVT_TIMER.

Status Codes Returned
EFI_SUCCESS The event has been set to be signaled at the requested time.

EFI_INVALID_PARAMETER Event or Type is not valid.

Services

Version 1.02 12/12/00 39

3.1.7 RaiseTPL()

Summary

Raises a task’s priority level and returns its previous level.

Prototype

EFI_TPL
RaiseTPL (

IN EFI_TPL NewTpl
);

Parameters

NewTpl The new task priority level. It must be greater than or equal to the
current task priority level. See “Related Definitions”.

Related Definitions
//***
// EFI_TPL
//***
typedef UINTN EFI_TPL

//***
// Task Priority Levels
//***
#define TPL_APPLICATION 4
#define TPL_CALLBACK 8
#define TPL_NOTIFY 16
#define TPL_HIGH_LEVEL 31

Extensible Firmware Interface Specification

40 12/12/00 Version 1.02

Description

The RaiseTPL() function raises the priority of the currently executing task and returns its
previous priority level.

Only three task priority levels are exposed outside of the firmware during EFI boot services
execution. The first is TPL_APPLICATION where all normal execution occurs. That level may
be interrupted to perform various asynchronous interrupt style notifications, which occur at the
TPL_CALLBACK or TPL_NOTIFY level. By raising the task priority level to TPL_NOTIFY such
notifications are masked until the task priority level is restored, thereby synchronizing execution
with such notifications. Synchronous blocking I/O functions execute at TPL_NOTIFY.
TPL_CALLBACK is the typically used for application level notification functions. Device drivers
will typically use TPL_CALLBACK or TPL_NOTIFY for their notification functions. Applications
and drivers may also use TPL_NOTIFY to protect data structures in critical sections of code.

The caller must restore the task priority level with RestoreTPL() to the previous level before
returning.

Note: If NewTpl is below the current TPL level, then the system behavior is indeterminate.
Additionally, only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and
TPL_HIGH_LEVEL may be used. All other values are reserved for use by the firmware; using
them will result in unpredictable behavior. Good codeing practice dictates that all code should
execute at its lowest possible TPL level, and the use of TPL levels above TPL_APPLICATION
must be minimized. Executing at TPL levels above TPL_APPLICATION for extended periods of
time may also result in unpredictable behavior.

Status Codes Returned
Unlike other EFI interface functions, RaiseTPL() does not return a status code. Instead, it
returns the previous task priority level, which is to be restored later with a matching call to
RestoreTPL().

Services

Version 1.02 12/12/00 41

3.1.8 RestoreTPL()

Summary

Restores a task’s priority level to its previous value.

Prototype

VOID
RestoreTPL (

IN EFI_TPL OldTpl
)

Parameters

OldTpl The previous task priority level to restore (the value from a previous,
matching call to RaiseTPL()). Type EFI_TPL is defined in
Section 3.1.7.

Description

The RestoreTPL() function restores a task’s priority level to its previous value. Calls to
RestoreTPL() are matched with calls to RaiseTPL().

Note: If OldTpl is above the current TPL level, then the system behavior is indeterminate.
Additionally, only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and
TPL_HIGH_LEVEL may be used. All other values are reserved for use by the firmware; using
them will result in unpredictable behavior. Good codeing practice dictates that all code should
execute at its lowest possible TPL level, and the use of TPL levels above TPL_APPLICATION
must be minimized. Executing at TPL levels above TPL_APPLICATION for extended periods of
time may also result in unpredictable behavior.

Status Codes Returned

None.

Extensible Firmware Interface Specification

42 12/12/00 Version 1.02

3.2 Memory Allocation Services

The functions that make up Memory Allocation Services are used during pre-boot to allocate and
free memory, and to obtain the system’s memory map. See Table 3-4.

Table 3-4. Memory Allocation Functions

Name Type Description

AllocatePages Boot Allocates pages of a particular type.

FreePages Boot Frees allocated pages.

GetMemoryMap Boot Returns the current boot services memory map and memory map key.

AllocatePool Boot Allocates a pool of a particular type.

FreePool Boot Frees allocated pool.

The way in which these functions are used is directly related to an important feature of EFI memory
design. This feature, which stipulates that EFI firmware owns the system’s memory map during
pre-boot, has three major consequences:

1. During pre-boot, all components (including executing EFI images) must cooperate with the
firmware by allocating and freeing memory from the system with the functions
AllocatePages(), AllocatePool(), FreePages(), and FreePool(). The
firmware dynamically maintains the memory map as these functions are called.

2. During pre-boot, an executing EFI Image must only use the memory it has allocated.

3. Before an executing EFI image exits and returns control to the firmware, it must free all
resources it has explicitly allocated. This includes all memory pages, pool allocations, open file
handles, etc. Memory allocated by the firmware to load an image is freed by the firmware
when the image is unloaded.

When EFI memory is allocated, it is “typed” according to the values in EFI_MEMORY_TYPE (see
Section 3.2.1). Some of the types have a different usage before ExitBootServices() is called
than they do afterwards. Table 3-5 lists each type and its usage before the call; Table 3-6 lists each
type and its usage after the call.

Services

Version 1.02 12/12/00 43

Table 3-5. Memory Type Usage Before ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiLoaderCode The code portions of a loaded EFI application. (Note that EFI OS
loaders are EFI applications.)

EfiLoaderData The data portions of a loaded EFI application and the default data
allocation type used by an EFI application to allocate pool memory.

EfiBootServicesCode The code portions of a loaded Boot Services Driver.

EfiBootServicesData The data portions of a loaded Boot Serves Driver, and the default data
allocation type used by a Boot Services Driver to allocate pool memory.

EfiRuntimeServicesCode The code portions of a loaded Runtime Services Driver.

EfiRuntimeServicesData The data portions of a loaded Runtime Services Driver and the default
data allocation type used by a Runtime Services Driver to allocate pool
memory.

EfiConventionalMemory Free (unallocated) memory.

EfiUnusableMemory Memory in which errors have been detected.

EfiACPIReclaimMemory Memory that holds the ACPI tables.

EfiACPIMemoryNVS Address space reserved for use by the firmware.

EfiMemoryMappedIO Used by system firmware to request that a memory-mapped IO region
be mapped by the OS to a virtual address so it can be accessed by EFI
runtime services.

EfiMemoryMappedIOPortSpace System memory mapped IO region that is used to translate memory
cycles to IO cycles.

EfiPalCode Address space reserved by the firmware for code that is part of the
processor.

EfiFirmwareReserved Address space reserved by the firmware.

Extensible Firmware Interface Specification

44 12/12/00 Version 1.02

Table 3-6. Memory Type Usage After ExitBootServices()

Mnemonic Description

EfiReservedMemoryType Not used.

EfiLoaderCode The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called ExitBootServices() is utilizing one or
more EfiLoaderCode ranges.

EfiLoaderData The Loader and/or OS may use this memory as they see fit. Note: the
OS loader that called ExitBootServices() is utilizing one or
more EfiLoaderData ranges.

EfiBootServicesCode Memory available for general use.

EfiBootServicesData Memory available for general use.

EfiRuntimeServicesCode The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1 – S3 states.

EfiRuntimeServicesData The memory in this range is to be preserved by the loader and OS in
the working and ACPI S1 – S3 states.

EfiConventionalMemory Memory available for general use.

EfiUnusableMemory Memory that contains errors and is not to be used.

EfiACPIReclaimMemory This memory is to be preserved by the loader and OS until ACPI is
enabled. Once ACPI is enabled, the memory in this range is available
for general use.

EfiACPIMemoryNVS This memory is to be preserved by the loader and OS in the working
and ACPI S1 – S3 states.

EfiMemoryMappedIO This memory is not used by the OS. All system memory-mapped IO
information should come from ACPI tables.

EfiMemoryMappedIOPortSpace This memory is not used by the OS. All system memory-mapped IO
port space information should come from ACPI tables.

EfiPalCode This memory is to be preserved by the loader and OS in the working
and ACPI S1 – S3 states. This memory may also have other
attributes that are defined by the processor implementation.

EfiFirmwareReserved In general, this memory is not to be used by the loader or OS;
however, specific functions may point to ranges within this memory to
be used.

NOTE

An image that calls ExitBootServices()first calls GetMemoryMap()to obtain the current
memory map. Following the ExitBootServices() call, the image implicitly owns all unused
memory in the map. This includes memory types EfiLoaderCode, EfiLoaderData,
EfiBootServicesCode, EfiBootServicesData, and EfiConventionalMemory.
An EFI-compatible loader and operating system must preserve the memory marked as
EfiRuntimeServicesCode and EfiRuntimeServicesData.

Services

Version 1.02 12/12/00 45

3.2.1 AllocatePages()

Summary

Allocates memory pages from the system.

Prototype

EFI_STATUS
AllocatePages(

IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT EFI_PHYSICAL_ADDRESS*Memory
);

Parameters

Type The type of allocation to perform. See “Related Definitions”.

MemoryType The type of memory to allocate. The only types allowed are
EfiLoaderCode, EfiLoaderData,
EfiRuntimeServicesCode, EfiRuntimeServicesData,
EfiBootServicesCode, EfiBootServicesData,
EfiACPIReclaimMemory, and EfiACPIMemoryNVS. Normal
allocations (that is, allocations by any EFI application) are of type
EfiLoaderData. See “Related Definitions”, Table 3-5, and
Table 3-6.

Pages The number of contiguous 4KB pages to allocate.

Memory Pointer to a physical address. On input, the way in which the address is
used depends on the value of Type. See “Description” for more
information. On output the address is set to the base of the page range
that was allocated. See “Related Definitions”.

Extensible Firmware Interface Specification

46 12/12/00 Version 1.02

Related Definitions

//***
//EFI_ALLOCATE_TYPE
//***
// These types are discussed in the “Description” section below.
typedef enum {

AllocateAnyPages,
AllocateMaxAddress,
AllocateAddress,
MaxAllocateType

 } EFI_ALLOCATE_TYPE;

//***
//EFI_MEMORY_TYPE
//***
// These type values are discussed in Table 3-5 and Table 3-6.
typedef enum {
 EfiReservedMemoryType,
 EfiLoaderCode,
 EfiLoaderData,
 EfiBootServicesCode,
 EfiBootServicesData,
 EfiRuntimeServicesCode,
 EfiRuntimeServicesData,
 EfiConventionalMemory,
 EfiUnusableMemory,
 EfiACPIReclaimMemory,
 EfiACPIMemoryNVS,
 EfiMemoryMappedIO,
 EfiMemoryMappedIOPortSpace,
 EfiPalCode,
 EfiMaxMemoryType
} EFI_MEMORY_TYPE;

//***
//EFI_PHYSICAL_ADDRESS
//***
typedef UINT64 EFI_PHYSICAL_ADDRESS;

Services

Version 1.02 12/12/00 47

Description

The AllocatePages() function allocates the requested number of pages and returns a pointer
to the base address of the page range in the location referenced by Memory. The function scans the
memory map to locate free pages. When it finds a physically contiguous block of pages that is
large enough and also satisfies the value of Type, it changes the memory map to indicate that the
pages are now of type MemoryType.

In general, EFI OS loaders and EFI applications should allocate memory (and pool) of type
EfiLoaderData. Boot service drivers must allocate memory (and pool) of type
EfiBootServicesData. Runtime drivers should allocate memory (and pool) of type
EfiRuntimeServicesData (although such allocation can only be made during boot services
time).

Allocation requests of Type AllocateAnyPages allocate any available range of pages that
satisfies the request. On input, the address pointed to by Memory is ignored.

Allocation requests of Type AllocateMaxAddress allocate any available range of pages
whose uppermost address is less than or equal to the address pointed to by Memory on input.

Allocation requests of Type AllocateAddress allocate pages at the address pointed to by
Memory on input.

Status Codes Returned
EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

48 12/12/00 Version 1.02

3.2.2 FreePages()

Summary

Frees memory pages.

Prototype

EFI_STATUS
FreePages (

IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN Pages
);

Parameters

Memory The base physical address of the pages to be freed. Type
EFI_PHYSICAL_ADDRESS is defined in Section 3.2.1.

Pages The number of contiguous 4KB pages to free.

Description

The FreePages() function returns memory allocated by AllocatePages()to the firmware.

Status Codes Returned
EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with
AllocatePages().

EFI_INVALID_PARAMETER Memory is not a page-aligned address or Pages is invalid.

Services

Version 1.02 12/12/00 49

3.2.3 GetMemoryMap()

Summary

Returns the current memory map.

Prototype

EFI_STATUS
GetMemoryMap (

IN OUT UINTN *MemoryMapSize,
IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
OUT UINTN *MapKey,
OUT UINTN *DescriptorSize,
OUT UINT32 *DescriptorVersion
);

Parameters
MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. On input, this

is the size of the buffer allocated by the caller. On output, it is the size of
the buffer returned by the firmware if the buffer was large enough, or the
size of the buffer needed to contain the map if the buffer was too small.

MemoryMap A pointer to the buffer in which firmware places the current memory
map. The map is an array of EFI_MEMORY_DESCRIPTORs. See
“Related Definitions”.

MapKey A pointer to the location in which firmware returns the key for the
current memory map.

DescriptorSize A pointer to the location in which firmware returns the size, in bytes, of
an individual EFI_MEMORY_DESCRIPTOR.

DescriptorVersion A pointer to the location in which firmware returns the version number
associated with the EFI_MEMORY_DESCRIPTOR. See “Related
Definitions”.

Extensible Firmware Interface Specification

50 12/12/00 Version 1.02

Related Definitions

//***
//EFI_MEMORY_DESCRIPTOR
//***
typedef struct {

UINT32 Type;
EFI_PHYSICAL_ADDRESS PhysicalStart;
EFI_VIRTUAL_ADDRESS VirtualStart;
UINT64 NumberOfPages;
UINT64 Attribute;

} EFI_MEMORY_DESCRIPTOR;

Type Type of the memory region (EFI_MEMORY_TYPE, see Section 3.2.1).

PhysicalStart Physical address of the first byte in the memory region. Type
EFI_PHYSICAL_ADDRESS is defined in Section 3.2.1.

VirtualStart Virtual address of the first byte in the memory region. Type
EFI_VIRTUAL_ADDRESS is defined in “Related Definitions”.

NumberOfPages Number of pages in the memory region.

Attribute Attributes of the memory region. See the following “Memory Attribute
Definitions”.

//***
// Memory Attribute Definitions
//***
// These types can be “ORed” together as needed.
#define EFI_MEMORY_UC 0x0000000000000001
#define EFI_MEMORY_WC 0x0000000000000002
#define EFI_MEMORY_WT 0x0000000000000004
#define EFI_MEMORY_WB 0x0000000000000008
#define EFI_MEMORY_UCE 0x0000000000000010
#define EFI_MEMORY_WP 0x0000000000001000
#define EFI_MEMORY_RP 0x0000000000002000
#define EFI_MEMORY_XP 0x0000000000004000
#define EFI_MEMORY_RUNTIME 0x8000000000000000

EFI_MEMORY_UC Memory cacheability attribute: Memory region is not cacheable.

EFI_MEMORY_WC Memory cacheability attribute: Memory region supports write
combining.

EFI_MEMORY_WT Memory cacheability attribute: Memory region is cacheable with
“write through” policy. Writes that hit in the cache will also be
written to main memory.

Services

Version 1.02 12/12/00 51

EFI_MEMORY_WB Memory cacheability attribute: Memory region is cacheable with
“write back” policy. Reads and writes that hit in the cache do not
propagate to main memory. Dirty data is written back to main
memory when a new cache line is allocated.

EFI_MEMORY_UCE Memory cacheability attribute: Memory region is
uncacheable,exported, and supports the "fetch and add"
semaphore mechanism.

EFI_MEMORY_WP Physical memory protection attribute: Memory region is write-
protected by system hardware.

EFI_MEMORY_RP Physical memory protection attribute: Memory region is read-
protected by system hardware.

EFI_MEMORY_XP Physical memory protection attribute: Memory region is
protected against executing code by system hardware.

EFI_MEMORY_RUNTIME Runtime memory attribute: The memory region needs to be given
a virtual mapping by the operating system when
SetVirtualAddressMap() is called.

//***
//EFI_VIRTUAL_ADDRESS
//***
typedef UINT64 EFI_VIRTUAL_ADDRESS;

//***
// Memory Descriptor Version Number
//***
#define EFI_MEMORY_DESCRIPTOR_VERSION 1

Description

The GetMemoryMap()function returns a copy of the current memory map. The map is an array
of memory descriptors, each of which describes a contiguous block of memory. The map describes
all of memory, no matter how it is being used. That is, it includes blocks allocated by
AllocatePages() and AllocatePool(), as well as blocks which the firmware is using for
its own purposes.

Until ExitBootServices() is called, the memory map is owned by the firmware and the
currently executing EFI Image should only use memory pages it has explicitly allocated

If the MemoryMap buffer is too small, the EFI_BUFFER_TOO_SMALL error code is returned and
the MemoryMapSize value contains the size of the buffer needed to contain the current
memory map.

On success a MapKey is returned that identifies the current memory map. The firmware’s key is
changed every time something in the memory map changes. In order to successfully invoke
ExitBootServices() the caller must provide the current memory map key.

Extensible Firmware Interface Specification

52 12/12/00 Version 1.02

The GetMemoryMap() function also returns the size and revision number of the
EFI_MEMORY_DESCRIPTOR. The DescriptorSize represents the size in bytes of an
EFI_MEMORY_DESCRIPTOR array element returned in MemoryMap. The size is returned to
allow for future expansion of the EFI_MEMORY_DESCRIPTOR in response to hardware
innovation. The structure of the EFI_MEMORY_DESCRIPTOR may be extended in the future but
it will remain backwards compatible with the current definition. Thus OS software must use the
DescriptorSize to find the start of each EFI_MEMORY_DESCRIPTOR in the MemoryMap
array.

Status Codes Returned
EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size
needed to hold the memory map is returned in MemoryMapSize.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services

Version 1.02 12/12/00 53

3.2.4 AllocatePool()

Summary

Allocates pool memory.

Prototype

EFI_STATUS
AllocatePool (

IN EFI_MEMORY_TYPE PoolType,
IN UINTN Size,
OUT VOID **Buffer
);

Parameters

PoolType The type of pool to allocate. The only supported types are
EfiLoaderData, EfiBootServicesData,
EfiRuntimeServicesData, EfiACPIReclaimMemory, and
EfiACPIMemoryNVS. Type EFI_MEMORY_TYPE is defined in
Section 3.2.1.

Size The number of bytes to allocate from the pool.

Buffer A pointer to a pointer to the allocated buffer if the call succeeds;
undefined otherwise.

Description

The AllocatePool() function allocates a memory region of Size bytes from memory of type
PoolType and returns the address of the allocated memory in the location referenced by Buffer.
This function allocates pages from EfiConventionalMemory as needed to grow the requested
pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the FreePool() function.

Status Codes Returned
EFI_SUCCESS The requested number of bytes was allocated.

EFI_OUT_OF_RESOURCES The pool requested could not be allocated.

EFI_INVALID_PARAMETER PoolType was invalid.

Extensible Firmware Interface Specification

54 12/12/00 Version 1.02

3.2.5 FreePool()

Summary

Returns pool memory to the system.

Prototype

EFI_STATUS
FreePool (

IN VOID *Buffer
);

Parameters

Buffer Pointer to the buffer to free.

Description

The FreePool() function returns the memory specified by Buffer to the system. On return,
the memory’s type is EfiConventionalMemory. The Buffer that is freed must have been
allocated by AllocatePool().

Status Codes Returned
EFI_SUCCESS The memory was returned to the system.

EFI_INVALID_PARAMETER Buffer was invalid.

Services

Version 1.02 12/12/00 55

3.3 Protocol Handler Services

In the abstract, a protocol consists of a 128-bit guaranteed unique identifier (GUID) and a Protocol
Interface structure. The structure contains the functions and instance data that are used to access a
device. The functions that make up Protocol Handler Services allow applications to install a
protocol on a handle, identify the handles that support a given protocol, determine whether a handle
supports a given protocol, and so forth. See Table 3-7.

Table 3-7. Protocol Interface Functions

Name Type Description

InstallProtocolInterface Boot Installs a protocol interface on a device handle.

UninstallProtocolInterface Boot Removes a protocol interface from a device handle.

ReinstallProtocolInterface Boot Reinstalls a protocol interface on a device handle.

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an interface is
installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified protocol.

HandleProtocol Boot Queries a handle to determine if it supports a specified protocol.

LocateDevicePath Boot Locates all devices on a device path that support a specified
protocol and returns the handle to the device that is closest to the
path.

As depicted in Figure 3-1, the firmware is responsible for maintaining a “data base” that shows
which protocols are attached to each device handle. (The figure depicts the “data base” as a linked
list, but the choice of data structure is implementation-dependent.) The “data base” is built
dynamically by calling the InstallProtocolInterface()function. Protocols can only be
installed by EFI drivers or the firmware itself. In the figure, a device handle (EFI_HANDLE) refers
to a list of one or more registered protocol interfaces for that handle. The first handle in the system
has four attached protocols, and the second handle has two attached protocols. Each attached
protocol is represented as a GUID / Interface pointer pair. The GUID is the name of the protocol,
and Interface points to a protocol instance. This data structure will typically contain a list of
interface functions, and some amount of instance data.

Access to devices is initiated by calling the HandleProtocol() function, which determines
whether a handle supports a given protocol. If it does, a pointer to the matching Protocol Interface
structure is returned.

When a protocol is added to the system, it may either be added to an existing device handle or it
may be added to create a new device handle. Figure 3-1 shows that protocol handlers are listed for
each device handle and that each protocol handler is logically an EFI driver.

Extensible Firmware Interface Specification

56 12/12/00 Version 1.02

Device Handle

First Handle

GUID
Interface

GUID
Interface

GUID
Interface

GUID
Interface

Protocol
Interface

Instance
Data

Protocol
Interface

Instance
Data

Protocol
Interface

Instance
Data

Protocol
Interface

Instance
Data

Device Handle

GUID
Interface

GUID
Interface

Protocol
Interface

Instance
Data

Protocol
Interface

Instance
Data

...
Figure 3-1. Device Handle to Protocol Handler Mapping

The ability to add new protocol interfaces as new handles or to layer them on existing interfaces
provides great flexibility. Layering makes it possible to add a new protocol that builds on a
device’s basic protocols. An example of this might be to layer on a SIMPLE_TEXT_OUTPUT
protocol support that would build on the handle’s underlying SERIAL_IO protocol.

The ability to add new handles can be used to generate new devices as they are found, or even to
generate abstract devices. An example of this might be to add a multiplexing device that replaces
ConsoleOut with a virtual device that multiplexes the SIMPLE_TEXT_OUTPUT protocol onto
multiple underlying device handles.

Services

Version 1.02 12/12/00 57

3.3.1 InstallProtocolInterface()

Summary

Installs a protocol interface on a device handle. If the handle does not exist, it is created and added
to the list of handles in the system.

Prototype

EFI_STATUS
InstallProtocolInterface (

IN OUT EFI_HANDLE *Handle,
IN EFI_GUID *Protocol,
IN EFI_INTERFACE_TYPE InterfaceType,
IN VOID *Interface
);

Parameters

Handle A pointer to the EFI_HANDLE on which the interface is to be installed.
If *Handle is NULL on input, a new handle is created and returned on
output. If *Handle is not NULL on input, the protocol is added to the
handle, and the handle is returned unmodified. The type EFI_HANDLE
is defined in "Related Definitions". If *Handle is not a valid handle,
then EFI_INVALID_PARAMETER is returned.

Protocol The numeric ID of the protocol interface. The type EFI_GUID is
defined in "Related Definitions". It is the callers responsibility to pass in
a valid GUID. See “Wired For Management Baseline” for a description
of valid GUID values.

InterfaceType Indicates whether Interface is supplied in native or p-code form.
This value indicates the original execution environment of the request.
See “Related Definitions”.

Interface A pointer to the protocol interface. The Interface must adhere to the
structure defined by Protocol. NULL can be used if a structure is not
associated with Protocol.

Extensible Firmware Interface Specification

58 12/12/00 Version 1.02

Related Definitions

//***
//EFI_HANDLE
//***
typedef VOID *EFI_HANDLE;

//***
//EFI_GUID
//***
typedef struct {
 UINT32 Data1;
 UINT16 Data2;
 UINT16 Data3;
 UINT8 Data4[8];
} EFI_GUID;

//***
//EFI_INTERFACE_TYPE
//***
typedef enum {

EFI_NATIVE_INTERFACE,
EFI_PCODE_INTERFACE

} EFI INTERFACE_TYPE;

Description

The InstallProtocolInterface() function installs a protocol interface (a GUID/Protocol
Interface structure pair) on a device handle.

Installing a protocol interface allows other components to locate the Handle, and the interfaces
installed on it. A protocol interface is always installed at the head of the device handle’s queue.

When a protocol interface is installed, the firmware calls all notification functions that have
registered to wait for the installation of Protocol. For more information, see Section 3.3.4.

Status Codes Returned
EFI_SUCCESS The protocol interface was installed.

EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services

Version 1.02 12/12/00 59

3.3.2 UninstallProtocolInterface()

Summary

Removes a protocol interface from a device handle.

Prototype

EFI_STATUS
UninstallProtocolInterface (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
IN VOID *Interface
);

Parameters

Handle The handle on which the interface was installed. Type EFI_HANDLE is
defined in Section 3.3.1. If Handle is not a valid handle, then
EFI_INVALID_PARAMETER is returned.

Protocol The numeric ID of the interface. Type EFI_GUID is defined in
Section 3.3.1. It is the callers responsibility to pass in a valid GUID.
See “Wired For Management Baseline” for a description of valid GUID
values.

Interface A pointer to the interface. NULL can be used if a structure is not
associated with Protocol.

Description

The UninstallProtocolInterface() function removes a protocol interface from the
handle on which it was previously installed. The Protocol and Interface values define the
protocol interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface that has
been removed. In some cases, outstanding reference information is not available in the protocol, so
the protocol, once added, cannot be removed. Examples include Console I/O, Block I/O, Disk I/O,
and (in general) handles to device protocols.

If the last protocol interface is removed from a handle, the handle is freed and is no longer valid.

Status Codes Returned
EFI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

60 12/12/00 Version 1.02

3.3.3 ReinstallProtocolInterface()

Summary

Reinstalls a protocol interface on a device handle.

Prototype

EFI_STATUS
ReinstallProtocolInterface (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
IN VOID *OldInterface,
IN VOID *NewInterface
);

Parameters
Handle Handle on which the interface is to be reinstalled. Type EFI_HANDLE

is defined in Section 3.3.1. If Handle is not a valid handle, then
EFI_INVALID_PARAMETER is returned.

Protocol The numeric ID of the interface. Type EFI_GUID is defined in
Section 3.3.1. It is the callers responsibility to pass in a valid GUID.
See “Wired For Management Baseline” for a description of valid GUID
values.

OldInterface A pointer to the old interface. NULL can be used if a structure is not
associated with Protocol.

NewInterface A pointer to the new interface. NULL can be used if a structure is not
associated with Protocol.

Description

The ReinstallProtocolInterface() function reinstalls a protocol interface on a device
handle. The OldInterface for Protocol is replaced by the NewInterface.
NewInterface may be the same as OldInterface. If it is, the registered protocol notifies
occur for the handle without replacing the interface on the handle.

As with InstallProtocolInterface(), any process that has registered to wait for the
installation of the interface is notified. For more information, see Section 3.3.4.

The caller is responsible for ensuring that there are no references to the OldInterface that is
being removed.

Status Codes Returned
EFI_SUCCESS The protocol interface was installed.

EFI_NOT_FOUND The OldInterface on the handle was not found.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services

Version 1.02 12/12/00 61

3.3.4 RegisterProtocolNotify()

Summary

Creates an event that is to be signaled whenever an interface is installed for a specified protocol.

Prototype

EFI_STATUS
RegisterProtocolNotify (

IN EFI_GUID *Protocol,
IN EFI_EVENT Event,
OUT VOID **Registration
);

Parameters

Protocol The numeric ID of the protocol for which the event is to be registered.
Type EFI_GUID is defined in Section 3.3.1.

Event Event that is to be signaled whenever a protocol interface is registered
for Protocol. Type EFI_EVENT is defined in Section 3.1.1.

Registration A pointer to a memory location to receive the registration value. This
value must be saved and used by the notification function of Event to
retrieve the list of handles that have added a protocol interface of type
Protocol.

Description

The RegisterProtocolNotify() function creates an event that is to be signaled whenever a
protocol interface is installed for Protocol by InstallProtocolInterface() or
ReinstallProtocolInterface().

Once Event has been signaled, the LocateHandle() function can be called to identify the
newly installed, or reinstalled, handles that support Protocol. The Registration parameter
in RegisterProtocolNotify() corresponds to the SearchKey parameter in
LocateHandle(). Note that the same handle may be returned multiple times if the handle
reinstalls the target protocol ID multiple times. This is typical for removable media devices,
because when such a device reappears, it will reinstall the Block I/O protocol to indicate that the
device needs to be checked again. In response, layered Disk I/O and Simple File System protocols
may then reinstall their protocols to indicate that they can be re-checked, and so forth.

Status Codes Returned
EFI_SUCCESS The notification event has been registered.

EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

62 12/12/00 Version 1.02

3.3.5 LocateHandle()

Summary

Returns an array of handles that support a specified protocol.

Prototype

EFI_STATUS
LocateHandle (

IN EFI_LOCATE_SEARCH_TYPE SearchType,
IN EFI_GUID *Protocol OPTIONAL,
IN VOID *SearchKey OPTIONAL,
IN OUT UINTN *BufferSize,
OUT EFI_HANDLE *Buffer
);

Parameters

SearchType Specifies which handle(s) are to be returned. Type
EFI_LOCATE_SEARCH_TYPE is defined in “Related Definitions”.

Protocol Specifies the protocol to search by. This parameter is only valid if
SearchType is ByProtocol. Type EFI_GUID is defined in
Section 3.3.1.

SearchKey Specifies the search key. This parameter is ignored if SearchType is
AllHandles or ByProtocol. If SearchType is
ByRegisterNotify, the parameter must be the Registration
value returned by function RegisterNotifyProtocol().

BufferSize On input, the size in bytes of Buffer. On output, the size in bytes of
the array returned in Buffer (if the buffer was large enough) or the
size, in bytes, of the buffer needed to obtain the array (if the buffer was
not large enough).

Buffer The buffer in which the array is returned. Type EFI_HANDLE is
defined in Section 3.3.1.

Services

Version 1.02 12/12/00 63

Related Definitions

//***
// EFI_LOCATE_SEARCH_TYPE
//***
typedef enum {

AllHandles,
ByRegisterNotify,
ByProtocol

} EFI_LOCATE_SEARCH_TYPE;

AllHandles Protocol and SearchKey are ignored and the function
returns an array of every handle in the system.

ByRegisterNotify SearchKey supplies the Registration value returned by
RegisterProtocolNotify(). The function returns the
next handle that is new for the registration. Only one handle is
returned at a time, and the caller must loop until no more handles
are returned. Protocol is ignored for this search type.

ByProtocol All handles that support Protocol are returned. SearchKey
is ignored for this search type.

Description

The LocateHandle() function returns an array of handles that match the SearchType
request. If the input value of BufferSize is too small, the function returns
EFI_BUFFER_TOO_SMALL and updates BufferSize to the size of the buffer needed to obtain
the array.

Status Codes Returned
EFI_SUCCESS The array of handles was returned.

EFI_NOT_FOUND No handles match the search.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result.
BufferSize has been updated with the size needed to
complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

64 12/12/00 Version 1.02

3.3.6 HandleProtocol()

Summary

Queries a handle to determine if it supports a specified protocol.

Prototype

EFI_STATUS
HandleProtocol (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
OUT VOID **Interface
);

Parameters

Handle The handle being queried. Type EFI_HANDLE is defined in
Section 3.3.1. If Handle is not a valid EFI_HANDLE, then
EFI_INVALID_PARAMETER is returned.

Protocol The published unique identifier of the protocol. Type EFI_GUID is
defined in Section 3.3.1. It is the callers responsibility to pass in a valid
GUID. See “Wired For Management Baseline” for a description of valid
GUID values.

Interface Supplies the address where a pointer to the corresponding Protocol
Interface is returned. NULL will be returned in *Interface if a
structure is not associated with Protocol.

Description

The HandleProtocol() function queries Handle to determine if it supports Protocol. If it
does, then on return Interface points to a pointer to the corresponding Protocol Interface.
Interface can then be passed to any Protocol Service to identify the context of the request.

Status Codes Returned
EFI_SUCCESS The interface information for the specified protocol was returned.

EFI_UNSUPPORTED The device does not support the specified protocol.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services

Version 1.02 12/12/00 65

3.3.7 LocateDevicePath()

Summary

Locates the handle to a device on the device path that supports the specified protocol.

Prototype

EFI_STATUS
LocateDevicePath (

IN EFI_GUID *Protocol,
IN OUT EFI_DEVICE_PATH **DevicePath,
OUT EFI_HANDLE *Device
);

Parameters

Protocol The protocol to search for. Type EFI_GUID is defined in Section 3.3.1.

DevicePath On input, a pointer to a pointer to the device path. On output, the device
path pointer is modified to point to the remaining part of the device path
— that is, when the function finds the closest handle, it splits the device
path into two parts, stripping off the front part, and returning the
remaining portion. Type EFI_DEVICE_PATH is defined in “Related
Definitions”.

Device A pointer to the returned device handle. Type EFI_HANDLE is defined
in Section 3.3.1.

Related Definitions

//***
// EFI_DEVICE_PATH
//***
typedef struct _EFI_DEVICE_PATH {

UINT8 Type;
UINT8 SubType;
UINT8 Length[2];

} EFI_DEVICE_PATH;

Extensible Firmware Interface Specification

66 12/12/00 Version 1.02

Description

The LocateDevicePath() function locates all devices on DevicePath that support
Protocol and returns the handle to the device that is closest to DevicePath. DevicePath is
advanced over the device path nodes that were matched.

This function is useful for locating the proper instance of a protocol interface to use from a logical
parent device driver. For example, a target device driver may issue the request with its own device
path and locate the interfaces to perform IO on its bus. It can also be used with a device path that
contains a file path to strip off the file system portion of the device path, leaving the file path and
handle to the file system driver needed to access the file.

If the handle for DevicePath supports the protocol (a direct match), the resulting device path is
advanced to the device path terminator node.

Status Codes Returned
EFI_SUCCESS The resulting handle was returned.

EFI_NOT_FOUND No handles matched the search.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services

Version 1.02 12/12/00 67

3.4 Image Services

Three types of images can be loaded: EFI Applications, EFI Boot Services Drivers, and EFI
Runtime Services Drivers. An EFI OS Loader is a type of EFI Application. The most significant
difference between these image types is the type of memory into which they are loaded by the
firmware’s loader. Table 3-8 summarizes the differences between images.

Table 3-8. Image Type Differences Summary

EFI Application EFI Boot Services Driver EFI Runtime Services Driver

Description A transient application

that is loaded during boot

services time. EFI

applications are either

unloaded when they

complete, or they take

responsibility for the

continued operation of the

system via
ExitBootServices().

The applications are

loaded in sequential order

by the boot manager, but

one application may

dynamically load another.

A program that is loaded into boot

services memory and stays resident

until boot services terminates.

A program that is loaded into

runtime services memory and

stays resident during runtime. The

memory required for a Runtime

Services Driver must be performed

in a single memory allocation, and

marked as

EfiRuntimeServicesData. (Note

that the memory only stays

resident when booting an EFI-

compatible operating system.

Legacy operating systems will

reuse the memory.)

Loaded into

memory type

EfiLoaderCode,

EfiLoaderData

EfiBootServicesCode,

EfiBootServicesData

EfiRuntimeServicesCode,

EfiRuntimeServicesData

Default pool

allocations

from memory

type

EfiLoaderData EfiBootServicesData EfiRuntimeServicesData

Exit

behaviour

When an application

exits, firmware frees the

memory used to hold its

image.

When a boot services driver exits with

an error code, firmware frees the

memory used to hold its image.

When a boot services driver’s entry
point completes with EFI_SUCCESS,

the image is retained in memory.

When a runtime services driver

exits with an error code, firmware

frees the memory used to hold its

image.

When a runtime services driver’s

entry point completes with
EFI_SUCCESS, the image is

retained in memory.

Notes This type of image would

not install any protocol

interfaces or handles.

This type of image would typically use
InstallProtocolInterface().

A runtime driver can only allocate

runtime memory during boot

services time. Due to the

complexity of performing a virtual

relocation for a runtime image, this

driver type is discouraged unless it

is absolutely required.

Extensible Firmware Interface Specification

68 12/12/00 Version 1.02

Most images are loaded by the boot manager. When an EFI application or driver is installed, the
installation procedure registers itself with the boot manager for loading. However, in some cases
an application or driver may want to programmatically load and start another EFI image. This can
be done with the LoadImage() and StartImage() interfaces. Drivers may only load
applications during the driver’s initialization entry point. Table 3-9 lists the functions that make up
Image Services.

Table 3-9. Image Functions

Name Type Description

LoadImage Boot Loads an EFI image into memory.

StartImage Boot Transfers control to a loaded image’s entry point.

UnloadImage Boot Unloads an image.

EFI_IMAGE_ENTRY_POINT Boot Prototype of an EFI Image’s entry point.

Exit Boot Exits the image’s entry point.

ExitBootServices Boot Terminates boot services.

Services

Version 1.02 12/12/00 69

3.4.1 LoadImage()

Summary

Loads an EFI image into memory.

Prototype

EFI_STATUS
LoadImage (
 IN BOOLEAN BootPolicy,
 IN EFI_HANDLE ParentImageHandle,
 IN EFI_DEVICE_PATH *FilePath,
 IN VOID *SourceBuffer OPTIONAL,
 IN UINTN SourceSize,
 OUT EFI_HANDLE *ImageHandle
);

Parameters

BootPolicy If TRUE, indicates that the request originates from the boot
manager, and that the boot manager is attempting to load
FilePath as a boot selection. Ignored if SourceBuffer is
not NULL.

ParentImageHandle The caller’s image handle. Type EFI_HANDLE is defined in
Section 3.3.1. This field is used to initialize the
ParentHandle field of the LOADED_IMAGE protocol for the
image that is being loaded.

FilePath The DeviceHandle specific file path from which the image is
loaded. Type EFI_DEVICE_PATH is defined in Section 3.3.7.

SourceBuffer If not NULL, a pointer to the memory location containing a copy
of the image to be loaded.

SourceSize The size in bytes of SourceBuffer. Ignored if
SourceBuffer is NULL.

ImageHandle Pointer to the returned image handle that is created when the
image is successfully loaded. Type EFI_HANDLE is defined
inSection 3.3.1.

Extensible Firmware Interface Specification

70 12/12/00 Version 1.02

Description

The LoadImage() function loads an EFI image into memory and returns a handle to the image.
The image is loaded in one of two ways. If SourceBuffer is not NULL, the function is a
memory-to-memory load in which SourceBuffer points to the image to be loaded and
SourceSize indicates the image’s size in bytes. In this case, the caller has copied the image into
SourceBuffer and can free the buffer once loading is complete.

If SourceBuffer is NULL, the function is a file copy operation that uses the
SIMPLE_FILE_SYSTEM protocol and then the LOAD_FILE protocol on the DeviceHandle to
access the file referred to by FilePath. In this case, the BootPolicy flag is passed to the
LOAD_FILE.LoadFile() function and is used to load the default image responsible for booting
when the FilePath only indicates the device. For more information see the discussion of the
Load File Protocol in Chapter 11.

Regardless of the type of load (memory-to-memory or file copy), the function relocates the code in
the image while loading it.

Once the image is loaded, firmware creates and returns an EFI_HANDLE that identifies the image
and supports the LOADED_IMAGE protocol. The caller may fill in the image’s “load options” data,
or add additional protocol support to the handle before passing control to the newly loaded image
by calling StartImage(). Also, once the image is loaded, the caller either starts it by calling
StartImage() or unloads it by calling Unload().

Status Codes Returned
EFI_SUCCESS Image was loaded into memory correctly.

EFI_NOT_FOUND The FilePath was not found.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_UNSUPPORTED The image type is not supported, or the device path can not be
parsed to locate the proper protocol for loading the the file.

EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources.

EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not
understood.

EFI_DEVICE_ERROR Image was not loaded because the device returned a read error.

Services

Version 1.02 12/12/00 71

3.4.2 StartImage()

Summary

Transfers control to a loaded image’s entry point.

Prototype

EFI_STATUS
StartImage (

IN EFI_HANDLE ImageHandle,
OUT UINTN *ExitDataSize,
OUT CHAR16 **ExitData OPTIONAL
);

Parameters

ImageHandle Handle of image to be started. Type EFI_HANDLE is defined in
Section 3.3.1.

ExitDataSize Pointer to the size, in bytes, of ExitData.

ExitData Pointer to a pointer to a data buffer that includes a Null-terminated
Unicode string, optionally followed by additional binary data. The string
is a description that the caller may use to further indicate the reason for
the image’s exit.

Description

The StartImage() function transfers control to the entry point of an image that was loaded by
LoadImage(). The image may only be started one time.

Control returns from StartImage() when the loaded image calls Exit(). When that call is
made, the ExitData buffer and ExitDataSize from Exit() (see Section 3.4.5) are passed
back through the ExitData buffer and ExitDataSize in this function. The caller of this
function is responsible for returning the ExitData buffer to the pool by calling FreePool()
when the buffer is no longer needed.

Status Codes Returned
EFI_INVALID_PARAMETER ImageHandle is not a handle to an unstarted image.

Exit code from image Exit code from image.

Extensible Firmware Interface Specification

72 12/12/00 Version 1.02

3.4.3 UnloadImage()

Summary

Unloads an image.

Prototype

EFI_STATUS
UnloadImage (

IN EFI_HANDLE ImageHandle
);

Parameters

ImageHandle Handle that identifies the image to be unloaded. Type EFI_HANDLE is
defined in Section 3.3.1.

Description

The UnloadImage() function unloads a previously loaded image.

There are three possible scenarios. If the image has not been started, the function unloads the
image and returns EFI_SUCCESS.

If the image has been started and has an Unload() entry point, control is passed to that entry
point. If the image’s unload function returns EFI_SUCCESS, the image is unloaded; otherwise,
the error returned by the image’s unload function is returned to the caller. The image unload
function is responsible for freeing all allocated memory and ensuring that there are no references to
any freed memory, or to the image itself, before returning EFI_SUCCESS.

If the image has been started and does not have an Unload() entry point, the function returns
EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The image has been unloaded.

EFI_UNSUPPORTED The image has been started, and does not support unload.

EFI_INVALID_PARAMETER ImageHandle is not a valid image handle.

Exit code from Unload handler Exit code from image’s unload function.

Services

Version 1.02 12/12/00 73

3.4.4 EFI_IMAGE_ENTRY_POINT

Summary

This is the declaration of an EFI image entry point. This can be the entry point to an EFI
application, an EFI boot service driver, or an EFI runtime driver.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (

IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);

Parameters

ImageHandle Handle that identifies the loaded image. Type EFI_HANDLE is defined
in Section 3.3.1.

SystemTable System Table for this image. Type EFI_SYSTEM_TABLE is defined in
Chapter 4.

Description

An image’s entry point is of type EFI_IMAGE_ENTRY_POINT. After firmware loads an image
into memory, control is passed to the image’s entry point. The entry point is responsible for
initializing the image. The image’s ImageHandle is passed to the image. The ImageHandle
provides the image with all the binding and data information it needs. This information is available
through protocol interfaces. However, to access the protocol interfaces on ImageHandle
requires access to boot services functions. Therefore, LoadImage() passes to the
EFI_IMAGE_ENTRY_POINT a SystemTable that is inherited from the current scope of
LoadImage().

All image handles support the LOADED_IMAGE protocol. This protocol can be used to obtain
information about the loaded image’s state — for example, the device from which the image was
loaded and the image’s load options. In addition, the ImageHandle may support other protocols
provided by the parent image.

If the image supports dynamic unloading, it must supply an unload function in the
LOADED_IMAGE structure before returning control from its entry point.

In general, an image returns control from its initialization entry point by calling Exit()or by
returning control from its entry point. If the image returns control from its entry point, the
firmware passes control to Exit() using the return code as the ExitStatus parameter to
Exit().

See Exit() for entry point exit conditions (Section 3.4.5).

Extensible Firmware Interface Specification

74 12/12/00 Version 1.02

3.4.5 Exit()

Summary

Terminates the currently loaded EFI image and returns control to boot services.

Prototype

EFI_STATUS
Exit (

IN EFI_HANDLE ImageHandle,
IN EFI_STATUS ExitStatus,
IN UINTN ExitDataSize,
IN CHAR16 *ExitData OPTIONAL
);

Parameters

ImageHandle Handle that identifies the image. This parameter is passed to the image
on entry. Type EFI_HANDLE is defined in Section 3.3.1.

ExitStatus The image’s exit code.

ExitDataSize The size, in bytes, of ExitData. Ignored if ExitStatus is
EFI_SUCCESS.

ExitData Pointer to a data buffer that includes a Null-terminated Unicode string,
optionally followed by additional binary data. The string is a description
that the caller may use to further indicate the reason for the image’s exit.
ExitData is only valid if ExitStatus is something other than
EFI_SUCCESS. The ExitData buffer must be allocated by calling
AllocatePool(). (See Section 3.2.4.)

Description

The Exit() function terminates the image referenced by ImageHandle and returns control to
boot services. This function can only be called by the currently executing image. This function
may not be called if the image has already returned from its entry point
(EFI_IMAGE_ENTRY_POINT) or if it has loaded any child images that have not exited (all child
images must exit before this image can exit).

Using Exit() is similar to returning from the image’s EFI_IMAGE_ENTRY_POINT except that
Exit() may also return additional ExitData.

Services

Version 1.02 12/12/00 75

When an EFI application exits, firmware frees the memory used to hold the image. The firmware
also frees its references to the ImageHandle and the handle itself. Before exiting, the application
is responsible for freeing any resources it allocated. This includes memory (pages and/or pool),
open file system handles, and so forth. The only exception to this rule is the ExitData buffer,
which must be freed by the caller of StartImage(). (If the buffer is needed, firmware must
allocate it by calling AllocatePool() and must return a pointer to it to the caller of
StartImage().)

When an EFI boot service driver or runtime service driver exits, firmware frees the image only if
the ExitStatus is an error code; otherwise the image stays resident in memory. The driver must
not return an error code if it has installed any protocol handlers or other active callouts into the
system that have not (or cannot) be cleaned up. If the driver exits with an error code, it is
responsible for freeing all resources before exiting. This includes any allocated memory (pages
and/or pool), open file system handles, and so forth.

It is valid to call Exit() or Unload() for an image that was loaded by LoadImage() before
calling StartImage(). This will free the image from memory without having started it.

Status Codes Returned
(Does not return.) Image exit. Control is returned from the StartImage() call that

invoked the image.

EFI_SUCCESS The image was unloaded. Exit() only returns success if the

image has not been started; otherwise, the exit returns to the
StartImage() call that invoked the image.

EFI_INVALID_PARAMETER The specified image is not the current image.

Extensible Firmware Interface Specification

76 12/12/00 Version 1.02

3.4.6 ExitBootServices()

Summary

Terminates all boot services.

Prototype

EFI_STATUS
ExitBootServices (

IN EFI_HANDLE ImageHandle,
IN UINTN MapKey
);

Parameters

ImageHandle Handle that identifies the exiting image. Type EFI_HANDLE is defined
in Section 3.3.1.

MapKey Key to the latest memory map.

Description

The ExitBootServices() function is called by the currently executing EFI OS loader image
to terminate all boot services. On success, the loader becomes responsible for the continued
operation of the system.

An EFI OS loader must ensure that it has the system’s current memory map at the time it calls
ExitBootServices(). This is done by passing in the current memory map’s MapKey value
as returned by GetMemoryMap(). Care must be taken to ensure that the memory map does not
change between these two calls. It is suggested that GetMemoryMap()be called immediately
before calling ExitBootServices().

On success, the EFI OS loader owns all available memory in the system. In addition, the loader can
treat all memory in the map marked as EfiBootServicesCode and
EfiBootServicesData as available free memory. No further calls to boot service functions or
EFI device-handle-based protocols may be used, and the boot serviceswatchdog timer is disabled.

Status Codes Returned
EFI_SUCCESS Boot services have been terminated.

EFI_INVALID_PARAMETER MapKey is incorrect.

Services

Version 1.02 12/12/00 77

3.5 Variable Services

Variables are defined as key/value pairs that consist of identifying information plus attributes (the
key) and arbitrary data (the value). Variables are intended for use as a means to store data that is
passed between the EFI environment implemented in the platform and EFI OS loaders and other
applications that run in the EFI environment.

Although the implementation of variable storage is not defined in this specification, variables must
be persistent in most cases. This implies that the EFI implementation on a platform must arrange it
so that variables passed in for storage are retained and available for use each time the system boots,
at least until they are explicitly deleted or overwritten. Provision of this type of non-volatile
storage may be very limited on some platforms, so variables should be used sparingly in cases
where other means of communicating information cannot be used.

Table 3-10 lists the variable services functions described in this section:

Table 3-10. Variable Services Functions

Name Type Description

GetVariable Runtime Returns the value of a variable.

GetNextVariableName Runtime Enumerates the current variable names.

SetVariable Runtime Sets the value of a variable.

Extensible Firmware Interface Specification

78 12/12/00 Version 1.02

3.5.1 GetVariable()

Summary

Returns the value of a variable.

Prototype

EFI_STATUS
GetVariable (

IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
OUT UINT32 *Attributes OPTIONAL,
IN OUT UINTN *DataSize,
OUT VOID *Data
);

Parameters

VariableName A Null-terminated Unicode string that is the name of the
vendor’s variable.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined
in Section 3.3.1.

Attributes If not NULL, a pointer to the memory location to return the
attributes bitmask for the variable. See “Related Definitions”.

DataSize On input, the size in bytes of the return Data buffer.
On output the size of data returned in Data.

Data The buffer to return the contents of the variable.

Related Definitions

//***
// Variable Attributes
//***
#define EFI_VARIABLE_NON_VOLATILE 0x0000000000000001
#define EFI_VARIABLE_BOOTSERVICE_ACCESS 0x0000000000000002
#define EFI_VARIABLE_RUNTIME_ACCESS 0x0000000000000004

Services

Version 1.02 12/12/00 79

Description
Each vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid. When a variable is set its Attributes are supplied to indicate how the
data variable should be stored and maintained by the system. The attributes affect when the
variable may be accessed and volatility of the data. Any attempts to access a variable that does not
have the attribute set for runtime access will yield the EFI_NOT_FOUND error.

If the Data buffer is too small to hold the contents of the variable, the error
EFI_BUFFER_TOO_SMALL is returned and DataSize is set to the required buffer size to obtain
the data.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The variable was not found.

EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize
has been updated with the size needed to complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware error.

Extensible Firmware Interface Specification

80 12/12/00 Version 1.02

3.5.2 GetNextVariableName()

Summary
Enumerates the current variable names.

Prototype

EFI_STATUS
GetNextVariableName (

IN OUT UINTN *VariableNameSize,
IN OUT CHAR16 *VariableName,
IN OUT EFI_GUID *VendorGuid
);

Parameters

VariableNameSize The size of the VariableName buffer.

VariableName On input, supplies the last VariableName that was returned
by GetNextVariableName(). On output, returns the Null-
terminated Unicode string of the current variable.

VendorGuid On input, supplies the last VendorGuid that was returned by
GetNextVariableName(). On output, returns the
VendorGuid of the current variable. Type EFI_GUID is
defined in Section 3.3.1.

Description

GetNextVariableName() is called multiple times to retrieve the VariableName and
VendorGuid of all variables currently available in the system. On each call to
GetNextVariableName() the previous results are passed into the interface, and on output the
interface returns the next variable name data. When the entire variable list has been returned, the
error EFI_NOT_FOUND is returned.

Note that if EFI_BUFFER_TOO_SMALL is returned, the VariableName buffer was too small
for the next variable. When such an error occurs, the VariableNameSize is updated to reflect
the size of buffer needed. In all cases when calling GetNextVariableName() the
VariableNameSize must not exceed the actual buffer size that was allocated for
VariableName.

To start the search, a Null-terminated string is passed in VariableName; that is,
VariableName is a pointer to a Null Unicode character. This is always done on the initial call to
GetNextVariableName(). When VariableName is a pointer to a Null Unicode character,
VendorGuid is ignored. GetNextVariableName() cannot be used as a filter to return
variable names with a specific GUID. Instead, the entire list of variables must be retrieved, and the
caller may act as a filter if it chooses. Calls to SetVariable() between calls to
GetNextVariableName() may produce unpredictable results.

Services

Version 1.02 12/12/00 81

Once ExitBootServices() is performed, variables that are only visible during boot services
will no longer be returned. To obtain the data contents or attribute for a variable returned by
GetNextVariableName(), the GetVariable() interface is used.

Status Codes Returned
EFI_SUCCESS The function completed successfully.

EFI_NOT_FOUND The next variable was not found.

EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.
VariableNameSize has been updated with the size needed
to complete the request.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_DEVICE_ERROR The variable name could not be retrieved due to a hardware error.

Extensible Firmware Interface Specification

82 12/12/00 Version 1.02

3.5.3 SetVariable()

Summary

Sets the value of a variable.

Prototype

EFI_STATUS
SetVariable (

IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN UINT32 Attributes,
IN UINTN DataSize,
IN VOID *Data
);

Parameters

VariableName A Null-terminated Unicode string that is the name of the
vendor’s variable. Each VariableName is unique for each
VendorGuid.

VendorGuid A unique identifier for the vendor. Type EFI_GUID is defined
in Section 3.3.1.

Attributes Attributes bitmask to set for the variable. See Section 3.5.1.

DataSize The size in bytes of the Data buffer. A size of zero causes the
variable to be deleted.

Data The contents for the variable.

Description

Variables are stored by the firmware and may maintain their values across power cycles. Each
vendor may create and manage its own variables without the risk of name conflicts by using a
unique VendorGuid.

Each variable has Attributes that define how the firmware stores and maintains the data value.
If the EFI_VARIABLE_NON_VOLATILE attribute is not set, the firmware stores the variable in
normal memory and it is not maintained across a power cycle. Such variables are used to pass
information from one component to another. An example of this is the firmware’s language code
support variable. It is created at firmware initialization time for access by EFI components that
may need the information, but does not need to be backed up to non-volatile storage.

Services

Version 1.02 12/12/00 83

EFI_VARIABLE_NON_VOLATILE variables are stored in fixed hardware that has a limited
storage capacity; sometimes a severely limited capacity. Software should only use a non-volatile
variable when absolutely necessary. In addition, if software uses a non-volatile variable it should
use a variable that is only accessible at boot services time if possible.

A variable must contain one or more bytes of Data. Using SetVariable() with a DataSize
of zero causes the entire variable to be deleted. The space consumed by the deleted variable may
not be available until the next power cycle.

The Attributes have the following usage rules:

• Storage attributes are only applied to a variable when creating the variable. If a pre-existing
variable is rewritten with different attributes, the result is indeterminate and may vary between
implementations. The correct method of changing the attributes of a variable is to delete the
variable and re-create it with different attributes. There is one exception to this rule. If a pre-
existing variable is rewritten with no access attributes specified, the variable will be deleted.

• Setting a data variable with no access, or zero DataSize attributes specified causes it to be
deleted.

• Runtime access to a data variable implies boot service access. Attributes that have
EFI_VARIABLE_RUNTIME_ACCESS set must also have
EFI_VARIABLE_BOOTSERVICE_ACCESS set. The caller is responsible for following this
rule.

• Once ExitBootServices() is performed, data variables that did not have
EFI_VARIABLE_RUNTIME_ACCESS set are no longer visible to GetVariable().

• Once ExitBootServices() is performed, only variables that have
EFI_VARIABLE_RUNTIME_ACCESS and EFI_VARIABLE_NON_VOLATILE set can be
set with SetVariable(). Variables that have runtime access but that are not non-volatile
are effective read-only data variables once ExitBootServices() is performed.

The only rules the firmware must implement when saving a non-volatile variable is that it has
actually been saved to non-volatile storage before returning EFI_SUCCESS, and that a partial
save is not performed. If power fails during a call to SetVariable() the variable may contain
its previous value, or its new value. In addition there is no read, write, or delete security protection.

Status Codes Returned
EFI_SUCCESS The firmware has successfully stored the variable and its data as

defined by the Attributes.

EFI_INVALID_PARAMETER An invalid combination of Attribute bits was supplied, or the
VariableSize exceeds the maximum allowed.

EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data.

EFI_DEVICE_ERROR The variable could not be saved due to a hardware failure.

Extensible Firmware Interface Specification

84 12/12/00 Version 1.02

3.6 Time Services

This section contains function definitions for time-related functions that are typically needed by
operating systems at runtime to access underlying hardware that manages time information and
services. The purpose of these interfaces is to provide operating system writers with an abstraction
for hardware time devices, thereby relieving the need to access legacy hardware devices directly.
There is also a stalling function for use in the pre-boot environment. Table 3-11 lists the time
services functions described in this section:

Table 3-11. Time Services Functions

Name Type Description

GetTime Runtime Returns the current time and date, and the time-keeping capabilities of the
platform.

SetTime Runtime Sets the current local time and date information.

GetWakeupTime Runtime Returns the current wakeup alarm clock setting.

SetWakeupTime Runtime Sets the system wakeup alarm clock time.

Services

Version 1.02 12/12/00 85

3.6.1 GetTime()

Summary

Returns the current time and date information, and the time-keeping capabilities of the hardware
platform.

Prototype

EFI_STATUS
GetTime (

OUT EFI_TIME *Time,
OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL
);

Parameters

Time A pointer to storage to receive a snapshot of the current time. Type
EFI_TIME is defined in “Related Definitions”.

Capabilities An optional pointer to a buffer to receive the real time clock device’s
capabilities. Type EFI_TIME_CAPABILITIES is defined in “Related
Definitions”.

Related Definitions

//***
//EFI_TIME
//***
// This represents the current time information
typedef struct {

UINT16 Year; // 1998 – 20XX
UINT8 Month; // 1 – 12
UINT8 Day; // 1 – 31
UINT8 Hour; // 0 – 23
UINT8 Minute; // 0 – 59
UINT8 Second; // 0 – 59
UINT8 Pad1;
UINT32 Nanosecond; // 0 – 999,999,999
INT16 TimeZone; // -1440 to 1440 or 2047
UINT8 Daylight;
UINT8 Pad2;

} EFI_TIME;

Extensible Firmware Interface Specification

86 12/12/00 Version 1.02

//***
// Bit Definitions for EFI_TIME.Daylight. See below.
//***
#define EFI_TIME_ADJUST_DAYLIGHT 0x01
#define EFI_TIME_IN_DAYLIGHT 0x02

//***
// Value Definition for EFI_TIME.TimeZone. See below.
//***
#define EFI_UNSPECIFIED_TIMEZONE 0x07FF

Year, Month, Day The current local date.

Hour, Minute, Second, Nanosecond

The current local time. Nanoseconds report the current fraction
of a second in the device. The format of the time is
hh:mm:ss.nnnnnnnnn. A battery backed real time clock
device maintains the date and time.

TimeZone The time’s offset in minutes from GMT. If the value is
EFI_UNSPECIFIED_TIMEZONE, then the time is interpreted
as a local time.

Daylight A bitmask containing the daylight savings time information for
the time.

The EFI_TIME_ADJUST_DAYLIGHT bit indicates if the time
is affected by daylight savings time or not. This value does not
indicate that the time has been adjusted for daylight savings
time. It indicates only that it should be adjusted when the
EFI_TIME enters daylight savings time.

If EFI_TIME_IN_DAYLIGHT is set, the time has been
adjusted for daylight savings time.

All other bits must be zero.

Services

Version 1.02 12/12/00 87

//***
// EFI_TIME_CAPABILITIES
//***
// This provides the capabilities of the
// real time clock device as exposed through the EFI interfaces.
typedef struct {

UINT32 Resolution;
UINT32 Accuracy;
BOOLEAN SetsToZero;

} EFI_TIME_CAPABILITIES;

Resolution Provides the reporting resolution of the real-time clock device in counts
per second. For a normal PC-AT CMOS RTC device, this value would
be 1 Hz, or 1, to indicate that the device only reports the time to the
resolution of 1 second.

Accuracy Provides the timekeeping accuracy of the real-time clock in an error rate
of 1E-6 parts per million. For a clock with an accuracy of 50 parts per
million, the value in this field would be 50,000,000.

SetsToZero A TRUE indicates that a time set operation clears the device’s time below
the Resolution reporting level. A FALSE indicates that the state
below the Resolution level of the device is not cleared when the time
is set. Normal PC-AT CMOS RTC devices set this value to FALSE.

Description

The GetTime() function returns a time that was valid sometime during the call to the function.
While the returned EFI_TIME structure contains TimeZone and Daylight savings time
information, the actual clock does not maintain these values. The current time zone and daylight
saving time information returned by GetTime() are the values that were last set via
SetTime().

The GetTime() function should take approximately the same amount of time to read the time
each time it is called. All reported device capabilities are to be rounded up.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetTime().

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

EFI_DEVICE_ERROR The time could not be retrieved due to a hardware error.

Extensible Firmware Interface Specification

88 12/12/00 Version 1.02

3.6.2 SetTime()

Summary

Sets the current local time and date information.

Prototype

EFI_STATUS
SetTime (

IN EFI_TIME *Time
);

Parameters

Time A pointer to the current time. Type EFI_TIME is defined in
Section 3.6.1. Full error checking is performed on the different fields of
the EFI_TIME structure (refer to the EFI_TIME definition on page 85
for full details), and EFI_INVALID_PARAMETER is returned if any
field is out of range.

Description

The SetTime() function sets the real time clock device to the supplied time, and records the
current time zone and daylight savings time information. The SetTime() function is not allowed
to loop based on the current time. For example, if the device does not support a hardware reset for
the sub-resolution time, the code is not to implement the feature by waiting for the time to wrap.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetTime().

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The time could not be set due to a hardware error.

Services

Version 1.02 12/12/00 89

3.6.3 GetWakeupTime()

Summary

Returns the current wakeup alarm clock setting.

Prototype

EFI_STATUS
GetWakeupTime (

OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
);

Parameters

Enabled Indicates if the alarm is currently enabled or disabled.

Pending Indicates if the alarm signal is pending and requires acknowledgement.

Time The current alarm setting. Type EFI_TIME is defined in Section 3.6.1.

Description

The alarm clock time may be rounded from the set alarm clock time to be within the resolution of
the alarm clock device. The resolution of the alarm clock device is defined to be one second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling GetWakeupTime().

Status Codes Returned
EFI_SUCCESS The alarm settings were returned.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error.

Extensible Firmware Interface Specification

90 12/12/00 Version 1.02

3.6.4 SetWakeupTime()

Summary

Sets the system wakeup alarm clock time.

Prototype

EFI_STATUS
SetWakeupTime (

IN BOOLEAN Enable,
IN EFI_TIME *Time OPTIONAL
);

Parameters

Enable Enable or disable the wakeup alarm.

Time If Enable is TRUE, the time to set the wakeup alarm for. Type
EFI_TIME is defined in Section 3.6.1. If Enable is FALSE, then this
parameter is optional, and may be NULL.

Description

Setting a system wakeup alarm causes the system to wake up or power on at the set time. When the
alarm fires, the alarm signal is latched until acknowledged by calling SetWakeupTime() to
disable the alarm. If the alarm fires before the system is put into a sleeping or off state, since the
alarm signal is latched the system will immediately wake up. If the alarm fires while the system is
off and there is insufficient power to power on the system, the system is powered on when power is
restored.

For an ACPI-aware operating system, this function only handles programming the wakeup alarm
for the desired wakeup time. The operating system still controls the wakeup event as it normally
would through the ACPI Power Management register set.

The resolution for the wakeup alarm is defined to be 1 second.

During runtime, if a PC-AT CMOS device is present in the platform the caller must synchronize
access to the device before calling SetWakeupTime().

Status Codes Returned
EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If

Enable is FALSE, then the wakeup alarm was disabled.

EFI_INVALID_PARAMETER A time field is out of range.

EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.

Services

Version 1.02 12/12/00 91

3.7 Virtual Memory Services

This section contains function definitions for the virtual memory support that may be optionally
used by an operating system at runtime. If an operating system chooses to make EFI runtime
service calls in a virtual addressing mode instead of the flat physical mode, then the operating
system must use the services in this section to switch the EFI runtime services from flat physical
addressing to virtual addressing. Table 3-12 lists the virtual memory service functions described in
this section.

Table 3-12. Virtual Memory Functions

Name Type Description

SetVirtualAddressMap Runtime Used by an OS loader to convert from physical addressing to virtual
addressing.

ConvertPointer Runtime Used by EFI components to convert internal pointers when switching
to virtual addressing.

Extensible Firmware Interface Specification

92 12/12/00 Version 1.02

3.7.1 SetVirtualAddressMap()

Summary

Changes the runtime addressing mode of EFI firmware from physical to virtual.

Prototype

EFI_STATUS
SetVirtualAddressMap (

IN UINTN MemoryMapSize,
IN UINTN DescriptorSize,
IN UINT32 DescriptorVersion,
IN EFI_MEMORY_DESCRIPTOR *VirtualMap
);

Parameters

MemoryMapSize The size in bytes of VirtualMap.

DescriptorSize The size in bytes of an entry in the VirtualMap.

DescriptorVersion The version of the structure entries in VirtualMap.

VirtualMap An array of memory descriptors which contain new virtual
address mapping information for all runtime ranges. Type
EFI_MEMORY_DESCRIPTOR is defined in Section 3.2.3.

Description

The SetVirtualAddressMap() function is used by the OS loader. The function can only be
called at runtime, and is called by the owner of the system’s memory map. I.e., the component
which called ExitBootServices().

This call changes the addresses of the runtime components of the EFI firmware to the new virtual
addresses supplied in the VirtualMap. The supplied VirtualMap must provide a new virtual
address for every entry in the memory map at ExitBootServices() that is marked as being
needed for runtime usage.

The call to SetVirtualAddressMap() must be done with the physical mappings. On
successful return from this function, the system must then make any future calls with the newly
assigned virtual mappings. All address space mappings must be done in accordance to the
cacheability flags as specified in the original address map.

When this function is called, all events that were registered to be signaled on an address map
change are notified. Each component that is notified must update any internal pointers for their
new addresses. This can be done with the ConvertPointer() function. Once all events have
been notified, the EFI firmware re-applies image “fixup” information to virtually relocate all
runtime images to their new addresses.

Services

Version 1.02 12/12/00 93

A virtual address map may only be applied one time. Once the runtime system is in virtual mode,
calls to this function return EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The virtual address map has been applied.

EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in
virtual address mapped mode.

EFI_INVALID_PARAMETER DescriptorSize or DescriptorVersion is
invalid.

EFI_NO_MAPPING A virtual address was not supplied for a range in the memory
map that requires a mapping.

EFI_NOT_FOUND A virtual address was supplied for an address that is not found
in the memory map.

Extensible Firmware Interface Specification

94 12/12/00 Version 1.02

3.7.2 ConvertPointer()

Summary
Determines the new virtual address that is to be used on subsequent memory accesses.

Prototype

EFI_STATUS
ConvertPointer (

IN UINTN DebugDisposition,
IN VOID **Address
);

Parameters

DebugDisposition Supplies type information for the pointer being converted. See
"Related Definitions".

Address A pointer to a pointer that is to be fixed to be the value needed
for the new virtual address mappings being applied.

Related Definitions

//***
// EFI_OPTIONAL_PTR
//***
#define EFI_OPTIONAL_PTR 0x00000001

Description
The ConvertPointer() function is used by an EFI component during the
SetVirtualAddressMap() operation.

The ConvertPointer() function updates the current pointer pointed to by Address to be the
proper value for the new address map. Only runtime components need to perform this operation.
The CreateEvent() function is used to create an event that is to be notified when the address
map is changing. All pointers the component has allocated or assigned must be updated.

If the EFI_OPTIONAL_PTR flag is specified, the pointer being converted is allowed to be NULL.

Once all components have been notified of the address map change, firmware fixes any compiled in
pointers that are embedded in any runtime image.

Status Codes Returned
EFI_SUCCESS The pointer pointed to by Address was modified.

EFI_NOT_FOUND The pointer pointed to by Address was not found to be part
of the current memory map. This is normally fatal.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services

Version 1.02 12/12/00 95

3.8 Miscellaneous Services

This section contains the remaining function definitions for services not defined elsewhere but
which are required to complete the definition of the EFI environment. Table 3-13 lists the
Miscellaneous Services Functions.

Table 3-13. Miscellaneous Services Functions

Name Type Description

ResetSystem Runtime Resets the entire platform.

SetWatchDogTimer Boot Resets and sets a watchdog timer used during boot services
time.

Stall Boot Stalls the processor.

GetNextMonotonicCount Boot Returns a monotonically increasing count for the platform.

GetNextHighMonotonicCount Runtime Returns the next high 32 bits of the platform’s monotonic
counter.

InstallConfigurationTable Boot Adds, updates, or removes a configuration table from the EFI
System Table.

Extensible Firmware Interface Specification

96 12/12/00 Version 1.02

3.8.1 ResetSystem()

Summary

Resets the entire platform.

Prototype

VOID
ResetSystem (

IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL
);

Parameters

ResetType The type of reset to perform. Type EFI_RESET_TYPE is defined in
“Related Definitions”.

ResetStatus The status code for the reset. If the system reset is part of a normal
operation, the status code would be EFI_SUCCESS. If the system reset
is due to some type of failure the most appropriate EFI Status code
would be used.

DataSize The size, in bytes, of ResetData.

ResetData A data buffer that includes a Null-terminated Unicode string, optionally
followed by additional binary data. The string is a description that the
caller may use to further indicate the reason for the system reset.
ResetData is only valid if ResetStatus is something other then
EFI_SUCCESS. This pointer must be a physical address.

Related Definitions

//***
// EFI_RESET_TYPE
//***
typedef enum {

EfiResetCold,
EfiResetWarm

} EFI_RESET_TYPE;

Services

Version 1.02 12/12/00 97

Description

The ResetSystem()function resets the entire platform, including all processors and devices, and
reboots the system.

Calling this interface with ResetType of EfiResetCold causes a system-wide reset. This sets
all circuitry within the system to its initial state. This type of reset is asynchronous to system
operation and operates without regard to cycle boundaries. EfiResetCold is tantamount to a
system power cycle.

Calling this interface with ResetType of EfiResetWarm causes a system-wide initialization.
The processors are set to their initial state, and pending cycles are not corrupted.

The platform may optionally log the parameters from any non-normal reset that occurs.

The SystemReset() function does not return.

Extensible Firmware Interface Specification

98 12/12/00 Version 1.02

3.8.2 SetWatchdogTimer()

Summary

Sets the system’s watchdog timer.

Prototype

EFI_STATUS
SetWatchdogTimer (

IN UINTN Timeout,
IN UINT64 WatchdogCode,
IN UINTN DataSize,
IN CHAR16 *WatchdogData OPTIONAL
);

Parameters

Timeout The number of seconds to set the watchdog timer to. A value of zero
disables the timer.

WatchdogCode The numeric code to log on a watchdog timer timeout event. The
firmware reserves codes 0x0000 to 0xFFFF. Loaders and operating
systems may use other timeout codes.

DataSize The size, in bytes, of WatchdogData.

WatchdogData A data buffer that includes a Null-terminated Unicode string, optionally
followed by additional binary data. The string is a description that the
call may use to further indicate the reason to be logged with a watchdog
event.

Description

The SetWatchdogTimer() function sets the system’s watchdog timer.

If the watchdog timer expires, a system reset is generated and the event is logged by the firmware.
The watchdog timer is armed before the firmware's boot manager invokes an EFI boot option. The
watchdog must be set to a period of 5 minutes. The EFI Image may reset or disable the watchdog
timer as needed. If control is returned to the firmware's boot manager, the watchdog timer must be
disabled.

The watchdog timer is only used during boot services. On successful completion of
ExitBootServices() the watchdog timer is disabled.

The accuracy of the watchdog timer is +/- 1 second from the requested Timeout.

Services

Version 1.02 12/12/00 99

Status Codes Returned
EFI_SUCCESS The timeout has been set.

EFI_INVALID_PARAMETER The supplied WatchdogCode is invalid.

EFI_UNSUPPORTED The system does not have a watchdog timer.

EFI_DEVICE_ERROR The watch dog timer could not be programmed due to a hardware
error.

Extensible Firmware Interface Specification

100 12/12/00 Version 1.02

3.8.3 Stall()

Summary

Induces a fine-grained stall.

Prototype

EFI_STATUS
Stall (

IN UINTN Microseconds
)

Parameters

Microseconds The number of microseconds to stall execution.

Description

The Stall() function stalls execution on the processor for at least the requested number of
microseconds. Execution of the processor is not yielded for the duration of the stall.

Status Codes Returned
EFI_SUCCESS Execution was stalled at least the requested number of

Microseconds.

Services

Version 1.02 12/12/00 101

3.8.4 GetNextMonotonicCount()

Summary

Returns a monotonically increasing count for the platform.

Prototype

EFI_STATUS
GetNextMonotonicCount (

OUT UINT64 *Count
);

Parameters

Count Pointer to returned value.

Description

The GetNextMonotonicCount() function returns a 64 bit value that is numerically larger
then the last time the function was called.

The platform’s monotonic counter is comprised of two parts: the high 32 bits and the low 32 bits.
The low 32 bit value is volatile and is reset to zero on every system reset. It is increased by 1 on
every call to GetNextMonotonicCount(). The high 32 bit value is non-volatile and is
increased by 1 on whenever the system resets or the low 32 bit counter overflows.

Status Codes Returned
EFI_SUCCESS The next monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Extensible Firmware Interface Specification

102 12/12/00 Version 1.02

3.8.5 GetNextHighMonotonicCount()

Summary

Returns the next high 32 bits of the platform’s monotonic counter.

Prototype

EFI_STATUS
GetNextHighMonotonicCount (

OUT UINT32 *HighCount
);

Parameters

HighCount Pointer to returned value.

Description

The GetNextHighMonotonicCount() function returns the next high 32 bits of the platform’s
monotonic counter.

The platform’s monotonic counter is comprised of two 32 bit quantities: the high 32 bits and the
low 32 bits. During boot service time the low 32 bit value is volatile: it is reset to zero on every
system reset and is increased by 1 on every call to GetNextMonotonicCount(). The high
32 bit value is non-volatile and is increased by 1 whenever the system resets or whenever the low
32 bit count [returned by GetNextMonoticCount()] overflows.

The GetNextMonotonicCount() function is only available at boot services time. If the
operating system wishes to extend the platform monotonic counter to runtime, it may do so by
utilizing GetNextHighMonotonicCount(). To do this, before calling
ExitBootServices() the operating system would call GetNextMonotonicCount() to
obtain the current platform monotonic count. The operating system would then provide an
interface that returns the next count by:

• Adding 1 to the last count.
• Before the lower 32 bits of the count overflows, call GetNextHighMonotonicCount().

This will increase the high 32 bits of the platform’s non-volatile portion of the monotonic count
by 1.

This function may only be called at Runtime.

Status Codes Returned
EFI_SUCCESS The next high monotonic count was returned.

EFI_DEVICE_ERROR The device is not functioning properly.

EFI_INVALID_PARAMETER One of the parameters has an invalid value.

Services

Version 1.02 12/12/00 103

3.8.6 InstallConfigurationTable()

Summary

Adds, updates, or removes a configuration table entry from the EFI System Table.

Prototype

EFI_STATUS
InstallConfigurationTable (

IN EFI_GUID *Guid,
IN VOID *Table
);

Parameters

Guid A pointer to the GUID for the entry to add, update, or remove.

Table A pointer to the configuration table for the entry to add, update, or
remove. May be NULL.

Description

The InstallConfigurationTable() function is used to maintain the list of configuration
tables that are stored in the EFI System Table. The list is stored as an array of (GUID, Pointer)
pairs. The list must be allocated from pool memory with PoolType set to
EfiRuntimeServicesData.

If Guid is not a valid GUID, EFI_INVALID_PARAMETER is returned. If Guid is valid, there
are four possibilities:

• If Guid is not present in the System Table, and Table is not NULL, then the (Guid, Table)
pair is added to the System Table. See Note below.

• If Guid is not present in the System Table, and Table is NULL, then EFI_NOT_FOUND is
returned.

• If Guid is present in the System Table, and Table is not NULL, then the (Guid, Table) pair
is updated with the new Table value.

• If Guid is present in the System Table, and Table is NULL, then the entry associated with
Guid is removed from the System Table.

Extensible Firmware Interface Specification

104 12/12/00 Version 1.02

If an add, modify, or remove operation is completed, then EFI_SUCCESS is returned.

Note: If there is not enough memory to perform an add operation, then
EFI_OUT_OF_RESOURCES is returned.

Status Codes Returned
EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed.

EFI_INVALID_PARAMETER Guid is not valid.

EFI_NOT_FOUND An attempt was made to delete a non-existent entry.

EFI_OUT_OF_RESOURCES There is not enough memory available to complete the operation.

Version 1.02 12/12/00 105

4
EFI Image

This chapter defines EFI images, a class of files that contain executable code. We begin by
describing the EFI_LOADED_IMAGE protocol, and then discuss EFI image headers, applications,
OS loaders, and drivers.

4.1 LOADED_IMAGE Protocol

This section provides a detailed description of the EFI_LOADED_IMAGE protocol.

Summary

Can be used on any image handle to obtain information about the loaded image.

GUID
#define LOADED_IMAGE_PROTOCOL \

{5B1B31A1-9562-11d2-8E3F-00A0C969723B}

Revision Number
#define EFI_LOADED_IMAGE_INFORMATION_REVISION 0x1000

Extensible Firmware Interface Specification

106 12/12/00 Version 1.02

Protocol Interface Structure
typedef struct {

UINT32 Revision;
EFI_HANDLE ParentHandle;
EFI_SYSTEM_TABLE *SystemTable;

// Source location of the image
EFI_HANDLE DeviceHandle;
EFI_DEVICE_PATH *FilePath;
VOID *Reserved;

// Image’s load options
UINT32 LoadOptionsSize;
VOID *LoadOptions;

// Location where image was loaded
VOID *ImageBase;
UINT64 ImageSize;
EFI_MEMORY_TYPE ImageCodeType;
EFI_MEMORY_TYPE ImageDataType;

EFI_IMAGE_UNLOAD Unload;
} EFI_LOADED_IMAGE;

Parameters

Revision Defines the revision of the EFI_LOADED_IMAGE structure.
All future revisions will be backward compatible to the current
revision.

ParentHandle Parent image’s image handle. NULL if the image is loaded
directly from the firmware’s boot manager. Type EFI_HANDLE
is defined in Chapter 3.

SystemTable The image’s EFI system table pointer. Type
EFI_SYSTEM_TABLE is defined in Section 4.5.1.

DeviceHandle The device handle that the EFI Image was loaded from. Type
EFI_HANDLE is defined in Chapter 3.

FilePath A pointer to the file path portion specific to DeviceHandle
that the EFI Image was loaded from. Type
EFI_DEVICE_PATH is defined in Chapter 3.

Reserved Reserved. DO NOT USE.

LoadOptionsSize The size in bytes of LoadOptions.

EFI Image

Version 1.02 12/12/00 107

LoadOptions A pointer to the image’s binary load options.

ImageBase The base address at which the image was loaded.

ImageSize The size in bytes of the loaded image.

ImageCodeType The memory type that the code sections were loaded as. Type
EFI_MEMORY_TYPE is defined in Chapter 3.

ImageDataType The memory type that the data sections were loaded as. Type
EFI_MEMORY_TYPE is defined in Chapter 3.

Unload Function that unloads the image. See Section 4.1.1.

Description

Each loaded image has an image handle that supports the EFI_LOADED_IMAGE protocol. When
an image is started, it is passed the image handle for itself. The image can use the handle to obtain
its relevant image data stored in the EFI_LOADED_IMAGE structure, such as its load options.

Extensible Firmware Interface Specification

108 12/12/00 Version 1.02

4.1.1 LOADED_IMAGE.Unload()

Summary

Unloads an image from memory.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_UNLOAD_IMAGE) (

IN EFI_HANDLE ImageHandle,
);

Parameters

ImageHandle The handle to the image to unload. Type EFI_HANDLE is defined in
Chapter 3.

Description

The Unload() function unloads an image from memory if ImageHandle is valid.

Status Codes Returned
EFI_SUCCESS The image was unloaded.

EFI_INVALID_PARAMETER The ImageHandle was not valid.

EFI Image

Version 1.02 12/12/00 109

4.2 EFI Image Header

EFI Images are a class of files defined by EFI that contain executable code. The most
distinguishing feature of EFI Images is that the first set of bytes in the EFI Image file contains an
image header that defines the encoding of the executable image.

EFI uses a subset of the PE32+ image format with a modified header signature. The modification
to signature value in the PE32+ image is done to distinguish EFI images from normal PE32
executables. The “+” addition to PE32 provides the 64 bit relocation fix-up extensions to standard
PE32 format.

For images with the EFI image signature, the Subsystem values in the PE image header are
defined below. The major differences between image types are the memory type that the firmware
will load the image into, and the action taken when the image’s entry point exits or returns. An
application image is always unloaded when control is returned from the image’s entry point. A
driver image is only unloaded if control is passed back with an EFI error code.

// PE32+ Subsystem type for EFI images
#define IMAGE_SUBSYSTEM_EFI_APPLICATION 10
#define IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11
#define IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

The Machine value that is found in the PE image file header is used to indicate the machine code
type of the image. The machine code types defined for images with the EFI image signature are
defined below. A given platform must implement the image type native to that platform. Support
for other machine code types are optional to the platform.

// PE32+ Machine type for EFI images
#define IMAGE_FILE_MACHINE_IA32 0x014c
#define IMAGE_FILE_MACHINE_IA64 0x0200
#define IMAGE_FILE_MACHINE_IBS 0xFC0D

An EFI image is loaded into memory through the LoadImage() Boot Service. This service loads
an image with a PE32+ format into memory. This PE32+ loader is required to load all the sections
of the PE32+ image into memory. Once the image is loaded into memory, and the appropriate
“fixups” have been performed, control is transferred to a loaded image at the
AddressOfEntryPoint reference according to the normal IA-32 or Itanium-based indirect
calling conventions. All other linkage to and from an EFI image is done programmatically.

Extensible Firmware Interface Specification

110 12/12/00 Version 1.02

4.3 EFI Applications

Applications are loaded by the boot manager in the EFI firmware, or by other applications. To load
an application the firmware allocates enough memory to hold the image, copies the sections within
the application to the allocated memory and applies the relocation fix-ups needed. Once done, the
allocated memory is set to be the proper type for code and data for the image. Control is then
transferred to the application’s entry point. When the application returns from its entry point, or
when it calls Exit(), the application is unloaded from memory and control is returned to the shell
that loaded the application.

When the boot manager loads an application, the image handle may be used to locate the “load
options” for the application. The load options are those options that were stored in the
LoadOptions field of the EFI_LOADED_IMAGE information for the application.

4.4 EFI OS Loaders

An EFI OS loader is a type of EFI application that normally takes over control of the system from
the EFI firmware. When loaded, the OS loader behaves like any other EFI application in that it
must only use memory it has allocated from the firmware and can only use EFI device handles for
access to devices that the firmware exposes. If the Loader includes any boot service style driver
functions, it must use the proper EFI interfaces to obtain access to the bus specific-resources. That
is, I/O and memory-mapped device registers must be accessed through the proper DEVICE_IO
calls like those that an EFI driver would perform.

If the OS loader experiences a problem and cannot load its operating system correctly, it can release
all allocated resources and return control back to the firmware via the Exit() call with an error
code and an ExitData that contains OS loader-specific data, including a Unicode string.

Once the OS loader successfully loads its operating system, it can take control of the system by
using ExitBootServices(). After calling ExitBootServices(), all boot services in the
system are terminated, including memory management, and the OS loader is responsible for the
continued operation of the system.

4.5 EFI Drivers

Drivers are loaded by the boot manager in the EFI firmware or by other applications. To load a
driver, the firmware allocates enough memory to hold the image, copies the sections within the
driver to the allocated memory and applies the relocation fix-ups that are needed. Once done, the
allocated memory is set to be the proper type for code and data for the image. Control is then
transferred to the driver’s entry point. If the driver returns from its entry point, or when it calls
Exit() with an error code, the driver is unloaded from memory and control is returned to the shell
that loaded the driver. If the driver returns EFI_SUCCESS from its entry point, it continues to
reside in memory. If the driver is an EFIImageBootServiceDriver, the memory that the
driver is loaded into is of type EfiBootServicesCode and EfiBootServicesData. Such
memory regions revert back to normal memory when an OS loader exits boot services.

EFI Image

Version 1.02 12/12/00 111

When the boot manager loads a driver, the image handle may be used to locate the “load options”
for the driver. The load options are those options that were stored in the LoadOptions field of
the EFI_LOADED_IMAGE information for the driver.

4.5.1 EFI Image Handoff State
Control is transferred to a loaded image at the AddressOfEntryPoint reference according to
the normal indirect calling conventions for the image’s Machine type. The entry point is a
function of type EFI_IMAGE_ENTRY_POINT. All other linkage to and from an EFI image is
done programmatically. See Chapter 3 for the full definition of EFI_IMAGE_ENTRY_POINT. Its
prototype is repeated below, along with some additional comments.

typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (

IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

);

The first argument is the image’s image handle. The second argument is a pointer to the image’s
system table. The system table contains the standard output and input handles, plus pointers to the
EFI_BOOT_SERVICES and EFI_RUNTIME_SERVICES tables. The service tables contain the
entry points in the firmware for accessing the core EFI system functionality. The handles in the
system table are used to obtain basic access to the console. In addition, the EFI system table
contains pointers to other standard tables that a loaded image may use if the associated pointers are
initialized to non-zero values. Examples of such tables are ACPI, SMBIOS, SAL System
Table, etc.

The ImageHandle is a firmware-allocated handle that is used to identify the image on various
functions. The handle also supports one or more protocols that the image can use. All images
support the EFI_LOADED_IMAGE protocol that returns the source location of the image, the
memory location of the image, the load options for the image, etc. The exact
EFI_LOADED_IMAGE structure is defined in Section 4.1.

The following code shows the definition for the EFI system table. The EFI system table is provided
as the second argument to a loaded image’s entry point.

Extensible Firmware Interface Specification

112 12/12/00 Version 1.02

//
// EFI System Table
//

#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249
#define EFI_SYSTEM_TABLE_REVISION (1<<16) | (99)

typedef struct _EFI_SYSTEM_TABLE {
 EFI_TABLE_HEADER Hdr;

 CHAR16 *FirmwareVendor;
 UINT32 FirmwareRevision;

 EFI_HANDLE ConsoleInHandle;
 SIMPLE_INPUT_INTERFACE *ConIn;

 EFI_HANDLE ConsoleOutHandle;
 SIMPLE_TEXT_OUTPUT_INTERFACE *ConOut;

 EFI_HANDLE StandardErrorHandle;
 SIMPLE_TEXT_OUTPUT_INTERFACE *StdErr;

 EFI_RUNTIME_SERVICES *RuntimeServices;
 EFI_BOOT_SERVICES *BootServices;

 UINTN NumberOfTableEntries;
 EFI_CONFIGURATION_TABLE *ConfigurationTable;

} EFI_SYSTEM_TABLE;

//
// Standard EFI table header
//

typedef struct _EFI_TABLE_HEADER {
 UINT64 Signature;
 UINT32 Revision;
 UINT32 HeaderSize;
 UINT32 CRC32;
 UINT32 Reserved;
} EFI_TABLE_HEADER;

//
// EFI Configuration Table and GUID Declarations
//
#define MPS_TABLE_GUID \
 {0xeb9d2d2f, 0x2d88, 0x11d3, 0x9a, 0x16, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d}

#define ACPI_TABLE_GUID \
 {0xeb9d2d30, 0x2d88, 0x11d3, 0x9a, 0x16, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d}

#define ACPI_20_TABLE_GUID \
 {0x8868e871, 0xe4f1, 0x11d3, 0xbc, 0x22, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81}

#define SMBIOS_TABLE_GUID \
 {0xeb9d2d31, 0x2d88, 0x11d3, 0x9a, 0x16, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d}

#define SAL_SYSTEM_TABLE_GUID \
 {0xeb9d2d32, 0x2d88, 0x11d3, 0x9a, 0x16, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d}

EFI Image

Version 1.02 12/12/00 113

typedef struct_EFI_CONFIGURATION_TABLE {
 EFI_GUID VendorGuid;
 VOID *VendorTable;
} EFI_CONFIGURATION_TABLE;

The EFI system table contains pointers to the runtime and boot services tables. The definitions for
these tables are shown in the following code fragments. Except for the table header, all elements in
the service tables are prototypes of function pointers to functions as defined in Chapter 3. The
GetTime() function is shown as an example.

NOTE

The size of the EFI system table, runtime services table, and boot services table may increase over
time. It is very important to always use the HeaderSize field of the EFI_TABLE_HEADER to
determine the size of these tables.

// Example interface prototype

typedef
EFI_STATUS
(EFIAPI *EFI_GET_TIME) (
 OUT EFI_TIME *Time,

OUT EFI_TIME_CAPABILITIES *Capabilities OPTIONAL
);

//
// EFI Runtime Services Table
//

#define EFI_RUNTIME_SERVICES_SIGNATURE 0x56524553544e5552
#define EFI_RUNTIME_SERVICES_REVISION (1<<16) | (99)

typedef struct {
 EFI_TABLE_HEADER Hdr;

 //
 // Time Services
 //

 EFI_GET_TIME GetTime;
 EFI_SET_TIME SetTime;
 EFI_GET_WAKEUP_TIME GetWakeupTime;
 EFI_SET_WAKEUP_TIME SetWakeupTime;

 //
 // Virtual Memory Services
 //

 EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap;
 EFI_CONVERT_POINTER ConvertPointer;

 //
 // Variable Services
 //

Extensible Firmware Interface Specification

114 12/12/00 Version 1.02

 EFI_GET_VARIABLE GetVariable;
 EFI_GET_NEXT_VARIABLE_NAME GetNextVariableName;
 EFI_SET_VARIABLE SetVariable;

 //
 // Miscellaneous Services
 //

 EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount;
 EFI_RESET_SYSTEM ResetSystem;

} EFI_RUNTIME_SERVICES;

//
// EFI Boot Services Table
//

#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42
#define EFI_BOOT_SERVICES_REVISION (1<<16) | (99)

typedef struct _EFI_BOOT_SERVICES {

 EFI_TABLE_HEADER Hdr;

 //
 // Task Priority Services
 //

 EFI_RAISE_TPL RaiseTPL;
 EFI_RESTORE_TPL RestoreTPL;

 //
 // Memory Services
 //

 EFI_ALLOCATE_PAGES AllocatePages;
 EFI_FREE_PAGES FreePages;
 EFI_GET_MEMORY_MAP GetMemoryMap;
 EFI_ALLOCATE_POOL AllocatePool;
 EFI_FREE_POOL FreePool;

 //
 // Event & Timer Services
 //

 EFI_CREATE_EVENT CreateEvent;
 EFI_SET_TIMER SetTimer;
 EFI_WAIT_FOR_EVENT WaitForEvent;
 EFI_SIGNAL_EVENT SignalEvent;
 EFI_CLOSE_EVENT CloseEvent;
 EFI_CHECK_EVENT CheckEvent;

 //
 // Protocol Handler Services
....// Note: InstallConfigurationTable() is a “Miscellaneous Services”
....// function, but it was placed in this group to make use of a “reserved”
....// slot in the table.
 //

EFI Image

Version 1.02 12/12/00 115

 EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface;
 EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface;
 EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface;
 EFI_HANDLE_PROTOCOL HandleProtocol;
 EFI_HANDLE_PROTOCOL PCHandleProtocol;
 EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify;
 EFI_LOCATE_HANDLE LocateHandle;
 EFI_LOCATE_DEVICE_PATH LocateDevicePath;
 EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable;

 //
 // Image Services
 //

 EFI_IMAGE_LOAD LoadImage;
 EFI_IMAGE_START StartImage;
 EFI_EXIT Exit;
 EFI_IMAGE_UNLOAD UnloadImage;
 EFI_EXIT_BOOT_SERVICES ExitBootServices;

 //
 // Miscellaneous Services
....// See note about InstallConfigurationTable() under “Protocol Handler
....// Services” above.
 //

 EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount;
 EFI_STALL Stall;
 EFI_SET_WATCHDOG_TIMER SetWatchdogTimer;

} EFI_BOOT_SERVICES;

4.5.1.1 IA-32 Handoff State
When an IA-32 EFI OS is loaded, the system firmware hands off control to the OS in flat 32-bit
mode. All descriptors are set to their 4 GB limits so that all of memory is accessible from all
segments. The address of the IDT is not defined and thus it cannot be manipulated directly during
boot services.

Figure 4-1 shows the stack after ImageEntryPoint has been called on IA-32 systems.

EFI_SYSTEM_TABLE *

EFI_HANDLE

Stack

ESP + 8

ESP + 4

Location

<return address> ESP

Figure 4-1. Stack after ImageEntryPoint Called, IA-32

Extensible Firmware Interface Specification

116 12/12/00 Version 1.02

4.5.1.2 Handoff State, Itanium-based Operating Systems
EFI uses the standard P64 C calling conventions that are defined for Itanium-based operating
systems. Figure 4-2 shows the stack after ImageEntryPoint has been called on Itanium-based
systems. The arguments are also stored in registers: out0 contains EFI_HANDLE and out1
contains the address of the EFI_SYSTEM_TABLE. The gp for the EFI Image will have been
loaded from the plabel pointed to by the AddressOfEntryPoint in the image’s header.

EFI_SYSTEM_TABLE *

EFI_HANDLE

Stack

SP + 8

SP

Location

out1

out0

Register

Figure 4-2. Stack after ImageEntryPoint Called, Itanium-based Systems

The SAL specification (see “Related Information” in Chapter 1) defines the state of the system
registers at boot handoff. The SAL specification also defines which system registers can only be
used after EFI boot services have been properly terminated.

Version 1.02 12/12/00 117

5
Device Path Protocol

This chapter contains the definition of the device path protocol and the information needed to
construct and manage device paths in the EFI environment. A device path is constructed and used
by the firmware to convey the location of important devices, such as the boot device and console,
consistent with the software-visible topology of the system.

5.1 Device Path Overview

A Device Path is used to define the programmatic path to a device. The primary purpose of a
Device Path is to allow an application, such as an OS loader, to determine the physical device that
the EFI interfaces are abstracting.

A collection of device paths is usually referred to as a name space. ACPI, for example, is rooted
around a name space that is written in ASL (ACPI Source Language). Given that EFI does not
replace ACPI and defers to ACPI when ever possible, it would seem logical to utilize the ACPI
name space in EFI. However, the ACPI name space was designed for usage at operating system
runtime and does not fit well in platform firmware or OS loaders. Given this, EFI defines its own
name space, called a Device Path.

A Device Path is designed to make maximum leverage of the ACPI name space. One of the key
structures in the Device Path defines the linkage back to the ACPI name space. The Device Path
also is used to fill in the gaps where ACPI defers to buses with standard enumeration algorithms.
The Device Path is able to relate information about which device is being used on buses with
standard enumeration mechanisms. The Device Path is also used to define the location on a
medium where a file should be, or where it was loaded from. A special case of the Device Path can
also be used to support the optional booting of legacy operating systems from legacy media.

The Device Path was designed so that the OS loader and the operating system could tell which
devices the platform firmware was using as boot devices. This allows the operating system to
maintain a view of the system that is consistent with the platform firmware. An example of this is a
“headless” system that is using a network connection as the boot device and console. In such a
case, the firmware will convey to the operating system the network adapter and network protocol
information being used as the console and boot device in the device path for these devices.

Extensible Firmware Interface Specification

118 12/12/00 Version 1.02

5.2 EFI_DEVICE_PATH Protocol

This section provides a detailed description of the EFI_DEVICE_PATH protocol.

Summary

Can be used on any device handle to obtain generic path/location information concerning the
physical device or logical device. If the handle does not logically map to a physical device, the
handle may not necessarily support the device path protocol.

GUID
#define DEVICE_PATH_PROTOCOL \

{ 09576e91-6d3f-11d2-8e39-00a0c969723b }

Protocol Interface Structure
EFI_DEVICE_PATH *DevicePath;

Parameters

DevicePath A pointer to device path data. The device path describes the location of
the device the handle is for. The size of the Device Path can be
determined from the structures that make up the Device Path. Type
EFI_DEVICE_PATH is defined in Chapter 3.

Description

The executing EFI Image may use the device path to match its own device drivers to the particular
device. Note that the executing EFI OS loader and EFI application images must access all physical
devices via Boot Services device handles until ExitBootServices() is successfully called.
An EFI driver may access only a physical device for which it provides functionality.

Device Path Protocol

Version 1.02 12/12/00 119

5.3 Device Path Nodes

There are six major types of Device Path nodes:

• Hardware Device Path. This Device Path defines how a device is attached to the resource
domain of a system, where resource domain is simply the shared memory, memory mapped
I/O, and I/O space of the system.

• ACPI Device Path. This Device Path is used to describe devices whose enumeration is not
described in an industry-standard fashion. These devices must be described using ACPI
AML in the ACPI name space; this Device Path is a linkage to the ACPI name space.

• Messaging Device Path. This Device Path is used to describe the connection of devices
outside the resource domain of the system. This Device Path can describe physical
messaging information (e.g., a SCSI ID) or abstract information (e.g., networking protocol
IP addresses).

• Media Device Path. This Device Path is used to describe the portion of a medium that is
being abstracted by a boot service. For example, a Media Device Path could define which
partition on a hard drive was being used.

• BIOS Boot Specification Device Path. This Device Path is used to point to boot legacy
operating systems; it is based on the BIOS Boot Specification Version 1.01.

• End of Hardware Device Path. Depending on the Sub-Type, this Device Path node is used
to indicate the end of the Device Path instance or Device Path structure.

5.3.1 Generic Device Path Structures
A Device Path is a variable-length binary structure that is made up of variable-length generic
Device Path nodes. Table 5-1 defines the structure of a such a node and the lengths of its
components. The table defines the type and sub-type values corresponding to the Device Paths
described Section 5.3; all other type and sub-type values are Reserved.

Table 5-1. Generic Device Path Node Structure

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 0x01 – Hardware Device Path

Type 0x02 – ACPI Device Path

Type 0x03 – Messaging Device Path

Type 0x04 – Media Device Path

Type 0x05 – BIOS Boot Specification Device Path

Type 0xFF – End of Hardware Device Path

Sub-Type 1 1 Sub-Type – Varies by Type. (See Table 5-2.)

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Specific Device Path Data 4 n Specific Device Path data. Type and Sub-Type define
type of data. Size of data is included in Length.

Extensible Firmware Interface Specification

120 12/12/00 Version 1.02

A Device Path is a series of generic Device Path nodes. The first Device Path node starts at byte
offset zero of the Device Path. The next Device Path node starts at the end of the previous Device
Path node. Therefore all nodes are byte packed data structures that may appear on any byte
boundary. All code references to device path notes must assume all fields are UNALIGNED. Since
every Device Path node contains a length field in a known place, it is possible to traverse Device
Path nodes that are of an unknown type. There is no limit to the number, type, or sequence of
nodes in a Device Path.

A Device Path is terminated by an End of Hardware Device Path node. This type of node has two
sub-types (see Table 5-2):

• End This Instance of a Device Path (sub-type 0x01). This type of node terminates one Device
Path instance and denotes the start of another. This is only required when an EFI_HANDLE
represents multiple devices. An example of this would be a handle that represents
ConsoleOut, and consists of both a VGA console and serial output console. This handle
would send the ConsoleOut stream to both VGA and serial concurrently and thus has a
Device Path that contains two complete Device Paths.

• End Entire Device Path (sub-type 0xFF). This type of node terminates an entire Device Path.
Software searches for this sub-type to find the end of a Device Path. All Device Paths must
end with this sub-type.

Table 5-2. Device Path End Structure

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 0x7F – End of Hardware Device Path

Type 0xFF – End of Hardware Device Path

Sub-Type 1 1 Sub-Type 0xFF – End Entire Device Path, or

Sub-Type 0x01 – End This Instance of a Device Path and start a new
Device Path

Length 2 2 Length of this structure in bytes. Length is 4 bytes.

5.3.2 Hardware Device Path
This Device Path defines how a device is attached to the resource domain of a system, where
resource domain is simply the shared memory, memory mapped I/O, and I/O space of the system.
It is possible to have multiple levels of Hardware Device Path such as a PCCARD device that was
attached to a PCCARD PCI controller.

Device Path Protocol

Version 1.02 12/12/00 121

5.3.2.1 PCI Device Path
The Device Path for PCI defines the path to the PCI configuration space address for a PCI device.
There is one PCI Device Path entry for each device and function number that defines the path from
the root PCI bus to the device. Because the PCI bus number of a device may potentially change, a
flat encoding of single PCI Device Path entry cannot be used. An example of this is when a PCI
device is behind a bridge, and one of the following events occurs:

• OS performs a Plug and Play configuration of the PCI bus.
• A Hot plug of a PCI device is performed.
• The system configuration changes between reboots.

The PCI Device Path entry must be preceded by an ACPI Device Path entry that uniquely identifies
the PCI root bus. The programming of root PCI bridges is not defined by any PCI specification and
this is why an ACPI Device Path entry is required.

Table 5-3. PCI Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 1 – PCI

Length 2 2 Length of this structure is 6 bytes

Function 4 1 PCI Function Number

Device 5 1 PCI Device Number

5.3.2.2 PCCARD Device Path

Table 5-4. PCCARD Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 2 – PCCARD

Length 2 2 Length of this structure in bytes. Length is 5 bytes.

Socket Number 4 1 Socket Number (0 = First Socket)

Extensible Firmware Interface Specification

122 12/12/00 Version 1.02

5.3.2.3 Memory Mapped Device Path

Table 5-5. Memory Mapped Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 1 – Hardware Device Path

Sub-Type 1 1 Sub-Type 3 – Memory Mapped

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Memory Type 4 4 EFI_MEMORY_TYPE (See Chapter 3.)

Start Address 8 8 Starting Memory Address

End Address 16 8 Ending Memory Address

5.3.2.4 Vendor Device Path
The Vendor Device Path allows the creation of vendor-defined Device Paths. A vendor must
allocate a Vendor_GUID for a Device Path. The Vendor_GUID can then be used to define the
contents on the n bytes that follow in the Vendor Device Path node.

Table 5-6. Vendor-Defined Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 4 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor_GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.

5.3.2.5 Controller Device Path

Table 5-7. Controller Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 1 – Hardware Device Path.

Sub-Type 1 1 Sub-Type 5 – Controller.

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Controller Number 4 4 Controller number.

Device Path Protocol

Version 1.02 12/12/00 123

5.3.3 ACPI Device Path
This Device Path contains ACPI Device IDs that represent a device’s Plug and Play Hardware ID
and its corresponding unique persistent ID. The ACPI IDs are stored in the ACPI _HID and _UID
device identification objects that are associated with a device. The ACPI Device Path contains
values that must match exactly the ACPI name space that is provided by the platform firmware to
the operating system. Refer to the ACPI specification for a complete description of the _HID and
_UID device identification objects.

The _HID value is an optional device identification object that appears in the ACPI name space.
The _HID must be used to describe any device that will be enumerated by the ACPI driver. The
ACPI bus driver only enumerates a device when no standard bus enumerator exists for a device.
The _UID object provides the OS with a serial number-style ID for a device that does not change
across reboots. The object is optional, but is required when a system contains two devices that
report the same _HID. The _UID only needs to be unique among all device objects with the same
_HID value. If no _UID exists in the APCI name space for a _HID the value of zero must be stored
in the _UID field of the ACPI Device Path.

The ACPI Device Path is only used to describe devices that are not defined by a Hardware Device
Path. An _HID is required to represent a PCI root bridge, since the PCI specification does not
define the programming model for a PCI root bridge.

Table 5-8. ACPI Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 2 – ACPI Device Path.

Sub-Type 1 1 Sub-Type 1 ACPI Device Path.

Length 2 2 Length of this structure in bytes. Length is 12 bytes.

_HID 4 4 Device’s PnP hardware ID stored in a numeric 32-bit
compressed EISA-type ID. This value must match the
corresponding _HID in the ACPI name space.

_UID 8 4 Unique ID that is required by ACPI if two devices have the
same _HID. This value must also match the corresponding
_UID/_HID pair in the ACPI name space. Only the 32-bit
numeric value type of _UID is supported; thus strings must
not be used for the _UID in the ACPI name space.

5.3.4 Messaging Device Path
This Device Path is used to describe the connection of devices outside the resource domain of the
system. This Device Path can describe physical messaging information like SCSI ID or abstract
information like networking protocol IP addresses.

Extensible Firmware Interface Specification

124 12/12/00 Version 1.02

5.3.4.1 ATAPI Device Path

Table 5-9. ATAPI Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 1 – ATAPI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

PrimarySecondary 4 1 Set to zero for primary or one for secondary

SlaveMaster 5 1 Set to zero for master or one for slave mode

Logical Unit Number 6 2 Logical Unit Number

5.3.4.2 SCSI Device Path

Table 5-10. SCSI Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 2 – SCSI

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

Target ID 4 2 Target ID on the SCSI bus, PUN

Logical Unit Number 6 2 Logical Unit Number, LUN

5.3.4.3 Fibre Channel Device Path

Table 5-11. Fibre Channel Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 3 – Fibre Channel

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Reserved 4 4 Reserved

World Wide Number 8 8 Fibre Channel World Wide Number
Logical Unit Number 16 8 Fibre Channel Logical Unit Number

Device Path Protocol

Version 1.02 12/12/00 125

5.3.4.4 1394 Device Path

Table 5-12. 1394 Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 4 – 1394

Length 2 2 Length of this structure in bytes. Length is 16 bytes.

Reserved 4 4 Reserved

GUID1 8 8 1394 Global Unique ID (GUID)1

1 The usage of the term GUID is per the 1394 specification. This is not the same as the
EFI_GUID type defined in the EFI Specification.

5.3.4.5 USB Device Path

Table 5-13. USB Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 5 – USB

Length 2 2 Length of this structure in bytes. Length is 16 bytes.

USB Port Number 4 1 USB Port Number

End Point 5 1 USB Endpoint Number

Extensible Firmware Interface Specification

126 12/12/00 Version 1.02

5.3.4.6 USB Class Device Path

Table 5-14. USB Class Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 - Messaging Device Path

Sub-Type 1 1 Sub-Type 15 - USB Class

Length 2 2 Length of this structure in bytes. Length is 11 bytes.

Vendor ID 4 2 Vendor ID assigned by USB-IF. A value of 0xFFFF will
match any Vendor ID.

Product ID 6 2 Product ID assigned by USB-IF. A value of 0xFFFF will
match any Product ID.

Device Class 8 1 The class code assigned by the USB-IF. A value of 0xFF
will match any class code.

Device Subclass 9 1 The subclass code assigned by the USB-IF. A value of
0xFF will match any subclass code.

Device Protocol 10 1 The protocol code assigned by the USB-IF. A value of 0xFF
will match any protocol code.

5.3.4.7 I2O Device Path

Table 5-15. I2O Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 6 – I2O Random Block Storage Class

Length 2 2 Length of this structure in bytes. Length is 8 bytes.

TID 4 4 Target ID (TID) for a device

5.3.4.8 MAC Address Device Path

Table 5-16. MAC Address Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 11 – MAC Address for a network interface

Length 2 2 Length of this structure in bytes. Length is 37 bytes.

MAC Address 4 32 The MAC address for a network interface padded with 0s

IfType 36 1 Network interface type(i.e. 802.3, FDDI). See RFC 1700

Device Path Protocol

Version 1.02 12/12/00 127

5.3.4.9 IPv4 Device Path

Table 5-17. IPv4 Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 12 – IPv4

Length 2 2 Length of this structure in bytes. Length is 19 bytes.

Local IP Address 4 4 The local IPv4 address

Remote IP Address 8 4 The remote IPv4 address

Local Port 12 2 The local port number

Remote Port 14 2 The remote port number

Protocol 16 2 The network protocol(i.e. UDP, TCP). See RFC 1700

StaticIPAddress 18 1 0x00 - The Source IP Address was assigned though DHCP

0x01 - The Source IP Address is statically bound

5.3.4.10 IPv6 Device Path

Table 5-18. IPv6 Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 13 – IPv6

Length 2 2 Length of this structure in bytes. Length is 43 bytes.

Local IP Address 4 16 The local IPv6 address

Remote IP Address 20 16 The remote IPv6 address

Local Port 36 2 The local port number

Remote Port 38 2 The remote port number

Protocol 40 2 The network protocol (i.e. UDP, TCP). See RFC 1700.

StaticIPAddress 42 1 0x00 - The Source IP Address was assigned though DHCP

0x01 - The Source IP Address is statically bound

Extensible Firmware Interface Specification

128 12/12/00 Version 1.02

5.3.4.11 InfiniBand† Device Path

Table 5-19. InfiniBand† Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 9 – InfiniBand†

Length 2 2 Length of this structure in bytes

Reserved 4 4 Reserved

Node GUID1 8 8 64 bit node GUID1 of the IOU

IOC GUID1 16 8 64 bit GUID1 of the IOC

Device ID 24 8 64 bit persistent ID of the device

1 The usage of the term GUID is per the Infiniband specification. This is not the same as the
EFI_GUID type defined in the EFI Specification.

5.3.4.12 UART Device Path

Table 5-20. UART Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 14 – UART

Length 2 2 Length of this structure in bytes. Length is 19 bytes.

Reserved 4 4 Reserved

Baud Rate 8 8 The baud rate setting for the UART style device. A value of
0 means that the device's default baud rate will be used.

Data Bits 16 1 The number of data bits for the UART style device. A value
of 0 means that the device's default number of data bits will
be used.

Parity 17 1 The parity setting for the UART style device.

Parity 0x00 - Default Parity
Parity 0x01 - No Parity
Parity 0x02 - Even Parity

Parity 0x03 - Odd Parity
Parity 0x04 - Mark Parity
Parity 0x05 - Space Parity

Stop Bits 18 1 The number of stop bits for the UART style device.
Stop Bits 0x00 - Default Stop Bits
Stop Bits 0x01 - 1 Stop Bit

Stop Bits 0x02 - 1.5 Stop Bits
Stop Bits 0x03 - 2 Stop Bits

Device Path Protocol

Version 1.02 12/12/00 129

5.3.4.13 Vendor-Defined Messaging Device Path

Table 5-21. Vendor-Defined Messaging Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 3 – Messaging Device Path

Sub-Type 1 1 Sub-Type 10 – Vendor

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor_GUID 4 16 Vendor-assigned GUID that defines the data that follows

Vendor Defined Data 20 n Vendor-defined variable size data

The following two GUIDs are used with a Vendor-Defined Messaging Device Path to describe the
transport protocol for use with PC-ANSI and VT-100 terminals. Device paths can be constructed
with this node as the last node in the device path. The rest of the device path describes the physical
device that is being used to transmit and receive data. The PC-ANSI and VT-100 GUIDs define the
format of the data that is being sent though the physical device. Additional GUIDs can be
generated to describe additional transport protocols.

#define DEVICE_PATH_MESSAGING_PC_ANSI \
{ e0c14753-f9be-11d2-9a0c-0090273fc14d }

#define DEVICE_PATH_MESSAGING_VT_100 \
{ DFA66065-B419-11d3-9A2D-0090273FC14D }

5.3.5 Media Device Path
This Device Path is used to describe the portion of the medium that is being abstracted by a boot
service. An example of Media Device Path would be defining which partition on a hard drive was
being used.

5.3.5.1 Hard Drive
The Hard Drive Media Device Path is used to represent a partition on a hard drive. The master boot
record (MBR) that resides in the first sector of the disk defines the partitions on a disk. Partitions
are addressed in EFI starting at LBA zero. Partitions are numbered one through n. A partition
number of zero can be used to represent the raw hard drive.

The MBR Type is stored in the Device Path to allow new MBR types to be added in the future.
The Hard Drive Device Path also contains a Disk Signature and a Disk Signature Type. The disk
signature is maintained by the OS and only used by EFI to partition Device Path nodes. The disk
signature enables the OS to find disks even after they have been physically moved in a system.

Extensible Firmware Interface Specification

130 12/12/00 Version 1.02

Table 5-22. Hard Drive Media Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 4 – Media Device Path

Sub-Type 1 1 Sub-Type 1 – Hard Drive

Length 2 2 Length of this structure in bytes. Length is 42 bytes.

Partition Number 4 4 Partition Number of the hard drive. Partition numbers start
at one. Partition number zero represents the entire device.
Partitions are defined by entries in the master boot record in
the first sector of the hard disk device.

Partition Start 8 8 Starting LBA of the partition on the hard drive

Partition Size 16 8 Size of the partition in units of Logical Blocks

Partition Signature 24 16 Signature unique to this partition

MBR Type 40 1 MBR Type: (Unused values reserved)

0x01 – PC AT compatible MBR. Partition Start and Partition
Size come from PartitionStartingLBA and
PartitionSizeInLBA for the partition.

0x02 – EFI Partition Table Header.

Signature Type 41 1 Type of Disk Signature: (Unused values reserved)

0x00 – No Disk Signature.

0x01 – 32-bit signature from address 0x1b8 of the type
0x01 MBR.

0x02 – GUID signature.

The following structure defines an MBR for EFI:

Typedef struct _MBR_PARTITION {
UINT8 BootIndicator; // 0x80 for active partition
UINT8 PartitionStartCHS[3];
UINT8 OS_Indicator;
UINT8 PartitionEndCHS[3];
UINT32 PartitionStartingLBA;
UINT32 PartitionSizeInLBA;

} MBR_PARTITION;

typedef struct _PC_MBR {
UINT8 MBRCode[0x1BE];
MBR_PARTITION PartitionEntry[4];
UINT16 Signature; // Must be 0xaa55

} PC_MBR;

Device Path Protocol

Version 1.02 12/12/00 131

5.3.5.2 CD-ROM Media Device Path
The CD-ROM Media Device Path is used to define a system partition that exists on a CD-ROM.
The CD-ROM is assumed to contain an ISO-9660 file system and follow the CD-ROM “El Torito”
format. The Boot Entry number from the Boot Catalog is how the “El Torito” specification defines
the existence of bootable entities on a CD-ROM. In EFI the bootable entity is an EFI System
Partition that is pointed to by the Boot Entry.

Table 5-23. CD-ROM Media Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 2 – CD-ROM “El Torito” Format.

Length 2 2 Length of this structure in bytes. Length is 24 bytes.

Boot Entry 4 4 Boot Entry number from the Boot Catalog. The
Initial/Default entry is defined as zero.

Partition Start 8 8 Starting RBA of the partition on the medium. CD-ROMs use
Relative logical Block Addressing.

Partition Size 16 8 Size of the partition in units of Blocks, also called Sectors.

5.3.5.3 Vendor-Defined Media Device Path

Table 5-24. Vendor-Defined Media Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 3 – Vendor.

Length 2 2 Length of this structure in bytes. Length is 20 + n bytes.

Vendor_GUID 4 16 Vendor-assigned GUID that defines the data that follows.

Vendor Defined Data 20 n Vendor-defined variable size data.

Extensible Firmware Interface Specification

132 12/12/00 Version 1.02

5.3.5.4 File Path Media Device Path

Table 5-25. File Path Media Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 4 – File Path.

Length 2 2 Length of this structure in bytes. Length is 4 + n bytes.

Path Name 4 n Unicode Path string including directory and file names. The
length of this string n can be determined by subtracting 4
from the Length entry. A device path may contain one or
more of these nodes. The complete path to a file can be
found by concatenating all the File Path Media Device Path
nodes. This is typically used to describe the directory path
in one node, and the filename in another node.

5.3.5.5 Media Protocol Device Path
The Media Protocol Device Path is used to denote the protocol that is being used in a device path at
the location of the path specified. Many protocols are inherent to the style of device path.

Table 5-26. Media Protocol Media Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 4 – Media Device Path.

Sub-Type 1 1 Sub-Type 5 – Media Protocol.

Length 2 2 Length of this structure in bytes. Length is 20 bytes.

Protocol GUID 4 16 The ID of the protocol.

Device Path Protocol

Version 1.02 12/12/00 133

5.3.6 BIOS Boot Specification Device Path
This Device Path is used to describe the booting of non-EFI-aware operating systems. This Device
Path is based on the IPL and BCV table entry data structures defined in Appendix A of the BIOS
Boot Specification. The BIOS Boot Specification Device Path defines a complete Device Path and
is not used with other Device Path entries. This Device Path is only needed to enable platform
firmware to select a legacy non-EFI OS as a boot option.

Table 5-27. BIOS Boot Specification Device Path

Mnemonic
Byte
Offset

Byte
Length Description

Type 0 1 Type 5 – BIOS Boot Specification Device Path.

Sub-Type 1 1 Sub-Type 1 – BIOS Boot Specification Version 1.01.

Length 2 2 Length of this structure in bytes. Length is 8 + n bytes.

Device Type 4 2 Device Type as defined by the BIOS Boot Specification.

Status Flag 6 2 Status Flags as defined by the BIOS Boot Specification

Description String 8 n ASCIIZ string that describes the boot device to a user. The
length of this string n can be determined by subtracting 8
from the Length entry.

Example BIOS Boot Specification Device Types would include:

• 00h = Reserved
• 01h = Floppy
• 02h = Hard Disk
• 03h = CD-ROM
• 04h = PCMCIA
• 05h = USB
• 06h = Embedded network
• 07h..7Fh = Reserved
• 80h = BEV device
• 81h..FEh = Reserved
• FFh = Unknown

5.4 Device Path Generation Rules

5.4.1 Housekeeping Rules
The Device Path is a set of Device Path nodes. The Device Path must be terminated by an End of
Device Path node with a sub-type of End the Entire Device Path. A NULL Device Path consists of
a single End Device Path Node. A Device Path that contains a NULL pointer and no Device Path
structures is illegal.

All Device Path nodes start with the generic Device Path structure. Unknown Device Path types
can be skipped when parsing the Device Path since the length field can be used to find the next

Extensible Firmware Interface Specification

134 12/12/00 Version 1.02

Device Path structure in the stream. Any future additions to the Device Path structure types will
always start with the current standard header. The size of a Device Path can be determined by
traversing the generic Device Path structures in each header and adding up the total size of the
Device Path. This size will include the four bytes of the End of Device Path structure.

Multiple hardware devices may be pointed to by a single Device Path. Each hardware device will
contain a complete Device Path that is terminated by the Device Path End Structure. The Device
Path End Structures that do not end the Device Path contain a sub-type of End This Instance of the
Device Path. The last Device Path End Structure contains a sub-type of End Entire Device Path.

5.4.2 Rules with ACPI _HID and _UID
As described in the ACPI specification, ACPI supports several different kinds of device
identification objects, including _HID and _UID. EFI only supports _HID and _UID that are
encoded in the 32-bit EISA-type ID format. The string format must not be used for _HID or _UID
in the ACPI name space if that entry is to be correlated to an EFI Device Path. _UID are optional
in ACPI and only required if more than one _HID exists with the same ID. The ACPI Device Path
structure must contain a zero in _UID field if the ACPI name space does not implement _UID. The
_UID is a unique serial number that persists across reboots.

If a device in the ACPI name space has a _HID and is described by a _CRS (Current Resource
Setting) then it should be described by an ACPI Device Path structure. A _CRS implies that a
device is not mapped by any other standard. A _CRS is used by ACPI to make a non standard
device into a Plug and Play device. The configuration methods in the ACPI name space allow the
ACPI driver to configure the device in a standard fashion.

The following table maps ACPI _CRS devices to EFI Device Path.

Table 5-28. ACPI _CRS to EFI Device Path Mapping

ACPI _CRS Item EFI Device Path

PCI Root Bus ACPI Device Path: _HID PNP0A03, _UID

Floppy ACPI Device Path: _HID PNP0303, _UID drive select encoding 0-3

Keyboard ACPI Device Path: _HID PNP0301, _UID 0

Serial Port ACPI Device Path: _HID PNP0501, _UID Serial Port COM number 0-3

Parallel Port ACPI Device Path: _HID PNP0401, _UID LPT number 0-3

Support of root PCI bridges requires special rules in the EFI Device Path. A root PCI bridge is a
PCI device usually contained in a chipset that consumes a proprietary bus and produces a PCI bus.
In typical desktop and mobile systems there is only one root PCI bridge. On larger server systems
there are typically multiple root PCI bridges. The operation of root PCI bridges is not defined in
any current PCI specification. A root PCI bridge should not be confused with a PCI to PCI bridge
that both consumes and produces a PCI bus. The operation and configuration of PCI to PCI bridges
is fully specified in current PCI specifications.

Root PCI bridges will use the plug and play ID of PNP0A03 and this will be stored in the ACPI
Device Path _HID field. The _UID in the ACPI Device Path structure must match the _UID in the
ACPI name space.

Device Path Protocol

Version 1.02 12/12/00 135

5.4.3 Rules with ACPI _ADR
If a device in the ACPI name space can be completely described by a _ADR object then it will map
to an EFI ACPI, Hardware, or Message Device Path structure. A _ADR method implies a bus with
a standard enumeration algorithm. If the ACPI device has a _ADR and a _CRS method, then it
should also have a _HID method and follow the rules for using _HID.

The following table relates the ACPI _ADR bus definition to the EFI Device Path:

Table 5-29. ACPI _ADR to EFI Device Path Mapping

ACPI _ADR Bus EFI Device Path

EISA Not supported

Floppy Bus ACPI Device Path: _HID PNP0303, _UID drive select encoding 0-3

IDE Controller ATAPI Message Device Path: Maser/Slave : LUN

IDE Channel ATAPI Message Device Path: Maser/Slave : LUN

PCI PCI Hardware Device Path

PCMCIA Not Supported

PC CARD PC CARD Hardware Device Path

SMBus Not Supported

5.4.4 Hardware vs. Messaging Device Path Rules
Hardware Device Paths are used to define paths on buses that have a standard enumeration
algorithm and that relate directly to the coherency domain of the system. The coherency domain is
defined as a global set of resources that is visible to at least one processor in the system. In a
typical system this would include the processor memory space, IO space, and PCI configuration
space.

Messaging Device Paths are used to define paths on buses that have a standard enumeration
algorithm, but are not part of the global coherency domain of the system. SCSI and Fibre Channel
are examples of this kind of bus. The Messaging Device Path can also be used to describe virtual
connections over network-style devices. An example would be the TCPI/IP address of a internet
connection.

Thus Hardware Device Path is used if the bus produces resources that show up in the coherency
resource domain of the system. A Message Device Path is used if the bus consumes resources from
the coherency domain and produces resources out side the coherency domain of the system.

Extensible Firmware Interface Specification

136 12/12/00 Version 1.02

5.4.5 Media Device Path Rules
The Media Device Path is used to define the location of information on a medium. Hard Drives are
subdivided into partitions by the MBR and a Media Device Path is used to define which partition is
being used. A CD-ROM has boot partitions that are defined by the “El Torito” specification, and
the Media Device Path is used to point to these partitions.

A BLOCK_IO protocol is produced for both raw devices and partitions on devices. This allows the
SIMPLE_FILE_SYSTEM protocol to not have to understand media formats. The BLOCK_IO
protocol for a partition contains the same Device Path as the parent BLOCK_IO protocol for the
raw device with the addition of a Media Device Path that defines which partition is being
abstracted.

The Media Device Path is also used to define the location of a file in a file system. This Device
Path is used to load files and to represent what file an image was loaded from.

5.4.6 Other Rules
The BIOS Boot Specification Device Path is not a typical Device Path. A Device Path containing
the BIOS Boot Specification Device Path should only contain the required End Device Path
structure and no other Device Path structures. The BIOS Boot Specification Device Path is only
used to allow the EFI boot menus to boot a legacy operating system from legacy media.

The EFI Device Path can be extended in a compatible fashion by assigning your own vendor GUID
to a Hardware, Messaging, or Media Device Path. This extension is guaranteed to never conflict
with future extensions of this specification

The EFI specification reserves all undefined Device Path types and subtypes. Extension is only
permitted using a Vendor GUID Device Path entry.

Version 1.02 12/12/00 137

6
Device I/O Protocol

This chapter defines the Device I/O protocol. This protocol is used by code, typically drivers,
running in the EFI boot services environment to access memory and I/O. In particular, functions
for managing PCI buses are defined here although other bus types may be supported in a similar
fashion as extensions to this specification.

6.1 Device I/O Overview

The interfaces provided in the DEVICE_IO protocol are for performing basic operations to
memory, I/O, and PCI configuration space. The DEVICE_IO protocol can be thought of as the
bus driver for the system. The system provides abstracted access to basic system resources to allow
a driver to have a programmatic method to access these basic system resources.

The DEVICE_IO protocol allows for future innovation of the platform. It abstracts device
specific code from the system memory map. This allows system designers to greatly change the
system memory map without impacting platform independent code that is consuming basic system
resources.

It is important to note that this specification ties these interfaces into a single protocol solely for the
purpose of simplicity. Other similar bus- or device-specific protocols that “programmatic child
drivers” may require can easily be added by using a new protocol GUID. For example, a
comprehensive USB-specific host controller protocol interface could be defined for child drivers.
These drivers would perform a LocateDevicePath() to obtain the proper USB interface set,
from somewhere up the device path, just as a PCI-based device driver would do with the
DEVICE_IO protocol to gain access to the PCI configuration space interfaces.

Extensible Firmware Interface Specification

138 12/12/00 Version 1.02

6.2 DEVICE_IO Protocol

Summary

Provides the basic Memory, I/O, and PCI interfaces that are used to abstract accesses to devices.

GUID
#define DEVICE_IO_PROTOCOL \

{ af6ac311-84c3-11d2-8e3c-00a0c969723b }

Protocol Interface Structure
typedef struct _EFI_DEVICE_IO_INTERFACE {

EFI_IO_ACCESS Mem;
EFI_IO_ACCESS Io;
EFI_IO_ACCESS Pci;
EFI_IO_MAP Map;
EFI_PCI_DEVICE_PATH PciDevicePath;
EFI_IO_UNMAP Unmap;
EFI_IO_ALLOCATE_BUFFER AllocateBuffer;
EFI_IO_FLUSH Flush;
EFI_IO_FREE_BUFFER FreeBuffer;

} EFI_DEVICE_IO_INTERFACE;

Parameters

Mem Allows reads and writes to memory mapped I/O space. See
Section 6.2.1.

Io Allows reads and writes to I/O space. See Section 6.2.1.

Pci Allows reads and writes to PCI configuration space. See Section 6.2.1.

Map Provides the device specific addresses needed to access system memory
for DMA.

PciDevicePath Provides an EFI Device Path for a PCI device with the given PCI
configuration space address.

Unmap Releases any resources allocated by Map.

AllocateBuffer Allocates pages that are suitable for a common buffer mapping.

Flush Flushes any posted write data to the device.

FreeBuffer Free pages that were allocated with AllocateBuffer().

Device I/O Protocol

Version 1.02 12/12/00 139

Description

The DEVICE_IO protocol provides the basic Memory, I/O, and PCI interfaces that are used to
abstract accesses to devices.

A driver that controls a physical device obtains the proper DEVICE_IO protocol interface by
checking for the supported protocol on the programmatic parent(s) for the device. This is easily
done via the LocateDevicePath() function.

The following C code fragment illustrates the use of the DEVICE_IO protocol:
// Get the handle to our parent that provides the device I/O
// protocol interfaces to “MyDevice” (which has the device path
// of “MyDevicePath”)
EFI_DEVICE_IO_INTERFACE *IoFncs;
EFI_DEVICE_PATH *SearchPath;

SearchPath = MyDevicePath;
Status = LocateDevicePath (

&DeviceIoProtocol, // Protocol GUID
&SearchPath, // Device Path SearchKey
&DevHandle // Return EFI Handle
);

// Get the device I/O interfaces from the handle
Status = HandleProtocol (DevHandle, &DeviceIoProtocol, &IoFncs);

// Read 1 dword into Buffer from MyDevice’s I/O address
IoFncs->Io.Read (IoFncs, IO_UINT32, MyDeviceAddress, 1, &Buffer);

The call to LocateDevicePath() takes the Device Path of a device and returns the handle that
contains the DEVICE_IO protocol for the device. The handle is passed to HandleProtocol()
with a pointer to the EFI_GUID for DEVICE_IO protocol and a pointer to the DEVICE_IO
protocol is returned. The DEVICE_IO protocol pointer IoFncs is then used to do an I/O read to
a device.

Extensible Firmware Interface Specification

140 12/12/00 Version 1.02

Related Definitions

//***
// EFI_IO_WIDTH
//***

typedef enum {
IO_UINT8 = 0,
IO_UINT16 = 1,
IO_UINT32 = 2,
IO_UINT64 = 3

} EFI_IO_WIDTH;

//***
// EFI_DEVICE_IO
//***

typedef
EFI_STATUS
(EFIAPI *EFI_DEVICE_IO) (

IN struct _EFI_DEVICE_IO_INTERFACE *This,
IN EFI_IO_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
);

//***
// EFI_IO_ ACCESS
//***

typedef struct {
EFI_DEVICE_IO Read;
EFI_DEVICE_IO Write;

} EFI_IO_ACCESS;

Device I/O Protocol

Version 1.02 12/12/00 141

6.2.1 DEVICE_IO.Mem(), .Io(), and .Pci()

Summary

Enable a driver to access device registers in the appropriate memory or I/O space.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DEVICE_IO) (

IN struct EFI_DEVICE_IO_INTERFACE *This,
IN EFI_IO_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer

);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 6.2.

Width Signifies the width of the I/O operations. Type EFI_IO_WIDTH is
defined in Section 6.2.

Address The base address of the I/O operations. The caller is responsible for
aligning the Address if required.

Count The number of I/O operations to perform. Bytes moved is Width size *
Count, starting at Address.

Buffer For read operations, the destination buffer to store the results. For write
operations, the source buffer to write data from.

Description

The DEVICE_IO.Mem(), .Io(), and .Pci() functions enable a driver to access device
registers in the appropriate memory or I/O space.

The I/O operations are carried out exactly as requested. The caller is responsible for any alignment
and I/O width issues which the bus, device, platform, or type of I/O might require. For example on
IA-32 platforms, width requests of IO_UINT64 do not work.

For Mem() and Io(), the address field is the bus relative address as seen by the device on the bus.
For Mem() and Io() the caller must align the starting address to be on a proper width boundary.

For Pci(), the address field is encoded as shown in Table 6-1. The caller must align the register
number being accessed to be on a proper width boundary.

Extensible Firmware Interface Specification

142 12/12/00 Version 1.02

Table 6-1. PCI Address

Mnemonic
Byte
Offset

Byte
Length Description

Register 0 1 The register number on the function.

Function 1 1 The function on the device.

Device 2 1 The device on the bus.

Bus 3 1 The bus.

Segment 4 1 The segment number.

Reserved 5 3 Must be zero.

Status Codes Returned
EFI_SUCCESS The data was read from or written to the device.

EFI_UNSUPPORTED The Address is not valid for this system.

EFI_INVALID_PARAMETER Width or Count, or both, were invalid.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Device I/O Protocol

Version 1.02 12/12/00 143

6.2.2 DEVICE_IO.PciDevicePath()

Summary

Provides an EFI Device Path for a PCI device with the given PCI configuration space address.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PCI_DEVICE_PATH) (

IN EFI_DEVICE_IO_INTERFACE *This,
IN UINT64 PciAddress,
IN OUT EFI_DEVICE_PATH **PciDevicePath

);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 6.2.

PciAddress The PCI configuration space address of the device whose Device Path is
going to be returned. The address field is encoded as shown in
Table 6-1.

PciDevicePath A pointer to the pointer for the EFI Device Path for PciAddress.
Memory for the Device Path is allocated from the pool. Type
EFI_DEVICE_PATH is defined in Chapter 3.

Description

The DEVICE_IO.PciDevicePath() function provides an EFI Device Path for a PCI device
with the given PCI configuration space address.

A Device Path for the requested PCI device is returned in PciDevicePath.
PciDevicePath() allocates the memory required for the Device Path from the pool and the
caller is responsible for calling FreePool() to free the memory used to contain the Device Path.
If there is not enough memory to calculate or return the PciDevicePath the function will return
EFI_OUT_OF_RESOURCES. If the function can not calculate a valid Device Path for
PciAddress the function will return EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The PciDevicePath returns a pointer to a valid EFI Device Path.

EFI_UNSUPPORTED The PciAddress does not map to a valid EFI Device Path.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

144 12/12/00 Version 1.02

6.2.3 DEVICE_IO.Map()

Summary

Provides the device specific addresses needed to access system memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IO_MAP) (

IN EFI_DEVICE_IO_INTERFACE *This,
IN EFI_IO_OPERATION_TYPE Operation,
IN EFI_PHYSICAL_ADDRESS *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping

);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 6.2.

Operation Indicates if the bus master is going to read or write to system memory.
Type EFI_IO_OPERATION_TYPE is defined in “Related Definitions”.

HostAddress The system memory address to map to the device. Type EFI_
PHYSICAL_ADDRESS is defined in Chapter 3.

NumberOfBytes On input the number of bytes to map.
On output the number of bytes that were mapped.

DeviceAddress The resulting map address for the bus master device to use to access the
hosts HostAddress. Type EFI_ PHYSICAL_ADDRESS is defined in
Chapter 3.

Mapping A resulting value to pass to Unmap().

Device I/O Protocol

Version 1.02 12/12/00 145

Related Definitions

//***
// EFI_IO_OPERATION_TYPE
//***

typedef enum {
EfiBusMasterRead,
EfiBusMasterWrite,
EfiBusMasterCommonBuffer

} EFI_IO_OPERATION_TYPE;

EfiBusMasterRead A read operation from system memory by a bus master.

EfiBusMasterWrite A write operation to system memory by a bus master.

EfiBusMasterCommonBuffer Provides both read and write access to system memory
 by both the CPU and a bus master. The buffer is
 coherent from both the CPUs and the bus masters point
 of view.

Description

The DEVICE_IO.Map() function provides the device specific addresses needed to access system
memory. This function is used to map system memory for bus master DMA accesses.

All bus master accesses must be performed through their mapped addresses and such mappings
must be freed with Unmap() when complete. If the bus master access is a single read or write data
transfer, then EfiBusMasterRead or EfiBusMasterWrite is used and the range is
unmapped to complete the operation. If performing an EfiBusMasterRead operation, all the
data must be present in system memory before the Map() is performed. Similarly, if performing
an EfiBusMasterWrite, the data can not be properly accessed in system memory until the
Unmap() is performed.

Bus master operations that require both read and write access or require multiple host device
interactions within the same mapped region must use EfiBusMasterCommonBuffer.
However, only memory allocated via the DEVICE_IO.AllocateBuffer() interface is
guaranteed to be able to be mapped for this operation type.

In all mapping requests the resulting NumberOfBytes actually mapped may be less than
requested.

Status Codes Returned
EFI_SUCCESS The range was mapped for the returned NumberOfBytes.

EFI_INVALID_PARAMETER The Operation or HostAddress is undefined.

EFI_UNSUPPORTED The HostAddress can not be mapped as a common buffer.

EFI_DEVICE_ERROR The system hardware could not map the requested address.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

Extensible Firmware Interface Specification

146 12/12/00 Version 1.02

6.2.4 DEVICE_IO.Unmap()

Summary

Completes the Map() operation and releases any corresponding resources.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IO_UNMAP) (

IN EFI_DEVICE_IO_INTERFACE *This,
IN VOID *Mapping

);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 6.2.

Mapping The mapping value returned from Map().

Description

The Unmap() function completes the Map() operation and releases any corresponding resources.
If the operation was an EFIBusMasterWrite, the data is committed to the target system
memory. Any resources used for the mapping are freed.

Status Codes Returned
EFI_SUCCESS The range was unmapped.

EFI_DEVICE_ERROR The data was not committed to the target system memory.

Device I/O Protocol

Version 1.02 12/12/00 147

6.2.5 DEVICE_IO.AllocateBuffer()

Summary

Allocates pages that are suitable for an EFIBusMasterCommonBuffer mapping.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IO_ALLOCATE_BUFFER) (

IN EFI_DEVICE_IO_INTERFACE *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT EFI_PHYSICAL_ADDRESS *HostAddress
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 6.2.

Type The type allocation to perform. Type EFI_ALLOCATE_TYPE is
defined in Chapter 3.

MemoryType The type of memory to allocate, EfiBootServicesData or
EfiRuntimeServicesData. Type EFI_MEMORY_TYPE is defined
in Chapter 3.

Pages The number of pages to allocate.

HostAddress A pointer to store the base address of the allocated range. Type EFI_
PHYSICAL_ADDRESS is defined in Chapter 3.

Description

The AllocateBuffer() function allocates pages that are suitable for an
EFIBusMasterCommonBuffer mapping.

The AllocateBuffer() function internally calls AllocatePages() to allocate a memory
range that can be mapped as an EFIBusMasterCommonBuffer. When the buffer is no longer
needed, the driver frees the memory with a call to FreeBuffer().

Allocation requests of Type AllocateAnyPages will allocate any available range of pages that
satisfies the request. On input the data pointed to by HostAddress is ignored.

Extensible Firmware Interface Specification

148 12/12/00 Version 1.02

Allocation requests of Type AllocateMaxAddress will allocate any available range of pages
that satisfies the request that are below or equal to the value pointed to by HostAddress on
input. On success, the value pointed to by HostAddress contains the base of the range actually
allocated. If there are not enough consecutive available pages below the requested address, an error
is returned.

Allocation requests of Type AllocateAddress will allocate the pages at the address supplied
in the data pointed to by HostAddress. If the range is not available memory an error is returned.

Status Codes Returned
EFI_SUCCESS The requested memory pages were allocated.

EFI_OUT_OF_RESOURCES The memory pages could not be allocated.

EFI_INVALID_PARAMETER The requested memory type is invalid.

EFI_UNSUPPORTED The requested HostAddress is not supported on this platform.

Device I/O Protocol

Version 1.02 12/12/00 149

6.2.6 DEVICE_IO.Flush()

Summary

Flushes any posted write data to the device.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IO_FLUSH) (

IN EFI_DEVICE_IO_INTERFACE *This
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE instance. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 6.2.

Description

The Flush() function flushes any posted write data to the device.

Status Codes Returned
EFI_SUCCESS The buffers were flushed.

EFI_DEVICE_ERROR The buffers were not flushed due to a hardware error.

Extensible Firmware Interface Specification

150 12/12/00 Version 1.02

6.2.7 DEVICE_IO.FreeBuffer()

Summary

Frees pages that were allocated with AllocateBuffer().

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_IO_FREE_BUFFER) (

IN EFI_DEVICE_IO_INTERFACE *This,
IN UINTN Pages,
IN EFI_PHYSICAL_ADDRESS HostAddress
);

Parameters

This A pointer to the EFI_DEVICE_IO_INTERFACE. Type
EFI_DEVICE_IO_INTERFACE is defined in Section 6.2.

Pages The number of pages to free.

HostAddress The base address of the range to free. Type EFI_
PHYSICAL_ADDRESS is defined in Chapter 3.

Description

The FreeBuffer() function frees pages that were allocated with AllocateBuffer().

The FreeBuffer() function internally calls FreePages() to free a memory range.

Status Codes Returned
EFI_SUCCESS The requested memory pages were allocated.

EFI_INVALID_PARAMETER The requested memory type is invalid.

Version 1.02 12/12/00 151

7
Console I/O Protocol

This chapter defines the Console I/O protocol. This protocol is used to handle input and output of
text-based information intended for the system user during the operation of code in the EFI boot
services environment. Also included here are the definitions of three console devices: one for input
and one each for normal output and errors.

These interfaces are specified by function call definitions to allow maximum flexibility in
implementation. For example, there is no requirement for compliant systems to have a keyboard or
screen directly connected to the system. Implementations may choose to direct information passed
using these interfaces in arbitrary ways provided that the semantics of the functions are preserved
(in other words, provided that the information is passed to and from the system user).

7.1 Console I/O Overview

The EFI console is built out of the SIMPLE_INPUT and SIMPLE_TEXT_OUTPUT protocols.
These two protocols implement a basic text-based console that allows platform firmware, EFI
applications, and EFI OS loaders to present information to and receive input from a system
administrator. The EFI console consists of 16-bit Unicode characters, a simple set of input control
characters (Scan Codes), and a set of output-oriented programmatic interfaces that give
functionality equivalent to an intelligent terminal. The EFI console does not support pointing
devices on input or bitmaps on output.

The EFI specification requires that the SIMPLE_INPUT protocol support the same languages as
the corresponding SIMPLE_TEXT_OUTPUT protocol. The SIMPLE_TEXT_OUTPUT protocol is
recommended to support at least the Unicode ISO Latin 1 character set to enable standard terminal
emulation software to be used with an EFI console. The ISO Latin 1 character set implements a
superset of ASCII that has been extended to 16-bit characters. Any other number of Unicode code
pages may be optionally supported.

Extensible Firmware Interface Specification

152 12/12/00 Version 1.02

7.2 ConsoleIn Definition

The SIMPLE_INPUT protocol defines an input stream that contains Unicode characters and
required EFI scan codes. Only the control characters defined in Table 7-1 have meaning in the
Unicode input or output streams. The control characters are defined to be characters U+0000
through U+001F. The input stream does not support any software flow control.

Table 7-1. Supported Unicode Control Characters

Mnemonic Unicode Description

Null U+0000 Null character ignored when received.

BS U+0008 Backspace. Moves cursor left one column. If the cursor is at the left
margin, no action is taken.

TAB U+0x0009 Tab.

LF U+000A Linefeed. Moves cursor to the next line.

CR U+000D Carriage Return. Moves cursor to left margin of the current line.

The input stream supports Scan Codes in addition to Unicode characters. If the Scan Code is set to
0x00 then the Unicode character is valid and should be used. If the Scan Code is set to a non-0x00
value it represents a special key as defined by Table 7-2.

Table 7-2. EFI Scan Codes for SIMPLE_INPUT_INTERFACE

EFI Scan Code Description

0x00 Null scan code.

0x01 Move cursor up 1 row.

0x02 Move cursor down 1 row.

0x03 Move cursor right 1 column.

0x04 Move cursor left 1 column.

0x05 Home.

0x06 End.

0x07 Insert.

0x08 Delete.

0x09 Page Up.

0x0a Page Down.

continued

Console I/O Protocol

Version 1.02 12/12/00 153

Table 7-2. EFI Scan Codes for SIMPLE_INPUT_INTERFACE (continued)

EFI Scan Code Description

0x0b Function 1.

0x0c Function 2.

0x0d Function 3.

0x0e Function 4.

0x0f Function 5.

0x10 Function 6.

0x11 Function 7.

0x12 Function 8.

0x13 Function 9.

0x14 Function 10.

0x17 Escape.

Extensible Firmware Interface Specification

154 12/12/00 Version 1.02

7.3 SIMPLE_INPUT Protocol

Summary

This protocol is used to obtain input from the ConsoleIn device.

GUID
#define SIMPLE_INPUT_PROTOCOL \

{ 387477c1-69c7-11d2-8e39-00a0c969723b }

Protocol Interface Structure
typedef struct _SIMPLE_INPUT_INTERFACE {
 EFI_INPUT_RESET Reset;
 EFI_INPUT_READ_KEY ReadKeyStroke;
 EFI_EVENT WaitForKey;
} SIMPLE_INPUT_INTERFACE;

Parameters

Reset Reset the ConsoleIn device. See Section 7.3.1.

ReadKeyStroke Returns the next input character. See Section 7.3.2.

WaitForKey Event to use with WaitForEvent() to wait for a key to be available.

Description

The SIMPLE_INPUT protocol is used on the ConsoleIn device. It is the minimum required
protocol for ConsoleIn.

Console I/O Protocol

Version 1.02 12/12/00 155

7.3.1 SIMPLE_INPUT.Reset()

Summary

Resets the input device hardware.

Prototype

EFI_STATUS
(EFIAPI *EFI_INPUT_RESET) (

IN SIMPLE_INPUT_INTERFACE *This,
IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the SIMPLE_INPUT_INTERFACE instance. Type
SIMPLE_INPUT_INTERFACE is defined in Section 7.3

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

The Reset() function resets the input device hardware.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware and/or EFI driver to implement.

Status Codes Returned
EFI_SUCCESS The device was reset.

EFI_DEVICE_ERROR The device is not functioning correctly and could not be reset.

Extensible Firmware Interface Specification

156 12/12/00 Version 1.02

7.3.2 SIMPLE_INPUT.ReadKeyStroke

Summary

Reads the next keystroke from the input device.

Prototype

EFI_STATUS
(EFIAPI *EFI_INPUT_READ_KEY) (

IN SIMPLE_INPUT_INTERFACE *This,
OUT EFI_INPUT_KEY *Key
);

Parameters

This A pointer to the SIMPLE_INPUT_INTERFACE instance. Type
SIMPLE_INPUT_INTERFACE is defined in Section 7.3.

Key A pointer to a buffer that is filled in with the keystroke
information for the key that was pressed. Type
EFI_INPUT_KEY is defined in “Related Definitions”.

Related Definitions

//***
// EFI_INPUT_KEY
//***
typedef struct {

UINT16 ScanCode;
CHAR16 UnicodeChar;

} EFI_INPUT_KEY;

Description

The ReadKeyStroke() function reads the next keystroke from the input device. If there is no
pending keystroke the function returns EFI_NOT_READY. If there is a pending keystroke, then
ScanCode is the EFI scan code defined in Table 7-2. The UnicodeChar is the actual printable
character or is zero if the key does not represent a printable character (control key, function
key, etc.).

Status Codes Returned
EFI_SUCCESS The keystroke information was returned.

EFI_NOT_READY There was no keystroke data available.

EFI_DEVICE_ERROR The keystroke information was not returned due to hardware errors.

Console I/O Protocol

Version 1.02 12/12/00 157

7.4 ConsoleOut or StandardError

The SIMPLE_TEXT_OUTPUT protocol must implement the same Unicode code pages as the
SIMPLE_INPUT protocol. The protocol must also support the Unicode control characters
defined in Table 7-1. The SIMPLE_TEXT_OUTPUT protocol supports special manipulation of the
screen by programmatic methods and therefore does not support the EFI scan codes defined in
Table 7-2.

7.5 SIMPLE_TEXT_OUTPUT Protocol

Summary

This protocol is used to control text-based output devices.

GUID
#define SIMPLE_TEXT_OUTPUT_PROTOCOL \

{ 387477c2-69c7-11d2-8e39-00a0c969723b }

Protocol Interface Structure
typedef struct _SIMPLE_TEXT_OUTPUT_INTERFACE {
 EFI_TEXT_RESET Reset;
 EFI_TEXT_STRING OutputString;
 EFI_TEXT_TEST_STRING TestString;
 EFI_TEXT_QUERY_MODE QueryMode;
 EFI_TEXT_SET_MODE SetMode;
 EFI_TEXT_SET_ATTRIBUTE SetAttribute;
 EFI_TEXT_CLEAR_SCREEN ClearScreen;
 EFI_TEXT_SET_CURSOR_POSITION SetCursorPosition;
 EFI_TEXT_ENABLE_CURSOR EnableCursor;
 SIMPLE_TEXT_OUTPUT_MODE *Mode;
} SIMPLE_TEXT_OUTPUT_INTERFACE;

Parameters
Reset Reset the ConsoleOut device. See Section 7.5.1.

OutputString Displays the Unicode string on the device at the current cursor location.
See Section 7.5.2.

TestString Tests to see if the ConsoleOut device supports this Unicode string.
See Section 7.5.3.

QueryMode Queries information concerning the output device’s supported text mode.
See Section 7.5.4.

SetMode Sets the current mode of the output device. See Section 7.5.5.

Extensible Firmware Interface Specification

158 12/12/00 Version 1.02

SetAttribute Sets the foreground and background color of the text that is output. See
Section 7.5.6.

ClearScreen Clears the screen with the currently set background color. See
Section 7.5.7.

SetCursorPosition Sets the current cursor position. See Section 7.5.8.

EnableCursor Turns the visibility of the cursor on/off. See Section 7.5.9.

Mode Pointer to SIMPLE_TEXT_OUTPUT_MODE data. Type
SIMPLE_TEXT_OUTPUT_MODE is defined in “Related Definitions”.

The following data values in the SIMPLE_TEXT_OUTPUT_MODE interface are read-only and are
changed by using the appropriate interface functions:

MaxMode The number of modes supported by QueryMode() and SetMode().

Mode The text mode of the output device(s).

Attribute The current character output attribute.

CursorColumn The cursor’s column.

CursorRow The cursor’s row.

CursorVisible The cursor is currently visible or not.

Related Definitions

//***
// SIMPLE_TEXT_OUTPUT_MODE
//***
typedef struct {
 INT32 MaxMode;
 // current settings
 INT32 Mode;
 INT32 Attribute;
 INT32 CursorColumn;
 INT32 CursorRow;
 BOOLEAN CursorVisible;
} SIMPLE_TEXT_OUTPUT_MODE;

Console I/O Protocol

Version 1.02 12/12/00 159

Description

The SIMPLE_TEXT_OUTPUT protocol is used to control text-based output devices. It is the
minimum required protocol for any handle supplied as the ConsoleOut or StandardError
device. In addition, the minimum supported text mode of such devices is at least 80 x 25
characters.

A video device that only supports graphics mode is required to emulate text mode functionality.
Output strings themselves are not allowed to contain any control codes other than those defined in
Table 7-1. Positional cursor placement is done only via the SetCursorPosition() function.
It is highly recommended that text output to the StandardError device be limited to sequential
string outputs. (That is, it is not recommended to use ClearScreen or SetCursorPosition
on output messages to StandardError.)

If the output device is not in a valid text mode at the time of the HandleProtocol() call, the
device is to indicate that its CurrentMode is –1. On connecting to the output device the caller is
required to verify the mode of the output device, and if it is not acceptable to set it to something it
can use.

Extensible Firmware Interface Specification

160 12/12/00 Version 1.02

7.5.1 SIMPLE_TEXT_OUTPUT.Reset()

Summary

Resets the text output device hardware.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_RESET) (

IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
IN BOOLEAN ExtendedVerification
);

Parameters
This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE

instance. Type SIMPLE_TEXT_OUTPUT_INTERFACE is
defined in Section 7.5.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description
The Reset() function resets the text output device hardware. The cursor position is set to (0, 0),
and the screen is cleared to the default background color for the output device.

As part of initialization process, the firmware/device will make a quick but reasonable attempt to
verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware and/or EFI driver to implement.

Status Codes Returned
EFI_SUCCESS The text output device was reset.

EFI_DEVICE_ERROR The text output device is not functioning correctly and could not be reset.

Console I/O Protocol

Version 1.02 12/12/00 161

7.5.2 SIMPLE_TEXT_OUTPUT.OutputString()

Summary

Writes a Unicode string to the output device.

Prototype
EFI_STATUS
(EFIAPI *EFI_TEXT_STRING) (

IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
IN CHAR16 *String
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in Section 7.5.

String The Null-terminated Unicode string to be displayed on the output
device(s). All output devices must also support the Unicode drawing
characters defined in “Related Definitions”.

Related Definitions

//***
// UNICODE DRAWING CHARACTERS
//***
#define BOXDRAW_HORIZONTAL 0x2500
#define BOXDRAW_VERTICAL 0x2502
#define BOXDRAW_DOWN_RIGHT 0x250c
#define BOXDRAW_DOWN_LEFT 0x2510
#define BOXDRAW_UP_RIGHT 0x2514
#define BOXDRAW_UP_LEFT 0x2518
#define BOXDRAW_VERTICAL_RIGHT 0x251c
#define BOXDRAW_VERTICAL_LEFT 0x2524
#define BOXDRAW_DOWN_HORIZONTAL 0x252c
#define BOXDRAW_UP_HORIZONTAL 0x2534
#define BOXDRAW_VERTICAL_HORIZONTAL 0x253c

#define BOXDRAW_DOUBLE_HORIZONTAL 0x2550
#define BOXDRAW_DOUBLE_VERTICAL 0x2551
#define BOXDRAW_DOWN_RIGHT_DOUBLE 0x2552
#define BOXDRAW_DOWN_DOUBLE_RIGHT 0x2553
#define BOXDRAW_DOUBLE_DOWN_RIGHT 0x2554

Extensible Firmware Interface Specification

162 12/12/00 Version 1.02

#define BOXDRAW_DOWN_LEFT_DOUBLE 0x2555
#define BOXDRAW_DOWN_DOUBLE_LEFT 0x2556
#define BOXDRAW_DOUBLE_DOWN_LEFT 0x2557

#define BOXDRAW_UP_RIGHT_DOUBLE 0x2558
#define BOXDRAW_UP_DOUBLE_RIGHT 0x2559
#define BOXDRAW_DOUBLE_UP_RIGHT 0x255a

#define BOXDRAW_UP_LEFT_DOUBLE 0x255b
#define BOXDRAW_UP_DOUBLE_LEFT 0x255c
#define BOXDRAW_DOUBLE_UP_LEFT 0x255d

#define BOXDRAW_VERTICAL_RIGHT_DOUBLE 0x255e
#define BOXDRAW_VERTICAL_DOUBLE_RIGHT 0x255f
#define BOXDRAW_DOUBLE_VERTICAL_RIGHT 0x2560

#define BOXDRAW_VERTICAL_LEFT_DOUBLE 0x2561
#define BOXDRAW_VERTICAL_DOUBLE_LEFT 0x2562
#define BOXDRAW_DOUBLE_VERTICAL_LEFT 0x2563

#define BOXDRAW_DOWN_HORIZONTAL_DOUBLE 0x2564
#define BOXDRAW_DOWN_DOUBLE_HORIZONTAL 0x2565
#define BOXDRAW_DOUBLE_DOWN_HORIZONTAL 0x2566

#define BOXDRAW_UP_HORIZONTAL_DOUBLE 0x2567
#define BOXDRAW_UP_DOUBLE_HORIZONTAL 0x2568
#define BOXDRAW_DOUBLE_UP_HORIZONTAL 0x2569

#define BOXDRAW_VERTICAL_HORIZONTAL_DOUBLE 0x256a
#define BOXDRAW_VERTICAL_DOUBLE_HORIZONTAL 0x256b
#define BOXDRAW_DOUBLE_VERTICAL_HORIZONTAL 0x256c

//***
// EFI Required Block Elements Code Chart
//***

#define BLOCKELEMENT_FULL_BLOCK 0x2588
#define BLOCKELEMENT_LIGHT_SHADE 0x2591

//***
// EFI Required Geometric Shapes Code Chart
//***

#define GEOMETRICSHAPE_UP_TRIANGLE 0x25b2
#define GEOMETRICSHAPE_RIGHT_TRIANGLE 0x25ba
#define GEOMETRICSHAPE_DOWN_TRIANGLE 0x25bc
#define GEOMETRICSHAPE_LEFT_TRIANGLE 0x25c4

Console I/O Protocol

Version 1.02 12/12/00 163

//***
// EFI Required Arrow shapes
//***

#define ARROW_UP 0x2191
#define ARROW_DOWN 0x2193

Description

The OutputString() function writes a Unicode string to the output device. This is the most
basic output mechanism on an output device. The String is displayed at the current cursor
location on the output device(s) and the cursor is advanced according to the following rules:

Mnemonic Unicode Description

Null U+0000 Ignore the character, and do not move the cursor.

BS U+0008 If the cursor is not at the left edge of the display, then move the cursor
left one column.

LF U+000A If the cursor is at the bottom of the display, then scroll the display one
row, and do not update the cursor position. Otherwise, move the cursor
down one row.

CR U+000D Move the cursor to the beginning of the current row.

Other U+XXXX Print the character at the current cursor position and move the cursor
right one column. If this moves the cursor past the right edge of the
display, then the line should wrap to the beginning of the next line. This
is equivalent to inserting a CR and an LF. Note that if the cursor is at the
bottom of the display, and the line wraps, then the display will be scrolled
one line.

If desired, the system’s NVRAM environment variables may be used at install time to determine
the configured locale of the system or the installation procedure can query the user for the proper
language support. This is then used to either install the proper EFI image/loader or to configure the
installed image’s strings to use the proper text for the selected locale.

Status Codes Returned
EFI_SUCCESS The string was output to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to output
the text.

EFI_UNSUPPORTED The output device’s mode is not currently in a defined
text mode.

EFI_WARN_UNKNOWN_GLYPH This warning code indicates that some of the characters
in the Unicode string could not be rendered and were
skipped.

Extensible Firmware Interface Specification

164 12/12/00 Version 1.02

7.5.3 SIMPLE_TEXT_OUTPUT.TestString()

Summary

Verifies that all characters in a Unicode string can be output to the target device.

Prototype
EFI_STATUS
(EFIAPI *EFI_TEXT_TEST_STRING) (

IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
IN CHAR16 *String
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in Section 7.5.

String The Null-terminated Unicode string to be examined for the output
device(s).

Description

The TestString() function verifies that all characters in a Unicode string can be output to the
target device.

This function provides a way to know if the desired character set is present for rendering on the
output device(s). This allows the installation procedure (or EFI image) to at least select a letter set
that the output devices are capable of displaying. Since the output device(s) may be changed
between boots, if the loader cannot adapt to such changes it is recommended that the loader call
OutputString() with the text it has and ignore any “unsupported” error codes. The devices(s)
that are capable of displaying the Unicode letter set will do so.

Status Codes Returned
EFI_SUCCESS The device(s) are capable of rendering the output string.

EFI_UNSUPPORTED Some of the characters in the Unicode string cannot be rendered
by one or more of the output devices mapped by the EFI handle.

Console I/O Protocol

Version 1.02 12/12/00 165

7.5.4 SIMPLE_TEXT_OUTPUT.QueryMode()

Summary

Returns information for an available text mode that the output device(s) supports.

Prototype
EFI_STATUS
(EFIAPI *EFI_TEXT_QUERY_MODE) (

IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
IN UINTN ModeNumber,
OUT UINTN *Columns,
OUT UINTN *Rows
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in Section 7.5.

ModeNumber The mode number to return information on.

Columns, Rows Returns the geometry of the text output device for the request
ModeNumber.

Description

The QueryMode() function returns information for an available text mode that the output
device(s) supports.

It is required that all output devices support at least 80x25 text mode. This mode is defined to be
mode 0. If the output devices support 80x50, that is defined to be mode 1. Any other text
dimensions supported by the device may then follow as mode 2 and above. (For example, it is a
prerequisite that 80x25 and 80x50 text modes be supported before any other modes are.)

Status Codes Returned
EFI_SUCCESS The requested mode information was returned.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.

Extensible Firmware Interface Specification

166 12/12/00 Version 1.02

7.5.5 SIMPLE_TEXT_OUTPUT.SetMode()

Summary

Sets the output device(s) to a specified mode.

Prototype
EFI_STATUS
(* EFIAPI EFI_TEXT_SET_MODE) (

IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
IN UINTN ModeNumber
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in Section 7.5.

ModeNumber The text mode to set.

Description

The SetMode() function sets the output device(s) to the requested mode. On success the device
is in the geometry for the requested mode, and the device has been cleared to the current
background color with the cursor at (0,0).

Status Codes Returned
EFI_SUCCESS The requested text mode was set.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The mode number was not valid.

Console I/O Protocol

Version 1.02 12/12/00 167

7.5.6 SIMPLE_TEXT_OUTPUT.SetAttribute()

Summary

Sets the background and foreground colors for the OutputString() and ClearScreen()
functions.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_SET_ATTRIBUTE) (

IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
IN UINTN Attribute
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in Section 7.5.

Attribute The attribute to set. Bits 0..3 are the foreground color, and bits 4..6 are
the background color. All other bits are undefined and must be zero.
See “Related Definitions”.

Related Definitions

//***
// Attributes
//***
#define EFI_BLACK 0x00
#define EFI_BLUE 0x01
#define EFI_GREEN 0x02
#define EFI_CYAN 0x03
#define EFI_RED 0x04
#define EFI_MAGENTA 0x05
#define EFI_BROWN 0x06
#define EFI_LIGHTGRAY 0x07
#define EFI_BRIGHT 0x08
#define EFI_DARKGRAY 0x08
#define EFI_LIGHTBLUE 0x09
#define EFI_LIGHTGREEN 0x0A
#define EFI_LIGHTCYAN 0x0B
#define EFI_LIGHTRED 0x0C
#define EFI_LIGHTMAGENTA 0x0D
#define EFI_YELLOW 0x0E
#define EFI_WHITE 0x0F

Extensible Firmware Interface Specification

168 12/12/00 Version 1.02

#define EFI_BACKGROUND_BLACK 0x00
#define EFI_BACKGROUND_BLUE 0x10
#define EFI_BACKGROUND_GREEN 0x20
#define EFI_BACKGROUND_CYAN 0x30
#define EFI_BACKGROUND_RED 0x40
#define EFI_BACKGROUND_MAGENTA 0x50
#define EFI_BACKGROUND_BROWN 0x60
#define EFI_BACKGROUND_LIGHTGRAY 0x70

#define EFI_TEXT_ATTR(foreground,background) \
((foreground) | ((background) << 4))

Description

The SetAttribute() function sets the background and foreground colors for the
OutputString() and ClearScreen() functions.

The color mask can be set even when the device is in an invalid text mode.

Devices supporting a different number of text colors are required to emulate the above colors to the
best of the device’s capabilities.

Status Codes Returned
EFI_SUCCESS The requested mode information was returned.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The attribute requested is not defined by this specification.

Console I/O Protocol

Version 1.02 12/12/00 169

7.5.7 SIMPLE_TEXT_OUTPUT.ClearScreen()

Summary

Clears the output device(s) display to the currently selected background color.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_CLEAR_SCREEN) (

IN SIMPLE_TEXT_OUTPUT_INTERFACE *This
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in Section 7.5.

Description

The ClearScreen() function clears the output device(s) display to the currently selected
background color. The cursor position is set to (0, 0).

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode.

Extensible Firmware Interface Specification

170 12/12/00 Version 1.02

7.5.8 SIMPLE_TEXT_OUTPUT.SetCursorPosition()

Summary

Sets the current coordinates of the cursor position.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_SET_CURSOR_POSITION) (

IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
IN UINTN Column,
IN UINTN Row
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in Section 7.5.

Column, Row The position to set the cursor to. Must greater than or equal to zero and
less than the number of columns and rows returned by QueryMode().

Description

The SetCursorPosition() function sets the current coordinates of the cursor position. The
upper left corner of the screen is defined as coordinate (0, 0).

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request.

EFI_UNSUPPORTED The output device is not in a valid text mode, or the cursor
position is invalid for the current mode.

Console I/O Protocol

Version 1.02 12/12/00 171

7.5.9 SIMPLE_TEXT_OUTPUT.EnableCursor()

Summary

Makes the cursor visible or invisible.

Prototype

EFI_STATUS
(EFIAPI *EFI_TEXT_ENABLE_CURSOR) (

IN SIMPLE_TEXT_OUTPUT_INTERFACE *This,
IN BOOLEAN Visible
);

Parameters

This A pointer to the SIMPLE_TEXT_OUTPUT_INTERFACE instance.
Type SIMPLE_TEXT_OUTPUT_INTERFACE is defined in Section 7.5.

Visible If TRUE, the cursor is set to be visible. If FALSE, the cursor is set to be
invisible.

Description

The EnableCursor() function makes the cursor visible or invisible.

Status Codes Returned
EFI_SUCCESS The operation completed successfully.

EFI_DEVICE_ERROR The device had an error and could not complete the request or
the device does not support changing the cursor mode.

EFI_UNSUPPORTED The output device is not in a valid text mode, or the cursor
position is invalid for the current mode.

Extensible Firmware Interface Specification

172 12/12/00 Version 1.02

Version 1.02 12/12/00 173

8
Block I/O Protocol

This chapter defines the Block I/O protocol. This protocol is used to abstract mass storage devices
to allow code running in the EFI boot services environment to access them without specific
knowledge of the type of device or controller that manages the device. Functions are defined to
read and write data at a block level from mass storage devices as well as to manage such devices in
the EFI boot services environment.

8.1 BLOCK_IO Protocol

Summary

This protocol provides control over block devices.

GUID
#define BLOCK_IO_PROTOCOL \

{ 964e5b21-6459-11d2-8e39-00a0c969723b }

Revision Number
#define EFI_BLOCK_IO_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_BLOCK_IO {
 UINT64 Revision;

 EFI_BLOCK_IO_MEDIA *Media;

 EFI_BLOCK_RESET Reset;
 EFI_BLOCK_READ ReadBlocks;
 EFI_BLOCK_WRITE WriteBlocks;
 EFI_BLOCK_FLUSH FlushBlocks;
} EFI_BLOCK_IO;

Extensible Firmware Interface Specification

174 12/12/00 Version 1.02

Parameters

Revision The revision to which the block IO interface adheres. All future
revisions must be backwards compatible. If a future version is
not back wards compatible it is not the same GUID.

Media A pointer to the EFI_BLOCK_IO_MEDIA data for this device.
Type EFI_BLOCK_IO_MEDIA is defined in “Related
Definitions”.

Reset Resets the block device hardware. See Section 8.1.1.

ReadBlocks Reads the requested number of blocks from the device. See
Section 8.1.2.

WriteBlocks Writes the requested number of blocks to the device. See
Section 8.1.3.

FlushBlocks Flushes and cache blocks. This function is optional and only
needs to be supported on block devices that cache writes. See
Section 8.1.4.

The following data values in EFI_BLOCK_IO_MEDIA are read-only and are updated by the
code that produces the EFI_BLOCK_IO protocol functions:

MediaId The current media id. If the media changes, this value is
changed.

RemovableMedia TRUE if the media is removable; otherwise, FALSE.

MediaPresent TRUE if there is a media currently present in the device;
otherwise, FALSE. This field shows the media present status as
of the most recent ReadBlocks() or WriteBlocks() call.

LogicalPartition TRUE if LBA 0 is the first block of a partition; otherwise
FALSE. For media with only one partition this would be TRUE.

ReadOnly TRUE if the media is marked read-only otherwise, FALSE. This
field shows the read-only status as of the most recent
WriteBlocks() call.

WriteCaching TRUE if the WriteBlock() function caches write data.

BlockSize The intrinsic block size of the device. If the media changes, then
this field is updated.

IoAlign Supplies the alignment requirement for any buffer to read or
write block(s).

LastBlock The last logical block address on the device. If the media
changes, then this field is updated.

Block I/O Protocol

Version 1.02 12/12/00 175

Related Definitions

//***
// EFI_BLOCK_IO_MEDIA
//***

typedef struct {
 UINT32 MediaId;
 BOOLEAN RemovableMedia;
 BOOLEAN MediaPresent;

 BOOLEAN LogicalPartition;
 BOOLEAN ReadOnly;
 BOOLEAN WriteCaching;

 UINT32 BlockSize;
 UINT32 IoAlign;

 EFI_LBA LastBlock;
} EFI_BLOCK_IO_MEDIA;

//***
// EFI_LBA
//***

typedef UINT64 EFI_LBA;

Description

The LogicalPartition is TRUE if the device handle is for a partition. For media that have
only one partition, the value will always be TRUE. For media that have multiple partitions, this
value is FALSE for the handle that accesses the entire device. The firmware is responsible for
adding device handles for each partition on such media.

The firmware is responsible for adding an EFI_DISK_IO interface to every EFI_BLOCK_IO
interface in the system. The EFI_DISK_IO interface allows byte-level access to devices.

Extensible Firmware Interface Specification

176 12/12/00 Version 1.02

8.1.1 EFI_BLOCK_IO.Reset()

Summary

Resets the block device hardware.

Prototype

EFI_STATUS
(EFIAPI *EFI_BLOCK_RESET) (

IN EFI_BLOCK_IO *This,
IN BOOLEAN ExtendedVerification
);

Parameters
This Indicates a pointer to the calling context. Type

EFI_BLOCK_IO is defined in Section 8.1.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

The Reset() function resets the block device hardware.

As part of the initialization process, the firmware/device will make a quick but reasonable attempt
to verify that the device is functioning. If the ExtendedVerification flag is TRUE the
firmware may take an extended amount of time to verify the device is operating on reset.
Otherwise the reset operation is to occur as quickly as possible.

The hardware verification process is not defined by this specification and is left up to the platform
firmware and/or EFI driver to implement.

Status Codes Returned
EFI_SUCCESS The block device was reset.

EFI_DEVICE_ERROR The block device is not functioning correctly and could not be reset.

Block I/O Protocol

Version 1.02 12/12/00 177

8.1.2 EFI_BLOCK_IO.ReadBlocks()

Summary

Reads the requested number of blocks from the device.

Prototype

EFI_STATUS
(EFIAPI *EFI_BLOCK_READ) (

IN EFI_BLOCK_IO *This,
IN UINT32 MediaId,
IN EFI_LBA LBA,
IN UINTN BufferSize,
OUT VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type EFI_BLOCK_IO is
defined in Section 8.1.

MediaId The media id that the read request is for.

LBA The starting logical block address to read from on the device. Type
EFI_LBA is defined in Section 8.1.

BufferSize The size of the Buffer in bytes. This must be a multiple of the intrinsic
block size of the device.

Buffer A pointer to the destination buffer for the data. The caller is responsible
for either having implicit or explicit ownership of the buffer.

Description

The ReadBlocks() function reads the requested number of blocks from the device. All the
blocks are read, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not
the id for the current media in the device, the function returns EFI_MEDIA_CHANGED.

Extensible Firmware Interface Specification

178 12/12/00 Version 1.02

Status Codes Returned
EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block
size of the device.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not
on proper alignment.

Block I/O Protocol

Version 1.02 12/12/00 179

8.1.3 EFI_BLOCK_IO.WriteBlocks()

Summary

Writes a specified number of blocks to the device.

Prototype
EFI_STATUS
(EFIAPI *EFI_BLOCK_WRITE) (

IN EFI_BLOCK_IO *This,
IN UINT32 MediaId,
IN EFI_LBA LBA,
IN UINTN BufferSize,
IN VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type EFI_BLOCK_IO is
defined in Section 8.1.

MediaId The media id that the write request is for.

LBA The starting logical block address to be written. The caller is responsible
for writing to only legitimate locations. Type EFI_LBA is defined in
Section 8.1.

BufferSize The size in bytes of Buffer. This must be a multiple of the intrinsic
block size of the device.

Buffer A pointer to the source buffer for the data.

Description

The WriteBlocks() function writes the requested number of blocks to the device. All blocks
are written, or an error is returned.

If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not
the id for the current media in the device, the function returns EFI_MEDIA_CHANGED.

Extensible Firmware Interface Specification

180 12/12/00 Version 1.02

Status Codes Returned
EFI_SUCCESS The data were written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no media in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current media.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the write
operation.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block
size of the device.

EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is
not on proper alignment.

Block I/O Protocol

Version 1.02 12/12/00 181

8.1.4 BLOCK_IO.FlushBlocks()

Summary

Flushes all modified data to a physical block device.

Prototype
EFI_STATUS
(EFIAPI *EFI_BLOCK_FLUSH) (

IN EFI_BLOCK_IO *This
);

Parameters

This Indicates a pointer to the calling context. Type EFI_BLOCK_IO is
defined in Section 8.1.

Description

The FlushBlocks() function flushes all modified data to the physical block device.

All data written to the device prior to the flush must be physically written before returning
EFI_SUCCESS from this function. This would include any cached data the driver may have
cached, and cached data the device may have cached. Even if there were no outstanding data, a
read request to a device with removable media following a flush will always cause a device access.

Status Codes Returned
EFI_SUCCESS All outstanding data were written correctly to the device.

EFI_DEVICE_ERROR The device reported an error while attempting to write data.

EFI_NO_MEDIA There is no media in the device.

Extensible Firmware Interface Specification

182 12/12/00 Version 1.02

Version 1.02 12/12/00 183

9
Disk I/O Protocol

This chapter defines the Disk I/O protocol. This protocol is used to abstract the block accesses of
the Block I/O protocol to a more general offset-length protocol. The firmware is responsible for
adding this protocol to any Block I/O interface that appears in the system that does not already have
a Disk I/O protocol. File systems and other disk access code utilize the Disk I/O protocol.

9.1 DISK_IO Protocol

Summary

This protocol is used to abstract Block I/O interfaces.

GUID
#define DISK_IO_PROTOCOL \

{ CE345171-BA0B-11d2-8e4F-00a0c969723b }

Revision Number
#define EFI_DISK_IO_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_DISK_IO {

UINT64 Revision;

EFI_DISK_READ ReadDisk;
EFI_DISK_WRITE WriteDisk;

} EFI_DISK_IO;

Parameters

Revision The revision to which the disk I/O interface adheres. All future
revisions must be backwards compatible. If a future version is
not backwards compatible, it is not the same GUID.

ReadDisk Reads data from the disk. See Section 9.1.1.

WriteDisk Writes data to the disk. See Section 9.1.2.

Extensible Firmware Interface Specification

184 12/12/00 Version 1.02

Description

The EFI_DISK_IO protocol is used to control block I/O interfaces.

The disk I/O functions allow I/O operations that need not be on the underlying device’s block
boundaries or alignment requirements. This is done by copying the data to/from internal buffers as
needed to provide the proper requests to the block I/O device. Outstanding write buffer data is
flushed by using the Flush() function of the EFI_BLOCK_IO protocol on the device handle.

The firmware automatically adds a EFI_DISK_IO interface to any EFI_BLOCK_IO interface
that is produced. It also adds file system, or logical block I/O, interfaces to any EFI_DISK_IO
interface that contains any recognized file system or logical block I/O devices. The required
formats that the firmware must automatically support are:

• The EFI FAT12, FAT16, and FAT32 file system type.
• The legacy master boot record partition block. (The presence of this on any block I/O device is

optional, but if it is present the firmware is responsible for allocating a logical device for each
partition).

• The extended partition record partition block.
• The El Torito logical block devices.

Disk I/O Protocol

Version 1.02 12/12/00 185

9.1.1 EFI_DISK_IO.ReadDisk()

Summary

Reads a specified number of bytes from a device.

Prototype
EFI_STATUS
(EFIAPI *EFI_DISK_READ) (

IN EFI_DISK_IO *This,
IN UINT32 MediaId,
IN UINT64 Offset,
IN UINTN BufferSize,
OUT VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type EFI_DISK_IO is
defined in Section 9.1.

MediaId Id of the medium to be read.

Offset The starting byte offset on the logical block I/O device to read from.

BufferSize The size in bytes of Buffer. The number of bytes to read from the
device.

Buffer A pointer to the destination buffer for the data. The caller is responsible
for either having implicit or explicit ownership of the buffer.

Description

The ReadDisk() function reads the number of bytes specified by BufferSize from the
device. All the bytes are read, or an error is returned. If there is no medium in the device, the
function returns EFI_NO_MEDIA. If the MediaId is not the id of the medium currently in the
device, the function returns EFI_MEDIA_CHANGED.

Status Codes Returned
EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while performing the read operation.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_INVALID_PARAMETER The read request contains device addresses that are not valid for the
device.

Extensible Firmware Interface Specification

186 12/12/00 Version 1.02

9.1.2 EFI_DISK_IO.WriteDisk()

Summary

Writes a specified number of bytes to a device.

Prototype
EFI_STATUS
(EFIAPI *EFI_DISK_WRITE) (

IN EFI_DISK_IO *This,
IN UINT32 MediaId,
IN UINT64 Offset,
IN UNITN BufferSize,
IN VOID *Buffer
);

Parameters

This Indicates a pointer to the calling context. Type EFI_DISK_IO is
defined in Section 9.1.

MediaId Id of the medium to be written.

Offset The starting byte offset on the logical block I/O device to write.

BufferSize The size in bytes of Buffer. The number of bytes to write to the
device.

Buffer A pointer to the buffer containing the data to be written.

Description

The WriteDisk() function writes the number of bytes specified by BufferSize to the device.
All bytes are written, or an error is returned. If there is no medium in the device, the function
returns EFI_NO_MEDIA. If the MediaId is not the id of the medium currently in the device, the
function returns EFI_MEDIA_CHANGED.

Status Codes Returned
EFI_SUCCESS The data was written correctly to the device.

EFI_WRITE_PROTECTED The device cannot be written to.

EFI_NO_MEDIA There is no medium in the device.

EFI_MEDIA_CHANGED The MediaId is not for the current medium.

EFI_DEVICE_ERROR The device reported an error while performing the write operation.

EFI_INVALID_PARAMETER The write request contains device addresses that are not valid for the device.

Version 1.02 12/12/00 187

10
File System Protocol

This chapter defines the File System protocol. This protocol allows code running in the EFI boot
services environment to obtain file based access to a device. The Simple File System protocol is
used to open a device volume and return an EFI_FILE that provides interfaces to access files on a
device volume.

10.1 Simple File System Protocol

Summary

Provides a minimal interface for file-type access to a device.

GUID
#define SIMPLE_FILE_SYSTEM_PROTOCOL \

{ 0964e5b22-6459-11d2-8e39-00a0c969723b }

Revision Number
#define EFI_FILE_IO_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_FILE_IO_INTERFACE {

UINT64 Revision;
EFI_VOLUME_OPEN OpenVolume;

} EFI_FILE_IO_INTERFACE;

Parameters

Revision The version of the EFI_FILE_IO_INTERFACE. The version
specified by this specification is 0x00010000. All future revisions must
be backwards compatible. If a future version is not backwards
compatible, it is not the same GUID.

OpenVolume Opens the volume for file I/O access. See Section 10.1.1.

Extensible Firmware Interface Specification

188 12/12/00 Version 1.02

Description

The Simple File System protocol provides a minimal interface for file-type access to a device. This
protocol is only supported on some devices.

Devices that support the Simple File System protocol return an EFI_FILE_IO_INTERFACE.
The only function of this interface is to open a handle to the root directory of the file system on the
volume. Once opened, all accesses to the volume are performed through the volume’s file handles,
using the EFI_FILE protocol (see Section 10.2). The volume is closed by closing all the open file
handles.

The firmware automatically creates handles for any block device that supports the following file
system formats:

• FAT12, FAT16, FAT32

File System Protocol

Version 1.02 12/12/00 189

10.1.1 EFI_FILE_IO_INTERFACE.OpenVolume()

Summary

Opens the root directory on a volume.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_VOLUME_OPEN) (
 IN EFI_FILE_IO_INTERFACE *This,
 OUT EFI_FILE **Root
);

Parameters

This A pointer to the volume to open the root directory of. Type
EFI_FILE_IO_INTERFACE is defined in Section 10.1.

Root A pointer to the location to return the opened file handle for the root
directory. Type EFI_FILE is defined in Section 10.2.

Description

The OpenVolume() function opens a volume, and returns a file handle to the volume’s root
directory. This handle is used to perform all other file I/O operations. The volume remains open
until all the file handles to it are closed.

If the medium is changed while there are open file handles to the volume, all file handles to the
volume will return EFI_MEDIA_CHANGED. To access the files on the new medium, the volume
must be re-opened with OpenVolume(). If the new medium is a different file system than the
one supplied in the EFI_HANDLE’s DevicePath for the Simple File System protocol,
OpenVolume() will return EFI_UNSUPPORTED.

Status Codes Returned
EFI_SUCCESS The file volume was opened.

EFI_UNSUPPORTED The volume does not support the requested file system type.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES The file volume was not opened.

Extensible Firmware Interface Specification

190 12/12/00 Version 1.02

10.2 EFI_FILE Protocol

Summary

Provides file based access to supported file systems.

Revision Number
#define EFI_FILE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_FILE {

UINT64 Revision;
EFI_FILE_OPEN Open;
EFI_FILE_CLOSE Close;
EFI_FILE_DELETE Delete;
EFI_FILE_READ Read;
EFI_FILE_WRITE Write;
EFI_FILE_GET_POSITION GetPosition;
EFI_FILE_SET_POSITION SetPosition;
EFI_FILE_GET_INFO GetInfo;
EFI_FILE_SET_INFO SetInfo;
EFI_FILE_FLUSH Flush;

} EFI_FILE;

Parameters

Revision The version of the EFI_FILE interface. The version specified by this
specification is 0x00010000. Future versions are required to be
backward compatible to version 1.0.

Open Opens or creates a new file. See Section 10.2.1.

Close Closes the current file handle. See Section 10.2.2.

Delete Deletes a file. See Section 10.2.3.

Read Reads bytes from a file. See Section 10.2.4.

Write Writes bytes to a file. See Section 10.2.5.

GetPosition Returns the current file position. See Section 10.2.7.

SetPosition Sets the current file position. See Section 10.2.6.

GetInfo Gets the requested file or volume information. See Section 10.2.8.

SetInfo Sets the requested file information. See Section 10.2.9.

Flush Flushes all modified data associated with the file to the device. See
Section 10.2.10.

File System Protocol

Version 1.02 12/12/00 191

Description

The EFI_FILE provides file IO access to supported file systems.

An EFI_FILE provides access to a file’s or directory’s contents, and is also a reference to a
location in the directory tree of the file system in which the file resides. With any given file handle,
other files may be opened relative to this file’s location, yielding new file handles.

On requesting the file system protocol on a device, the caller gets the
EFI_FILE_IO_INTERFACE to the volume. This interface is used to open the root directory of
the file system when needed. The caller must Close() the file handle to the root directory, and
any other opened file handles before exiting. While there are open files on the device, usage of
underlying device protocol(s) that the file system is abstracting must be avoided. For example,
when a file system that is layered on a DISK_IO / BLOCK_IO protocol, direct block access to the
device for the blocks that comprise the file system must be avoided while there are open file
handles to the same device.

A file system driver may cache data relating to an open file. A Flush() function is provided that
flushes all dirty data in the file system, relative to the requested file, to the physical medium. If the
underlying device may cache data, the file system must inform the device to flush as well.

Extensible Firmware Interface Specification

192 12/12/00 Version 1.02

10.2.1 EFI_FILE.Open()

Summary

Opens a new file relative to the source file’s location.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_OPEN) (

IN EFI_FILE *This,
OUT EFI_FILE **NewHandle,
IN CHAR16 *FileName,
IN UINT64 OpenMode,
IN UINT64 Attributes
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to the source
location. This would typically be an open handle to a directory. Type
EFI_FILE is defined in Section 10.2.

NewHandle A pointer to the location to return the opened handle for the new file.
Type EFI_FILE is defined in Section 10.2.

FileName The Null-terminated string of the name of the file to be opened. The file
name may contain the following path modifiers: “\”, “.”, and “..”.

OpenMode The mode to open the file. The only valid combinations that the file may
be opened with are: Read, Read/Write, or Create/Read/Write. See
“Related Definitions”.

Attributes Only valid for EFI_FILE_MODE_CREATE, in which case these are
the attribute bits for the newly created file. See “Related Definitions”.

File System Protocol

Version 1.02 12/12/00 193

Related Definitions

//***
// Open Modes
//***
#define EFI_FILE_MODE_READ 0x0000000000000001
#define EFI_FILE_MODE_WRITE 0x0000000000000002
#define EFI_FILE_MODE_CREATE 0x8000000000000000

//***
// File Attributes
//***
#define EFI_FILE_READ_ONLY 0x0000000000000001
#define EFI_FILE_HIDDEN 0x0000000000000002
#define EFI_FILE_SYSTEM 0x0000000000000004
#define EFI_FILE_RESERVED 0x0000000000000008
#define EFI_FILE_DIRECTORY 0x0000000000000010
#define EFI_FILE_ARCHIVE 0x0000000000000020
#define EFI_FILE_VALID_ATTR 0x0000000000000037

Description

The Open()function opens the file or directory referred to by FileName relative to the location
of This and returns a NewHandle. The FileName may include the following path modifiers:

“\” If the filename starts with a “\” the relative location is the root directory
that This residues on; otherwise “\” separates name components. Each
name component is opened in turn, and the handle to the last file opened
is returned.

“.” Opens the current location.

“..” Opens the parent directory for the current location. If the location is the
root directory the request will return an error, as there is no parent
directory for the root directory.

If EFI_FILE_MODE_CREATE is set, then the file is created in the directory. If the final location
of FileName does not refer to a directory or if the file already exists, the operation fails.

If the medium of the device changes, all accesses (including the File handle) will result in
EFI_MEDIA_CHANGED. To access the new medium, the volume must be re-opened.

Extensible Firmware Interface Specification

194 12/12/00 Version 1.02

Status Codes Returned
EFI_SUCCESS The file was opened.

EFI_NOT_FOUND The specified file could not be found on the device.

EFI_NO_MEDIA The device has no medium.

EFI_MEDIA_CHANGED The device has a different medium in it or the medium is no
longer supported.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED An attempt was made to create a file, or open a file for write
when the media is write protected.

EFI_ACCESS_DENIED The service denied access to the file.

EFI_OUT_OF_RESOURCES Not enough resources were available to open the file.

EFI_VOLUME_FULL The volume is full.

File System Protocol

Version 1.02 12/12/00 195

10.2.2 EFI_FILE.Close()

Summary

Closes a specified file handle.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_CLOSE) (

IN EFI_FILE *This
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to close.
Type EFI_FILE is defined in Section 10.2.

Description

The Close() function closes a specified file handle. All “dirty” cached file data is flushed to the
device, and the file is closed. In all cases the handle is closed.

Status Codes Returned
EFI_SUCCESS The file was closed.

Extensible Firmware Interface Specification

196 12/12/00 Version 1.02

10.2.3 EFI_FILE.Delete()

Summary

Closes and deletes a file.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_DELETE) (

IN EFI_FILE *This
);

Parameters

This A pointer to the EFI_FILE instance that is the handle to the file to
delete. Type EFI_FILE is defined in Section 10.2.

Description

The Delete() function closes and deletes a file. In all cases the file handle is closed. If the file
cannot be deleted, the warning code EFI_WARN_DELETE_FAILURE is returned, but the handle is
still closed.

Status Codes Returned
EFI_SUCCESS The file was closed and deleted, and the handle was

closed.

EFI_WARN_DELETE_FAILURE The handle was closed, but the file was not deleted.

File System Protocol

Version 1.02 12/12/00 197

10.2.4 EFI_FILE.Read()

Summary
Reads data from a file.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_READ) (

IN EFI_FILE *This,
IN OUT UINTN *BufferSize,
OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE instance that is the file handle to read data

from. Type EFI_FILE is defined in Section 10.2.

BufferSize On input, the size of the Buffer. On output, the amount of data
returned in Buffer. In both cases, the size is measured in bytes.

Buffer The buffer into which the data is read.

Description
The Read() function reads data from a file.

If This is not a directory, the function reads the requested number of bytes from the file at the
file’s current position and returns them in Buffer. If the read goes beyond the end of the file, the
read length is truncated to the end of the file. The file’s current position is increased by the number
of bytes returned.

If This is a directory, the function reads the directory entry at the file’s current position and
returns the entry in Buffer. If the Buffer is not large enough to hold the current directory
entry, then EFI_BUFFER_TOO_SMALL is returned and the current file position is not updated.
BufferSize is set to be the size of the buffer needed to read the entry. On success, the current
position is updated to the next directory entry. If there are no more directory entries, the read
returns a zero length buffer. EFI_FILE_INFO is the structure returned as the directory entry.
See Section 10.2.11 for a discussion of EFI_FILE_INFO.

Status Codes Returned
EFI_SUCCESS The data was read.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current
directory entry. BufferSize has been updated
with the size needed to complete the request.

Extensible Firmware Interface Specification

198 12/12/00 Version 1.02

10.2.5 EFI_FILE.Write()

Summary

Writes data to a file.

EFI_STATUS
(EFIAPI *EFI_FILE_WRITE) (

IN EFI_FILE *This,
IN OUT UINTN *BufferSize,
IN VOID *Buffer
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to write data
to. Type EFI_FILE is defined in Section 10.2.

BufferSize On input, the size of the Buffer. On output, the amount of data
actually written. In both cases, the size is measured in bytes.

Buffer The buffer of data to write.

Description

The Write() function writes the specified number of bytes to the file at the current file position.
The current file position is advanced the actual number of bytes written, which is returned in
BufferSize. Partial writes only occur when there has been a data error during the write attempt
(such as “file space full”). The file is automatically grown to hold the data if required.

Direct writes to opened directories are not supported.

Status Codes Returned
EFI_SUCCESS The data was written.

EFI_UNSUPPORT Writes to open directory files are not supported.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write protected.

EFI_ACCESS_DENIED The file was opened read only.

EFI_VOLUME_FULL The volume is full.

File System Protocol

Version 1.02 12/12/00 199

10.2.6 EFI_FILE.SetPosition()

Summary

Sets a file’s current position.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_SET_POSITION) (

IN EFI_FILE *This,
IN UINT64 Position
);

Parameters

This A pointer to the EFI_FILE instance that is the he file handle to set the
requested position on. Type EFI_FILE is defined in Section 10.2.

Position The byte position from the start of the file to set.

Description

The SetPosition() function sets the current file position for the handle to the position
supplied. With the exception of seeking to position –1, only absolute positioning is supported, and
seeking past the end of the file is allowed (a subsequent write would grow the file). Seeking to
position –1 causes the current position to be set to the end of the file.

If This is a directory, the only position that may be set is zero. This has the effect of starting the
read process of the directory entries over.

Status Codes Returned
EFI_SUCCESS The position was set.

EFI_UNSUPPORTED The seek request for non-zero is not valid on open
directories.

Extensible Firmware Interface Specification

200 12/12/00 Version 1.02

10.2.7 EFI_FILE.GetPosition()

Summary

Returns a file’s current position.

Prototype
EFI_STATUS
(EFIAPI *EFI_GET_POSITION) (

IN EFI_FILE *This,
OUT UINT64 *Position
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to get the
current position on. Type EFI_FILE is defined in Section 10.2.

Position The address to return the file’s current position value.

Description

The GetPosition() function returns the current file position for the file handle. For
directories, the current file position has no meaning outside of the file system driver and as such the
operation is not supported. An error is returned if This is a directory.

Status Codes Returned
EFI_SUCCESS The position was returned.

EFI_UNSUPPORTED The request is not valid on open directories.

File System Protocol

Version 1.02 12/12/00 201

10.2.8 EFI_FILE.GetInfo()

Summary
Returns information about a file.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_GET_INFO) (

IN EFI_FILE *This,
IN EFI_GUID *InformationType,
IN OUT UINTN *BufferSize,
OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_FILE instance that is the file handle the requested

information is for. Type EFI_FILE is defined in Section 10.2.

InformationType The type identifier for the information being requested. Type
EFI_GUID is defined in Chapter 3. See Section 10.2.11 and 10.2.12 for
the related GUID definitions.

BufferSize On input, the size of Buffer. On output, the amount of data returned in
Buffer. In both cases, the size is measured in bytes.

Buffer A pointer to the data buffer to return. The buffer’s type is indicated by
InformationType.

Description
The GetInfo() function returns information of type InformationType for the requested file.
If the file does not support the requested information type, then EFI_UNSUPPORTED is returned.
If the buffer is not large enough to fit the requested structure, EFI_BUFFER_TOO_SMALL is
returned and the BufferSize is set to the size of buffer that is required to make the request.

The information types defined by this specification are required information types that all file
systems must support.

Status Codes Returned
EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_BUFFER_TOO_SMALL The BufferSize is too small to read the current directory entry.
BufferSize has been updated with the size needed to complete the
request.

Extensible Firmware Interface Specification

202 12/12/00 Version 1.02

10.2.9 EFI_FILE.SetInfo()

Summary

Sets information about a file.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_SET_INFO) (

IN EFI_FILE *This,
IN EFI_GUID *InformationType,
IN UINTN BufferSize,
OUT VOID *Buffer
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle the
information is for. Type EFI_FILE is defined in Section 10.2.

InformationType The type identifier for the information being set. Type EFI_GUID is
defined in Chapter 3. See Section 10.2.11 and10.2.12 for the related
GUID definitions.

BufferSize The size, in bytes, of Buffer.

Buffer A pointer to the data buffer to write. The buffer’s type is indicated by
InformationType.

Description

The SetInfo() function sets information of type InformationType on the requested file.

Status Codes Returned
EFI_SUCCESS The information was set.

EFI_UNSUPPORTED The InformationType is not known.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

EFI_BAD_BUFFER_SIZE BufferSize is smaller than the size of the type
indicated by InformationType.

File System Protocol

Version 1.02 12/12/00 203

10.2.10 EFI_FILE.Flush()

Summary

Flushes all modified data associated with a file to a device.

Prototype
EFI_STATUS
(EFIAPI *EFI_FILE_FLUSH) (

IN EFI_FILE *This
);

Parameters

This A pointer to the EFI_FILE instance that is the file handle to flush.
Type EFI_FILE is defined in Section 10.2.

Description

The Flush() function flushes all modified data associated with a file to a device.

Status Codes Returned
EFI_SUCCESS The data was flushed.

EFI_NO_MEDIA The device has no medium.

EFI_DEVICE_ERROR The device reported an error.

EFI_VOLUME_CORRUPTED The file system structures are corrupted.

EFI_WRITE_PROTECTED The file or medium is write protected.

EFI_ACCESS_DENIED The file was opened read-only.

EFI_VOLUME_FULL The volume is full.

Extensible Firmware Interface Specification

204 12/12/00 Version 1.02

10.2.11 EFI_FILE_INFO

Summary

Provides a GUID and a data structure that can be used with EFI_FILE.SetInfo() and
EFI_FILE.GetInfo() to set or get generic file information.

GUID
#define EFI_FILE_INFO_ID \

{ 09576e92-6d3f-11d2-8e39-00a0c969723b }

Related Definitions
typedef struct {

UINT64 Size;
UINT64 FileSize;
UINT64 PhysicalSize;
EFI_TIME CreateTime;
EFI_TIME LastAccessTime;
EFI_TIME ModificationTime;
UINT64 Attribute;
CHAR16 FileName[];

} EFI_FILE_INFO;

//***
// File Attribute Bits
//***

#define EFI_FILE_READ_ONLY 0x0000000000000001
#define EFI_FILE_HIDDEN 0x0000000000000002
#define EFI_FILE_SYSTEM 0x0000000000000004
#define EFI_FILE_RESERVIED 0x0000000000000008
#define EFI_FILE_DIRECTORY 0x0000000000000010
#define EFI_FILE_ARCHIVE 0x0000000000000020
#define EFI_FILE_VALID_ATTR 0x0000000000000037

Parameters

Size Size of the EFI_FILE_INFO structure, including the Null-terminated
Unicode FileName string.

FileSize The size of the file in bytes.

PhysicalSize The amount of physical space the file consumes on the file system
volume.

CreateTime The time the file was created.

LastAccessTime The time when the file was last accessed.

File System Protocol

Version 1.02 12/12/00 205

ModificationTime The time when the file’s contents were last modified.

Attribute The attribute bits for the file. See “Related Definitions”.

FileName The Null-terminated Unicode name of the file.

Description

The EFI_FILE_INFO data structure supports GetInfo() and SetInfo() requests. In the
case of SetInfo()the following additional rules apply:

• On directories, the file size is determined by the contents of the directory and cannot be
changed by setting FileSize. On directories, FileSize is ignored during a SetInfo().

• The PhysicalSize is determined by the FileSize and cannot be changed. This value is
ignored during a SetInfo() request.

• The EFI_FILE_DIRECTORY attribute bit cannot be changed. It must match the file’s actual
type.

• A value of zero in CreateTime, LastAccess, or ModificationTime causes the fields
to be ignored (and not updated).

Extensible Firmware Interface Specification

206 12/12/00 Version 1.02

10.2.12 EFI_FILE_SYSTEM_INFO

Summary

Provides a GUID and a data structure that can be used with EFI_FILE.GetInfo() to get
information about the system volume, and EFI_FILE.SetInfo() to set the system volume’s
volume label.

GUID
#define EFI_FILE_SYSTEM_INFO_ID \

{ 09576e93-6d3f-11d2-8e39-00a0c969723b }

Related Definitions
typedef struct {

UINT64 Size;
BOOLEAN ReadOnly;
UINT64 VolumeSize;
UINT64 FreeSpace;
UINT32 BlockSize;
CHAR16 VolumeLabel[];

} EFI_FILE_SYSTEM_INFO;

Parameters

Size Size of the EFI_FILE_SYSTEM_INFO structure, including the Null-
terminated Unicode VolumeLabel string.

ReadOnly TRUE if the volume only supports read access.

VolumeSize The number of bytes managed by the file system.

FreeSpace The number of available bytes for use by the file system.

BlockSize The nominal block size files are typically grown by.

VolumeLabel The Null-terminated string that is the volume’s label.

Description

The EFI_FILE_SYSTEM_INFO data structure is an information structure that can be obtained on
the root directory file handle. The root directory file handle is the file handle first obtained on the
initial call to the HandleProtocol() function to open the file system interface. All of the
fields are read-only except for VolumeLabel. The system volume’s VolumeLabel can be
created or modified by calling EFI_FILE.SetInfo() with an updated VolumeLabel field.

File System Protocol

Version 1.02 12/12/00 207

10.2.13 EFI_FILE_SYSTEM_VOLUME_LABEL

Summary

Provides a GUID and a data structure that can be used with EFI_FILE.GetInfo() or
EFI_FILE.SetInfo()to get or set information about the system’s volume label.

GUID
#define EFI_FILE_SYSTEM_VOLUME_LABEL_ID \

 { DB47D7D3-FE81-11d3-9A35-0090273FC14D }

Related Definitions
typedef struct {

CHAR16 VolumeLabel[];
} EFI_FILE_SYSTEM_VOLUME_LABEL;

Parameters

VolumeLabel The Null-terminated string that is the volume’s label.

Description

The EFI_FILE_SYSTEM_VOLUME_LABEL data structure is an information structure that can be
obtained on the root directory file handle. The root directory file handle is the file handle first
obtained on the initial call to the HandleProtocol() function to open the file system interface.
The system volume’s VolumeLabel can be created or modified by calling
EFI_FILE.SetInfo() with an updated VolumeLabel field.

Extensible Firmware Interface Specification

208 12/12/00 Version 1.02

Version 1.02 12/12/00 209

11
Load File Protocol

This chapter defines the Load File protocol. This protocol is designed to allow code running in the
EFI boot services environment to find and load other modules of code.

11.1 LOAD_FILE Protocol

Summary

Is used to obtain files from arbitrary devices.

GUID
#define LOAD_FILE_PROTOCOL \

{56EC3091-954C-11d2-8E3F-00A0C969723B}

Protocol Interface Structure
typedef struct {

EFI_LOAD_FILE LoadFile;
} EFI_LOAD_FILE_INTERFACE;

Parameters

LoadFile Causes the driver to load the requested file. See Section 11.1.1.

Description

The EFI_LOAD_FILE protocol is a simple protocol used to obtain files from arbitrary devices.

When the firmware is attempting to load a file, it first attempts to use the device’s Simple File
System protocol to read the file. If the file system protocol is found, the firmware implements the
policy of interpreting the File Path value of the file being loaded. If the device does not support the
file system protocol, the firmware then attempts to read the file via the EFI_LOAD_FILE protocol
and the LoadFile() function. In this case the LoadFile() function implements the policy of
interpreting the File Path value.

Extensible Firmware Interface Specification

210 12/12/00 Version 1.02

11.1.1 LOAD_FILE.LoadFile()

Summary

Causes the driver to load a specified file.

Prototype
EFI_STATUS
(EFIAPI *EFI_LOAD_FILE) (

IN EFI_LOAD_FILE_INTERFACE *This,
IN EFI_DEVICE_PATH *FilePath,
IN BOOLEAN BootPolicy,
IN OUT UINTN *BufferSize,
IN VOID *Buffer OPTIONAL
);

Parameters

This Indicates a pointer to the calling context. Type
EFI_LOAD_FILE_INTERFACE is defined in Section 11.1.

FilePath The device specific path of the file to load. Type EFI_DEVICE_PATH
is defined in Chapter 3.

BootPolicy If TRUE, indicates that the request originates from the boot manager, and
that the boot manager is attempting to load FilePath as a boot
selection. If FALSE, then FilePath must match an exact file to be
loaded.

BufferSize On input the size of Buffer in bytes. On output with a return code of
EFI_SUCCESS, the amount of data transferred to Buffer.
On output with a return code of EFI_BUFFER_TOO_SMALL, the size
of Buffer required to retrieve the requested file.

Buffer The memory buffer to transfer the file to. If Buffer is NULL, then no
the size of the requested file is returned in BufferSize.

Description

The LoadFile() function interprets the device-specific FilePath parameter, returns the entire
file into Buffer, and sets BufferSize to the amount of data returned. If Buffer is NULL,
then the size of the file is returned in BufferSize. If Buffer is not NULL, and BufferSize
is not large enough to hold the entire file, then EFI_BUFFER_TOO_SMALL is returned, and
BufferSize is updated to indicate the size of the buffer needed to obtain the file. In this case, no
data is returned in Buffer.

Load File Protocol

Version 1.02 12/12/00 211

If BootPolicy is FALSE the FilePath must match an exact file to be loaded. If no such file
exists, EFI_NOT_FOUND is returned. If BootPolicy is FALSE, and an attempt is being made
to perform a network boot through the PXE Base Code protocol, EFI_UNSUPPORTED is returned.

If BootPolicy is TRUE the firmware’s boot manager is attempting to load an EFI image that is a
boot selection. In this case, FilePath contains the file path value in the boot selection option.
Normally the firmware would implement the policy on how to handle an inexact boot file path;
however, since in this case the firmware cannot interpret the file path, the LoadFile() function
is responsible for implementing the policy. For example, in the case of a network boot through the
PXE Base Code protocol, FilePath merely points to the root of the device, and the firmware
interprets this as wanting to boot from the first valid loader. The following is list of events that
LoadFile() will implement for a PXE boot:

• Perform DHCP.
• Optionally prompt the user with a menu of boot selections.
• Discover the boot server and the boot file.
• Download the boot file into Buffer and update BufferSize with the size of the boot file.

Status Codes Returned
EFI_SUCCESS The file was loaded.

EFI_UNSUPPORTED The device does not support the provided BootPolicy.

EFI_INVALID_PARAMETER FilePath is not a valid device path, or BufferSize is NULL.

EFI_NO_SUCH_MEDIA No medium was present to load the file.

EFI_DEVICE_ERROR The file was not loaded due to a device error.

EFI_NO_RESPONSE The remote system did not respond.

EFI_NOT_FOUND The file was not found.

EFI_ABORTED The file load process was manually cancelled.

Extensible Firmware Interface Specification

212 12/12/00 Version 1.02

Version 1.02 12/12/00 213

12
Serial I/O Protocol

This chapter defines the Serial I/O protocol. This protocol is used to abstract byte stream devices.

12.1 SERIAL_IO Protocol

Summary

This protocol is used to communicate with any type of character-based I/O device.

GUID
#define SERIAL_IO_PROTOCOL \

{ BB25CF6F-F1D4-11D2-9A0C-0090273FC1FD }

Revision Number
#define SERIAL_IO_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct {

UINT32 Revision;
EFI_SERIAL_RESET Reset;
EFI_SERIAL_SET_ATTRIBUTES SetAttributes;
EFI_SERIAL_SET_CONTROL_BITS SetControl;
EFI_SERIAL_GET_CONTROL_BITS GetControl;
EFI_SERIAL_WRITE Write;
EFI_SERIAL_READ Read;
SERIAL_IO_MODE *Mode;

} SERIAL_IO_INTERFACE;

Parameters

Revision The revision to which the SERIAL_IO_INTERFACE adheres. All
future revisions must be backwards compatible. If a future version is
not back wards compatible, it is not the same GUID.

Reset Resets the hardware device.

SetAttributes Sets communication parameters for a serial device. These include
the baud rate, receive FIFO depth, transmit/receive time out, parity,
data bits, and stop bit attributes.

Extensible Firmware Interface Specification

214 12/12/00 Version 1.02

SetControl Set the control bits on a serial device. These include Request to
Send and Data Terminal Ready.

GetControl Read the status of the control bits on a serial device. These include
Clear to Send, Data Set Ready, Ring Indicator, and Carrier Detect.

Write Send a buffer of characters to a serial device.

Read Receive a buffer of characters from a serial device.

Mode Pointer to SERIAL_IO_MODE data. Type SERIAL_IO_MODE is
defined in “Related Definitions”.

Related Definitions

//***
// SERIAL_IO_MODE
//***
typedef struct {

UINT32 ControlMask;

// current Attributes
UINT32 Timeout;
UINT64 BaudRate;
UINT32 ReceiveFifoDepth;
UINT32 DataBits;
UINT32 Parity;
UINT32 StopBits;

} SERIAL_IO_MODE;

The data values in the SERIAL_IO_MODE are read-only and are updated by the code that
produces the SERIAL_IO_INTERFACE protocol functions:

ControlMask A mask of the Control bits that the device supports. The device must
always support the Input Buffer Empty control bit.

Timeout If applicable, the number of microseconds to wait before timing out a
Read or Write operation.

BaudRate If applicable, the current baud rate setting of the device; otherwise,
baud rate has the value of zero to indicate that device runs at the
device’s designed speed.

ReceiveFifoDepth The number of characters the device will buffer on input.

DataBits The number of data bits in each character.

Serial I/O Protocol

Version 1.02 12/12/00 215

Parity If applicable, this is the EFI_PARITY_TYPE that is computed or
checked as each character is transmitted or received. If the device
does not support parity the value is the default parity value.

StopBits If applicable, the EFI_STOP_BITS_TYPE number of stop bits per
character. If the device does not support stop bits the value is the
default stop bit value.

//***
// EFI_PARITY_TYPE
//***
typedef enum {

DefaultParity,
NoParity,
EvenParity,
OddParity,
MarkParity,
SpaceParity

} EFI_PARITY_TYPE;

//***
// EFI_STOP_BITS_TYPE
//***
typedef enum {

DefaultStopBits,
OneStopBit, // 1 stop bit
OneFiveStopBits, // 1.5 stop bits
TwoStopBits // 2 stop bits

} EFI_STOP_BITS_TYPE;

Description

The Serial I/O protocol is used to communicate with UART-style serial devices. These can be
standard UART serial ports in PC/AT systems, serial ports attached to a USB interface, or
potentially any character-based I/O device.

The Serial I/O protocol can control byte I/O style devices from a generic device to a device with
features such as a UART. As such many of the serial I/O features are optional to allow for the case
of devices that do not have UART controls. Each of these options is called out in the specific serial
I/O functions.

Extensible Firmware Interface Specification

216 12/12/00 Version 1.02

The default attributes for all UART-style serial device interfaces are: 115,200 baud, a 1 byte
receive FIFO, a 1,000,000 microsecond timeout per character, no parity, 8 data bits, and 1 stop bit.
Flow control is the responsibility of the software that uses the protocol. Hardware flow control can
be implemented through the use of the GetControl() and SetControl() functions
(described below) to monitor and assert the flow control signals. The XON/XOFF flow control
algorithm can be implemented in software by inserting XON and XOFF characters into the serial
data stream as required.

Special care must be taken if a significant amount of data is going to be read from a serial device.
Since EFI drivers are polled mode drivers, characters received on a serial device might be missed.
It is the responsibility of the software that uses the protocol to check for new data often enough to
guarantee that no characters will be missed. The required polling frequency depends on the baud
rate of the connection and the depth of the receive FIFO.

Serial I/O Protocol

Version 1.02 12/12/00 217

12.1.1 SERIAL_IO.Reset()

Summary

Resets the serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_RESET) (

IN SERIAL_IO_INTERFACE *This
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 12.1.

Description

The Reset() function resets the hardware of a serial device.

Status Codes Returned
EFI_SUCCESS The serial device was reset.

EFI_DEVICE_ERROR The serial device could not be reset.

Extensible Firmware Interface Specification

218 12/12/00 Version 1.02

12.1.2 SERIAL_IO.SetAttributes()

Summary

Sets the baud rate, receive FIFO depth, transmit/receive time out, parity, data bits, and stop bits on a
serial device.

EFI_STATUS
(EFIAPI *EFI_SERIAL_SET_ATTRIBUTES) (

IN SERIAL_IO_INTERFACE *This,
IN UINT64 BaudRate,
IN UINT32 ReceiveFifoDepth,
IN UINT32 Timeout
IN EFI_PARITY_TYPE Parity,
IN UINT8 DataBits,
IN EFI_STOP_BITS_TYPE StopBits
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 12.1.

BaudRate The requested baud rate. A BaudRate value of 0 will use the
device’s default interface speed.

ReceiveFifoDepth The requested depth of the FIFO on the receive side of the serial
interface. A ReceiveFifoDepth value of 0 will use the
device’s default FIFO depth.

Timeout The requested time out for a single character in microseconds.
This timeout applies to both the transmit and receive side of the
interface. A Timeout value of 0 will use the device’s default
time out value.

Parity The type of parity to use on this serial device. A Parity value
of DefaultParity will use the device’s default parity value.
Type EFI_PARITY_TYPE is defined in Section 12.1.

DataBits The number of data bits to use on this serial device. A
DataBits value of 0 will use the device’s default data bit
setting.

StopBits The number of stop bits to use on this serial device. A
StopBits value of DefaultStopBits will use the device’s
default number of stop bits. Type EFI_STOP_BITS_TYPE is
defined in Section 12.1.

Serial I/O Protocol

Version 1.02 12/12/00 219

Description

The SetAttributes() function sets the baud rate, receive-FIFO depth, transmit/receive time
out, parity, data bits, and stop bits on a serial device.

The controller for a serial device is programmed with the specified attributes. If the Parity,
DataBits, or StopBits values are not valid, then an error will be returned. If the specified
BaudRate is below the minimum baud rate supported by the serial device, an error will be
returned. The nearest baud rate supported by the serial device will be selected without exceeding
the BaudRate parameter. If the specified ReceiveFifoDepth is below the smallest FIFO size
supported by the serial device, an error will be returned. The nearest FIFO size supported by the
serial device will be selected without exceeding the ReceiveFifoDepth parameter.

Status Codes Returned
EFI_SUCCESS The new attributes were set on the serial device.

EFI_INVALID_PARAMETER One or more of the attributes has an unsupported value.

EFI_DEVICE_ERROR The serial device is not functioning correctly.

Extensible Firmware Interface Specification

220 12/12/00 Version 1.02

12.1.3 SERIAL_IO.SetControl()

Summary

Sets the control bits on a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_SET_CONTROL) (

IN SERIAL_IO_INTERFACE *This,
IN UINT32 Control
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 12.1.

Control Sets the bits of Control that are settable. See “Related
Definitions”.

Related Definitions
//***
// CONTROL BITS
//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010
#define EFI_SERIAL_DATA_SET_READY 0x0020
#define EFI_SERIAL_RING_INDICATE 0x0040
#define EFI_SERIAL_CARRIER_DETECT 0x0080
#define EFI_SERIAL_REQUEST_TO_SEND 0x0002
#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001
#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100
#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200
#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000
#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000
#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

Description

The SetControl() function is used to assert or deassert the control signals on a serial device.
The following signals are set according their bit settings:

Request to Send

Data Terminal Ready

Serial I/O Protocol

Version 1.02 12/12/00 221

Only the REQUEST_TO_SEND, DATA_TERMINAL_READY, HARDWARE_LOOPBACK_ENABLE,
SOFTWARE_LOOPBACK_ENABLE, and HARDWARE_FLOW_CONTROL_ENABLE bits can be set
with SetControl(). All the bits can be read with GetControl().

Status Codes Returned
EFI_SUCCESS The new control bits were set on the serial device.

EFI_UNSUPPORTED The serial device does not support this operation.

EFI_DEVICE_ERROR The serial device is not functioning correctly.

Extensible Firmware Interface Specification

222 12/12/00 Version 1.02

12.1.4 SERIAL_IO.GetControl()

Summary

Retrieves the status of the control bits on a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_GET_CONTROL) (

IN SERIAL_IO_INTERFACE *This,
OUT UINT32 *Control
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 12.1.

Control A pointer to return the current Control signals from the serial
device.

Related Definitions
//***
// CONTROL BITS
//***

#define EFI_SERIAL_CLEAR_TO_SEND 0x0010
#define EFI_SERIAL_DATA_SET_READY 0x0020
#define EFI_SERIAL_RING_INDICATE 0x0040
#define EFI_SERIAL_CARRIER_DETECT 0x0080
#define EFI_SERIAL_REQUEST_TO_SEND 0x0002
#define EFI_SERIAL_DATA_TERMINAL_READY 0x0001
#define EFI_SERIAL_INPUT_BUFFER_EMPTY 0x0100
#define EFI_SERIAL_OUTPUT_BUFFER_EMPTY 0x0200
#define EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE 0x1000
#define EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE 0x2000
#define EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE 0x4000

Description

The GetControl() function retrieves the status of the control bits on a serial device.

Status Codes Returned
EFI_SUCCESS The control bits were read from the serial device.

EFI_DEVICE_ERROR The serial device is not functioning correctly.

Serial I/O Protocol

Version 1.02 12/12/00 223

12.1.5 SERIAL_IO.Write()

Summary

Writes data to a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_WRITE) (

IN SERIAL_IO_INTERFACE *This,
IN OUT UINTN *BufferSize,
IN VOID *Buffer
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 12.1.

BufferSize On input, the size of the Buffer. On output, the amount of
data actually written.

Buffer The buffer of data to write.

Description

The Write() function writes the specified number of bytes to a serial device. If a time out error
occurs while data is being sent to the serial port, transmission of this buffer will terminate, and
EFI_TIMEOUT will be returned. In all cases the number of bytes actually written to the serial
device is returned in BufferSize.

Status Codes Returned
EFI_SUCCESS The data was written.

EFI_DEVICE_ERROR The device reported an error.

EFI_TIMEOUT The data write was stopped due to a timeout.

Extensible Firmware Interface Specification

224 12/12/00 Version 1.02

12.1.6 SERIAL_IO.Read()

Summary

Reads data from a serial device.

Prototype
EFI_STATUS
(EFIAPI *EFI_SERIAL_READ) (

IN SERIAL_IO_INTERFACE *This,
IN OUT UINTN *BufferSize,
OUT VOID *Buffer
);

Parameters

This A pointer to the SERIAL_IO_INTERFACE instance. Type
SERIAL_IO_INTERFACE is defined in Section 12.1.

BufferSize On input, the size of the Buffer. On output, the amount of
data returned in Buffer.

Buffer The buffer to return the data into.

Description

The Read() function reads a specified number of bytes from a serial device. If a time out error or
an overrun error is detected while data is being read from the serial device, then no more characters
will be read, and an error will be returned. In all cases the number of bytes actually read is returned
in BufferSize.

Status Codes Returned
EFI_SUCCESS The data was read.

EFI_DEVICE_ERROR The serial device reported an error.

EFI_TIMEOUT The operation was stopped due to a timeout or overrun.

Version 1.02 12/12/00 225

13
Unicode Collation Protocol

This chapter defines the Unicode Collation protocol. This protocol is used to allow code running in
the boot services environment to perform lexical comparison functions on Unicode strings for given
languages.

13.1 UNICODE_COLLATION Protocol

Summary

Is used to perform case-insensitive comparisons of Unicode strings.

GUID
#define UNICODE_COLLATION_PROTOCOL \
 { 1d85cd7f-f43d-11d2-9a0c-0090273fc14d }

Protocol Interface Structure
typedef struct {

EFI_UNICODE_COLLATION_STRICOLL StriColl;
EFI_UNICODE_COLLATION_METAIMATCH MetaiMatch;
EFI_UNICODE_STRLWR StrLwr;
EFI_UNICODE_STRUPR StrUpr;
EFI_UNICODE_FATTOSTR FatToStr;
EFI_UNICODE_STRTOFAT StrToFat;
CHAR8 *SupportedLanguages;

} UNICODE_COLLATION_INTERFACE;

Parameters

StriColl Performs a case-insensitive comparison of two Null-terminated
Unicode strings. See Section 13.1.1.

MetaiMatch Performs a case-insensitive comparison between a Null-
terminated Unicode pattern string and a Null-terminated Unicode
string. The pattern string can use the ‘?’ wildcard to match any
character, and the ‘*’ wildcard to match any substring. See
Section 13.1.2.

StrLwr Converts all the Unicode characters in a Null-terminated
Unicode string to lower case Unicode characters. See
Section 13.1.3.

Extensible Firmware Interface Specification

226 12/12/00 Version 1.02

StrUpr Converts all the Unicode characters in a Null-terminated
Unicode string to upper case Unicode characters. See
Section 13.1.4 .

FatToStr Converts an 8.3 FAT file name using an OEM character set to a
Null-terminated Unicode string. See Section 13.1.5.

StrToFat Converts a Null-terminated Unicode string to legal characters in
a FAT filename using an OEM character set. See Section 13.1.6.

SupportedLanguages A Null-terminated ASCII string that contains one or more
ISO 639-2 language codes.

Description

The UNICODE_COLLATION protocol is used to perform case-insensitive comparisons of Unicode
strings.

One or more of the UNICODE_COLLATION protocols may be present at one time. Each protocol
instance can support one or more language codes. The language codes that are supported in the
UNICODE_COLLATION interface is declared in SupportedLanguages.

The SupportedLanguages field is a list of one or more 3 character language codes in a Null-
terminated ASCII string. These language codes come from the ISO 639-2 Specification. For
example, if the protocol supports English, then the string “eng” would be returned. If it supported
both English and Spanish, then “engspa” would be returned.

The main motivation for this protocol is to help support file names in a file system driver. When a
file is opened, a file name needs to be compared to the file names on the disk. In some cases, this
comparison needs to be performed in a case-insensitive manner. In addition, this protocol can be
used to sort files from a directory or to perform a case-insensitive file search.

Unicode Collation Protocol

Version 1.02 12/12/00 227

13.1.1 UNICODE_COLLATION.StriColl()

Summary

Performs a case-insensitive comparison of two Null-terminated Unicode strings.

Prototype
INTN
(EFIAPI *EFI_UNICODE_COLLATION_STRICOLL) (

IN UNICODE_COLLATION_INTERFACE *This,
IN CHAR16 *s1,
IN CHAR16 *s2
);

Parameters

This A pointer to the UNICODE_COLLATION instance. Type
UNICODE_COLLATION_INTERFACE is defined in
Section 13.1.

s1 A pointer to a Null-terminated Unicode string.

s2 A pointer to a Null-terminated Unicode string.

Description

The StriColl() function performs a case-insensitive comparison of two Null-terminated
Unicode strings.

This function performs a case-insensitive comparison between the Unicode string s1 and the
Unicode string s2 using the rules for the language codes that this protocol instance supports. If s1
is equivalent to s2, then 0 is returned. If s1 is lexically less than s2, then a negative number will
be returned. If s1 is lexically greater than s2, then a positive number will be returned. This
function allows Unicode strings to be compared and sorted.

Status Codes Returned
0 s1 is equivalent to s2.

> 0 s1 is lexically greater than s2.

< 0 s1 is lexically less than s2.

Extensible Firmware Interface Specification

228 12/12/00 Version 1.02

13.1.2 UNICODE_COLLATION.MetaiMatch()

Summary

Performs a case-insensitive comparison of a Null-terminated Unicode pattern string and a Null-
terminated Unicode string.

Prototype
BOOLEAN
(EFIAPI *EFI_UNICODE_COLLATION_STRICOLL) (

IN UNICODE_COLLATION_INTERFACE *This,
IN CHAR16 *String,
IN CHAR16 *Pattern
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 13.1.

String A pointer to a Null-terminated Unicode string.

Pattern A pointer to a Null-terminated Unicode pattern string.

Description

The MetaiMatch() function performs a case-insensitive comparison of a Null-terminated
Unicode pattern string and a Null-terminated Unicode string.

This function checks to see if the pattern of characters described by Pattern are found in
String. The pattern check is a case-insensitive comparison using the rules for the language codes
that this protocol instance supports. If the pattern match succeeds, then TRUE is returned.
Otherwise FALSE is returned. The following syntax can be used to build the string Pattern.

* Match 0 or more characters.

? Match any one character.

[<char1><char2>…<charN>] Match any character in the set.

[<char1>-<char2>] Match any character between <char1> and
<char2>.

<char> Match the character <char>.

Unicode Collation Protocol

Version 1.02 12/12/00 229

Examples patterns (for English):

*.FW Matches all strings that end in “.FW” or “.fw” or
“.Fw” or “.fW”.

[a-z] Match any letter in the alphabet.

 [!@#$%^&*()] Match any one of these symbols.

z Match the character ‘z’ or ‘Z’.

D?.* Match the character ‘D’ or ‘d’ followed by any
character followed by a “.” followed by any
string.

Status Codes Returned
TRUE Pattern was found in String.

FALSE Pattern was not found in String.

Extensible Firmware Interface Specification

230 12/12/00 Version 1.02

13.1.3 UNICODE_COLLATION.StrLwr()

Summary

Converts all the Unicode characters in a Null-terminated Unicode string to lower case Unicode
characters.

Prototype
VOID
(EFIAPI *EFI_UNICODE_COLLATION_STRLWR) (

IN UNICODE_COLLATION_INTERFACE *This,
IN OUT CHAR16 *String
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 13.1.

String A pointer to a Null-terminated Unicode string.

Description

This functions walks through all the Unicode characters in String, and converts each one to its
lower case equivalent if it has one. The converted string is returned in String.

Unicode Collation Protocol

Version 1.02 12/12/00 231

13.1.4 UNICODE_COLLATION.StrUpr()

Summary

Converts all the Unicode characters in a Null-terminated Unicode string to upper case Unicode
characters.

Prototype
VOID
(EFIAPI *EFI_UNICODE_COLLATION_STRUPR) (

IN UNICODE_COLLATION_INTERFACE *This,
IN OUT CHAR16 *String
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 13.1.

String A pointer to a Null-terminated Unicode string.

Description

This functions walks through all the Unicode characters in String, and converts each one to its
upper case equivalent if it has one. The converted string is returned in String.

Extensible Firmware Interface Specification

232 12/12/00 Version 1.02

13.1.5 UNICODE_COLLATION.FatToStr()

Summary

Converts an 8.3 FAT file name in an OEM character set to a Null-terminated Unicode string.

Prototype
VOID
(EFIAPI *EFI_UNICODE_COLLATION_FATTOSTR) (

IN UNICODE_COLLATION_INTERFACE *This,
IN UINTN FatSize,
IN CHAR8 *Fat,
OUT CHAR16 *String
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 13.1.

FatSize The size of the string Fat in bytes.

Fat A pointer to a Null-terminated string that contains an 8.3 file
name using an OEM character set.

String A pointer to a Null-terminated Unicode string. The string must
be preallocated to hold FatSize Unicode characters.

Description

This function converts the string specified by Fat with length FatSize to the Null-terminated
Unicode string specified by String. The characters in Fat are from an OEM character set.

Unicode Collation Protocol

Version 1.02 12/12/00 233

13.1.6 UNICODE_COLLATION.StrToFat()

Summary

Converts a Null-terminated Unicode string to legal characters in a FAT filename using an OEM
character set.

Prototype
BOOLEAN
(EFIAPI *EFI_UNICODE_COLLATION_STRTOFAT) (

IN UNICODE_COLLATION_INTERFACE *This,
IN CHAR16 *String,
IN UINTN FatSize,
OUT CHAR8 *Fat
);

Parameters

This A pointer to the UNICODE_COLLATION_INTERFACE
instance. Type UNICODE_COLLATION_INTERFACE is
defined in Section 13.1.

String A pointer to a Null-terminated Unicode string.

FatSize The size of the string Fat in bytes.

Fat A pointer to a Null-terminated string that contains an 8.3 file
name using an OEM character set.

Description

This function converts the first FatSize Unicode characters of String to the legal FAT
characters in an OEM character set and stores then in the string Fat. The Unicode characters ‘.’
(period) and ‘ ‘ (space) are ignored for this conversion. If no valid mapping from the Unicode
character to a FAT character is available, then it is substituted with an '_'. This function returns
FALSE if the return string Fat is an 8.3 file name. This function returns TRUE if the return string
Fat is a Long File Name.

Status Codes Returned
TRUE Fat is a Long File Name.

FALSE Fat is an 8.3 file name.

Extensible Firmware Interface Specification

234 12/12/00 Version 1.02

Version 1.02 12/12/00 235

14
PXE Base Code Protocol

This chapter defines the Preboot Execution Environment (PXE) Base Code protocol, which is used
to access PXE-compatible devices for network access and network booting. More information
about PXE can be found in the Preboot Execution Environment (PXE) Specification at:
ftp://download.intel.com/ial/wfm/pxespec.pdf.

14.1 EFI_PXE_BASE_CODE Protocol

Summary

The EFI_PXE_BASE_CODE protocol is used to control PXE-compatible devices. The features of
these devices are defined in the Preboot Execution Environment (PXE) Specification. An
EFI_PXE_BASE_CODE protocol will be layered on top of an EFI_SIMPLE_NETWORK protocol
in order to perform packet level transactions. The EFI_PXE_BASE_CODE handle also supports
the LOAD_FILE protocol. This provides a clean way to obtain control from the boot manager if
the boot path is from the remote device.

GUID
#define EFI_PXE_BASE_CODE_PROTOCOL \

{ 03C4E603-AC28-11d3-9A2D-0090273FC14D }

Revision Number
#define EFI_PXE_BASE_CODE_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct {

UINT64 Revision;
EFI_PXE_BASE_CODE_START Start;
EFI_PXE_BASE_CODE_STOP Stop;
EFI_PXE_BASE_CODE_DHCP Dhcp;
EFI_PXE_BASE_CODE_DISCOVER Discover;
EFI_PXE_BASE_CODE_MTFTP Mtftp;
EFI_PXE_BASE_CODE_UDP_WRITE UdpWrite;
EFI_PXE_BASE_CODE_UDP_READ UdpRead;
EFI_PXE_BASE_CODE_SET_IP_FILTER SetIpFilter;
EFI_PXE_BASE_CODE_ARP Arp;
EFI_PXE_BASE_CODE_SET_PARAMETERS SetParameters;
EFI_PXE_BASE_CODE_SET_STATION_IP SetStationIp;
EFI_PXE_BASE_CODE_SET_PACKETS SetPackets;
EFI_PXE_BASE_CODE_MODE *Mode;

} EFI_PXE_BASE_CODE;

ftp://download.intel.com/ial/wfm/pxespec.pdf

Extensible Firmware Interface Specification

236 12/12/00 Version 1.02

Parameters

Revision The revision of the EFI_PXE_BASE_CODE Protocol. All
future revisions must be backwards compatible. If a future
version is not backwards compatible it is not the same GUID.

Start Starts the PXE Base Code Protocol. Mode structure information
is not valid and no other Base Code Protocol functions will
operate until the Base Code is started.

Stop Stops the PXE Base Code Protocol. Mode structure information
is unchanged by this function. No Base Code Protocol functions
will operate until the Base Code is restarted.

Dhcp Attempts to complete a DHCPv4 D.O.R.A. (discover / offer /
request / acknowledge) or DHCPv6 S.A.R.R (solicit / advertise /
request / reply) sequence.

Discover Attempts to complete the PXE Boot Server and/or boot image
discovery sequence.

Mtftp Performs TFTP and MTFTP services.

UdpWrite Writes a UDP packet to the network interface.

UdpRead Reads a UDP packet from the network interface.

SetIpFilter Updates the IP receive filters of the network device.

Arp Uses the ARP protocol to resolve a MAC address.

SetParameters Updates the parameters that affect the operation of the PXE Base
Code Protocol.

SetStationIp Updates the station IP address and subnet mask values.

SetPackets Updates the contents of the cached DHCP and Discover packets.

Mode Pointer to the EFI_PXE_BASE_CODE_MODE data for this
device. The EFI_PXE_BASE_CODE_MODE structure is
defined in “Related Definitions”.

PXE Base Code Protocol

Version 1.02 12/12/00 237

Related Definitions

//***
// Maximum ARP and Route Entries
//***
#define EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES 8
#define EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES 8

//***
// EFI_PXE_BASE_CODE_MODE
//
// The data values in this structure are read-only and
// are updated by the code that produces the EFI_PXE_BASE_CODE
// protocol functions.
//***
typedef struct {

BOOLEAN Started;
BOOLEAN Ipv6Available;
BOOLEAN Ipv6Supported;
BOOLEAN UsingIpv6;
BOOLEAN BisSupported;
BOOLEAN BisDetected;
BOOLEAN AutoArp;
BOOLEAN SendGUID;
BOOLEAN DhcpDiscoverValid;
BOOLEAN DhcpAckReceivd;
BOOLEAN ProxyOfferReceived;
BOOLEAN PxeDiscoverValid;
BOOLEAN PxeReplyReceived;
BOOLEAN PxeBisReplyReceived;
BOOLEAN IcmpErrorReceived;
BOOLEAN TftpErrorReceived;
BOOLEAN MakeCallbacks;
UINT8 TTL;
UINT8 ToS;
EFI_IP_ADDRESS StationIp;
EFI_IP_ADDRESS SubnetMask;
EFI_PXE_BASE_CODE_PACKET DhcpDiscover;
EFI_PXE_BASE_CODE_PACKET DhcpAck;
EFI_PXE_BASE_CODE_PACKET ProxyOffer;
EFI_PXE_BASE_CODE_PACKET PxeDiscover;
EFI_PXE_BASE_CODE_PACKET PxeReply;
EFI_PXE_BASE_CODE_PACKET PxeBisReply;
EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
UINT32 ArpCacheEntries;

Extensible Firmware Interface Specification

238 12/12/00 Version 1.02

EFI_PXE_BASE_CODE_ARP_ENTRY
ArpCache[EFI_PXE_BASE_CODE_MAX_ARP_ENTRIES];

UINT32 RouteTableEntries;
EFI_PXE_BASE_CODE_ROUTE_ENTRY

RouteTable[EFI_PXE_BASE_CODE_MAX_ROUTE_ENTRIES];
EFI_PXE_BASE_CODE_ICMP_ERROR IcmpError;
EFI_PXE_BASE_CODE_TFTP_ERROR TftpError;

} EFI_PXE_BASE_CODE_MODE;

Started TRUE if this device has been started by calling Start(). This
field is set to TRUE by the Start() function and to FALSE by
the Stop() function.

Ipv6Available TRUE if the Simple Network Protocol being used supports IPv6.

Ipv6Supported TRUE if this PXE Base Code Protocol implementation supports
IPv6.

UsingIpv6 TRUE if this device is currently using IPv6. This field is set by
the Start() function.

BisSupported TRUE if this PXE Base Code implementation supports Boot
Integrity Services (BIS). This field is set by the Start()
function.

BisDetected TRUE if this device and the platform support Boot Integrity
Services (BIS). This field is set by the Start() function.

AutoArp TRUE for automatic ARP packet generation; FALSE otherwise.
This field is initialized to TRUE by Start(), and can be
modified with the SetParameters() function.

SendGUID This field is used to change the Client Hardware Address
(chaddr) field in the DHCP and Discovery packets. Set to TRUE
to send the SystemGuid (if one is available). Set to FALSE to
send the client NIC MAC address. This field is initialized to
FALSE by Start(), and can be modified with the
SetParameters() function.

DhcpDiscoverValid This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully.
When TRUE, the DhcpDiscover field is valid. This field can
also be changed by the SetPackets() function.

DhcpAckReceived This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully.
When TRUE, the DhcpAck field is valid. This field can also be
changed by the SetPackets() function.

PXE Base Code Protocol

Version 1.02 12/12/00 239

ProxyOfferReceived This field is initialized to FALSE by the Start() function and
set to TRUE when the Dhcp() function completes successfully
and a proxy DHCP offer packet was received. When TRUE, the
ProxyOffer packet field is valid. This field can also be
changed by the SetPackets() function.

PxeDiscoverValid When TRUE, the PxeDiscover packet field is valid. This
field is set to FALSE by the Start() and Dhcp() functions,
and can be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

PxeReplyReceived When TRUE, the PxeReply packet field is valid. This field is
set to FALSE by the Start() and Dhcp() functions, and can
be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

PxeBisReplyReceived When TRUE, the PxeBisReply packet field is valid. This
field is set to FALSE by the Start() and Dhcp() functions,
and can be set to TRUE or FALSE by the Discover() and
SetPackets() functions.

IcmpErrorReceived Indicates whether the IcmpError field has been updated. This
field is reset to FALSE by the Start(), Dhcp(),
Discover(), Mtftp(), UdpRead(), UdpWrite()
and Arp() functions. If an ICMP error is received, this field
will be set to TRUE after the IcmpError field is updated.

TftpErrorReceived Indicates whether the TftpError field has been updated. This
field is reset to FALSE by the Start() and Mtftp()
functions. If a TFTP error is received, this field will be set to
TRUE after the TftpError field is updated.

MakeCallbacks When FALSE, callbacks will not be made. When TRUE, make
callbacks to the PXE Base Code Callback Protocol. This field is
reset to FALSE by the Start() function if the PXE Base Code
Callback Protocol is not available. It is reset to TRUE by the
Start() function if the PXE Base Code Callback Protocol is
available.

TTL The “time to live” field of the IP header. This field is initialized
to DEFAULT_TTL (See "Related Definitions") by the Start()
function and can be modified by the SetParameters()
function.

ToS The type of service field of the IP header. This field is initialized
to DEFAULT_ToS (See "Related Definitions") by Start(),
and can be modified with the SetParameters() function.

Extensible Firmware Interface Specification

240 12/12/00 Version 1.02

StationIp The device’s current IP address. This field is initialized to a zero
address by Start(). This field is set when the
Dhcp()function completes successfully. This field can also be
set by the SetStationIp() function.

SubnetMask The device’s current subnet mask. This field is initialized to a
zero address by the Start() function. This field is set when
the Dhcp()function completes successfully. This field can also
be set by the SetStationIp() function.

DhcpDiscover Cached DHCP Discover packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can replaced
by the SetPackets() function.

DhcpAck Cached DHCP Ack packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can be
replaced by the SetPackets() function.

ProxyOffer Cached Proxy Offer packet. This field is zero-filled by the
Start() function, and is set when the Dhcp() function
completes successfully. The contents of this field can be
replaced by the SetPackets() function.

PxeDiscover Cached PXE Discover packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. The contents of this field can be
replaced by the SetPackets() function.

PxeReply Cached PXE Reply packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. The contents of this field can be replaced
by the SetPackets() function.

PxeBisReply Cached PXE BIS Reply packet. This field is zero-filled by the
Start() function, and is set when the Discover() function
completes successfully. This field can be replaced by the
SetPackets() function.

IpFilter The current IP receive filter settings. The receive filter is
disabled and the number of IP receive filters is set to zero by the
Start() function, and is set by the SetIpFilter()
function.

ArpCacheEntries The number of valid entries in the ARP cache. This field is reset
to zero by the Start() function.

ArpCache Array of cached ARP entries.

PXE Base Code Protocol

Version 1.02 12/12/00 241

RouteTableEntries The number of valid entries in the current route table. This field
is reset to zero by the Start() function.

RouteTable Array of route table entries.

IcmpError ICMP error packet. This field is updated when an ICMP error is
received and is undefined until the first ICMP error is received.
This field is zero-filled by the Start() function.

TftpError TFTP error packet. This field is updated when a TFTP error is
received and is undefined until the first TFTP error is received.
This field is zero-filled by the Start() function.

//***
// EFI_PXE_BASE_CODE_UDP_PORT
//***
typedef UINT16 EFI_PXE_BASE_CODE_UDP_PORT;

//***
// EFI_IPv4_ADDRESS and EFI_IPv6_ADDRESS
//***
typedef struct {

UINT8 Addr[4];
} EFI_IPv4_ADDRESS;

typedef struct {
UINT8 Addr[16];

} EFI_IPv6_ADDRESS;

//***
// EFI_IP_ADDRESS
//***
typedef union {

UINT32 Addr[4];
EFI_IPv4_ADDRESS v4;
EFI_IPv6_ADDRESS v6;

} EFI_IP_ADDRESS;

//***
// EFI_MAC_ADDRESS
//***
typedef struct {

UINT8 Addr[32];
} EFI_MAC_ADDRESS;

Extensible Firmware Interface Specification

242 12/12/00 Version 1.02

//***
// This section defines the data types for DHCP packets, ICMP
// error packets, and TFTP error packets. All of these are byte
// packed data structures.
//***

//***
// NOTE: ALL THE MULTIBYTE FIELDS IN THESE STRUCTURES ARE
// STORED IN NETWORK ORDER.
//***

//***
// EFI_PXE_BASE_CODE_DHCPV4_PACKET
//***
typedef struct {

UINT8 BootpOpcode;
UINT8 BootpHwType;
UINT8 BootpHwAddrLen;
UINT8 BootpGateHops;
UINT32 BootpIdent;
UINT16 BootpSeconds;
UINT16 BootpFlags;
UINT8 BootpCiAddr[4];
UINT8 BootpYiAddr[4];
UINT8 BootpSiAddr[4];
UINT8 BootpGiAddr[4];
UINT8 BootpHwAddr[16];
UINT8 BootpSrvName[64];
UINT8 BootpBootFile[128];
UINT32 DhcpMagik;
UINT8 DhcpOptions[56];

} EFI_PXE_BASE_CODE_DHCPV4_PACKET;

// TBD in EFI v1.1
// typedef struct {
// } EFI_PXE_BASE_CODE_DHCPV6_PACKET;

//***
// EFI_PXE_BASE_CODE_PACKET
//***
typedef union {

UINT64 Alignment;
UINT8 Raw[1472];
EFI_PXE_BASE_CODE_DHCPV4_PACKET Dhcpv4;
// EFI_PXE_BASE_CODE_DHCPV6_PACKET Dhcpv6;

} EFI_PXE_BASE_CODE_PACKET;

PXE Base Code Protocol

Version 1.02 12/12/00 243

//***
// EFI_PXE_BASE_CODE_ICMP_ERROR
//***
typedef struct {

UINT8 Type;
UINT8 Code;
UINT16 Checksum;
union {

UINT32 reserved;
UINT32 Mtu;
UINT32 Pointer;
struct {

UINT16 Identifier;
UINT16 Sequence;

} Echo;
} u;

UINT8 Data[494];
} EFI_PXE_BASE_CODE_ICMP_ERROR;

//***
// EFI_PXE_BASE_CODE_TFTP_ERROR
//***
typedef struct {

UINT8 ErrorCode;
CHAR8 ErrorString[127];

} EFI_PXE_BASE_CODE_TFTP_ERROR;

//***
// This section defines the data types for IP receive filter
// settings.
//***
#define EFI_PXE_BASE_CODE_MAX_IPCNT 8

//***
// EFI_PXE_BASE_CODE_IP_FILTER
//***
typedef struct {

UINT8 Filters;
UINT8 IpCnt;
UINT16 reserved;
EFI_IP_ADDRESS IpList[EFI_PXE_BASE_CODE_MAX_IPCNT];

} EFI_PXE_BASE_CODE_IP_FILTER;

#define EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP 0x0001
#define EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST 0x0002
#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS 0x0004
#define EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST 0x0008

Extensible Firmware Interface Specification

244 12/12/00 Version 1.02

//***
// This section defines the data types for ARP cache entries,
// and route table entries.
//***

//***
// EFI_PXE_BASE_CODE_ARP_ENTRY
//***
typedef struct {

EFI_IP_ADDRESS IpAddr;
EFI_MAC_ADDRESS MacAddr;

} EFI_PXE_BASE_CODE_ARP_ENTRY;

//***
// EFI_PXE_BASE_CODE_ROUTE_ENTRY
//***
typedef struct {

EFI_IP_ADDRESS IpAddr;
EFI_IP_ADDRESS SubnetMask;
EFI_IP_ADDRESS GwAddr;

} EFI_PXE_BASE_CODE_ROUTE_ENTRY;

//***
// This section defines the types of filter operations that can
// be used with the UdpRead() and UdpWrite() functions.
//***

#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP 0x0001
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT 0x0002
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_IP 0x0004
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT 0x0008
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_USE_FILTER 0x0010
#define EFI_PXE_BASE_CODE_UDP_OPFLAGS_MAY_FRAGMENT 0x0020
#define DEFAULT_TTL 4
#define DEFAULT_ToS 0

PXE Base Code Protocol

Version 1.02 12/12/00 245

//***
// The following table defines values for the PXE DHCP and
// Bootserver Discover packet tags that are specific to the EFI
// environment. Complete definitions of all PXE tags are defined
// in Table 2-1 PXE DHCP Options (Full List), in the PXE
// Specification.
//***

Table 14-1. PXE Tag Definitions for EFI

Tag Name Tag # Length Data Field

Client Network
Interface
Identifier

94 [0x5E] 3 [0x03] Type (1), MajorVer (1), MinorVer (1)

Type is a one byte field that identifies the network interface that
will be used by the downloaded program. Type is followed by
two one byte version number fields, MajorVer and MinorVer.

Type

UNDI (1) = 0x01

Versions

WfM-1.1a 16-bit UNDI: MajorVer = 0x02. MinorVer = 0x00

PXE-2.0 16-bit UNDI: MajorVer = 0x02, MinorVer = 0x01

32/64-bit UNDI & H/W UNDI: MajorVer = 0x03, MinorVer = 0x00

Client System
Architecture

93 [0x5D] 2 [0x02] Type (2)

Type is a two byte, network order, field that identifies the
processor and programming environment of the client system.

Types

IA x86 PC = 0x00 0x00

IA64 EFI PC = 0x00 0x02

IA32 EFI PC = 0x00 0x06

Class Identifier 60 [0x3C] 32 [0x20] "PXEClient:Arch:xxxxx:UNDI:yyyzzz"

"PXEClient:…" is used to identify communication between PXE
clients and servers. Information from tags 93 & 94 is embedded
in the Class Identifier string. (The strings defined in this tag are
case sensitive and must not be NULL-terminated.)

xxxxx = ASCII represenetation of Client System Architecture.

yyyzzz = ASCII representation of Client Network Interface
Identifier version numbers MajorVer(yyy) and MinorVer(zzz).

Example

"PXEClient:Arch:00002:UNDI:00300" identifies an IA64 PC w/
32/64-bit UNDI

Extensible Firmware Interface Specification

246 12/12/00 Version 1.02

Description

The basic mechanisms and flow for remote booting in EFI are identical to the remote boot
functionality described in detail in the PXE Specification. However, the actual execution
environment, linkage, and calling conventions are replaced and enhanced for the EFI environment.

The DHCP Option for the Client System Architecture is used to inform the DHCP server if the
client is an IA-32 or Itanium-based EFI environment. The server may use this information to
provide default images if it does not have a specific boot profile for the client.

A handle that supports EFI_PXE_BASE_CODE protocol is required to support the LOAD_FILE
protocol. The LOAD_FILE protocol function LoadFile() is used by the firmware to load files
from devices that do not support file system type accesses. Specifically, the firmware’s boot
manager invokes LoadFile() with BootPolicy being TRUE when attempting to boot from
the device. The firmware then loads and transfers control to the downloaded PXE boot image.
Once the remote image is successfully loaded, it may utilize the EFI_PXE_BASE_CODE
interfaces, or even the EFI_SIMPLE_NETWORK interfaces, to continue the remote process.

PXE Base Code Protocol

Version 1.02 12/12/00 247

14.1.1 EFI_PXE_BASE_CODE.Start()

Summary

Enables the use of the PXE Base Code Protocol functions.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_START) (

IN EFI_PXE_BASE_CODE *This,
IN BOOLEAN UseIpv6
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

UseIpv6 Specifies the type of IP addresses that are to be used during the session
that is being started. Set to TRUE for IPv6 addresses, and FALSE for
IPv4 addresses.

Description

This function enables the use of the PXE Base Code Protocol functions. If the Started field of
the PXE_BASE_CODE_MODE structure is already TRUE, then EFI_ALREADY_STARTED will be
returned. If UseIpv6 is TRUE, then IPv6 formatted addresses will be used in this session. If
UseIpv6 is FALSE, then IPv4 formatted addresses will be used in this session. If UseIpv6 is
TRUE, and the Ipv6Supported field of the EFI_BASE_CODE_MODE structure is FALSE, then
EFI_UNSUPPORTED will be returned. If there is not enough memory or other resources to start
the PXE Base Code Protocol, then EFI_OUT_OF_RESOURCES will be returned. Otherwise, the
PXE Base Code Protocol will be started, and all of the fields of the
EFI_PXE_BASE_CODE_MODE structure will be initialized as follows:

Started Set to TRUE.

Ipv6Supported Unchanged.

Ipv6Available Unchanged.

UsingIpv6 Set to UseIpv6

BisSupported Unchanged.

BisDetected Unchanged.

AutoArp Set to TRUE.

SendGUID Set to FALSE.

TTL Set to DEFAULT_TTL.

Extensible Firmware Interface Specification

248 12/12/00 Version 1.02

ToS Set to DEFAULT_ToS.

DhcpCompleted Set to FALSE.

ProxyOfferReceived Set to FALSE.

StationIp Set to an address of all zeros.

SubnetMask Set to a subnet mask of all zeros.

DhcpDiscover Zero-filled.

DhcpAck Zero-filled.

ProxyOffer Zero-filled.

PxeDiscoverValid Set to FALSE.

PxeDiscover Zero-filled.

PxeReplyValid Set to FALSE.

PxeReply Zero-filled.

PxeBisReplyValid Set to FALSE.

PxeBisReply Zero-filled.

IpFilter Set the Filters field to 0 and the IpCnt field to 0.

ArpCacheEntries Set to 0.

ArpCache Zero-filled.

RouteTableEntries Set to 0.

RouteTable Zero-filled.

IcmpErrorReceived Set to FALSE.

IcmpError Zero-filled.

TftpErroReceived Set to FALSE.

TftpError Zero-filled.

MakeCallbacks Set to TRUE if the PXE Base Code Callback Protocol is
available. Set to FALSE if the PXE Base Code Callback
Protocol is not available.

PXE Base Code Protocol

Version 1.02 12/12/00 249

Status Codes Returned
EFI_SUCCESS The PXE Base Code Protocol was started.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the
EFI_BASE_CODE_MODE structure is FALSE.

EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the
PXE Base Code Protocol.

Extensible Firmware Interface Specification

250 12/12/00 Version 1.02

14.1.2 EFI_PXE_BASE_CODE.Stop()

Summary

Disables the use of the PXE Base Code Protocol functions.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_STOP) (

IN EFI_PXE_BASE_CODE *This
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

Description

This function stops all activity on the network device. All the resources allocated in Start() are
released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is set to FALSE and
EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE
structure is already FALSE, then EFI_NOT_STARTED will be returned.

Status Codes Returned
EFI_SUCCESS The PXE Base Code Protocol was stopped.

EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

PXE Base Code Protocol

Version 1.02 12/12/00 251

14.1.3 EFI_PXE_BASE_CODE.Dhcp()

Summary

Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6
S.A.R.R (solicit / advertise / request / reply) sequence.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_DHCP) (

IN EFI_PXE_BASE_CODE *This,
IN BOOLEAN SortOffers
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

SortOffers TRUE if the offers received should be sorted. Set to FALSE to try the
offers in the order that they are received.

Description

This function attempts to complete the DHCP sequence. If this sequence is completed, then
EFI_SUCCESS is returned, and the DhcpCompleted, ProxyOfferReceived, StationIp,
SubnetMask, DhcpDiscover, DhcpAck, and ProxyOffer fields of the
EFI_PXE_BASE_CODE_MODE structure are filled in.

If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before they are tried.
If SortOffers is FALSE, then the cached DHCP offer packets will be tried in the order in which
they are received. Please see the Preboot Execution Environment (PXE) Specification for
additional details on the implementation of DHCP.

This function can take at least 31 seconds to timeout and return control to the caller. If the DHCP
sequence does not complete, then EFI_TIMEOUT will be returned.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the DHCP sequence will be
stopped and EFI_ABORTED will be returned.

Extensible Firmware Interface Specification

252 12/12/00 Version 1.02

Status Codes Returned
EFI_SUCCESS Valid DHCP has completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol.

EFI_ABORTED The callback function aborted the DHCP Protocol.

EFI_TIMEOUT The DHCP Protocol timed out.

EFI_ICMP_ERROR The DHCP Protocol generated an ICMP error.

EFI_NO_RESPONSE Valid PXE offer was not received.

PXE Base Code Protocol

Version 1.02 12/12/00 253

14.1.4 EFI_PXE_BASE_CODE.Discover()

Summary

Attempts to complete the PXE Boot Server and/or boot image discovery sequence.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_DISCOVER) (

IN EFI_PXE_BASE_CODE *This,
IN UINT16 Type,
IN UINT16 *Layer,
IN BOOLEAN UseBis,
IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

Type The type of bootstrap to perform. See “Related Definitions”.

Layer Pointer to the boot server layer number to discover, which must be
PXE_BOOT_LAYER_INITIAL when a new server type is being
discovered. This is the only layer type that will perform multicast and
broadcast discovery. All other layer types will only perform unicast
discovery. If the boot server changes Layer, then the new Layer will
be returned.

UseBis TRUE if Boot Integrity Services are to be used. False otherwise.

Info Pointer to a data structure that contains additional information on the
type of discovery operation that is to be performed. If this field is NULL,
then the contents of the cached DhcpAck and ProxyOffer packets
will be used.

Extensible Firmware Interface Specification

254 12/12/00 Version 1.02

Related Definitions
//***
// Bootstrap Types
//***
#define EFI_PXE_BASE_CODE_BOOT_TYPE_BOOTSTRAP 0
#define EFI_PXE_BASE_CODE_BOOT_TYPE_MS_WINNT_RIS 1
#define EFI_PXE_BASE_CODE_BOOT_TYPE_INTEL_LCM 2
#define EFI_PXE_BASE_CODE_BOOT_TYPE_DOSUNDI 3
#define EFI_PXE_BASE_CODE_BOOT_TYPE_NEC_ESMPRO 4
#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_WSoD 5
#define EFI_PXE_BASE_CODE_BOOT_TYPE_IBM_LCCM 6
#define EFI_PXE_BASE_CODE_BOOT_TYPE_CA_UNICENTER_TNG 7
#define EFI_PXE_BASE_CODE_BOOT_TYPE_HP_OPENVIEW 8
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_9 9
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_10 10
#define EFI_PXE_BASE_CODE_BOOT_TYPE_ALTIRIS_11 11
#define EFI_PXE_BASE_CODE_BOOT_TYPE_NOT_USED_12 12
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_INSTALL 13
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REDHAT_BOOT 14
#define EFI_PXE_BASE_CODE_BOOT_TYPE_REMBO 15
#define EFI_PXE_BASE_CODE_BOOT_TYPE_BEOBOOT 16
//
// Values 17 through 32767 are reserved.
// Values 32768 through 65279 are for vendor use.
// Values 65280 through 65534 are reserved.
//
#define EFI_PXE_BASE_CODE_BOOT_TYPE_PXETEST 65535

#define EFI_PXE_BASE_CODE_BOOT_LAYER_MASK 0x7FFF
#define EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL 0x0000

PXE Base Code Protocol

Version 1.02 12/12/00 255

//***
// EFI_PXE_BASE_CODE_DISCOVER_INFO
//***
typedef struct {

BOOLEAN UseMCast;
BOOLEAN UseBCast;
BOOLEAN UseUCast;
BOOLEAN MustUseList;
EFI_IP_ADDRESS ServerMCastIp;
UINT16 IpCnt;
EFI_PXE_BASE_CODE_SRVLIST SrvList[IpCnt];

} EFI_PXE_BASE_CODE_DISCOVER_INFO;

//***
// EFI_PXE_BASE_CODE_SRVLIST
//***
typedef struct {

UINT16 Type;
BOOLEAN AcceptAnyResponse;
UINT8 reserved;
EFI_IP_ADDRESS IpAddr;

} EFI_PXE_BASE_CODE_SRVLIST;

Extensible Firmware Interface Specification

256 12/12/00 Version 1.02

Description

This function attempts to complete the PXE Boot Server and/or boot image discovery sequence. If
this sequence is completed, then EFI_SUCCESS is returned, and the PxeDiscoverValid,
PxeDiscover, PxeReplyReceived, and PxeReply fields of the
EFI_PXE_BASE_CODE_MODE structure are filled in. If UseBis is TRUE, then the
PxeBisReplyReceived and PxeBisReply fields of the EFI_PXE_BASE_CODE_MODE
structure will also be filled in. If UseBis is FALSE, then PxeBisReplyValid will be set to
FALSE.

In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[], has two
uses: It is the Boot Server IP address list used for unicast discovery (if the UseUCast field is
TRUE), and it is the list used for Boot Server verification (if the MustUseList field is TRUE).
Also, if the MustUseList field in that structure is TRUE and the AcceptAnyResponse field
in the SrvList[] array is TRUE, any Boot Server reply of that type will be accepted. If the
AcceptAnyResponse field is FALSE, only responses from Boot Servers with matching IP
addresses will be accepted.

This function can take at least 10 seconds to timeout and return control to the caller. If the
Discovery sequence does not complete, then EFI_TIMEOUT will be returned. Please see the
Preboot Execution Environment (PXE) Specification for additional details on the implementation of
the Discovery sequence.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the Discovery sequence is
stopped and EFI_ABORTED will be returned.

Status Codes Returned
EFI_SUCCESS The Discovery sequence has been completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery.

EFI_ABORTED The callback function aborted the Discovery sequence.

EFI_TIMEOUT The Discovery sequence timed out.

EFI_ICMP_ERROR The Discovery sequence generated an ICMP error.

PXE Base Code Protocol

Version 1.02 12/12/00 257

14.1.5 EFI_PXE_BASE_CODE.Mtftp()

Summary

Used to perform TFTP and MTFTP services.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_MTFTP) (

IN EFI_PXE_BASE_CODE *This,
IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
IN OUT VOID *BufferPtr, OPTIONAL
IN BOOLEAN Overwrite,
IN OUT UINTN *BufferSize,
IN UINTN *BlockSize, OPTIONAL
IN EFI_IP_ADDRESS *ServerIp,
IN CHAR8 *Filename, OPTIONAL
IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info, OPTIONAL
IN BOOLEAN DontUseBuffer

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

Operation The type of operation to perform. See "Related Definitions" for the list
of operation types.

BufferPtr A pointer to the data buffer. Ignored for read file if DontUseBuffer
is TRUE.

Overwrite Only used on write file operations. TRUE if a file on a remote server can
be overwritten.

BufferSize For read-file and write-file operations, this is the size of the buffer
specified by BufferPtr. For read file operations, if BufferSize is
smaller than the size of the file being read, then this field will return the
required size. For get-file size operations, this field returns the size of
the requested file.

BlockSize The requested block size to be used during a TFTP transfer. This must
be at least 512. If this field is NULL, then the largest block size
supported by the implementation will be used.

ServerIp The TFTP / MTFTP server IP address.

Filename A Null-terminated ASCII string that specifies a directory name or a file
name. This is ignored by MTFTP read directory.

Extensible Firmware Interface Specification

258 12/12/00 Version 1.02

Info Pointer to the MTFTP information. This information is required to start
or join a multicast TFTP session. It is also required to perform the “get
file size” and “read directory” operations of MTFTP. See "Related
Definitions" for the description of this data structure.

DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation. Setting
this to TRUE will cause TFTP and MTFTP read file operations to
function without a receive buffer, and all of the received packets are
passed to the Callback Protocol which is responsible for storing them.
This field is only used by TFTP and MTFTP read file.

Related Definitions
//***
// EFI_PXE_BASE_CODE_TFTP_OPCODE
//***
typedef enum {

EFI_PXE_BASE_CODE_TFTP_FIRST,
EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE,
EFI_PXE_BASE_CODE_TFTP_READ_FILE,
EFI_PXE_BASE_CODE_TFTP_WRITE_FILE,
EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY,
EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE,
EFI_PXE_BASE_CODE_MTFTP_READ_FILE,
EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY,
EFI_PXE_BASE_CODE_MTFTP_LAST

} EFI_PXE_BASE_CODE_TFTP_OPCODE;

//***
// EFI_PXE_BASE_CODE_MTFTP_INFO
//***
typedef struct {

EFI_IP_ADDRESS MCastIp;
EFI_PXE_BASE_CODE_UDP_PORT CPort;
EFI_PXE_BASE_CODE_UDP_PORT SPort;
UINT16 ListenTimeout;
UINT16 TransmitTimeout;

} EFI_PXE_BASE_CODE_MTFTP_INFO;

PXE Base Code Protocol

Version 1.02 12/12/00 259

MCastIp File multicast IP address. This is the IP address to which the
server will send the requested file.

CPort Client multicast listening port. This is the UDP port to which the
server will send the requested file.

SPort Server multicast listening port. This is the UDP port on which
the server listens for multicast open requests and data acks.

ListenTimeout The number of seconds a client should listen for an active
multicast session before requesting a new multicast session.

TransmitTimeout The number of seconds a client should wait for a packet from the
server before retransmitting the previous open request or data
ack packet.

Description

This function is used to perform TFTP and MTFTP services. This includes the TFTP operations to
get the size of a file, read a directory, read a file, and write a file. It also includes the MTFTP
operations to get the size of a file, read a directory, and read a file. The type of operation is
specified by Operation. If the callback function that is invoked during the TFTP/MTFTP
operation does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then
EFI_ABORTED will be returned.

For read operations, the return data will be placed in the buffer specified by BufferPtr. If
BufferSize is too small to contain the entire downloaded file, then
EFI_BUFFER_TOO_SMALL will be returned and BufferSize will be set to zero or the size of
the requested file (the size of the requested file is only returned if the TFTP server supports TFTP
options). If BufferSize is large enough for the read operation, then BufferSize will be set to
the size of the downloaded file, and EFI_SUCCESS will be returned.

For write operations, the data to be sent is in the buffer specified by BufferPtr. BufferSize
specifies the number of bytes to send. If the write operation completes successfully, then
EFI_SUCCESS will be returned.

For TFTP “get file size” operations, the size of the requested file or directory is returned in
BufferSize, and EFI_SUCCESS will be returned. If the TFTP server does not support options,
the file will be downloaded into a bit bucket and the length of the downloaded file will be returned.
For MTFTP “get file size” operations, if the MTFTP server does not support the “get file size”
option, EFI_UNSUPPORTED will be returned.

This function can take up to 10 seconds to timeout and return control to the caller. If the TFTP
sequence does not complete, EFI_TIMEOUT will be returned.

If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then the TFTP sequence is stopped
and EFI_ABORTED will be returned.

Extensible Firmware Interface Specification

260 12/12/00 Version 1.02

The format of the data returned from a TFTP read directory operation is a null-terminated filename
followed by a null-terminated information string, of the form “size year-month-day
hour:minute:second” (i.e. %d %d-%d-%d %d:%d:%f - note that the seconds field can be a decimal
number), where the date and time are UTC. For an MTFTP read directory command, there is
additionally a null-terminated multicast IP address preceding the filename of the form
%d.%d.%d.%d for IP v4 (TBD for IP v6). The final entry is itself null-terminated, so that the final
information string is terminated with two null octets.

Status Codes Returned
EFI_SUCCESS The TFTP/MTFTP operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation.

EFI_ABORTED The callback function aborted the TFTP/MTFTP operation.

EFI_TIMEOUT The TFTP/MTFTP operation timed out.

EFI_TFTP_ERROR The TFTP/MTFTP operation generated an error.

PXE Base Code Protocol

Version 1.02 12/12/00 261

14.1.6 EFI_PXE_BASE_CODE.UdpWrite()

Summary

Writes a UDP packet to the network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_UDP_WRITE) (

IN EFI_PXE_BASE_CODE *This,
IN UINT16 OpFlags,
IN EFI_IP_ADDRESS *DestIp,
IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort,
IN EFI_IP_ADDRESS *GatewayIp, OPTIONAL
IN EFI_IP_ADDRESS *SrcIp, OPTIONAL
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL
IN UINTN *HeaderSize, OPTIONAL
IN VOID *HeaderPtr, OPTIONAL
IN UINTN *BufferSize,
IN VOID *BufferPtr
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

OpFlags The UDP operation flags. If MAY_FRAGMENT is set, then if required,
this UDP write operation may be broken up across multiple packets.

DestIp The destination IP address.

DestPort The destination UDP port number.

GatewayIp The gateway IP address. If DestIp is not in the same subnet as
StationIp, then this gateway IP address will be used. If this field is
NULL, and the DestIp is not in the same subnet as StationIp, then
the RouteTable will be used.

SrcIp The source IP address. If this field is NULL, then StationIp will be
used as the source IP address.

SrcPort The source UDP port number. If OpFlags has ANY_SRC_PORT set
or SrcPort is NULL, then a source UDP port will be automatically
selected. If a source UDP port was automatically selected, and
SrcPort is not NULL, then it will be returned in SrcPort.

HeaderSize An optional field which may be set to the length of a header at
HeaderPtr to be prepended to the data at BufferPtr.

Extensible Firmware Interface Specification

262 12/12/00 Version 1.02

HeaderPtr If HeaderSize is not NULL, a pointer to a header to be prepended to
the data at BufferPtr.

BufferSize A pointer to the size of the data at BufferPtr.

BufferPtr A pointer to the data to be written.

Description

This function writes a UDP packet specified by the (optional HeaderPtr and) BufferPtr
parameters to the network interface. The UDP header is automatically built by this routine. It uses
the parameters OpFlags, DestIp, DestPort, GatewayIp, SrcIp, and SrcPort to build
this header. If the packet is successfully built and transmitted through the network interface, then
EFI_SUCCESS will be returned. If a timeout occurs during the transmission of the packet, then
EFI_TIMEOUT will be returned. If an ICMP error occurs during the transmission of the packet,
then the IcmpErrorReceived field is set to TRUE, the IcmpError field is filled in and
EFI_ICMP_ERROR will be returned. If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be
returned.

Status Codes Returned
EFI_SUCCESS The UDP Write operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted.

EFI_ABORTED The callback function aborted the UDP Write operation.

EFI_TIMEOUT The UDP Write operation timed out.

EFI_ICMP_ERROR The UDP Write operation generated an error.

PXE Base Code Protocol

Version 1.02 12/12/00 263

14.1.7 EFI_PXE_BASE_CODE.UdpRead()

Summary

Reads a UDP packet from the network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_UDP_READ) (

IN EFI_PXE_BASE_CODE *This
IN UINT16 OpFlags,
IN OUT EFI_IP_ADDRESS *DestIp, OPTIONAL
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort, OPTIONAL
IN OUT EFI_IP_ADDRESS *SrcIp, OPTIONAL
IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort, OPTIONAL
IN UINTN *HeaderSize, OPTIONAL
IN VOID *HeaderPtr, OPTIONAL
IN OUT UINTN *BufferSize,
IN VOID *BufferPtr
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

OpFlags The UDP operation flags.

DestIp The destination IP address.

DestPort The destination UDP port number.

SrcIp The source IP address.

SrcPort The source UDP port number.

HeaderSize An optional field which may be set to the length of a header to be put in
HeaderPtr.

HeaderPtr If HeaderSize is not NULL, a pointer to a buffer to hold the
HeaderSize bytes which follow the UDP header.

BufferSize On input, a pointer to the size of the buffer at BufferPtr. On output,
the size of the data written to BufferPtr.

BufferPtr A pointer to the data to be read.

Extensible Firmware Interface Specification

264 12/12/00 Version 1.02

Description

This function reads a UDP packet from a network interface. The data contents are returned in (the
optional HeaderPtr and) BufferPtr, and the size of the buffer received is returned in
BufferSize . If the input BufferSize is smaller than the UDP packet received (less optional
HeaderSize), it will be set to the required size, and EFI_BUFFER_TOO_SMALL will be
returned. In this case, the contents of BufferPtr are undefined, and the packet is lost. If a UDP
packet is successfully received, then EFI_SUCCESS will be returned, and the information from the
UDP header will be returned in DestIp, DestPort, SrcIp, and SrcPort if they are not
NULL. Depending on the values of OpFlags and the DestIp, DestPort, SrcIp, and
SrcPort input values, different types of UDP packet receive filtering will be performed. The
following tables summarize these receive filter operations.

Table 14-2. Destination IP Filter Operation

OpFlags
USE_FILTER

OpFlags
ANY_DEST_IP DestIp Action

0 0 NULL Receive a packet sent to StationIp.

0 1 NULL Receive a packet sent to any IP address.

1 x NULL Receive a packet whose destination IP address passes
the IP filter.

0 0 not NULL Receive a packet whose destination IP address matches
DestIp.

0 1 not NULL Receive a packet sent to any IP address and, return the
destination IP address in DestIp.

1 x not NULL Receive a packet whose destination IP address passes the
IP filter, and return the destination IP address in DestIp.

Table 14-3. Destination UDP Port Filter Operation

OpFlags
ANY_DEST_PORT DestPort Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent to any UDP port.

0 not NULL Receive a packet whose destination Port matches DestPort.

1 not NULL Receive a packet sent to any UDP port, and return the destination port in
DestPort.

PXE Base Code Protocol

Version 1.02 12/12/00 265

Table 14-4. Source IP Filter Operation

OpFlags
ANY_SRC_IP SrcIp Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent from any IP address.

0 not NULL Receive a packet whose source IP address matches SrcIp.

1 not NULL Receive a packet sent from any IP address, and return the source IP
address in SrcIp.

Table 14-5. Source UDP Port Filter Operation

OpFlags
ANY_SRC_PORT SrcPort Action

0 NULL Return EFI_INVALID_PARAMETER.

1 NULL Receive a packet sent from any UDP port.

0 not NULL Receive a packet whose source UDP port matches SrcPort.

1 not NULL Receive a packet sent from any UDP port, and return the source UPD
port in SrcPort.

Status Codes Returned
EFI_SUCCESS The UDP Read operation was completed.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold.

EFI_ABORTED The callback function aborted the UDP Read operation.

EFI_TIMEOUT The UDP Read operation timed out.

EFI_ICMP_ERROR The UDP Read operation generated an error.

Extensible Firmware Interface Specification

266 12/12/00 Version 1.02

14.1.8 EFI_PXE_BASE_CODE.SetIpFilter()

Summary

Updates the IP receive filters of a network device and enables software filtering.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_IP_FILTER) (

IN EFI_PXE_BASE_CODE *This,
IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

NewFilter Pointer to the new set of IP receive filters.

Description

The NewFilter field is used to modify the network device’s current IP receive filter settings and
to enable a software filter. This function updates the IpFilter field of the
EFI_PXE_BASE_CODE_MODE structure with the contents of NewIpFilter. The software
filter is used when the USE_FILTER in OpFlags is set to UdpRead(). The current hardware
filter remains in effect no matter what the settings of OpFlags are, so that the meaning of
ANY_DEST_IP set in OpFlags to UdpRead() is from those packets whose reception is
enabled in hardware – physical NIC address (unicast), broadcast address, logical address or
addresses (multicast), or all (promiscuous). UdpRead() does not modify the IP filter settings.

Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive filter list
emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP. If an
application or driver wishes to preserve the IP receive filter settings, it will have to preserve the IP
receive filter settings before these calls, and use SetIpFilter() to restore them after the calls.
If incompatible filtering is requested (for example, PROMISCUOUS with anything else) or if the
device does not support a requested filter setting and it cannot be accommodated in software (for
example, PROMISCUOUS not supported), EFI_INVALID_PARAMETER will be returned. The
IPlist field is used to enable IP’s other than the StationIP. They may be multicast or
unicast. If IPcnt is set as well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP, then
both the StationIP and the IPs from the IPlist will be used.

Status Codes Returned
EFI_SUCCESS The IP receive filter settings were updated.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

PXE Base Code Protocol

Version 1.02 12/12/00 267

14.1.9 EFI_PXE_BASE_CODE.Arp()

Summary

Uses the ARP protocol to resolve a MAC address.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_ARP) (

IN EFI_PXE_BASE_CODE *This,
IN EFI_IP_ADDRESS *IpAddr,
IN EFI_MAC_ADDRESS *MacAddr OPTIONAL
);

Parameters
This Pointer to the EFI_PXE_BASE_CODE instance.

IpAddr Pointer to the IP address that is used to resolve a MAC address. When
the MAC address is resolved, the ArpCacheEntries and ArpCache
fields of the EFI_PXE_BASE_CODE_MODE structure are updated.

MacAddr If not NULL, a pointer to the MAC address that was resolved with the
ARP protocol.

Description
This function uses the ARP protocol to resolve a MAC address. The UsingIpv6 field of the
EFI_PXE_BASE_CODE_MODE structure is used to determine if IPv4 or IPv6 addresses are being
used. The IP address specified by IpAddr is used to resolve a MAC address. If the ARP protocol
succeeds in resolving the specified address, then the ArpCacheEntries and ArpCache fields
of the EFI_PXE_BASE_CODE_MODE structure are updated, and EFI_SUCCESS is returned. If
MacAddr is not NULL, the resolved MAC address is placed there as well.

If the PXE Base Code protocol is in the stopped state, then EFI_NOT_STARTED is returned. If
the ARP protocol encounters a timeout condition while attempting to resolve an address, then
EFI_TIMEOUT is returned. If the Callback Protocol does not return
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED is returned.

Status Codes Returned
EFI_SUCCESS The IP or MAC address was resolved.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_DEVICE_ERROR The network device encountered an error during this operation.

EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.

EFI_TIMEOUT The ARP Protocol encountered a timeout condition.

EFI_ABORTED The callback function aborted the ARP Protocol.

Extensible Firmware Interface Specification

268 12/12/00 Version 1.02

14.1.10 EFI_PXE_BASE_CODE.SetParameters()

Summary

Updates the parameters that affect the operation of the PXE Base Code Protocol.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_PARAMETERS) (

IN EFI_PXE_BASE_CODE *This,
IN BOOLEAN *NewAutoArp, OPTIONAL
IN BOOLEAN *NewSendGUID, OPTIONAL
IN UINT8 *NewTTL, OPTIONAL
IN UINT8 *NewToS, OPTIONAL
IN BOOLEAN *NewMakeCallback OPTIONAL
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

NewAutoArp If not NULL, a pointer to a value that specifies whether to replace the
current value of AutoARP: TRUE for automatic ARP packet generation,
FALSE otherwise. If NULL, this parameter is ignored.

NewSendGUID If not NULL, a pointer to a value that specifies whether to replace the
current value of SendGUID: TRUE to send the SystemGUID (if there is
one) as the client hardware address in DHCP; FALSE to send client NIC
MAC address. If NULL, this parameter is ignored.

NewTTL If not NULL, a pointer to be used in place of the current value of TTL,
the “time to live” field of the IP header. If NULL, this parameter is
ignored.

NewToS If not NULL, a pointer to be used in place of the current value of ToS,
the “type of service” field of the IP header. If NULL, this parameter is
ignored.

NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace the
current value of the MakeCallback field of the Mode structure. If
NULL, this parameter is ignored. If the Callback Protocol is not available
EFI_INVALID_PARAMETER is returned.

PXE Base Code Protocol

Version 1.02 12/12/00 269

Description

This function sets parameters that affect the operation of the PXE Base Code Protocol. The
parameter specified by NewAutoArp is used to control the generation of ARP protocol packets. If
NewAutoArp is TRUE, then ARP Protocol packets will be generated as required by the PXE Base
Code Protocol. If NewAutoArp is FALSE, then no ARP Protocol packets will be generated. In
this case, the only mappings that are available are those stored in the ArpCache of the
EFI_PXE_BASE_CODE_MODE structure. If there are not enough mappings in the ArpCache to
perform a PXE Base Code Protocol service, then the service will fail. This function updates the
AutoArp field of the EFI_PXE_BASE_CODE_MODE structure to NewAutoArp.

The EFI_PXE_BASE_CODE.SetParameters() call must be invoked after a Callback
Protocol is installed to enable the use of callbacks.

Status Codes Returned
EFI_SUCCESS The new parameters values were updated.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

Extensible Firmware Interface Specification

270 12/12/00 Version 1.02

14.1.11 EFI_PXE_BASE_CODE.SetStationIp()

Summary

Updates the station IP address and/or subnet mask values of a network device.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_STATION_IP) (

IN EFI_PXE_BASE_CODE *This,
IN EFI_IP_ADDRESS *NewStationIp, OPTIONAL
IN EFI_IP_ADDRESS *NewSubnetMask OPTIONAL
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

NewStationIp Pointer to the new IP address to be used by the network device. If this
field is NULL, then the StationIp address will not be modified.

NewSubnetMask Pointer to the new subnet mask to be used by the network device. If this
field is NULL, then the SubnetMask will not be modified.

Description

This function updates the station IP address and/or subnet mask values of a network device.

The NewStationIp field is used to modify the network device’s current IP address. If
NewStationIP is NULL, then the current IP address will not be modified. Otherwise, this
function updates the StationIp field of the EFI_PXE_BASE_CODE_MODE structure with
NewStationIp.

The NewSubnetMask field is used to modify the network device’s current subnet mask. If
NewSubnetMask is NULL, then the current subnet mask will not be modified. Otherwise, this
function updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE structure with
NewSubnetMask.

Status Codes Returned
EFI_SUCCESS The new station IP address and/or subnet mask were updated.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

PXE Base Code Protocol

Version 1.02 12/12/00 271

14.1.12 EFI_PXE_BASE_CODE.SetPackets()

Summary

Updates the contents of the cached DHCP and Discover packets.

Prototype
EFI_STATUS
(EFIAPI *EFI_PXE_BASE_CODE_SET_PACKETS) (

IN EFI_PXE_BASE_CODE *This,
IN BOOLEAN *NewDhcpDiscoverValid, OPTIONAL
IN BOOLEAN *NewDhcpAckReceived, OPTIONAL
IN BOOLEAN *NewProxyOfferReceived, OPTIONAL
IN BOOLEAN *NewPxeDiscoverValid, OPTIONAL
IN BOOLEAN *NewPxeReplyReceived, OPTIONAL
IN BOOLEAN *NewPxeBisReplyReceived,OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewDhcpDiscover, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewDhcpAck, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewProxyOffer, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewPxeDiscover, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewPxeReply, OPTIONAL
IN EFI_PXE_BASE_CODE_PACKET *NewPxeBisReply OPTIONAL
);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

NewDhcpDiscoverValid If not NULL, a pointer to a value that specifies whether to
replace the current value of DhcpDiscoverValid field. If
NULL, this parameter is ignored.

NewDhcpAckReceived If not NULL, a pointer to a value that specifies whether to
replace the current value of DhcpAckReceived field. If
NULL, this parameter is ignored.

NewProxyOfferReceived If not NULL, a pointer to a value that specifies whether to
replace the current value of ProxyOfferReceived field.
If NULL, this parameter is ignored.

NewPxeDiscoverValid If not NULL, a pointer to a value that specifies whether to
replace the current value of PxeDiscoverValid field. If
NULL, this parameter is ignored.

NewPxeReplyReceived If not NULL, a pointer to a value that specifies whether to
replace the current value of PxeReplyReceived field. If
NULL, this parameter is ignored.

Extensible Firmware Interface Specification

272 12/12/00 Version 1.02

NewPxeBisReplyReceived If not NULL, a pointer to a value that specifies whether to
replace the current value of PxeBisReplyReceived field.
If NULL, this parameter is ignored.

NewDhcpDiscover Pointer to the new cached DHCP Discover packet.

NewDhcpAck Pointer to the new cached DHCP Ack packet.

NewProxyOffer Pointer to the new cached Proxy Offer packet.

NewPxeDiscover Pointer to the new cached PXE Discover packet.

NewPxeReply Pointer to the new cached PXE Reply packet.

NewPxeBisReply Pointer to the new cached PXE BIS Reply packet.

Description

The pointers to the new packets are used to update the contents of the cached packets in the
EFI_PXE_BASE_CODE_MODE structure.

Status Codes Returned
EFI_SUCCESS The cached packet contents were updated.

EFI_INVALID_PARAMETER One of the parameters is not valid.

EFI_NOT_STARTED The PXE Base Code Protocol is not in the started state.

PXE Base Code Protocol

Version 1.02 12/12/00 273

14.2 EFI_PXE_BASE_CODE_CALLBACK Protocol

Summary

This is a specific instance of the PXE Base Code Callback Protocol that is invoked when the PXE
Base Code Protocol is about to transmit, has received, or is waiting to receive a packet. The PXE
Base Code Callback Protocol must be on the same handle as the PXE Base Code Protocol.

GUID
#define EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL \

{ 245DCA21-FB7B-11d3-8F01-00A0C969723B }

Revision Number
#define EFI_PXE_BASE_CODE_CALLBACK_INTERFACE_REVISION \

0x00010000

Protocol Interface Structure
typedef struct {

UINT64 Revision;
EFI_PXE_CALLBACK Callback;

} EFI_PXE_BASE_CODE_CALLBACK;

Parameters

Revision The revision of the EFI_PXE_BASE_CODE_CALLBACK protocol. All
future revisions must be backwards compatible. If a future revision is
not backwards compatible, it is not the same GUID.

Callback Callback routine used by the PXE Base Code Dhcp(), Discover(),
Mtftp(), UdpWrite() and Arp() functions.

Extensible Firmware Interface Specification

274 12/12/00 Version 1.02

14.2.1 EFI_PXE_BASE_CODE_CALLBACK.Callback()

Summary

Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has
received, or is waiting to receive a packet.

Prototype
EFI_PXE_BASE_CODE_CALLBACK_STATUS
(*EFI_PXE_CALLBACK) (

IN EFI_PXE_BASE_CODE_CALLBACK *This,
IN EFI_PXE_BASE_CODE_FUNCTION Function,
IN BOOLEAN Received,
IN UINT32 PacketLen,
IN EFI_PXE_BASE_CODE_PACKET *Packet OPTIONAL

);

Parameters

This Pointer to the EFI_PXE_BASE_CODE instance.

Function The PXE Base Code Protocol function that is waiting for an event.

Received TRUE if the callback is being invoked due to a receive event. FALSE if
the callback is being invoked due to a transmit event.

PacketLen The length, in bytes, of Packet. This field will have a value of zero if
this is a wait for receive event.

Packet If Received is TRUE, a pointer to the packet that was just received;
otherwise a pointer to the packet that is about to be transmitted. This
field will be NULL if this is not a packet event.

PXE Base Code Protocol

Version 1.02 12/12/00 275

Related Definitions

//***
// EFI_PXE_BASE_CODE_CALLBACK_STATUS
//***
typedef enum {

EFI_PXE_BASE_CODE_CALLBACK_STATUS_FIRST,
EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT,
EFI_PXE_BASE_CODE_CALLBACK_STATUS_LAST

} EFI_PXE_BASE_CODE_CALLBACK_STATUS;

//***
// EFI_PXE_BASE_CODE_FUNCTION
//***
typedef enum {

EFI_PXE_BASE_CODE_FUNCTION_FIRST,
EFI_PXE_BASE_CODE_FUNCTION_DHCP,
EFI_PXE_BASE_CODE_FUNCTION_DISCOVER,
EFI_PXE_BASE_CODE_FUNCTION_MTFTP,
EFI_PXE_BASE_CODE_FUNCTION_UDP_WRITE,
EFI_PXE_BASE_CODE_FUNCTION_UDP_READ,
EFI_PXE_BASE_CODE_FUNCTION_ARP,
EFI_PXE_BASE_CODE_FUNCTION_IGMP,
EFI_PXE_BASE_CODE_PXE_FUNCTION_LAST

} EFI_PXE_BASE_CODE_FUNCTION;

Description

This function is invoked when the PXE Base Code Protocol is about to transmit, has received, or is
waiting to receive a packet. Parameters Function and Received specify the type of event.
Parameters PacketLen and Packet specify the packet that generated the event. If these fields
are zero and NULL respectively, then this is a status update callback. If the operation specified by
Function is to continue, then CALLBACK_STATUS_CONTINUE should be returned. If the
operation specified by Function should be aborted, then CALLBACK_STATUS_ABORT should
be returned. Due to the polling nature of EFI device drivers, a callback function should not execute
for more than 5 ms.

The EFI_PXE_BASE_CODE.SetParameters() function must be called after a Callback
Protocol is installed to enable the use of callbacks.

Extensible Firmware Interface Specification

276 12/12/00 Version 1.02

Version 1.02 12/12/00 277

15
Simple Network Protocol

This chapter defines the Simple Network Protocol. This protocol provides a packet level interface
to a network adapter.

15.1 EFI_SIMPLE_NETWORK Protocol

Summary

The EFI_SIMPLE_NETWORK protocol provides services to initialize a network interface, transmit
packets, receive packets, and close a network interface.

GUID
#define EFI_SIMPLE_NETWORK_PROTOCOL \

{ A19832B9-AC25-11D3-9A2D-0090273fc14d }

Revision Number
#define EFI_SIMPLE_NETWORK_INTERFACE_REVISION 0x00010000

Protocol Interface Structure
typedef struct _EFI_SIMPLE_NETWORK_ {
 UINT64 Revision;
 EFI_SIMPLE_NETWORK_START Start;
 EFI_SIMPLE_NETWORK_STOP Stop;
 EFI_SIMPLE_NETWORK_INITIALIZE Initialize;
 EFI_SIMPLE_NETWORK_RESET Reset;
 EFI_SIMPLE_NETWORK_SHUTDOWN Shutdown;
 EFI_SIMPLE_NETWORK_RECEIVE_FILTERS ReceiveFilters;
 EFI_SIMPLE_NETWORK_STATION_ADDRESS StationAddress;
 EFI_SIMPLE_NETWORK_STATISTICS Statistics;
 EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC MCastIpToMac;
 EFI_SIMPLE_NETWORK_NVDATA NvData;
 EFI_SIMPLE_NETWORK_GET_STATUS GetStatus;
 EFI_SIMPLE_NETWORK_TRANSMIT Transmit;
 EFI_SIMPLE_NETWORK_RECEIVE Receive;
 EFI_EVENT WaitForPacket;
 EFI_SIMPLE_NETWORK_MODE *Mode;
} EFI_SIMPLE_NETWORK;

Extensible Firmware Interface Specification

278 12/12/00 Version 1.02

Parameters
Revision Revision of the EFI_SIMPLE_NETWORK Protocol. All future revisions

must be backwards compatible. If a future version is not backwards
compatible it is not the same GUID.

Start Prepares the network interface for further command operations. No
other EFI_SIMPLE_NETWORK interface functions will operate until
this call is made.

Stop Stops further network interface command processing. No other
EFI_SIMPLE_NETWORK interface functions will operate after this call
is made until another Start call is made.

Initialize Resets the network adapter and allocates the transmit and receive buffers.

Reset Resets the network adapter and re-initializes it with the parameters
provided in the previous call to Initialize.

Shutdown Resets the network adapter and leaves it in a state that is safe for another
driver to initialize. The memory buffers assigned in the Initialize
call are released. After this call, only the Initialize or Stop calls
may be used.

ReceiveFilters Enables and disables the receive filters for the network interface and, if
supported, manages the filtered multicast HW MAC (Hardware Media
Access Control) address list.

StationAddress Modifies or resets the current station address, if supported.

Statistics Collects statistics from the network interface and allows the statistics to
be reset.

MCastIpToMac Maps a multicast IP address to a multicast HW MAC address.

NvData Reads and writes the contents of the NVRAM devices attached to the
network interface.

GetStatus Reads the current interrupt status and the list of recycled transmit buffers
from the network interface.

Transmit Places a packet in the transmit queue.

Receive Retrieves a packet from the receive queue, along with the status flags
that describe the packet type.

WaitForPacket Event used with WaitForEvent() to wait for a packet to be received.

Mode Pointer to the EFI_SIMPLE_NETWORK_MODE data for the device. See
“Related Definitions”.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 279

Related Definitions

//***
// EFI_SIMPLE_NETWORK_MODE
//
// Note that the fields in this data structure are read-only and
// are updated by the code that produces the EFI_SIMPLE_NETWORK
// protocol functions. All these fields must be discovered
// during driver initialization.
//***
typedef struct {

UINT32 State;
UINT32 HwAddressSize;
UINT32 MediaHeaderSize;
UINT32 MaxPacketSize;
UINT32 NvRamSize;
UINT32 NvRamAccessSize;
UINT32 ReceiveFilterMask;
UINT32 ReceiveFilterSetting;
UINT32 MaxMCastFilterCount;
UINT32 MCastFilterCount;
EFI_MAC_ADDRESS MCastFilter[MAX_MCAST_FILTER_CNT];
EFI_MAC_ADDRESS CurrentAddress;
EFI_MAC_ADDRESS BroadcastAddress;
EFI_MAC_ADDRESS PermanentAddress;
UINT8 IfType;
BOOLEAN MacAddressChangeable;
BOOLEAN MultipleTxSupported;
BOOLEAN MediaPresentSupported;
BOOLEAN MediaPresent;

} EFI_SIMPLE_NETWORK_MODE;

Extensible Firmware Interface Specification

280 12/12/00 Version 1.02

State Reports the current state of the network interface (see
EFI_SIMPLE_NETWORK_STATE below). When an
EFI_SIMPLE_NETWORK driver has initialized a network
interface, it is left in the EfiSimpleNetworkStopped state.

HwAddressSize The size, in bytes, of the network interface’s HW address.

MediaHeaderSize The size, in bytes, of the network interface’s media header.

MaxPacketSize The maximum size, in bytes, of the packets supported by the
network interface.

NvRamSize The size, in bytes, of the NVRAM device attached to the
network interface. If an NVRAM device is not attached to the
network interface, then this field will be zero. This value must
be a multiple of NvramAccessSize.

NvRamAccessSize The size that must be used for all NVRAM accesses. This
means that the start address for NVRAM read and write
operations, and the total length of thoseoperation, must be a
multiple of this value. The legal values for this field are 0, 1, 2,
4, 8. If the value is zero, then no NVRAM devices are attached
to the network interface.

ReceiveFilterMask The multicast receive filter settings supported by the network
interface.

ReceiveFilterSetting The current multicast receive filter settings. See “Bit Mask
Values for ReceiveFilterSetting” below.

MaxMCastFilterCount The maximum number of multicast address receive filters
supported by the driver. If this value is zero, then the multicast
address receive filters can not be modified with ReceiveFilters().
This field may be less than MAX_MCAST_FILTER_CNT (see
below).

MCastFilterCount The current number of multicast address receive filters.

MCastFilter Array containing the addresses of the current multicast address
receive filters.

CurrentAddress The current HW MAC address for the network interface.

BroadcastAddress The current HW MAC address for broadcast packets.

PermanentAddress The permenant HW MAC address for the network interface.

IfType The interface type of the network interface. See RFC 1700,
section “Number Hardware Type”.

MacAddressChangeable TRUE if the HW MAC address can be changed.

MultipleTxSupported TRUE if the network interface can transmit more than one packet
at a time.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 281

MediaPresentSupported TRUE if the presence of media can be determined; otherwise
FALSE. If FALSE, MediaPresent cannot be used.

MediaPresent TRUE if media are connected to the network interface;otherwise
FALSE. This field is only valid immediately after calling
Initialize().

//***
// EFI_SIMPLE_NETWORK_STATE
//***
typedef enum {

EfiSimpleNetworkStopped,
EfiSimpleNetworkStarted,
EfiSimpleNetworkInitialized,
EfiSimpleNetworkMaxState

} EFI_SIMPLE_NETWORK_STATE;

//***
// MAX_MCAST_FILTER_CNT
//***
#define MAX_MCAST_FILTER_CNT 16

//***
// Bit Mask Values for ReceiveFilterSetting.
//
// Note that all other bit values are reserved.
//***
#define EFI_SIMPLE_NETWORK_RECEIVE_UNICAST 0x01
#define EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST 0x02
#define EFI_SIMPLE_NETWORK_RECEIVE_BROADCAST 0x04
#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS 0x08
#define EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST 0x10

Description

The EFI_SIMPLE_NETWORK protocol is used to initialize access to a network adapter. Once the
network adapter has been initialized, the EFI_SIMPLE_NETWORK protocol provides services that
allow packets to be transmitted and received. This provides a packet level interface that can then be
used by higher level drivers to produce boot services like DHCP, TFTP, and MTFTP. In addition,
this protocol can be used as a building block in a full UDP and TCP/IP implementation that can
produce a wide variety of application level network interfaces. See the Preboot Execution
Environment (PXE) Specification for more information.

Extensible Firmware Interface Specification

282 12/12/00 Version 1.02

15.1.1 EFI_SIMPLE_NETWO RK.Start()

Summary

Changes the state of a network interface from “stopped” “started”.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_START) (

IN EFI_SIMPLE_NETWORK *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Description

This function starts a network interface. If the network interface was successfully started, then
EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was started.

EFI_ALREADY_STARTED The network interface is already in the started state.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 283

15.1.2 EFI_SIMPLE_NETWO RK.Stop()

Summary

Changes the state of a network interface from “started” to “stopped”.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STOP) (

IN EFI_SIMPLE_NETWORK *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Description

This function stops an network interface. This call is only valid if the network interface is in the
started state. If the network interface was successfully stopped, then EFI_SUCCESS will be
returned.

Status Codes Returned
EFI_SUCCESS The network interface was stopped.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

284 12/12/00 Version 1.02

15.1.3 EFI_SIMPLE_NETWO RK.Initialize()

Summary

Resets a network adapter and allocates the transmit and receive buffers required by the network
interface; optionally, also requests allocation of additional transmit and receive buffers.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_INITIALIZE) (

IN EFI_SIMPLE_NETWORK *This,
IN UINTN ExtraRxBufferSize OPTIONAL,
IN UINTN ExtraTxBufferSize OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

ExtraRxBufferSize The size, in bytes, of the extra receive buffer space that the
driver should allocate for the network interface. Some network
interfaces will not be able to use the extra buffer, and the caller
will not know if it is actually being used.

ExtraTxBufferSize The size, in bytes, of the extra transmit buffer space that the
driver should allocate for the network interface. Some network
interfaces will not be able to use the extra buffer, and the caller
will not know if it is actually being used.

Description

This function allocates the transmit and receive buffers required by the network interface. If this
allocation fails, then EFI_OUT_OF_RESOURCES is returned. If the allocation succeeds and the
network interface is successfully initialized, then EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was initialized.

EFI_NOT_STARTED The network interface has not been started.

EFI_OUT_OF_RESOURCES There was not enough memory for the transmit and receive buffers.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 285

15.1.4 EFI_SIMPLE_NETW ORK.Reset()

Summary

Resets a network adapter and re-initializes it with the parameters that were provided in the previous
call to Initialize().

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RESET) (

IN EFI_SIMPLE_NETWORK *This,
IN BOOLEAN ExtendedVerification
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

ExtendedVerification Indicates that the driver may perform a more exhaustive
verification operation of the device during reset.

Description

This function resets a network adapter and re-initializes it with the parameters that were provided in
the previous call to Initialize(). The transmit and receive queues are emptied and all
pending interrupts are cleared. Receive filters, the station address, the statistics, and the multicast-
IP-to-HW MAC addresses are not reset by this call. If the network interface was successfully reset,
then EFI_SUCCESS will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR
will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was reset.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

286 12/12/00 Version 1.02

15.1.5 EFI_SIMPLE_NETWO RK.Shutdown()

Summary

Resets a network adapter and leaves it in a state that is safe for another driver to initialize.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_SHUTDOWN) (

IN EFI_SIMPLE_NETWORK *This
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Description

This function releases the memory buffers assigned in the Initialize() call. Pending
transmits and receives are lost, and interrupts are cleared and disabled. After this call, only the
Initialize() and Stop() calls may be used. If the network interface was successfully
shutdown, then EFI_SUCCESS will be returned. If the driver has not been initialized,
EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The network interface was shutdown.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 287

15.1.6 EFI_SIMPLE_NETWO RK.ReceiveFilters()

Summary
Manages the multicast receive filters of a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE_FILTERS) (

IN EFI_SIMPLE_NETWORK *This,
IN UINT32 Enable,
IN UINT32 Disable,
IN BOOLEAN ResetMCastFilter,
IN UINTN McastFilterCnt OPTIONAL,
IN EFI_MAC_ADDRESS *MCastFilter OPTIONAL,
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK instance.

Enable A bit mask of receive filters to enable on the network interface.

Disable A bit mask of receive filters to disable on the network interface.

ResetMCastFilter Set to TRUE to reset the contents of the multicast receive filters
on the network interface to their default values.

MCastFilterCnt Number of multicast HW MAC addresses in the new
MCastFilter list. This value must be less than or equal to the
MCastFilterCnt field of EFI_SIMPLE_NETWORK_MODE.
This field is optional if ResetMCastFilter is TRUE.

MCastFilter A pointer to a list of new multicast receive filter HW MAC
addresses. This list will replace any existing multicast HW
MAC address list. This field is optional if
ResetMCastFilter is TRUE.

Description

This function modifies the current receive filter mask on a network interface. The bits set in
Enable are set on the current receive filter mask. The bits set in Disable are cleared from the
current receive filter mask. If the same bit is set in both Enable and Disable, then the bit will
be disabled. The receive filter mask is updated on the network interface, and the new receive filter
mask can be read from the ReceiveFilterSetting field of
EFI_SIMPLE_NETWORK_MODE. If an attempt is made to enable a bit that is not supported on the
network interface, then EFI_INVALID_PARAMETER will be returned. The
ReceiveFilterMask field of EFI_SIMPLE_NETWORK_MODE specifies the supported receive
filters settings. See “Bit Mask Values for ReceiveFilterSetting” in “Related Definitions”
in Section 15.1 for the list of the supported receive filter bit mask values.

Extensible Firmware Interface Specification

288 12/12/00 Version 1.02

If ResetMCastFilter is TRUE, then the multicast receive filter list on the network interface
will be reset to the default multicast receive filter list. If ResetMCastFilter is FALSE, and
this network interface allows the multicast receive filter list to be modified, then the
MCastFilterCnt and MCastFilter are used to update the current multicast receive filter list.
The modified receive filter list settings can be found in the MCastFilter field of
EFI_SIMPLE_NETWORK_MODE. If the network interface does not allow the multicast receive
filter list to be modified, then EFI_INVALID_PARAMETER will be returned. If the driver has not
been initialized, EFI_DEVICE_ERROR will be returned.

If the receive filter mask and multicast receive filter list have been successfully updated on the
network interface, EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The multicast receive filter list was updated.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 289

15.1.7 EFI_SIMPLE_NETWO RK.StationAddress()

Summary

Modifies or resets the current station address, if supported.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STATION_ADDRESS) (

IN EFI_SIMPLE_NETWORK *This,
IN BOOLEAN Reset,
IN EFI_MAC_ADDRESS *New OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Reset Flag used to reset the station address to the network interface’s
permanent address.

New New station address to be used for the network interface.

Description

This function modifies or resets the current station address of a network interface, if supported. If
Reset is TRUE, then the current station address is set to the network interface's permanent
address. If Reset is FALSE, and the network interface allows its station address to be modified,
then the current station address is changed to the address specified by New. If the network interface
does not allow its station address to be modified, then EFI_INVALID_PARAMETER will be
returned. If the station address is successfully updated on the network interface, EFI_SUCCESS
will be returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The network interface’s station address was updated.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

290 12/12/00 Version 1.02

15.1.8 EFI_SIMPLE_NETWO RK.Statistics()

Summary

Resets or collects the statistics on a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_STATISTICS) (

IN EFI_SIMPLE_NETWORK *This,
IN BOOLEAN Reset,
IN OUT UINTN *StatisticsSize OPTIONAL,
OUT EFI_NETWORK_STATISTICS *StatisticsTable OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

Reset Set to TRUE to reset the statistics for the network interface.

StatisticsSize On input the size, in bytes, of StatisticsTable. On output
the size, in bytes, of the resulting table of statistics.

StatisticsTable A pointer to the EFI_NETWORK_STATISTICS structure that
contains the statistics. Type EFI_NETWORK_STATISTICS is
defined in “Related Definitions”.

Related Definitions

//***
// EFI_NETWORK_STATISTICS
//
// Any statistic value that is –1 is not available
// on the device and is to be ignored.
//***
typedef struct {

UINT64 RxTotalFrames;
UINT64 RxGoodFrames;
UINT64 RxUndersizeFrames;
UINT64 RxOversizeFrames;

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 291

UINT64 RxDroppedFrames;
UINT64 RxUnicastFrames;
UINT64 RxBroadcastFrames;
UINT64 RxMulticastFrames;
UINT64 RxCrcErrorFrames;
UINT64 RxTotalBytes;
UINT64 TxTotalFrames;
UINT64 TxGoodFrames;
UINT64 TxUndersizeFrames;
UINT64 TxOversizeFrames;
UINT64 TxDroppedFrames;
UINT64 TxUnicastFrames;
UINT64 TxBroadcastFrames;
UINT64 TxMulticastFrames;
UINT64 TxCrcErrorFrames;
UINT64 TxTotalBytes;
UINT64 Collisions;
UINT64 UnsupportedProtocol;

} EFI_NETWORK_STATISTICS;

RxTotalFrames Total number of frames received. Includes frames with errors
and dropped frames.

RxGoodFrames Number of valid frames received and copied into receive buffers.

RxUndersizeFrames Number of frames below the minimum length for the media.
This would be less than64 for ethernet.

RxOversizeFrames Number of frames longer than the maxminum length for the
media. This would be greater than 1500 for ethernet.

RxDroppedFrames Valid frames that were dropped because receive buffers were
full.

RxUnicastFrames Number of valid unicast frames received and not dropped.

RxBroadcastFrames Number of valid broadcast frames received and not dropped.

RxMulticastFrames Number of valid mutlicast frames received and not dropped.

RxCrcErrorFrames Number of frames w/ CRC or alignment errors.

RxTotalBytes Total number of bytes received. Includes frames with errors and
dropped frames.

TxTotalFrames Total number of frames transmitted. Includes frames with errors
and dropped frames.

TxGoodFrames Number of valid frames transmitted and copied into receive
buffers.

TxUndersizeFrames Number of frames below the minimum length for the media.
This would be less than 64 for ethernet.

Extensible Firmware Interface Specification

292 12/12/00 Version 1.02

TxOversizeFrames Number of frames longer than the maxminum length for the
media. This would be greater than 1500 for ethernet.

TxDroppedFrames Valid frames that were dropped because receive buffers were
full.

TxUnicastFrames Number of valid unicast frames transmitted and not dropped.

TxBroadcastFrames Number of valid broadcast frames transmitted and not dropped.

TxMulticastFrames Number of valid mutlicast frames transmitted and not dropped.

TxCrcErrorFrames Number of frames w/ CRC or alignment errors.

TxTotalBytes Total number of bytes transmitted. Includes frames with errors
and dropped frames.

Collisions Number of collisions detected on this subnet.

UnsupportedProtocol Number of frames destined for unsupported protocol.

Description

This function resets or collects the statistics on a network interface. If the size of the statistics table
specified by StatisticsSize is not big enough for all the statistics that are collected by the
network interface, then a partial buffer of statistics is returned in StatisticsTable,
StatisticsSize is set to the size required to collect all the available statistics, and
EFI_BUFFER_TOO_SMALL is returned.

If StatisticsSize is big enough for all the statistics, then StatisticsTable will be filled,
StatisticsSize will be set to the size of the returned StatisticsTable structure, and
EFI_SUCCESS is returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be
returned.

If Reset is FALSE, and both StatisticsSize and StatisticsTable are NULL, then no
operations will be performed, and EFI_SUCCESS will be returned.

If Reset is TRUE, then all of the supported statistics counters on this network interface will be
reset to zero.

Status Codes Returned
EFI_SUCCESS The statistics were collected from the network interface.

EFI_NOT_STARTED The network interface has not been started.

EFI_BUFFER_TOO_SMALL The Statistics buffer was too small. The current buffer size
needed to hold the statistics is returned in StatisticsSize.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 293

15.1.9 EFI_SIMPLE_NETWO RK.MCastIPtoMAC()

Summary

Converts a multicast IP address to a multicast HW MAC address.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_MCAST_IP_TO_MAC) (

IN EFI_SIMPLE_NETWORK *This,
IN BOOLEAN IPv6,
IN EFI_IP_ADDRESS *IP,
OUT EFI_MAC_ADDRESS *MAC
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

IPv6 Set to TRUE if the multicast IP address is IPv6 [RFC 2460]. Set
to FALSE if the multicast IP address is IPv4 [RFC 791].

IP The multicast IP address that is to be converted to a multicast
HW MAC address.

MAC The multicast HW MAC address that is to be generated from IP.

Description

This function converts a multicast IP address to a multicast HW MAC address for all packet
transactions. If the mapping is accepted, then EFI_SUCCESS will be returned.

Status Codes Returned
EFI_SUCCESS The multicast IP address was mapped to the multicast HW MAC

address.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

294 12/12/00 Version 1.02

15.1.10 EFI_SIMPLE_NETWO RK.NvData()

Summary

Performs read and write operations on the NVRAM device attached to a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_NVDATA) (

IN EFI_SIMPLE_NETWORK *This
IN BOOLEAN ReadWrite,
IN UINTN Offset,
IN UINTN BufferSize,
IN OUT VOID *Buffer
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK instance.

ReadWrite TRUE for read operations, FALSE for write operations.

Offset Byte offset in the NVRAM device at which to start the read or
write operation. This must be a multiple of
NvRamAccessSize and less than NvRamSize. (See
EFI_SIMPLE_NETWORK_MODE in “Related Definitions” in
Section 15.1.)

BufferSize The number of bytes to read or write from the NVRAM device.
This must also be a multiple of NvramAccessSize.

Buffer A pointer to the data buffer.

Description

This function performs read and write operations on the NVRAM device attached to a network
interface. If ReadWrite is TRUE, a read operation is performed. If ReadWrite is FALSE, a
write operation is performed.

Offset specifies the byte offset at which to start either operation. Offset must be a multiple of
NvRamAccessSize , and it must have a value between zero and NvRamSize.

BufferSize specifies the length of the read or write operation. BufferSize must also be a
multiple of NvRamAccessSize, and Offset + BufferSize must not exceed NvRamSize.

If any of the above conditions is not met, then EFI_INVALID_PARAMETER will be returned.

If all the conditions are met and the operation is “read”, the NVRAM device attached to the
network interface will be read into Buffer and EFI_SUCCESS will be returned. If this is a write
operation, the contents of Buffer will be used to update the contents of the NVRAM device
attached to the network interface and EFI_SUCCESS will be returned.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 295

Status Codes Returned
EFI_SUCCESS The NVRAM access was performed.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

296 12/12/00 Version 1.02

15.1.11 EFI_SIMPLE_NETWO RK.GetStatus()

Summary

Reads the current interrupt status and recycled transmit buffer status from a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_GET_STATUS) (

IN EFI_SIMPLE_NETWORK *This,
OUT UINT32 *InterruptStatus OPTIONAL,
OUT VOID **TxBuf OPTIONAL
);

Parameters
This A pointer to the EFI_SIMPLE_NETWORK instance.

InterruptStatus A pointer to the bit mask of the currently active interrupts (see
“Related Definitions”). If this is NULL, the interrupt status will
not be read from the device. If this is not NULL, the interrupt
status will be read from the device. When the interrupt status is
read, it will also be cleared. Clearing the transmit interrupt does
not empty the recycled transmit buffer array.

TxBuf Recycled transmit buffer address. The network interface will not
transmit if its internal recycled transmit buffer array is full.
Reading the transmit buffer does not clear the transmit interrupt.
If this is NULL, then the transmit buffer status will not be read.
If there are no transmit buffers to recycle and TxBuf is not
NULL, * TxBuf will be set to NULL.

Related Definitions

//***
// Interrupt Bit Mask Settings for InterruptStatus.
// Note that all other bit values are reserved.
//***
#define EFI_SIMPLE_NETWORK_RECEIVE_INTERRUPT 0x01
#define EFI_SIMPLE_NETWORK_TRANSMIT_INTERRUPT 0x02
#define EFI_SIMPLE_NETWORK_COMMAND_INTERRUPT 0x04
#define EFI_SIMPLE_NETWORK_SOFTWARE_INTERRUPT 0x08

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 297

Description

This function gets the current interrupt and recycled transmit buffer status from the network
interface. The interrupt status is returned as a bit mask in InterruptStatus. If
InterruptStatus is NULL, the interrupt status will not be read. If TxBuf is not NULL, a
recycled transmit buffer address will be retrieved. If a recycled transmit buffer address is returned
in TxBuf, then the buffer has been successfully transmitted, and the status for that buffer is
cleared. If the status of the network interface is successfully collected, EFI_SUCCESS will be
returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The status of the network interface was retrieved.

EFI_NOT_STARTED The network interface has not been started.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

298 12/12/00 Version 1.02

15.1.12 EFI_SIMPLE_NETWO RK.Transmit()

Summary

Places a packet in the transmit queue of a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_TRANSMIT) (

IN EFI_SIMPLE_NETWORK *This
IN UINTN HeaderSize,
IN UINTN BufferSize,
IN VOID *Buffer,
IN EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
IN EFI_MAC_ADDRESS *DestAddr OPTIONAL,
IN UINT16 *Protocol OPTIONAL,
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

HeaderSize The size, in bytes, of the media header to be filled in by the
Transmit() function. If HeaderSize is non-zero, then it
must be equal to This->Mode->MediaHeaderSize and
the DestAddr and Protocol parameters must not be NULL.

BufferSize The size, in bytes, of the entire packet (media header and data)
to be transmitted through the network interface.

Buffer A pointer to the packet (media header followed by data) to be
transmitted. This parameter cannot be NULL. If HeaderSize
is zero, then the media header in Buffer must already be filled
in by the caller. If HeaderSize is non-zero, then the media
header will be filled in by the Transmit() function.

SrcAddr The source HW MAC address. If HeaderSize is zero, then
this parameter is ignored. If HeaderSize is non-zero and
SrcAddr is NULL, then This->Mode->CurrentAddress
is used for the source HW MAC address.

DestAddr The destination HW MAC address. If HeaderSize is zero,
then this parameter is ignored.

Protocol The type of header to build. If HeaderSize is zero, then this
parameter is ignored. See RFC 1700, section "Ether Types", for
examples.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 299

Description

This function places the packet specified by Header and Buffer on the transmit queue. If
HeaderSize is non-zero and HeaderSize is not equal to This->Mode-
>MediaHeaderSize, then EFI_INVALID_PARAMETER will be returned. If BufferSize is
less than This->Mode->MediaHeaderSize, then EFI_BUFFER_TOO_SMALL will be
returned. If Buffer is NULL, then EFI_INVALID_PARAMETER will be returned. If
HeaderSize is non-zero and DestAddr or Protocol is NULL, then
EFI_INVALID_PARAMETER will be returned. If the transmit engine of the network interface is
busy, then EFI_NOT_READY will be returned. If this packet can be accepted by the transmit
engine of the network interface, the packet contents specified by Buffer will be placed on the
transmit queue of the network interface, and EFI_SUCCESS will be returned. GetStatus()
can be used to determine when the packet has actually been transmitted. The contents of the Buffer
must not be modified until the packet has actually been transmitted.

The Transmit() function performs non-blocking I/O. A caller who wants to perform blocking
I/O, should call Transmit(), and then GetStatus() until the transmitted buffer shows up in
the recycled transmit buffer.

If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The packet was placed on the transmit queue.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY The network interface is too busy to accept this transmit request.

EFI_BUFFER_TOO_SMALL The BufferSize parameter is too small.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

300 12/12/00 Version 1.02

15.1.13 EFI_SIMPLE_NETWO RK.Receive()

Summary

Receives a packet from a network interface.

Prototype
EFI_STATUS
(EFIAPI *EFI_SIMPLE_NETWORK_RECEIVE) (

IN EFI_SIMPLE_NETWORK *This
OUT UINTN *HeaderSize OPTIONAL,
IN OUT UINTN *BufferSize,
OUT VOID *Buffer,
OUT EFI_MAC_ADDRESS *SrcAddr OPTIONAL,
OUT EFI_MAC_ADDRESS *DestAddr OPTIONAL,
OUT UINT16 *Protocol OPTIONAL
);

Parameters

This A pointer to the EFI_SIMPLE_NETWORK instance.

HeaderSize The size, in bytes, of the media header received on the network
interface. If this parameter is NULL, then the media header size
will not be returned.

BufferSize On entry, the size, in bytes, of Buffer. On exit, the size, in
bytes, of the packet that was received on the network interface.

Buffer A pointer to the data buffer to receive both the media header and
the data.

SrcAddr The source HW MAC address. If this parameter is NULL, the
HW MAC source address will not be extracted from the media
header.

DestAddr The destination HW MAC address. If this parameter is NULL,
the HW MAC destination address will not be extracted from the
media header.

Protocol The media header type. If this parameter is NULL, then the
protocol will not be extracted from the media header. See
RFC 1700 section “Ether Types” for examples.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 301

Description

This function retrieves one packet from the receive queue of a network interface. If there are no
packets on the receive queue, then EFI_NOT_READY will be returned. If there is a packet on the
receive queue, and the size of the packet is smaller than BufferSize, then the contents of the
packet will be placed in Buffer, and BufferSize will be updated with the actual size of the
packet. In addition, if SrcAddr, DestAddr, and Protocol are not NULL, then these values
will be extracted from the media header and returned. EFI_SUCCESS will be returned if a packet
was successfully received. If BufferSize is smaller than the received packet, then the size of
the receive packet will be placed in BufferSize and EFI_BUFFER_TOO_SMALL will be
returned. If the driver has not been initialized, EFI_DEVICE_ERROR will be returned.

Status Codes Returned
EFI_SUCCESS The received data was stored in Buffer, and BufferSize has

been updated to the number of bytes received.

EFI_NOT_STARTED The network interface has not been started.

EFI_NOT_READY No packets have been received on the network interface.

EFI_BUFFER_TOO_SMALL BufferSize is too small for the received packets. BufferSize
has been updated to the required size.

EFI_INVALID_PARAMETER One or more of the parameters has an unsupported value.

EFI_DEVICE_ERROR The command could not be sent to the network interface.

EFI_UNSUPPORTED This function is not supported by the network interface.

Extensible Firmware Interface Specification

302 12/12/00 Version 1.02

15.2 NETWORK_INTERFACE_IDENTIFIER Protocol

Summary

This is an optional protocol that is used to describe details about the software layer that is used to
produce the Simple Network Protocol. This protocol is only required if the underlying network
interface is 16-bit UNDI, 32/64-bit S/W UNDI, or H/W UNDI. It is used to obtain type and
revision information about the underlying network interface.

An instance of the Network Interface Identifier protocol must be created for each physical external
network interface that is controlled by the !PXE structure. The !PXE structure is defined in the
32/64-bit UNDI Specification in Appendix G.

GUID
#define EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL \

{ E18541CD-F755-4f73-928D-643C8A79B229 }

Revision Number
#define EFI_NETWORK_INTERFACE_IDENTIFIER_INTERFACE_REVISION \

0x00010000

Protocol Interface Structure
typedef struct {

UINT64 Revision;
UINT64 Id;
UINT64 ImageAddr;
UINT32 ImageSize;
CHAR8 StringId[4];
UINT8 Type;
UINT8 MajorVer;
UINT8 MinorVer;
BOOLEAN Ipv6Supported;
UINT8 IfNum;

} EFI_NETWORK_INTERFACE_IDENTIFIER_INTERFACE;

Parameters
Revision The revision of the EFI_NETWORK_INTERFACE_IDENTIFIER

protocol.

Id Address of the first byte of the identifying structure for this network
interface. This is only valid when the network interface is started (see
EFI_SIMPLE_NETWORK_PROTOCOL.Start()). When the network
interface is not started, this field is set to zero.

SIMPLE_NETWORK Protocol

Version 1.02 12/12/00 303

16-bit UNDI and 32/64-bit S/W UNDI:

Id contains the address of the first byte of the copy of the !PXE
structure in the relocated UNDI code segment. See the Preboot
Execution Environment (PXE) Specification and Appendix G.

H/W UNDI:

Id contains the address of the !PXE structure.

ImageAddr Address of the un-relocated network interface image.

16-bit UNDI:

ImageAddr is the address of the PXE option ROM image in upper
memory.

32/64-bit S/W UNDI:

ImageAddr is the address of the un-relocated S/W UNDI image.

H/W UNDI:

ImageAddr contains zero.

ImageSize Size of un-relocated network interface image.

16-bit UNDI:

ImageSize is the size of the PXE option ROM image in upper
memory.

32/64-bit S/W UNDI:

ImageSize is the size of the un-relocated S/W UNDI image.

H/W UNDI:

ImageSize contains zero.

StringId A four-character ASCII string that is sent in the class identifier field of
option 60 in DHCP. For a Type of EfiNetworkInterfaceUndi,
this field is "UNDI".

Type Network interface type. This will be set to one of the values in
EFI_NETWORK_INTERFACE_TYPE (See “Related Definitions”).

Extensible Firmware Interface Specification

304 12/12/00 Version 1.02

MajorVer Major version number.

16-bit UNDI:

MajorVer comes from the third byte of the UNDIRev field in the
UNDI ROM ID structure. Refer to the Preboot Execution Environment
(PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MajorVer comes from the Major field in the !PXE structure. See
Appendix G.

MinorVer Minor version number.

16-bit UNDI:

MinorVer comes from the second byte of the UNDIRev field in the
UNDI ROM ID structure. Refer to the Preboot Execution Environment
(PXE) Specification.

32/64-bit S/W UNDI and H/W UNDI:

MinorVer comes from the Minor field in the !PXE structure. See
Appendix G.

Ipv6Supported TRUE if the network interface supports IPv6; otherwise FALSE.

IfNum The network interface number that is being identified by this Network
Interface Identifier Protocol. This field must be less than or equal to the
IFcnt field in the !PXE structure.

Related Definitions

//***
// EFI_NETWORK_INTERFACE_TYPE
//***
typedef enum {

EfiNetworkInterfaceUndi = 1
} EFI_NETWORK_INTERFACE_TYPE;

Description

The EFI_NETWORK_INTERFACE_IDENTIFIER Protocol is used by the
EFI_PXE_BASE_CODE Protocol and OS loaders to identify the type of the underlying network
interface and to locate its initial entry point.

Version 1.02 12/12/00 305

16
File System Format

The file system supported by the Extensible Firmware Interface is based on the FAT file system.
EFI defines a specific version of FAT that is explicitly documented and testable. Conformance to
the EFI specification and its associate reference documents is the only definition of FAT that needs
to be implemented to support EFI. To differentiate the EFI file system from pure FAT, a new
partition file system type has been defined.

EFI encompasses the use of FAT-32 for a system partition, and FAT-12 or FAT-16 for removable
media. The FAT-32 system partition is identified by an OS type value other than that used to
identify previous versions of FAT. This unique partition type distinguishes an EFI defined file
system from a normal FAT file system. The file system supported by EFI includes support for long
file names.

The definition of the EFI file system will be maintained by specification and will not evolve over
time to deal with errata or variant interpretations in OS file system drivers or file system utilities.
Future enhancements and compatibility enhancements to FAT will not be automatically included in
EFI file systems. The EFI file system is a target that is fixed by the EFI specification, and other
specifications explicitly referenced by the EFI specification.

For more information about the EFI file system and file image format, visit the web site from which
this document was obtained.

16.1 System Partition

A System Partition is a partition in the conventional sense of a partition on a legacy Intel
architecture system. For a hard disk, a partition is a contiguous grouping of sectors on the disk
where the starting sector and size are defined by the Master Boot Record (MBR), which resides on
the first sector of the hard disk. For a diskette (floppy) drive, a partition is defined to be the entire
media. A System Partition can reside on any media that is supported by EFI Boot Services.

A System Partition supports backward compatibility with legacy Intel architecture systems by
reserving the first block (sector) of the partition for compatibility code. On legacy Intel architecture
systems, the first block (sector) of a partition is loaded into memory and execution is transferred to
this code. EFI firmware does not execute the code in the MBR. The EFI firmware contains
knowledge about the partition structure of various devices, and can understand legacy MBR, EFI
partition record, and “El Torito”.

The System Partition contains directories, data files, and EFI Images. EFI Images can contain an
EFI OS Loader, an EFI Driver to extend platform firmware capability, or an EFI Application that
provides a transient service to the system. EFI Applications could include things such as a utility to
create partitions or extended diagnostics. A System Partition can also support data files, such as
error logs, that can be defined and used by various OS or system firmware software components.

Extensible Firmware Interface Specification

306 12/12/00 Version 1.02

16.1.1 File System Format
The first block (sector) of a partition contains a data structure called the BIOS Parameter Block,
BPB, that defines the type and location of FAT file system on the drive. The BPB contains a data
structure that defines the size of the media, the size of reserved space, the number of FAT tables,
and the location and size of the root directory (not used in FAT-32). The first block (sector) also
contains code that will be executed as part of the boot process on a legacy Intel architecture system.
This code in the first block (sector) usually contains code that can read a file from the root directory
into memory and transfer control to it. Since EFI firmware contains a file system driver, EFI
firmware can load any file from the file system with out needing to execute any code from the
media.

The EFI firmware must support the FAT-32, FAT-16, and FAT-12 variants of the EFI file system.
What variant of EFI FAT to use is defined by the size of the media. The rules defining the
relationship between media size and FAT variants is defined in the specification for the EFI file
system.

16.1.2 File Names
FAT stores file names in two formats. The original FAT format limited file names to eight
characters with three extension characters. This type of file name is called an 8.3, pronounced eight
dot three, file name. FAT was extended to include support for long file names. The acronym LFN
is used to denote long file names.

FAT 8.3 file names are always stored as upper case ASCII characters. LFN can either be stored as
ASCII or Unicode and are stored case sensitive. The string that was used to open or create the file
is stored directly into LFN. FAT defines that all files in a directory must have a unique name, and
unique is defined as a case insensitive match. The following are examples of names that are
considered to be the same, and can not exist in a single directory:

• “ThisIsAnExampleDirectory.Dir”
• “thisisanexamppledirectory.dir”
• THISISANEXAMPLEDIRECTORY.DIR
• ThisIsAnExampleDirectory.DIR

16.1.3 Directory Structure
An EFI system partition that is present on a hard disk must contain an EFI defined directory in the
root directory. This directory is named EFI. All OS loaders and applications will be stored in sub
directories below EFI. Applications that are loaded by other applications or drivers are not
required to be stored in any specific location in the EFI system partition. The choice of the sub
directory name is up to the vendor, but all vendors must pick names that do not collide with any
other vendor's sub directory name. This applies to system manufacturers, operating system
vendors, BIOS vendors, and third party tool vendors, or any other vendor that wishes to install files
on an EFI system partition. There must also only be one executable EFI image for each supported
CPU architecture in each vendor sub directory. This guarantees that there is only one image that
can be loaded from a vendor sub directory by the EFI Boot Manager. If more than one executable
EFI image is present, then the boot behavior for the system will not be deterministic. There may
also be an optional vendor sub directory called BOOT.

File System Format

Version 1.02 12/12/00 307

This directory contains EFI images that aide in recovery if the boot selections for the software
installed on the EFI system partition are ever lost. Any additional EFI executables must be in sub
directories below the vendor sub directory. The following is a sample directory structure for an EFI
system partition present on a hard disk.

\EFI
\<OS Vendor 1 Directory>

<OS Loader Image>
\<OS Vendor 2 Directory>

<OS Loader Image>
. . .
\<OS Vendor N Directory>

<OS Loader Image>
\<OEM Directory>

<OEM Application Image>
\<BIOS Vendor Directory>

<BIOS Vendor Application Image>
\<Third Party Tool Vendor Directory>

<Third Party Tool Vendor Application Image>
\BOOT

BOOT{machine type short name}.EFI

For removable media devices there must be only one EFI system partition, and that partition must
contain an EFI defined directory in the root directory. The directory will be named EFI. All OS
loaders and applications will be stored in a sub directory below EFI called BOOT. There must only
be one executable EFI image for each supported CPU architecture in the BOOT directory. For
removable media to be bootable under EFI, it must be built in accordance with the rules layed out
in Section 17.4.1.1. This guarantees that there is only one image that can be automatically loaded
from a removable media device by the EFI Boot Manager. Any additional EFI executables must be
in directories other than BOOT. The following is a sample directory structure for an EFI system
partition present on a removable media device.

\EFI
\BOOT

BOOT{machine type short name}.EFI

Extensible Firmware Interface Specification

308 12/12/00 Version 1.02

16.2 Partition Discovery

EFI requires the firmware to be able to parse legacy master boot records, the new GUID Partition
Table (GPT), and El Torito logical device volumes. The EFI firmware produces a logical
BLOCK_IO device for each EFI Partition Entry, El Torito logical device volume, and if no EFI
Partition Table is present any partitions found in the partition tables. Logical block address zero of
the BLOCK_IO device will correspond to the first logical block of the partition. See Figure 16-1.

DISK

PartitionPartition

Partition Partition

BLOCK_IO
H dl

Partition Table Partition Table

Pointers to partitions Pointers to partitions

Figure 16-1. Nesting of Legacy MBR Partition Records

The following is the order in which a block device must be scanned to determine if it contains
partitions. When a check for a valid partitioning scheme succeeds, the search terminates.

1. Check for GUID Partition Table Headers.
2. Follow ISO-9660 specification to search for ISO-9660 volume structures on the magic LBA.

 Check for an “El Torito” volume extension and follow the “El Torito” CD-ROM
specification.

3. If none of the above, check LBA 0 for a legacy MBR partition table.
4. No partition found on device.

File System Format

Version 1.02 12/12/00 309

EFI supports the nesting of legacy MBR partitions, by allowing any legacy MBR partition to
contain more legacy MBR partitions. This is accomplished by supporting the same partition
discovery algorithm on every logical block device. It should be noted that the GUID Partition
Table does not allow nesting of GUID Partition Table Headers. Nesting is not needed since a
GUID Partition Table Header can support an arbitrary number of partitions (the addressability
limits of a 64-bit LBA is the limiting factor).

16.2.1 EFI Partition Header
EFI defines a new partitioning scheme that must be supported by EFI firmware. The following list
outlines the advantages of using the GUID Partition Table over the legacy MBR partition table:

• Logical Block Addressing is 64-bits.
• Supports many partitions.
• Uses a primary and backup table for redundancy.
• Uses version number and size fields for future expansion.
• Uses CRC32 fields for improved data integrity.
• Defines a GUID for uniquely identifying each partition.
• Uses a GUID and attributes to define partition content type.
• Each partition contains a 36 Unicode character human readable name.

The EFI partitioning scheme is depicted in Figure 16-2. The GUID Partition Table Header (see
Table 16-1) starts with a signature and a revision number that specifies which version of the EFI
specification defines the data bytes in the partition header. The GUID Partition Table Header
contains a header size field that is used in calculating the CRC32 that confirms the integrity of the
GUID Partition Table Header. While the GUID Partition Table Header’s size may increase in the
future it can not span more than one block on the device.

Two GUID Partition Table Header structures are stored on the device: the primary and the backup.
The primary GUID Partition Table Header must be located in block 1 of the logical device, and the
backup GUID Partition Table Header must be located in the last block of the logical device. Within
the GUID Partition Table Header there are the MyLBA and AlternateLBA fields. The MyLBA
field contains the logical block address of the GUID Partition Table Header itself, and the
AlternateLBA field contains the logical block address of the other GUID Partition Table Header.
For example, the primary GUID Partition Table Header’s MyLBA value would be 1 and its
AlternateLBA would be the value for the last block of the logical device. The backup GUID
Partition Table Header’s fields would be reversed.

The GUID Partition Table Header defines the range of logical block addresses that are usable by
Partition Entries. This range is defined to be inclusive of FirstUsableLBA through
LastUsableLBAon the logical device. All data stored on the volume must be stored between the
FirstUsableLBA through LastUsableLBA, and only the data structures defined by EFI to manage
partitions may reside outside of the usable space. The value of DiskGUID is a GUID that uniquely
identifies the entire GUID Partition Table Header and all it’s associated storage. This value can be
used to uniquely identify the disk. The start of the GUID Partition Entry array is located at the
logical block address PartitionEntryLBA. The size of a GUID Partition Entry element is defined in
the GUID Partition Table Header. There is a 32-bit CRC of the GUID Partition Entry array that is
stored in the GUID Partition Table Header in PartitionEntryArrayCRC. The size of the GUID

Extensible Firmware Interface Specification

310 12/12/00 Version 1.02

Partition Entry array is the PartitionEntrySize multiplied by NumberOfPartitionEntries. When a
GUID Partition Entry is updated the PartitionEntryArrayCRC must be updated. When the
PartitionEntryArrayCRC is updated the GUID Partition Table Header CRC must also be updated,
since the PartitionEntryArrayCRC is stored in the GUID Partition Table Header.

P
artition

T
able H

D
R

Partition 1

P
M

B
R

P
artition

T
able H

D
R

0 1 n...

LBA0 LBA1 LBAn

Start partition

End partitionStart partition

Primary Partition
Table

Backup Partition
Table

0 1 n...

End partition

First useable block

Last useable block

OM10322

Figure 16-2. GUID Partition Table (GPT) Scheme

The primary GUID Partition Entry array must be located after the primary GUID Partition Table
Header and end before the FirstUsableLBA. The backup GUID Partition Entry array must be
located after the LastUsableLBA and end before the backup GUID Partition Table Header.
Therefore the primary and backup GUID Partition Entry arrays are stored in separate locations on
the disk. GUID Partition Entries define a partition that is contained in a range that is within the
usable space declared by the GUID Partition Table Header. Zero or more GUID Partition Entries
may be in use in the GUID Partition Entry array. Each defined partition must not overlap with any
other defined partition. If all the fields of a GUID Partition Entry are zero, the entry is not in use.
A minimum of 16,384 bytes of space must be reserved for the GUID Partition Entry array.
Typically the first useable block will start at an LBA greater than or equal to 34, assuming the LBA
block size is 512 bytes.

File System Format

Version 1.02 12/12/00 311

Table 16-1. GUID Partition Table Header

Mnemonic
Byte
Offset

Byte
Length Description

Signature 0 8 Identifies EFI-compatible partition table header.
This value must contain the string “EFI PART”,
0x5452415020494645.

Revision 8 4 The specification revision number that this header
complies to. For version 1.0 of the specification
the correct value is 0x00010000.

HeaderSize 12 4 Size in bytes of the GUID Partition Table Header.

HeaderCRC32 16 4 CRC32 checksum for the GUID Partition Table
Header structure. The ranged defined by
HeaderSize is “check-summed”.

Reserved 20 4 Must be zero.

MyLBA 24 8 The LBA that contains this data structure.

AlternateLBA 32 8 LBA address of the alternate GUID Partition Table
Header.

FirstUsableLBA 40 8 The first usable logical block that may be
contained in a GUID Partition Entry.

LastUsableLBA 48 8 The last usable logical block that may be
contained in a GUID Partition Entry.

DiskGUID 56 16 GUID that can be used to uniquely identify the
disk.

PartitionEntryLBA 72 8 The starting LBA of the GUID Partition Entry array.

NumberOfPartitionEntries 80 4 The number of Partition Entries in the GUID
Partition Entry array.

SizeOfPartitionEntry 84 4 The size, in bytes, of each the GUID Partition
Entry structures in the GUID Partition Entry array.
Must be a multiple of 8.

PartitionEntryArrayCRC32 88 4 The CRC32 of the GUID Partition Entry array.

Starts at Partition Entry LBA and is
NumberOfPartitionEntries * SizeOfPartitionEntry in
byte length.

Reserved 92 BlockSize
– 92

The rest of the block is reserved by EFI and must
be zero.

The following test must be performed to determine if a GUID Partition Table is valid:

• Check the GUID Partition Table Signature
• Check the GUID Partition Table CRC
• Check that the MyLBA entry points to the LBA that contains the GUID Partition Table
• Check the CRC of the GUID Partition Entry Array

Extensible Firmware Interface Specification

312 12/12/00 Version 1.02

If the GUID Partition Table is the primary table, stored at LBA 1:

• Check the AlternateLBA to see if it is a valid GUID Partition Table

If the primary GUID Partition Table is corrupt:
• Check the last LBA of the device to see if it has a valid GUID Partition Table.
• If valid backup GUID Partition Table found, restore primary GUID Partition Table.

Any software that updates the primary GUID Partition Table Header must also update the backup
GUID Partition Table Header. The order of the update of the GUID Partition Table Header and it’s
associated GUID Partition Entry array is not important, since all the CRCs are stored in the GUID
Partition Table Header. However, the primary GUID Partition Table Header and GUID Partition
Entry array must always be updated before the backup.

If the primary GUID Partition Table is invalid the backup GUID Partition Table is located on the
last logical block on the disk. If the backup GUID Partition Table is valid it must be used to restore
the primary GUID Partition Table. If the primary GUID Partition Table is valid and the backup
GUID Partition Table is invalid software must restore the backup GUID Partition Table. If both the
primary and backup GUID Partition Table is corrupted this block device is defined as not having a
valid GUID Partition Header.

The primary and backup GUID Partition Tables must be valid before an attempt is made to grow
the size of a physical volume. This is due to the GUID Partition Table recovery scheme depending
on locating the backup GUID Partition Table at the end of the physical device. A volume may
grow in size when disks are added to a RAID device. As soon as the volume size is increased the
backup GUID Partition Table must be moved to the end of the volume and the primary and backup
GUID Partition Table Headers must be updated to reflect the new volume size.

Table 16-2. GUID Partition Entry

Mnemonic
Byte
Offset

Byte
Length Description

Partition Type Guid 0 16 Unique id that defines the purpose and type of this
Partition. A value of zero defines that this partition
record is not being used.

Unique Partition Guid 16 16 Guid that is unique for every partition record. Every
partition ever created will have a unique GUID. This
GUID must be assigned when the GUID Partition Entry
is created. The GUID Partition Entry is created when
ever the NumberOfPartitionEntries in the GUID Partition
Table Header is increased to include a larger range of
addresses.

StartingLBA 32 8 Starting LBA of the partition defined by this record.

EndingLBA 40 8 Ending LBA of the partition defined by this record.

Attributes 48 8 Attribute bits, all bits reserved by EFI.

Partition Name 56 72 Unicode string.

File System Format

Version 1.02 12/12/00 313

The SizeOfPartitionEntry variable in the GUID Partition Table Header defines the size of a GUID
Partition Entry. The GUID Partition Entry starts in the first byte of the GUID Partition Entry and
any unused space at the end of the defined partition entry is reserved space and must be set to zero.

Each partition record contains a Unique Partition GUID variable that uniquely identifies every
partition that will ever be created. Any time a new partition record is created a new GUID must be
generated for that partition, and every partition is guaranteed to have a unique GUID. The partition
record also contains 64-bit logical block addresses for the starting and ending block of the partition.
The partition is defined as all the logical blocks inclusive of the starting and ending usable LBA
defined in the GUID Partition Table Header. The partition record contains a partition type GUID
that identifies the contents of the partition. This GUID is similar to the OS type field in the legacy
MBR. Each file system must publish its unique GUID. The partition record also contains
Attributes that can be used by utilities to make broad inferences about the usage of a partition. A
36 character Unicode string is also included, so that a human readable string can be used to
represent what information is stored on the partition. This allows third party utilities to give human
readable names to partitions.

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition using
InstallProtocolInterface(). This will allow drivers and applications, including OS
loaders, to easily search for handles that represent EFI System Partitions or vendor specific
partition types.

A utility that makes a binary copy of a disk that is formatted with GPT must generate a new
DiskGUID in the Partition Table Headers. In addition, new UniquePartitionGuids must be
generated for each GUID Partition Entry.

Table 16-3. Defined GUID Partition Entry - Partition Type GUIDs

Description GUID Value

Unused Entry 00000000-0000-0000-0000-000000000000

EFI System Partition C12A7328-F81F-11d2-BA4B-00A0C93EC93B

Partition containing a legacy MBR 024DEE41-33E7-11d3-9D69-0008C781F39F

OS vendors need to generate their own GUIDs to identify their partition types.

Table 16-4. Defined GUID Partition Entry - Attributes

Bits Description

Bit 0 Required for the platform to function. The system can not function normally if this partition is
removed. This partition should be considered as part of the hardware of the system, and if it is
removed the system may not boot. It may contain diagnostics, recovery tools, or other code or
data that is critical to the functioning of a system independent of any OS.

Bits1-47 Undefined and must be zero. Reserved for expansion by future versions of the EFI
specification.

Bits 48-63 Reserved for GUID specific use. The use of these bits will vary depending on the
PartitionTypeGuid. Only the owner of the PartitionTypeGuid is allowed to modify these bits.
They must be preserved if Bits 0-47 are modified.

Extensible Firmware Interface Specification

314 12/12/00 Version 1.02

16.2.2 ISO-9660 and El Torito
IS0-9660 is the industry standard low level format used on CD-ROM and DVD-ROM. CD-ROM
format is completely described by the “El Torito” Bootable CD-ROM Format Specification
Version 1.0. To boot from a CD-ROM or DVD-ROM in the boot services environment, an EFI
System partition is stored in a “no emulation” mode as defined by the “El Torito” specification. A
Platform ID of 0xEF hex indicates an EFI System Partition. The Platform ID is in either the
Section Header Entry or the Validation Entry of the Booting Catalog as defined by the “El Torito”
specification. EFI differs from "El Torito" "no emulation" mode in that it does not load the "no
emulation" image into memory and jump to it. EFI interprets the "no emulation" image as an EFI
system partition. EFI interprets the Sector Count in the Initial/Default Entry or the Section Header
Entry to be the size of the EFI system partition. If the value of Sector Count is set to 0 or 1, EFI
will assume the system partition consumes the space from the beginning of the "no emulation"
image to the end of the CD-ROM.

DVD-ROM images formatted as required by the UDF™ 2.00 specification (OSTA Universal Disk
Format Specification, Revision 2.00) can be booted by EFI. EFI supports booting from an
ISO-9660 file system that conforms to the “El Torito” Bootable CD-ROM Format Specification on
a DVD-ROM. A DVD-ROM that contains an ISO-9660 file system is defined as a “UDF Bridge”
disk. Booting from CD-ROM and DVD-ROM is accomplished using the same methods.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy
CD ROM it is possible to boot Intel architecture personal computers using an EFI CD-ROM or
DVD-ROM. The inclusion of boot code for Intel architecture personal computers is optional and
not required by EFI.

16.2.3 Legacy Master Boot Record
The legacy master boot record is the first block (sector) on the disk media. The boot code on the
MBR is not executed by EFI firmware. The MBR may optionally contain a signature located as
defined in Table 16-5. The MBR signature must be maintained by operating systems, and is never
maintained by EFI firmware. The unique signature in the MBR is only 4 bytes in length, so it is not
a GUID. EFI does not specify the algorithm that is used to generate the unique signature. The
uniqueness of the signature is defined as all disks in a given system having a unique value in this
field.

File System Format

Version 1.02 12/12/00 315

Table 16-5. Legacy Master Boot Record

Mnemonic
Byte
Offset

Byte
Length Description

BootCode 0 440 Code used on legacy Intel architecture system to select
a partition record and load the first block (sector) of the
partition pointed to by the partition record. This code is
not executed on EFI systems.

UniqueMBRSignature 440 4 Unique Disk Signature, this is an optional feature and
not on all hard drives. This value is always written by
the OS and is never written by EFI firmware.

Unknown 444 2 Unknown

PartitionRecord 446 16*4 Array of four MBR partition records.

Signature 510 2 Must be 0xaa55.

The MBR contains four partition records that define the beginning and ending LBA addresses that a
partition consumes on a hard disk. The partition record contains a legacy Cylinder Head Sector
(CHS) address that is not used in EFI. EFI utilizes the starting LBA entry to define the starting
LBA of the partition on the disk. The size of the partition is defined by the size in LBA field.

The boot indicator field is not used by EFI firmware. The operating system indicator value of 0xEF
defines a partition that contains an EFI file system. The other values of the system indicator are not
defined by this specification. If an MBR partition has an operating system indicator value of 0xEF,
then the firmware must add the EFI System Partiiton GUID to the handle for the MBR partition
using InstallProtocolInterface(). This will allow drivers and applications, including
OS loaders, to easily search for handles that represent EFI System Partitions.

Table 16-6. Legacy Master Boot Record Partition Record

Mnemonic
Byte
Offset

Byte
Length Description

Boot Indicator 0 1 Not used by EFI firmware. Set to 0x80 to indicate that this is
the bootable legacy partition.

Start Head 1 1 Start of partition in CHS address, not used by EFI firmware.

Start Sector 2 1 Start of partition in CHS address, not used by EFI firmware.

Start Track 3 1 Start of partition in CHS address, not used by EFI firmware.

OS Type 4 1 OS type. A value of 0xEF defines an EFI system partition.
Other values are reserved for legacy operating systems, and
allocated independently of the EFI specification.

End head 5 1 End of partition in CHS address, not used by EFI firmware.

End Sector 6 1 End of partition in CHS address, not used by EFI firmware.

continued

Extensible Firmware Interface Specification

316 12/12/00 Version 1.02

Table 16-6. Legacy Master Boot Record Partition Record (continued)

Mnemonic
Byte
Offset

Byte
Length Description

End Track 7 1 End of partition in CHS address, not used by EFI firmware.

Starting LBA 8 4 Starting LBA address of the partition on the disk. Used by
EFI firmware to define the start of the partition.

Size In LBA 12 4 Size of partition in LBA. Used by EFI firmware to determine
the size of the partition.

EFI defines a valid legacy MBR as follows. The signature at the end of the MBR must be
0xaa55. Each MBR partition record must be checked to make sure that the partition that it
defines physically resides on the disk. Each partition record must be checked to make sure it does
not overlap with other partition records. A partition record that contains an OSIndicator value of
zero, or a SizeInLBA value of zero may be ignored. If any of these checks fail the MBR is not
considered valid.

16.2.4 Legacy Master Boot Record and GPT Partitions
The GPT partition structure does not support nesting of partitions. However it is legal to have a
legacy Master Boot Record nested inside a GPT partition.

On all GUID Partition Table disks a Protective MBR (PMBR) in the first LBA of the disk precedes
the GUID Partition Table Header to maintain compatibility with existing tools that do not
understand GPT partition structures. The Protective MBR has the same format as a legacy MBR,
contains one partition entry of OS type 0xEE and reserves the entire space used on the disk by the
GPT partitions, including all headers. The Protective MBR that precedes a GUID Partition Table
Header is shown in Table 16-7. If the GPT partition is larger than a partition that can be
represented by a legacy MBR, values of all F’s must be used to signify that all space that can be
possibly reserved by the MBR is being reserved.

Table 16-7. PMBR Entry to Precede a GUID Partition Table Header

Mnemonic
Byte
Offset

Byte
Length Description

Boot Indicator 0 1 Must be set to zero to indicate non-bootable partition.
Start Head 1 1
Start Sector 2 1
Start Track 3 1

Set to match the Starting LBA of the EFI Partition
structure. Must be set to 0xFFFFFF if it is not possible
to represent the starting LBA.

OS Type 4 1 Must be 0xEE.
End head 5 1
End Sector 6 1
End Track 7 1

Set to match the Ending LBA of the EFI Partition
structure. Must be set to 0xFFFFFF if it is not possible
to represent the starting LBA.

Starting LBA 8 4 Must be 1 by definition.
Size In LBA 12 4 Length of EFI Partition Head, 0xFFFFFFFF if this value

overflows.

File System Format

Version 1.02 12/12/00 317

16.3 Media Formats

This section describes how booting from different types of removable media is handled. In general
the rules are consistent regardless of a media’s physical type and whether it is removable or not.

16.3.1 Removable Media
Removable media may contain a standard FAT-12, FAT-16, or FAT-32 file system. Legacy
1.44 MB floppy devices typically support a FAT-12 file system.

Booting from a removable media device can be accomplished the same way as any other boot. The
boot file path provided to the boot manager can consist of an EFI application image to load, or can
merely be the path to a removable media device. In the first case, the path clearly indicates the
image that is to be loaded. In the later case, the boot manager implements the policy to load the
default application image from the device.

For removable media to be bootable under EFI, it must be built in accordance with the rules layed
out in Section 17.4.1.1.

16.3.2 Diskette
EFI bootable diskettes follow the standard formatting conventions used on Intel architecture
personal computers. The diskette contains only a single partition that complies to the EFI file
system type. For diskettes to be bootable under EFI, it must be built in accordance with the rules
layed out in Section 17.4.1.1.

Since the EFI file system definition does not use the code in the first block of the diskette, it is
possible to boot Intel architecture personal computers using a diskette that is also formatted as an
EFI bootable removable media device. The inclusion of boot code for Intel architecture personal
computers is optional and not required by EFI.

Diskettes include the legacy 3 ½ inch diskette drives as well as the newer larger capacity removable
media drives such as an Iomega† Zip†, Fujitsu MO, or MKE LS-120/SuperDisk†.

16.3.3 Hard Drive
Hard drives may contain multiple partitions as defined in Section 16.2 on partition discovery. Any
partition on the hard drive may contain a file system that the EFI firmware recognizes. Images that
are to be booted must be stored under the EFI sub-directory as defined in Sections 16.1 and 16.2.

EFI code does not assume a fixed block size.

Since EFI firmware does not execute the MBR code and does not depend on the bootable flag field
in the partition entry the hard disk can still boot and function normally on an Intel architecture-
based personal computer.

Extensible Firmware Interface Specification

318 12/12/00 Version 1.02

16.3.4 CD-ROM and DVD-ROM
A CD-ROM or DVD-ROM may contain multiple partitions as defined Sections 16.1 and 16.2 and
in the “El Torito” specification.

EFI code does not assume a fixed block size.

Since the EFI file system definition does not use the same Initial/Default entry as a legacy
CD-ROM, it is possible to boot Intel architecture personal computers using an EFI CD-ROM or
DVD-ROM. The inclusion of boot code for Intel architecture personal computers is optional and
not required by EFI.

16.3.5 Network
To boot from a network device, the Boot Manager uses the Load File Protocol to perform a
LoadFile() on the network device. This uses the PXE Base Code Protocol to perform DHCP
and Discovery. This may result in a list of possible boot servers along with the boot files available
on each server. The Load File Protocol for a network boot may then optionally produce a menu of
these selections for the user to choose from. If this menu is presented, it will always have a
timeout, so the Load File Protocol can automatically boot the default boot selection. If there is only
one possible boot file, then the Load File Protocol can automatically attempt to load the one boot
file.

The Load File Protocol will download the boot file using the MTFTP service in the PXE Base Code
Protocol. The downloaded image must be an EFI image that the platform supports.

Version 1.02 12/12/00 319

17
Boot Manager

The EFI boot manager is a firmware policy engine that can be configured by modifying
architecturally defined global NVRAM variables. The boot manager will attempt to load EFI
drivers and EFI applications (including EFI OS boot loaders) in an order defined by the global
NVRAM variables. The platform firmware must use the boot order specified in the global
NVRAM variables for normal boot. The platform firmware may add extra boot options or remove
invalid boot options from the boot order list.

The platform firmware may also implement value added features in the boot manager if an
exceptional condition is discovered in the firmware boot process. One example of a value added
feature would be not loading an EFI driver if booting failed the first time the driver was loaded.
Another example would be booting to an OEM-defined diagnostic environment if a critical error
was discovered in the boot process.

The boot sequence for EFI consists of the following:

• The boot order list is read from a globally defined NVRAM variable. The boot order list
defines a list of NVRAM variables that contain information about what is to be booted. Each
NVRAM variable defines a Unicode name for the boot option that can be displayed to a user.

• The variable also contains a pointer to the hardware device and to a file on that hardware
device that contains the EFI image to be loaded.

• The variable might also contain paths to the OS partition and directory along with other
configuration specific directories.

The NVRAM can also contain load options that are passed directly to the EFI image. The platform
firmware has no knowledge of what is contained in the load options. The load options are set by
higher level software when it writes to a global NVRAM variable to set the platform firmware boot
policy. This information could be used to define the location of the OS kernel if it was different
than the location of the EFI OS loader.

17.1 Firmware Boot Manager

The boot manager is a component in the EFI firmware that determines which EFI drivers and EFI
applications should be explicitly loaded and when. Once the EFI firmware is initialized, it passes
control to the boot manager. The boot manager is then responsible for determining what to load
and any interactions with the user that may be required to make such a decision. Much of the
behavior of the boot manager is left up to the firmware developer to decide, and details of boot
manager implementation are outside the scope of this specification. In particular, likely
implementation options might include any console interface concerning boot, integrated platform
management of boot selections, possible knowledge of other internal applications or recovery
drivers that may be integrated into the system through the boot manager.

Extensible Firmware Interface Specification

320 12/12/00 Version 1.02

Programmatic interaction with the boot manager is accomplished through globally defined
variables. On initialization the boot manager reads the values which comprise all of the published
load options among the EFI environment variables. By using the SetVariable() function the
data that contain these environment variables can be modified.

Each load option entry resides in a Boot#### variable or a Driver#### variable where the
is replaced by a unique option number in printable hexadecimal representation
(0000 – FFFF). The #### must always be four digits, so small numbers must use leading zeros.
The load options are then logically ordered by an array of option numbers listed in the desired
order. There are two such option ordering lists. The first is DriverOrder that orders the
Driver#### load option variables into their load order. The second is BootOrder that orders
the Boot#### load options variables into their load order.

For example, to add a new boot option, a new Boot#### variable would be added. Then the
option number of the new Boot#### variable would be added to the BootOrder ordered list and
the BootOrder variable would be rewritten. To change boot option on an existing Boot####,
only the Boot#### variable would need to be rewritten. A similar operation would be done to
add, remove, or modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS the boot manager will stop
processing the BootOrder variable and present a boot manager menu to the user. If a boot via
Boot#### returns a status other than EFI_SUCCESS, the boot has failed and the next
Boot#### in the BootOrder variable will be tried until all possibilities are exhausted.

The boot manager may perform automatic maintenance of the database variables. For example, it
may remove unreferenced load option variables, any unparseable or unloadable load option
variables, and rewrite any ordered list to remove any load options that do not have corresponding
load option variables. In addition, the boot manager may automatically update any ordered list to
place any of its own load options where it desires. The boot manager can also, at its own
discretion, provide for manual maintenance operations as well. Examples include choosing the
order of any or all load options, activating or deactivating load options, etc.

The boot manager is required to process the Driver load option entries before the Boot load option
entries. The boot manager is also required to initiate a boot of the boot option specified by the
BootNext variable as the first boot option on the next boot, and only on the next boot. The boot
manager removes the BootNext variable before transferring control to the BootNext boot
option. If the boot from the BootNext boot option fails the boot sequence continues utilizing the
BootOrder variable. If the boot from the BootNext boot option succeeds by returning
EFI_SUCCESS the boot manager will not continue to boot utilizing the BootOrder variable.

The boot manager must call LoadImage() which supports at least SIMPLE_FILE_PROTOCOL
and LOAD_FILE_PROTOCOL for resolving load options. If LoadImage() succeeds, the boot
manager must enable the watchdog timer for 5 minutes by using the SetWatchdogTimer()
boot service prior to calling StartImage(). If a boot option returns control to the boot manager,
the boot manager must disable the watchdog timer with an additional call to the
SetWatchdogTimer() boot service.

If the boot image is not loaded via LoadImage() the boot manager is required to check for a
default application to boot. Searching for a default application to boot happens on both removable

Boot Manager

Version 1.02 12/12/00 321

and fixed media types. This search occurs when the device path of the boot image listed in any boot
option points directly to a SIMPLE_FILE_SYSTEM device and does not specify the exact file to
load. The file discovery method is explained in “Boot Option Variables Default Behavior” starting
on page 325. The default media boot case of a protocol other than SIMPLE_FILE_SYSTEM is
handled by the LOAD_FILE_PROTOCOL for the target device path and does not need to be
handled by the boot manager.

The boot manager must also support booting from a short-form device path that starts with the first
element being a hard drive media device path (see Table 5-21 in Chapter 5). The boot manager
must use the GUID or signature and partition number in the hard drive device path to match it to a
device in the system. If the drive supports the GPT partitioning scheme the GUID in the hard drive
media device path is compared with the UniquePartitionGuid field of the GUID Partition
Entry (see Table 16-2 in Chapter 16). If the drive supports the PC AT MBR scheme the signature
in the hard drive media device path is compared with the UniqueMBRSignature in the Legacy
Master Boot Record (see Table 16-4 in Chapter 16). If a signature match is made, then the partition
number must also be matched. The hard drive device path can be appended to the matching
hardware device path and normal boot behavior can then be used. If more than one device matches
the hard drive device path, the boot manager will pick one arbitrarily. Thus the operating system
must ensure the uniqueness of the signatures on hard drives to guarantee deterministic boot
behavior.

Each load option variable contains an EFI_LOAD_OPTION descriptor that is a buffer of variable
length fields defined as follows:

Descriptor
typedef struct {

UINT32 Attributes;
UINT16 FilePathListLength;
CHAR16 Description[];
EFI_DEVICE_PATH FilePathList[];
UINT8 OptionalData[];

} EFI_LOAD_OPTION;

Parameters

Attributes The attributes for this load option entry. All unused bits must be zero
and are reserved by the EFI specification for future growth. See
“Related Definitions”.

FilePathListLength Length in bytes of the FilePathList. OptionalData
starts at offset sizeof(UINT32) + sizeof(UINT16) +
StrSize(Description) + FilePathListLength of the
EFI_LOAD_OPTION data structure.

Description The user readable description for the load option. This field ends with a
Null Unicode character.

Extensible Firmware Interface Specification

322 12/12/00 Version 1.02

FilePathList A packed array of EFI device paths. The first element of the array is an
EFI device path that describes the device and location of the Image for
this load option. The FilePathList[0] is specific to the device
type. Other device paths may optionally exist in the FilePathList,
but their usage is OSV specific. Each element in the array is variable
length, and ends at the device path end structure. Because the size of
Description is arbitrary, this data structure is not guaranteed to be
aligned on a natural boundary. This data structure may have to be copied
to an aligned natural boundary before it is used.

OptionalData The remaining bytes in the load option variable are a binary data buffer
that is passed to the loaded image. If the field is zero bytes long, a Null
pointer is passed to the loaded image.

Related Definitions

//***
// Attributes
//***
#define LOAD_OPTION_ACTIVE 0x00000001

Description

Calling SetVariable() creates a load option. The size of the load option is the same as the size
of the DataSize argument to the SetVariable() call that created the variable. When
creating a new load option, all undefined attribute bits must be written as zero. When updating a
load option, all undefined attribute bits must be preserved. If a load option is not marked as
LOAD_OPTION_ACTIVE, the boot manager will not automatically load the option. This
provides an easy way to disable or enable load options without needing to delete and re-add them.

Boot Manager

Version 1.02 12/12/00 323

17.2 Globally-Defined Variables

This section defines a set of variables that have architecturally defined meanings. In addition to the
defined data content, each such variable has an architecturally defined attribute that indicates when
the data variable may be accessed. The variables with an attribute of NV are non-volatile. This
means that their values are persistent across resets and power cycles. The value of any environment
variable that does not have this attribute will be lost when power is removed from the system and
the state of firmware reserved memory is not otherwise preserved. The variables with an attribute of
BS are only available before ExitBootServices() is called. This means that these
environment variables can only be retrieved or modified in the pre-boot environment. They are not
visible to an operating system. Environment variables with an attribute of RT are available before
and after ExitBootServices() is called. Environment variables of this type can be retrieved
and modified in the pre-boot environment, and from an operating system. All architecturally
defined variables use the EFI_GLOBAL_VARIABLE VendorGuid:

#define EFI_GLOBAL_VARIABLE \
{8BE4DF61-93CA-11d2-AA0D-00E098032B8C}

To prevent name collisions with possible future globally defined variables, other internal firmware
data variables that are not defined here must be saved with a unique VendorGuid other than
EFI_GLOBAL_VARIABLE. Table 17-1 lists the global variables.

Table 17-1 Global Variables

Variable Name Attribute Description

LangCodes BS, RT The language codes that the firmware supports.

Lang NV, BS, RT The language code that the system is configured for.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds,
before initiating the default boot selection.

ConIn NV, BS, RT The device path of the default input console.

ConOut NV, BS, RT The device path of the default output console.

ErrOut NV, BS, RT The device path of the default error output device.

ConInDev BS, RT The device path of all possible console input devices.

ConOutDev BS, RT The device path of all possible console output devices.

ErrOutDev BS, RT The device path of all possible error output devices.

Boot#### NV, BS, RT A boot load option. #### is a printed hex value. No 0x
or h is included in the hex value.

BootOrder NV, BS, RT The ordered boot option load list.

BootNext NV, BS, RT The boot option for the next boot only.

BootCurrent BS, RT The boot option that was selected for the current boot.

Driver#### NV, BS, RT A driver load option. #### is a printed hex value.

DriverOrder NV, BS, RT The ordered driver load option list.

Extensible Firmware Interface Specification

324 12/12/00 Version 1.02

The LangCodes variable contains an array of 3-character (8-bit ASCII characters)
ISO-639-2 language codes that the firmware can support. At initialization time the firmware
computes the supported languages and creates this data variable. Since the firmware creates this
value on each initialization, its contents are not stored in non-volatile memory. This value is
considered read-only.

The Lang variable contains the 3-character (8 bit ASCII characters) ISO-639-2 language code that
the machine has been configured for. This value may be changed to any value supported by
LangCodes; however, the change does not take effect until the next boot. If the language code is
set to an unsupported value, the firmware will choose a supported default at initialization and set
Lang to a supported value.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that the
firmware will wait before initiating the original default boot selection. A value of 0 indicates that
the default boot selection is to be initiated immediately on boot. If the value is not present, or
contains the value of 0xFFFF then firmware will wait for user input before booting. This means the
default boot selection is not automatically started by the firmware.

The ConIn, ConOut, and ErrOut variables each contain an EFI_DEVICE_PATH descriptor
that defines the default device to use on boot. Changes to these values do not take effect until the
next boot. If the firmware can not resolve the device path, it is allowed to automatically replace the
value(s) as needed to provide a console for the system.

The ConInDev, ConOutDev, and ErrOutDev variables each contain an EFI_DEVICE_PATH
descriptor that defines all the possible default devices to use on boot. These variables are volatile,
and are set dynamically on every boot. ConIn, ConOut, and ErrOut are always proper subsets
of ConInDev, ConOutDev, and ErrOutDev.

Each Boot#### variable contains an EFI_LOAD_OPTION. Each Boot#### variable is the
name “Boot” appended with a unique four digit hexadecimal number. For example, Boot0001,
Boot0002, Boot0A02, etc.

The BootOrder variable contains an array of UINT16’s that make up an ordered list of the
Boot#### options. The first element in the array is the value for the first logical boot option, the
second element is the value for the second logical boot option, etc. The BootOrder order list is
used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be tried
first on the next boot. After the BootNext boot option is tried the normal BootOrder list is
used. To prevent loops, the boot manager deletes this variable before transferring control to the
pre-selected boot option.

The BootCurrent variable is a single UINT16 that defines the Boot#### option that was
selected on the current boot.

Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option variable is
appended with a unique number, for example Driver0001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16’s that make up an ordered list of the
Driver#### variable. The first element in the array is the value for the first logical driver load
option, the second element is the value for the second logical driver load option, etc. The

Boot Manager

Version 1.02 12/12/00 325

DriverOrder list is used by the firmware’s boot manager as the default load order for EFI
drivers that it should explicitly load.

17.3 Boot Option Variables Default Behavior

The default state of globally-defined variables is firmware vendor specific. However the boot
options require a standard default behavior in the exceptional case that valid boot options are not
present on a platform. The default behavior must be invoked any time the BootOrder variable
does not exist or only points to non-existent boot options.

If no valid boot options exist, the boot manager will enumerate all removable EFI media devices
followed by all fixed EFI media devices. The order within each group is undefined. These new
default boot options are not saved to non volatile storage. The boot manger will then attempt to
boot from each boot option. If the device supports the SIMPLE_FILE_SYSTEM protocol then
the removable media boot behavior (see paragraph 17.4.1.1) is executed. Otherwise the firmware
will attempt to boot the device via the LOAD_FILE protocol .

It is expected that this default boot will load an operating system or a maintenance utility. If this is
an operating system setup program it is then responsible for setting the requisite environment
variables for subsequent boots. The platform firmware may also decide to recover or set to a
known set of boot options.

17.4 Boot Mechanisms

EFI can boot from a device using the SIMPLE_FILE_SYSTEM protocol or the LOAD_FILE
protocol. A device that supports the SIMPLE_FILE_SYSTEM protocol must materialize a file
system protocol for that device to be bootable. If a device does not wish to support a complete file
system it may produce a LOAD_FILE_PROTOCOL which allows it to materialize an image
directly. The Boot Manager will attempt to boot using the SIMPLE_FILE_SYSTEM protocol
first. If that fails, then the LOAD_FILE_PROTOCOL will be used.

17.4.1 Boot via Simple File Protocol
When booting via the SIMPLE_FILE_SYSTEM protocol, the FilePath will start with a device
path that points to the device that “speaks” the SIMPLE_FILE_SYSTEM protocol. The next part
of the FilePath will point to the file name, including sub directories that contain the bootable
image. If the file name is a null device path, the file name must be discovered on the media using
the rules defined for removable media devices with ambiguous file names (see paragraph 17.4.1.1).

The format of the file system specified by EFI is contained in Chapter 16. While the firmware must
produce a SIMPLE_FILE_SYSTEM protocol that understands the EFI file system, any file system
can be abstracted with the SIMPLE_FILE_SYSTEM protocol interface.

17.4.1.1 Removable Media Boot Behavior
On a removable media device it is not possible for the FilePath to contain a file name,
including sub directories. The FilePath is stored in non volatile memory in the platform and can
not possibly be kept in sync with a media that can change at any time. A FilePath for a

Extensible Firmware Interface Specification

326 12/12/00 Version 1.02

removable media device will point to a device that “speaks” the SIMPLE_FILE_SYSTEM
protocol. The FilePath will not contain a file name or sub directories.

The system firmware will attempt to boot from a removable media FilePath by adding a default
file name in the form \EFI\BOOT\BOOT{machine type short-name}.EFI. Where machine type
short-name defines a PE32+ image format architecture. Each file only contains one EFI image
type, and a system may support booting from one or more images types. Table 17-2 lists the EFI
image types.

Table 17-2 EFI Image Types

Architecture File name convention PE Executable machine type *

IA-32 BOOTIA32.EFI 0x14c

Itanium-based architecture BOOTIA64.EFI 0x200

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as
defined in the Microsoft Portable Executable and Common Object File Format Specification, Revision 6.0

A media may support multiple architectures by simply having a \EFI\BOOT\BOOT{machine type
short-name}.EFI file of each possible machine type.

17.4.2 Boot via LOAD_FILE Protocol
When booting via the LOAD_FILE protocol, the FilePath is a device path that points to a
device that “speaks” the LOAD_FILE protocol. The image is loaded directly from the device that
supports the LOAD_FILE protocol. The remainder of the FilePath will contain information that
is specific to the device. EFI firmware passes this device-specific data to the loaded image, but
does not use it to load the image. If the remainder of the FilePath is a null device path it is the
loaded image's responsibility to implement a policy to find the correct boot device.

The LOAD_FILE protocol is used for devices that do not directly support file systems. Network
devices commonly boot in this model where the image is materialized without the need of a file
system.

17.4.2.1 Network Booting
Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support
Specification that is part of the Wired for Management Baseline specification. PXE specifies UDP,
DHCP, and TFTP network protocols that a booting platform can use to interact with an intelligent
system load server. EFI defines special interfaces that are used to implement PXE. These
interfaces are contained in the PXE_BC protocol (Chapter 14).

17.4.2.2 Future Boot Media
Since EFI defines an abstraction between the platform and the OS and its loader it should be
possible to add new types of boot media as technology evolves. The OS loader will not necessarily
have to change to support new types of boot. The implementation of the EFI platform services may
change, but the interface will remain constant. The OS will require a driver to support the new type
of boot media so that it can make the transition from EFI boot services to OS control of the boot
media.

Version 1.02 12/12/00 327

18
PCI Expansion ROM

The PCI Local Bus Specification defines how to discover expansion ROM code that comes from a
ROM on a PCI Card. The expansion ROM can be executed to initialize a specific device or,
possibly, to boot a system. PCI allows the ROM to contain several different images to
accommodate different machine and processor architectures. This chapter explains how EFI
images can be discovered and executed from a PCI expansion ROM. The EFI images are
discovered using the basic methods outlined in the PCI Local Bus Specification, and then executed
just like any other EFI image. The format and definition of an EFI image in a PCI expansion ROM
are the same as the format and definition of an EFI image that is loaded from a disk or removable
medium.

An EFI PCI expansion ROM can coexist with other image types in a single PCI ROM. The
coexistence of multiple images in a PCI expansion ROM is detailed in the PCI Local Bus
Specification. EFI utilizes a new PCI code type to define a platform-specific PCI Expansion ROM
Header. The EFI expansion ROM header contains information about the image and a pointer to the
start of the image.

18.1 Standard PCI Expansion ROM Header

All PCI expansion ROMs start with the standard header shown in Table 18-1. (The header is
defined in the PCI Local Bus Specification, Revision 2.2). The table contains a simple signature,
0xAA55, and the offset to the PCI Data Structure. The Standard PCI Data Structure must be
located within the first 64 KB of the ROM image and must be aligned on a four byte boundary.

Table 18-1. Standard PCI Expansion ROM Header

Offset Byte Length Value Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02-0x17 22 XX Reserved per processor architecture unique data

0x18-0x19 2 XX Pointer to PCI Data Structure

Table 18-2 defines the contents of the PCI Data Structure. (The definition is taken from the PCI
Local Bus Specification, Revision 2.2). The code type field is used to identify the type of code
contained in this section of the ROM. The following code types are assigned by the PCI Local Bus
Specification, Revision 2.2:

• 0x00 – Intel® IA-32, PC-AT compatible
• 0x01 – Open Firmware standard for PCI
• 0x02 – Hewlett-Packard PA RISC
• 0x03-0xff – Reserved

Extensible Firmware Interface Specification

328 12/12/00 Version 1.02

EFI will coordinate with a future revision of the PCI specification to allocate the code type of 0x03
to represent EFI images. This code type will signify that EFI extensions are present in the standard
PCI expansion ROM header.

Table 18-2. PCI Data Structure

Offset Byte Length Description

0x00 4 Signature, the string ‘PCIR’

0x04 2 Vendor Identification

0x06 2 Device Identification

0x08 2 Reserved

0x0a 2 PCI Data Structure Length

0x0c 1 PCI Data Structure Revision

0x0d 3 Class Code

0x10 2 Image Length

0x12 2 Revision Level of Code/Data

0x14 1 Code Type

0x15 1 Indicator. Used to identify if this is the last image in the ROM

0x16 2 Reserved

18.2 EFI PCI Expansion ROM Header

A value of 0x03 in the code type field of the PCI data structure indicates that an EFI expansion
ROM header is present in the system. The EFI PCI Expansion ROM Header contains all the
standard entries defined in the PCI Local Bus Specification. It also contains the offset to the EFI
driver image header. The offset to the EFI driver image header follows the same rules as the offset
to the PCI data structure in the PCI Local Bus Specification. That is the EFI PCI Expansion ROM
Header must be within the first 64 KB of the Standard PCI Expansion ROM header.

The EFI PCI Expansion ROM Header also contains information about the EFI driver image. The
size of the image is given in units of 512 bytes. The maximum size of a PCI Expansion ROM is
16 MB. The initialization size includes the size of the EFI PCI expansion ROM header, the EFI
image, and the PCI data structure. If the EFI PCI expansion ROM header is used in a context other
than the PCI Local Bus Specification definition of an expansion ROM the image size may be set to
zero.

The EFI expansion ROM header also contains some data that is included in the EFI image header.
This data is a short cut, and allows the code parsing the EFI PCI expansion ROM header to know if
it supports the image type that is pointed to by the EFI PCI expansion ROM header without
decoding the image. These fields include the image signature, subsystem value, and machine type.

PCI Expansion ROM

Version 1.02 12/12/00 329

Table 18-3 defines the layout of an EFI PCI expansion ROM. Missing values will be supplied in a
later version of the specification.

Table 18-3. EFI PCI Expansion ROM Header

Offset
Byte
Length Value Description

0x00 1 0x55 ROM Signature, byte 1

0x01 1 0xAA ROM Signature, byte 2

0x02 2 XXXX Initialization Size – size of this image in units of 512 bytes. The size
includes this header.

0x04 4 0x0EF1 Signature from EFI image header

0x08 2 XX Subsystem value for EFI image header

0x0a 2 XX Machine type from EFI image header

0x0c 10 XX Reserved

0x16 2 XX Offset to EFI Image header

0x18 2 XX Offset to PCI Data Structure

18.3 Multiple Image Format Support

With the extension defined in this chapter it is possible to discover an EFI driver image in a
PCI ROM. Since EFI images are defined with relocation there is no inherent limit as to where in
memory it can be loaded. However, EFI driver images will only be loaded if enough free memory
exists in the system.

An EFI system will only load an image if the platform supports the image type. Currently EFI has
defined three image types: IA-32 image type; Itanium-based image type; and intermediate byte
stream image type. The IA-32 and Itanium-based image type represent 32-bit and 64-bit native
Intel architecture processor code that has knowledge about EFI interfaces. The intermediate byte
stream type is a place holder for a new format that will be defined in a subsequent version of the
EFI specification. A PCI expansion ROM may contain one or more EFI image types.

18.4 EFI PCI Expansion ROM Driver

PCI Expansion ROM drivers are no different from other EFI drivers that control hardware. (See
Chapter 4 for details on how to construct an EFI driver.) To access a device, a driver needs to
know the device’s device path. For a driver loaded from a PCI Expansion ROM, the driver can
examine the device path found in the LOADED_IMAGE structure for the driver image to obtain the
device path of the device that driver image was loaded from. The driver must check that no other
driver is already controlling the device.

For the driver to perform I/O and DMA operations with the device, the driver must use the proper
DEVICE_IO protocol interfaces for the device. This is found by using the
LocateDevicePath() function with the device path of the device and the ID of the
DEVICE_IO protocol. See Chapter 6 for more information about the DEVICE_IO protocol.

Extensible Firmware Interface Specification

330 12/01/00 Version 1.01

Version 1.02 12/12/00 331

A
GUID and Time Formats

All EFI GUIDs (Globally Unique Identifiers) have the format described in Appendix J of the
Wired for Management Baseline Specification. This document references the format of the GUID,
but implementers must reference the Wired for Management specifications for algorithms to
generate GUIDs. The following table defines the format of an EFI GUID (128 bits).

Table A-1. EFI GUID Format

Mnemonic
Byte
Offset

Byte
Length Description

TimeLow 0 4 The low field of the timestamp.

TimeMid 4 2 The middle field of the timestamp.

TimeHighAndVersion 6 2 The high field of the timestamp multiplexed with the
version number.

ClockSeqHighAndReserved 8 1 The high field of the clock sequence multiplexed with
the variant.

ClockSeqLow 9 1 The low field of the clock sequence.

Node 10 6 The spatially unique node identifier. This can be
based on any IEEE 802 address obtained from a
network card. If no network card exists in the system,
a cryptographic-quality random number can be used.

All EFI time is stored in the format described by Appendix J of the Wired for Management
Baseline Specification. While this is the appendix for GUID it defines a 60-bit timestamp format
that is used to generate the GUID. All EFI time information is stored in 64-bit structures that
contain the following format: The timestamp is a 60-bit value that is represented by Coordinated
Universal Time (UTC) as a count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582
(the date of Gregorian reform to the Christian calendar). This time value will not roll over until the
year 3400 AD. It is assumed that a future version of the EFI specification can deal with the
year-3400 issue by extending this format if necessary.

Extensible Firmware Interface Specification

332 12/12/00 Version 1.02

Version 1.02 12/12/00 333

B
Console

The EFI console was designed so that it could map to common console devices. This appendix
explains how an EFI console could map to a VGA with PC AT 101/102, PCANSI, or ANSI X3.64
consoles.

B.1 SIMPLE_INPUT

Table B-1 gives examples of how an EFI scan code can be mapped to ANSI X3.64 terminal,
PCANSI terminal, or an AT 101/102 keyboard. PC ANSI terminals support an escape sequence
that begins with the ASCII character 0x1b and is followed by the ASCII character 0x5B, “ [”.
ASCII characters that define the control sequence that should be taken follow the escape sequence.
(The escape sequence does not contain spaces, but spaces are used in Table B-1 to ease the reading
of the table.) ANSI X3.64, when combined with ISO 6429, can be used to represent the same subset
of console support required by EFI. ANSI X3.64 uses a single character escape sequence CSI:
ASCII character 0x9B. ANSI X3.64 can optionally use the same two-character escape sequence
“ESC [”. ANSI X3.64 and ISO 6429 support the same escape codes as PCANSI.

Table B-1. EFI Scan Codes for SIMPLE_INPUT

EFI Scan Code Description
ANSI X3.64
Codes

PCANSI
Codes

AT 101/102 Keyboard
Scan Codes

0x00 Null scan code. N/A N/A N/A

0x01 Move cursor up 1 row. CSI A ESC [A 0xe0, 0x48

0x02 Move cursor down 1 row. CSI B ESC [B 0xe0, 0x50

0x03 Move cursor right 1 column. CSI C ESC [C 0xe0, 0x4d

0x04 Move cursor left 1 column. CSI D ESC [D 0xe0, 0x4b

0x05 Home. CSI H ESC [H 0xe0, 0x47

0x06 End. CSI K ESC [K 0xe0, 0x4f

0x07 Insert. CSI @ ESC [@ 0xe0, 0x52

0x08 Delete. CSI P ESC [P 0xe0, 0x53

0x09 Page Up. CSI ? ESC [? 0xe0, 0x49

0x0a Page Down. CSI / ESC [/ 0xe0, 0x51

0x0b Function 1. CSI O P ESC [O P 0x3b

0x0c Function 2. CSI O Q ESC [O Q 0x3c

0x0d Function 3. CSI O w ESC [O w 0x3d

continued

Extensible Firmware Interface Specification

334 12/12/00 Version 1.02

Table B-1. EFI Scan Codes for SIMPLE_INPUT (continued)

EFI Scan Code Description
ANSI X3.64
Codes

PCANSI
Codes

AT 101/102 Keyboard
Scan Codes

0x0e Function 4 CSI O x ESC [O x 0x3e

0x0f Function 5 CSI O t ESC [O t 0x3f

0x10 Function 6 CSI O u ESC [O u 0x40

0x11 Function 7 CSI O q ESC [O q 0x41

0x12 Function 8 CSI O r ESC [O r 0x42

0x13 Function 9 CSI O p ESC [O p 0x43

0x14 Function 10 CSI O M ESC [O M 0x44

0x17 Escape CSI ESC 0x01

B.2 SIMPLE_TEXT_OUTPUT

Table B-2 defines how the programmatic methods of the SIMPLE_TEXT_OUPUT protocol could
be implemented as PCANSI or ANSI X3.64 terminals. Detailed descriptions of PCANSI and ANSI
X3.64 escape sequences are as follows. The same type of operations can be supported via a PC AT
type INT 10h interface.

Table B-2. Control Sequences that Can Be Used to Implement SIMPLE_TEXT_OUTPUT

PCANSI
Codes

ANSI X3.64
Codes Description

ESC [2 J CSI 2 J Clear Display Screen.

ESC [0 m CSI 0 m Normal Text.

ESC [1 m CSI 1 m Bright Text.

ESC [7 m CSI 7 m Reversed Text.

ESC [30 m CSI 30 m Black foreground, compliant with ISO Standard 6429.

ESC [31 m CSI 31 m Red foreground, compliant with ISO Standard 6429.

ESC [32 m CSI 32 m Green foreground, compliant with ISO Standard 6429.

ESC [33 m CSI 33 m Yellow foreground, compliant with ISO Standard 6429.

ESC [34 m CSI 34 m Blue foreground, compliant with ISO Standard 6429.

ESC [35 m CSI 35 m Magenta foreground, compliant with ISO Standard 6429.

ESC [36 m CSI 36 m Cyan foreground, compliant with ISO Standard 6429.

ESC [37 m CSI 37 m White foreground, compliant with ISO Standard 6429.

ESC [40 m CSI 40 m Black background, compliant with ISO Standard 6429.

continued

Console

Version 1.02 12/12/00 335

Table B-2. Control Sequences that Can Be Used to Implement
SIMPLE_TEXT_OUTPUT (continued)

PCANSI
Codes

ANSI X3.64
Codes Description

ESC [41 m CSI 41 m Red background, compliant with ISO Standard 6429.

ESC [42 m CSI 42 m Green background, compliant with ISO Standard 6429.

ESC [43 m CSI 43 m Yellow background, compliant with ISO Standard 6429.

ESC [44 m CSI 44 m Blue background, compliant with ISO Standard 6429.

ESC [45 m CSI 45 m Magenta background, compliant with ISO Standard 6429.

ESC [46 m CSI 46 m Cyan background, compliant with ISO Standard 6429.

ESC [47 m CSI 47 m White background, compliant with ISO Standard 6429.

ESC [3 h CSI = 3 h Set Mode 80x25 color.

ESC [row;col H CSI row;col H Set cursor position to row;col. Row and col are strings of ASCII digits.

Extensible Firmware Interface Specification

336 12/12/00 Version 1.02

Version 1.02 12/12/00 337

C
Device Path Examples

This appendix presents an example EFI Device Path and explains its relationship to the ACPI name
space. An example system design is presented along with its corresponding ACPI name space.
These physical examples are mapped back to EFI Device Paths.

C.1 Example Computer System

Figure C-1 represents a hypothetical computer system architecture that will be used to discuss the
construction of EFI Device Paths. The system consists of a memory controller that connects
directly to the processors’ front side bus. The memory controller is only part of a larger chipset,
and it connects to a root PCI host bridge chip, and a secondary root PCI host bridge chip. The
secondary PCI host bridge chip produces a PCI bus that contains a PCI to PCI bridge. The root PCI
host bridge produces a PCI bus, and also contains USB, ATA66, and AC ’97 controllers. The root
PCI host bridge also contains an LPC bus that is used to connect a SIO (Super IO) device. The SIO
contains a PC AT compatible floppy disk controller, and other PC AT compatible devices like a
keyboard controller.

Memory
Controller

Memory
Controller

AGP RDRAM

 CPU CPU

SIO

FDC
KBD
GPIO
Serial

Parallel
Mouse

IR

USB ATA66 AC’97

LPC

PCI 33MHz

PCI Slots

Secondary
PCI Host
Bridge

Secondary
PCI Host
Bridge

Root PCI
Host Bridge

Root PCI
Host Bridge

PCI Slots

3

2

1

PCI to PCI
Bridge

PCI to PCI
Bridge

P
C

I S
lo

t s

Figure C-1. Example Computer System

Extensible Firmware Interface Specification

338 12/12/00 Version 1.02

The remainder of this appendix describes how to construct a device path for three example devices
from the system in Figure C-1. The following is a list of the examples used:

• Legacy floppy
• IDE Disk
• Secondary root PCI bus with PCI to PCI bridge

Figure C-2 is a partial ACPI name space for the system in Figure C-1. Figure C-2 is based on
Figure 5-3 in the Advanced Configuration and Power Interface Specification.

Root of ACPI Nam e Space

_SB - System Bus Tree

ID E0 - IDE Device

_AD R - PC I Device #, Function #

PCI0 - R oot PCI Bus

_HID & _UID - ACPI Device ID and Unique ID

_CRS - Current Resources (Bus, IO, Mem ory)

PRIM - Prim ary IDE Channel
_AD R- Prim ary 0, Secondary 1

ISA0 - ISA Bridge

_AD R - PCI Device #, Function #

FLPY - Legacy F loppy

_HID - Address of Floppy
PCI0 - Secondary Root PCI Bus

_HID & _UID - ACPI Device ID and Unique ID

_CR S - Current Resources (Bus, IO, M em ory)

_HID & _UID - ACPI D evice ID and Unique ID

1

3

2
Key

Device O bject

1

Data Object

Example Platform
R efe rence

M AST - M aster IDE Device

_AD R - M aster 0, Slave 1

Figure C-2. Partial ACPI Name Space for Example System

C.2 Legacy Floppy

The legacy floppy controller is contained in the SIO chip that is connected root PCI bus host bridge
chip. The root PCI host bridge chip produces PCI bus 0, and other resources that appear directly to
the processors in the system.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI0 is a child of _SB and it represents the root PCI host bridge. The SIO appears to the system to
be a set of ISA devices, so it is represented as a child of PCI0 with the name ISA0. The floppy
controller is represented by FLPY as a child of the ISA0 bus.

The EFI Device Path for the legacy floppy would contain entries for the following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0
• PCI to ISA Bridge. PCI Device Path with device and function of the PCI to ISA bridge. ACPI

name space _SB\PCI0\ISA0
• Floppy Plug and Play ID. ACPI Device Path _HID PNP0303, _UID 0. ACPI name space

_SB\PCI0\ISA0\FLPY
• End Device Path

Device Path Examples

Version 1.02 12/12/00 339

Table C-1. Legacy Floppy Device Path

Byte
Offset

Byte
Length Data Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,

0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function

11 1 0x10 PCI Device

12 1 0x02 Generic Device Path Header – Type ACPI Device Path

13 1 0x01 Sub type – ACPI Device Path

14 2 0x0C Length

16 4 0x41D0,

0x0303

_HID PNP0303

1A 4 0x0000 _UID

1E 1 0xFF Generic Device Path Header – Type End Device Path

1F 1 0xFF Sub type – End Device Path

20 2 0x04 Length

C.3 IDE Disk

The IDE Disk controller is a PCI device that is contained in a function of the root PCI host bridge.
The root PCI host bridge is a multi function device and has a separate function for chipset registers,
USB, and IDE. The disk connected to the IDE ATA bus is defined as being on the primary or
secondary ATA bus, and of being the master or slave device on that bus.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI0 is a child of _SB and it represents the root PCI host bridge. The IDE controller appears to the
system to be a PCI device with some legacy properties, so it is represented as a child of PCI0 with
the name IDE0. PRIM is a child of IDE0 and it represents the primary ATA bus of the IDE
controller. MAST is a child of PRIM and it represents the that this device is the ATA master
device on this primary ATA bus.

Extensible Firmware Interface Specification

340 12/12/00 Version 1.02

The EFI Device Path for the PCI IDE controller would contain entries for the following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 0. ACPI name space _SB\PCI0
• PCI IDE controller. PCI Device Path with device and function of the IDE controller. ACPI

name space _SB\PCI0\IDE0
• ATA Address. ATA Messaging Device Path for Primary bus and Master device. ACPI name

space _SB\PCI0\IDE0\PRIM\MAST
• End Device Path

Table C-2. IDE Disk Device Path

Byte
Offset

Byte
Length Data Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,

0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

8 4 0x0000 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x01 PCI Function

11 1 0x10 PCI Device

12 1 0x03 Generic Device Path Header – Messaging Device Path

13 1 0x01 Sub type – ATAPI Device Path

14 2 0x06 Length

16 1 0x00 Primary =0, Secondary = 1

17 1 0x00 Master = 0, Slave = 1

18 2 0x0000 LUN

1A 1 0xFF Generic Device Path Header – Type End Device Path

1B 1 0xFF Sub type – End Device Path

1C 2 0x04 Length

Device Path Examples

Version 1.02 12/12/00 341

C.4 Secondary Root PCI Bus with PCI to PCI Bridge

The secondary PCI host bridge materializes a second set of PCI buses into the system. The PCI
buses on the secondary PCI host bridge are totally independent of the PCI buses on the root PCI
host bridge. The only relationship between the two is they must be configured to not consume the
same resources. The primary PCI bus of the secondary PCI host bridge also contains a PCI to PCI
bridge. There is some arbitrary PCI device plugged in behind the PCI to PCI bridge in a PCI slot.

In ACPI this configuration is represented in the _SB, system bus tree, of the ACPI name space.
PCI1 is a child of _SB and it represents the secondary PCI host bridge. The PCI to PCI bridge and
the device plugged into the slot on its primary bus are not described in the ACPI name space.
These devices can be fully configured by following the applicable PCI specification.

The EFI Device Path for the secondary root PCI bridge with a PCI to PCI bridge would contain
entries for the following things:

• Root PCI Bridge. ACPI Device Path _HID PNP0A03, _UID 1. ACPI name space _SB\PCI1
• PCI to PCI Bridge. PCI Device Path with device and function of the PCI Bridge. ACPI name

space _SB\PCI1, PCI to PCI bridges are defined by PCI specification and not ACPI.
• PCI Device. PCI Device Path with the device and function of the PCI device. ACPI name

space _SB\PCI1, PCI devices are defined by PCI specification and not ACPI.
• End Device Path.

Table C-3. Secondary Root PCI Bus with PCI to PCI Bridge Device Path

Byte
Offset

Byte
Length Data Description

0 1 0x02 Generic Device Path Header – Type ACPI Device Path

1 1 0x01 Sub type – ACPI Device Path

2 2 0x0C Length

4 4 0x41D0,
0x0A03

_HID PNP0A03 – 0x41D0 represents a compressed string ‘PNP’ and is in
the low order bytes

8 4 0x0001 _UID

C 1 0x01 Generic Device Path Header – Type Hardware Device Path

D 1 0x01 Sub type PCI Device Path

E 2 0x06 Length

10 1 0x00 PCI Function for PCI to PCI bridge

11 1 0x0c PCI Device for PCI to PCI bridge

12 1 0x01 Generic Device Path Header – Type Hardware Device Path

13 1 0x01 Sub type PCI Device Path

14 2 0x08 Length

16 1 0x00 PCI Function for PCI Device

17 1 0x00 PCI Device for PCI Device

18 1 0xFF Generic Device Path Header – Type End Device Path

19 1 0xFF Sub type – End Device Path

1A 2 0x04 Length

Extensible Firmware Interface Specification

342 12/12/00 Version 1.02

C.5 ACPI Terms

Names in the ACPI name space that start with an underscore (“_”) are reserved by the ACPI
specification and have architectural meaning. All ACPI names in the name space are four
characters in length. The following four ACPI names are used in this specification.

_ADR. The Address on a bus that has standard enumeration. An example would be PCI, where
the enumeration method is described in the PCI Local Bus specification.

_CRS. The current resource setting of a device. A _CRS is required for devices that are not
enumerated in a standard fashion. _CRS is how ACPI converts non standard devices into plug and
play devices.

_HID. Represents a device’s plug and play hardware ID, stored as a 32-bit compressed EISA ID.
_HID objects are optional in ACPI. However, a _HID object must be used to describe any device
that will be enumerated by the ACPI driver in the OS. This is how ACPI deals with non Plug and
Play devices.

_UID. Is a serial number style ID that does not change across reboots. If a system contains more
than one device that reports the same _HID, each device must have a unique _UID. The _UID only
needs to be unique for device that have the exact same _HID value.

Device Path Examples

Version 1.02 12/12/00 343

C.6 EFI Device Path as a Name Space

Figure C-3 shows the EFI Device Path for the example system represented as a name space. The
Device Path can be represented as a name space, but EFI does support manipulating the Device
Path as a name space. You can only access Device Path information by locating the
DEVICE_PATH_INTERFACE from a handle. Not all the nodes in a Device Path will have a
handle.

PCI (Device)
Dev, Func

Message (ATA)
Primary
Maste

ACPI (Legacy Floppy)
_HID PNP0303
_UID 0

Media (Hard Drive)
Partition 1

PCI (IDE Device)
Dev, Func

PCI (ISA Bridge)
Dev, Func

ACPI (Root PCI Bridge)
_HID PNP0A03
_UID 0

ACPI (Root PCI Bridge)
_HID PNP0A03
_UID 1

PCI (PCI to PCI Bridge)
Dev, Func

Root
/

1 2
3

Key

Device Path Node
with EFI Handles

1

Device Path Node
only in other device paths

Example Platform
Reference

Figure C-3. EFI Device Path Displayed As a Name Space

Extensible Firmware Interface Specification

344 12/12/00 Version 1.02

Version 1.02 12/12/00 345

D
Status Codes

EFI interfaces return an EFI_STATUS code. Tables D-2, D-3, and D-4 list these codes for
success, errors, and warnings, respectively. Error codes also have their highest bit set, so all error
codes have negative values. The range of status codes that have the highest bit set and the next to
highest bit clear are reserved for use by EFI. The range of status codes that have both the highest
bit set and the next to highest bit set are reserved for use by OEMs. Success and warning codes
have their highest bit clear, so all success and warning codes have positive values. The range of
status codes that have both the highest bit clear and the next to highest bit clear are reserved for use
by EFI. The range of status code that have the highest bit clear and the next to highest bit set are
reserved for use by OEMs. Table D-1 lists the status code ranges described above.

Table D-1. EFI_STATUS Codes Ranges

IA-32 Range IA-64 Range Description

0x00000000-

0x3fffffff

0x0000000000000000-

0x3fffffffffffffff
Success and warning codes reserved for use by EFI.
See Tables D-2 and D-4 for valid values in this range.

0x40000000-

0x7fffffff

0x4000000000000000-

0x7fffffffffffffff
Success and warning codes reserved for use by OEMs.

0x80000000-

0xbfffffff

0x8000000000000000-

0xbfffffffffffffff
Error codes reserved for use by EFI. See Table D-3 for
valid values for this range.

0xc0000000-

0xffffffff

0xc000000000000000-

0xffffffffffffffff
Error codes reserved for use by OEMs.

Table D-2. EFI_STATUS Success Codes (High bit clear)

Mnemonic Value Description

EFI_SUCCESS 0 The operation completed successfully.

Table D-3. EFI_STATUS Error Codes (High bit set)

Mnemonic Value Description

EFI_LOAD_ERROR 1 The image failed to load.

EFI_INVALID_PARAMETER 2 A parameter was incorrect.

EFI_UNSUPPORTED 3 The operation is not supported.

EFI_BAD_BUFFER_SIZE 4 The buffer was not the proper size for the request.

EFI_BUFFER_TOO_SMALL 5 The buffer is not large enough to hold the requested data.
The required buffer size is returned in the appropriate
parameter when this error occurs.

continued

Extensible Firmware Interface Specification

346 12/12/00 Version 1.02

Table D-3. EFI_STATUS Error Codes (High bit set) (continued)

Mnemonic Value Description

EFI_NOT_READY 6 There is no data pending upon return.

EFI_DEVICE_ERROR 7 The physical device reported an error while attempting the
operation.

EFI_WRITE_PROTECTED 8 The device cannot be written to.

EFI_OUT_OF_RESOURCES 9 A resource has run out.

EFI_VOLUME_CORRUPTED 10 An inconstancy was detected on the file system causing
the operating to fail.

EFI_VOLUME_FULL 11 There is no more space on the file system.

EFI_NO_MEDIA 12 The device does not contain any medium to perform the
operation.

EFI_MEDIA_CHANGED 13 The medium in the device has changed since the last
access.

EFI_NOT_FOUND 14 The item was not found.

EFI_ACCESS_DENIED 15 Access was denied.

EFI_NO_RESPONSE 16 The server was not found or did not respond to the request.

EFI_NO_MAPPING 17 A mapping to a device does not exist.

EFI_TIMEOUT 18 The timeout time expired.

EFI_NOT_STARTED 19 The protocol has not been started.

EFI_ALREADY_STARTED 20 The protocol has already been started.

EFI_ABORTED 21 The operation was aborted.

EFI_ICMP_ERROR 22 An ICMP error occurred during the network operation.

EFI_TFTP_ERROR 23 A TFTP error occurred during the network operation.

EFI_PROTOCOL_ERROR 24 A protocol error occurred during the network operation.

Table D-4. EFI_STATUS Warning Codes (High bit clear)

Mnemonic Value Description

EFI_WARN_UNKOWN_GLYPH 1 The Unicode string contained one or more characters that
the device could not render and were skipped.

EFI_WARN_DELETE_FAILURE 2 The handle was closed, but the file was not deleted.

EFI_WARN_WRITE_FAILURE 3 The handle was closed, but the data to the file was not
flushed properly.

EFI_WARN_BUFFER_TOO_SMALL 4 The resulting buffer was too small, and the data was
truncated to the buffer size.

Version 1.02 12/12/00 347

E
Alphabetic Function Lists

This appendix contains two tables that list all EFI functions alphabetically. Table E-1 lists the
functions in pure alphabetic order. Functions that have the same name can be distinguished by the
associated service or protocol (column 2). For example, there are two “Flush” functions, one from
the Device I/O Protocol and one from the File System Protocol. Table E-2 orders the functions
alphabetically within a service or protocol. That is, column one names the service or protocol, and
column two lists the functions in the service or protocol.

Table E-1. Functions Listed in Alphabetic Order

Function Name Service or Protocol Sub-Service Function Description

AllocateBuffer Device I/O Protocol Allocates pages that are suitable
for a common buffer mapping.

AllocatePages Boot Services Memory Allocation
Services

Allocates memory pages of a
particular type.

AllocatePool Boot Services Memory Allocation
Services

Allocates pool of a particular type.

Arp PXE Base Code
Protocol

Uses the ARP protocol to resolve
a MAC address.

CheckEvent Boot Services Event Services Checks whether an event is in the
signaled state.

ClearScreen Simple Text Output
Protocol

Clears the screen with the
currently set background color.

Close File System Protocol Closes the current file handle.

CloseEvent Boot Services Event Services Closes and frees an event
structure.

ConvertPointer Runtime Services Virtual Memory
Services

Converts internal pointers when
switching to virtual addressing.

CreateEvent Boot Services Event Services Creates a general-purpose event
structure.

Delete File System Protocol Deletes a file.

Dhcp PXE Base Code
Protocol

Attempts to complete a DHCPv4
D.O.R.A. (discover / offer / request
/ acknowledge) or DHCPv6
S.A.R.R (solicit / advertise /
request / reply) sequence.

Discover PXE Base Code
Protocol

Attempts to complete the PXE
Boot Server and/or boot image
discovery sequence.

continued

Extensible Firmware Interface Specification

348 12/12/00 Version 1.02

Table E-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Sub-Service Function Description

EFI_PXE_BASE_CODE_CAL
LBACK

PXE Base Code
Protocol

Callback function that is invoked
when the PXE Base Code
Protocol is waiting for an event.

EFI_IMAGE_ENTRY_POINT Boot Services Image Services Prototype of an EFI Image’s entry
point.

EnableCursor Simple Text Output
Protocol

Turns the visibility of the cursor
on/off.

Exit Boot Services Image Services Exits the image’s entry point.

ExitBootServices Boot Services Image Services Terminates boot services.

FatToStr Unicode Collation
Protocol

Converts an 8.3 FAT file name in
an OEM character set to a Null-
terminated Unicode string.

Flush Device I/O Protocol Flushes any posted write data to
the device.

Flush File System Protocol Flushes all modified data
associated with the file to the
device.

FlushBlocks Block I/O Protocol Flushes any cached blocks.

FreeBuffer Device I/O Protocol Frees pages that were allocated
with AllocateBuffer.

FreePages Boot Services Memory Allocation
Services

Frees memory pages.

FreePool Boot Services Memory Allocation
Services

Frees allocated pool.

GetControl Serial I/O Protocol Reads the status of the control bits
on a serial device.

GetInfo File System Protocol Gets the requested file or volume
information.

GetMemoryMap Boot Services Memory Allocation
Services

Returns the current boot services
memory map and memory
map key.

GetNextHighMonotonicCount Runtime Services Miscellaneous
Services

Returns the next high 32 bits of a
platform's monotonic counter.

GetNextMonotonicCount Boot Services Miscellaneous
Services

Returns a monotonically
increasing count for the platform.

GetNextVariableName Runtime Services Variable Services Enumerates the current variable
names.

GetPosition File System Protocol Returns the current file position.

GetStatus Simple Network
Protocol

Reads the current interrupt status
and recycled transmit buffer status
from the network interface.

continued

Alphabetic Function Lists

Version 1.02 12/12/00 349

Table E-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Sub-Service Function Description

GetTime Runtime Services Time Services Returns the current time and date,
and the time-keeping capabilities
of the platform.

GetVariable Runtime Services Variable Services Returns the value of the specific
variable.

GetWakeupTime Runtime Services Time Services Returns the current wakeup alarm
clock setting.

HandleProtocol Boot Services Protocol Handler
Services

Queries the list of protocol
handlers on a device handle for
the requested Protocol Interface.

Initialize Simple Network
Protocol

Resets the network adapter and
allocates the transmit and receive
buffers required by the network
interface; also optionally allows
space for additional transmit and
receive buffers to be allocated

InstallConfigurationTable Boot Services Miscellaneous
Services

Adds, updates, or removes a
configuration table from the EFI
System Table.

InstallProtocolInterface Boot Services Protocol Handler
Services

Adds a protocol interface to an
existing or new device handle.

Io.Read Device I/O Protocol Reads from I/O ports on a bus.

Io.Write Device I/O Protocol Writes to I/O ports on a bus.

LoadFile Load File Protocol Causes the driver to load the
requested file.

LoadImage Boot Services Image Services Function to dynamically load
another EFI Image.

LocateDevicePath Boot Services Protocol Handler
Services

Locates the closest handle that
supports the specified protocol on
the specified device path.

LocateHandle Boot Services Protocol Handler
Services

Locates the handle(s) that support
the specified protocol.

Map Device I/O Protocol Provides the device specific
addresses needed to access host
memory for DMA.

MCastIPtoMAC Simple Network
Protocol

Allows a multicast IP address to
be mapped to a multicast HW
MAC address.

Mem.Read Device I/O Protocol Reads from memory on a bus.

Mem.Write Device I/O Protocol Writes to memory on a bus.

continued

Extensible Firmware Interface Specification

350 12/12/00 Version 1.02

Table E-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Sub-Service Function Description

MetaiMatch Unicode Collation
Protocol

Performs a case insensitive
comparison between a Unicode
pattern string and a Unicode
string.

Mtftp PXE Base Code
Protocol

Is used to perform TFTP and
MTFTP services.

NVData Simple Network
Protocol

Allows read and writes to the
NVRAM device attached to a
network interface.

Open File System Protocol Opens or creates a new file.

OpenVolume Simple File System
Protocol

Opens the volume for file I/O
access.

OutputString Simple Text Output
Protocol

Displays the Unicode string on the
device at the current cursor
location.

Pci.Read Device I/O Protocol Reads from PCI Configuration
Space.

Pci.Write Device I/O Protocol Writes to PCI Configuration
Space.

PciDevicePath Device I/O Protocol Provides an EFI Device Path for a
PCI device with the given PCI
configuration space address.

QueryMode Simple Text Output
Protocol

Queries information concerning
the output device’s supported text
mode.

RaiseTPL Boot Services Task Priority
Services

Raises the task priority level.

Read File System Protocol Reads bytes from a file.

Read Serial I/O Protocol Receives a buffer of characters
from a serial device.

ReadBlocks Block I/O Protocol Reads the requested number of
blocks from the device.

ReadDisk Disk I/O Protocol Reads data from the disk.

ReadKeyStroke Simple Input
Protocol

Reads a keystroke from a simple
input device.

Receive Simple Network
Protocol

Receives a packet from the
network interface.

RegisterProtocolNotify Boot Services Protocol Handler
Services

Registers for protocol interface
installation notifications

continued

Alphabetic Function Lists

Version 1.02 12/12/00 351

Table E-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Sub-Service Function Description

ReinstallProtocolInterface Boot Services Protocol Handler
Services

Replaces a protocol interface.

Reset Block I/O Protocol Resets the block device hardware.

Reset Serial I/O Protocol Resets the hardware device.

Reset Simple Input
Protocol

Resets a simple input device.

Reset Simple Network
Protocol

Resets the network adapter, and
re-initializes it with the parameters
that were provided in the previous
call to Initialize().

Reset Simple Text Output
Protocol

Reset the ConsoleOut device.

ResetSystem Runtime Services Miscellaneous
Services

Resets the entire platform.

RestoreTPL Boot Services Task Priority
Services

Restores/lowers the task priority
level.

SetAttribute Simple Text Output
Protocol

Sets the foreground and
background color of the text that is
output.

SetAttributes Serial I/O Protocol Sets communication parameters
for a serial device.

SetControl Serial I/O Protocol Sets the control bits on a serial
device.

SetCursorPosition Simple Text Output
Protocol

Sets the current cursor position.

SetInfo File System Protocol Sets the requested file
information.

SetIpFilter PXE Base Code
Protocol

Updates the IP receive filters of a
network device and enables
software filtering.

SetMode Simple Text Output
Protocol

Sets the current mode of the
output device.

SetPackets PXE Base Code
Protocol

Updates the contents of the
cached DHCP and Discover
packets.

SetParameters PXE Base Code
Protocol

Updates the parameters that affect
the operation of the PXE Base
Code Protocol.

SetPosition File System Protocol Sets the current file position.

SetStationIp PXE Base Code
Protocol

Updates the station IP address
and/or subnet mask values.

continued

Extensible Firmware Interface Specification

352 12/12/00 Version 1.02

Table E-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Sub-Service Function Description

SetTime Runtime Services Time Services Sets the current local time and
date information.

SetTimer Boot Services Event Services Sets an event to be signaled at a
particular time.

SetVariable Runtime Services Variable Services Sets the value of the specified
variable.

SetVirtualAddressMap Runtime Services Virtual Memory
Services

Used by an OS loader to convert
from physical addressing to virtual
addressing.

SetWakeupTime Runtime Services Time Services Sets the system wakeup alarm
clock time.

SetWatchdogTimer Boot Services Miscellaneous
Services

Resets and sets the system’s
watchdog timer.

Shutdown Simple Network
Protocol

Resets the network adapter and
leaves it in a state safe for another
driver to initialize.

SignalEvent Boot Services Event Services Signals an event.

Stall Boot Services Miscellaneous
Services

Stalls the processor.

Start PXE Base Code
Protocol

Enables the use of PXE Base
Code Protocol functions.

Start Simple Network
Protocol

Changes the network interface
from the stopped state to the
started state.

StartImage Boot Services Image Services Function to transfer control to the
Image’s entry point.

StationAddress Simple Network
Protocol

Allows the station address of the
network interface to be modified.

Statistics Simple Network
Protocol

Allows the statistics on the
network interface to be reset
and/or collected.

Stop PXE Base Code
Protocol

Disables the use of PXE Base
Code Protocol functions.

Stop Simple Network
Protocol

Changes the network interface
from the started state to the
stopped state.

StriColl Unicode Collation
Protocol

Performs a case-insensitive
comparison between two Unicode
strings.

continued

Alphabetic Function Lists

Version 1.02 12/12/00 353

Table E-1. Functions Listed in Alphabetic Order (continued)

Function Name Service or Protocol Sub-Service Function Description

StrLwr Unicode Collation
Protocol

Converts all the Unicode
characters in a Null-terminated
Unicode string to lower case
Unicode characters.

StrToFat Unicode Collation
Protocol

Converts a Null-terminated
Unicode string to legal characters
in a FAT filename using an OEM
character set.

StrUpr Unicode Collation
Protocol

Converts all the Unicode
characters in a Null-terminated
Unicode string to upper case
Unicode characters.

TestString Simple Text Output
Protocol

Tests to see if the ConsoleOut
device supports this Unicode
string.

Transmit Simple Network
Protocol

Places a packet in the transmit
queue of the network interface.

UdpRead PXE Base Code
Protocol

Reads a UDP packet from a
network interface.

UdpWrite PXE Base Code
Protocol

Writes a UDP packet to a network
interface.

UninstallProtocolInterface Boot Services Protocol Handler
Services

Removes a protocol interface from
a device handle.

Unload Loaded Image Requests an image to unload.

UnloadImage Boot Services Image Services Unloads an image.

Unmap Device I/O Protocol Releases any resources allocated
by Map().

WaitForEvent Boot Services Event Services Stops execution until an event is
signaled.

Write File System Protocol Writes bytes to a file.

Write Serial I/O Protocol Sends a buffer of characters to a
serial device.

WriteBlocks Block I/O Protocol Writes the requested number of
blocks to the device.

WriteDisk Disk I/O Protocol Writes data to the disk.

Extensible Firmware Interface Specification

354 12/12/00 Version 1.02

Table E-2. Functions Listed Alphabetically Within Service or Protocol

Service or Protocol Function Function Description

Block I/O Protocol FlushBlocks Flushes any cached blocks.

ReadBlocks Reads the requested number of blocks from the device.

Reset Resets the block device hardware.

WriteBlocks Writes the requested number of blocks to the device.

Boot Services AllocatePages Allocates memory pages of a particular type.

AllocatePool Allocates pool of a particular type.

CheckEvent Checks whether an event is in the signaled state.

CloseEvent Closes and frees an event structure.

CreateEvent Creates a general-purpose event structure.

EFI_IMAGE_
ENTRY_POINT

Prototype of an EFI Image’s entry point.

Exit Exits the image’s entry point.

ExitBootServices Terminates boot services.

FreePages Frees memory pages.

FreePool Frees allocated pool.

GetMemoryMap Returns the current boot services memory map and
memory map key.

GetNextMonotonicCount Returns a monotonically increasing count for the
platform.

HandleProtocol Queries the list of protocol handlers on a device handle
for the requested Protocol Interface.

InstallConfigurationTable Adds, updates, or removes a configuration table from the
EFI System Table

InstallProtocolInterface Adds a protocol interface to an existing or new device
handle.

LoadImage Function to dynamically load another EFI Image.

LocateDevicePath Locates the closest handle that supports the specified
protocol on the specified device path.

LocateHandle Locates the handle(s) that support the specified protocol.

RaiseTPL Raises the task priority level.

RegisterProtocolNotify Registers for protocol interface installation notifications

ReinstallProtocolInterface Replaces a protocol interface.

RestoreTPL Restores/lowers the task priority level.

SetTimer Sets an event to be signaled at a particular time.

SetWatchdogTimer Resets and sets the system's watchdog timer.

SignalEvent Signals an event.

continued

Alphabetic Function Lists

Version 1.02 12/12/00 355

Table E-2. Functions Listed Alphabetically Within Service or Protocol (continued)

Service or Protocol Function Function Description

Boot Services (cont.) Stall Stalls the processor.

StartImage Function to transfer control to the Image’s entry point.

UninstallProtocolInterface Removes a protocol interface from a device handle.

UnloadImage Unloads an image.

WaitForEvent Stops execution until an event is signaled.

Device I/O Protocol AllocateBuffer Allocates pages that are suitable for a common buffer
mapping.

Flush Flushes any posted write data to the device.

FreeBuffer Frees pages that were allocated with AllocateBuffer.

Io.Read Reads from I/O ports on a bus.

Io.Write Writes to I/O ports on a bus.

Map Provides the device specific addresses needed to access
host memory for DMA.

Mem.Read Reads from memory on a bus.

Mem.Write Writes to memory on a bus.

Pci.Read Reads from PCI Configuration Space.

Pci.Write Writes to PCI Configuration Space.

PciDevicePath Provides an EFI Device Path for a PCI device with the
given PCI configuration space address.

Unmap Releases any resources allocated by Map().

Disk I/O Protocol ReadDisk Reads data from the disk.

WriteDisk Writes data to the disk.

File System Protocol Close Closes the current file handle.

Delete Deletes a file.

Flush Flushes all modified data associated with the file to the
device.

GetInfo Gets the requested file or volume information.

GetPosition Returns the current file position.

Open Opens or creates a new file.

Read Reads bytes from a file.

SetInfo Sets the requested file information.

SetPosition Sets the current file position.

Write Writes bytes to a file.

Load File Protocol LoadFile Causes the driver to load the requested file.

Loaded Image Protocol Unload Requests an image to unload.

continued

Extensible Firmware Interface Specification

356 12/12/00 Version 1.02

Table E-2. Functions Listed Alphabetically Within Service or Protocol (continued)

Service or Protocol Function Function Description

PXE Base Code
Protocol

Arp Uses the ARP protocol to resolve a MAC address.

Dhcp Attempts to complete a DHCPv4 D.O.R.A. (discover /
offer / request / acknowledge) or DHCPv6 S.A.R.R
(solicit / advertise / request / reply) sequence.

Discover Attempts to complete the PXE Boot Server and/or boot
image discovery sequence.

EFI_PXE_BASE_CODE
_CALLBACK

Callback function that is invoked when the PXE Base
Code Protocol is waiting for an event.

Mtftp Is used to perform TFTP and MTFTP services.

SetIpFilter Updates the IP receive filters of a network device and
enables software filtering.

SetPackets Updates the contents of the cached DHCP and Discover
packets.

SetParameters Updates the parameters that affect the operation of the
PXE Base Code Protocol.

SetStationIp Updates the station IP address and/or subnet mask
values.

Start Enables the use of PXE Base Code Protocol functions.

Stop Disables the use of PXE Base Code Protocol functions.

UdpRead Reads a UDP packet from a network interface.

UdpWrite Writes a UDP packet to a network interface.

Runtime Services ConvertPointer Used by EFI components to convert internal pointers
when switching to virtual addressing.

GetNextHigh
MonotonicCount

Returns the next high 32 bits of a platform’s monotonic
counter.

GetNextVariableName Enumerates the current variable names.

GetTime Returns the current time and date, and the time-keeping
capabilities of the platform.

GetVariable Returns the value of the specific variable.

GetWakeupTime Returns the current wakeup alarm clock setting.

ResetSystem Resets the entire platform.

SetTime Sets the current local time and date information.

SetVariable Sets the value of the specified variable.

SetVirtualAddressMap Used by an OS loader to convert from physical
addressing to virtual addressing.

SetWakeupTime Sets the system wakeup alarm clock time.

continued

Alphabetic Function Lists

Version 1.02 12/12/00 357

Table E-2. Functions Listed Alphabetically Within Service or Protocol (continued)

Service or Protocol Function Function Description

Serial I/O Protocol GetControl Reads the status of the control bits on a serial device.

Read Receives a buffer of characters from a serial device.

Reset Resets the hardware device.

SetAttributes Sets communication parameters for a serial device.

SetControl Sets the control bits on a serial device.

Write Sends a buffer of characters to a serial device.

Simple File System
Protocol

OpenVolume Opens the volume for file I/O access.

Simple Input Protocol ReadKeyStroke Reads a keystroke from a simple input device.

Reset Resets a simple input device.

Simple Network
Protocol

GetStatus Reads the current interrupt status and recycled transmit
buffer status from the network interface.

Initialize Resets the network adapter and allocates the transmit
and receive buffers required by the network interface;
also optionally allows space for additional transmit and
receive buffers to be allocated

MCastIPtoMAC Allows a multicast IP address to be mapped to a
multicast HW MAC address.

NVData Allows read and writes to the NVRAM device attached to
a network interface.

Receive Receives a packet from the network interface.

Reset Resets the network adapter, and re-initializes it with the
parameters that were provided in the previous call to
Initialize().

Shutdown Resets the network adapter and leaves it in a state safe
for another driver to initialize.

Start Changes the network interface from the stopped state to
the started state.

StationAddress Allows the station address of the network interface to be
modified.

Statistics Allows the statistics on the network interface to be reset
and/or collected.

Stop Changes the network interface from the started state to
the stopped state.

Transmit Places a packet in the transmit queue of the network
interface.

continued

Extensible Firmware Interface Specification

358 12/12/00 Version 1.02

Table E-2. Functions Listed Alphabetically Within Service or Protocol (continued)

Service or Protocol Function Function Description

Simple Text Output
Protocol

ClearScreen Clears the screen with the currently set background
color.

EnableCursor Turns the visibility of the cursor on/off.

OutputString Displays the Unicode string on the device at the current
cursor location.

QueryMode Queries information concerning the output device’s
supported text mode.

Reset Reset the ConsoleOut device.

SetAttribute Sets the foreground and background color of the text that
is output.

SetCursorPosition Sets the current cursor position.

SetMode Sets the current mode of the output device.

TestString Tests to see if the ConsoleOut device supports this
Unicode string.

Unicode Collation
Protocol

FatToStr Converts an 8.3 FAT file name in an OEM character set
to a Null-terminated Unicode string.

MetaiMatch Performs a case insensitive comparison between a
Unicode pattern string and a Unicode string.

StriColl Performs a case-insensitive comparison between two
Unicode strings.

StrLwr Converts all the Unicode characters in a Null-terminated
Unicode string to lower case Unicode characters.

StrToFat Converts a Null-terminated Unicode string to legal
characters in a FAT filename using an OEM character
set.

StrUpr Converts all the Unicode characters in a Null-terminated
Unicode string to upper case Unicode characters.

Version 1.02 12/12/00 359

F
Glossary

_ADR

A reserved name in ACPI name space. It refers to an address on a bus that has standard
enumeration. An example would be PCI, where the enumeration method is described in
the PCI Local Bus specification.

_CRS

A reserved name in ACPI name space. It refers to the current resource setting of a
device. A _CRS is required for devices that are not enumerated in a standard fashion.
_CRS is how ACPI converts non standard devices into plug and play devices.

_HID

A reserved name in ACPI name space. It represents a device’s plug and play hardware
ID and is stored as a 32-bit compressed EISA ID. _HID objects are optional in ACPI.
However, a _HID object must be used to describe any device that will be enumerated by
the ACPI driver in the OS. This is how ACPI deals with non Plug and Play devices.

_UID

A reserved name in ACPI name space. It is a serial number style ID that does not change
across reboots. If a system contains more than one device that reports the same _HID,
each device must have a unique _UID. The _UID only needs to be unique for device that
have the exact same _HID value.

ACPI

Refers to the Advanced Configuration and Power Interface Specification and to the
concepts and technology it discusses. The specification defines a new interface to the
system board that enables the operating system to implement operating system-directed
power management and system configuration.

ACPI Device Path

A Device Path that is used to describe devices whose enumeration is not described in an
industry-standard fashion. These devices must be described using ACPI AML in the
ACPI name space; this type of node provides linkage to the ACPI name space.

Big Endian

A memory architecture in which the low-order byte of a multibyte datum is at the highest
address, while the high-order byte is at the lowest address. See Little Endian.

BIOS

Basic Input/Output System. A collection of low-level I/O service routines.

Extensible Firmware Interface Specification

360 12/12/00 Version 1.02

BIOS Boot Specification Device Path

A Device Path that is used to point to boot legacy operating systems; it is based on the
BIOS Boot Specification, Version 1.01.

BIOS Parameter Block (BPB)

The first block (sector) of a partition. It defines the type and location of the FAT File
System on a drive.

Block I/O Protocol

A protocol that is used during boot services to abstract mass storage devices. It allows
boot services code to perform block I/O without knowing the type of a device or its
controller.

Block Size

The fundamental allocation unit for devices that support the BLOCK_IO protocol. Not
less than 512 bytes. This is commonly referred to as sector size on hard disk drives.

Boot Device

The device handle that corresponds to the device from which the currently executing
image was loaded.

Boot Manager

The part of the firmware implementation that is responsible for implementing system
boot policy. Although a particular boot manager implementation is not specified in this
document, such code is generally expected to be able to enumerate and handle transfers
of control to the available OS loaders as well as EFI applications and drivers on a given
system. The boot manager would typically be responsible for interacting with the system
user, where applicable, to determine what to load during system startup. In cases where
user interaction is not indicated, the boot manager would determine what to load and, if
multiple items are to be loaded, what the sequencing of such loads would be.

Boot Services

The collection of interfaces and protocols that are present in the boot environment. The
services minimally provide an OS loader with access to platform capabilities required to
complete OS boot. Services are also available to drivers and applications that need
access to platform capability. Boot services are terminated once the operating system
takes control of the platform.

Boot Services Driver

A program that is loaded into boot services memory and stays resident until boot services
terminates.

Boot Services Table

A table that contains the firmware entry points for accessing boot services functions such
as Task Priority Services and Memory Services. The table is accessed through a
pointer in the System Table.

Glossary

Version 1.02 12/12/00 361

Boot Services Time

The period of time between platform initialization and the call to
ExitBootServices(). During this time, EFI drivers and applications are loaded
iteratively and the system boots from an ordered list of EFI OS loaders.

BPB

See BIOS Parameter Block.

CIM

See Common Information Model.

Cluster

A collection of disk sectors. Clusters are the basic storage units for disk files. See File
Allocation Table.

Coherency Domain

The global set of resources that is visible to at least one processor in a platform.

Common Information Model (CIM)

An object-oriented schema defined by the DMTF. CIM is an information model that
provides a common way to describe and share management information enterprise-wide.

Console I/O Protocol

A protocol that is used during boot services to handle input and output of text-based
information intended for the system administrator. It has two parts, a Simple Input
Protocol that is used to obtain input from the ConsoleIn device and a Simple Text
Output Protocol that is used to control text-based output devices. The Console I/O
Protocol is also known as the EFI Console I/O Protocol.

ConsoleIn

The device handle that corresponds to the device used for user input in the boot services
environment. Typically the system keyboard.

ConsoleOut

The device handle that corresponds to the device used to display messages to the user
from the boot services environment. Typically a display screen.

Desktop Management Interface (DMI)

A platform management information framework, built by the DMTF and designed to
provide manageability for desktop and server computing platforms by providing an
interface that is: (1) independent of any specific desktop operating system, network
operating system, network protocol, management protocol, processor, or hardware
platform; (2) easy for vendors to implement; and (3) easily mapped to higher-level
protocols.

Extensible Firmware Interface Specification

362 12/12/00 Version 1.02

Desktop Management Task Force (DMTF)

The DMTF is a standards organization comprised of companies from all areas of the
computer industry. Its purpose is to create the standards and infrastructure for cost-
effective management of PC systems.

Device Handle

A handle points to a list of one or more protocols that can respond to requests for services
for a given device referred to by the handle.

Device I/O Protocol

A protocol that is used during boot services to access memory and I/O. Also called the
EFI Device I/O Protocol.

Device Path

A variable-length binary data structure that is composed of variable-length generic device
path nodes and is used to define the programmatic path to a logical or physical device.
There are six major types of device paths: Hardware Device Path, ACPI Device Path,
Messaging Device Path, Media Device Path, BIOS Boot Specification Device Path,
and End Of Hardware Device Path.

Device Path Instance

When an EFI Handle represents multiple devices, it is possible for a device path to
contain multiple device paths. An example of this would be a handle that represents
ConsoleOut and consists of both a VGA console and a serial output console. The handle
would send output to both devices and therefore has a device path that consists of two
complete device paths. Each of these paths is a device path instance.

Device Path Node

A variable-length generic data structure that is used to build a device path. Nodes are
distinguished by type, sub-type, length, and path-specific data. See Device Path.

Device Path Protocol

A protocol that is used during boot services to provide the information needed to
construct and manage device paths. Also called the EFI Device Path Protocol.

DHCP

See Dynamic Host Configuration Protocol.

Disk I/O Protocol

A protocol that is used during boot services to abstract Block I/O devices to allow non-
block sized I/O operations. Also called the EFI Disk I/O Protocol.

DMI

See Desktop Management Interface.

Glossary

Version 1.02 12/12/00 363

DMTF

See Desktop Management Task Force.

Dynamic Host Configuration Protocol (DHCP)

A protocol that is used to get information from a configuration server. DHCP is defined
by the Desktop Management Task Force, not EFI.

EFI Application

Modular code that may be loaded in the boot services environment to accomplish
platform specific tasks within that environment. Examples of possible applications might
include diagnostics or disaster recovery tools shipped with a platform that run outside the
OS environment. Applications may be loaded in accordance with policy implemented by
the platform firmware to accomplish a specific task. Control is then returned from the
application to the platform firmware.

EFI-compliant

Refers to a platform that complies with this specification.

EFI-conformant

See EFI-compliant.

EFI Driver

A module of code typically inserted into the firmware via protocol interfaces. Drivers
may provide device support during the boot process or they may provide platform
services. It is important not to confuse drivers in this specification with OS drivers that
load to provide device support once the OS takes control of the platform.

EFI File

A container consisting of a number of blocks that holds an image or a data file within a
file system that complies with this specification.

EFI Hard Disk

A hard disk that supports the new EFI partitioning scheme (GUID Partitions).

EFI OS Loader

The first piece of operating system code loaded by the firmware to initiate the OS boot
process. This code is loaded at a fixed address and then executed. The OS takes control
of the system prior to completing the OS boot process by calling the interface that
terminates all boot services.

EM (Enhanced Mode)

The 64-bit architecture extension that makes up part of the Intel Itanium architecture.

End of Hardware Device Path

A Device Path which, depending on the sub-type, is used to indicate the end of the
Device Path instance or Device Path structure.

Extensible Firmware Interface Specification

364 12/12/00 Version 1.02

Event

An EFI data structure that describes an “event” — for example, the expiration of a timer.

Event Services

The set of functions used to manage events. Includes CheckEvent(),
CreateEvent(), CloseEvent(), SignalEvent(), and WaitForEvent().

FAT

See File Allocation Table.

FAT File System

The file system on which the EFI file system is based. See File Allocation Table and
System Partition.

File Allocation Table (FAT)

A table that is used to identify the clusters that make up a disk file. File allocation tables
come in three flavors: FAT-12, which uses 12 bits for cluster numbers; FAT-16, which
uses 16 bits; and Fat-32, which allots 32 bits, but only uses 28 (the other 4 bits are
reserved for future use).

File Handle Protocol

A component of the File System Protocol. It provides access to a file or directory. Also
called the EFI File Handle Protocol.

File System Protocol

A protocol that is used during boot services to obtain file-based access to a device. It has
two parts, a Simple File System Protocol that provides a minimal interface for file-type
access to a device, and a File Handle Protocol that provides access to a file or directory.

Firmware

Any software that is included in read-only memory (ROM).

GUID (Globally Unique Identifier)

A 128-bit value used to differentiate services and structures in the boot services
environment. The format of a GUID is defined in Appendix A. See Protocol.

GUID Partition

A contiguous group of sectors on an EFI Hard Disk.

GUID Partition Table

A data structure that describes a GUID Partition. It consists of an GUID Partition
Table Header and, typically, at least one GUID Partition Entry. There are two
partition tables on an EFI Hard Disk: the Primary Partition Table (located in block 1 of
the disk) and a Backup Partition Table (located in the last block of the disk). The Backup
Table is a copy of the Primary Table.

Glossary

Version 1.02 12/12/00 365

GUID Partition Table Header

The header in a GUID Partition Table. Among other things, it contains the number of
partition entries in the table and the first and last blocks that can be used for the entries.

GUID Partition Entry

A data structure that characterizes a GUID Partition. Among other things, it specifies
the starting and ending LBA of the partition.

Handle

See Device Handle.

Hardware Device Path

A Device Path that defines how a hardware device is attached to the resource domain of
a system (the resource domain is simply the shared memory, memory mapped I/O, and
I/O space of the system).

IA-32

See Intel Architecture-32.

Image

An executable file stored in a file system that complies with this specification. Images
may be drivers, applications or OS loaders. Also called an EFI Image.

Image Handle

A handle for a loaded image; image handles support the loaded image protocol.

Image Handoff State

The information handed off to a loaded image as it begins execution; it consists of the
image’s handle and a pointer to the image’s system table.

Image Header

The initial set of bytes in a loaded image. They define the image’s encoding.

Image Services

The set of functions used to manage EFI images. Includes LoadImage(),
StartImage(), UnloadImage(), Exit(), ExitBootServices(), and
EFI_IMAGE_ENTRY_POINT.

Intel Architecture-32 (IA-32)

The 32-bit and 16-bit architecture described in the Intel Architecture Software
Developer’s Manual. IA-32 is the architecture of the Intel P6 family of processors,
which includes the Intel® Pentium® Pro, Pentium II, and Pentium III processors.

Extensible Firmware Interface Specification

366 12/12/00 Version 1.02

Intel Itanium Architecture

A new Intel architecture that has 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set. This architecture is
described in the IA-64 Architecture Software Developer’s Manual.

Intel Architecture Platform Architecture

A collective term for PC-AT-class computers and other systems based on Intel
Architecture processors of all families.

Legacy Platform

A platform which, in the interests of providing backward-compatibility, retains obsolete
technology.

LFN

See Long File Names.

Little Endian

A memory architecture in which the low-order byte of a multibyte datum is at the lowest
address, while the high-order byte is at the highest address. See Big Endian.

Load File Protocol

A protocol that is used during boot services to find and load other modules of code.

Loaded Image

A file containing executable code. When started, a loaded image is given its image
handle and can use it to obtain relevant image data.

Loaded Image Protocol

A protocol that is used during boot services to obtain information about a loaded image.
Also called the EFI Loaded Image Protocol.

Long File Names (LFN)

Refers to an extension to the FAT File System that allows file names to be longer than
the original standard (eight characters plus a three-character extension).

Machine Check Abort (MCA)

The system management and error correction facilities built into the Intel Itanium
processors.

Master Boot Record (MBR)

The data structure that resides on the first sector of a hard disk and defines the partitions
on the disk.

MBR

See Master Boot Record.

Glossary

Version 1.02 12/12/00 367

MCA

See Machine Check Abort.

Media Device Path

A Device Path that is used to describe the portion of a medium that is being abstracted
by a boot service. For example, a Media Device Path could define which partition on a
hard drive was being used.

Memory Allocation Services

The set of functions used to allocate and free memory, and to retrieve the memory map.
Includes AllocatePages(), FreePages(), AllocatePool(), FreePool(),
and GetMemoryMap().

Memory Map

A collection of structures that defines the layout and allocation of system memory during
the boot process. Drivers and applications that run during the boot process prior to OS
control may require memory. The boot services implementation is required to ensure that
an appropriate representation of available and allocated memory is communicated to the
OS as part of the hand-off of control.

Memory Type

One of the memory types defined by EFI for use by the firmware and EFI applications.
Among others, there are types for boot services code, boot services data, runtime services
code, and runtime services data. Some of the types are used for one purpose before
ExitBootServices() is called and another purpose after.

Messaging Device Path

A Device Path that is used to describe the connection of devices outside the Coherency
Domain of the system. This type of node can describe physical messaging information
(e.g., a SCSI ID) or abstract information (e.g., networking protocol IP addresses).

Miscellaneous Services

Various functions that are needed to support the EFI environment. Includes
InstallConfigurationTable(), ResetSystem(), Stall(),
SetWatchdogTimer(), GetNextMonotonicCount(), and
GetNextHighMonotonicCount().

MTFTP

See Multicast Trivial File Transfer Protocol.

Multicast Trivial File Transfer Protocol (TFTP)

A protocol used to download a Network Boot Program to many clients simultaneously
from a TFTP server.

Name Space

In general, a collection of device paths; in EFI a Device Path.

Extensible Firmware Interface Specification

368 12/12/00 Version 1.02

NBP

See Network Boot Program.

Network Boot Program

A remote boot image downloaded by a PXE client using the Trivial File Transfer
Protocol or the Multicast Trivial File Transfer Protocol.

Page Memory

A set of contiguous pages. Page memory is allocated by AllocatePages() and
returned by FreePages().

Partition

See System Partition.

Partition Discovery

The process of scanning a block device to determine whether it contains a Partition.

PC-AT

Refers to a PC platform that uses the AT form factor for their motherboards.

Pool Memory

A set of contiguous bytes. A pool begins on, but need not end on, an “8-byte” boundary.
Pool memory is allocated in pages – that is, firmware allocates enough contiguous pages
to contain the number of bytes specified in the allocation request. Hence, a pool can be
contained within a single page or extend across multiple pages. Pool memory is allocated
by AllocatePool() and returned by FreePool().

Preboot Execution Environment (PXE)

A means by which agents can be loaded remotely onto systems to perform management
tasks in the absence of a running OS. To enable the interoperability of clients and
downloaded bootstrap programs, the client preboot code must provide a set of services
for use by a downloaded bootstrap. It also must ensure certain aspects of the client state
at the point in time when the bootstrap begins executing.

Protocol

The information that defines how to access a certain type of device during boot services.
A protocol consists of a GUID, a protocol revision number, and a protocol interface
structure. The interface structure contains data definitions and a set of functions for
accessing the device. A device can have multiple protocols. Each protocol is accessible
through the device’s handle.

Protocol Handler

A function that responds to a call to a HandleProtocol request for a given handle. A
protocol handler returns a protocol interface structure.

Glossary

Version 1.02 12/12/00 369

Protocol Handler Services

The set of functions used to manipulate handles, protocols, and protocol interfaces.
Includes InstallProtocolInterface(),
UninstallProtocolInterface(), ReInstallProtocolInterface(),
HandleProtocol(), RegisterProtocolNotify(), LocateHandle(),and
LocateDevicePath().

Protocol Interface Structure

The set of data definitions and functions used to access a particular type of device. For
example, BLOCK_IO is a protocol that encompasses interfaces to read and write blocks
from mass storage devices. See Protocol.

Protocol Revision Number

The revision number associated with a protocol. See Protocol.

PXE

See Preboot Execution Environment.

PXE Base Code Protocol

A protocol that is used to control PXE-compatible devices. It is layered on top of a
Simple Network Protocol to perform packet-level transactions, and may be used by the
firmware’s boot manager to support booting from remote locations. Also called the EFI
PXE Base Code Protocol.

Runtime Services

Interfaces that provide access to underlying platform specific hardware that may be
useful during OS runtime, such as timers. These services are available during the boot
process but also persist after the OS loader terminates boot services.

Runtime Services Driver

A program that is loaded into runtime services memory and stays resident during runtime.

Runtime Services Table

A table that contains the firmware entry points for accessing runtime services functions
such as Time Services and Virtual Memory Services. The table is accessed through a
pointer in the System Table.

SAL

See System Abstraction Layer.

Serial I/O Protocol

A protocol that is used during boot services to abstract byte stream devices — that is, to
communicate with character-based I/O devices.

Extensible Firmware Interface Specification

370 12/12/00 Version 1.02

Simple File System Protocol

A component of the File System Protocol. It provides a minimal interface for file-type
access to a device.

Simple Input Protocol

A protocol that is used to obtain input from the ConsoleIn device. It is one of two
protocols that make up the Console I/O Protocol.

Simple Network Protocol

A protocol that is used to provide a packet-level interface to a network adapter. Also
called the EFI Simple Network Protocol.

Simple Text Output Protocol

A protocol that is used to control text-based output devices. It is one of two protocols
that make up the Console I/O Protocol.

SMBIOS

See System Management BIOS.

StandardError

The device handle that corresponds to the device used to display error messages to the
user from the boot services environment.

Status Codes

Success, error, and warning codes returned by boot services and runtime services
functions.

String

All strings in this specification are implemented in Unicode.

System Abstraction Layer (SAL)

Firmware that abstracts platform implementation differences, and provides the basic
platform software interface to all higher level software.

System Management BIOS (SMBIOS)

A table-based interface that is required by the Wired for Management Baseline
Specification. It is used to relate platform-specific management information to the OS or
to an OS-based management agent.

Glossary

Version 1.02 12/12/00 371

System Partition

A section of a block device that is treated as a logical whole. For a hard disk with a
legacy partitioning scheme, it is a contiguous grouping of sectors whose starting sector
and size are defined by the Master Boot Record. For an EFI Hard Disk, it is a
contiguous grouping of sectors whose starting sector and size are defined by the GUID
Partition Table Header and the associated GUID Partition Entries. For “El Torito”
devices, it is a logical device volume. For a diskette (floppy) drive, it is defined to be the
entire medium (the term “diskette” includes legacy 3.5” diskette drives as well as newer
media such as the Iomega Zip drive). System Partitions can reside on any medium that is
supported by EFI Boot Services. System Partitions support backward compatibility with
legacy Intel Architecture systems by reserving the first block (sector) of the partition for
compatibility code.

System Table

Table that contains the standard input and output handles for an EFI application, as well
as pointers to the boot services and runtime services tables. It may also contain pointers
to other standard tables such as the ACPI, SMBIOS, and SAL System tables. A loaded
image receives a pointer to its system table when it begins execution. Also called the EFI
System Table.

Task Priority Level (TPL)

The boot services environment exposes three task priority levels: “normal”, “callback”,
and “notify”.

Task Priority Services

The set of functions used to manipulate task priority levels. Includes RaiseTPL() and
RestoreTPL().

TFTP

See Trivial File Transport Protocol.

Time Format

The format for expressing time in an EFI-compliant platform. For more information, see
Appendix A.

Time Services

The set of functions used to manage time. Includes GetTime(), SetTime(),
GetWakeupTime(), and SetWakeupTime().

Timer Services

The set of functions used to manipulate timers. Contains a single function,
SetTimer().

TPL

See Task Priority Level.

Extensible Firmware Interface Specification

372 12/12/00 Version 1.02

Trivial File Transport Protocol (TFTP)

A protocol used to download a Network Boot Program from a TFTP server.

Unicode

An industry standard internationalized character set used for human readable message
display.

Unicode Collation Protocol

A protocol that is used during boot services to perform case-insensitive comparisons of
Unicode strings.

Universal Serial Bus (USB)

A bi-directional, isochronous, dynamically attachable serial interface for adding
peripheral devices such as serial ports, parallel ports, and input devices on a single bus.

USB

See Universal Serial Bus.

Variable Services

The set of functions used to manage variables. Includes GetVariable(),
SetVariable(), and GetNextVariableName().

Virtual Memory Services

The set of functions used to manage virtual memory. Includes
SetVirtualAddressMap() and ConvertPointer().

Watchdog Timer

An alarm timer that may be set to go off. This can be used to regain control in cases
where a code path in the boot services environment fails to or is unable to return control
by the expected path.

WfM

See Wired for Management.

Wired for Management

Refers to the Wired for Management Baseline Specification. The Specification defines a
baseline for system manageability issues; its intent is to help lower the cost of computer
ownership.

Version 1.02 12/12/00 373

G
32/64-Bit UNDI Specification

G.1 Introduction

This appendix defines the 32/64-bit H/W and S/W Universal Network Driver Interfaces (UNDIs).
These interfaces provide one method for writing a network driver; other implementations are
possible.

NOTE

This is the Beta-1 version of the 32/64-bit UNDI Specification.

G.1.1 Definitions

Table G-1. Definitions

Term Definition

BC BaseCode
The PXE BaseCode, included as a core protocol in EFI, is comprised of a simple network stack
(UDP/IP) and a few common network protocols (DHCP, Bootserver Discovery, TFTP) that are
useful for remote booting machines.

LOM LAN On Motherboard
This is a network device that is built onto the motherboard (or baseboard) of the machine.

NBP Network Bootstrap Program
This is the first program that is downloaded into a machine that has selected a PXE capable
device for remote boot services.
A typical NBP examines the machine it is running on to try to determine if the machine is
capable of running the next layer (OS or application). If the machine is not capable of running
the next layer, control is returned to the EFI boot manager and the next boot device is selected.
If the machine is capable, the next layer is downloaded and control can then be passed to the
downloaded program.
Though most NBPs are OS loaders, NBPs can be written to be standalone applications such as
diagnostics, backup/restore, remote management agents, browsers, etc.

NIC Network Interface Card
Technically, this is a network device that is inserted into a bus on the motherboard or in an
expansion board. For the purposes of this document, the term NIC will be used in a generic
sense, meaning any device that enables a network connection (including LOMs and network
devices on external busses (USB, 1394, etc.)).

ROM Read-Only Memory
When used in this specification, ROM refers to a non-volatile memory storage device on a NIC.

continued

Extensible Firmware Interface Specification

374 12/12/00 Version 1.02

Table G-1. Definitions (continued)

Term Definition

PXE Preboot Execution Environment

The complete PXE specification covers three areas; the client, the network and the server.

Client

• Makes network devices into bootable devices.

• Provides APIs for PXE protocol modules in EFI and for universal drivers in the OS.

Network

• Uses existing technology: DHCP, TFTP, etc.

• Adds “vendor specific” tags to DHCP to define PXE specific operation within DHCP.

• Adds multicast TFTP for high bandwidth remote boot applications.

• Defines Bootserver discovery based on DHCP packet format.

Server

• Bootserver: Responds to Bootserver discovery requests and serves up remote boot
images.

• proxyDHCP: Used to ease the transition of PXE clients and servers into existing network
infrastructure. proxyDHCP provides the additional DHCP information that is needed by PXE
clients and Bootservers without making changes to existing DHCP servers.

• MTFTP: Adds multicast support to a TFTP server.

• Plug-In Modules: Example proxyDHCP and Bootservers provided in the PXE SDK
(software development kit) have the ability to take plug-in modules (PIMs). These PIMs are
used to change/enhance the capabilities of the proxyDHCP and Bootservers.

UNDI Universal Network Device Interface

UNDI is an architectural interface to NICs. Traditionally NICs have had custom interfaces and
custom drivers (each NIC had a driver for each OS on each platform architecture). Two
variations of UNDI are defined in this specification: H/W UNDI and S/W UNDI. H/W UNDI is an
architectural hardware interface to a NIC. S/W UNDI is a software implementation of the H/W
UNDI.

G.1.2 Referenced Specifications

When implementing PXE services, protocols, ROMs or drivers, it is a good idea to understand the
related network protocols and BIOS specifications. The table below includes all of the
specifications referenced in this document.

Table G-2. Referenced Specification

Acronym Protocol/Specification

ARP Address Resolution Protocol – http://www.ietf.org/rfc/rfc0826.txt . Required reading for
those implementing the BC protocol.

Assigned
Numbers

Lists the reserved numbers used in the RFCs and in this specification -
http://www.ietf.org/rfc/rfc1700.txt

BIOS Basic Input/Output System – Contact your BIOS manufacturer for reference and
programming manuals.

continued

http://www.ietf.org/rfc/rfc0826.txt
http://www.ietf.org/rfc/rfc1700.txt

32/64-bit UNDI Specification

Version 1.02 12/12/00 375

Table G-2. Referenced Specification (continued)

Acronym Protocol/Specification

BOOTP Bootstrap Protocol – http://www.ietf.org/rfc/rfc0951.txt - This reference is included for
backward compatibility. BC protocol supports DHCP and BOOTP.

Required reading for those implementing the BC protocol or PXE Bootservers.

DHCP Dynamic Host Configuration Protocol

DHCP for Ipv4 (protocol: http://www.ietf.org/rfc/rfc2131.txt, options:
http://www.ietf.org/rfc/rfc2132.txt)

Required reading for those implementing the BC protocol or PXE Bootservers.

EFI Extensible Firmware Interface – http://developer.intel.com/technology/efi/index.htm
Required reading for those implementing NBPs, OS loaders and preboot applications for
machines with the EFI preboot environment.

ICMP Internet Control Message Protocol
ICMP for Ipv4: http://www.ietf.org/rfc/rfc0792.txt
ICMP for Ipv6: http://www.ietf.org/rfc/rfc2463.txt
Required reading for those implementing the BC protocol.

IETF Internet Engineering Task Force – http://www.ietf.org/
This is a good starting point for obtaining electronic copies of Internet standards, drafts and
RFCs.

IGMP Internet Group Management Protocol – http://www.ietf.org/rfc/rfc2236.txt
Required reading for those implementing the BC protocol.

IP Internet Protocol
Ipv4: http://www.ietf.org/rfc/rfc0791.txt
Ipv6: http://www.ietf.org/rfc/rfc2460.txt & http://www.ipv6.org

Required reading for those implementing the BC protocol.

MTFTP Multicast TFTP – Defined in the 16-bit PXE specification.

Required reading for those implementing the BC protocol.

PCI Peripheral Component Interface – http://www.pcisig.com/ - Source for PCI specifications.

Required reading for those implementing S/W or H/W UNDI on a PCI NIC or LOM.

PnP Plug-and-Play – http://www.phoenix.com/techs/specs.html
Source for PnP specifications.

PXE Preboot eXecution Environment
16-bit PXE v2.1: ftp://download.intel.com/ial/wfm/pxespec.pdf

Required reading.

RFC Request For Comments – http://www.ietf.org/rfc.html

continued

http://www.ietf.org/rfc/rfc0951.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2132.txt
http://developer.intel.com/technology/efi/index.htm
http://www.ietf.org/rfc/rfc0792.txt
http://www.ietf.org/rfc/rfc2463.txt
http://www.ietf.org/
http://www.ietf.org/rfc/rfc2236.txt
http://www.ietf.org/rfc/rfc0791.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ipv6.org/
http://www.pcisig.com/
http://www.phoenix.com/techs/specs.html
ftp://download.intel.com/ial/wfm/pxespec.pdf
http://www.ietf.org/rfc.html

Extensible Firmware Interface Specification

376 12/12/00 Version 1.02

Table G-2. Referenced Specification (continued)

Acronym Protocol/Specification

TCP Transmission Control Protocol
TCPv4: http://www.ietf.org/rfc/rfc0793.txt
TCPv6: ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
Required reading for those implementing the BC protocol.

TFTP Trivial File Transfer Protocol
TFTP over IPv4 (protocol: http://www.ietf.org/rfc/rfc1350.txt, options:
http://www.ietf.org/rfc/rfc2347.txt, http://www.ietf.org/rfc/rfc2348.txt and
http://www.ietf.org/rfc/rfc2349.txt).
TFTP over IPv6: %%TBD need URL and an RFC!

Required reading for those implementing the BC protocol.

UDP User Datagram Protocol
UDP over IPv4: http://www.ietf.org/rfc/rfc0768.txt
UDP over IPv6: http://www.ietf.org/rfc/rfc2454.txt
Required reading for those implementing the BC protocol.

WfM Wired for Management

ftp://download.intel.com/ial/wfm/baseline.pdf

Recommended reading for those implementing the BC protocol or PXE Bootservers.

G.1.3 OS Network Stacks

This is a simplified overview of three OS network stacks that contain three types of network
drivers: Custom, S/W UNDI and H/W UNDI. The figure below depicts an application bound to an
OS protocol stack, which is in turn bound to a protocol driver that is bound to three NICs. The
table below the figure gives a brief list of pros and cons about each type of driver implementation.

Custom

OS Protocol Stack

Application-1

NIC-3
Vend-B

NIC-2
Vend-B

NIC Specific
Protocol Driver

NIC-1
Vendor-A

NIC
Specific
Protocol

Driver

S/W UNDI

Application-2

NIC-5
Vend-D

UNDI

NIC-6
Vend-D

NIC-4
Vendor-C

UNDI

OS Protocol Stack

OS Universal Protocol Driver

H/W UNDI

Application-3

H/W UNDI
NIC-8

Vendor-F

H/W UNDI
NIC-7

Vendor-E

H/W UNDI
NIC-9

Vendor-F

OS Protocol Stack

OS Universal Protocol Driver

Figure G-1. Network Stacks with Three Classes of Drivers

http://www.ietf.org/rfc/rfc0793.txt
ftp://ftp.ipv6.org/pub/rfc/rfc2147.txt
http://www.ietf.org/rfc/rfc1350.txt
http://www.ietf.org/rfc/rfc2347.txt
http://www.ietf.org/rfc/rfc2348.txt
http://www.ietf.org/rfc/rfc2349.txt
http://www.ietf.org/rfc/rfc0768.txt
http://www.ietf.org/rfc/rfc2454.txt
ftp://download.intel.com/ial/wfm/baseline.pdf

32/64-bit UNDI Specification

Version 1.02 12/12/00 377

Table G-3. Driver Types: Pros and Cons

Driver Pro Con

Custom • Can be very fast and efficient.
NIC vendor tunes driver to OS
& device.

• OS vendor does not have to
write NIC driver.

• New driver for each OS/architecture must be
maintained by NIC vendor.

• OS vendor must trust code supplied by third-party.

• OS vendor cannot test all possible driver/NIC
versions.

• Driver must be installed before NIC can be used.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

S/W UNDI • S/W UNDI driver is simpler
than a Custom driver. Easier
to test outside of the OS
environment.

• OS vendor can tune the
universal protocol driver for
best OS performance.

• NIC vendor only has to write
one driver per CPU
architecture.

• Slightly slower than Custom or H/W UNDI because of
extra call layer between protocol stack and NIC.

• S/W UNDI driver must be loaded before NIC can be
used.

• OS vendor has to write the universal driver.

• Possible performance sink if driver is poorly written.

• Possible security risk if driver has back door.

H/W UNDI • H/W UNDI provides a
common architectural
interface to all network
devices.

• OS vendor controls all security
and performance issues in
network stack.

• NIC vendor does not have to
write any drivers.

• NIC can be used without an
OS or driver installed (preboot
management).

• OS vendor has to write the universal driver (this might
also be a Pro, depending on your point of view).

Extensible Firmware Interface Specification

378 12/12/00 Version 1.02

G.2 Overview

There are three major design changes between this specification and the 16-bit UNDI in version 2.1
of the PXE Specification:

• A new architectural hardware interface has been added.
• All UNDI commands use the same command format.
• BC is no longer part of the UNDI ROM.

G.2.1 32/64-bit UNDI Interface

The !PXE structures are used locate and identify the type of 32/64-bit UNDI interface (H/W or
S/W). These structures are normally only used by the system BIOS and universal network drivers.

Len +
0x0C

Offset 0x00 0x01 0x02 0x03

0x00

0x04

0x08

0x0C

Len

Len +
0x04
Len +
0x08

!PXE
H/W UNDI

Offset 0x00 0x01 0x02 0x03

0x00

0x04

0x08

0x0C

0x18

0x10

!PXE
S/W UNDI

0x20

0x14

0x1C

Signature

Len Fudge Rev IFcnt

Implemenation

reserved

BusType(s)

EntryPoint

#bus

More BusType(s)

0x10

Signature

Len Fudge Rev IFcnt

Major Minor

Implemenation

Status

Command

CDBaddr

reserved

reserved Major Minor reserved

Figure G-2. !PXE Structures for H/W and S/W UNDI

The !PXE structures used for H/W and S/W UNDIs are similar but not identical. The difference in
the format is tied directly to the differences required by the implementation. The !PXE structures
for 32/64-bit UNDI are not compatible with the !PXE structure for 16-bit UNDI.

The !PXE structure for H/W UNDI is built into the NIC hardware. The first nine fields (from
offsets 0x00 to 0x0F) are implemented as read-only memory (or ports). The last three fields (from
Len to Len + 0x0F) are implemented as read/write memory (or ports). The optional reserved field
at 0x10 is not defined in this specification and may be used for vendor data. How the location of
the !PXE structure is found in system memory, or I/O, space is architecture dependent and is
outside the scope of this specification.

32/64-bit UNDI Specification

Version 1.02 12/12/00 379

The !PXE structure for S/W UNDI can be loaded into system memory from one of three places;
ROM on a NIC, system non-volatile storage, or external storage. Since there are no direct memory
or I/O ports available in the S/W UNDI !PXE structure, an indirect callable entry point is provided.
S/W UNDI developers are free to make their internal designs as simple or complex as they desire,
as long as all of the UNDI commands in this specification are implemented.

Descriptions of the fields in the !PXE structures is given in the table below.

Table G-4. !PXE Structure Field Definitions

Identifier Value Description

Signature “!PXE” !PXE structure signature. This field is used to locate an UNDI hardware or
software interface in system memory (or I/O) space. ‘!’ is in the first (lowest
address) byte, ‘P’ is in the second byte, ‘X’ in the third and ‘E’ in the last. This
field must be aligned on a 16-byte boundary (the last address byte must be
zero).

Len Varies Number of !PXE structure bytes to checksum.

When computing the checksum of this structure the Len field MUST be used
as the number of bytes to checksum. The !PXE structure checksum is
computed by adding all of the bytes in the structure, starting with the first byte
of the structure Signature: '!'. If the 8-bit sum of all of the unsigned bytes in
this structure is not zero, this is not a valid !PXE structure.

Fudge Varies This field is used to make the 8-bit checksum of this structure equal zero.

Rev 0x02 Revision of this structure.

IFcnt Varies This field reports the number (minus one) of physical external network
connections that are controlled by this !PXE interface. (If there is one network
connector, this field is zero. If there are two network connectors, this field is
one.)

Major 0x03 UNDI command interface major revision.

Minor 0x00 UNDI command interface minor revision.

reserved 0x0000 This field is reserved and must be set to zero.

continued

Extensible Firmware Interface Specification

380 12/12/00 Version 1.02

Table G-4. !PXE Structure Field Definitions (continued)

Identifier Value Description

Implementation Varies Identifies type of UNDI

(S/W or H/W, 32 bit or 64 bit) and what features have been implemented.
The implementation bits are defined below. Undefined bits must be set to zero
by UNDI implementors. Applications/drivers must not rely on the contents of
undefined bits (they may change later revisions).

Bit 0x00: Command completion interrupts supported (1) or not supported (0)

Bit 0x01: Packet received interrupts supported (1) or not supported (0)

Bit 0x02: Transmit complete interrupts supported (1) or not supported (0)

Bit 0x03: Software interrupt supported (1) or not supported (0)

Bit 0x04: Filtered multicast receives supported (1) or not supported (0)

Bit 0x05: Broadcast receives supported (1) or not supported (0)

Bit 0x06: Promiscuous receives supported (1) or not supported (0)

Bit 0x07: Promiscuous multicast receives supported (1) or not supported (0)

Bit 0x08: Station MAC address settable (1) or not settable (0)

Bit 0x09: Statistics supported (1) or not supported (0)

Bit 0x0A,0x0B: NvData not available (0), read only (1), sparse write supported
(2), bulk write supported (3)

Bit 0x0C: Multiple frames per command supported (1) or not supported (0)

Bit 0x0D: Command queuing supported (1) or not supported (0)

Bit 0x0E: Command linking supported (1) or not supported (0)

Bit 0x0F: Packet fragmenting supported (1) or not supported (0)

Bit 0x10: Device can address 64 bits (1) or only 32 bits (0)

Bit 0x1E: S/W UNDI: Entry point is virtual address (1) or unsigned offset from
start of !PXE structure (0).

Bit 0x1F: Interface type: H/W UNDI (1) or S/W UNDI (0)

H/W UNDI Fields

reserved Varies This field is optional and may be used for OEM & vendor unique data. If this
field is present its length must be a multiple of 16 bytes and must be included
in the !PXE structure checksum. This field, if present, will always start on a
16 byte boundary.

Note: The size/contents of the !PXE structure may change in future revisions
of this specification. Do not rely on OEM & vendor data starting at the same
offset from the beginning of the !PXE structure. It is recommended that the
OEM & vendor data include a signature that drivers/applications can
search for.

continued

32/64-bit UNDI Specification

Version 1.02 12/12/00 381

Table G-4. !PXE Structure Field Definitions (continued)

Identifier Value Description

Status Varies UNDI operation, command and interrupt status flags.

This is a read-only port. Undefined status bits must be set to zero. Reading
this port does NOT clear the status.

Bit 0x00: Command completion interrupt pending (1) or not pending (0)

Bit 0x01: Packet received interrupt pending (1) or not pending (0)

Bit 0x02: Transmit complete interrupt pending (1) or not pending (0)

Bit 0x03: Software interrupt pending (1) or not pending (0)

Bit 0x04: Command completion interrupts enabled (1) or disabled (0)

Bit 0x05: Packet receive interrupts enabled (1) or disabled (0)

Bit 0x06: Transmit complete interrupts enabled (1) or disabled (0)

Bit 0x07: Software interrupts enabled (1) or disabled (0)

Bit 0x08: Unicast receive enabled (1) or disabled (0)

Bit 0x09: Filtered multicast receive enabled (1) or disabled (0)

Bit 0x0A: Broadcast receive enabled (1) or disabled (0)

Bit 0x0B: Promiscuous receive enabled (1) or disabled (0)

Bit 0x0C: Promiscuous multicast receive enabled (1) or disabled (0)

Bit 0x1D: Command failed (1) or command succeeded (0)

Bits 0x1F:0x1E: UNDI state: Stopped (0), Started (1), Initialized (2), Busy (3)

Command Varies Use to execute commands, clear interrupt status and enable/disable receive
levels. This is a read/write port. Read reflects the last write.

Bit 0x00: Clear command completion interrupt (1) or NOP (0)

Bit 0x01: Clear packet received interrupt (1) or NOP (0)

Bit 0x02: Clear transmit complete interrupt (1) or NOP (0)

Bit 0x03: Clear software interrupt (1) or NOP (0)

Bit 0x04: Command completion interrupt enable (1) or disable (0)

Bit 0x05: Packet receive interrupt enable (1) or disable (0)

Bit 0x06: Transmit complete interrupt enable (1) or disable (0)

Bit 0x07: Software interrupt enable (1) or disable (0). Setting this bit to (1)
also generates a software interrupt.

Bit 0x08: Unicast receive enable (1) or disable (0)

Bit 0x09: Filtered multicast receive enable (1) or disable (0)

Bit 0x0A: Broadcast receive enable (1) or disable (0)

Bit 0x0B: Promiscuous receive enable (1) or disable (0)

Bit 0x0C: Promiscuous multicast receive enable (1) or disable (0)

Bit 0x1F: Operation type: Clear interrupt and/or filter (0), Issue command (1)

CDBaddr Varies Write the physical address of a CDB to this port. (Done with one 64-bit or two
32-bit writes, depending on CPU architecture.) When done, use one 32-bit
write to the command port to send this address into the command queue.
Unused upper address bits must be set to zero.

continued

Extensible Firmware Interface Specification

382 12/12/00 Version 1.02

Table G-4. !PXE Structure Field Definitions (continued)

Identifier Value Description

S/W UNDI Fields

EntryPoint Varies S/W UNDI API entry point address. This is either a virtual address or an offset
from the start of the !PXE structure. Protocol drivers will push the 64-bit virtual
address of a CDB on the stack and then call the UNDI API entry point. When
control is returned to the protocol driver, the protocol driver must remove the
address of the CDB from the stack.

reserved Zero Reserved for future use.

BusTypeCnt Varies This field is the count of four byte BusType entries in the next field.

BusType Varies This field defines the type of bus S/W UNDI is written to support:

“PCIR”, “PCCR”, “USBR” or “1394”. This field is formatted like the Signature
field. If the S/W UNDI supports more than one BusType there will be more
than one BusType identifier in this field.

32/64-bit UNDI Specification

Version 1.02 12/12/00 383

G.2.1.1 Issuing UNDI Commands
How commands are written and status is checked varies a little depending on the type of UNDI
(H/W or S/W) implementation being used. The command flowchart below is a high level diagram
on how commands are written to both H/W and S/W UNDI.

Step 1.
Fill in CDB(s). Commands may
be linked if supported by UNDI.

Step 2 (H/W UNDI)
Write physical address of first
CDB to CDBaddr register.

Step 3 (H/W UNDI)
Initiate command execution (write
to UNDI Command port).

Step 4 (H/W UNDI)
Wait for completion status. Can
be polled in separate thread or
interrupt driven, if supported by
UNDI.

Step 5.
Issue more commands.

Step 2 (S/W UNDI)
Push virtual address of first CDB
onto CPU stack.

Step 3 (S/W UNDI)
Initiate command execution (Call
S/W UNDI API entry point).

Step 4 (S/W UNDI)
Wait for completion status. Some
S/W UNDI implementations can
be polled or interrupt driven,
others will not return until
command execution completes.

CDB
CDB

CDB
CDB

CDB

Figure G-3. Issuing UNDI Commands

Extensible Firmware Interface Specification

384 12/12/00 Version 1.02

G.2.2 UNDI Command Format

The format of the CDB is the same for all UNDI commands. Some of the commands do not use or
always require the use of all of the fields in the CDB. When fields are not used they must be
initialized to zero or the UNDI will return an error. The StatCode and StatFlags fields must always
be initialized to zero or the UNDI will return an error. All reserved fields (and bit fields) must be
initialized to zero or the UNDI will return an error.

Basically, the rule is: Do it right, or don’t do it at all.

Offset 0x00 0x01 0x02 0x03

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

CDB
Command Descriptor Block

0x1C

OpCode

CPBsize DBsize

CPBaddr

DBaddr

StatCode

IFnum

OpFlags

StatFlags

Control

Figure G-4. UNDI Command Descriptor Block (CDB)

Descriptions of the CDB fields are given in the table below.

Table G-5. UNDI CDB Field Definitions

Identifier Description

OpCode Operation Code (Function Number, Command Code, etc.)

This field is used to identify the command being sent to the UNDI. The meanings of
some of the bits in the OpFlags and StatFlags fields, and the format of the CPB and DB
structures depends on the value in the OpCode field. Commands sent with an OpCode
value that is not defined in this specification will not be executed and will return a
StatCode of PXE_STATCODE_INVALID_CDB.

OpFlags Operation Flags

This bit field is used to enable/disable different features in a specific command operation.
It is also used to change the format/contents of the CPB and DB structures. Commands
sent with reserved bits set in the OpFlags field will not be executed and will return a
StatCode of PXE_STATCODE_INVALID_CDB.

continued

32/64-bit UNDI Specification

Version 1.02 12/12/00 385

Table G-5. UNDI CDB Field Definitions (continued)

Identifier Description

CPBsize Command Parameter Block Size

This field should be set to a number that is equal to the number of bytes that will be read
from CPB structure during command execution. Setting this field to a number that is too
small will cause the command to not be executed and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

The contents of the CPB structure will not be modified.

DBsize Data Block Size

This field should be set to a number that is equal to the number of bytes that will be
written into the DB structure during command execution. Setting this field to a number
that is smaller than required will cause an error. It may be zero in some cases where the
information is not needed.

CPBaddr Command Parameter Block Address

For H/W UNDI, this field must be the physical address of the CPB structure. For S/W
UNDI, this field must be the virtual address of the CPB structure. If the operation does
not have/use a CPB, this field must be initialized to PXE_CPBADDR_NOT_USED. Setting
up this field incorrectly will cause command execution to fail and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

DBaddr Data Block Address

For H/W UNDI, this field must be the physical address of the DB structure. For S/W
UNDI, this field must be the virtual address of the DB structure. If the operation does not
have/use a CPB, this field must be initialized to PXE_DBADDR_NOT_USED. Setting up
this field incorrectly will cause command execution to fail and a StatCode of
PXE_STATCODE_INVALID_CDB will be returned.

StatCode Status Code

This field is used to report the type of command completion: success or failure (and the
type of failure). This field must be initialized to zero before the command is issued. The
contents of this field is not valid until the PXE_STATFLAGS_COMMAND_COMPLETE status
flag is set. If this field is not initialized to PXE_STATCODE_INITIALIZE the UNDI
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

StatFlags Status Flags

This bit field is used to report command completion and identify the format, if any, of the
DB structure. This field must be initialized to zero before the command is issued. Until
the command state changes to error or complete, all other CDB fields must not be
changed. If this field is not initialized to PXE_STATFLAGS_INITIALIZE the UNDI
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

Bits 0x0F & 0x0E: Command state: Not started (0), Queued (1), Error (2), Complete (3).

continued

Extensible Firmware Interface Specification

386 12/12/00 Version 1.02

Table G-5. UNDI CDB Field Definitions (continued)

Identifier Description

IFnum Interface Number

This field is used to identify which network adapter (S/W UNDI) or network connector
(H/W UNDI) this command is being sent to. If an invalid interface number is given, the
command will not execute and a StatCode of PXE_STATCODE_INVALID_CDB will be
returned.

Control Process Control

This bit field is used to control command UNDI inter-command processing. Setting
control bits that are not supported by the UNDI will cause the command execution to fail
with a StatCode of PXE_STATCODE_INVALID_CDB.

Bit 0x00: Another CDB follows this one (1) or this is the last or only CDB in the list (0).

Bit 0x01: Queue command if busy (1), fail if busy (0).

G.3 UNDI C Definitions

The definitions in this section are used to aid in the portability and readability of the example
32/64-bit S/W UNDI source code and the rest of this specification.

G.3.1 Portability Macros

These macros are used for storage and communication portability.

G.3.1.1 PXE_INTEL_ORDER or PXE_NETWORK_ORDER
This macro is used to control conditional compilation in the S/W UNDI source code. One of these
definitions needs to be uncommented in a common PXE header file.

//#define PXE_INTEL_ORDER 1 // Intel order

//#define PXE_NETWORK_ORDER 1 // network order

G.3.1.2 PXE_UINT64_SUPPORT or PXE_NO_UINT64_SUPPORT
This macro is used to control conditional compilation in the PXE source code. One of these
definitions must to be uncommented in the common PXE header file.

//#define PXE_UINT64_SUPPORT 1 // UINT64 supported

//#define PXE_NO_UINT64_SUPPORT 1 // UINT64 not supported

32/64-bit UNDI Specification

Version 1.02 12/12/00 387

G.3.1.3 PXE_BUSTYPE
Used to convert a 4-character ASCII identifier to a 32-bit unsigned integer.

#if PXE_INTEL_ORDER

define PXE_BUSTYPE(a,b,c,d) \

((((PXE_UINT32)(d) & 0xFF) << 24) | \

(((PXE_UINT32)(c) & 0xFF) << 16) | \

(((PXE_UINT32)(b) & 0xFF) << 8) | \

((PXE_UINT32)(a) & 0xFF))

#else

define PXE_BUSTYPE(a,b,c,d) \

((((PXE_UINT32)(a) & 0xFF) << 24) | \

(((PXE_UINT32)(b) & 0xFF) << 16) | \

(((PXE_UINT32)(c) & 0xFF) << 8) | \

((PXE_UINT32)(f) & 0xFF))

#endif

//***

// UNDI ROM ID and devive ID signature

//***

#define PXE_BUSTYPE_PXE PXE_BUSTYPE(’!’, ’P’, ’X’, ’E’)

//***

// BUS ROM ID signatures

//***

#define PXE_BUSTYPE_PCI PXE_BUSTYPE(’P’, ’C’, ’I’, ’R’)

#define PXE_BUSTYPE_PC_CARD PXE_BUSTYPE(’P’, ’C’, ’C’, ’R’)

#define PXE_BUSTYPE_USB PXE_BUSTYPE(’U’, ’S’, ’B’, ’R’)

#define PXE_BUSTYPE_1394 PXE_BUSTYPE(’1’, ’3’, ’9’, ’4’)

Extensible Firmware Interface Specification

388 12/12/00 Version 1.02

G.3.1.4 PXE_SWAP_UINT16
This macro swaps bytes in a 16-bit word.

#ifdef PXE_INTEL_ORDER

define PXE_SWAP_UINT16(n) \

((((PXE_UINT16)(n) & 0x00FF) << 8) | \

(((PXE_UINT16)(n) & 0xFF00) >> 8))

#else

define PXE_SWAP_UINT16(n) (n)

#endif

G.3.1.5 PXE_SWAP_UINT32
This macro swaps bytes in a 32-bit word.

#ifdef PXE_INTEL_ORDER

define PXE_SWAP_UINT32(n) \

((((PXE_UINT32)(n) & 0x000000FF) << 24) | \

(((PXE_UINT32)(n) & 0x0000FF00) << 8) | \

(((PXE_UINT32)(n) & 0x00FF0000) >> 8) | \

(((PXE_UINT32)(n) & 0xFF000000) >> 24)

#else

define PXE_SWAP_UINT32(n) (n)

#endif

32/64-bit UNDI Specification

Version 1.02 12/12/00 389

G.3.1.6 PXE_SWAP_UINT64
This macro swaps bytes in a 64-bit word for compilers that support 64-bit words.

#if PXE_UINT64_SUPPORT != 0

ifdef PXE_INTEL_ORDER

define PXE_SWAP_UINT64(n) \

((((PXE_UINT64)(n) & 0x00000000000000FF) << 56) |\

(((PXE_UINT64)(n) & 0x000000000000FF00) << 40) | \

(((PXE_UINT64)(n) & 0x0000000000FF0000) << 24) | \

(((PXE_UINT64)(n) & 0x00000000FF000000) << 8) | \

(((PXE_UINT64)(n) & 0x000000FF00000000) >> 8) | \

(((PXE_UINT64)(n) & 0x0000FF0000000000) >> 24) | \

(((PXE_UINT64)(n) & 0x00FF000000000000) >> 40) | \

(((PXE_UINT64)(n) & 0xFF00000000000000) >> 56)

else

define PXE_SWAP_UINT64(n) (n)

endif

#endif // PXE_UINT64_SUPPORT

This macro swaps bytes in a 64-bit word, in place, for compilers that do not support 64-bit words.
This version of the 64-bit swap macro cannot be used in expressions.

#if PXE_NO_UINT64_SUPPORT != 0

if PXE_INTEL_ORDER

define PXE_SWAP_UINT64(n) \

{ \

PXE_UINT32 tmp = (PXE_UINT64)(n)[1]; \

(PXE_UINT64)(n)[1] = PXE_SWAP_UINT32((PXE_UINT64)(n)[0]); \

(PXE_UINT64)(n)[0] = PXE_SWAP_UINT32(tmp); \

}

else

define PXE_SWAP_UINT64(n) (n)

endif

#endif // PXE_NO_UINT64_SUPPORT

Extensible Firmware Interface Specification

390 12/12/00 Version 1.02

G.3.2 Miscellaneous Macros

G.3.2.1 Miscellaneous
#define PXE_CPBSIZE_NOT_USED 0 // zero

#define PXE_DBSIZE_NOT_USED 0 // zero

#define PXE_CPBADDR_NOT_USED (PXE_UINT64)0 // zero

#define PXE_DBADDR_NOT_USED (PXE_UINT64)0 // zero

G.3.3 Portability Types

The examples given below are just that, examples. The actual typedef instructions used in a new
implementation may vary depending on the compiler and processor architecture.

The storage sizes defined in this section are critical for PXE module inter-operation. All of the
portability typedefs define little endian (Intel format) storage. The least significant byte is stored in
the lowest memory address and the most significant byte is stored in the highest memory address.

UINT64UINT32UINT16UINT8

MSBLSB

0x00 0x070x060x050x040x030x020x01

Figure G-5. Storage Types

G.3.3.1 PXE_CONST
The const type does not allocate storage. This type is a modifier that is used to help the compiler
optimize parameters that do not change across function calls.
#define PXE_CONST const

G.3.3.2 PXE_VOLATILE
The volatile type does not allocate storage. This type is a modifier that is used to help the compiler
deal with variables that can be changed by external procedures or hardware events.
#define PXE_VOLATILE volatile

32/64-bit UNDI Specification

Version 1.02 12/12/00 391

G.3.3.3 PXE_VOID
The void type does not allocate storage. This type is used only to prototype functions that do not
return any information and/or do not take any parameters.

typedef void PXE_VOID;

G.3.3.4 PXE_UINT8
Unsigned 8-bit integer.

typedef unsigned char PXE_UINT8;

G.3.3.5 PXE_UINT16
Unsigned 16-bit integer.

typedef unsigned short PXE_UINT16;

G.3.3.6 PXE_UINT32
Unsigned 32-bit integer.

typedef unsigned PXE_UINT32;

G.3.3.7 PXE_UINT64
Unsigned 64-bit integer.

#if PXE_UINT64_SUPPORT != 0

typedef unsigned long PXE_UINT64;

#endif // PXE_UINT64_SUPPORT

If a 64-bit integer type is not available in the compiler being used, use this definition:

#if PXE_NO_UINT64_SUPPORT != 0

typedef PXE_UINT32 PXE_UINT64[2];

#endif // PXE_NO_UINT64_SUPPORT

G.3.3.8 PXE_UINTN
Unsigned integer that is the default word size used by the compiler. This needs to be at least a
32-bit unsigned integer.

typedef unsigned PXE_UINTN;

Extensible Firmware Interface Specification

392 12/12/00 Version 1.02

G.3.4 Simple Types

The PXE simple types are defined using one of the portability types from the previous section.

G.3.4.1 PXE_BOOL
Boolean (true/false) data type. For PXE zero is always false and non-zero is always true.

typedef PXE_UINT8 PXE_BOOL;

#define PXE_FALSE 0 // zero

#define PXE_TRUE (!PXE_FALSE)

G.3.4.2 PXE_OPCODE
UNDI OpCode (command) descriptions are given in the next chapter. There are no BC OpCodes,
BC protocol functions are discussed later in this document.

typedef PXE_UINT16 PXE_OPCODE;

// Return UNDI operational state.

#define PXE_OPCODE_GET_STATE 0x0000

// Change UNDI operational state from Stopped to Started.

#define PXE_OPCODE_START 0x0001

// Change UNDI operational state from Started to Stopped.

#define PXE_OPCODE_STOP 0x0002

// Get UNDI initialization information.

#define PXE_OPCODE_GET_INIT_INFO 0x0003

// Get NIC configuration information.

#define PXE_OPCODE_GET_CONFIG_INFO 0x0004

// Changed UNDI operational state from Started to Initialized.

#define PXE_OPCODE_INITIALIZE 0x0005

// Re-initialize the NIC H/W.

#define PXE_OPCODE_RESET 0x0006

32/64-bit UNDI Specification

Version 1.02 12/12/00 393

// Change the UNDI operational state from Initialized to Started.

#define PXE_OPCODE_SHUTDOWN 0x0007

// Read & change state of external interrupt enables.

#define PXE_OPCODE_INTERRUPT_ENABLES 0x0008

// Read & change state of packet receive filters.

#define PXE_OPCODE_RECEIVE_FILTERS 0x0009

// Read & change station MAC address.

#define PXE_OPCODE_STATION_ADDRESS 0x000A

// Read traffic statistics.

#define PXE_OPCODE_STATISTICS 0x000B

// Convert multicast IP address to multicast MAC address.

#define PXE_OPCODE_MCAST_IP_TO_MAC 0x000C

// Read or change non-volatile storage on the NIC.

#define PXE_OPCODE_NVDATA 0x000D

// Get & clear interrupt status.

#define PXE_OPCODE_GET_STATUS 0x000E

// Fill media header in packet for transmit.

#define PXE_OPCODE_FILL_HEADER 0x000F

// Transmit packet(s).

#define PXE_OPCODE_TRANSMIT 0x0010

// Receive packet.

#define PXE_OPCODE_RECEIVE 0x0011

// Last valid PXE UNDI OpCode number.

#define PXE_OPCODE_LAST_VALID 0x0011

Extensible Firmware Interface Specification

394 12/12/00 Version 1.02

G.3.4.3 PXE_OPFLAGS

typedef PXE_UINT16 PXE_OPFLAGS;

#define PXE_OPFLAGS_NOT_USED 0x0000

//***

// UNDI Get State

//***

// No OpFlags

//***

// UNDI Start

//***

// No OpFlags

//***

// UNDI Stop

//***

// No OpFlags

//***

// UNDI Get Init Info

//***

// No Opflags

//***

// UNDI Get Config Info

//***

// No Opflags

32/64-bit UNDI Specification

Version 1.02 12/12/00 395

//***

// UNDI Initialize

//***

#define PXE_OPFLAGS_INITIALIZE_CABLE_DETECT_MASK 0x0001

#define PXE_OPFLAGS_INITIALIZE_DETECT_CABLE 0x0000

#define PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE 0x0001

//***

// UNDI Reset

//***

#define PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS 0x0001

#define PXE_OPFLAGS_RESET_DISABLE_FILTERS 0x0002

//***

// UNDI Shutdown

//***

// No OpFlags

//***

// UNDI Interrupt Enables

//***

// Select whether to enable or disable external interrupt signals.
// Setting both enable and disable will return
// PXE_STATCODE_INVALID_OPFLAGS.

#define PXE_OPFLAGS_INTERRUPT_OPMASK 0xC000

#define PXE_OPFLAGS_INTERRUPT_ENABLE 0x8000

#define PXE_OPFLAGS_INTERRUPT_DISABLE 0x4000

#define PXE_OPFLAGS_INTERRUPT_READ 0x0000

Extensible Firmware Interface Specification

396 12/12/00 Version 1.02

// Enable receive interrupts. An external interrupt will be
// generated after a complete non-error packet has been received.

#define PXE_OPFLAGS_INTERRUPT_RECEIVE 0x0001

// Enable transmit interrupts. An external interrupt will be
// generated after a complete non-error packet has been
// transmitted.

#define PXE_OPFLAGS_INTERRUPT_TRANSMIT 0x0002

// Enable command interrupts. An external interrupt will be
// generated when command execution stops.

#define PXE_OPFLAGS_INTERRUPT_COMMAND 0x0004

// Generate software interrupt. Setting this bit generates an
// externalinterrupt, if it is supported by the hardware.

#define PXE_OPFLAGS_INTERRUPT_SOFTWARE 0x0008

//***

// UNDI Receive Filters

//***

// Select whether to enable or disable receive filters.
// Setting both enable and disable will return
// PXE_STATCODE_INVALID_OPCODE.

32/64-bit UNDI Specification

Version 1.02 12/12/00 397

#define PXE_OPFLAGS_RECEIVE_FILTER_OPMASK 0xC000

#define PXE_OPFLAGS_RECEIVE_FILTER_ENABLE 0x8000

#define PXE_OPFLAGS_RECEIVE_FILTER_DISABLE 0x4000

#define PXE_OPFLAGS_RECEIVE_FILTER_READ 0x0000

// To reset the contents of the multicast MAC address filter list,
// set this OpFlag:

#define PXE_OPFLAGS_RECEIVE_FILTERS_RESET_MCAST_LIST 0x2000

// Enable unicast packet receiving. Packets sent to the current
// station MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_UNICAST 0x0001

// Enable broadcast packet receiving. Packets sent to the
// broadcast MAC address will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// Enable filtered multicast packet receiving. Packets sent to
// anyof the multicast MAC addresses in the multicast MAC address
// filter list will be received. If the filter list is empty, no
// multicast

#define PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

Extensible Firmware Interface Specification

398 12/12/00 Version 1.02

// Enable promiscuous packet receiving. All packets will be
// received.

#define PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

// Enable promiscuous multicast packet receiving. All multicast
// packets will be received.

#define PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***

// UNDI Station Address

//***

#define PXE_OPFLAGS_STATION_ADDRESS_READ 0x0000

#define PXE_OPFLAGS_STATION_ADDRESS_WRITE 0x0000

#define PXE_OPFLAGS_STATION_ADDRESS_RESET 0x0001

//***

// UNDI Statistics

//***

#define PXE_OPFLAGS_STATISTICS_READ 0x0000

#define PXE_OPFLAGS_STATISTICS_RESET 0x0001

//***

// UNDI MCast IP to MAC

//***

// Identify the type of IP address in the CPB.

#define PXE_OPFLAGS_MCAST_IP_TO_MAC_OPMASK 0x0003

#define PXE_OPFLAGS_MCAST_IPV4_TO_MAC 0x0000

#define PXE_OPFLAGS_MCAST_IPV6_TO_MAC 0x0001

//***

32/64-bit UNDI Specification

Version 1.02 12/12/00 399

// UNDI NvData

//***

// Select the type of non-volatile data operation.

#define PXE_OPFLAGS_NVDATA_OPMASK 0x0001

#define PXE_OPFLAGS_NVDATA_READ 0x0000

#define PXE_OPFLAGS_NVDATA_WRITE 0x0001

//***

// UNDI Get Status

//***

// Return current interrupt status. This will also clear any
// interrupts that are currently set. This can be used in a
// polling routine. The interrupt flags are still set and cleared
// even when the interrupts are disabled.

#define PXE_OPFLAGS_GET_INTERRUPT_STATUS 0x0001

// Return list of transmitted buffers for recycling. Transmit
// buffers must not be changed or unallocated until they have
// recycled. After issuing a transmit command, wait for a
// transmit complete interrupt. When a transmit complete
// interrupt is received, read the transmitted buffers. Do not
// plan on getting one buffer per interrupt. Some NICs and UNDIs
// may transmit multiple buffers per interrupt.

#define PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS 0x0002

//***

// UNDI Fill Header

//***

#define PXE_OPFLAGS_FILL_HEADER_OPMASK 0x0001

#define PXE_OPFLAGS_FILL_HEADER_FRAGMENTED 0x0001

#define PXE_OPFLAGS_FILL_HEADER_WHOLE 0x0000

//***

Extensible Firmware Interface Specification

400 12/12/00 Version 1.02

// UNDI Transmit

//***

// S/W UNDI only. Return after the packet has been transmitted.
// A transmit complete interrupt will still be generated and the
// transmit buffer will have to be recycled.

#define PXE_OPFLAGS_SWUNDI_TRANSMIT_OPMASK 0x0001

#define PXE_OPFLAGS_TRANSMIT_BLOCK 0x0001

#define PXE_OPFLAGS_TRANSMIT_DONT_BLOCK 0x0000

#define PXE_OPFLAGS_TRANSMIT_OPMASK 0x0002

#define PXE_OPFLAGS_TRANSMIT_FRAGMENTED 0x0002

#define PXE_OPFLAGS_TRANSMIT_WHOLE 0x0000

//***

// UNDI Receive

//***

// No OpFlags

G.3.4.4 PXE_STATFLAGS

typedef PXE_UINT16 PXE_STATFLAGS;

#define PXE_STATFLAGS_INITIALIZE 0x0000

//***

// Common StatFlags that can be returned by all commands.

//***

// The COMMAND_COMPLETE and COMMAND_FAILED status flags must be
// implemented by all UNDIs. COMMAND_QUEUED is only needed by
// UNDIs that support command queuing.

#define PXE_STATFLAGS_STATUS_MASK 0xC000

#define PXE_STATFLAGS_COMMAND_COMPLETE 0xC000

#define PXE_STATFLAGS_COMMAND_FAILED 0x8000

32/64-bit UNDI Specification

Version 1.02 12/12/00 401

#define PXE_STATFLAGS_COMMAND_QUEUED 0x4000

//***

// UNDI Get State

//***

#define PXE_STATFLAGS_GET_STATE_MASK 0x0003

#define PXE_STATFLAGS_GET_STATE_INITIALIZED 0x0002

#define PXE_STATFLAGS_GET_STATE_STARTED 0x0001

#define PXE_STATFLAGS_GET_STATE_STOPPED 0x0000

//***

// UNDI Start

//***

// No additional StatFlags

//***

// UNDI Get Init Info

//***

#define PXE_STATFLAGS_CABLE_DETECT_MASK 0x0001

#define PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED 0x0000

#define PXE_STATFLAGS_CABLE_DETECT_SUPPORTED 0x0001

//***

// UNDI Initialize

//***

#define PXE_STATFLAGS_INITIALIZED_NO_MEDIA 0x0001

//***

// UNDI Reset

//***

#define PXE_STATFLAGS_RESET_NO_MEDIA 0x0001

Extensible Firmware Interface Specification

402 12/12/00 Version 1.02

//***

// UNDI Shutdown

//***

// No additional StatFlags

//***

// UNDI Interrupt Enables

//***

// If set, receive interrupts are enabled.

#define PXE_STATFLAGS_INTERRUPT_RECEIVE 0x0001

// If set, transmit interrupts are enabled.

#define PXE_STATFLAGS_INTERRUPT_TRANSMIT 0x0002

// If set, command interrupts are enabled.

#define PXE_STATFLAGS_INTERRUPT_COMMAND 0x0004

//***

// UNDI Receive Filters

//***

// If set, unicast packets will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_UNICAST 0x0001

// If set, broadcast packets will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST 0x0002

// If set, multicast packets that match up with the multicast
// address filter list will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST 0x0004

// If set, all packets will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS 0x0008

32/64-bit UNDI Specification

Version 1.02 12/12/00 403

// If set, all multicast packets will be received.

#define PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST 0x0010

//***

// UNDI Station Address

//***

// No additional StatFlags

//***

// UNDI Statistics

//***

// No additional StatFlags

//***

// UNDI MCast IP to MAC

//***

// No additional StatFlags

//***

// UNDI NvData

//***

// No additional StatFlags

//***

// UNDI Get Status

//***

// Use to determine if an interrupt has occurred.

#define PXE_STATFLAGS_GET_STATUS_INTERRUPT_MASK 0x000F

#define PXE_STATFLAGS_GET_STATUS_NO_INTERRUPTS 0x0000

Extensible Firmware Interface Specification

404 12/12/00 Version 1.02

// If set, at least one receive interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_RECEIVE 0x0001

// If set, at least one transmit interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_TRANSMIT 0x0002

// If set, at least one command interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_COMMAND 0x0004

// If set, at least one software interrupt occurred.

#define PXE_STATFLAGS_GET_STATUS_SOFTWARE 0x0008

// This flag is set if the transmitted buffer queue is empty.
// This flag will be set if all transmitted buffer addresses get
// written into the DB.

#define PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY 0x0010

// This flag is set if no transmitted buffer addresses were
// written into the DB. (This could be because DBsize was too
// small.)

#define PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN 0x0020

//***

// UNDI Fill Header

//***

// No additional StatFlags

//***

// UNDI Transmit

//***

// No additional StatFlags.

//***

// UNDI Receive

//***

// No additional StatFlags.

32/64-bit UNDI Specification

Version 1.02 12/12/00 405

G.3.4.5 PXE_STATCODE

typedef PXE_UINT16 PXE_STATCODE;

#define PXE_STATCODE_INITIALIZE 0x0000

//***
// Common StatCodes returned by all UNDI commands, UNDI protocol
// functions and BC protocol functions.
//***

#define PXE_STATCODE_SUCCESS 0x0000

#define PXE_STATCODE_INVALID_CDB 0x0001

#define PXE_STATCODE_INVALID_CPB 0x0002

#define PXE_STATCODE_BUSY 0x0003

#define PXE_STATCODE_QUEUE_FULL 0x0004

#define PXE_STATCODE_ALREADY_STARTED 0x0005

#define PXE_STATCODE_NOT_STARTED 0x0006

#define PXE_STATCODE_NOT_SHUTDOWN 0x0007

#define PXE_STATCODE_ALREADY_INITIALIZED 0x0008

#define PXE_STATCODE_NOT_INITIALIZED 0x0009

#define PXE_STATCODE_DEVICE_FAILURE 0x000A

#define PXE_STATCODE_NVDATA_FAILURE 0x000B

#define PXE_STATCODE_UNSUPPORTED 0x000C

#define PXE_STATCODE_BUFFER_FULL 0x000D

#define PXE_STATCODE_INVALID_PARAMETER 0x000E

#define PXE_STATCODE_INVALID_UNDI 0x000F

#define PXE_STATCODE_IPV4_NOT_SUPPORTED 0x0010

#define PXE_STATCODE_IPV6_NOT_SUPPORTED 0x0011

#define PXE_STATCODE_NOT_ENOUGH_MEMORY 0x0012

#define PXE_STATCODE_NO_DATA 0x0013

Extensible Firmware Interface Specification

406 12/12/00 Version 1.02

G.3.4.6 PXE_IFNUM

typedef PXE_UINT16 PXE_IFNUM;

// This interface number must be passed to the S/W UNDI Start
// command.

#define PXE_IFNUM_START 0x0000

// This interface number is returned by the S/W UNDI Get State and
// Start commands if information in the CDB, CPB or DB is invalid.

#define PXE_IFNUM_INVALID 0x0000

G.3.4.7 PXE_CONTROL

typedef PXE_UINT16 PXE_CONTROL;

// Setting this flag directs the UNDI to queue this command for
// later execution if the UNDI is busy and it supports command
// queuing. If queuing is not supported, a
// PXE_STATCODE_INVALID_CONTROL error is returned. If the queue
// is full, a PXE_STATCODE_CDB_QUEUE_FULL error is returned.

#define PXE_CONTROL_QUEUE_IF_BUSY 0x0002

// These two bit values are used to determine if there are more
// UNDI CDB structures following this one. If the link bit is
// set, there must be a CDB structure following this one.
// Execution will start on the next CDB structure as soon as this
// one completes successfully. If an error is generated by this
// command, execution will stop.

#define PXE_CONTROL_LINK 0x0001

#define PXE_CONTROL_LAST_CDB_IN_LIST 0x0000

32/64-bit UNDI Specification

Version 1.02 12/12/00 407

G.3.4.8 PXE_FRAME_TYPE

typedef PXE_UINT8 PXE_FRAME_TYPE;

#define PXE_FRAME_TYPE_NONE 0x00

#define PXE_FRAME_TYPE_UNICAST 0x01

#define PXE_FRAME_TYPE_BROADCAST 0x02

#define PXE_FRAME_TYPE_FILTERED_MULTICAST 0x03

#define PXE_FRAME_TYPE_PROMISCUOUS 0x04

#define PXE_FRAME_TYPE_PROMISCUOUS_MULTICAST 0x05

G.3.4.9 PXE_IPV4
This storage type is always big endian (network order) not little endian (Intel order).

typedef PXE_UINT32 PXE_IPV4;

G.3.4.10 PXE_IPV6
This storage type is always big endian (network order) not little endian (Intel order).

typedef struct s_PXE_IPV6 {

PXE_UINT32 num[4];

} PXE_IPV6;

G.3.4.11 PXE_MAC_ADDR
This storage type is always big endian (network order) not little endian (Intel order).

typedef struct {

PXE_UINT8 num[32];

} PXE_MAC_ADDR;

Extensible Firmware Interface Specification

408 12/12/00 Version 1.02

G.3.4.12 PXE_IFTYPE
The interface type is returned by the Get Initialization Information command and is used by the BC
DHCP protocol function. This field is also used for the low order 8-bits of the H/W type field in
ARP packets. The high order 8-bits of the H/W type field in ARP packets will always be set to
0x00 by the BC.

typedef PXE_UINT8 PXE_IFTYPE;

// This information is from the ARP section of RFC 1700.

// 1 Ethernet (10Mb)

// 2 Experimental Ethernet (3Mb)

// 3 Amateur Radio AX.25

// 4 Proteon ProNET Token Ring

// 5 Chaos

// 6 IEEE 802 Networks

// 7 ARCNET

// 8 Hyperchannel

// 9 Lanstar

// 10 Autonet Short Address

// 11 LocalTalk

// 12 LocalNet (IBM PCNet or SYTEK LocalNET)

// 13 Ultra link

// 14 SMDS

// 15 Frame Relay

// 16 Asynchronous Transmission Mode (ATM)

// 17 HDLC

// 18 Fibre Channel

// 19 Asynchronous Transmission Mode (ATM)

// 20 Serial Line

// 21 Asynchronous Transmission Mode (ATM)

#define PXE_IFTYPE_ETHERNET 0x01

#define PXE_IFTYPE_TOKENRING 0x04

#define PXE_IFTYPE_FIBRE_CHANNEL 0x12

32/64-bit UNDI Specification

Version 1.02 12/12/00 409

G.3.5 Compound Types

All PXE structures must be byte packed.

G.3.5.1 PXE_HW_UNDI
This section defines the C structures and #defines for the !PXE H/W UNDI interface.

#pragma pack(1)

typedef struct s_pxe_hw_undi {

PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE

PXE_UINT8 Len; // sizeof(PXE_HW_UNDI)

PXE_UINT8 Fudge; // makes 8-bit cksum equal zero

PXE_UINT8 Rev; // PXE_ROMID_REV

PXE_UINT8 IFcnt; // physical connector count

PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER

PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER

PXE_UINT16 reserved; // zero, not used

PXE_UINT32 Implementation; // implementation flags

} PXE_HW_UNDI;

#pragma pack()

// Status port bit definitions

// UNDI operation state

#define PXE_HWSTAT_STATE_MASK 0xC0000000

#define PXE_HWSTAT_BUSY 0xC0000000

#define PXE_HWSTAT_INITIALIZED 0x80000000

#define PXE_HWSTAT_STARTED 0x40000000

#define PXE_HWSTAT_STOPPED 0x00000000

Extensible Firmware Interface Specification

410 12/12/00 Version 1.02

// If set, last command failed

#define PXE_HWSTAT_COMMAND_FAILED 0x20000000

// If set, identifies enabled receive filters

#define PXE_HWSTAT_PROMISCUOUS_MULTICAST_RX_ENABLED 0x00001000

#define PXE_HWSTAT_PROMISCUOUS_RX_ENABLED 0x00000800

#define PXE_HWSTAT_BROADCAST_RX_ENABLED 0x00000400

#define PXE_HWSTAT_MULTICAST_RX_ENABLED 0x00000200

#define PXE_HWSTAT_UNICAST_RX_ENABLED 0x00000100

// If set, identifies enabled external interrupts

#define PXE_HWSTAT_SOFTWARE_INT_ENABLED 0x00000080

#define PXE_HWSTAT_TX_COMPLETE_INT_ENABLED 0x00000040

#define PXE_HWSTAT_PACKET_RX_INT_ENABLED 0x00000020

#define PXE_HWSTAT_CMD_COMPLETE_INT_ENABLED 0x00000010

// If set, identifies pending interrupts

#define PXE_HWSTAT_SOFTWARE_INT_PENDING 0x00000008

#define PXE_HWSTAT_TX_COMPLETE_INT_PENDING 0x00000004

#define PXE_HWSTAT_PACKET_RX_INT_PENDING 0x00000002

#define PXE_HWSTAT_CMD_COMPLETE_INT_PENDING 0x00000001

// Command port definitions

// If set, CDB identified in CDBaddr port is given to UNDI.

// If not set, other bits in this word will be processed.

#define PXE_HWCMD_ISSUE_COMMAND 0x80000000

#define PXE_HWCMD_INTS_AND_FILTS 0x00000000

32/64-bit UNDI Specification

Version 1.02 12/12/00 411

// Use these to enable/disable receive filters.

#define PXE_HWCMD_PROMISCUOUS_MULTICAST_RX_ENABLE 0x00001000

#define PXE_HWCMD_PROMISCUOUS_RX_ENABLE 0x00000800

#define PXE_HWCMD_BROADCAST_RX_ENABLE 0x00000400

#define PXE_HWCMD_MULTICAST_RX_ENABLE 0x00000200

#define PXE_HWCMD_UNICAST_RX_ENABLE 0x00000100

// Use these to enable/disable external interrupts

#define PXE_HWCMD_SOFTWARE_INT_ENABLE 0x00000080

#define PXE_HWCMD_TX_COMPLETE_INT_ENABLE 0x00000040

#define PXE_HWCMD_PACKET_RX_INT_ENABLE 0x00000020

#define PXE_HWCMD_CMD_COMPLETE_INT_ENABLE 0x00000010

// Use these to clear pending external interrupts

#define PXE_HWCMD_CLEAR_SOFTWARE_INT 0x00000008

#define PXE_HWCMD_CLEAR_TX_COMPLETE_INT 0x00000004

#define PXE_HWCMD_CLEAR_PACKET_RX_INT 0x00000002

#define PXE_HWCMD_CLEAR_CMD_COMPLETE_INT 0x00000001

G.3.5.2 PXE_SW_UNDI
This section defines the C structures and #defines for the !PXE S/W UNDI interface.

#pragma pack(1)

typedef struct s_pxe_sw_undi {

PXE_UINT32 Signature; // PXE_ROMID_SIGNATURE

PXE_UINT8 Len; // sizeof(PXE_SW_UNDI)

PXE_UINT8 Fudge; // makes 8-bit cksum zero

PXE_UINT8 Rev; // PXE_ROMID_REV

PXE_UINT8 IFcnt; // physical connector count

PXE_UINT8 MajorVer; // PXE_ROMID_MAJORVER

PXE_UINT8 MinorVer; // PXE_ROMID_MINORVER

PXE_UINT16 reserved1; // zero, not used

PXE_UINT32 Implementation; // Implementation flags

Extensible Firmware Interface Specification

412 12/12/00 Version 1.02

PXE_UINT64 EntryPoint; // API entry point

PXE_UINT8 reserved2[3]; // zero, not used

PXE_UINT8 BusCnt; // number of bustypes supported

PXE_UINT32 BusType[1]; // list of supported bustypes

} PXE_SW_UNDI;

#pragma pack()

G.3.5.3 PXE_UNDI
PXE_UNDI combines both the H/W and S/W UNDI types into one typedef and has #defines for
common fields in both H/W and S/W UNDI types.

#pragma pack(1)

typedef union u_pxe_undi {

PXE_HW_UNDI hw;

PXE_SW_UNDI sw;

} PXE_UNDI;

#pragma pack()

// Signature of !PXE structure

#define PXE_ROMID_SIGNATURE PXE_BUSTYPE(’!’, ’P’, ’X’, ’E’)

// !PXE structure format revision

#define PXE_ROMID_REV 0x02

// UNDI command interface revision. These are the values that get
// sent in option 94 (Client Network Interface Identifier) in the
// DHCP Discover and PXE Boot Server Request packets.

#define PXE_ROMID_MAJORVER 0x03

#define PXE_ROMID_MINORVER 0x00

// Implementation flags

#define PXE_ROMID_IMP_HW_UNDI 0x80000000

#define PXE_ROMID_IMP_SW_VIRT_ADDR 0x40000000

32/64-bit UNDI Specification

Version 1.02 12/12/00 413

#define PXE_ROMID_IMP_64BIT_DEVICE 0x00010000

#define PXE_ROMID_IMP_FRAG_SUPPORTED 0x00008000

#define PXE_ROMID_IMP_CMD_LINK_SUPPORTED 0x00004000

#define PXE_ROMID_IMP_CMD_QUEUE_SUPPORTED 0x00002000

#define PXE_ROMID_IMP_MULTI_FRAME_SUPPORTED 0x00001000

#define PXE_ROMID_IMP_NVDATA_SUPPORT_MASK 0x00000C00

#define PXE_ROMID_IMP_NVDATA_BULK_WRITABLE 0x00000C00

#define PXE_ROMID_IMP_NVDATA_SPARSE_WRITABLE 0x00000800

#define PXE_ROMID_IMP_NVDATA_READ_ONLY 0x00000400

#define PXE_ROMID_IMP_NVDATA_NOT_AVAILABLE 0x00000000

#define PXE_ROMID_IMP_STATISTICS_SUPPORTED 0x00000200

#define PXE_ROMID_IMP_STATION_ADDR_SETTABLE 0x00000100

#define PXE_ROMID_IMP_PROMISCUOUS_MULTICAST_RX_SUPPORTED \

0x00000080

#define PXE_ROMID_IMP_PROMISCUOUS_RX_SUPPORTED \

0x00000040

#define PXE_ROMID_IMP_BROADCAST_RX_SUPPORTED \

0x00000020

#define PXE_ROMID_IMP_FILTERED_MULTICAST_RX_SUPPORTED \

0x00000010

#define PXE_ROMID_IMP_SOFTWARE_INT_SUPPORTED \

0x00000008

#define PXE_ROMID_IMP_TX_COMPLETE_INT_SUPPORTED \

0x00000004

#define PXE_ROMID_IMP_PACKET_RX_INT_SUPPORTED \

0x00000002

#define PXE_ROMID_IMP_CMD_COMPLETE_INT_SUPPORTED \

0x00000001

Extensible Firmware Interface Specification

414 12/12/00 Version 1.02

G.3.5.4 PXE_CDB
PXE UNDI command descriptor block.

#pragma pack(1)

typedef struct s_pxe_cdb {

 PXE_OPCODE OpCode;

 PXE_OPFLAGS OpFlags;

 PXE_UINT16 CPBsize;

 PXE_UINT16 DBsize;

 PXE_UINT64 CPBaddr;

 PXE_UINT64 DBaddr;

 PXE_STATCODE StatCode;

 PXE_STATFLAGS StatFlags;

 PXE_UINT16 IFnum;

 PXE_CONTROL Control;

} PXE_CDB;

#pragma pack()

G.3.5.5 PXE_IP_ADDR
This storage type is always big endian (network order) not little endian (Intel order).

#pragma pack(1)

typedef union u_pxe_ip_addr {

PXE_IPV6 IPv6;

PXE_IPV4 IPv4;

} PXE_IP_ADDR;

#pragma pack()

32/64-bit UNDI Specification

Version 1.02 12/12/00 415

G.3.5.6 PXE_DEVICE
This typedef is used to identify the network device that is being used by the UNDI. This
information is returned by the Get Config Info command.

#pragma pack(1)

typedef union pxe_device {

// PCI and PC Card NICs are both identified using bus, device

// and function numbers. For PC Card, this may require PC

// Card services to be loaded in the BIOS or preboot

// environment.

struct {

// See S/W UNDI ROMID structure definition for PCI and

// PCC BusType definitions.

PXE_UINT32 BusType;

// Bus, device & function numbers that locate this device.

PXE_UINT16 Bus;

PXE_UINT8 Device;

PXE_UINT8 Function;

} PCI, PCC;

} PXE_DEVICE;

#pragma pack()

Extensible Firmware Interface Specification

416 12/12/00 Version 1.02

G.4 UNDI Commands

All 32/64-bit UNDI commands use the same basic command format, the CDB (Command
Descriptor Block). CDB fields that are not used by a particular command must be initialized to
zero by the application/driver that is issuing the command.

All UNDI implementations must set the command completion status
(PXE_STATFLAGS_COMMAND_COMPLETE) after command execution completes. Applications
and drivers must not alter or rely on the contents of any of the CDB, CPB or DB fields until the
command completion status is set.

All commands return status codes for invalid CDB contents and, if used, invalid CPB contents.
Commands with invalid parameters will not execute. Fix the error and submit the command again.

The figure below describes the different UNDI states (Stopped, Started and Initialized), shows the
transitions between the states and which UNDI commands are valid in each state.

Stopped

Initialized

Started

StartStop

Shutdown Initialize

Valid Commands
Get State
Start

Valid Commands
Get State
Get Init Info
Reset
Shutdown
Get Runtime Info
Set Runtime Info
Get Status
Fill Header
Transmit
Receive
MCast IP To MAC

Valid Commands
Get State
Stop
Get Init Info
Initialize
MCast IP To MAC

Figure G-6. UNDI States, Transitions & Valid Commands

Note: Additional requirements for S/W UNDI implementations: CPU register contents must be
unchanged by S/W UNDI command execution (the application/driver does not have to save CPU
registers when calling S/W UNDI). CPU arithmetic flags are undefined (application/driver must
save CPU arithmetic flags if needed). Application/driver must remove CDB address from stack
after control returns from S/W UNDI.

When executing linked commands, command execution will stop at the end of the CDB list (when
the PXE_CONTROL_LINK bit is not set) or when a command returns an error status code.

32/64-bit UNDI Specification

Version 1.02 12/12/00 417

G.4.1 Command Linking & Queuing

When linking commands, the CDBs must be stored consecutively in system memory without any
gaps in between. Do not set the Link bit in the last CDB in the list. The Link bit must be set in all
other CDBs in the list.

Linked CDBs

CDB

Set Link bit.

CDB

Set Link bit.

CDB

Do not set
Link bit.

0x00

0x1F

0x40

0x5F

0x20

0x3F

Figure G-7. Linked CDBs

When the H/W UNDI is executing commands, the State bits in the Status field in the !PXE
structure will be set to Busy (3).

When H/W or S/W UNDI is executing commands and a new command is issued, a StatCode of
PXE_STATCODE_BUSY and a StatFlag of PXE_STATFLAG_COMMAND_FAILURE is set in the
CDB. For linked commands, only the first CDB will be set to Busy, all other CDBs will be
unchanged. When a linked command fails, execution on the list stops. Commands after the failing
command will not be run.

When queuing commands, only the first CDB needs to have the Queue Control flag set. If queuing
is supported and the UNDI is busy and there is room in the command queue, the command (or list
of commands) will be queued.

Extensible Firmware Interface Specification

418 12/12/00 Version 1.02

Queued CDBs
0x00

0x1F

0x40

0x5F

0x20

0x3F

CDB

Set Queue bit.
Set Link bit.

CDB

Do not set
Queue bit.

Set Link bit.

CDB

Do not set
Queue bit.
Do not set
Link bit.

Figure G-8. Queued CDBs

When a command is queued a StatFlag of PXE_STATFLAG_COMMAND_QUEUED is set (if linked
commands are queued only the StatFlag of the first CDB gets set). This signals that the command
was added to the queue. Commands in the queue will be run on a first-in, first-out, basis. When a
command fails, the next command in the queue is run. When a linked command in the queue fails,
execution on the list stops. The next command, or list of commands, that was added to the
command queue will be run.

G.4.2 Get State

This command is used to determine the operational state of the UNDI. An UNDI has three possible
operational states:

Stopped: A stopped UNDI is free for the taking. When all interface numbers (IFnum)
for a particular S/W UNDI are stopped, that S/W UNDI image can be relocated or
removed. A stopped UNDI will accept Get State and Start commands.

Started: A started UNDI is in use. A started UNDI will accept Get State, Stop, Get Init
Info and Initialize Commands.

Initialized: An initialized UNDI is in used. An initialized UNDI will accept all
commands except: Start, Stop and Initialize.

Drivers, NBPs and applications should not use UNDIs that are already started or initialized.

No other operational checks are made by this command. If this is a S/W UNDI, the
PXE_START_CPB.Delay() and PXE_START_CPB.Virt2Phys() callbacks will not be
used.

32/64-bit UNDI Specification

Version 1.02 12/12/00 419

G.4.2.1 Issuing the Command
To issue a Get State command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Get State command

OpCode PXE_OPCODE_GET_STATE

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

G.4.2.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags contain operational state.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued. All other fields are unchanged.

INITIALIZE Command has not been executed or queued.

G.4.2.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. StatFlags contain operational state.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

If the command completes successfully, use PXE_STATFLAGS_GET_STATE_MASK to check the
state of the UNDI.

StatFlags Reason

STOPPED The UNDI is stopped.

STARTED The UNDI is started, but not initialized.

INITIALIZED The UNDI is initialized.

Extensible Firmware Interface Specification

420 12/12/00 Version 1.02

G.4.3 Start

This command is used to change the UNDI operational state from stopped to started. No other
operational checks are made by this command. If this is a S/W UNDI, the Delay() and Virt2Phys()
functions will not be called by this command.

G.4.3.1 Issuing the Command
To issue a Start command for H/W UNDI, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a H/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

To issue a Start command for S/W UNDI, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a S/W UNDI Start command

OpCode PXE_OPCODE_START

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize sizeof(PXE_CPB_START)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_START structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

32/64-bit UNDI Specification

Version 1.02 12/12/00 421

Preparing the CPB

The CPB for the S/W UNDI Start command (shown below) must be filled in and the size and
address of the CPB must be given in the CDB.

#pragma pack(1)

typedef struct s_pxe_cpb_start {

// PXE_VOID Delay(PXE_UINT64 microseconds);

// UNDI will never request a delay smaller than 10 microseconds
// and will always request delays in increments of 10
// microseconds. The Delay() CallBack routine must delay between
// n and n + 10 microseconds before returning control to the
// UNDI.

// This field cannot be set to zero.

PXE_UINT64 Delay;

// PXE_VOID Block(PXE_UINT32 enable);

// UNDI may need to block multi-threaded/multi-processor access
// to critical code sections when programming or accessing the
// network device. To this end, a blocking service is needed by
// the UNDI. When UNDI needs a block, it will call Block()
// passing a non-zero value. When UNDI no longer needs a block,
// it will call Block() with a zero value. When called, if the
// Block() is already enabled, do not return control to the UNDI
// until the previous Block() is disabled.

// This field cannot be set to zero.

PXE_UINT64 Block;

// PXE_VOID Virt2Phys(PXE_UINT64 virtual, PXE_UINT64
// physical_ptr);

// UNDI will pass the virtual address of a buffer and the virtual
// address of a 64-bit physical buffer. Convert the virtual
// address to a physical address and write the result to the
// physical address buffer. If virtual and physical addresses
// are the same, just copy the virtual address to the physical
// address buffer.

Extensible Firmware Interface Specification

422 12/12/00 Version 1.02

// This field can be set to zero if virtual and physical
// addresses are equal.

PXE_UINT64 Virt2Phys;

PXE_UINT64 Mem_IO;

} PXE_CPB_START;

#pragma pack()

#define PXE_DELAY_MILLISECOND 1000

#define PXE_DELAY_SECOND 1000000

#define PXE_IO_READ 0

#define PXE_IO_WRITE 1

#define PXE_MEM_READ 2

#define PXE_MEM_WRITE 4

G.4.3.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI is now started.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

G.4.3.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now started.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

ALREADY_STARTED The UNDI is already started.

G.4.4 Stop

This command is used to change the UNDI operational state from started to stopped.

32/64-bit UNDI Specification

Version 1.02 12/12/00 423

G.4.4.1 Issuing the Command
To issue a Stop command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Stop command

OpCode PXE_OPCODE_STOP

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

G.4.4.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI is now stopped.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has not been executed or queued.

G.4.4.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI is now stopped.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_SHUTDOWN The UNDI is initialized and must be shutdown before it can be stopped.

G.4.5 Get Init Info

This command is used to retrieve initialization information that is needed by drivers and
applications to initialized UNDI.

Extensible Firmware Interface Specification

424 12/12/00 Version 1.02

G.4.5.1 Issuing the Command
To issue a Get Init Info command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Get Init Info command

OpCode PXE_OPCODE_GET_INIT_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_INIT_INFO)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_INIT_INFO structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

G.4.5.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB can be used.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

G.4.5.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB can be used.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

StatFlags

To determine if cable detection is supported by this UNDI/NIC, use these macros with the value
returned in the CDB.StatFlags field:

PXE_STATFLAGS_CABLE_DETECT_MASK

PXE_STATFLAGS_CABLE_DETECT_NOT_SUPPORTED

PXE_STATFLAGS_CABLE_DETECT_SUPPORTED

32/64-bit UNDI Specification

Version 1.02 12/12/00 425

DB
#pragma pack(1)

typedef struct s_pxe_db_get_init_info {

// Minimum length of locked memory buffer that must be given to

// the Initialize command. Giving UNDI more memory will
// generally give better performance.

// If MemoryRequired is zero, the UNDI does not need and will not

// use system memory to receive and transmit packets.

PXE_UINT32 MemoryRequired;

// Maximum frame data length for Tx/Rx excluding the media
// header.

//

PXE_UINT32 FrameDataLen;

// Supported link speeds are in units of mega bits. Common
// ethernet values are 10, 100 and 1000. Unused LinkSpeeds[]
// entries are zero filled.

PXE_UINT32 LinkSpeeds[4];

// Number of non-volatile storage items.

PXE_UINT32 NvCount;

// Width of non-volatile storage item in bytes. 0, 1, 2 or 4

PXE_UINT16 NvWidth;

// Media header length. This is the typical media header length
// for this UNDI. This information is needed when allocating
// receive and transmit buffers.

PXE_UINT16 MediaHeaderLen;

Extensible Firmware Interface Specification

426 12/12/00 Version 1.02

// Number of bytes in the NIC hardware (MAC) address.

PXE_UINT16 HWaddrLen;

// Maximum number of multicast MAC addresses in the multicast

// MAC address filter list.

PXE_UINT16 MCastFilterCnt;

// Default number and size of transmit and receive buffers that
// will be allocated by the UNDI. If MemoryRequired is non-zero,
// this allocation will come out of the memory buffer given to
// the Initialize command. If MemoryRequired is zero, this
// allocation will come out of memory on the NIC.

PXE_UINT16 TxBufCnt;

PXE_UINT16 TxBufSize;

PXE_UINT16 RxBufCnt;

PXE_UINT16 RxBufSize;

// Hardware interface types defined in the Assigned Numbers RFC

// and used in DHCP and ARP packets.

// See the PXE_IFTYPE typedef and PXE_IFTYPE_xxx macros.

PXE_UINT8 IFtype;

// Supported duplex. See PXE_DUPLEX_xxxxx #defines below.

PXE_UINT8 Duplex;

// Supported loopback options. See PXE_LOOPBACK_xxxxx #defines
// below.

PXE_UINT8 LoopBack;

} PXE_DB_GET_INIT_INFO;

#pragma pack()

32/64-bit UNDI Specification

Version 1.02 12/12/00 427

#define PXE_MAX_TXRX_UNIT_ETHER 1500

#define PXE_HWADDR_LEN_ETHER 0x0006

#define PXE_DUPLEX_ENABLE_FULL_SUPPORTED 1

#define PXE_DUPLEX_FORCE_FULL_SUPPORTED 2

#define PXE_LOOPBACK_INTERNAL_SUPPORTED 1

#define PXE_LOOPBACK_EXTERNAL_SUPPORTED 2

G.4.6 Get Config Info

This command is used to retrieve configuration information about the NIC being controlled by the
UNDI.

G.4.6.1 Issuing the Command
To issue a Get Config Info command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Get Config Info command

OpCode PXE_OPCODE_GET_CONFIG_INFO

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_CONFIG_INFO)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of a PXE_DB_CONFIG_INFO structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

G.4.6.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

Extensible Firmware Interface Specification

428 12/12/00 Version 1.02

G.4.6.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB has been written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

DB
#pragma pack(1)

typedef struct s_pxe_pci_config_info {

// This is the flag field for the PXE_DB_GET_CONFIG_INFO union.

// For PCI bus devices, this field is set to PXE_BUSTYPE_PCI.

PXE_UINT32 BusType;

// This identifies the PCI network device that this UNDI
// interface is bound to.

PXE_UINT16 Bus;

PXE_UINT8 Device;

PXE_UINT8 Function;

// This is a copy of the PCI configuration space for this

// network device.

union {

PXE_UINT8 Byte[256];

PXE_UINT16 Word[128];

PXE_UINT32 Dword[64];

} Config;

} PXE_PCI_CONFIG_INFO;

#pragma pack()

#pragma pack(1)

32/64-bit UNDI Specification

Version 1.02 12/12/00 429

typedef struct s_pxe_pcc_config_info {

// This is the flag field for the PXE_DB_GET_CONFIG_INFO union.

// For PCC bus devices, this field is set to PXE_BUSTYPE_PCC.

PXE_UINT32 BusType;

// This identifies the PCC network device that this UNDI
// interface is bound to.

PXE_UINT16 Bus;

PXE_UINT8 Device;

PXE_UINT8 Function;

// This is a copy of the PCC configuration space for this

// network device.

union {

PXE_UINT8 Byte[256];

PXE_UINT16 Word[128];

PXE_UINT32 Dword[64];

} Config;

} PXE_PCC_CONFIG_INFO;

#pragma pack()

#pragma pack(1)

typedef union u_pxe_db_get_config_info {

PXE_PCI_CONFIG_INFO pci;

PXE_PCC_CONFIG_INFO pcc;

} PXE_DB_GET_CONFIG_INFO;

#pragma pack()

Extensible Firmware Interface Specification

430 12/12/00 Version 1.02

G.4.7 Initialize

This command resets the network adapter and initializes UNDI using the parameters supplied in the
CPB. The Initialize command must be issued before the network adapter can be setup to transmit
and receive packets. This command will not enable the receive unit or external interrupts.

Once the memory requirements of the UNDI are obtained by using the Get Init Info command, a
block of kernel (non-swappable) memory may need to be allocated. The address of this kernel
memory must be passed to UNDI using the Initialize command CPB. This memory is used for
transmit and receive buffers and internal processing.

Initializing the network device will take up to four seconds for most network devices and in some
extreme cases (usually poor cables) up to twenty seconds.

G.4.7.1 Issuing the Command
To issue an Initialize command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for an Initialize command

OpCode PXE_OPCODE_INITIALIZE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_INITIALIZE)

DBsize sizeof(PXE_DB_INITIALIZE)

CPBaddr Address of a PXE_CPB_INITIALIZE structure.

Dbaddr Address of a PXE_DB_INITIALIZE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

Ccable detection can be enabled or disabled by setting one of the following OpFlags:

• PXE_OPFLAGS_INITIALIZE_CABLE_DETECT

• PXE_OPFLAGS_INITIALIZE_DO_NOT_DETECT_CABLE

32/64-bit UNDI Specification

Version 1.02 12/12/00 431

Preparing the CPB

If the MemoryRequired field returned in the PXE_DB_GET_INIT_INFO structure is zero, the
Initialize command does not need to be given a memory buffer or even a CPB structure. If the
MemoryRequired field is non-zero, the Initialize command does need a memory buffer.

#pragma pack(1)

typedef struct s_pxe_cpb_initialize {

// Address of first (lowest) byte of the memory buffer. This
// buffer must be in contiguous physical memory and cannot be
// swapped out. The UNDI will be using this for transmit and
// receive buffering.

PXE_UINT64 MemoryAddr;

// MemoryLength must be greater than or equal to MemoryRequired

// returned by the Get Init Info command.

PXE_UINT32 MemoryLength;

// Desired link speed in Mbit/sec. Common ethernet values are
// 10, 100 and 1000. Setting a value of zero will auto-detect
// and/or use the default link speed (operation depends on
// UNDI/NIC functionality).

PXE_UINT32 LinkSpeed;

// Suggested number and size of receive and transmit buffers to
// allocate. If MemoryAddr and MemoryLength are non-zero, this
// allocation comes out of the supplied memory buffer. If
// MemoryAddr and MemoryLength are zero, this allocation comes
// out of memory on the NIC.

// If these fields are set to zero, the UNDI will allocate buffer
// counts and sizes as it sees fit.

PXE_UINT16 TxBufCnt;

PXE_UINT16 TxBufSize;

PXE_UINT16 RxBufCnt;

PXE_UINT16 RxBufSize;

Extensible Firmware Interface Specification

432 12/12/00 Version 1.02

// The following configuration parameters are optional and must
// be zero to use the default values.

PXE_UINT8 Duplex;

PXE_UINT8 LoopBack;

} PXE_CPB_INITIALIZE;

#pragma pack()

#define PXE_DUPLEX_DEFAULT 0x00

#define PXE_FORCE_FULL_DUPLEX 0x01

#define PXE_ENABLE_FULL_DUPLEX 0x02

#define LOOPBACK_NORMAL 0

#define LOOPBACK_INTERNAL 1

#define LOOPBACK_EXTERNAL 2

G.4.7.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device is now
initialized. DB has been written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

32/64-bit UNDI Specification

Version 1.02 12/12/00 433

G.4.7.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device is now
initialized. DB has been written. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

ALREADY_INITIALIZED The UNDI is already initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The non-volatile storage could not be read.

StatFlags

Check the StatFlags to see if there is an active connection to this network device. If the no media
StatFlag is set, the UNDI and network device are still initialized.

• PXE_STATFLAGS_INITIALIZED_NO_MEDIA

Before Using the DB
#pragma pack(1)
typedef struct s_pxe_db_initialize {

// Actual amount of memory used from the supplied memory buffer.
// This may be less that the amount of memory supplied and may
// be zero if the UNDI and network device do not use external
// memory buffers. Memory used by the UNDI and network device is
// allocated from the lowest memory buffer address.

PXE_UINT32 MemoryUsed;

// Actual number and size of receive and transmit buffers that
// were allocated.

PXE_UINT16 TxBufCnt;
PXE_UINT16 TxBufSize;
PXE_UINT16 RxBufCnt;
PXE_UINT16 RxBufSize

} PXE_DB_INITIALIZE;
#pragma pack()

Extensible Firmware Interface Specification

434 12/12/00 Version 1.02

G.4.8 Reset

This command resets the network adapter and re-initializes the UNDI with the same parameters
provided in the Initialize command. The transmit and receive queues are emptied and any pending
interrupts are cleared. Depending on the state of the OpFlags, the receive filters and external
interrupt enables may also be reset.

Resetting the network device may take up to four seconds and in some extreme cases (usually poor
cables) up to twenty seconds.

G.4.8.1 Issuing the Command
To issue a Reset command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Reset command

OpCode PXE_OPCODE_RESET

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

Normally the settings of the receive filters and external interrupt enables are unchanged by the
Reset command. These two OpFlags will alter the operation of the Reset command.

• PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS

• PXE_OPFLAGS_RESET_DISABLE_FILTERS

G.4.8.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device have been
reset. Check StatFlags.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

32/64-bit UNDI Specification

Version 1.02 12/12/00 435

G.4.8.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device have been
reset. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

DEVICE_FAILURE The network device could not be initialized.

NVDATA_FAILURE The non-volatile storage is not valid.

StatFlags

Check the StatFlags to see if there is an active connection to this network device. If the no media
StatFlag is set, the UNDI and network device are still reset.

• PXE_STATFLAGS_RESET_NO_MEDIA

G.4.9 Shutdown

The Shutdown command resets the network adapter and leaves it in a safe state for another driver to
initialize. Any pending transmits or receives are lost. Receive filters and external interrupt enables
are reset (disabled). The memory buffer assigned in the Initialize command can be released or re-
assigned.

Once UNDI has been shutdown, it can then be stopped or initialized again. The Shutdown
command changes the UNDI operational state from initialized to started.

Extensible Firmware Interface Specification

436 12/12/00 Version 1.02

G.4.9.1 Issuing the Command
To issue a Shutdown command, create a CDB and fill it in as shown in the table below:

CDB Field How to initialize the CDB structure for a Shutdown command

OpCode PXE_OPCODE_SHUTDOWN

OpFlags PXE_OPFLAGS_NOT_USED

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBSIZE_NOT_USED

DBaddr PXE_DBSIZE_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

G.4.9.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. UNDI and network device are shutdown.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

G.4.9.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. UNDI and network device are shutdown.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

32/64-bit UNDI Specification

Version 1.02 12/12/00 437

G.4.10 Interrupt Enables

The Interrupt Enables command can be used to read and/or change the current external interrupt
enable settings. Disabling an external interrupt enable prevents an external (hardware) interrupt
from being signaled by the network device, internally the interrupt events can still be polled by
using the Get Status command.

G.4.10.1 Issuing the Command
To issue an Interrupt Enables command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for an Interrupt Enables command

OpCode PXE_OPCODE_INTERRUPT_ENABLES

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize PXE_DBSIZE_NOT_USED

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To read the current external interrupt enables settings set CDB.OpFlags to:

• PXE_OPFLAGS_INTERRUPT_READ

To enable or disable external interrupts set one of these OpFlags:

• PXE_OPFLAGS_INTERRUPT_DISABLE

• PXE_OPFLAGS_INTERRUPT_ENABLE

When enabling or disabling interrupt settings, the following additional OpFlag bits are used to
specify which types of external interrupts are to be enabled or disabled:

• PXE_OPFLAGS_INTERRUPT_RECEIVE

• PXE_OPFLAGS_INTERRUPT_TRANSMIT

• PXE_OPFLAGS_INTERRUPT_COMMAND

• PXE_OPFLAGS_INTERRUPT_SOFTWARE

Setting PXE_OPFLAGS_INTERRUPT_SOFTWARE does not enable an external interrupt type, it
generates an external interrupt.

Extensible Firmware Interface Specification

438 12/12/00 Version 1.02

G.4.10.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

G.4.10.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Check StatFlags.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

StatFlags

If the command was successful, the CDB.StatFlags field reports which external interrupt
enable types are currently set. Possible CDB.StatFlags bit settings are:

• PXE_STATFLAGS_INTERRUPT_RECEIVE

• PXE_STATFLAGS_INTERRUPT_TRANSMIT

• PXE_STATFLAGS_INTERRUPT_COMMAND

The bits set in CDB.StatFlags may be different than those that were requested in
CDB.OpFlags. For example: If transmit and receive share an external interrupt line, setting
either the transmit or receive interrupt will always enable both transmit and receive interrupts. In
this case both transmit and receive interrupts will be reported in CDB.StatFlags. Always
expect to get more than you ask for!

32/64-bit UNDI Specification

Version 1.02 12/12/00 439

G.4.11 Receive Filters

This command is used to read and change receive filters and, if supported, read and change the
multicast MAC address filter list.

G.4.11.1 Issuing the Command
To issue a Receive Filters command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Receive Filters command

OpCode PXE_OPCODE_RECEIVE_FILTERS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE_FILTERS)

DBsize sizeof(PXE_DB_RECEIVE_FILTERS)

CPBaddr Address of PXE_CPB_RECEIVE_FILTERS structure.

DBaddr Address of PXE_DB_RECEIVE_FILTERS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To read the current receive filter settings set the CDB.OpFlags field to:

• PXE_OPFLAGS_RECEIVE_FILTER_READ

To change the current receive filter settings set one of these OpFlag bits:

• PXE_OPFLAGS_RECEIVE_FILTER_ENABLE

• PXE_OPFLAGS_RECEIVE_FILTER_DISABLE

When changing the receive filter settings, at least one of the OpFlag bits in this list must be
selected:

• PXE_OPFLAGS_RECEIVE_FILTER_UNICAST

• PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST

• PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

• PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS

• PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST

To clear the contents of the multicast MAC address filter list, set this OpFlag:

• PXE_OPFLAGS_RECEIVE_FILTER_RESET_MCAST_LIST

Extensible Firmware Interface Specification

440 12/12/00 Version 1.02

Preparing the CPB

The receive filter CPB is used to change the contents multicast MAC address filter list. To leave
the multicast MAC address filter list unchanged, set the CDB.CPBsize field to
PXE_CPBSIZE_NOT_USED and CDB.CPBaddr to PXE_CPBADDR_NOT_USED.

To change the multicast MAC address filter list, set CDB.CPBsize to the size, in bytes, of the
multicast MAC address filter list and set CDB.CPBaddr to the address of the first entry in the
mutlicast MAC address filter list.

typedef struct s_pxe_cpb_receive_filters {

// List of multicast MAC addresses. This list, if present, will

// replace the existing multicast MAC address filter list.

PXE_MAC_ADDR MCastList[n];

} PXE_CPB_RECEIVE_FILTERS;

G.4.11.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Check StatFlags. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

32/64-bit UNDI Specification

Version 1.02 12/12/00 441

G.4.11.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Check StatFlags. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

StatFlags

The receive filter settings in CDB.StatFlags are:

• PXE_STATFLAGS_RECEIVE_FILTER_UNICAST

• PXE_STATFLAGS_RECEIVE_FILTER_BROADCAST

• PXE_STATFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST

• PXE_STATFLAGS_RECEIVE_FILTER_PROMISCUOUS

• PXE_STATFLAGS_RECEIVE_FILTER_ALL_MULTICAST

Unsupported receive filter settings in OpFlags are promoted to the next more liberal receive filter
setting. For example: If broadcast or filtered multicast are requested and are not supported by the
network device, but promiscuous is; the promiscuous status flag will be set.

DB

The DB is used to read the current multicast MAC address filter list. The CDB.DBsize and
CDB.DBaddr fields can be set to PXE_DBSIZE_NOT_USED and PXE_DBADDR_NOT_USED if
the multicast MAC address filter list does not need to be read. When reading the multicast MAC
address filter list extra entries in the DB will be filled with zero.

typedef struct s_pxe_db_receive_filters {

// Filtered multicast MAC address list.

PXE_MAC_ADDR MCastList[n];

} PXE_DB_RECEIVE_FILTERS;

Extensible Firmware Interface Specification

442 12/12/00 Version 1.02

G.4.12 Station Address

This command is used to get current station and broadcast MAC addresses and, if supported, to
change the current station MAC address.

G.4.12.1 Issuing the Command
To issue a Station Address command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Station Address command

OpCode PXE_OPCODE_STATION_ADDRESS

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_STATION_ADDRESS)

DBsize sizeof(PXE_DB_STATION_ADDRESS)

CPBaddr Address of PXE_CPB_STATION_ADDRESS structure.

DBaddr Address of PXE_DB_STATION_ADDRESS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To read current station and broadcast MAC addresses set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_READ

To change the current station to the address given in the CPB set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_WRITE

To reset the current station address back to the power on default, set the OpFlags field to:

• PXE_OPFLAGS_STATION_ADDRESS_RESET

Preparing the CPB

To change the current station MAC address the CDB.CPBsize and CDB.CPBaddr fields must
be set.

typedef struct s_pxe_cpb_station_address {

// If supplied and supported, the current station MAC address

// will be changed.

PXE_MAC_ADDR StationAddr;

} PXE_CPB_STATION_ADDRESS;

32/64-bit UNDI Specification

Version 1.02 12/12/00 443

G.4.12.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

G.4.12.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED The requested operation is not supported.

Before Using the DB

The DB is used to read the current station, broadcast and permanent station MAC addresses. The
CDB.DBsize and CDB.DBaddr fields can be set to PXE_DBSIZE_NOT_USED and
PXE_DBADDR_NOT_USED if these addresses do not need to be read.

typedef struct s_pxe_db_station_address {

// Current station MAC address.
PXE_MAC_ADDR StationAddr;

// Station broadcast MAC address.
PXE_MAC_ADDR BroadcastAddr;

// Permanent station MAC address.
PXE_MAC_ADDR PermanentAddr;

} PXE_DB_STATION_ADDRESS;

Extensible Firmware Interface Specification

444 12/12/00 Version 1.02

G.4.13 Statistics

This command is used to read and clear the NIC traffic statistics. Before using this command check
to see if statistics is supported in the !PXE.Implementation flags.

G.4.13.1 Issuing the Command
To issue a Statistics command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Statistics command

OpCode PXE_OPCODE_STATISTICS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize sizeof(PXE_DB_STATISTICS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_STATISTICS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To read the current statistics counters set the OpFlags field to:

• PXE_OPFLAGS_STATISTICS_READ

To reset the current statistics counters set the OpFlags field to:

• PXE_OPFLAGS_STATISTICS_RESET

32/64-bit UNDI Specification

Version 1.02 12/12/00 445

G.4.13.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

G.4.13.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED This command is not supported.

DB

Unsupported statistics counters will be zero filled by UNDI.

typedef struct s_pxe_db_statistics {

// Bit field identifying what statistic data is collected by the

// UNDI/NIC.

// If bit 0x00 is set, Data[0x00] is collected.

// If bit 0x01 is set, Data[0x01] is collected.

// If bit 0x20 is set, Data[0x20] is collected.

// If bit 0x21 is set, Data[0x21] is collected.

// Etc.

PXE_UINT64 Supported;

// Statistic data.

Extensible Firmware Interface Specification

446 12/12/00 Version 1.02

PXE_UINT64 Data[64];

} PXE_DB_STATISTICS;

// Total number of frames received. Includes frames with errors
// and dropped frames.

#define PXE_STATISTICS_RX_TOTAL_FRAMES 0x00

// Number of valid frames received and copied into receive
// buffers.

#define PXE_STATISTICS_RX_GOOD_FRAMES 0x01

// Number of frames below the minimum length for the media.
// This would be <64 for ethernet.

#define PXE_STATISTICS_RX_UNDERSIZE_FRAMES 0x02

// Number of frames longer than the maxminum length for the
// media. This would be >1500 for ethernet.

#define PXE_STATISTICS_RX_OVERSIZE_FRAMES 0x03

// Valid frames that were dropped because receive buffers were
// full.

#define PXE_STATISTICS_RX_DROPPED_FRAMES 0x04

// Number of valid unicast frames received and not dropped.

#define PXE_STATISTICS_RX_UNICAST_FRAMES 0x05

// Number of valid broadcast frames received and not dropped.

#define PXE_STATISTICS_RX_BROADCAST_FRAMES 0x06

// Number of valid mutlicast frames received and not dropped.

#define PXE_STATISTICS_RX_MULTICAST_FRAMES 0x07

// Number of frames w/ CRC or alignment errors.

#define PXE_STATISTICS_RX_CRC_ERROR_FRAMES 0x08

// Total number of bytes received. Includes frames with errors

// and dropped frames.

#define PXE_STATISTICS_RX_TOTAL_BYTES 0x09

32/64-bit UNDI Specification

Version 1.02 12/12/00 447

// Transmit statistics.

#define PXE_STATISTICS_TX_TOTAL_FRAMES 0x0A

#define PXE_STATISTICS_TX_GOOD_FRAMES 0x0B

#define PXE_STATISTICS_TX_UNDERSIZE_FRAMES 0x0C

#define PXE_STATISTICS_TX_OVERSIZE_FRAMES 0x0D

#define PXE_STATISTICS_TX_DROPPED_FRAMES 0x0E

#define PXE_STATISTICS_TX_UNICAST_FRAMES 0x0F

#define PXE_STATISTICS_TX_BROADCAST_FRAMES 0x10

#define PXE_STATISTICS_TX_MULTICAST_FRAMES 0x11

#define PXE_STATISTICS_TX_CRC_ERROR_FRAMES 0x12

#define PXE_STATISTICS_TX_TOTAL_BYTES 0x13

// Number of collisions detection on this subnet.

#define PXE_STATISTICS_COLLISIONS 0x14

// Number of frames destined for unsupported protocol.

#define PXE_STATISTICS_UNSUPPORTED_PROTOCOL 0x15

Extensible Firmware Interface Specification

448 12/12/00 Version 1.02

G.4.14 MCast IP To MAC

Translate a multicast IPv4 or IPv6 address to a multicast MAC address.

G.4.14.1 Issuing the Command
To issue a MCast IP To MAC command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a MCast IP To MAC command

OpCode PXE_OPCODE_MCAST_IP_TO_MAC

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_MCAST_IP_TO_MAC)

DBsize sizeof(PXE_DB_MCAST_IP_TO_MAC)

CPBaddr Address of PXE_CPB_MCAST_IP_TO_MAC structure.

Dbaddr Address of PXE_DB_MCAST_IP_TO_MAC structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

To convert a multicast IP address to a multicast MAC address the UNDI needs to know the format
of the IP address. Set one of these OpFlags to identify the format of the IP addresses in the CPB:

• PXE_OPFLAGS_MCAST_IPV4_TO_MAC

• PXE_OPFLAGS_MCAST_IPV6_TO_MAC

Preparing the CPB

Fill in an array of one or more multicast IP addresses. Be sure to set the CDB.CPBsize and
CDB.CPBaddr fields accordingly.

typedef struct s_pxe_cpb_mcast_ip_to_mac {

// Multicast IP address to be converted to multicast MAC address.

PXE_IP_ADDR IP[n];

} PXE_CPB_MCAST_IP_TO_MAC;

32/64-bit UNDI Specification

Version 1.02 12/12/00 449

G.4.14.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

G.4.14.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

Before Using the DB

The DB is where the multicast MAC addresses will be written.

typedef struct s_pxe_db_mcast_ip_to_mac {

// Multicast MAC address.

PXE_MAC_ADDR MAC[n];

} PXE_DB_MCAST_IP_TO_MAC;

G.4.15 NvData

This command is used to read and write (if supported by NIC H/W) non-volatile storage on the
NIC. Non-volatile storage could be EEPROM, FLASH or battery backed RAM.

Extensible Firmware Interface Specification

450 12/12/00 Version 1.02

G.4.15.1 Issuing the Command
To issue a NvData command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a NvData command

OpCode PXE_OPCODE_NVDATA

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_NVDATA)

DBsize sizeof(PXE_DB_NVDATA)

CPBaddr Address of PXE_CPB_NVDATA structure.

Dbaddr Address of PXE_DB_NVDATA structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

Ifnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

Preparing the CPB

There are two types of non-volatile data CPBs, one for sparse updates and one for bulk updates.
Sparse updates allow updating of single non-volatile storage items. Bulk updates always update all
non-volatile storage items. Check the !PXE.Implementation flags to see which type of non-
volatile update is supported by this UNDI and network device.

If you do not need to update the non-volatile storage set the CDB.CPBsize and CDB.CPBaddr
fields to PXE_CPBSIZE_NOT_USED and PXE_CPBADDR_NOT_USED.

32/64-bit UNDI Specification

Version 1.02 12/12/00 451

Sparse NvData CPB

typedef struct s_pxe_cpb_nvdata_sparse {

// NvData item list. Only items in this list will be updated.

struct {

// Non-volatile storage address to be changed.

PXE_UINT32 Addr;

// Data item to write into above storage address.

union {

PXE_UINT8 Byte;

PXE_UINT16 Word;

PXE_UINT32 Dword;

} Data;

} Item[n];

} PXE_CPB_NVDATA_SPARSE;

Extensible Firmware Interface Specification

452 12/12/00 Version 1.02

Bulk NvData CPB

// When using bulk update, the size of the CPB structure must be

// the same size as the non-volatile NIC storage.

typedef union u_pxe_cpb_nvdata_bulk {

// Array of byte-wide data items.

PXE_UINT8 Byte[n];

// Array of word-wide data items.

PXE_UINT16 Word[n];

// Array of dword-wide data items.

PXE_UINT32 Dword[n];

} PXE_CPB_NVDATA_BULK;

G.4.15.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Non-volatile data is updated from
CPB and/or written to DB.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

32/64-bit UNDI Specification

Version 1.02 12/12/00 453

G.4.15.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Non-volatile data is updated from
CPB and/or written to DB.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

UNSUPPORTED Requested operation is unsupported.

DB

Check the width and number of non-volatile storage items. This information is returned by the Get
Init Info command.

typedef struct s_pxe_db_nvdata {

// Arrays of data items from non-volatile storage.

union {

// Array of byte-wide data items.

PXE_UINT8 Byte[n];

// Array of word-wide data items.

PXE_UINT16 Word[n];

// Array of dword-wide data items.

PXE_UINT32 Dword[n];

} Data;

} PXE_DB_NVDATA;

Extensible Firmware Interface Specification

454 12/12/00 Version 1.02

G.4.16 Get Status

This command returns the current interrupt status and/or the transmitted buffer addresses. If the
current interrupt status is returned, pending interrupts will be acknowledged by this command.
Transmitted buffer addresses that are written to the DB are removed from the transmitted buffer
queue.

This command may be used in a polled fashion with external interrupts disabled.

G.4.16.1 Issuing the Command
To issue a Get Status command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Get Status command

OpCode PXE_OPCODE_GET_STATUS

OpFlags Set as needed.

CPBsize PXE_CPBSIZE_NOT_USED

DBsize Sizeof(PXE_DB_GET_STATUS)

CPBaddr PXE_CPBADDR_NOT_USED

DBaddr Address of PXE_DB_GET_STATUS structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

Setting OpFlags

Set one or both of the OpFlags below to return the interrupt status and/or the transmitted buffer
addresses.

• PXE_OPFLAGS_GET_INTERRUPT_STATUS

• PXE_OPFLAGS_GET_TRANSMITTED_BUFFERS

G.4.16.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. StatFlags and/or DB are updated.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

32/64-bit UNDI Specification

Version 1.02 12/12/00 455

G.4.16.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. StatFlags and/or DB are updated.

INVALID_CDB One of the CDB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

StatFlags

If the command completes successfully and the PXE_OPFLAGS_GET_INTERRUPT_STATUS
OpFlag was set in the CDB, the current interrupt status is returned in the CDB.StatFlags field
and any pending interrupts will have been cleared.

• PXE_STATFLAGS_GET_STATUS_RECEIVE

• PXE_STATFLAGS_GET_STATUS_TRANSMIT

• PXE_STATFLAGS_GET_STATUS_COMMAND

• PXE_STATFLAGS_GET_STATUS_SOFTWARE

The StatFlags above may not map directly to external interrupt signals. For example: Some NICs
may combine both the receive and transmit interrupts to one external interrupt line. When a receive
and/or transmit interrupt occurs, use the Get Status to determine which type(s) of interrupt(s)
occurred.

This flag is set if the transmitted buffer queue is empty. This flag will be set if all transmitted
buffer addresses get written t into the DB.

• PXE_STATFLAGS_GET_STATUS_TXBUF_QUEUE_EMPTY

This flag is set if no transmitted buffer addresses were written into the DB.

• PXE_STATFLAGS_GET_STATUS_NO_TXBUFS_WRITTEN

Extensible Firmware Interface Specification

456 12/12/00 Version 1.02

Using the DB

When reading the transmitted buffer addresses there should be room for at least one 64-bit address
in the DB. Once a complete transmitted buffer address is written into the DB, the address is
removed from the transmitted buffer queue. If the transmitted buffer queue is full, attempts to use
the Transmit command will fail.

#pragma pack(1)

typedef struct s_pxe_db_get_status {

// Length of next receive frame (header + data). If this is
// zero, there is no next receive frame available.

PXE_UINT32 RxFrameLen;

// Reserved, set to zero.

PXE_UINT32 reserved;

// Addresses of transmitted buffers that need to be recycled.

PXE_UINT64 TxBuffer[n];

} PXE_DB_GET_STATUS;

#pragma pack()

G.4.17 Fill Header

This command is used to fill the media header(s) in transmit packet(s).

32/64-bit UNDI Specification

Version 1.02 12/12/00 457

G.4.17.1 Issuing the Command
To issue a Fill Header command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Fill Header command

OpCode PXE_OPCODE_FILL_HEADER

OpFlags Set as needed.

CPBsize PXE_CPB_FILL_HEADER

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_FILL_HEADER structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

OpFlags

Select one of the OpFlags below so the UNDI knows what type of CPB is being used.

• PXE_OPFLAGS_FILL_HEADER_WHOLE

• PXE_OPFLAGS_FILL_HEADER_FRAGMENTED

Preparing the CPB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. The CDB.CPBsize field lets the UNDI know how many CPBs are
packed together.

Non-Fragmented Frame

#pragma pack(1)

typedef struct s_pxe_cpb_fill_header {

// Source and destination MAC addresses. These will be copied
// into the media header without doing byte swapping.

PXE_MAC_ADDR SrcAddr;

PXE_MAC_ADDR DestAddr;

// Address of first byte of media header. The first byte of
// packet data follows the last byte of the media header.

PXE_UINT64 MediaHeader;

Extensible Firmware Interface Specification

458 12/12/00 Version 1.02

// Length of packet data in bytes (not including the media
// header).

PXE_UINT32 PacketLen;

// Protocol type. This will be copied into the media header
// without doing byte swapping. Protocol type numbers can be
// obtained from the Assigned Numbers RFC 1700.

PXE_UINT16 Protocol;

// Length of the media header in bytes.

PXE_UINT16 MediaHeaderLen;

} PXE_CPB_FILL_HEADER;

#pragma pack()

#define PXE_PROTOCOL_ETHERNET_IP 0x0800

#define PXE_PROTOCOL_ETHERNET_ARP 0x0806

Fragmented Frame

#pragma pack(1)

typedef struct s_pxe_cpb_fill_header_fragmented {

// Source and destination MAC addresses. These will be copied
// into the media header without doing byte swapping.

PXE_MAC_ADDR SrcAddr;

PXE_MAC_ADDR DestAddr;

// Length of packet data in bytes (not including the media
// header).

PXE_UINT32 PacketLen;

// Protocol type. This will be copied into the media header
// without doing byte swapping. Protocol type numbers can be
// obtained from the Assigned Numbers RFC 1700.

PXE_MEDIA_PROTOCOL Protocol;

// Length of the media header in bytes.

PXE_UINT16 MediaHeaderLen;

32/64-bit UNDI Specification

Version 1.02 12/12/00 459

// Number of packet fragment descriptors.

PXE_UINT16 FragCnt;

// Reserved, must be set to zero.

PXE_UINT16 reserved;

// Array of packet fragment descriptors. The first byte of the
// media header is the first byte of the first fragment.

struct {

// Address of this packet fragment.

PXE_UINT64 FragAddr;

// Length of this packet fragment.

PXE_UINT32 FragLen;

// Reserved, must be set to zero.

PXE_UINT32 reserved;

} FragDesc[n];

} PXE_CPB_FILL_HEADER_FRAGMENTED;

#pragma pack()

G.4.17.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frame is ready to transmit.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

Extensible Firmware Interface Specification

460 12/12/00 Version 1.02

G.4.17.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Frame is ready to transmit.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Try again later.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

G.4.18 Transmit

The Transmit command is used to place a packet into the transmit queue. The data buffers given to
this command are to be considered locked and the application or universal network driver loses the
ownership of those buffers and must not free or relocate them until the ownership returns.

When the packets are transmitted, a transmit complete interrupt is generated (if interrupts are
disabled, the transmit interrupt status is still set and can be checked using the Get Status command).

Some UNDI implementations and network adapters support transmitting multiple packets with one
transmit command. If this feature is supported, multiple transmit CPBs can be linked in one
transmit command.

Though all UNDIs support fragmented frames, the same cannot be said for all network devices or
protocols. If a fragmented frame CPB is given to UNDI and the network device does not support
fragmented frames (see !PXE.Implementation flags), the UNDI will have to copy the
fragments into a local buffer before transmitting.

G.4.18.1 Issuing the Command
To issue a Transmit command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Transmit command

OpCode PXE_OPCODE_TRANSMIT

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_TRANSMIT)

DBsize PXE_DBSIZE_NOT_USED

CPBaddr Address of a PXE_CPB_TRANSMIT structure.

DBaddr PXE_DBADDR_NOT_USED

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

32/64-bit UNDI Specification

Version 1.02 12/12/00 461

OpFlags

Check the !PXE.Implementation flags to see if the network device support fragmented
packets. Select one of the OpFlags below so the UNDI knows what type of CPB is being used.

• PXE_OPFLAGS_TRANSMIT_WHOLE

• PXE_OPFLAGS_TRANSMIT_FRAGMENTED

In addition to selecting whether or not fragmented packets are being given, S/W UNDI needs to
know if it should block until the packets are transmitted. H/W UNDI cannot block, these two
OpFlag settings have no affect when used with H/W UNDI.

• PXE_OPFLAGS_TRANSMIT_BLOCK

• PXE_OPFLAGS_TRANSMIT_DONT_BLOCK

Preparing the CPB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. The CDB.CPBsize field lets the UNDI know how may frames are
to be transmitted.

Non-Fragmented Frame

#pragma pack(1)

typedef struct s_pxe_cpb_transmit {

// Address of first byte of frame buffer. This is also the first
// byte of the media header.

PXE_UINT64 FrameAddr;

// Length of the data portion of the frame buffer in bytes. Do
// not include the length of the media header.

PXE_UINT32 DataLen;

// Length of the media header in bytes.

PXE_UINT16 MediaheaderLen;

// Reserved, must be zero.

PXE_UINT16 reserved;

} PXE_CPB_TRANSMIT;

#pragma pack()

Extensible Firmware Interface Specification

462 12/12/00 Version 1.02

Fragmented Frame

#pragma pack(1)

typedef struct s_pxe_cpb_transmit_fragments {

// Length of packet data in bytes (not including the media
// header).

PXE_UINT32 FrameLen;

// Length of the media header in bytes.

PXE_UINT16 MediaheaderLen;

// Number of packet fragment descriptors.

PXE_UINT16 FragCnt;

// Array of frame fragment descriptors. The first byte of the
// first fragment is also the first byte of the media header.

struct {

// Address of this frame fragment.

PXE_UINT64 FragAddr;

// Length of this frame fragment.

PXE_UINT32 FragLen;

// Reserved, must be set to zero.

PXE_UINT32 reserved;

} FragDesc[n];

} PXE_CPB_TRANSMIT_FRAGMENTS;

#pragma pack()

32/64-bit UNDI Specification

Version 1.02 12/12/00 463

G.4.18.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Use the Get Status command to see
when frame buffers can be re-used.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

G.4.18.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Use the Get Status command to see
when frame buffers can be re-used.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try again
later.

BUFFER_FULL Transmit buffer is full. Call Get Status command to empty buffer.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

Extensible Firmware Interface Specification

464 12/12/00 Version 1.02

G.4.19 Receive

When the network adapter has received a frame, this command is used to copy the frame into
driver/application storage. Once a frame has been copied, it is removed from the receive queue.

G.4.19.1 Issuing the Command
To issue a Receive command, create a CDB and fill it in as shows in the table below:

CDB Field How to initialize the CDB structure for a Receive command

OpCode PXE_OPCODE_RECEIVE

OpFlags Set as needed.

CPBsize sizeof(PXE_CPB_RECEIVE)

DBsize sizeof(PXE_DB_RECEIVE)

CPBaddr Address of a PXE_CPB_RECEIVE structure.

DBaddr Address of a PXE_DB_RECEIVE structure.

StatCode PXE_STATCODE_INITIALIZE

StatFlags PXE_STATFLAGS_INITIALIZE

IFnum A valid interface number from zero to !PXE.IFcnt.

Control Set as needed.

Preparing the CPB

If multiple frames per command are supported (see !PXE.Implementation flags), multiple
CPBs can be packed together. For each complete received frame, a receive buffer large enough to
contain the entire unfragmented frame needs to be described in the CPB.
#pragma pack(1)
typedef struct s_pxe_cpb_receive {

// Address of first byte of receive buffer. This is also the
// first byte of the frame header.

PXE_UINT64 BufferAddr;

// Length of receive buffer. This must be large enough to hold
// the received frame (media header + data). If the length of
// smaller than the received frame, data will be lost.
PXE_UINT32 BufferLen;

// Reserved, must be set to zero.
PXE_UINT32 reserved;

} PXE_CPB_RECEIVE;
#pragma pack()

32/64-bit UNDI Specification

Version 1.02 12/12/00 465

G.4.19.2 Waiting for the Command to Execute
Monitor the upper two bits (14 & 15) in the CDB.StatFlags field. Until these bits change to
report PXE_STATFLAGS_COMMAND_COMPLETE or PXE_STATFLAGS_COMMAND_FAILED,
the command has not been executed by the UNDI.

StatFlags Reason

COMMAND_COMPLETE Command completed successfully. Frames received and DB is written.

COMMAND_FAILED Command failed. StatCode field contains error code.

COMMAND_QUEUED Command has been queued.

INITIALIZE Command has been not executed or queued.

G.4.19.3 Checking Command Execution Results
After command execution completes, either successfully or not, the CDB.StatCode field
contains the result of the command execution.

StatCode Reason

SUCCESS Command completed successfully. Frames received and DB is written.

INVALID_CDB One of the CDB fields was not set correctly.

INVALID_CPB One of the CPB fields was not set correctly.

BUSY UNDI is already processing commands. Try again later.

QUEUE_FULL Command queue is full. Wait for queued commands to complete. Try again
later.

NO_DATA Receive buffers are empty.

NOT_STARTED The UNDI is not started.

NOT_INITIALIZED The UNDI is not initialized.

Using the DB

If multiple frames per command are supported (see!PXE.Implementation flags), multiple
DBs can be packed together.

#pragma pack(1)

typedef struct s_pxe_db_receive {

// Source and destination MAC addresses from media header.

PXE_MAC_ADDR SrcAddr;

PXE_MAC_ADDR DestAddr;

// Length of received frame. May be larger than receive buffer
// size. The receive buffer will not be overwritten. This is
// how to tell if data was lost because the receive buffer was
// too small.

PXE_UINT32 FrameLen;

Extensible Firmware Interface Specification

466 12/12/00 Version 1.02

// Protocol type from media header.

PXE_PROTOCOL Protocol;

// Length of media header in received frame.

PXE_UINT16 MediaHeaderLen;

// Type of receive frame.

PXE_FRAME_TYPE Type;

// Reserved, must be zero.

PXE_UINT8 reserved[7];

} PXE_DB_RECEIVE;

#pragma pack()

G.5 UNDI as an EFI Runtime Driver

This section defines the interface between UNDI and EFI and how UNDI must be initialized as an
EFI runtime driver.

In the EFI environment, UNDI must implement the Network Interface Identifier (NII) protocol and
install an interface pointer of the type NII protocol with EFI. It must also install a device path
protocol with a device path that includes the hardware device path (such as PCI) appended with the
NIC’s MAC address. If the UNDI drives more than one NIC device, it must install one set of NII
and device path protocols for each device it controls.

UNDI must be compiled as a runtime driver so that when the operating system loads, a universal
protocol driver can use the UNDI driver to access the NIC hardware.

For the universal driver to be able to find UNDI, UNDI must install a configuration table (using the
EFI boot service InstallConfigurationTable) for the GUID
NETWORK_INTERFACE_IDENTIFIER_PROTOCOL. The format of the configuration table for
UNDI is defined as follows.

struct undiconfig_table {

UINT32 NumberOfInterfaces; // the number of NIC devices that this UNDI controls

UINT32 reserved;

struct undiconfigtable *nextlink;// a pointer to the next UNDI configuration table

struct {

VOID *NII_InterfacePointer; // pointer to the NII interface structure

VOID *DevicePathPointer; // pointer to the device path for this NIC

32/64-bit UNDI Specification

Version 1.02 12/12/00 467

} NII_entry[n]; // the length of this array is given in the NumberOfInterfaces field

} UNDI_CONFIG_TABLE;

Since there can only be one configuration table associated with any GUID and there can be more
than one UNDI loaded, every instance of UNDI must check for any previous installations of the
configuration tables and if there are any, it must traverse though the list of all UNDI configuration
tables using the nextlink and install itself as the nextlink of the last table in the list.

The universal driver is responsible for converting all the pointers in the
UNDI_CONFIGURATION_TABLE to virtual addresses before accessing them. However, UNDI
must install an event handler for the SET_VIRTUAL_ADDRESS event and convert all its internal
pointers into virtual address when the event occurs for the universal protocol driver to be able to
use UNDI.

Extensible Firmware Interface Specification

468 12/12/00 Version 1.02

Version 1.02 12/12/00 469

H
Index

_HID, 123

_UID, 123

A
ACPI, 8

ACPI name space, 337, 342

ACPI Source Language, 117

Advanced Configuration and Power Interface
specification, 8. See also related information

Alphabetic Function Lists, 347

ANSI 3.64 terminals, and
SIMPLE_TEXT_OUTPUT, 334

Application, EFI, 110

ARP cache entries, 244
ASL. See ACPI Source Language

attributes, architecturally defined, 323

B
bibliography, 6

BIOS Parameter Block, 306

Block I/O Protocol, 173
Functions

FlushBlocks(), 181
Readblocks(), 177
Reset(), 176
WriteBlocks(), 179

GUID, 173
Interface Structure, 173
Revision Number, 173

Block Size, definition of, 360

Boot Device, definition of, 359, 360

boot manager, 319
default media boot, 320
EFI_LOAD_OPTION descriptor, 321

Boot Manager, definition of, 360

boot mechanisms, 325

boot order list, 319

boot process
illustration of, 13
overview, 13

boot sequence, 319

Boot Services, 25
global functions, 25
handle-based functions, 25

Boot Services Table, EFI, 111

Boot Services, definition of, 360

booting
future boot media, 326
via a network device, 326
via Load File Protocol, 326
via Simple File Protocol, 325

booting from
CD-ROM and DVD-ROM, 318
diskettes, 317
hard drives, 317
network devices, 318
removable media, 317

BPB. See BIOS Parameter Block

C
calling conventions

general, 16
IA-32, 18
Itanium-based, 18

Console (), 333

Console I/O Protocol, 151

ConsoleIn, 152

ConsoleIn, definition of, 361

ConsoleOut, 157

conventions, document, 12

D
data types, EFI, 16

Defined GUID Partition Entry
Attributes, 313
Partition Type GUIDs, 313

design overview, 9

Device Handle, definition of, 362

Extensible Firmware Interface Specification

470 12/12/00 Version 1.02

Device I/O Protocol, 137
Functions

AllocateBuffer (), 147, 150
Flush(), 149
Io(), 141
Map(), 144
Mem(), 141
Pci(), 141
PciDevicePath (), 143
Unmap(), 146

GUID, 138
Interface Structure, 138

Device I/O, overview, 137

Device Path
for IDE disk, 339
for legacy floppy, 338
for Secondary Root PCI Bus with PCI to

PCI Bridge, 341
Device Path Generation, Rules, 133

Hardware vs. Messaging Device Paths,
135

Housekeeping, 133
Media Device Path, 136
Other, 136
with ACPI _ADR, 135
with ACPI _HID and _UID, 134

Device Path Protocol, 117
GUID, 118
Interface Structure, 118

Device Path, ACPI, 123

Device Path, BIOS Boot Specification, 136

Device Path, hardware
memory-mapped, 122
PCCARD, 121
PCI, 121
vendor, 122

Device Path, media, 129
Boot Specification, 133
CD-ROM Media, 131
File Path Media, 132
hard drive, 129
Media Protocol, 132
Vendor-Defined Media, 131

Device Path, messaging, 123
1394, 125
ATAPI, 124

FibreChannel, 124
I2O, 126
InfiniBand, 128
IPv4, 127
IPv6, 127
MAC Address, 126
SCSI, 124
UART, 128
USB, 125
USB class, 126
Vendor-Defined, 129

Device Path, nodes
ACPI Device Path, 119
BIOS Boot Specification Device Path,

119
End Entire Device Path, 120
End of Hardware Device Path, 119
End This Instance of a Device Path, 120
generic, 119
Hardware Device Path, 119
Media Device Path, 119
Messaging Device Path, 119

Device Path,overview, 117

DHCP packet, 242

Disk I/O Protocol, 183
Functions

ReadDisk(), 185
WriteDisk(), 186

GUID, 183
Interface Structure, 183
Revision Number, 183

document
attributes, 3
audience, 5
contents, 2
goals, 3
introduction, 1
organization, 2
purpose, 1
scope, 1

Driver, EFI, 110

E
EFI Application, 110, 305

EFI Application, definition of, 363

EFI Boot Manager, 306

EFI Boot Services Table, 111

Index

Version 1.02 12/12/00 471

EFI Directory Structure, 306

EFI Driver, 110, 305

EFI Driver, definition of, 363

EFI File, definition of, 363

EFI Image, 105, 109, 305

EFI Image handoff state
IA-32, 115
Itanium-based, 116
overview, 111

EFI Image Header, 109
PE32+ image format, 109

EFI Image, definition of, 365

EFI OS Loader, 110, 305

EFI OS loader, definition of, 363

EFI Partition Header, 309

EFI partitioning scheme, 309

EFI Runtime Services Table, 111

EFI System Table, 111

El Torito, 305, 308, 314

error codes, 345, 346

Event Services, 26
function list, 26
functions

CheckEvent(), 36
CloseEvent(), 33
CreateEvent(), 29
SignalEvent (), 34
WaitForEvent(), 35

overview, 26

F
FAT file system, 305

FAT variants, 306

File Handle Protocol, 190
Functions

Close(), 195
Delete(), 196
EFI_FILE_SYSTEM_INFO, 206,

207
EFI_GENERIC_FILE_INFO, 204
Flush(), 203
GetInfo(), 201
GetPosition(), 200
Open(), 192
Read(), 197
SetInfo(), 202

SetPosition(), 199
Write(), 198

Interface Structure, 190
Revision Number, 190

file names, 306

file system format, 305, 306

File System Protocol, 187

firmware menu, 13

Functions
in alphabetic order, 347
in alphabetic order within service or

protocol, 354, 355, 356, 357, 358

G
globally unique identifier, definition of, 364

Globally Unique Identifiers, format, 331

glossary, 360
GPT. See GUID Partition Table

GUID Partition Entry, 312

GUID Partition Table, 308, 309

GUID Partition Table Header, 309, 311
backup, 309
primary, 309

GUID, definition of, 364

GUID, format, 331

H
Handle, definition of, 365

Headless system, 117

I
IA-32, EFI Image handoff state, 115

IA-64
firmware specifications. See also related

information
Itanium architecture

EFI Image handoff state, 116
platforms, 9

ICMP error packet, 242
Image. See EFI Image

Image Services
function list, 68
functions

EFI_IMAGE_ENTRY_POINT, 73
Exit(), 74
ExitBootServices(), 76
LoadImage(), 69

Extensible Firmware Interface Specification

472 12/12/00 Version 1.02

Image Services (cont.)
StartImage(), 71
UnloadImage(), 72

overview, 67
images, loading, 13

implementation requirements
general, 21
optional elements, 22
required elements, 21, 23

information, resources, 6

Intel Architecture Platform Architecture,
definition of, 366

interfaces
general categories, 15
purpose, 14

ISO-9660, 314

Itanium architecture
firmware specifications, 9
requirements, related to this specification,

9

L
LBA. See Logical Block Address

legacy Master Boot Record, 314
and GPT Partitions, 316
Partition Record, 315, 316

legacy MBR, 305, 308, 316

legacy systems, support of, 11
LFN. See long file names

little endian, 12

Load File Protocol, 209, 246
Functions

LoadFile(), 210
GUID, 209
Interface Structure, 209

Loaded Image Protocol, 105
functions

Unload(), 108
GUID, 105
Interface Stucture, 106
Revision Number, 105

logical block address, 308

long file names, 306

M
Master Boot Record, 129, 305
MBR, 314. See Master Boot Record. See

Master Boot Record

media formats, 317

Memory Allocation Services
function list, 42
functions

AllocatePages(), 45
AllocatePool(), 53
FreePages(), 48
FreePool(), 54
GetMemoryMap(), 49

overview, 42

memory map, 42

Memory Map, definition of, 367

memory type, usage
after ExitBootServices(), 42
before ExitBootServices(), 42

migration requirements, 11

migration, from legacy systems, 11

Miscellaneous Services
function list, 95
functions

GetNextHighMonotonicCount(), 102
GetNextMonotonicCount(), 101
InstallConfigurationTable(), 103
ResetSystem(), 96
SetWatchdogTimer(), 98
Stall(), 100

overview, 95

N
Name space, 117

EFI Device Path as a, 343

NVRAM variables, 319

O
operating system loader, definition of, 363

OS loader, definition of, 363

OS Loader, EFI, 110

overview of design, 9

P
partition discovery, 308

Partition Header, EFI, 309

partitioning scheme, EFI, 309

Index

Version 1.02 12/12/00 473

PCANSI terminals, and
SIMPLE_TEXT_OUTPUT, 334

PCI Expansion ROM, 327
driver for EFI, 329
image types, 329

PCI Expansion ROM Header
EFI, 328
standard, 327

PE32+ image format, 109

plug and play option ROMs
and boot services, 14

PMBR. See Protective MBR

prerequisite specifications, 8

Protective MBR, 316

Protocol
Block I/O, 173
Console I/O, 151
Device I/O, 137
Device Path, 117
Disk I/O, 183
File Handle, 190
File System, 187
Load File, 209, 246
Loaded Image, 105
PXE Base Code, 235
Serial I/O, 213
Simple File System, 187
Simple Input, 152, 154
Simple Network, 277
Simple Network, 235, 246
Simple Text Output, 157
Unicode Collation, 225

Protocol Handler Services
function list, 55
functions, 55

HandleProtocol(), 64
InstallProtocolInterface(), 57
LocateDevicePath (), 65
LocateHandle(), 62
RegisterProtocolNotify(), 61
ReinstallProtocolInterface(), 60
UninstallProtocolInterface(), 59

overview, 55
Protocol Handler, definition of, 368

Protocol Interface, definition of, 369

protocols, 19
code illustrating, 20
construction of, 19
list of, 20

PXE Base Code Protocol, 235
Functions

Arp(), 267
CALLBACK, 273
Dhcp(), 251
Discover(), 253
Mtftp(), 257
SetIpFilter(), 266
SetPackets(), 271
SetParameters(), 268
SetStationIp(), 270
Start(), 247
Stop(), 250
UdpRead(), 263
UdpWrite(), 261

GUID, 235
Interface Structure, 235
Revision Number, 235

R
references, 6

related information, 6

runtime services, 15

Runtime Services, 25

Runtime Services Table, EFI, 111

Runtime Services, definition of, 369

S
Serial I/O Protocol, 213

Functions
GetControl(), 222
Read(), 224
Reset(), 217
SetAttributes(), 218
SetControl(), 220
Write(), 223

GUID, 213
Interface Structure, 213
Revision Number, 213

services, 14

Extensible Firmware Interface Specification

474 12/12/00 Version 1.02

Simple File System Protocol, 187
functions

OpenVolume(), 189
GUID, 187
Interface Structure, 187
Revision Number, 187

Simple Input Protocol, 152, 154
Functions

ReadDisk(), 155
ReadKeyStroke(), 156

GUID, 154
Interface Structure, 154
Scan Codes for, 152

Simple Network Protocol, 235, 246, 277
Functions

GetStatus(), 296
Initialize(), 284
MCastIPtoMAC(), 293
NVData(), 294
Receive(), 300
ReceiveFilters(), 287
Reset(), 285
Shutdown(), 286
Start(), 282
StationAddress(), 289
Statistics(), 290
Stop(), 283
Transmit(), 298

GUID, 277, 302
Interface Structure, 277, 302
Revision Number, 277, 302

Simple Text Output Protocol, 157
Functions

ClearScreen(), 169
EnableCursor(), 171
OutputString(), 161
Querymode(), 165
Reset(), 160
SetAttribute(), 167
SetCursorPosition(), 170
Setmode(), 166
TestString(), 164

GUID, 157
Interface Structure, 157

SIMPLE_TEXT_OUTPUT protocol,
implementation, 333

specifications, other, 8

specifications, prerequisite, 8

StandardError, 157

StandardError, definition of, 370

status codes, 345

String, definition of, 370

success codes, 345

System Partition, 305, 306

System Table, EFI, 111

T
task priority levels

general, 27
restrictions, 28
usage, 27

Task Priority Services, 26
function list, 26
functions

RaiseTPL(), 39
RestoreTPL(), 41

overview, 26

terminology, definitions, 360

TFTP error packet, 242

Time Services
function list, 84
functions

GetTime(), 85
GetWakeupTime(), 89
SetTime(), 88
SetWakeupTime(), 90

overview, 84
time, format, 331

Timer Services, 26
function list, 26
functions

SetTimer(), 37
overview, 26

TPL. See task priority levels

typographic conventions, 12

Index

Version 1.02 12/12/00 475

U
UNDI Specification, 32/64-Bit, 373

Unicode Collation Protocol, 225
Functions

FatToStr(), 232
MetaiMatch(), 228
StriColl(), 227
StrLwr(), 230
StrToFat(), 233
StrUpr(), 231

GUID, 225
Interface Structure, 225

Unicode control characters, supported, 152

Unicode, definition of, 372

V
Variable Services

function list, 77
functions

GetNextVariableName(), 80
GetVariable(), 78
SetVariable(), 82

overview, 77

variables
global, 323
non-volatile, 323

Virtual Memory Services
function list, 91
functions

ConvertPointer(), 94
SetVirtualAddressMap (), 92

overview, 91

W
warning codes, 346

Watchdog timer, definition of, 372

web sites, 6
WfM. See Wired for Management

specification
Wired for Management specification, 8. See

also related information

Extensible Firmware Interface Specification

476 12/12/00 Version 1.02

	Extensible Firmware Interface Specification
	Disclaimer
	Revision History
	Table of Contents
	1 Introduction
	1.1 Overview
	1.2 Goals
	1.3 Target Audience
	1.4 Related Information
	1.5 Prerequisite Specifications
	1.5.1 ACPI Specification
	1.5.2 WfM Specification
	1.5.3 Additional Considerations for Intel® Itanium™-based Platforms

	1.6 EFI Design Overview
	1.7 Migration Requirements
	1.7.1 Legacy Operating System Support
	1.7.2 Supporting the EFI Specification on a Legacy Platform

	1.8 Conventions Used in This Document
	1.8.1 Data Structure Descriptions
	1.8.2 Typographic Conventions

	1.9 Guidelines for Use of the Term ”Extensible Firmware Interface”

	2 Overview
	2.1 Boot Manager
	2.2 Firmware Core
	2.2.1 EFI Services
	2.2.2 Runtime Services

	2.3 Calling Conventions
	2.3.1 Data Types
	2.3.2 IA-32 Platforms
	2.3.3 Itanium-based Platforms

	2.4 Protocols
	2.5 Requirements
	2.5.1 Required Elements
	2.5.2 Optional Elements
	2.5.3 Appendixes

	3 Services
	3.1 Event, Timer, and Task Priority Services
	3.1.1 CreateEvent()
	3.1.2 CloseEvent()
	3.1.3 SignalEvent()
	3.1.4 WaitForEvent()
	3.1.5 CheckEvent()
	3.1.6 SetTimer()
	3.1.7 RaiseTPL()
	3.1.8 RestoreTPL()

	3.2 Memory Allocation Services
	3.2.1 AllocatePages()
	3.2.2 FreePages()
	3.2.3 GetMemoryMap()
	3.2.4 AllocatePool()
	3.2.5 FreePool()

	3.3 Protocol Handler Services
	3.3.1 InstallProtocolInterface()
	3.3.2 UninstallProtocolInterface()
	3.3.3 ReinstallProtocolInterface()
	3.3.4 RegisterProtocolNotify()
	3.3.5 LocateHandle()
	3.3.6 HandleProtocol()
	3.3.7 LocateDevicePath()

	3.4 Image Services
	3.4.1 LoadImage()
	3.4.2 StartImage()
	3.4.3 UnloadImage()
	3.4.4 EFI_IMAGE_ENTRY_POINT
	3.4.5 Exit()
	3.4.6 ExitBootServices()

	3.5 Variable Services
	3.5.1 GetVariable()
	3.5.2 GetNextVariableName()
	3.5.3 SetVariable()

	3.6 Time Services
	3.6.1 GetTime()
	3.6.2 SetTime()
	3.6.3 GetWakeupTime()
	3.6.4 SetWakeupTime()

	3.7 Virtual Memory Services
	3.7.1 SetVirtualAddressMap()
	3.7.2 ConvertPointer()

	3.8 Miscellaneous Services
	3.8.1 ResetSystem()
	3.8.2 SetWatchdogTimer()
	3.8.3 Stall()
	3.8.4 GetNextMonotonicCount()
	3.8.5 GetNextHighMonotonicCount()
	3.8.6 InstallConfigurationTable()

	4 EFI Image
	4.1 LOADED_IMAGE Protocol
	4.1.1 LOADED_IMAGE.Unload()

	4.2 EFI Image Header
	4.3 EFI Applications
	4.4 EFI OS Loaders
	4.5 EFI Drivers
	4.5.1 EFI Image Handoff State

	5 Device Path Protocol
	5.1 Device Path Overview
	5.2 EFI_DEVICE_PATH Protocol
	5.3 Device Path Nodes
	5.3.1 Generic Device Path Structures
	5.3.2 Hardware Device Path
	5.3.3 ACPI Device Path
	5.3.4 Messaging Device Path
	5.3.5 Media Device Path
	5.3.6 BIOS Boot Specification Device Path

	5.4 Device Path Generation Rules
	5.4.1 Housekeeping Rules
	5.4.2 Rules with ACPI _HID and _UID
	5.4.3 Rules with ACPI _ADR
	5.4.4 Hardware vs. Messaging Device Path Rules
	5.4.5 Media Device Path Rules
	5.4.6 Other Rules

	6 Device I/O Protocol
	6.1 Device I/O Overview
	6.2 DEVICE_IO Protocol
	6.2.1 DEVICE_IO.Mem(), .Io(), and .Pci()
	6.2.2 DEVICE_IO.PciDevicePath()
	6.2.3 DEVICE_IO.Map()
	6.2.4 DEVICE_IO.Unmap()
	6.2.5 DEVICE_IO.AllocateBuffer()
	6.2.6 DEVICE_IO.Flush()
	6.2.7 DEVICE_IO.FreeBuffer()

	7 Console I/O Protocol
	7.1 Console I/O Overview
	7.2 ConsoleIn Definition
	7.3 SIMPLE_INPUT Protocol
	7.3.1 SIMPLE_INPUT.Reset()
	7.3.2 SIMPLE_INPUT.ReadKeyStroke

	7.4 ConsoleOut or StandardError
	7.5 SIMPLE_TEXT_OUTPUT Protocol
	7.5.1 SIMPLE_TEXT_OUTPUT.Reset()
	7.5.2 SIMPLE_TEXT_OUTPUT.OutputString()
	7.5.3 SIMPLE_TEXT_OUTPUT.TestString()
	7.5.4 SIMPLE_TEXT_OUTPUT.QueryMode()
	7.5.5 SIMPLE_TEXT_OUTPUT.SetMode()
	7.5.6 SIMPLE_TEXT_OUTPUT.SetAttribute()
	7.5.7 SIMPLE_TEXT_OUTPUT.ClearScreen()
	7.5.8 SIMPLE_TEXT_OUTPUT.SetCursorPosition()
	7.5.9 SIMPLE_TEXT_OUTPUT.EnableCursor()

	8 Block I/O Protocol
	8.1 BLOCK_IO Protocol
	8.1.1 EFI_BLOCK_IO.Reset()
	8.1.2 EFI_BLOCK_IO.ReadBlocks()
	8.1.3 EFI_BLOCK_IO.WriteBlocks()
	8.1.4 BLOCK_IO.FlushBlocks()

	9 Disk I/O Protocol
	9.1 DISK_IO Protocol
	9.1.1 EFI_DISK_IO.ReadDisk()
	9.1.2 EFI_DISK_IO.WriteDisk()

	10 File System Protocol
	10.1 Simple File System Protocol
	10.1.1 EFI_FILE_IO_INTERFACE.OpenVolume()

	10.2 EFI_FILE Protocol
	10.2.1 EFI_FILE.Open()
	10.2.2 EFI_FILE.Close()
	10.2.3 EFI_FILE.Delete()
	10.2.4 EFI_FILE.Read()
	10.2.5 EFI_FILE.Write()
	10.2.6 EFI_FILE.SetPosition()
	10.2.7 EFI_FILE.GetPosition()
	10.2.8 EFI_FILE.GetInfo()
	10.2.9 EFI_FILE.SetInfo()
	10.2.10 EFI_FILE.Flush()
	10.2.11 EFI_FILE_INFO
	10.2.12 EFI_FILE_SYSTEM_INFO
	10.2.13 EFI_FILE_SYSTEM_VOLUME_LABEL

	11 Load File Protocol
	11.1 LOAD_FILE Protocol
	11.1.1 LOAD_FILE.LoadFile()

	12 Serial I/O Protocol
	12.1 SERIAL_IO Protocol
	12.1.1 SERIAL_IO.Reset()
	12.1.2 SERIAL_IO.SetAttributes()
	12.1.3 SERIAL_IO.SetControl()
	12.1.4 SERIAL_IO.GetControl()
	12.1.5 SERIAL_IO.Write()
	12.1.6 SERIAL_IO.Read()

	13 Unicode Collation Protocol
	13.1 UNICODE_COLLATION Protocol
	13.1.1 UNICODE_COLLATION.StriColl()
	13.1.2 UNICODE_COLLATION.MetaiMatch()
	13.1.3 UNICODE_COLLATION.StrLwr()
	13.1.4 UNICODE_COLLATION.StrUpr()
	13.1.5 UNICODE_COLLATION.FatToStr()
	13.1.6 UNICODE_COLLATION.StrToFat()

	14 PXE Base Code Protocol
	14.1 EFI_PXE_BASE_CODE Protocol
	14.1.1 EFI_PXE_BASE_CODE.Start()
	14.1.2 EFI_PXE_BASE_CODE.Stop()
	14.1.3 EFI_PXE_BASE_CODE.Dhcp()
	14.1.4 EFI_PXE_BASE_CODE.Discover()
	14.1.5 EFI_PXE_BASE_CODE.Mtftp()
	14.1.6 EFI_PXE_BASE_CODE.UdpWrite()
	14.1.7 EFI_PXE_BASE_CODE.UdpRead()
	14.1.8 EFI_PXE_BASE_CODE.SetIpFilter()
	14.1.9 EFI_PXE_BASE_CODE.Arp()
	14.1.10 EFI_PXE_BASE_CODE.SetParameters()
	14.1.11 EFI_PXE_BASE_CODE.SetStationIp()
	14.1.12 EFI_PXE_BASE_CODE.SetPackets()

	14.2 EFI_PXE_BASE_CODE_CALLBACK Protocol
	14.2.1 EFI_PXE_BASE_CODE_CALLBACK.Callback()

	15 Simple Network Protocol
	15.1 EFI_SIMPLE_NETWORK Protocol
	15.1.1 EFI_SIMPLE_NETWORK.Start()
	15.1.2 EFI_SIMPLE_NETWORK.Stop()
	15.1.3 EFI_SIMPLE_NETWORK.Initialize()
	15.1.4 EFI_SIMPLE_NETWORK.Reset()
	15.1.5 EFI_SIMPLE_NETWORK.Shutdown()
	15.1.6 EFI_SIMPLE_NETWORK.ReceiveFilters()
	15.1.7 EFI_SIMPLE_NETWORK.StationAddress()
	15.1.8 EFI_SIMPLE_NETWORK.Statistics()
	15.1.9 EFI_SIMPLE_NETWORK.MCastIPtoMAC()
	15.1.10 EFI_SIMPLE_NETWORK.NvData()
	15.1.11 EFI_SIMPLE_NETWORK.GetStatus()
	15.1.12 EFI_SIMPLE_NETWORK.Transmit()
	15.1.13 EFI_SIMPLE_NETWORK.Receive()

	15.2 NETWORK_INTERFACE_IDENTIFIER Protocol

	16 File System Format
	16.1 System Partition
	16.1.1 File System Format
	16.1.2 File Names
	16.1.3 Directory Structure

	16.2 Partition Discovery
	16.2.1 EFI Partition Header
	16.2.2 ISO-9660 and El Torito
	16.2.3 Legacy Master Boot Record
	16.2.4 Legacy Master Boot Record and GPT Partitions

	16.3 Media Formats
	16.3.1 Removable Media
	16.3.2 Diskette
	16.3.3 Hard Drive
	16.3.4 CD-ROM and DVD-ROM
	16.3.5 Network

	17 Boot Manager
	17.1 Firmware Boot Manager
	17.2 Globally-Defined Variables
	17.3 Boot Option Variables Default Behavior
	17.4 Boot Mechanisms
	17.4.1 Boot via Simple File Protocol
	17.4.2 Boot via LOAD_FILE Protocol

	18 PCI Expansion ROM
	18.1 Standard PCI Expansion ROM Header
	18.2 EFI PCI Expansion ROM Header
	18.3 Multiple Image Format Support
	18.4 EFI PCI Expansion ROM Driver

	A GUID and Time Formats
	B Console
	B.1 SIMPLE_INPUT
	B.2 SIMPLE_TEXT_OUTPUT

	C Device Path Examples
	C.1 Example Computer System
	C.2 Legacy Floppy
	C.3 IDE Disk
	C.4 Secondary Root PCI Bus with PCI to PCI Bridge
	C.5 ACPI Terms
	C.6 EFI Device Path as a Name Space

	D Status Codes
	E Alphabetic Function Lists
	F Glossary
	G 32/64-Bit UNDI Specification
	G.1 Introduction
	G.1.1 Definitions
	G.1.2 Referenced Specifications
	G.1.3 OS Network Stacks

	G.2 Overview
	G.2.1 32/64-bit UNDI Interface
	G.2.2 UNDI Command Format

	G.3 UNDI C Definitions
	G.3.1 Portability Macros
	G.3.2 Miscellaneous Macros
	G.3.3 Portability Types
	G.3.4 Simple Types
	G.3.5 Compound Types

	G.4 UNDI Commands
	G.4.1 Command Linking & Queuing
	G.4.2 Get State
	G.4.3 Start
	G.4.4 Stop
	G.4.5 Get Init Info
	G.4.6 Get Config Info
	G.4.7 Initialize
	G.4.8 Reset
	G.4.9 Shutdown
	G.4.10 Interrupt Enables
	G.4.11 Receive Filters
	G.4.12 Station Address
	G.4.13 Statistics
	G.4.14 MCast IP To MAC
	G.4.15 NvData
	G.4.16 Get Status
	G.4.17 Fill Header
	G.4.18 Transmit
	G.4.19 Receive

	G.5 UNDI as an EFI Runtime Driver

	H Index

