
8X930Ax Universal Serial Bus
Microcontroller User’s Manual

27292101.qxd 9/16/96 4:25 PM Page 1

July 1996

8X930Ax
Universal Serial Bus

Microcontroller
User’s Manual

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, July 1996

CONTENTS
CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENTS ... 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY .. 1-3

1.3 RELATED DOCUMENTS .. 1-5
1.3.1 Data Sheet ..1-6
1.3.2 Application Notes ..1-6

1.4 APPLICATION SUPPORT SERVICES.. 1-7
1.4.1 World Wide Web ...1-7
1.4.2 CompuServe Forums ..1-7
1.4.3 FaxBack Service ...1-8
1.4.4 Bulletin Board System (BBS) ..1-9

CHAPTER 2
INTRODUCTION

2.1 PRODUCT OVERVIEW... 2-3
2.1.1 8X930Ax Features ..2-4

2.2 MCS 251 MICROCONTROLLER CORE... 2-6
2.2.1 CPU ..2-6
2.2.2 Clock and Reset Unit ..2-7
2.2.3 Interrupt Handler ...2-8

2.3 ON-CHIP MEMORY... 2-8

2.4 UNIVERSAL SERIAL BUS MODULE.. 2-10
2.5 ON-CHIP PERIPHERALS.. 2-10

2.5.1 Timer/Counters and Watchdog Timer ...2-10
2.5.2 Programmable Counter Array (PCA) ..2-10
2.5.3 Serial I/O Port ...2-11

2.6 OPERATING CONDITIONS .. 2-11

CHAPTER 3
MEMORY PARTITIONS

3.1 ADDRESS SPACES FOR 8X930Ax.. 3-1
3.1.1 Compatibility with the MCS® 51 Architecture ...3-2

3.2 8X930Ax MEMORY SPACE.. 3-5
3.2.1 On-chip General-purpose Data RAM ..3-8
3.2.2 On-chip Code Memory ..3-8

3.2.2.1 Accessing On-chip Code Memory in Region 00: ..3-9
3.2.3 External Memory ...3-9

3.3 8X930Ax REGISTER FILE .. 3-9

3.4 BYTE, WORD, AND DWORD REGISTERS.. 3-12
3.4.1 Dedicated Registers ..3-12

3.4.1.1 Accumulator and B Register ..3-12
3.4.1.2 Extended Data Pointer, DPX ..3-13
iii

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
3.4.1.3 Extended Stack Pointer, SPX ..3-14
3.5 SPECIAL FUNCTION REGISTERS (SFRS) ... 3-15

CHAPTER 4
DEVICE CONFIGURATION

4.1 CONFIGURATION OVERVIEW .. 4-1
4.2 DEVICE CONFIGURATION .. 4-1

4.3 THE CONFIGURATION BITS.. 4-4
4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE... 4-7

4.4.1 Page Mode and Nonpage Mode (PAGE#) ..4-7
4.4.2 Configuration Bits RD1:0 ..4-8

4.4.2.1 RD1:0 = 00 (18 External Address Bits) ..4-10
4.4.2.2 RD1:0 = 01 (17 External Address Bits) ..4-10
4.4.2.3 RD1:0 = 10 (16 External Address Bits) ..4-10
4.4.2.4 RD1:0 = 11 (Compatible with MCS 51 Microcontrollers)4-11

4.4.3 Wait State Configuration Bits ..4-11
4.4.3.1 Configuration Bits WSA1:0#, WSB1:0# ...4-11
4.4.3.2 Configuration Bit XALE# ..4-11

4.5 OPCODE CONFIGURATIONS (SRC)... 4-12
4.5.1 Selecting Binary Mode or Source Mode ..4-12

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#) 4-14
4.7 INTERRUPT MODE (INTR)... 4-14

CHAPTER 5
INSTRUCTIONS AND ADDRESSING

5.1 SOURCE MODE OR BINARY MODE OPCODES .. 5-1
5.2 PROGRAMMING FEATURES OF THE 8X930Ax ARCHITECTURE............................ 5-1

5.2.1 Data Types ..5-2
5.2.1.1 Order of Byte Storage for Words and Double Words ...5-2

5.2.2 Register Notation ..5-2
5.2.3 Address Notation ..5-2
5.2.4 Addressing Modes ..5-4

5.3 DATA INSTRUCTIONS ... 5-4
5.3.1 Data Addressing Modes ..5-4

5.3.1.1 Register Addressing ...5-5
5.3.1.2 Immediate ..5-5
5.3.1.3 Direct ..5-5
5.3.1.4 Indirect ...5-6
5.3.1.5 Displacement ...5-7

5.3.2 Arithmetic Instructions ...5-8
5.3.3 Logical Instructions ...5-9
5.3.4 Data Transfer Instructions ...5-9

5.4 BIT INSTRUCTIONS ... 5-10
5.4.1 Bit Addressing ...5-10
iv

CONTENTS
5.5 CONTROL INSTRUCTIONS ... 5-11
5.5.1 Addressing Modes for Control Instructions ...5-12
5.5.2 Conditional Jumps ..5-13
5.5.3 Unconditional Jumps ...5-14
5.5.4 Calls and Returns ...5-14

5.6 PROGRAM STATUS WORDS .. 5-15

CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW ... 6-1
6.2 8X930Ax INTERRUPT SOURCES.. 6-3

6.2.1 External Interrupts ...6-3
6.2.2 Timer Interrupts ...6-5

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT.. 6-5
6.4 SERIAL PORT INTERRUPT.. 6-6
6.5 USB INTERRUPTS.. 6-6

6.5.1 USB Function Interrupt ...6-6
6.5.2 USB Start of Frame Interrupt ..6-9
6.5.3 USB Global Suspend/Resume Interrupt ...6-10

6.5.3.1 Global Suspend ..6-10
6.5.3.2 Global Resume ..6-10
6.5.3.3 USB Remote Wake-up ...6-10

6.6 INTERRUPT ENABLE ... 6-11
6.7 INTERRUPT PRIORITIES... 6-13
6.8 INTERRUPT PROCESSING ... 6-16

6.8.1 Minimum Fixed Interrupt Time ..6-17
6.8.2 Variable Interrupt Parameters ...6-17

6.8.2.1 Response Time Variables ..6-17
6.8.2.2 Computation of Worst-case Latency With Variables ..6-19
6.8.2.3 Latency Calculations ..6-20
6.8.2.4 Blocking Conditions ..6-21
6.8.2.5 Interrupt Vector Cycle ..6-21

6.8.3 ISRs in Process ..6-22

CHAPTER 7
UNIVERSAL SERIAL BUS

7.1 USB FUNCTION INTERFACE... 7-1
7.1.1 Serial Bus Interface Engine (SIE) ...7-1
7.1.2 Function Interface Unit (FIU) ...7-1
7.1.3 Special Function Registers (SFRs) ...7-2
7.1.4 USB Function FIFO’s ..7-4
7.1.5 The FIU SFR Set ..7-4

7.2 TRANSMIT FIFOS... 7-14
7.2.1 Transmit FIFO Overview ...7-14
v

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
7.2.2 Transmit FIFO Registers ...7-15
7.2.3 Transmit Data Register (TXDAT) ..7-15
7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH) ..7-15
7.2.5 Transmit Data Set Management ...7-17

7.3 RECEIVE FIFOs .. 7-24
7.3.1 Receive FIFO Overview ..7-24
7.3.2 Receive FIFO Registers ..7-25

7.3.2.1 Receive Data Register (RXDAT) ..7-25
7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH) ..7-25

7.3.3 Receive FIFO Data Set Management ...7-26
7.4 SIE DETAILS ... 7-33
7.5 SETUP TOKEN RECEIVE FIFO HANDLING.. 7-33

7.6 ISO DATA MANAGEMENT ... 7-34
7.6.1 Transmit FIFO ISO Data Management ...7-34
7.6.2 Receive FIFO ISO Data Management ..7-35

CHAPTER 8
USB PROGRAMMING MODELS

8.1 OVERVIEW OF PROGRAMMING MODELS .. 8-1
8.1.1 Unenumerated State ...8-2
8.1.2 Idle State ...8-2
8.1.3 Transmit and Receive Routines ..8-2
8.1.4 USB Interrupts ..8-2

8.2 TRANSMIT OPERATIONS.. 8-3
8.2.1 Overview ...8-3
8.2.2 Pre-transmit Operations ..8-5
8.2.3 Post-transmit Operations ..8-6

8.3 RECEIVE OPERATIONS... 8-8
8.3.1 Overview ...8-8
8.3.2 Post-receive Operations ...8-9

8.4 SETUP TOKEN ... 8-12

8.5 START OF FRAME (SOF) TOKEN ... 8-14

CHAPTER 9
INPUT/OUTPUT PORTS

9.1 INPUT/OUTPUT PORT OVERVIEW... 9-1

9.2 I/O CONFIGURATIONS... 9-2
9.3 PORT 1 AND PORT 3 ... 9-2
9.4 PORT 0 AND PORT 2 ... 9-2

9.5 READ-MODIFY-WRITE INSTRUCTIONS... 9-4
9.6 QUASI-BIDIRECTIONAL PORT OPERATION.. 9-5

9.7 PORT LOADING.. 9-6
9.8 EXTERNAL MEMORY ACCESS... 9-6
vi

CONTENTS
CHAPTER 10
TIMER/COUNTERS AND WATCHDOG TIMER

10.1 TIMER/COUNTER OVERVIEW... 10-1
10.2 TIMER/COUNTER OPERATION... 10-1

10.3 TIMER 0... 10-4
10.3.1 Mode 0 (13-bit Timer) ...10-5
10.3.2 Mode 1 (16-bit Timer) ...10-5
10.3.3 Mode 2 (8-bit Timer With Auto-reload) ..10-5
10.3.4 Mode 3 (Two 8-bit Timers) ..10-6

10.4 TIMER 1... 10-6
10.4.1 Mode 0 (13-bit Timer) ...10-7
10.4.2 Mode 1 (16-bit Timer) ...10-7
10.4.3 Mode 2 (8-bit Timer with Auto-reload) ...10-10
10.4.4 Mode 3 (Halt) ..10-10

10.5 TIMER 0/1 APPLICATIONS... 10-10
10.5.1 Auto-load Setup Example ...10-10
10.5.2 Pulse Width Measurements ..10-11

10.6 TIMER 2... 10-11
10.6.1 Capture Mode ...10-12
10.6.2 Auto-reload Mode ...10-13

10.6.2.1 Up Counter Operation ..10-13
10.6.3 Up/Down Counter Operation ...10-14
10.6.4 Baud Rate Generator Mode ..10-15
10.6.5 Clock-out Mode ...10-15

10.7 WATCHDOG TIMER ... 10-17
10.7.1 Description ..10-17
10.7.2 Using the WDT ..10-19
10.7.3 WDT During Idle Mode ...10-19
10.7.4 WDT During PowerDown ..10-19

CHAPTER 11
PROGRAMMABLE COUNTER ARRAY

11.1 PCA DESCRIPTION.. 11-1
11.1.1 Alternate Port Usage ...11-2

11.2 PCA TIMER/COUNTER... 11-2
11.3 PCA COMPARE/CAPTURE MODULES ... 11-5

11.3.1 16-bit Capture Mode ...11-5
11.3.2 Compare Modes ...11-6
11.3.3 16-bit Software Timer Mode ..11-7
11.3.4 High-speed Output Mode ..11-8
11.3.5 PCA Watchdog Timer Mode ...11-9
11.3.6 Pulse Width Modulation Mode ..11-10
vii

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
CHAPTER 12
SERIAL I/O PORT

12.1 OVERVIEW ... 12-1
12.2 MODES OF OPERATION.. 12-2

12.2.1 Synchronous Mode (Mode 0) ..12-2
12.2.1.1 Transmission (Mode 0) ..12-2
12.2.1.2 Reception (Mode 0) ..12-3

12.2.2 Asynchronous Modes (Modes 1, 2, and 3) ...12-7
12.2.2.1 Transmission (Modes 1, 2, 3) ...12-7
12.2.2.2 Reception (Modes 1, 2, 3) ..12-7

12.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)...................................... 12-7

12.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3).................................... 12-8
12.5 AUTOMATIC ADDRESS RECOGNITION... 12-8

12.5.1 Given Address ..12-8
12.5.2 Broadcast Address ..12-9
12.5.3 Reset Addresses ...12-10

12.6 BAUD RATES.. 12-10
12.6.1 Baud Rate for Mode 0 † ...12-10
12.6.2 Baud Rates for Mode 2 ...12-11
12.6.3 Baud Rates for Modes 1 and 3 † ...12-11

12.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3) † ..12-11
12.6.3.2 Selecting Timer 1 as the Baud Rate Generator † ...12-11
12.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3) ..12-12
12.6.3.4 Selecting Timer 2 as the Baud Rate Generator † ...12-12

CHAPTER 13
MINIMUM HARDWARE SETUP

13.1 MINIMUM HARDWARE SETUP.. 13-1
13.2 ELECTRICAL ENVIRONMENT ... 13-1

13.2.1 Power and Ground Pins ..13-2
13.2.2 Unused Pins ..13-2
13.2.3 Noise Considerations ..13-2

13.3 CLOCK SOURCES.. 13-2
13.3.1 On-chip Oscillator (Crystal) ...13-2
13.3.2 On-chip Oscillator (Ceramic Resonator) ...13-3
13.3.3 External Clock ...13-3

13.4 RESET... 13-4
13.4.1 Externally Initiated Resets ..13-5
13.4.2 WDT Initiated Resets ..13-5
13.4.3 USB Initiated Resets ...13-5
13.4.4 Reset Operation ..13-6
13.4.5 Power-on Reset ..13-6
viii

CONTENTS
CHAPTER 14
SPECIAL OPERATING MODES

14.1 GENERAL.. 14-1
14.2 POWER CONTROL REGISTERS... 14-1

14.2.1 Serial I/O Control Bits ...14-1
14.2.2 Power Off Flag ..14-1

14.3 IDLE MODE ... 14-5
14.3.1 Entering Idle Mode ..14-5
14.3.2 Exiting Idle Mode ..14-5

14.4 USB POWER CONTROL .. 14-6
14.4.1 Global Suspend Mode ..14-6

14.4.1.1 Powerdown Mode ..14-6
14.4.1.2 Entering Powerdown Mode ..14-7
14.4.1.3 Exiting Powerdown Mode ...14-7

14.4.2 Global Resume Mode ...14-8
14.4.3 USB Remote Wake-up ..14-8

14.5 LOW CLOCK MODE.. 14-8
14.5.1 Entering Low Clock Mode ...14-8
14.5.2 Exiting Low Clock Mode ..14-9

14.6 ON-CIRCUIT EMULATION (ONCE) MODE .. 14-9
14.6.1 Entering ONCE Mode ...14-9
14.6.2 Exiting ONCE Mode ..14-9

CHAPTER 15
EXTERNAL MEMORY INTERFACE

15.1 OVERVIEW ... 15-1

15.2 EXTERNAL BUS CYCLES .. 15-3
15.2.1 Bus Cycle Definitions ..15-3
15.2.2 Nonpage Mode Bus Cycles ..15-3
15.2.3 Page Mode Bus Cycles ...15-6

15.3 WAIT STATES... 15-8
15.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES.......................... 15-8

15.4.1 Extending RD#/WR#/PSEN# ..15-8
15.4.2 Extending ALE ..15-10

15.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES................................. 15-11
15.5.1 Real-time WAIT# Enable (RTWE) ...15-12
15.5.2 Real-time WAIT CLOCK Enable (RTWCE) ...15-12
15.5.3 Real-time Wait State Bus Cycle Diagrams ..15-12

15.6 CONFIGURATION BYTE BUS CYCLES... 15-15
15.7 PORT 0 AND PORT 2 STATUS .. 15-15

15.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode ..15-16
15.7.2 Port 0 and Port 2 Pin Status in Page Mode ..15-16

15.8 EXTERNAL MEMORY DESIGN EXAMPLES.. 15-17
ix

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
15.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM15-18
15.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM15-20
15.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM ..15-22
15.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM ..15-24
15.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM15-26

15.8.5.1 An Application Requiring Fast Access to the Stack ...15-26
15.8.5.2 An Application Requiring Fast Access to Data ...15-26

15.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM15-29
15.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash ..15-30

CHAPTER 16
VERIFYING NONVOLATILE MEMORY

16.1 GENERAL.. 16-1
16.1.1 Considerations for On-chip Program Code Memory ...16-1

16.2 VERIFY MODES.. 16-3

16.3 GENERAL SETUP... 16-3
16.4 VERIFY ALGORITHM.. 16-4
16.5 LOCK BIT SYSTEM... 16-5

16.5.1 Encryption Array ...16-5

16.6 SIGNATURE BYTES ... 16-6

APPENDIX A
INSTRUCTION SET REFERENCE

A.1 NOTATION FOR INSTRUCTION OPERANDS.. A-2

A.2 OPCODE MAP AND SUPPORTING TABLES ... A-4
A.3 INSTRUCTION SET SUMMARY.. A-11

A.3.1 Execution Times for Instructions Accessing the Port SFRs A-11
A.3.2 Instruction Summaries .. A-14

A.4 INSTRUCTION DESCRIPTIONS ... A-26

APPENDIX B
SIGNAL DESCRIPTIONS

APPENDIX C
REGISTERS

C.1 SFRS BY FUNCTIONAL CATEGORY ... C-2

C.2 SFR DESCRIPTIONS... C-6
x

CONTENTS
APPENDIX D
DATA FLOW MODEL

GLOSSARY

INDEX
xi

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

FIGURES
Figure Page
2-1 8X930Ax in a Universal Serial Bus System..2-1
2-2 Functional Block Diagram of the 8X930Ax...2-2
2-3 8X930Ax USB Module Block Diagram ...2-3
2-4 The CPU...2-6
2-5 Clocking Definitions (PLL off) ...2-9
2-6 Clocking Definitions (PLL on) ...2-9
3-1 Address Spaces for the 8X930Ax ..3-1
3-2 Address Spaces for the MCS® 51 Architecture ...3-3
3-3 Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture.............3-4
3-4 8X930Ax Address Space ...3-6
3-5 Hardware Implementation of the 8X930Ax Address Space ...3-7
3-6 The Register File ..3-10
3-7 Register File Locations 0–7..3-11
3-8 Dedicated Registers in the Register File and their Corresponding SFRs...................3-13
4-1 Configuration Array (On-chip)...4-2
4-2 Configuration Array (External) ..4-3
4-3 User Configuration Byte 0 (UCONFIG0) ..4-5
4-4 User Configuration Byte 1 (UCONFIG1) ..4-6
4-5 Internal/External Address Mapping (RD1:0 = 00 and 01)...4-8
4-6 Internal/External Address Mapping (RD1:0 = 10 and 11)...4-9
4-7 Binary Mode Opcode Map..4-13
4-8 Source Mode Opcode Map ..4-13
5-1 Word and Double-word Storage in Big Endien Form ...5-3
5-2 Program Status Word Register...5-17
5-3 Program Status Word 1 Register..5-18
6-1 Interrupt Control System ..6-2
6-2 USB Function Interrupt Enable Register ..6-7
6-3 USB Function Interrupt Flag Register...6-9
6-4 Interrupt Enable Register 0 ..6-11
6-5 USB Interrupt Enable Register ...6-12
6-6 IPH0: Interrupt Priority High Register 0 ..6-14
6-7 IPL0: Interrupt Priority Low Register 0..6-14
6-8 IPH1: Interrupt Priority High Register 1 ..6-15
6-9 IPL1: Interrupt Priority Low Register 1..6-15
6-10 The Interrupt Process...6-16
6-11 Response Time Example #1 ..6-18
6-12 Response Time Example #2 ..6-19
7-1 EPINDEX: Endpoint Index Register ...7-5
7-2 EPCON: Control Endpoint Register..7-7
7-3 TXSTAT: Transmit FIFO Status Register ...7-9
7-4 RXSTAT: Receive FIFO Status Register..7-11
7-5 SOFH: Start of Frame High Register..7-12
7-6 SOFL: Start of Frame Low Register ...7-13
7-7 FADDR: Function Address Register...7-13
xii

CONTENTS

FIGURES
Figure Page
7-8 Transmit FIFO Outline..7-14
7-9 Transmit Byte Count Registers...7-16
7-10 TXDAT: Transmit FIFO Data Register..7-18
7-11 TXCNTH/TXCNTL Transmit FIFO Byte Count Registers...7-19
7-12 TXCON: Transmit FIFO Control Register...7-21
7-13 TXFLG: Transmit FIFO Flag Register ..7-23
7-14 Receive FIFO ...7-25
7-15 RXDAT: Receive FIFO Data Register ..7-27
7-16 RXCNTH/RXCNTL: Receive FIFO Byte Count Registers ..7-28
7-17 RXCON: Receive FIFO Control Register ...7-30
7-18 RXFLG: Receive FIFO Flag Register ...7-32
8-1 Program Flow ...8-1
8-2 High-level View of Transmit Operations ...8-4
8-3 Pre-transmit ISR (Non-Isochronous) ..8-5
8-4 Post-transmit ISR (Non-isochronous)...8-6
8-5 Post-transmit ISR (Isochronous) ..8-7
8-6 High-level View of Receive Operations ..8-9
8-7 Post-receive ISR (Non-isochronous) ..8-10
8-8 Receive SOF ISR (Isochronous) ..8-11
8-9 Post-receive ISR (Control)..8-13
8-10 Hardware Operations for SOF Token...8-14
9-1 Port 1 and Port 3 Structure...9-3
9-2 Port 0 Structure ..9-3
9-3 Port 2 Structure ..9-4
9-4 Internal Pullup Configurations ..9-6
10-1 Basic Logic of the Timer/Counters ...10-3
10-2 Timer 0/1 in Mode 0 and Mode 1 ...10-5
10-3 Timer 0/1 in Mode 2, Auto-Reload..10-6
10-4 Timer 0 in Mode 3, Two 8-bit Timers..10-7
10-5 TMOD: Timer/Counter Mode Control Register ...10-8
10-6 TCON: Timer/Counter Control Register ...10-9
10-7 Timer 2: Capture Mode ..10-12
10-8 Timer 2: Auto Reload Mode (DCEN = 0)..10-13
10-9 Timer 2: Auto Reload Mode (DCEN = 1)..10-14
10-10 Timer 2: Clock Out Mode..10-16
10-11 T2MOD: Timer 2 Mode Control Register..10-17
10-12 T2CON: Timer 2 Control Register ..10-18
11-1 Programmable Counter Array...11-3
11-2 PCA 16-bit Capture Mode ..11-6
11-3 PCA Software Timer and High-speed Output Modes...11-8
11-4 PCA Watchdog Timer Mode...11-10
11-5 PCA 8-bit PWM Mode ..11-11
11-6 PWM Variable Duty Cycle ..11-12
11-7 CMOD: PCA Timer/Counter Mode Register...11-13
xiii

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

FIGURES
Figure Page
11-8 CCON: PCA Timer/Counter Control Register...11-14
11-9 CCAPMx: PCA Compare/Capture Module Mode Registers.....................................11-15
12-1 Serial Port Block Diagram ..12-3
12-2 SCON: Serial Port Control Register ...12-5
12-3 Mode 0 Timing..12-6
12-4 Data Frame (Modes 1, 2, and 3) ..12-6
12-5 Timer 2 in Baud Rate Generator Mode ..12-14
13-1 Minimum Setup ..13-1
13-2 CHMOS On-chip Oscillator...13-3
13-3 External Clock Connection for the 8X930Ax ..13-4
13-4 External Clock Drive Waveforms..13-4
13-5 Reset Timing Sequence ...13-7
14-1 Power Control (PCON) Register...14-2
14-2 USB Power Control (PCON1) Register ..14-3
14-3 Idle and Powerdown Clock Control ..14-4
14-4 Suspend/Resume Program with/without Remote Wake-up14-10
15-1 Bus Structure in Nonpage Mode and Page Mode..15-1
15-2 External Code Fetch (Nonpage Mode)...15-4
15-3 External Data Read (Nonpage Mode) ..15-5
15-4 External Data Write (Nonpage Mode) ..15-5
15-5 External Code Fetch (Page Mode)...15-7
15-6 External Data Read (Page Mode) ..15-7
15-7 External Data Write (Page Mode)...15-8
15-8 External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State)15-9
15-9 External Data Write (Nonpage Mode, One WR# Wait State)15-9
15-10 External Code Fetch (Nonpage Mode, One ALE Wait State)...................................15-10
15-11 Real-time Wait State Control Register (WCON)...15-11
15-12 External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)................15-13
15-13 External Data Write (Nonpage Mode, Real-time Wait State)15-13
15-14 External Data Read (Page Mode, Real-time Wait State) ...15-14
15-15 External Data Write (Page Mode, Real-time Wait State)..15-14
15-16 Configuration Byte Bus Cycles...15-15
15-17 Bus Diagram for Example 1: 80930AD in Page Mode ...15-18
15-18 Address Space for Example 1..15-19
15-19 Bus Diagram for Example 2: 80930AD in Page Mode ...15-20
15-20 Address Space for Example 2..15-21
15-21 Bus Diagram for Example 3: 83930AE in Nonpage Mode15-22
15-22 Memory Space for Example 3 ..15-23
15-23 Bus Diagram for Example 4: 83930AE in Nonpage Mode15-24
15-24 Address Space for Example 4..15-25
15-25 Bus Diagram for Example 5: 80930AD in Nonpage Mode15-27
15-26 Address Space for Examples 5 and 6 ..15-28
15-27 Bus Diagram for Example 6: 80930AD in Page Mode ...15-29
15-28 Bus Diagram for Example 7: 80930AD in Page Mode ...15-30
xiv

CONTENTS

FIGURES
Figure Page
16-1 Setup for Verifying Nonvolatile Memory ...16-4
16-2 Verify Bus Cycles ...16-4
B-1 8X930Ax 68-pin PLCC Package ... B-1
xv

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TABLES

Table Page
1-1 Intel Application Support Services..1-7
2-1 8X930Ax Features Summary ...2-5
2-2 8X930Ax Operating Frequency ..2-8
3-1 Address Mappings..3-4
3-2 Minimum Times to Fetch Two Bytes of Code...3-9
3-3 Register Bank Selection ...3-11
3-4 Dedicated Registers in the Register File and their Corresponding SFRs...................3-14
3-5 8X930Ax SFR Map...3-16
3-6 Core SFRs..3-17
3-7 USB Function SFRs ...3-18
3-8 I/O Port SFRs ...3-19
3-9 Serial I/O SFRs ..3-19
3-10 Timer/Counter and Watchdog Timer SFRs ..3-19
3-11 Programmable Counter Array (PCA) SFRs..3-20
4-1 External Addresses for Configuration Array ...4-2
4-2 Memory Signal Selections (RD1:0) ..4-7
4-3 RD#, WR#, PSEN# External Wait States...4-11
4-4 Examples of Opcodes in Binary and Source Modes ..4-14
5-1 Data Types ...5-2
5-2 Notation for Byte Registers, Word Registers, and Dword Registers5-3
5-3 Addressing Modes for Data Instructions in the MCS® 51 Architecture........................5-5
5-4 Addressing Modes for Data Instructions in the MCS 251 Architecture.........................5-7
5-5 Bit-addressable Locations ..5-11
5-6 Addressing Two Sample Bits..5-11
5-7 Addressing Modes for Bit Instructions..5-11
5-8 Addressing Modes for Control Instructions...5-13
5-9 Compare-conditional Jump Instructions ...5-14
5-10 The Effects of Instructions on the PSW and PSW1 Flags..5-16
6-1 Interrupt System Input Signals ...6-1
6-2 Interrupt System Special Function Registers ...6-3
6-3 Interrupt Control Matrix...6-4
6-4 USB Interrupt Control Matrix ..6-5
6-5 Level of Priority...6-13
6-6 Interrupt Priority Within Level ...6-13
6-7 Interrupt Latency Variables ..6-20
6-8 Actual vs. Predicted Latency Calculations..6-20
7-1 Signal Descriptions...7-2
7-2 USB Function SFRs ...7-3
7-3 8X930Ax FIFO Configurations ...7-4
7-4 Writing to the Byte Count Register ...7-17
7-5 Truth Table for Transmit FIFO Management..7-18
7-6 Status of the Receive FIFO Data Sets ...7-26
7-7 Truth Table for Receive FIFO Management...7-27
9-1 Input/Output Port Pin Descriptions ...9-1
xvi

CONTENTS

TABLES

Table Page
9-2 Instructions for External Data Moves..9-7
10-1 External Signals ...10-2
10-2 Timer/Counter and Watchdog Timer SFRs ..10-4
10-3 Timer 2 Modes of Operation...10-16
11-1 PCA Special Function Registers (SFRs) ..11-4
11-2 External Signals ...11-4
11-3 PCA Module Modes ...11-14
12-1 Serial Port Signals ..12-2
12-2 Serial Port Special Function Registers ...12-2
12-3 Summary of Baud Rates ..12-11
12-4 Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3..................................12-12
12-5 Selecting the Baud Rate Generator(s) ...12-13
12-6 Timer 2 Generated Baud Rates ...12-14
14-1 Pin Conditions in Various Modes..14-4
15-1 External Memory Interface Signals...15-2
15-2 Bus Cycle Definitions (No Wait States) ..15-4
15-3 Port 0 and Port 2 Pin Status In Normal Operating Mode..15-16
16-1 Signal Descriptions...16-2
16-2 Verify Modes ...16-3
16-3 Lock Bit Function..16-5
16-4 Contents of the Signature Bytes...16-6
16-5 Timing Definitions...16-6
A-1 Notation for Register Operands... A-2
A-2 Notation for Direct Addresses.. A-3
A-3 Notation for Immediate Addressing ... A-3
A-4 Notation for Bit Addressing.. A-3
A-5 Notation for Destinations in Control Instructions ... A-3
A-6 Instructions for MCS® 51 Microcontrollers.. A-4
A-7 Instructions for the 8X930Ax Architecture .. A-5
A-8 Data Instructions ... A-6
A-9 High Nibble, Byte 0 of Data Instructions.. A-6
A-10 Bit Instructions... A-7
A-11 Byte 1 (High Nibble) for Bit Instructions... A-7
A-12 PUSH/POP Instructions .. A-8
A-13 Control Instructions .. A-8
A-14 Displacement/Extended MOVs.. A-9
A-15 INC/DEC.. A-10
A-16 Encoding for INC/DEC .. A-10
A-17 Shifts ... A-10
A-18 State Times to Access the Port SFRs ... A-12
A-19 Summary of Add and Subtract Instructions... A-14
A-20 Summary of Compare Instructions.. A-15
A-21 Summary of Increment and Decrement Instructions ... A-15
A-22 Summary of Multiply, Divide, and Decimal-adjust Instructions.................................. A-16
xvii

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TABLES
Table Page
A-23 Summary of Logical Instructions ... A-17
A-24 Summary of Move Instructions.. A-19
A-25 Summary of Exchange, Push, and Pop Instructions ... A-22
A-26 Summary of Bit Instructions... A-23
A-27 Summary of Control Instructions ... A-24
A-28 Flag Symbols... A-26
B-1 8X930Ax Pin Assignments Arranged by Functional Categories.................................. B-2
B-2 Signal Descriptions.. B-3
B-3 Memory Signal Selections (RD1:0) ... B-6
B-4 8X930Ax Operating Frequency ... B-6
C-1 8X930Ax SFR Map..C-1
C-2 Core SFRs...C-2
C-3 I/O Port SFRs ..C-2
C-4 Serial I/O SFRs ...C-3
C-5 USB Function SFRs ..C-3
C-6 Timer/Counter and Watchdog Timer SFRs ...C-4
C-7 Programmable Counter Array (PCA) SFRs...C-5
D-1 Non-isochronous Transmit Data Flow ...D-1
D-2 Isochronous Transmit Data Flow in Dual-packet Mode...D-5
D-3 Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1)D-8
D-4 Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)................ D-11
D-5 Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) D-18
xviii

1
Guide to this Manual

truc-
CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8X930Ax microcontroller; a new family of products for universal se-
rial bus (USB) applications. This manual is intended for use by both software and hardware de-
signers familiar with the principles of microcontroller architecture.

1.1 MANUAL CONTENTS

This chapter provides an overview of the manual with brief summaries of the chapters and appen-
dices. It also explains the terminology and notational conventions used throughout the manual,
provides references to related documentation, and tells how to contact Intel for additional infor-
mation.

Chapter 2, “Introduction” — provides an overview of device hardware. It covers core functions
(pipelined CPU, clock and reset unit, and interrupts), I/O ports, on-chip memory, and on-chip pe-
ripherals (USB, timer/counters, watchdog timer, programmable counter array, and serial I/O
port).

Chapter 3, “Memory Partitions” — describes the three address spaces of the 8X930Ax: mem-
ory address space, special function register (SFR) space, and the register file. It also provides a
map of the SFR space showing the location of the SFRs and their reset values and explains the
mapping of the address spaces relative to the MCS® 51 and MCS® 251 architectures into the ad-
dress spaces of the 8X930Ax.

Chapter 4, “Device Configuration” — describes microcontroller features that are configured at
device reset, including the external memory interface (the number of external address bits, the
number of wait states, page mode, memory regions for asserting RD#, WR#, and PSEN#), bina-
ry/source opcodes, interrupt mode, and the mapping of a portion of on-chip code memory to data
memory. It describes the configuration bytes and how to program them for the desired configu-
ration. It also describes how internal memory maps into external memory.

Chapter 5, “Instructions and Addressing” — provides an overview of the instruction set. It de-
scribes each instruction type (control, arithmetic, logical, etc.) and lists the instructions in tabular
form. This chapter also discusses the addressing modes, bit instructions, and the program status
words. Appendix A, “Instruction Set Reference” provides a detailed description of each ins
tion.

Chapter 6, “Interrupt System” — describes the 8X930Ax interrupt circuitry which provides a
TRAP instruction interrupt and ten maskable interrupts: two external interrupts, three timer inter-
rupts, a PCA interrupt, a serial port interrupt, and three USB interrupts. This chapter also discuss-
es the interrupt priority scheme, interrupt enable, interrupt processing, and interrupt response
time.

Chapter 7, “Universal Serial Bus” — describes the operation of the 8X930Ax serving as a USB
function. The USB function interface manages communications between the USB host and the
embedded function. The USB module consists of a serial bus interface engine (SIE), a function
interface unit (FIU), a differential transceiver and FIFO data buffers.
1-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ses
ccess-
Chapter 8, “USB Programming Models” — describes the programming models of the
8X930Ax USB function interface. This chapter provides flow charts of suggested firmware rou-
tines for using the transmit and receive FIFOs to perform data transfers between the host PC and
the embedded function and describes how the firmware interacts with the USB module hardware.

Chapter 9, “Input/Output Ports”— describes the four 8-bit I/O ports (ports 0–3) and discus
their configuration for general-purpose I/O. This chapter also discusses external memory a
es (ports 0, 2) and alternative special functions.

Chapter 10, “Timer/Counters and WatchDog Timer” — describes the three on-chip tim-
er/counters and discusses their application. This chapter also provides instructions for using the
hardware watchdog timer (WDT) and describes the operation of the WDT during the idle and
powerdown modes.

Chapter 11, “Programmable Counter Array” — describes the PCA on-chip peripheral and ex-
plains how to configure it for general-purpose applications (timers and counters) and special ap-
plications (programmable WDT and pulse-width modulator).

Chapter 12, “Serial I/O Port” — describes the full-duplex serial I/O port and explains how to
program it to communicate with external peripherals. This chapter also discusses baud rate gen-
eration, framing error detection, multiprocessor communications, and automatic address recog-
nition.

Chapter 13, “Minimum Hardware Setup” — describes the basic requirements for operating
the 8X930Ax in a system. It also discusses on-chip and external clock sources and describes de-
vice resets, including power-on reset.

Chapter 14, “Special Operating Modes” — provides an overview of the idle, powerdown, and
on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This chapter
also describes the power control (PCON) special function register and lists the status of the device
pins during the special modes and reset.

Chapter 15, “External Memory Interface” — describes the external memory signals and bus
cycles and provides examples of external memory design. It provides waveform diagrams for the
bus cycles, bus cycles with wait states, and the configuration byte bus cycles. It also provides bus
cycle diagrams with AC timing symbols and definitions of the symbols.

Chapter 16, “Verifying Nonvolatile Memory” — provides instructions for verifying on-chip
program memory, configuration bytes, signature bytes, and lock bits.

Appendix A, “Instruction Set Reference” — provides reference information for the instruction
set. It describes each instruction; defines the bits in the program status word registers (PSW,
PSW1); shows the relationships between instructions and PSW flags; and lists hexadecimal op-
codes, instruction lengths, and execution times.

Appendix B, “Signal Descriptions” — describes the function(s) of each device pin. Descrip-
tions are listed alphabetically by signal name. This appendix also provides a list of the signals
grouped by functional category.

Appendix C, “Registers” — accumulates, for convenient reference, copies of the register defi-
nition figures that appear throughout the manual.
1-2

GUIDE TO THIS MANUAL

 other

 the
t the
the
de.

ext
ible

d by

ect
ng

n’t
or
ex)
xt

l
tive
ls
ave
 it
e it

ion.
.

Appendix D, “Data Flow Model”— describes the data flow model for the 8X930Ax USB trans-
actions.

Glossary — a glossary of terms has been provided for reference of technical terms.

Index — an index has been included for your convenience.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines
terms with special meanings.

The pound symbol (#) has either of two meanings, depending on
context. When used with a signal name, the symbol means tha
signal is active low. When used with an instruction pneumonic,
symbol prefixes an immediate value in immediate addressing mo

italics Italics identify variables and introduce new terminology. The cont
in which italics are used distinguishes between the two poss
meanings.

Variables in registers and signal names are commonly represente
x and y, where x represents the first variable and y represents the
second variable. For example, in register Px.y, x represents the
variable [1–4] that identifies the specific port, and y represents the
register bit variable [7:0]. Variables must be replaced with the corr
values when configuring or programming registers or identifyi
signals.

XXXX Uppercase X (no italics) represents an unknown value or a “do
care” state or condition. The value may be either binary
hexadecimal, depending on the context. For example, 2XAFH (h
indicates that bits 11:8 are unknown; 10XX in binary conte
indicates that the two LSBs are unknown.

Assert and Deassert The terms assert and deassert refer to the act of making a signa
active (enabled) and inactive (disabled), respectively. The ac
polarity (high/low) is defined by the signal name. Active-low signa
are designated by a pound symbol (#) suffix; active-high signals h
no suffix. To assert RD# is to drive it low; to assert ALE is to drive
high; to deassert RD# is to drive it high; to deassert ALE is to driv
low.

Instructions Instruction mnemonics are shown in upper case to avoid confus
When writing code, either upper case or lower case may be used
1-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ter-

g

are a
ame
revi-
und
nal.
Logic 0 (Low) An input voltage level equal to or less than the maximum value of
VIL or an output voltage level equal to or less than the maximum
value of VOL. See data sheet for values.

Logic 1 (High) An input voltage level equal to or greater than the minimum value of
VIH or an output voltage level equal to or greater than the minimum
value of VOH. See data sheet for values.

Numbers Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the character H. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a decimal
number and 1111 1111 is a binary number. In some cases, the letter B
is added for clarity.

Register Bits Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, and 31:0 for double-word (dword) registers, where bit 0 is
the least-significant bit and 7, 15, or 31 is the most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON.4 is bit 4 of the
power control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power-off flag.

Register Names Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase
character, it represents more than one register. For example,
CCAPMx represents the five registers: CCAPM0 through CCAPM4.

Reserved Bits Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a “1” to a reserved bit. The value read from a reserved bit is inde
minate.

Set and Clear The terms set and clear refer to the value of a bit or the act of givin
it a value. If a bit is set, its value is “1”; setting a bit gives it a “1”
value. If a bit is clear, its value is “0”; clearing a bit gives it a “0”
value.

Signal Names Signal names are shown in upper case. When several signals sh
common name, an individual signal is represented by the signal n
followed by a number. Port pins are represented by the port abb
ation, a period, and the pin number (e.g., P0.0, P0.1). A po
symbol (#) appended to a signal name identifies an active-low sig
1-4

GUIDE TO THIS MANUAL
Units of Measure The following abbreviations are used to represent units of measure:

A amps, amperes

DCV direct current volts

Kbyte kilobytes

KΩ kilo-ohms

mA milliamps, milliamperes

Mbyte megabytes

MHz megahertz

ms milliseconds

mW milliwatts

ns nanoseconds

pF picofarads

W watts

V volts

µA microamps, microamperes

µF microfarads

µs microseconds

µW microwatts

1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that
incorporate the 8X930Ax. To order documents, please call Intel Literature Fulfillment (1-800-
548-4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646

Embedded Processors Order Number 272396

Embedded Applications Order Number 270648

Packaging Order Number 240800

Universal Serial Bus Specification Order Number 272904
1-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
1.3.1 Data Sheet

The data sheet is included in Embedded Microcontrollers and is also available individually.

8X930Ax Universal Serial Bus Microcontroller Order Number 272917

1.3.2 Application Notes

The following MCS 251 application notes apply to the 8X930Ax.

AP-125, Designing Microcontroller Systems Order Number 210313
for Electrically Noisy Environments

AP-155, Oscillators for Microcontrollers Order Number 230659

AP-708, Introducing the MCS® 251 Microcontroller Order Number 272670
—the 8XC251SB

AP-709, Maximizing Performance Using MCS® 251 Microcontroller Order Number 272671
—Programming the 8XC251SB

AP-710, Migrating from the MCS® 51 Microcontroller to the Order Number 272672
MCS 251 Microcontroller (8XC251SB)—Software and Hardware
Considerations

The following MCS 51 microcontroller application notes also apply to the 8X930Ax.

AP70, Using the Intel MCS® 51 Boolean Processing Capabilities Order Number 203830

AP-223, 8051 Based CRT Terminal Controller Order Number 270032

AP-252, Designing With the 80C51BH Order Number 270068

AP-425, Small DC Motor Control Order Number 270622

AP-410, Enhanced Serial Port on the 83C51FA Order Number 270490

AP-415, 83C51FA/FB PCA Cookbook Order Number 270609

AP-476, How to Implement I2C Serial Communication Order Number 272319
Using Intel MCS® 51 Microcontrollers
1-6

GUIDE TO THIS MANUAL

plica-
 days a

estions
se con-

 sales

: ht-
ws.

ation,
t up to
ess and

.).
1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the
World Wide Web, CompuServe, the FaxBack* service, and Intel’s Brand Products and Ap
tions Support bulletin board service (BBS). These systems are available 24 hours a day, 7
week, providing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available to answer your qu
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, plea
tact your local distributor. You can order product literature from Intel literature centers and
offices.

Table 1-1 lists the information you need to access these services.

1.4.1 World Wide Web

We offer a variety of technical and product information through the World Wide Web (URL
tp://www.intel.com/design/mcs96). Also visit Intel’s Web site for financials, history, and ne

1.4.2 CompuServe Forums

Intel maintains several CompuServe forums that provide a means for you to gather inform
share discoveries, and debate issues. Type “go intel” for access. The INTELC forum is se
support designers using various Intel components. For information about CompuServe acc
service fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe

World Wide Web URL: http://www.intel.com/ URL: http://www.intel.com/ URL: http://www.intel.com/

CompuServe go intel go intel go intel

FaxBack* 800-525-3019 503-264-6835

916-356-3105

+44(0)1793-496646

BBS 503-264-7999

916-356-3600

503-264-7999

916-356-3600

+44(0)1793-432955

Help Desk 800-628-8686
916-356-7999

Please contact your local
distributor.

Please contact your local
distributor.

Literature 800-548-4725 708-296-9333

+81(0)120 47 88 32

+44(0)1793-431155 England

+44(0)1793-421777 France

+44(0)1793-421333 Germany
1-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
1.4.3 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your fax ma-
chine. You can get product announcements, change notifications, product literature, device char-
acteristics, design recommendations, and quality and reliability information from FaxBack 24
hours a day, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list
the title, status, and order number of each document that has been added, revised, or deleted dur-
ing the past eight weeks. The daily update catalogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catalog, request doc-
ument number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

The following catalogs and information are available at the time of publication:

1. Solutions OEM subscription form

2. Microcontroller and flash catalog

3. Development tools catalog

4. Systems catalog

5. Multimedia catalog

6. Multibus and iRMX® software catalog and BBS file listings

7. Microprocessor, PCI, and peripheral catalog

8. Quality and reliability and change notification catalog

9. iAL (Intel Architecture Labs) technology catalog
1-8

GUIDE TO THIS MANUAL

nload
d
ity and

 config-
arity, 8

nd to the
 oper-

ccount
1.4.4 Bulletin Board System (BBS)

Intel’s Brand Products and Applications Support bulletin board system (BBS) lets you dow
files to your PC. The BBS has the latest ApBUILDER software, hypertext manuals an
datasheets, software drivers, firmware upgrades, application notes and utilities, and qual
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic
uration support for 1200- through 19200-baud modems. Use these modem settings: no p
data bits, and 1 stop bit (N, 8, 1).

To access the BBS, just dial the telephone number (see Table 1-1 on page 1-7) and respo
system prompts. During your first session, the system asks you to register with the system
ator by entering your name and location. The system operator will set up your access a
within 24 hours. At that time, you can access the files on the BBS.

NOTE

In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).
1-9

2
Introduction

CHAPTER 2
INTRODUCTION

The 8X930Ax is a peripheral interface chip for Universal Serial Bus (USB) applications. It sup-
ports the connection of a PC peripheral, such as a keyboard or a modem, to a host PC via the USB.
The USB is specified by the Universal Serial Bus Specification. Much of the material in this doc-
ument rests on this USB specification.

In the language of the USB specification, the 8X930Ax is a USB device. A USB device can serve
as a function by providing an interface for a peripheral, and it can serve as a hub by providing
additional connections to the USB. The 8X930Ax described in this manual serves as a USB func-
tion. Figure 2-1 depicts the 8X930Ax in a USB system.

Figure 2-1. 8X930Ax in a Universal Serial Bus System

Mouse Modem

PC

8X930Ax 8X930Ax

USB Hub

Printer

Function Function Function

Host

A4395-01

8X930Ax
2-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 2-2. Functional Block Diagram of the 8X930Ax

A4340-01

SRC2 (8)

Code Address (24)Code Bus (16)

RAMROM

Watchdog

Timer

Timer/

Counters

PCA

Serial I/O

Port 2

Drivers

P2.7:0

Port 0

Drivers

P0.7:0

Port 3

Drivers

P3.7:0

Port 1

Drivers

P1.7:0

D
at

a
A

dd
re

ss
 (

24
)

D
at

a
B

us
 (

8)
Memory Address (16)

System Bus and I/O Ports
I/O Ports and

Peripheral Signals

SRC1 (8)

IB
 B

us
 (

8)

Peripheral

Interface

Interrupt

Handler

Clock

&

Reset

Bus Interface

Instruction Sequencer

DST (16)

ALU
Data

Memory

Interface

Memory Data (16)

Register

File

USB†

USB Ports

Microcontroller Core

† For details, see the USB module block diagram.
2-2

INTRODUCTION
2.1 PRODUCT OVERVIEW

The 8X930Ax can be briefly described as an MCS® 251 microcontroller with an on-chip USB
module, and additional pinouts provided for USB operations. As shown in the functional block
diagram (Figure 2-2), the 8X930Ax consists of a microcontroller core, on-chip ROM (optional)
and RAM, I/O ports, the on-chip USB module, and on-chip peripherals.

The microcontroller core together with the USB module provide the capabilities of a USB device.
The block diagram in Figure 2-3 shows the main components of the USB module and how they
interface with the CPU. The other microcontroller peripherals are not essential to operation as a
USB device.

The 8X930Ax uses the standard instruction set of the MCS 251 architecture.

Figure 2-3. 8X930Ax USB Module Block Diagram

D
P

0

Transceiver

Control

Control

Control

T
ra

ns
m

it/
R

ec
ei

ve
 B

us

FIFOs

D
M

0

A4231-02

D
at

a
B

us

Serial Bus

Interface Engine

(SIE)

Function

Interface Unit

(FIU)

USB

Wires

To

CPU
2-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

r

he

ficient
struc-
 5, “In-
ion set
2.1.1 8X930Ax Features

The major features of the 8X930Ax are listed below and summarized in Table 2-1. The 8X930Ax
is derived from the 8XC251Sx microcontroller which provides the following features:

• 256 Kbytes of external memory addressability

• On-chip RAM (512 or 1024 bytes)

• On-chip ROM (0, 8 or 16 Kbytes)

• Four 8-bit I/O ports: one open drain port, three quasi-bidirectional ports

• Code compatibility with MCS® 51 microcontrollers

• On-chip peripherals:

— Serial I/O port: standard MCS 51 microcontroller Universal Asynchronous Receive
Transmitter (UART)

— Programmable counter array (PCA): 5 capture/compare modules configurable for
timing, counting, or PWM

— Three general-purpose timer/counters

— Dedicated 14-bit hardware watchdog timer

In addition, the 8X930Ax has an on-chip USB module which provides the USB capability. T
major features of the USB module include:

• Standard universal serial bus interface

• Four USB function endpoints.

• Three pairs of 16-byte transmit/receive FIFO data buffers for endpoints 0, 2, 3.

• One pair of configurable transmit/receive FIFO data buffers for endpoint 1. (Sizes: 256/256,
512/512, 0/1024, or 1024/0 bytes)

• Phase-locked loop (1.5 Mbps and 12 Mbps USB data rates)

You can configure the 8X930Ax to specify binary mode or source mode as the opcode arrange-
ment. Either mode executes all of the MCS 51 architecture instructions and all of the MCS 251
architecture instructions. However, source mode is more efficient for MCS 251 architecture in-
structions, and binary mode is more efficient for MCS 51 architecture instructions. In binary
mode, object code for an MCS 51 microcontroller runs on the 8X930Ax without recompiling. For
details see “Opcode Configurations (SRC)” on page 4-12.

Certain instructions operate on 8-, 16-, or 32-bit operands, providing easier and more ef
programming in high-level languages such as C. Additional features include the TRAP in
tion, a displacement addressing mode, and several conditional jump instructions. Chapter
structions and Addressing,” describes the instruction set and compares it with the instruct
for MCS 51 microcontrollers.
2-4

INTRODUCTION

 or as
orts P0
 8 data
Re-
-con-

MCS 251 microcontrollers store both code and data in a single, linear 16-Mbyte memory space.
The usable memory space of the 8X930Ax consists of four 64-Kbyte regions (256 Kbytes). The
external bus provides up to 256 Kbytes of external memory addressability. The special function
registers (SFRs) and the register file have separate address spaces. Refer to Chapter 3, “Memory
Partitions” for a description of the address modes.

Each pin of the four 8-bit I/O ports can be individually programmed as a general I/O signal
a special-function signal that supports the external bus or one of the on-chip peripherals. P
and P2 comprise a 16-line external bus, which transmits a 16-bit address multiplexed with
bits. (You can also configure the 8X930Ax to have a 17-bit or an 18-bit external address bus.
fer to “Configuring the External Memory Interface” on page 4-7.) Ports P1 and P3 carry bus
trol and peripheral signals.

Table 2-1. 8X930Ax Features Summary

Device
Number

On-chip Memory

ROM
(Kbytes)

RAM
(Bytes)

80930AA 0 512

83930AA 8 512

83930AB 16 512

80930AD 0 1024

83930AD 8 1024

83930AE 16 1024

General features:
Address space 256 Kbytes
External bus (multiplexed)

Address 16, 17, or 18 bits
Data 8 bits

Register file 40 bytes
Interrupt sources 11
I/O ports Four 8-bit I/O ports
On-chip Peripherals:

Serial I/O port
Programmable counter array (5 modules)
Three general-purpose timer/counters
Hardware WDT.

USB features:
Standard Universal Serial Bus Interface
4 function endpoints – one pair of configurable

transmit/receive FIFOs (up to 1023 bytes total)
and three 16 byte transmit/receive FIFO pairs

On-chip clock/PLL
USB rates 1.5 and 12 Mbps
2-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

t han-
uencer,

single
nfigure
ry.
h, the
The 8X930Ax has two power-saving modes. In idle mode, the CPU clock is stopped, while clocks
to the peripherals continue to run. In global suspend mode (powerdown), the on-chip oscillator is
stopped, and the chip enters a static state. An enabled interrupt or a hardware reset can bring the
chip back to its normal operating mode from idle or powerdown. Refer to Chapter 14, “Special
Operating Modes,” for details on the power-saving modes.

2.2 MCS 251 MICROCONTROLLER CORE

The MCS 251 microcontroller core contains the CPU, the clock and reset unit, the interrup
dler, the bus interface, and the peripheral interface. The CPU contains the instruction seq
ALU, register file, and data memory interface.

2.2.1 CPU

Figure 2-4 is a functional block diagram of the CPU (central processor unit). The 8X930Ax fetch-
es instructions from on-chip code memory two bytes at a time, or from external memory in
bytes. The instructions are sent over the 16-bit code bus to the execution unit. You can co
the 8X930Ax to operate in page mode for accelerated instruction fetches from external memo
In page mode, if an instruction fetch is to the same 256-byte “page” as the previous fetc
fetch requires one state (two clocks) rather than two states (four clocks).

Figure 2-4. The CPU

A4272-01

SRC2 (8)

Code Address (24)Code Bus (16)

SRC1 (8)

Instruction Sequencer

DST (16)

ALU
Data

Memory

Interface

Register

File

Data Address (24)

Data Bus (8)

Interrupt Handler
2-6

INTRODUCTION

 each,
hes.

from
ll and
gnal),

rnal-

al
ach pe-

rals is

e are
there

the
apter
The 8X930Ax register file has forty registers, which can be accessed as bytes, words, and double
words. As in the MCS 51 architecture, registers 0–7 consist of four banks of eight registers
where the active bank is selected by the program status word (PSW) for fast context switc

The 8X930Ax is a single-pipeline machine. When the pipeline is full and code is executing
on-chip code memory, an instruction is completed every state time. When the pipeline is fu
code is executing from external memory (with no wait states and no extension of the ALE si
an instruction is completed every two state times.

2.2.2 Clock and Reset Unit

The timing signal for the 8X930Ax can be provided by:

• an external frequency source connected to XTAL1

• an on-chip oscillator employing an external crystal/resonator connected across XTAL1 and
XTAL2.

• an on-chip oscillator phase-locked to one of the above sources.

Device pins PLLSEL2:0 select the operating rate of the USB module and turn the PLL on and
off. Table 2-2 lists the USB operating rates and crystal frequencies as a function of the phase-
locked loop select code. “Clock Sources” on page 13-2 discusses the requirements for exte
clock signals and on-chip oscillators.

The basic unit of time for 8X930Ax microcontrollers is the state time (or state). States are divided
into two phases identified as phase 1 and phase 2. See Figures 2-5 and 2-6. The 8X930Ax periph-
erals operate on a peripheral cycle, which is six state times. A specific time within a peripher
cycle is denoted by its state and phase. For example, the PCA timer is incremented once e
ripheral cycle in phase 2 of state 5 (denoted as S5P2).

When the PLL is on, the frequency of the internal clock distributed to the CPU and periphe
twice as great as for the case of PLL off (at FOSC = 12 MHz).

As shown in Table 2-2 and Figure 2-5, when the PLL is off (PLLSEL2:0 = 001 or 100), ther
2 TOSC/state. As shown in Table 2-2 and Figure 2-6, when the PLL is on (PLLSEL2:0 = 110),
is 1 TOSC/state.

The reset unit places the 8X930Ax into a known state. A chip reset is initiated by asserting
RST pin, by a USB initiated reset, or by allowing the watchdog timer to time out (refer to Ch
13, “Minimum Hardware Setup”).
2-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

on
tched
ernal

 the
 Table
place-

2.2.3 Interrupt Handler

The interrupt handler can receive interrupt requests from eleven maskable sources and the TRAP
instruction. When the interrupt handler grants an interrupt request, the CPU discontinues the nor-
mal flow of instructions and branches to a routine that services the source that requested the in-
terrupt. You can enable or disable the interrupts individually (except for TRAP) and you can
assign one of four priority levels to each interrupt. Refer to Chapter 6, “Interrupt System,” for a
detailed description.

2.3 ON-CHIP MEMORY

For ROM devices, the 8X930Ax provides on-chip program memory beginning at locati
FF:0000H. See Table 2-1 for memory options. Following a reset, the first instruction is fe
from location FF:0000H. For devices without ROM, instruction fetches are always from ext
memory.

The 8X930Ax provides on-chip data RAM beginning at location 00:0020H (i.e., just above
four banks of registers R0–R7 which occupy the first 32 bytes of the memory space). See
2-1 for memory options. Data RAM locations can be accessed with direct, indirect, and dis
ment addressing. Ninety-six of these locations (20H–7FH) are bit addressable.

Table 2-2. 8X930Ax Operating Frequency

PLLSEL2
Pin 43

(1)

PLLSEL1
Pin 42

(1)

PLLSEL0
Pin 44

(1)

USB Rate
(2)

Internal
Frequency

for CPU
and

Peripherals
 (1/TCLK) (3)

XTAL1
Frequency

 FOSC

XTAL1
Clocks

per
State

TOSC /State
(5)

Comments

0 0 1 1.5 Mbps
(Low Speed)

3 Mhz 6 Mhz 2 PLL Off

1 0 0 1.5 Mbps
(Low Speed)

6 Mhz (4) 12 Mhz 2 PLL Off

1 1 0 12 Mbps
(Full Speed)

12 Mhz (4) 12 Mhz 1 PLL On

NOTES:
1. Other PLLSELx combinations are not valid.
2. The sampling rate is 4X the USB rate.
3. The 8X930Ax datasheet AC timing specification defines the following symbols: CPU frequency = FCLK

= 1/TCLK.
4. The 8X930Ax CPU and peripherals frequency is 3 Mhz (low clock mode) until the LC bit in PCON is

cleared.
5. The number of XTAL1 clocks per state (TOSC/state) depends on the PLLSEL2:0 selection. When the

CPU is operating in low clock mode (3 MHz), there are four TOSC/state for PLLSEL2:0 = 100 or 110.
2-8

INTRODUCTION

Figure 2-5. Clocking Definitions (PLL off) †

Figure 2-6. Clocking Definitions (PLL on) ††

† Figure 2-5 shows timing for PLL off (PLLSEL2:0 = 001 or 100) and 8X930Ax not in low-clock mode. 2 TOSC./State.
†† Figure 2-6 shows timing for PLL on (PLLSEL2:0 = 110) and 8X930Ax not in low-clock mode. 1 TOSC./State.

TOSC

State 2

P1 P2
State 1

P1 P2
State 3

P1 P2
State 4

P1 P2
State 5

P1 P2

State 6

P1 P2

Peripheral Cycle

2 TOSC = State Time

XTAL1

XTAL1

P1 P2

Phase 1 Phase 2

A2604-02

TOSC

State

P1

Peripheral Cycle

(6 States)

1 TOSC = State Time

XTAL1

XTAL1

P1

A5086-01

P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

1 2 3 4 5 6

P2
2-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

 func-
930A

r array

 timer
or 16-
e time
r gen-
uests.

unless
al op-

rs and
system
 “Tim-

es that
 an in-
 output
 mod-
gram-
2.4 UNIVERSAL SERIAL BUS MODULE

The universal serial bus module provides a USB interface between the host PC and the product
in which the 8X930Ax is embedded. Data port 0 (DP0, DM0) provides the upstream connection.
Figure 2-3 shows the main components of the USB module.

The serial interface engine (SIE) handles the communication protocol of universal serial bus. The
function interface unit (FIU) manages data received and transmitted by the USB module. The
8X930Ax supports four function endpoints. Each endpoint contains a transmit FIFO and a receive
FIFO. See Table 2-1. Transmit FIFOs are written by the CPU, then read by the FIU for transmis-
sion. Receive FIFOs are written by the FIU following reception, then read by the CPU. All trans-
mit FIFOs have the same architecture, and all receive FIFOs have the same architecture.

Operation of the USB module is described in detail in Chapter 7, “Universal Serial Bus,” and
Chapter 8, “USB Programming Models.”

2.5 ON-CHIP PERIPHERALS

The on-chip peripherals, which reside outside the microcontroller core, perform specialized
tions. Software accesses the peripherals via their special function registers (SFRs). The 8Xx
has four peripherals: the watchdog timer, the timer/counters, the programmable counte
(PCA), and the serial I/O port.

2.5.1 Timer/Counters and Watchdog Timer

The timer/counter unit has three timer/counters, which can be clocked by the oscillator (for
operation) or by an external input (for counter operation). You can set up an 8-bit, 13-bit,
bit timer/counter, and you can program them for special applications, such as capturing th
of an event on an external pin, outputting a programmable clock signal on an external pin, o
erating a baud rate for the serial I/O port. Timer/counter events can generate interrupt req

The watchdog timer is a circuit that automatically resets the 8X930Ax in the event of a hardware
or software upset. When enabled by software, the watchdog timer begins running, and
software intervenes, the timer reaches a maximum count and initiates a chip reset. In norm
eration, software periodically clears the timer register to prevent the reset. If an upset occu
software fails to clear the timer, the resulting chip reset disables the timer and returns the
to a known state. The watchdog and the timer/counters are described in Chapter 10,
er/Counters and WatchDog Timer.”

2.5.2 Programmable Counter Array (PCA)

The programmable counter array (PCA) has its own timer and five capture/compare modul
perform several functions: capturing (storing) the timer value in response to a transition on
put pin; generating an interrupt request when the timer matches a stored value; toggling an
pin when the timer matches a stored value; generating a programmable PWM (pulse width
ulator) signal on an output pin; and serving as a software watchdog timer. Chapter 11, “Pro
mable Counter Array,” describes this peripheral in detail.
2-10

INTRODUCTION

 simul-
e baud

 bits: a
e used
ou can
erflow

onment
elf or a
 another

e op-

k and
2.5.3 Serial I/O Port

The serial I/O port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1–3) are full-duplex (i.e., the port can send and receive
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. Th
rate is generated by overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11
start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can b
for parity checking or to specify that the frame contains an address and data. In mode 2, y
use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the ov
from timer 1 or timer 2 to determine the baud rate.

In its synchronous modes (modes 1–3) the serial port can operate as a slave in an envir
where multiple slaves share a single serial line. It can accept a message intended for its
message that is being broadcast to all of the slaves, and it can ignore a message sent to
slave.

2.6 OPERATING CONDITIONS

The 8X930Ax is designed for a commercial operating environment and to accommodate th
erating rates of the USB interface. For detailed specifications, refer to the current 8X930Ax Uni-
versal Serial Bus Microcontroller datasheet. For USB module operating rates see “Cloc
Reset Unit” on page 2-7.
2-11

3
Memory Partitions

CHAPTER 3
MEMORY PARTITIONS

The 8X930Ax has three address spaces: a memory space, a special function register (SFR) space,
and a register file. This chapter describes these address spaces as they apply to the 8X930Ax. It
also discusses the compatibility of the MCS® 251 architecture and the MCS® 51 architecture in
terms of their address spaces.

3.1 ADDRESS SPACES FOR 8X930Ax

Figure 3-1 shows the memory space, the SFR space, and the register file for 8X930Ax. (The ad-
dress spaces are depicted as being eight bytes wide with addresses increasing from left to right
and from bottom to top.)

Figure 3-1. Address Spaces for the 8X930Ax

A4100-01

FF:FFFFH

SFR Space

512 Bytes

Memory Address Space

16 Mbytes

00:0000H 0

Register File

64 Bytes

7

63

S:000H

S:1FFH

00:0007H

S:007H
3-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

. The
-chip,

 at lo-
ytes of

file are
banks,
000H–

 space.

:000H–
S
mory

3-15 for

 of

cations
nly be
te code

 with the
h the

 eight
ip data

s spaces
It is convenient to view the unsegmented, 16-Mbyte memory space as consisting of 256 64-Kbyte
regions, numbered 00: to FF:.

NOTE
The memory space in the 8X930Ax is unsegmented. The 64-Kbyte “regions”
00:, 01:, ..., FF: are introduced only as a convenience for discussions.
Addressing in the 8X930Ax is linear; there are no segment registers.

On-chip RAM is located at the bottom of the memory space, beginning at location 00:0000H
first 32 bytes (00:0000H–00:001FH) provide storage for a part of the register file. The on
general-purpose data RAM resides just above this, beginning at location 00:0020H.

On-chip ROM (code memory) is located in the top region of the memory space, beginning
cation FF:0000H. Following device reset, execution begins at this address. The top eight b
region FF: are reserved for the configuration array.

The register file has its own address space (Figure 3-1). The 64 locations in the register
numbered decimally from 0 to 63. Locations 0–7 represent one of four switchable register
each having eight registers. The 32 bytes required for these banks occupy locations 00:0
00:001FH in the memory space. Register file locations 8–63 do not appear in the memory
See “8X930Ax Register File” on page 3-9 for a further description of the register file.

The SFR space accommodates up to 512 8-bit special function registers with addresses S
S:1FFH. SFRs implemented in the 8X930Ax are shown in Table 3-6 on page 3-10. In the MC
251 architecture, use the prefix “S:” with SFR addresses to distinguish them from the me
space addresses 00:0000H–00:01FFH. See “Special Function Registers (SFRs)” on page
details on the SFR space.

3.1.1 Compatibility with the MCS® 51 Architecture

The address spaces in the MCS 51 architecture† are mapped into the address spaces in the MCS
251 architecture. This mapping allows code written for MCS 51 microcontrollers to run on MCS
251 microcontrollers. (Chapter 5, “Instructions and Addressing” discusses the compatibility
the two instruction sets.)

Figure 3-2 shows the address spaces for the MCS 51 architecture. Internal data memory lo
00H–7FH can be addressed directly and indirectly. Internal data locations 80H–FFH can o
addressed indirectly. Directly addressing these locations accesses the SFRs. The 64-Kby
memory has a separate memory space. Data in the code memory can be accessed only
MOVC instruction. Similarly, the 64-Kbyte external data memory can be accessed only wit
MOVX instruction.

The register file (registers R0–R7) comprises four switchable register banks, each having
registers. The 32 bytes required for the four banks occupy locations 00H–1FH in the on-ch
memory.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the addres
in the MCS 251 architecture; details are listed in Table 3-1.

† MCS®51 Microcontroller Family User’s Manual (Order Number: 272383)
3-2

MEMORY PARTITIONS
The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: of the memory
space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble code
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to
this region. The assembler also maps the interrupt vectors to region FF:. This mapping is trans-
parent to the user; code executes just as before, without modification.

Figure 3-2. Address Spaces for the MCS® 51 Architecture

External Data

(MOVX)

FFFFH

0000H

A4139-01

00H

FFH

80H
7FH

Code

(MOVC)

Internal Data

(direct, indirect)

Register File

SFRs

(direct)

Internal Data

(indirect)

0000H

FFFFH

80H

FFH

R7R0
3-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Figure 3-3. Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture

Table 3-1. Address Mappings

Memory Type

MCS® 51 Architecture MCS® 251 Architecture

Size Location Data
Addressing Location

Code 64 Kbytes 0000H–FFFFH Indirect using
MOVC instr. FF:0000H–FF:FFFFH

External Data 64 Kbytes 0000H–FFFFH Indirect using
MOVX instr. 01:0000H–01:FFFFH

Internal Data
128 bytes 00H–7FH Direct, Indirect 00:0000H–00:007FH

128 bytes 80H–FFH Indirect 00:0080H–00:00FFH

SFRs 128 bytes S:80H–S:FFH Direct S:080H–S:0FFH

Register File 8 bytes R0–R7 Register R0–R7

FFH

SFR Space

512 Bytes

Memory Address Space

16 Mbytes

S:000H

MCS 51 Architecture

Code Memory

MCS 51 Architecture

External Data Memory

MCS 51 Architecture

Internal Data Memory

FFFFH

00H

0000H

FFFFH

0000H

MCS 51 Architecture

SFRs

00:0000H

01:0000H

02:0000H

FF:0000H

A4133-01

S:100H

S:1FFH

8

Register File

64 Bytes

MCS 51 Architecture R. F.00

63

S:07FH
80H

FFH

7

3-4

MEMORY PARTITIONS

gister
The re-
e 3-3.
S 51
rchi-
entical

ed to
archi-
e up-

re, all
g (see

ace of
s com-
ad-
S 251
side in
pped

-
can
erved.
 a write

ber of
 (256

ory

evice
s
bytes
Also,
w the

 of mem-
 RAM
cusses
The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into the memory
region specified by bits 16–23 of the data pointer DPX, i.e., DPXL. DPXL is accessible as re
file location 57 and also as the SFR at S:084H (see “Dedicated Registers” on page 3-12).
set value of DPXL is 01H, which maps the external memory to region 01: as shown in Figur
You can change this mapping by writing a different value to DPXL. A mapping of the MC
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 a
tecture provides complete run-time compatibility because the lower 16 address bits are id
in the two address spaces.

The 256 bytes of on-chip data memory for MCS 51 microcontrollers (00H-FFH) are mapp
addresses 00:0000H-00:00FFH to ensure complete run-time compatibility. In the MCS 51
tecture, the lower 128 bytes (00H-7FH) are directly and indirectly addressable; however th
per 128 bytes are accessible by indirect addressing only. In the MCS 251 architectu
locations in region 00: are accessible by direct, indirect, and displacement addressin
“8X930Ax Memory Space” on page 3-5).

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR sp
the MCS 251 architecture starting at address S:080H, as shown in Figure 3-3. This provide
plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit
dressing). The SFR addresses are unchanged in the new architecture. In the MC
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) re
the register file for high performance. However, to maintain compatibility, they are also ma
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 8X930Ax MEMORY SPACE

Figure 3-4 shows the logical memory space for the 8X930Ax microcontroller. The usable mem
ory space of the 8X930Ax consists of four 64-Kbyte regions: 00:, 01:, FE:, and FF:. Code
execute from all four regions; code execution begins at FF:0000H. Regions 02:-FD are res
Reading a location in the reserved area returns an unspecified value. Software can execute
to the reserved area, but nothing is actually written.

All four regions of the memory space are available at the same time. The maximum num
external address lines is 18, which limits external memory to a maximum of four regions
Kbytes). See “Configuring the External Memory Interface” on page 4-7, and “External Mem
Design Examples” on page 15-17.

Locations FF:FFF8H–FF:FFFFH are reserved for the configuration array (see Chapter 4, “D
Configuration”). The two configuration bytes for the 8X930Ax are accessed at location
FF:FFF8H and FF:FFF9H; locations FF:FFFAH–FF:FFFFH are reserved for configuration
in future products. Do not attempt to execute code from locations FF:FFF8H–FF:FFFFH.
see the caution on page 4-3 regarding execution of code from locations immediately belo
configuration array.

Figure 3-4 also indicates the addressing modes that can be used to access different areas
ory. The first 64 Kbytes can be directly addressed. The first 96 bytes of general-purpose
(00:0020H–00:007FH) are bit addressable. Chapter 5, “Instructions and Addressing,” dis
addressing modes.
3-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 3-4. 8X930Ax Address Space

A4385-01

01:FFFFH

FE:FFFFH

FF:FFFFH

01:0000H

FE:0000H

FF:0000H

Memory Address Space

16 Mbytes

00:0080H

00:0020H
00:007FH

00:0000H 00:001FH

00:FFFFH

Indirect and

Displacement

Addressing

(16 Mbytes)

Direct Addressing

(64 Kbytes)

Bit Addressing

(96 Bytes)Register Addressing

(32 Bytes)

Regions 02–FD

are Reserved
3-6

MEMORY PARTITIONS

Figure 3-5. Hardware Implementation of the 8X930Ax Address Space

A4382-02

01:FFFFH

FE:FFFFH

FF:FFF7H

01:0000H

FE:0000H

FF:0000H

External Memory

External Memory

Registers R0-R7

External Memory

00:0000H

00:FFFFH

On-chip ROM

8 or 16 Kbytes

On-chip RAM

512 or 1024 Bytes

External Memory

† Eight-byte configuration array (FF:FFF8H - FF:FFFFH)

†† Four banks of registers R0-R7 (32 bytes, 00:0000H - 00:001FH)

†

††

Regions 02–FD

are Reserved
3-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

0Ax

annot
nt ad-

F:.
e. On-
s data
cution
e for

nly if
alue of

p code
 code
Figure 3-5 shows how areas of the memory space are implemented by on-chip RAM and external
memory. The first 32 bytes of on-chip RAM store banks 0–3 of the register file (see “8X93
Register File” on page 3-9).

3.2.1 On-chip General-purpose Data RAM

On-chip RAM (512 or 1024 bytes) provides general data storage (Figure 3-5). Instructions c
execute from on-chip data RAM. The data is accessible by direct, indirect, and displaceme
dressing. Locations 00:0020H–00:007FH are also bit addressable.

3.2.2 On-chip Code Memory

The 8X930Ax is available with 0, 8 or 16 Kbytes of on-chip ROM located in memory region F
(Figure 3-5). Table 2-1 on page 2-5 lists the amount of on-chip code memory for each devic
chip ROM is intended primarily for code storage, although its contents can also be read a
with the indirect and displacement addressing modes. Following a chip reset, program exe
begins at FF:0000H. Chapter 16, “Verifying Nonvolatile Memory,” describes the procedur
verifying the contents of on-chip ROM.

A code fetch within the address range of the on-chip ROM accesses the on-chip ROM o
EA# = 1. For EA# = 0, a code fetch in this address range accesses external memory. The v
EA# is latched when the chip leaves the reset state. Code is fetched faster from on-chi
memory than from external memory. Table 3-2 lists the minimum times to fetch two bytes of
from on-chip memory and external memory.

NOTE

If your program executes exclusively from on-chip ROM (not from external
memory), beware of executing code from the upper eight bytes of the on-chip
ROM (FF:1FF8H–FF:1FFFH for 8 Kbytes, FF:3FF8H–FF:3FFFH for 16
Kbytes). Because of its pipeline capability, the 8XC251Sx may attempt to
prefetch code from external memory (at an address above FF:1FFFH/
FF:3FFFH) and thereby disrupt I/O ports 0 and 2. Fetching code constants
from these eight bytes does not affect ports 0 and 2.

If your program executes from both on-chip ROM and external memory, code
can be placed in the upper eight bytes of on-chip ROM. As the 8XC251Sx
fetches bytes above the top address in the on-chip ROM, code fetches automat-
ically become external bus cycles. In other words, the rollover from on-chip
ROM to external code memory is transparent to the user.
3-8

MEMORY PARTITIONS

0H–
essing
t hold

 3-6.
rd, and
 “Dedi-

, as il-
 of on-
ddress
3.2.2.1 Accessing On-chip Code Memory in Region 00:

Devices with 16 Kbytes of on-chip code memory can be configured so that the upper half of the
on-chip code memory can also be read as data at locations at the top of region 00: (see “Mapping
On-chip Code Memory to Data Memory (EMAP#)” on page 4-14). That is, locations FF:200
FF:3FFFH can also be accessed at locations 00:E000H–00:FFFFH. This is useful for acc
code constants stored in ROM. Note, however, that all of the following three conditions mus
for this mapping to be effective:

• The device is configured with EMAP# = 0 in the UCONFIG1 register (See Figure 4-3 on
page 4-5).

• EA# = 1.

• The access to this area of region 00: is a data read, not a code fetch.

If one or more of these conditions do not hold, accesses to the locations in region 00: are referred
to external memory.

3.2.3 External Memory

Regions 01:, FE:, and portions of regions 00: and FF: of the memory space are implemented as
external memory (Figure 3-5). For discussions of external memory, see “Configuring the Exter-
nal Memory Interface” on page 4-7, and Chapter 15, “External Memory Interface.”

3.3 8X930Ax REGISTER FILE

The 8X930Ax register file consists of 40 locations: 0–31 and 56–63, as shown in Figure
These locations are accessible as bytes, words, and dwords, as described in “Byte, Wo
Dword Registers” on page 3-12.” Several locations are dedicated to special registers (see
cated Registers” on page 3-12); the remainder are general-purpose registers.

Register file locations 0–7 actually consist of four switchable banks of eight registers each
lustrated in Figure 3-7 on page 3-11. The four banks are implemented as the first 32 bytes
chip RAM and are always accessible as locations 00:0000H–00:001FH in the memory a
space.† Only one of the four banks is accessible via the register file at a given time. The accessi-

† Because these locations are dedicated to the register file, they are not considered a part of the general-purpose,
1-Kbyte, on-chip RAM (locations 00:0020H–00:041FH).

Table 3-2. Minimum Times to Fetch Two Bytes of Code

Type of Code Memory State Times

On-chip Code Memory 1

External Memory (page mode) 2

External Memory (nonpage mode) 4
3-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

le 3-3.
an be

mented
d.
ble, or “active,” bank is selected by bits RS1 and RS0 in the PSW register, as shown in Tab
(The PSW is described in “Program Status Words” on page 5-15.”) This bank selection c
used for fast context switches.

Register file locations 8–31 and 56–63 are always accessible. These locations are imple
as registers in the CPU. Register file locations 32–55 are reserved and cannot be accesse

Figure 3-6. The Register File

A4099-01

DR4DR0

DR12DR8

15141312111098

2322212019181716

3130292827262524

Locations 32-55 are Reserved

6362616059585756

R7R6R5R4R3R2R1R0

R15R14R13R12R11R10R9R8

DR20DR16

DR28DR24

WR6WR4WR2WR0

WR14WR12WR10WR8

WR22WR20WR18WR16

WR30WR28WR26WR24

DR60 = SPXDR56 = DPX

Dword Registers

Word Registers

Byte Registers

Register File

76543210

76543210

Banks 0-3

Note: R10 = B

 R11 = ACC

3-10

MEMORY PARTITIONS

Figure 3-7. Register File Locations 0–7

Table 3-3. Register Bank Selection

Bank Address Range
PSW Selection Bits

RS1 RS0

Bank 0 00H–07H 0 0

Bank 1 08H–0FH 0 1

Bank 2 10H–17H 1 0

Bank 3 18H–1FH 1 1

A4215-01

Register File

0 1 2 3 4 5 6 7
8

63

Memory Address Space

FF:FFFFH

00:0020H

18H 1FH
10H 17H
08H 0FH
00H 07H

Banks 0–3

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7PSW bits RS1:0

select one bank

to be accessed via

the register file.

Banks 0–3

accessible

in memory

address space
3-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ressable
are ad-
ise the
1FH in

5 can
3.4 BYTE, WORD, AND DWORD REGISTERS

Depending on its location in the register file, a register is addressable as a byte, a word, and/or a
dword, as shown on the right side of Figure 3-6. A register is named for its lowest numbered byte
location. For example:

R4 is the byte register consisting of location 4.

WR4 is the word register consisting of registers 4 and 5.

DR4 is the dword register consisting of registers 4–7.

Locations R0–R15 are addressable as bytes, words, or dwords. Locations 16–31 are add
only as words or dwords. Locations 56–63 are addressable only as dwords. Registers
dressed only by the names shown in Figure 3-6 — except for the 32 registers that compr
four banks of registers R0–R7, which can also be accessed as locations 00:0000H–00:00
the memory space.

3.4.1 Dedicated Registers

The register file has four dedicated registers:

• R10 is the B-register

• R11 is the accumulator (ACC)

• DR56 is the extended data pointer, DPX

• DR60 is the extended stack pointer, SPX

These registers are located in the register file; however, R10; R11; the DPXL, DPH, and DPL
bytes in DR56; and the SPH and SP bytes in DR60 are also accessible as SFRs. The bytes of DPX
and SPX can be accessed in the register file only by addressing the dword registers. The dedicated
registers in the register file and their corresponding SFRs are illustrated in Figure 3-8 and listed
in Table 3-4.

3.4.1.1 Accumulator and B Register

The 8-bit accumulator (ACC) is byte register R11, which is also accessible in the SFR space as
ACC at S:E0H (Figure 3-8). The B register, used in multiplies and divides, is register R10, which
is also accessible in the SFR space as B at S:F0H. Accessing ACC or B as a register is one state
faster than accessing them as SFRs.

Instructions in the MCS 51 architecture use the accumulator as the primary register for data
moves and calculations. However, in the MCS 251 architecture, any of registers R1–R1
serve for these tasks†. As a result, the accumulator does not play the central role that it has in MCS
51 microcontrollers.

† Bits in the PSW and PSW1 registers reflect the status of the accumulator. There are no equivalent status indicators for
the other registers.
3-12

MEMORY PARTITIONS

e 64-
X in-
 mem-

Figure 3-8. Dedicated Registers in the Register File and their Corresponding SFRs

3.4.1.2 Extended Data Pointer, DPX

Dword register DR56 is the extended data pointer, DPX (Figure 3-8). The lower three bytes of
DPX (DPL, DPH, DPXL) are accessible as SFRs. DPL and DPH comprise the 16-bit data pointer
DPTR. While instructions in the MCS 51 architecture always use DPTR as the data pointer, in-
structions in the MCS 251 architecture can use any word or dword register as a data pointer.

DPXL, the byte in location 57, specifies the region of memory (00:–FF:) that maps into th
Kbyte external data memory space in the MCS 51 architecture. In other words, the MOV
struction addresses the region specified by DPXL when it moves data to and from external
ory. The reset value of DPXL is 01H.

R11, Accumulator, ACC

DR60 = Extended Stack Pointer, SPX

ACC

63626160

SPH SP

S:81HSP
Stack Pointer

Register File SFRs

SPHStack Pointer, High S:BEH

DR56 = Extended Data Pointer, DPX

59585756

DPH DPLDPXL

S:82HDPL
Data Pointer, Low

DPH

Data Pointer Extended, Low

Data Pointer, High S:83H

DPXL

R10, B Register

B

ACC

B S:F0H

S:E0H

S:84H

A4152-02
3-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
3.4.1.3 Extended Stack Pointer, SPX

Dword register DR60 is the stack pointer, SPX (Figure 3-8). The byte at location 63 is the 8-bit
stack pointer, SP, in the MCS 51 architecture. The byte at location 62 is the stack pointer high,
SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can
be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL,
ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. To preserve the
stack, do not use DR60 as a general-purpose register.

Table 3-4. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs

 Name Mnemonic Reg. Location Mnemonic Address

Stack
Pointer
(SPX)

— —

DR60

60 — —

— — 61 — —

Stack Pointer, High SPH 62 SPH S:BEH

Stack Pointer, Low SP 63 SP S:81H

Data
Pointer
(DPX)

— —

DR56

56 — —

Data Pointer Extended, Low DPXL 57 DPXL S:84H

DPTR
Data Pointer, High DPH 58 DPH S:83H

Data Pointer, Low DPL 59 DPL S:82H

Accumulator (A Register) A R11 11 ACC S:E0H

B Register B R10 10 B S:F0H
3-14

MEMORY PARTITIONS

 space.
ented,
n, the
ad, it
l order
3.5 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in their associated on-chip peripherals or in the core.
The SFR memory map in Table 3-5 gives the addresses and reset values of the 8X930Ax SFRs.
SFR addresses are preceded by “S:” to differentiate them from addresses in the memory
Shaded locations in Table 3-5 and locations below S:80H and above S:FFH are unimplem
i.e., no register exists. If an instruction attempts to write to an unimplemented SFR locatio
instruction executes, but nothing is actually written. If an unimplemented SFR location is re
returns an unspecified value. Descriptive tables for the SFRs are presented in alphabetica
in Appendix C.

NOTE
SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.

The following tables list the mnemonics, names, and addresses of the SFRs:
Table 3-6 — Core SFRs

Table 3-7 — USB Function SFRs

Table 3-8 — I/O Port SFRs

Table 3-9 — Serial I/O SFRs

Table 3-10 — Timer/Counter and Watchdog Timer SFRs

Table 3-11 — Programmable Counter Array (PCA) SFRs
3-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 3-5. 8X930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8 CH
00000000

CCAP0H
xxxxxxxx

CCAP1H
xxxxxxxx

CCAP2H
xxxxxxxx

CCAP3H
xxxxxxxx

CCAP4H
xxxxxxxx

FF

F0 B
00000000

EPINDEX
1xxxxx00

TXSTAT
0xxx0000

TXDAT
xxxxxxxx

TXCON
000x0100

TXFLG
00xx1000

TXCNTL
xxxxxxxx

TXCNTH
xxxxxxxx

F7

E8 CL
00000000

CCAP0L
xxxxxxxx

CCAP1L
xxxxxxxx

CCAP2L
xxxxxxxx

CCAP3L
xxxxxxxx

CCAP4L
xxxxxxxx

EF

E0 ACC
00000000

EPCON
00x1xxxx

RXSTAT
00000000

RXDAT
xxxxxxxx

RXCON
0x000100

RXFLG
00xx1000

RXCNTL
xxxxxxxx

RXCNTH
xxxxxxxx

E7

D8 CCON
00x00000

CMOD
00xxx000

CCAPM0
x0000000

CCAPM1
x0000000

CCAPM2
x0000000

CCAPM3
x0000000

CCAPM4
x0000000

PCON1
xxxx0000

DF

D0 PSW
00000000

PSW1
00000000

SOFL
00000000

SOFH
00000000

D7

C8 T2CON
00000000

T2MOD
xxxxxx00

RCAP2L
00000000

RCAP2H
00000000

TL2
00000000

TH2
00000000

CF

C0 FIFLG
00000000

C7

B8 IPL0
x0000000

SADEN
00000000

SPH
0000000

BF

B0 P3
11111111

IEN1
00000000

IPL1
00000000

IPH1
00000000

IPH0
x0000000

B7

A8 IEN0
00000000

SADDR
00000000

AF

A0 P2
11111111

FIE
00000000

WDTRST
xxxxxxxx

WCON
xxxxxx00

A7

98 SCON
00000000

SBUF
xxxxxxxx

9F

90 P1
11111111

97

88 TCON
00000000

TMOD
00000000

TL0
00000000

TL1
00000000

TH0
00000000

TH1
00000000

FADDR
00000000

8F

80 P0
11111111

SP
00000111

DPL
00000000

DPH
00000000

DPXL
00000001

PCON
00XX0000

87

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

MCS 251 microcontroller SFRs Endpoint-indexed SFRs
3-16

MEMORY PARTITIONS

Table 3-6. Core SFRs

Mnemonic Name Address

ACC† Accumulator S:E0H

B† B Register S:F0H

PSW Program Status Word S:D0H

PSW1 Program Status Word 1 S:D1H

SP† Stack Pointer – LSB of SPX S:81H

SPH† Stack Pointer High – MSB of SPX S:BEH

DPTR† Data Pointer (2 bytes) —

DPL† Low Byte of DPTR S:82H

DPH† High Byte of DPTR S:83H

DPXL† Data Pointer Extended, Low S:84H

PCON Power Control S:87H

PCON1 USB Power Control. S:DFH

IEN0 Interrupt Enable Control 0 S:A8H

IEN1 Interrupt Enable Register 1. S:B1H

IPH0 Interrupt Priority Control High 0 S:B7H

IPL0 Interrupt Priority Control Low 0 S:B8H

IPH1 Interrupt Priority High Control Register 1. S:B3H

IPL1 Interrupt Priority Low Control Register 1. S:B2H

† These SFRs can also be accessed by their corresponding registers in the register
file (see Table 3-4).
3-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 3-7. USB Function SFRs

Mnemonic Name Address

EPCON Endpoint Control Register. S:E1H

EPINDEX Endpoint Index Register. S:F1H

FADDR Function Address Register. S:8FH

FIE Function Interrupt Enable Register. S:A2H

FIFLG Function Interrupt Flag Register. S:C0H

RXCNTH Receive FIFO Byte-Count High Register. S:E7H

RXCNTL Receive FIFO Byte-Count Low Register. S:E6H

RXCON Receive FIFO Control Register. S:E4H

RXDAT Receive FIFO Data Register. S:E3H

RXFLG Receive FIFO Flag Register. S:E5H

RXSTAT Endpoint Receive Status Register. S:E2H

SOFH Start of Frame High Register. S:D3H

SOFL Start of Frame Low Register. S:D2H

TXCNTH Transmit Count High Register. S:F7H

TXCNTL Transmit Count Low Register. S:F6H

TXCON Transmit FIFO Control Register. S:F4H

TXDAT Transmit FIFO Data Register. S:F3H

TXFLG Transmit Flag Register. S:F5H

TXSTAT Endpoint Transmit Status Register. S:FAH
3-18

MEMORY PARTITIONS

Table 3-8. I/O Port SFRs

Mnemonic Name Address

P0 Port 0 S:80H

P1 Port 1 S:90H

P2 Port 2 S:A0H

P3 Port 3 S:B0H

Table 3-9. Serial I/O SFRs

Mnemonic Name Address

SCON Serial Control S:98H

SBUF Serial Data Buffer S:99H

SADEN Slave Address Mask S:B9H

SADDR Slave Address S:A9H

Table 3-10. Timer/Counter and Watchdog Timer SFRs

Mnemonic Name Address

TL0 Timer/Counter 0 Low Byte S:8AH

TH0 Timer/Counter 0 High Byte S:8CH

TL1 Timer/Counter 1 Low Byte S:8BH

TH1 Timer/Counter 1 High Byte S:8DH

TL2 Timer/Counter 2 Low Byte S:CCH

TH2 Timer/Counter 2 High Byte S:CDH

TCON Timer/Counter 0 and 1 Control S:88H

TMOD Timer/Counter 0 and 1 Mode Control S:89H

T2CON Timer/Counter 2 Control S:C8H

T2MOD Timer/Counter 2 Mode Control S:C9H

RCAP2L Timer 2 Reload/Capture Low Byte S:CAH

RCAP2H Timer 2 Reload/Capture High Byte S:CBH

WDTRST WatchDog Timer Reset S:A6H
3-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Table 3-11. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address

CCON PCA Timer/Counter Control S:D8H

CMOD PCA Timer/Counter Mode S:D9H

CCAPM0 PCA Timer/Counter Mode 0 S:DAH

CCAPM1 PCA Timer/Counter Mode 1 S:DBH

CCAPM2 PCA Timer/Counter Mode 2 S:DCH

CCAPM3 PCA Timer/Counter Mode 3 S:DDH

CCAPM4 PCA Timer/Counter Mode 4 S:DEH

CL PCA Timer/Counter Low Byte S:E9H

CH PCA Timer/Counter High Byte S:F9H

CCAP0L PCA Compare/Capture Module 0 Low Byte S:EAH

CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH

CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH

CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH

CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH

CCAP0H PCA Compare/Capture Module 0 High Byte S:FAH

CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH

CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH

CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH

CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH
3-20

4
Device Configuration

hoice

red
n
code
s use

FFH)
array
IG1
4-4.

la-
rma-

ration
latile
CHAPTER 4
DEVICE CONFIGURATION

The 8X930Ax provides design flexibility by configuring certain operating features during device
reset. These features fall into the following categories:

• external memory interface (page mode, address bits, wait states, range for RD#, WR#, and
PSEN#)

• source mode/binary mode opcodes

• selection of bytes stored on the stack by an interrupt

• mapping of the upper portion of on-chip code memory to region 00:

You can specify a 16-bit, 17-bit, or 18-bit external addresses bus (256 Kbyte external address
space). Wait state selection provides 0, 1, 2, or 3 wait states.

This chapter provides a detailed discussion of device configuration. It describes the configuration
bytes and provides information to aid you in selecting a suitable configuration for your applica-
tion. It discusses the choices involved in configuring the external memory interface and shows
how the internal memory space maps into external memory. See “Configuring the External Mem-
ory Interface” on page 4-7. “Opcode Configurations (SRC)” on page 4-12 discusses the c
of source mode or binary mode opcode arrangements.

4.1 CONFIGURATION OVERVIEW

The configuration of the 8X930Ax is established by the reset routine based on information sto
in configuration bytes. The 8X930Ax stores configuration information in two user configuratio
bytes (UCONFIG0 and UCONFIG1) located in code memory. Devices with no on-chip
memory fetch configuration data from external memory. Factory programmed ROM device
customer-provided configuration data supplied on floppy disk.

4.2 DEVICE CONFIGURATION

The 8X930Ax reserves the top eight bytes of the memory address space (FF:FFF8H–FF:FF
for an eight-byte configuration array (Figure 4-1). The two lowest bytes of the configuration
are assigned to the two configuration bytes UCONFIG0 (FF:FFF8H) and UCONF
(FF:FFF9H). Bit definitions of UCONFIG0 and UCONFIG1 are provided in Figures 4-3 and
The upper six bytes of the configuration array are reserved for future use.

When EA# = 1, the 8XC251Sx obtains configuration information at reset from on-chip nonvo
tile memory at addresses FF:FFF8H and FF:FFF9H. For ROM devices, configuration info
tion is entered at these addresses during fabrication. The user can verify configu
information stored on-chip using the procedures presented in Chapter 16, “Verifying Nonvo
Memory.”
4-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
For devices without on-chip program memory, configuration information is accessed from exter-
nal memory using these same addresses. The designer must store configuration information in an
eight-byte configuration array located at the highest addresses implemented in external code
memory. See Table 4-1 and Figure 4-2. When EA# = 0, the microcontroller obtains configuration
information at reset from external memory using internal addresses FF:FFF8H and FF:FFF9H.

Figure 4-1. Configuration Array (On-chip)

Table 4-1. External Addresses for Configuration Array

Size of External
Address Bus

(Bits)

Address of
Configuration Array on

External Bus (2)

Address of
Configuration Bytes
on External Bus (1)

16 FFF8H–FFFFH UCONFIG1: FFF9H
 UCONFIG0: FFF8H

17 1FFF8H–1FFFFH UCONFIG1: 1FFF9H
 UCONFIG0: 1FFF8H

18 3FFF8H–3FFFFH UCONFIG1: 3FFF9H
 UCONFIG0: 3FFF8H

NOTES:
1. When EA# = 0, the reset routine retrieves UCONFIG0 and UCONFIG1 from

external memory using the internal addresses FF:FFF8H and FF:FFF9H
which appear on the external address bus (A17, A16, A15:0) as shown in this
table. See Figure 4-2.

2. The upper six bytes of the configuration array are reserved for future use.

 A4393-01

16-Kbyte

Devices

For EA# = 1, configuration information is obtained from the

on-chip configuration array located in non-volatile memory

at addresses FF:FFF8H - FF:FFFFH.

8-Kbyte

Devices

FF:0000H FF:0000H

FF:FFFFH

FF:FFFEH

FF:FFFDH

FF:FFFCH

FF:FFFBH

FF:FFFAH

FF:FFF9H

FF:FFF8H

UCONFIG1

UCONFIG0

Reserved

Detail. On-chip configuration array.

FF:FF:
4-2

DEVICE CONFIGURATION

Figure 4-2. Configuration Array (External)

CAUTION
The eight highest addresses in the memory address space (FF:FFF8H–
FF:FFFFH) are reserved for the configuration array. Do not read or write
application code at these locations. These address are also used to access the
configuration array in external memory, so the same restrictions apply to the
eight highest addresses implemented in external memory. Instructions that
might inadvertently cause these addresses to be accessed due to call returns or
prefetches should not be located at addresses immediately below the
configuration array. Use an EJMP instruction, five or more addresses below
the configuration array, to continue execution in other areas of memory.

 A4394-01

1FF9H
1FF8H

8 Kbytes

3FF9H
3FF8H

16 Kbytes

7FF9H
7FF8H

32 Kbytes
FFF9H
FFF8H

64 Kbytes

1:FFF9H
1:FFF8H

128 Kbytes
3:FFF9H

256 Kbytes

3:FFF8H
x:xFFFH

x:xFFEH

x:xFFDH

x:xFFCH

x:xFFBH

x:xFFAH

x:xFF9H

x:xFF8H

UCONFIG1

UCONFIG0

Reserved

This figure shows the addresses of configuration bytes UCONFIG1 and UCONFIG0 in external memory for

several memory implementations. For EA# = 0, configuration information is obtained from configuration bytes

in external memory using internal addresses FF:FFF8H and FF:FFF9H. In external memory, the eight-byte

configuration array is located at the highest addresses implemented.

Detail.

Configuration array in external memory.
4-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
4.3 THE CONFIGURATION BITS

This following list briefly describes the configuration bits contained in configuration bytes
UCONFIG0 and UCONFIG1 (Figures 4-3 and 4-4):

• SRC. Selects source mode or binary mode opcode configuration.

• INTR. Selects the bytes pushed onto the stack by interrupts.

• EMAP#. Maps on-chip code memory (16 Kbyte devices only) to memory region 00:.

The following bits configure the external memory interface:

• PAGE#. Selects page/nonpage mode and specifies the data port.

• RD1:0. Selects the number of external address bus pins and the address range for RD#, WR,
and PSEN#.

• XALE#. Extends the ALE pulse.

• WSA1:0#. Selects 0, 1, 2, or 3 wait states for all memory regions except 01:.

• WSB1:0#. Selects 0, 1, 2, or 3 wait states for memory region 01:.

• EMAP#. Affects the external memory interface in that, when asserted, addresses in the
range 00:E000H–00:FFFFH access on-chip memory.
4-4

DEVICE CONFIGURATION

Figure 4-3. User Configuration Byte 0 (UCONFIG0)

UCONFIG0
(1), (3)

Address: FF:FFF8H (2)

7 0

— WSA1# WSA0# XALE# RD1 RD0 PAGE# SRC

Bit
Number

Bit
Mnemonic Function

7 — Reserved:
Reserved for internal or future use. Set this bit when programming
UCONFIG0.

6:5 WSA1:0# Wait State A (all regions except 01:):

For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.

WSA1# WSA0#
0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01:
1 1 Zero wait states for all regions except 01:

4 XALE# Extend ALE:

Set this bit for ALE = TOSC.
Clear this bit for ALE = 3TOSC (adds one external wait state).

3:2 RD1:0 Memory Signal Selection:

RD1:0 bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2 on page 4-7.

1 PAGE# Page Mode Select:

Clear this bit for page mode enabled with A15:8/D7:0 on P2 and A7:0 on P0.
Set this bit for page mode disabled with A15:8 on P2 and A7:0/D7:0 on P0.

0 SRC Source Mode/Binary Mode Select:

Set this bit for source mode.
Clear this bit for binary mode (opcodes compatible with MCS 51 microcon-
trollers).

NOTES:
1. User configuration bytes UCONFIG0 and UCONFIG1 define the configuration of the 8X930Ax.
2. Address. UCONFIG0 is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8X930Ax

fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:. When EA# = 0, the 8X930Ax fetches configuration information from a configura-
tion array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory
depends on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 16.
4-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 4-4. User Configuration Byte 1 (UCONFIG1)

UCONFIG1
(1),(3)

Address: FF:FFF9H (2)

7 0

— — — INTR — WSB1# WSB0# EMAP#

Bit
Number

Bit
Mnemonic Function

7:5 — Reserved:

Reserved for internal or future use. Set these bits when programming
UCONFIG1.

4 INTR Interrupt Mode:

If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC
and PSW1). If this bit is clear, interrupts push the 2 lower bytes of the PC
onto the stack. See “Interrupt Mode (INTR)” on page 4-14.

3 — Reserved. Write a ‘1’ to this bit.

2:1 WSB1:0#

External Wait State B (Region 01:):

WSB1# WSB0#
0 0 Inserts 3 wait states for region 01:
0 1 Inserts 2 wait states for region 01:
1 0 Inserts 1 wait state for region 01:
1 1 Zero wait states for region 01:

0 EMAP# EPROM Map:

For devices with 16 Kbytes of on-chip code memory, clear this bit to map the
upper half of on-chip code memory to region 00: (data memory). This maps
FF:2000H–FF:3FFFH to 00:E000H–00:FFFFH. If this bit is set, mapping
does not occur and addresses in the range 00:E000H–00:FFFFH access
external RAM. See “Mapping On-chip Code Memory to Data Memory
(EMAP#)” on page 14.

NOTES:
1. User configuration bytes UCONFIG0 and UCONFIG1 define the configuration of the 8X930Ax.
2. Address. UCONFIG1 is the second lowest byte of the 8-byte configuration array. When EA# = 1, the

8X930Ax fetches configuration information from an on-chip configuration array located in nonvolatile
memory at the top of region FF:. When EA# = 0, the 8X930Ax fetches configuration information from a
configuration array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory
depends on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 16.
4-6

DEVICE CONFIGURATION

.

4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE

This section describes the configuration options that affect the external memory interface. The
configuration bits described here determine the following interface features:

• page mode or nonpage mode (PAGE#)

• the number of external address pins — 16, 17, or 18 (RD1:0)

• the memory regions assigned to the read signals RD# and PSEN# (RD1:0)

• the external wait states (WSA1:0#, WSB1:0#, XALE#)

• mapping a portion of on-chip code memory to data memory (EMAP#)

4.4.1 Page Mode and Nonpage Mode (PAGE#)

The PAGE# bit (UCONFIG0.1) selects page-mode or nonpage-mode code fetches and deter-
mines whether data is transmitted on P2 or P0. See Figure 15-1 on page 15-1 and “Page Mode
Bus Cycles” on page 15-6 for a description of the bus structure and page mode operation

• Nonpage mode: PAGE# = 1. The bus structure is the same as for the MCS 51 architecture
with data D7:0 multiplexed with A7:0 on P0. External code fetches require two state times
(4TOSC).

• Page mode: PAGE# = 0. The bus structure differs from the bus structure in MCS 51
controllers. Data D7:0 is multiplexed with A15:8 on P2. Under certain conditions, external
code fetches require only one state time (2TOSC).

Table 4-2. Memory Signal Selections (RD1:0)

RD1:0 A17/P1.7/
CEX4/WCLK A16/P3.7/RD# PSEN# P3.6/WR# Features

0 0 A17 A16 Asserted for
all addresses

Asserted for writes to
all memory locations

256 Kbyte external
memory

0 1 P1.7/CEX4/
WCLK

A16 Asserted for
all addresses

Asserted for writes to
all memory locations

128 Kbyte external
memory

1 0 P1.7/CEX4/
WCLK

P3.7 only Asserted for
all addresses

Asserted for writes to
all memory locations

64 Kbyte external
memory. One
additional port pin.

1 1 P1.7/CEX4/
WCLK

RD# asserted
for addresses
≤ 7F:FFFFH

Asserted for
≥ 80:0000H

Asserted only for
writes to MCS® 51
microcontroller data
memory locations.

64 Kbyte external
memory. Compatible
with MCS 51
microcontrollers.

NOTE: RD1:0 are bits 3:2 of configuration byte UCONFIG0 (Figure 4-3).
4-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

each
4.4.2 Configuration Bits RD1:0

The RD1:0 configuration bits (UCONFIG0.3:2) determine the number of external address lines
and the address ranges for asserting the read signals PSEN#/RD# and the write signal WR#.
These selections offer different ways of addressing external memory. Figures 4-5 and 4-6 show
how internal memory space maps into external memory space for the four values of RD1:0. Chap-
ter 15, “External Memory Interface,” provides examples of external memory designs for
choice of RD1:0.

Figure 4-5. Internal/External Address Mapping (RD1:0 = 00 and 01)

FF:

01:

PSEN#, WR#

PSEN#, WR#

A4218-02

FF:

FE:

01:

00:

RD1:0 = 00

18 external address bits:

P0, P2, A16, A17

PSEN#, WR#

PSEN#, WR#

01:, FF:

00:, FE:

01

FF:

FE:

00

256 Kbytes

128 Kbytes

Notes:

1. Maximum external

 memory

2. Single read signal

Note:

Single read signal

Internal Memory with

Read/Write Signals

External

Memory

A16

1

0

RD1:0 = 01

A17:16

1 1

1 0

0 1

0 0

Internal Memory with

Read/Write Signals

External

Memory

17 external address bits:

P0, P2, A16

FE:

00:
4-8

DEVICE CONFIGURATION

Figure 4-6. Internal/External Address Mapping (RD1:0 = 10 and 11)

FF:

01:

PSEN#

RD#, WR#

A4217-02

FF:

FE:

01:

00:

RD1:0 = 10

16 external address bits:

P0, P2

PSEN#, WR#

PSEN#, WR#

FE:, FF:

00:, 01:

00:, 01:, FE:, FF:

64 Kbytes

128 Kbytes

Notes:

1. Single read signal

2. P3.7/RD#/A16 functions

 only as P3.7

Note:

1. Compatible with MCS® 51

 microcontrollers

2. Cannot write to regions FC:–FF:

Internal Memory with

Read/Write Signals

External

Memory

RD1:0 = 11

Internal Memory with

Read/Write Signals

External

Memory

16 external address bits:

P0, P2

FE:

00:
4-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

cesses
 case,
onding
Bus,

 (from
 64
 the
l Flash

d A16
al of
to the
d FF:.

tion, in
f pin

un-
ernal

 Kbyte
mem-
17 is
 pins
A key to the memory interface is the relationship between internal memory addresses and exter-
nal memory addresses. While the 8X930Ax has 24 internal address bits, the number of external
address lines is less than 24 (i.e., 16, 17, or 18, depending on the values of RD1:0). This means
that reads/writes to different internal memory addresses can access the same location in external
memory.

For example, if the 8X930Ax is configured for 18 external address lines, a write to location
01:6000H and a write to location FF:6000H accesses the same 18-bit external address (1:6000H)
because A16 = 1 and A17 = 1 for both internal addresses. In other words, regions 00: and FE:
map into the same 64 Kbyte region in external memory.

In some situations, however, a multiple mapping from internal memory to external memory does
not preclude using more than one region. For example, for a device with on-chip ROM configured
for 17 address bits and with EA# = 1, an access to FF:0000H–FF:3FFFH (16 Kbytes) ac
the on-chip ROM, while an access to 01:0000H–01:3FFFH is to external memory. In this
you could execute code from these locations in region FF: and store data in the corresp
locations in region 01: without conflict. See Figure 4-5 and “Example 1: RD1:0 = 00, 18-bit
External Flash and RAM” on page 15-18.”

4.4.2.1 RD1:0 = 00 (18 External Address Bits)

The selection RD1:0 = 00 provides 18 external address bits: A15:0 (ports P0 and P2), A16
P3.7/RD#/A16), and A17 (from P1.7/CEX4/A17/WCLK). Bits A16 and A17 can select four
Kbyte regions of external memory for a total of 256 Kbytes (top half of Figure 4-5). This is
largest possible external memory space. See “Example 1: RD1:0 = 00, 18-bit Bus, Externa
and RAM” on page 15-18.

4.4.2.2 RD1:0 = 01 (17 External Address Bits)

The selection RD1:0 = 01 provides 17 external address bits: A15:0 (ports P0 and P2) an
(from P3.7/RD#/A16). Bit A16 can select two 64 Kbyte regions of external memory for a tot
128 Kbytes (bottom half of Figure 4-5). Regions 00: and FE: (each having A16 = 0) map in
same 64 Kbyte region in external memory. This duplication also occurs for regions 01: an

This selection provides a 128 Kbyte external address space. The advantage of this selec
comparison with the 256 Kbyte external memory space with RD1:0 = 00, is the availability o
P1.7/CEX4/A17/WCLK for general I/O, PCA I/O or real-time wait clock output. I/O P3.7 is
available. All four 64 Kbyte regions are strobed by PSEN# and WR#. Chapter 15, “Ext
Memory Interface,” shows examples of memory designs with this option.

4.4.2.3 RD1:0 = 10 (16 External Address Bits)

For RD1:0 = 10, the 16 external address bits (A15:0 on ports P0 and P2) provide a single 64
region in external memory (top of Figure 4-6). This selection provides the smallest external
ory space; however, pin P3.7/RD#/A16 is available for general I/O and pin P1.7/CEX4/A
available for general I/O or PCA I/O. This selection is useful when the availability of these
is required and/or a small amount of external memory is sufficient.
4-10

DEVICE CONFIGURATION

gions
mory
ection

ory

and/or

 be ad-
arizes
s, see

ed by
:. The

 by 1,

 page
4.4.2.4 RD1:0 = 11 (Compatible with MCS 51 Microcontrollers)

The selection RD1:0 = 11 provides only 16 external address bits (A15:0 on ports P0 and P2).
However, PSEN# is the read signal for regions FE:–FF:, while RD# is the read signal for re
00:–01: (bottom of Figure 4-6). The two read signals effectively expand the external me
space to two 64 Kbyte regions. WR# is asserted only for writes to regions 00:–01:. This sel
provides compatibility with MCS 51 microcontrollers, which have separate external mem
spaces for code and data.

4.4.3 Wait State Configuration Bits

You can add wait states to external bus cycles by extending the RD#/WR#/PSEN# pulse
extending the ALE pulse. Each additional wait state extends the pulse by 2TOSC. A separate wait
state specification for external accesses via region 01: permits a slow external device to
dressed in region 01: without slowing accesses to other external devices. Table 4-3 summ
the wait state selections for RD#,WR#,PSEN#. For waveform diagrams showing wait state
“External Bus Cycles With Configurable Wait States” on page 15-8.

4.4.3.1 Configuration Bits WSA1:0#, WSB1:0#

The WSA1:0# wait state bits (UCONFIG0.6:5) permit RD#, WR#, and PSEN# to be extend
1, 2, or 3 wait states for accesses to external memory via all regions except region 01
WSB1:0# wait state bits (UCONFIG1.2:1) permit RD#, WR#, and PSEN# to be extended
2, or 3 wait states for accesses to external memory via region 01:.

4.4.3.2 Configuration Bit XALE#

Clearing XALE# (UCONFIG0.4) extends the time ALE is asserted from TOSC to 3TOSC. This ac-
commodates an address latch that is too slow for the normal ALE signal. Figure 15-10 on
15-10 shows an external bus cycle with ALE extended.

Table 4-3. RD#, WR#, PSEN# External Wait States

8X930Ax

Regions
00: FE: FF:

WSA1# WSA0#
0 0
0 1
1 0
1 1

3 Wait States
2 Wait States
1 Wait State
0 Wait States

Region 01: WSB1# WSB0#
0 0
0 1
1 0
1 1

3 Wait States
2 Wait States
1 Wait State
0 Wait States
4-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

x-
. The
t is the

 for
d. De-
. This

ting the

 prefix

 (com-
scape

 shows

0A
etter
ller

ill be

od-
g the
rchitec-
rs.
4.5 OPCODE CONFIGURATIONS (SRC)

The SRC configuration bit (UCONFIG0.0) selects the source mode or binary mode opcode ar-
rangement. Opcodes for the 8X930Ax architecture are listed in Table A-6 on page A-4 and Table
A-7 on page A-5. Note that in Table A-6 every opcode (00H–FFH), is used for an instruction e
cept A5H (ESC), which provides an alternative set of opcodes for columns 6H through FH
SRC bit selects which set of opcodes is assigned to columns 6H through FH and which se
alternative.

Binary mode and source mode refer to two ways of assigning opcodes to the instruction set
the 8X930Ax architecture. One of these modes must be selected when the chip is configure
pending on the application, binary mode or source mode may produce more efficient code
section describes the binary and source modes and provides some guidelines for selec
mode for your application.

The 8X930Ax architecture has two types of instructions:

• instructions that originate in the MCS® 51 architecture

• instructions that are common with the MCS® 251 architecture

Figure 4-7 shows the opcode map for binary mode. Area I (columns 1 through 5 in Table A-7)
and area II (columns 6 through F) make up the opcode map for the instructions that originate in
the MCS 51 architecture. Area III in Figure 4-7 represents the opcode map for the instructions
that are common with the MCS 251 architecture (Table A-7). Some of these opcodes are reserved
for future instructions. Note that the opcode values for areas II and III are identical (06H–FFH).
To distinguish between the two areas in binary mode, the opcodes in area III are given the
A5H. The area III opcodes are thus A506H–A5FFH.

Figure 4-8 shows the opcode map for source mode. Areas II and III have switched places
pare with Figure 4-7). In source mode, opcodes for instructions in area II require the A5F e
prefix while opcodes for instructions in area III do not.

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-4
the opcode assignments for three sample instructions.

4.5.1 Selecting Binary Mode or Source Mode

If a system was originally developed using an MCS 51 microcontroller, and if the new 8X93x-
based system will run code written for the MCS 51 microcontroller, performance will be b
with the 8X930Ax running in binary mode. Object code written for the MCS 51 microcontro
runs faster on the 8X930Ax.

However, if most of the code is rewritten using the MCS 251 instruction set, performance w
better with the 8X930Ax running in source mode. In this case, the 8X930Ax can run significantly
faster than the MCS 51 microcontroller.

If you have code that was written for an MCS 51 microcontroller and you want to run it unm
ified on an 8X930Ax, choose binary mode. You can use the object code without reassemblin
source code. You can also assemble the source code with an assembler for the MCS 251 a
ture and have it produce object code that is binary-compatible with MCS 51 microcontrolle
4-12

DEVICE CONFIGURATION
Figure 4-7. Binary Mode Opcode Map

Figure 4-8. Source Mode Opcode Map

A4131-01

I II

0H 5H FH6H
0H

FH

MCS® 51

Architecture

MCS 51

Architecture

III

6H FH
0H

FH

MCS 251

Architecture

A5H Prefix

A4130-01

I III

0H 5H FH6H
0H

FH

MCS® 51

Architecture

MCS 251

Architecture

II

6H FH
0H

FH

MCS 51

Architecture

A5H Prefix
4-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

map-

00–

n the

errupt

wing
d uses

k in the
bytes
ddress
If a program uses only instructions from the MCS 51 architecture, the binary-mode code is more
efficient because it uses no prefixes. On the other hand, if a program uses many more new instruc-
tions than instructions from the MCS 51 architecture, source mode is likely to produce more ef-
ficient code. For a program where the choice is not clear, the better mode can be found by
experimenting with a simulator.

For both architectures, an instruction with a prefixed opcode requires one more byte for code stor-
age, and if an additional fetch is required for the extra byte, the execution time is increased by
one state. This means that using fewer prefixed opcodes produces more efficient code.

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)

For devices with 16 Kbytes of on-chip code memory (83930AB), the EMAP# bit (UCONFIG1.0)
provides the option of accessing the upper half of on-chip code memory as data memory. This
allows code constants to be accessed as data in region 00: using direct addressing. See “Accessing
On-chip Code Memory in Region 00:” on page 3-9 for the exact conditions required for this
ping to be effective.

EMAP# = 0. For the 83930AB, the upper eight Kbytes of on-chip code memory (FF:20
FF:3FFFH are mapped to locations 00:E000H–00:FFFFH.

EMAP# = 1. Mapping of on-chip code memory to region 00: does not occur. Addresses i
range 00:E000H–00:FFFFH access external RAM.

4.7 INTERRUPT MODE (INTR)

The INTR bit (UCONFIG1.4) determines what bytes are stored on the stack when an int
occurs and how the RETI (Return from Interrupt) instruction restores operation.

For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the follo
order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes in the reverse order an
them as the 16-bit return address in region FF:.

For INTR = 1, an interrupt pushes the three PC bytes and the PSW1 register onto the stac
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four
and then returns to the specified 24-bit address, which can be anywhere in the 16 Mbyte a
space.

Table 4-4. Examples of Opcodes in Binary and Source Modes

Instruction
Opcode

Binary Mode Source Mode

DEC A 14H 14H

SUBB A,R4 9CH A59CH

SUB R4,R4 A59CH 9CH
4-14

5
Instructions and
Addressing

 set
icient
onfigu-
 “Op-

oit
n set
-bit,
re ac-
of pro-

ions.
; bit in-
CHAPTER 5
INSTRUCTIONS AND ADDRESSING

The instruction set for the architecture supports the instruction set for the MCS® 51 architecture
and MCS® 251 architecture. This chapter describes the addressing modes and summarizes the in-
struction set, which is divided into data instructions, bit instructions, and control instructions. The
program status word registers PSW and PSW1 are also described. Appendix A, “Instruction Set
Reference,” contains an opcode map and a detailed description of each instruction.

NOTE
The instruction execution times given in Appendix A are for code executing
from external memory and for data that is read from and written to on-chip
RAM. Execution times are increased by accessing peripheral SFRs, accessing
data in external memory, using a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs (Px, x = 3:0) increases the
execution time. These cases are noted in the tables in Appendix A.

5.1 SOURCE MODE OR BINARY MODE OPCODES

Source mode and Binary mode refer to the two ways of assigning opcodes to the instruction
of the 8X930Ax. Depending on the application, one mode or the other may produce more eff
code. The mode is established during device reset based on the value of the SRC bit in c
ration byte UCONFIG0. For information regarding the selection of the opcode mode, see
code Configurations (SRC)” on page 4-12.

5.2 PROGRAMMING FEATURES OF THE 8X930Ax ARCHITECTURE

The instruction set for 8X930Ax microcontrollers provides the user with instructions that expl
the features of the MCS 251 architecture while maintaining compatibility with the instructio
for MCS 51 microcontrollers. Many of the MCS 251 architecture instructions operate on 8
16-bit, or 32-bit operands. (In comparison with 8-bit and 16-bit operands, 32-bit operands a
cessed with fewer addressing modes.) This capability increases the ease and efficiency
gramming the 8X930Ax microcontroller in a high-level language such as C.

The instruction set is divided into data instructions, bit instructions, and control instruct
These are described in this chapter. Data instructions process 8-bit, 16-bit, and 32-bit data
structions manipulate bits; and control instructions manage program flow.
5-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

 il-

 in that
1, ...,
1, ...,
ndices.
 index

 (Fig-
on be-
:0000H–
ction.
5.2.1 Data Types

Table 5-1 lists the data types that are addressed by the instruction set. Words or dwords (double
words) can be in stored memory starting at any byte address; alignment on two-byte or four-byte
boundaries is not required. Words and dwords are stored in memory and the register file in big
endien form.

5.2.1.1 Order of Byte Storage for Words and Double Words

The 8X930Ax microcontroller stores words (2 bytes) and double words (4 bytes) in memory and
in the register file in big endien form. In memory storage, the most significant byte (MSB) of the
word or double word is stored in the memory byte specified in the instruction; the remaining bytes
are stored at higher addresses, with the least significant byte (LSB) at the highest address. Words
and double words can be stored in memory starting at any byte address. In the register file, the
MSB is stored in the lowest byte of the register specified in the instruction. For a description of
the register file, see “8X930Ax Register File” on page 3-9. The code fragment in Figure 5-1
lustrates the storage of words and double words in big endien form.

5.2.2 Register Notation

In register-addressing instructions, specific indices denote the registers that can be used
instruction. For example, the instruction ADD A,Rn uses “Rn” to denote any one of R0, R
R7; i.e., the range of n is 0–7. The instruction ADD Rm,#data uses “Rm” to denote R0, R
R15; i.e., the range of m is 0–15. Table 5-2 summarizes the notation used for the register i
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first
“d” denotes “destination” and the second index “s” denotes “source.”

5.2.3 Address Notation

In the 8X930Ax architecture, memory addresses include a region number (00:, 01:, ..., FF:)
ure 3-5 on page 3-7). SFR addresses have a prefix “S:” (S:000H–S:1FFH). The distincti
tween memory addresses and SFR addresses is necessary because memory locations 00
00:01FFH and SFR locations S:000H–S:1FFH can both be directly addressed in an instru

Table 5-1. Data Types

Data Type Number of Bits

Bit 1

Byte 8

Word 16

Dword (Double Word) 32
5-2

INSTRUCTIONS AND ADDRESSING

ations
are ad-

de

nd the

sses in

Figure 5-1. Word and Double-word Storage in Big Endien Form

Instructions in the MCS 51 architecture use 80H–FFH as addresses for both memory loc
and SFRs, because memory locations are addressed only indirectly and SFR locations
dressed only directly. For compatibility, software tools for 8X930Ax microcontrollers recognize
this notation for instructions in the 8X930Ax architecture. No change is necessary in any co
written for MCS 51 controllers.

For the MCS 251 architecture instructions, the memory region prefixes (00:, 01, ..., FF:) a
SFR prefix (S:) are required. Also, software tools for the 8X930Ax architecture permit 00: to be
used for memory addresses 00H–FFH and permit the prefix S: to be used for SFR addre
instructions in the 8X930Ax architecture.

Table 5-2. Notation for Byte Registers, Word Registers, and Dword Registers

Register
Type

Register
Symbol

Destination
Register

Source
Register Register Range

Byte

Ri — — R0, R1

Rn — — R0–R7

Rm Rmd Rms R0–R15

Word WRj WRjd WRjs WR0, WR2, WR4, ..., WR30

Dword DRk DRkd DRks DR0, DR4, DR8, ..., DR28, DR56, DR60

MOV WR0,#A3B6H

MOV 00:0201H,WR0

MOV DR4,#0000C4D7H

A3H B6H

2 3

WR0

4 5 60 1 7

00H 00H C4H D7H

DR4

Register File

Memory

Contents of register file and memory after execution

A4242-01

200H 201H 202H 203H

A3H B6H
5-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

” on

t, and
ions.

ble 5-4
struc-
5.2.4 Addressing Modes

The 8X930Ax architecture supports the following addressing modes:

• register addressing: The instruction specifies the register that contains the operand.

• immediate addressing: The instruction contains the operand.

• direct addressing: The instruction contains the operand address.

• indirect addressing: The instruction specifies the register that contains the operand
address.

• displacement addressing: The instruction specifies a register and an offset. The operand
address is the sum of the register contents (the base address) and the offset.

• relative addressing: The instruction contains the signed offset from the next instruction to
the target address (the address for transfer of control, e.g., the jump address).

• bit addressing: The instruction contains the bit address.

More detailed descriptions of the addressing modes are given in “Data Addressing Modes” on
page 5-4, “Bit Addressing” on page 5-10, and “Addressing Modes for Control Instructions
page 5-12.

5.3 DATA INSTRUCTIONS

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bi
32-bit data. This section describes the data addressing modes and the set of data instruct

5.3.1 Data Addressing Modes

This section describes the data-addressing modes, which are summarized in two tables: Ta
for the instructions that are native to the MCS 51 architecture, and Table 5-4 for the data in
tions in the MCS 251architecture.

NOTE
References to registers R0–R7, WR0–WR6, DR0, and DR2 always refer to the
register bank that is currently selected by the PSW and PSW1 registers (see
“Program Status Words” on page 5-15). Registers in all banks (active and
inactive) can be accessed as memory locations in the range 00H–1FH.

Instructions from the MCS 51 architecture access external memory through the
region of memory specified by byte DPXL in the extended data pointer
register, DPX (DR56). Following reset, DPXL contains 01H, which maps the
external memory to region 01:. You can specify a different region by writing to
DR56 or the DPXL SFR (see “Dedicated Registers” on page 3-12).
5-4

INSTRUCTIONS AND ADDRESSING

ters

) as
SFRs
 in
5.3.1.1 Register Addressing

Both architectures address registers directly:

• MCS 251 architecture. In the register addressing mode, the operand(s) in a data instruction
are in byte registers (R0–R15), word registers (WR0, WR2, ..., WR30), or dword regis
(DR0, DR4, ..., DR28, DR56, DR60).

• MCS 51 architecture. Instructions address registers R0–R7 only.

5.3.1.2 Immediate

Both architectures use immediate addressing.

• MCS 251 architecture. In the immediate addressing mode, the instruction contains the data
operand itself. Byte operations use 8-bit immediate data (#data); word operations use 16-bit
immediate data (#data16). Dword operations use 16-bit immediate data in the lower word,
and either zeros in the upper word (denoted by #0data16), or ones in the upper word
(denoted by #1data16). MOV instructions that place 16-bit immediate data into a dword
register (DRk), place the data either into the upper word while leaving the lower word
unchanged, or into the lower word with a sign extension or a zero extension.
The increment and decrement instructions contain immediate data (#short = 1, 2, or 4) that
specifies the amount of the increment/decrement.

• MCS 51 architecture. Instructions use only 8-bit immediate data (#data).

5.3.1.3 Direct

• MCS 251 architecture. In the direct addressing mode, the instruction contains the address of
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8 = 00:0000H–
00:007FH) as both bytes and words, and addresses the SFRs (dir8 = S:080H–S:1FFH
bytes only. (See the second note in “Data Addressing Modes” on page 5-4 regarding
in the MCS 251 architecture.) The 16-bit direct mode addresses both bytes and words
memory (dir16 = 00:0000H–00:FFFFH).

• MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8 =
00H–7FH) as bytes only and the SFRs (dir8 = 80H–FFH) as bytes only.

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51 Architecture

Mode Address Range of
Operand

Assembly Language
Reference Comments

Register 00H–1FH R0–R7
(Bank selected by PSW)

Immediate Operand in Instruction #data = #00H–#FFH

Direct

00H–7FH dir8 = 00H–7FH On-chip RAM

SFRs dir8 = 80H–FFH
or SFR mnemonic. SFR address
5-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

address
rs:

 can
. (If

ck

in the

ory

se

to
5.3.1.4 Indirect

In arithmetic and logical instructions that use indirect addressing, the source operand is always a
byte, and the destination is either the accumulator or a byte register (R0–R15). The source
is a byte, word, or dword. The two architectures do indirect addressing via different registe

• MCS 251 architecture. Memory is indirectly addressed via word and dword registers:

— Word register (@WRj, j = 0, 2, 4, ..., 30). The 16-bit address in WRj can access
locations 00:0000H–00:FFFFH.

— Dword register (@DRk, k = 0, 4, 8, ..., 28, 56, and 60). The 24 least significant bits
access the entire 16-Mbyte address space. The upper eight bits of DRk must be 0
you use DR60 as a general data pointer, be aware that DR60 is the extended sta
pointer register SPX.)

• MCS 51 architecture. Instructions use indirect addressing to access on-chip RAM, code
memory, and external data RAM. (See the second note in “Data Addressing Modes” on
page 5-4 regarding the region of external data RAM that is addressed by instructions
MCS 51 architecture.)

— Byte register (@Ri, i = 1, 2). Registers R0 and R1 indirectly address on-chip mem
locations 00H–FFH and the lowest 256 bytes of external data RAM.

— 16-bit data pointer (@DPTR or @A+DPTR). The MOVC and MOVX instructions u
these indirect modes to access code memory and external data RAM.

— 16-bit program counter (@A+PC). The MOVC instruction uses this indirect mode
access code memory.

 Indirect

00H–FFH @R0, @R1
Accesses on-chip RAM or the
lowest 256 bytes of external
data memory (MOVX).

0000H–FFFFH @DPTR, @A+DPTR Accesses external data
memory (MOVX).

0000H–FFFFH @A+DPTR, @A+PC Accesses region FF: of code
memory (MOVC).

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51

Mode Address Range of
Operand

Assembly Language
Reference Comments
5-6

INSTRUCTIONS AND ADDRESSING

5.3.1.5 Displacement

Several move instructions use displacement addressing to move bytes or words from a source to
a destination. Sixteen-bit displacement addressing (@WRj+dis16) accesses indirectly the lowest
64 Kbytes in memory. The base address can be in any word register WRj. The instruction contains
a 16-bit signed offset which is added to the base address. Only the lowest 16 bits of the sum are
used to compute the operand address. If the sum of the base address and a positive offset exceeds
FFFFH, the computed address wraps around within region 00: (e.g. F000H + 2005H becomes

Table 5-4. Addressing Modes for Data Instructions in the MCS 251 Architecture

Mode Address Range of
Operand

Assembly Language
Notation Comments

Register
00:0000H–00:001FH

(R0–R7, WR0–WR3,
DR0, DR2) (1)

R0–R15, WR0–WR30,
DR0–DR28, DR56, DR60

R0–R7, WR0–WR6, DR0, and
DR2 are in the register bank
currently selected by the
PSW and PSW1.

Immediate,
2 bits

N.A. (Operand is in the
instruction) #short = 1, 2, or 4 Used only in increment and

decrement instructions.

Immediate,
8 bits

N.A. (Operand is in the
instruction) #data8 = #00H–#FFH

Immediate,
16 bits

N.A. (Operand is in the
instruction) #data16 = #0000H–#FFFFH

Direct,
8 address bits

00:0000H–00:007FH dir8 = 00:0000H–00:007FH On-chip RAM

SFRs dir8 = S:080H–S:1FFH (2)
or SFR mnemonic SFR address

Direct,
16 address bits 00:0000H–00:FFFFH dir16 = 00:0000H–00:FFFFH

Indirect,
16 address bits 00:0000H–00:FFFFH @WR0–@WR30

Indirect,
24 address bits 00:0000H–FF:FFFFH @DR0–@DR30, @DR56,

@DR60
Upper 8 bits of DRk must be
00H.

Displacement,
16 address bits 00:0000H–00:FFFFH

@WRj + dis16 =

@WR0 + 0H through
@WR30 + FFFFH

Offset is signed; address
wraps around in region 00:.

Displacement,
24 address bits 00:0000H–FF:FFFFH

@DRk + dis24 =

@DR0 + 0H through
@DR28 + FFFFH,

@DR56 + (0H–FFFFH),
@DR60 + (0H–FFFFH)

Offset is signed, upper 8 bits
of DRk must be 00H.

NOTES:
1. These registers are accessible in the memory space as well as in the register file (see “8X930Ax

Register File” on page 3-9).
2. The MCS 251 architecture supports SFRs in locations S:000H–S:1FFH; however, in the 8X930Ax all

SFRs are in the range S:080H–S:0FFH.
5-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
1005H). Similarly, if the sum of the base address and a negative offset is less than zero, the com-
puted address wraps around the top of region 00: (e.g., 2005H + F000H becomes 1005H).

Twenty-four-bit displacement addressing (@DRk+dis24) accesses indirectly the entire 16-Mbyte
address space. The base address must be in DR0, DR4, ..., DR24, DR28, DR56, or DR60. The
upper byte in the dword register must be zero. The instruction contains a 16-bit signed offset
which is added to the base address.

5.3.2 Arithmetic Instructions

The set of arithmetic instructions is greatly expanded in the MCS 251 architecture. The ADD and
SUB instructions (Table A-19 on page A-14) operate on byte and word data that is accessed in
several ways:

• as the contents of the accumulator, a byte register (Rn), or a word register (WRj)

• in the instruction itself (immediate data)

• in memory via direct or indirect addressing

The ADDC and SUBB instructions (Table A-19) are the same as those for MCS 51 microcontrol-
lers.

The CMP (compare) instruction (Table A-20 on page A-15) calculates the difference of two bytes
or words and then writes to flags CY, OV, AC, N, and Z in the PSW and PSW1 registers. The
difference is not stored. The operands can be addressed in a variety of modes. The most frequent
use of CMP is to compare data or addresses preceding a conditional jump instruction.

Table A-21 on page A-15 lists the INC (increment) and DEC (decrement) instructions. The in-
structions for MCS 51 microcontrollers are supplemented by instructions that can address byte,
word, and dword registers and increment or decrement them by 1, 2, or 4 (denoted by #short).
These instructions are supplied primarily for register-based address pointers and loop counters.

The 8X930Ax architecture provides the MUL (multiply) and DIV (divide) instructions for un-
signed 8-bit and 16-bit data (Table A-22 on page A-16). Signed multiply and divide are left for
the user to manage through a conversion process. The following operations are implemented:

• eight-bit multiplication: 8 bits × 8 bits → 16 bits

• sixteen-bit multiplication: 16 bits × 16 bits → 32 bits

• eight-bit division: 8 bits ÷ 8 bits → 16 bits (8-bit quotient, 8-bit remainder)

• sixteen-bit division: 16 bits ÷ 16 bits → 32 bits (16-bit quotient, 16-bit remainder)

These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WRjs), or
the accumulator and B register (A,B). For 8-bit register multiplies, the result is stored in the word
register that contains the first operand register. For example, the product from an instruction
MUL R3,R8 is stored in WR2. Similarly, for 16-bit multiplies, the result is stored in the dword
register that contains the first operand register. For example, the product from the instruction
MUL WR6,WR18 is stored in DR4.
5-8

INSTRUCTIONS AND ADDRESSING

ccu-

nts
n bit
di-

ster or
f the
For 8-bit divides, the operands are byte registers. The result is stored in the word register that con-
tains the first operand register. The quotient is stored in the lower byte, and the remainder is stored
in the higher byte. A 16-bit divide is similar. The first operand is a word register, and the result is
stored in the double word register that contains that word register. If the second operand (the di-
visor) is zero, the overflow flag (OV) is set and the other bits in PSW and PSW1 are meaningless.

5.3.3 Logical Instructions

The 8X930Ax architecture provides a set of instructions that perform logical operations. The
ANL, ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate
on bytes and words that are accessed via several addressing modes (Table A-23 on page A-17).
A byte register, word register, or the accumulator can be logically combined with a register, im-
mediate data, or data that is addressed directly or indirectly. These instructions affect the Z and N
flags.

In addition to the CLR (clear), CPL (complement), SWAP (swap), and four rotate instructions that
operate on the accumulator, 8X930Ax microcontroller has three shift commands for byte and
word registers:

• SLL (Shift Left Logical) shifts the register one bit left and replaces the LSB with 0

• SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with 0

• SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged

5.3.4 Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. These in-
structions include the move instructions (Table A-24 on page A-19) and the exchange, push, and
pop instructions (Table A-25 on page A-22). Instructions that move only a single bit are listed
with the other bit instructions in Table A-26 on page A-23.

MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the
8X930Ax architecture. MOV can transfer a byte, word, or dword between any two registers or
between a register and any location in the address space.

The MOVX (Move External) instruction moves a byte from external memory to the accumulator
or from the accumulator to memory. The external memory is in the region specified by DPXL,
whose reset value is 01H (see “Dedicated Registers” on page 3-12).

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the a
mulator.

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the conte
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sig
(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit imme
ate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a regi
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble o
5-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

). The
its than

 bits. In
ithin

930A
 location
accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (binary
coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it
(POP) in reverse order. Push can push a byte, a word, or a dword onto the stack, using the imme-
diate, direct, or register addressing modes. POP can pop a byte or a word from the stack to a reg-
ister or to memory.

5.4 BIT INSTRUCTIONS

A bit instruction addresses a specific bit in a memory location or SFR. There are four categories
of bit instructions:

• SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set,
clear or complement any addressable bit.

• ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or
Logical Complement). These instructions allow ANDing and ORing of any addressable bit
or its complement with the CY flag.

• MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.

• Bit-conditional jump instructions execute a jump if the bit has a specified state. The bit-
conditional jump instructions are classified with the control instructions and are described
in “Conditional Jumps” on page 5-13.

5.4.1 Bit Addressing

The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table 5-5
bit instructions that are unique to the MCS 251 architecture can address a wider range of b
the instructions from the MCS 51 architecture.

There are some differences in the way the instructions from the two architectures address
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location w
a certain register, or it can be specified by a bit address in the range 00H–7FH. The 8Xx
architecture does not have bit addresses as such. A bit can be addressed by name or by its
within a certain register, but not by a bit address.

Table 5-6 illustrates bit addressing in the two architectures by using two sample bits:

• RAMBIT is bit 5 in RAMREG, which is location 23H. “RAMBIT” and “RAMREG” are
assumed to be defined in user code.

• IT1 is bit 2 in TCON, which is an SFR at location 88H.
5-10

INSTRUCTIONS AND ADDRESSING

archi-
cture.

ondi-
ext in-
rovides
Table 5-7 lists the addressing modes for bit instructions and Table A-26 on page A-23 summarizes
the bit instructions. “Bit” denotes a bit that is addressed by an instruction in the MCS 251
tecture and “bit51” denotes a bit that is addressed by an instruction in the MCS 51 archite

5.5 CONTROL INSTRUCTIONS

Control instructions—instructions that change program flow—include calls, returns, and c
tional and unconditional jumps (see Table A-27 on page A-24). Instead of executing the n
struction in the queue, the processor executes a target instruction. The control instruction p

Table 5-5. Bit-addressable Locations

Architecture
Bit-addressable Locations

On-chip RAM SFRs

MCS® 251 Architecture 20H–7FH All defined SFRs

MCS 51 Architecture 20H–2FH SFRs with addresses ending in 0H or 8H:
80H, 88H, 90H, 98H, ..., F8H

Table 5-6. Addressing Two Sample Bits

Location Addressing
Mode

MCS® 51
Architecture

MCS 251
Architecture

On-chip RAM

Register Name RAMREG.5 RAMREG.5

Register Address 23H.5 23H.5

Bit Name RAMBIT RAMBIT

Bit Address 1DH NA

SFR

Register Name TCON.2 TCON.2

Register Address 88.2H S:88.2H

Bit Name IT1 IT1

Bit Address 8A NA

Table 5-7. Addressing Modes for Bit Instructions

Archi-
tecture

Variants Bit Address Memory/SFR Address Comments

MCS® 251
Architecture
(bit)

Memory NA 20H.0–7FH.7

SFR NA All defined SFRs

MCS 51
Architecture
(bit51)

Memory 00H–7FH 20H.0–7FH.7

SFR 80H–F8H XXH.0–XXH.7, where XX = 80,
88, 90, 98, ..., F0, F8.

SFRs are not defined
at all bit-addressable
locations.
5-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

t be in

t be in
next

f the
xt

d in
ricts
the address of a target instruction either implicitly, as in a return from a subroutine, or explicitly,
in the form of a relative, direct, or indirect address.

The 8X930Ax has a 24-bit program counter (PC), which allows a target instruction to be any-
where in the 16-Mbyte address space. However, as discussed in this section, some control instruc-
tions restrict the target address to the current 2-Kbyte or 64-Kbyte address range by allowing only
the lowest 11 or lowest 16 bits of the program counter to change.

5.5.1 Addressing Modes for Control Instructions

Table 5-8 lists the addressing modes for the control instructions.

• Relative addressing: The control instruction provides the target address as an 8-bit signed
offset (rel) from the address of the next instruction.

• Direct addressing: The control instruction provides a target address, which can have 11 bits
(addr11), 16 bits (addr16), or 24 bits (addr24). The target address is written to the PC.

— addr11: Only the lower 11 bits of the PC are changed; i.e., the target address mus
the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next
instruction).

— addr16: Only the lower 16 bits of the PC are changed; i.e., the target address mus
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the
instruction).

— addr24: The target address can be anywhere in the 16-Mbyte address space.

• Indirect addressing: There are two types of indirect addressing for control instructions:

— For the instructions LCALL @WRj and LJMP @WRj, the target address is in the
current 64-Kbyte region. The 16-bit address in WRj is placed in the lower 16 bits o
PC. The upper eight bits of the PC remain unchanged from the address of the ne
instruction.

— For the instruction JMP @A+DPTR, the sum of the accumulator and DPTR is place
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which rest
the target address to the code memory space of the MCS 51 architecture.
5-12

INSTRUCTIONS AND ADDRESSING

hat is
1 reg-

ruction.
d that

s:
5.5.2 Conditional Jumps

The 8X930Ax architecture supports bit-conditional jumps, compare-conditional jumps, and
jumps based on the value of the accumulator. A bit-conditional jump is based on the state of a bit.
In a compare-conditional jump, the jump is based on a comparison of two operands. All condi-
tional jumps are relative, and the target address (rel) must be in the current 256-byte block of
code. The instruction set includes three kinds of bit-conditional jumps:

• JB (Jump on Bit): Jump if the bit is set.

• JNB (Jump on Not Bit): Jump if the bit is clear.

• JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.

“Bit Addressing” on page 5-10 describes the bit addressing used in these instructions.

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction t
assumed to precede the jump instruction. The jump instruction examines the PSW and PSW
isters and interprets their flags as though they were set or cleared by a compare (CMP) inst
Actually, the state of each flag is determined by the last instruction that could have affecte
flag.

The condition flags are used to test one of the following six relations between the operand

• equal (=), not equal (≠)

• greater than (>), less than (<)

• greater than or equal (≥), less than or equal (≤)

For each relation there are two instructions, one for signed operands and one for unsigned oper-
ands (Table 5-9).

Table 5-8. Addressing Modes for Control Instructions

Description Address Bits
Provided Address Range

Relative, 8-bit relative address (rel) 8 -128 to +127 from first byte of next instruction

Direct, 11-bit target address (addr11) 11 Current 2 Kbytes

Direct, 16-bit target address (addr16) 16 Current 64 Kbytes

Direct, 24-bit target address (addr24)† 24 00:0000H–FF:FFFFH

Indirect (@WRj)† 16 Current 64 Kbytes

Indirect (@A+DPTR) 16 64-Kbyte region specified by DPXL (reset
value = 01H)

†These modes are not used by instructions in the MCS® 51 architecture.
5-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
5.5.3 Unconditional Jumps

There are five unconditional jumps. NOP and SJMP jump to addresses relative to the program
counter. AJMP, LJMP, and EJMP jump to direct or indirect addresses.

• NOP (No Operation) is an unconditional jump to the next instruction.

• SJMP (Short Jump) jumps to any instruction within -128 to 127 of the next instruction.

• AJMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the
current 2-Kbyte block of memory. The address can be direct or indirect.

• LJMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the
current 64-Kbyte region.

• EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mbyte
address space. The address can be direct or indirect.

5.5.4 Calls and Returns

The 8X930Ax architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack
and then changes the lower 11 bits of the PC to the 11-bit address specified by the instruction.
The call is to an address that is in the same 2-Kbyte block of memory as the address of the next
instruction.

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stack and
then changes the lower 16 bits of the PC to the 16-bit address specified by the instruction. The
call is to an address in the same 64-Kbyte block of memory as the address of the next instruction.

ECALL (Extended Call) pushes the 24 bits of the next instruction address onto the stack and then
changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call is to an
address anywhere in the 16-Mbyte memory space.

RET (Return) pops the top two bytes from the stack to return to the instruction following a sub-
routine call. The return address must be in the same 64-Kbyte region.

ERET (Extended Return) pops the top three bytes from the stack to return to the address follow-
ing a subroutine call. The return address can be anywhere in the 16-Mbyte address space.

Table 5-9. Compare-conditional Jump Instructions

Operand
Type

Relation

= ≠ > < Š £

Unsigned
JE JNE

JG JL JGE JLE

Signed JSG JSL JSGE JSLE
5-14

INSTRUCTIONS AND ADDRESSING

truc-

regis-
iden-
r. Table
RETI (Return from Interrupt) provides a return from an interrupt service routine. The operation
of RETI depends on the INTR bit in the UCONFIG1 or CONFIG1 configuration byte:

• For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the
following order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes and uses them
as the 16-bit return address in region FF:. RETI also restores the interrupt logic to accept
additional interrupts at the same priority level as the one just processed.

• For INTR = 1, an interrupt pushes the three PC bytes and PSW1 onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four
bytes and then returns to the specified 24-bit address, which can be anywhere in the 16-
Mbyte address space. RETI also clears the interrupt request line. (See the note in Table 5-8
regarding compatibility with code written for MCS 51 microcontrollers.)

The TRAP instruction is useful for the development of emulations of an 8X930Ax microcontrol-
ler.

5.6 PROGRAM STATUS WORDS

The Program Status Word (PSW) register (Figure 5-2) and the Program Status Word 1 (PSW1)
register (Figure 5-3) contain four types of bits:

• CY, AC, OV, N, and Z are flags set by hardware to indicate the result of an operation.

• The P bit indicates the parity of the accumulator.

• Bits RS0 and RS1 are programmed by software to select the active register bank for
registers R0–R7.

• F0 and UD are available to the user as general-purpose flags.

The PSW and PSW1 registers are read/write registers; however, the parity bit in the PSW is not
affected by a write. Individual bits can be addressed with the bit instructions (see “Bit Address-
ing” on page 5-10). The PSW and PSW1 bits are used implicitly in the conditional jump ins
tions (see “Conditional Jumps” on page 5-13).

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSW1
ter exists only in MCS 251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 are
tical to the corresponding bits in PSW; i.e., the same bit can be accessed in either registe
5-10 lists the instructions that affect the CY, AC, OV, N, and Z bits.
5-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Table 5-10. The Effects of Instructions on the PSW and PSW1 Flags

Instruction Type Instruction
Flags Affected (1), (5)

CY OV AC (2) N Z

Arithmetic

ADD, ADDC, SUB,
SUBB, CMP

X X X X X

INC, DEC X X

MUL, DIV (3) 0 X X X

DA X X X

Logical

ANL, ORL, XRL, CLR A,
CPL A, RL, RR, SWAP

X X

RLC, RRC, SRL, SLL,
SRA (4)

X X X

Program Control
CJNE X X X

DJNE X X

NOTES:
1. X = the flag can be affected by the instruction.

0 = the flag is cleared by the instruction.
2. The AC flag is affected only by operations on 8-bit operands.
3. If the divisor is zero, the OV flag is set, and the other bits are meaningless.
4. For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.
5. The parity bit (PSW.0) is set or cleared by instructions that change the contents of the

accumulator (ACC, Register R11).
5-16

INSTRUCTIONS AND ADDRESSING
.

Figure 5-2. Program Status Word Register

PSW Address: S:D0H
Reset State: 0000 0000B

7 0

CY AC F0 RS1 RS0 OV UD P

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10).

5 F0 Flag 0:

This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers R0–R7).

RS1 RS0 Bank Address

0 0 0 00H–07H
0 1 1 08H–0FH
1 0 2 10H–17H
1 1 3 18H–1FH

2 OV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 UD User-definable Flag:

This general-purpose flag is available to the user.

0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).
5-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
.

Figure 5-3. Program Status Word 1 Register

PSW1 Address: S:D1H
Reset State: 0000 0000B

7 0

CY AC N RS1 RS0 OV Z —

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

Identical to the CY bit in the PSW register.

6 AC Auxiliary Carry Flag:

Identical to the AC bit in the PSW register.

5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative (i.e., bit 15 = 1). Otherwise it is cleared.

4–3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to the RS1:0 bits in the PSW register.

2 OV Overflow Flag:

Identical to the OV bit in the PSW register.

1 Z Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.
5-18

6
Interrupt System

CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW

The 8X930Ax, like other control-oriented microcontroller architectures†, employs a program in-
terrupt method. This operation branches to a subroutine and performs some service in response
to the interrupt. When the subroutine completes, execution resumes at the point where the inter-
rupt occurred. Interrupts may occur as a result of internal 8X930Ax activity (e.g., timer overflow)
or at the initiation of electrical signals external to the microcontroller (e.g., serial port communi-
cation). In all cases, interrupt operation is programmed by the system designer, who determines
priority of interrupt service relative to normal code execution and other interrupt service routines.
Ten of the eleven interrupts are enabled or disabled by the system designer and may be manipu-
lated dynamically.

A typical interrupt event chain occurs as follows. An internal or external device initiates an inter-
rupt-request signal. This signal, connected to an input pin (see Table 6-1) and periodically sam-
pled by the 8X930Ax, latches the event into a flag buffer. The priority of the flag (see Table 6-2)
is compared to the priority of other interrupts by the interrupt handler. A high priority causes the
handler to set an interrupt flag. This signals the instruction execution unit to execute a context
switch. This context switch breaks the current flow of instruction sequences. The execution unit
completes the current instruction prior to a save of the program counter (PC) and reloads the PC
with the start address of a software service routine. The software service routine executes as-
signed tasks and as a final activity performs a RETI (return from interrupt) instruction. This in-
struction signals completion of the interrupt, resets the interrupt-in-progress priority, and reloads
the program counter. Program operation then continues from the original point of interruption.

† A non-maskable interrupt (NMI#) is not included on the 8X930Ax.

Table 6-1. Interrupt System Input Signals

Signal
Name Type Description Multiplexed

With

INT1:0# I External Interrupts 0 and 1. These inputs set bits IE1:0 in the
TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INT0#. If bits
INT1:0# are clear, bits IE1:0 are controlled by a low level trigger on
INT1:0#.

P3.3:2

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Signal Descriptions.”
6-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Figure 6-1. Interrupt Control System

ASOF
Any Start

of Frame

IE0

0

1

INT0#

Timer 0

IE1

0

1

INT1#

Timer 1

0

1

0

1

ECF

ECCFx

IT0

IT1

5

IPH1/IPL1IEN1

IPH0/IPL0
Interrupt Enable Priority Enable

EX0

ET0

EX1

ET1

EC

ES

ET2

TF0

CF

CCFx

RI

TI

TF2

EXF2

TF1

PCA

Counter

Overflow

PCA

Match or

Capture

Receive

Transmit

Timer 2

T2EX

In
te

rr
up

t P
ol

lin
g

S
eq

ue
nc

e

Highest

Priority

Interrupt

Lowest Priority Interrupt

EA

A5042-01

IEN0

0

1

0

1

FRXIEx

FTXIEx

4

4

ESOF

FRXDx

FTXDx

USB Endpoint Done

Transmit

Receive

SOFIE

1

4
EF

1

4

GRSM

GSUS
USB

Suspend

USB

Resume

ESR

2

0

1

PCON1.0

PCON1.1

SOFH.6 SOFH.5

0

1

6-2

INTERRUPT SYSTEM
6.2 8X930Ax INTERRUPT SOURCES

Figure 6-1 illustrates the interrupt control system. The 8X930Ax has eleven interrupt sources; ten
maskable sources and the TRAP instruction (always enabled). The maskable sources include two
external interrupts (INT0# and INT1#), three timer interrupts (timers 0, 1, and 2), one program-
mable counter array (PCA) interrupt, one serial port interrupt, and three USB interrupts. Each in-
terrupt (except TRAP) has an interrupt request flag, which can be set by software as well as by
hardware (see Table 6-3). For some interrupts, hardware clears the request flag when it grants an
interrupt. Software can clear any request flag to cancel an impending interrupt.

6.2.1 External Interrupts

External interrupts INT0# and INT1# (INTx#) pins may each be programmed to be level-trig-
gered or edge-triggered, dependent upon bits IT0 and IT1 in the TCON register (see Figure 10-6
on page 10-9). If ITx = 0, INTx# is triggered by a detected low at the pin. If ITx = 1, INTx# is
negative-edge triggered. External interrupts are enabled with bits EX0 and EX1 (EXx) in the
IEN0 register (see Figure 6-4). Events on the external interrupt pins set the interrupt request flags
IEx in TCON. These request bits are cleared by hardware vectors to service routines only if the
interrupt is negative-edge triggered. If the interrupt is level-triggered, the interrupt service routine
must clear the request bit. External hardware must deassert INTx# before the service routine com-
pletes, or an additional interrupt is requested. External interrupt pins must be deasserted for at
least four state times prior to a request.

Table 6-2. Interrupt System Special Function Registers

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. Enables and disables the receive
and transmit done interrupts for the four function endpoints.

S:A2H

FIFLG USB Function Interrupt Flag Register. Contains the USB Function’s
Transmit and Receive Done interrupt flags for non-isochronous endpoints.

S:C0H

IEN0 Interrupt Enable Register 0. Enables individual programmable interrupts.
Also provides a global enable for the programmable interrupts. The reset value
for this register is zero (interrupts disabled).

S:A8H

IEN1 Interrupt Enable Register1. Enables individual programmable interrupts for
the USB interrupts. The reset value of this register is zero (interrupts disabled).

S:B1H

IPL0 Interrupt Priority Low Register 0. Establishes relative priority for program-
mable interrupts. Used in conjunction with IPH0.

S:B8H

IPH0 Interrupt Priority High Register 0. Establishes relative priority for program-
mable interrupts. Used in conjunction with IPL0.

S:B7H

IPL1 Interrupt Priority Low Register 1. Establishes relative priority for program-
mable interrupts. Used in conjunction with IPH1.

S:B2H

IPH1 Interrupt Priority High Register 1. Establishes relative priority for program-
mable interrupts. Used in conjunction with IPL1.

S:B3H

NOTE: Other SFRs are described in their respective chapters and in Appendix C, “Registers.”
6-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
External interrupt pins are sampled once every four state times (a frame length of 666.4 ns at 12
MHz). A level-triggered interrupt pin held low or high for any five-state time period guarantees
detection. Edge-triggered external interrupts must hold the request pin low for at least five state
times. This ensures edge recognition and sets interrupt request bit EXx. The CPU clears EXx au-
tomatically during service routine fetch cycles for edge-triggered interrupts.

Additional interrupts specific to USB operation appear in Table 6-4.

Table 6-3. Interrupt Control Matrix

Interrupt Name† Global
Enable PCA Timer

2
Serial
Port

Timer
1 INT1# Timer

0 INT0#

Bit Name in IEN0
Register EA EC ET2 ES ET1 EX1 ET0 EX0

Interrupt Priority-
Within-Level
(10 = Low Priority,
1 = High Priority)

NA 7 6 5 4 3 2 1

Bit Names in:
IPH0
IPL0

Reserved
Reserved

IPH0.6
IPL0.6

IPH0.5
IPL0.5

IPH0.4
IPL0.4

IPH0.3
IPL0.3

IPH0.2
IPL0.2

IPH0.1
IPL0.1

IPH0.0
IPL0.0

Programmable for
Negative-edge
Triggered or Level-
triggered Detect?

NA Edge No No No Yes No Yes

Interrupt Request
Flag in CCON,
T2CON, SCON, or
TCON Register

NA CF,
CCFx

TF2,
EXF2 RI, TI TF1 IE1 TF0 IE0

Interrupt Request
Flag Cleared by
Hardware?

No No No No Yes
Edge
Yes,

Level No
Yes

Edge
Yes,

Level No

ISR Vector Address NA FF:
0033H

FF:
002BH

FF:
0023H

FF:
001BH

FF:
0013H

FF:
000BH

FF:
0003H

† The 8X930Ax also contains a TRAP interrupt, not cleared by hardware, with a vector address of
FF007BH. For a discussion of TRAP and other interrupt sources, see “8X930Ax Interrupt Sources” on
page 6-3.
6-4

INTERRUPT SYSTEM
6.2.2 Timer Interrupts

Two timer-interrupt request bits TF0 and TF1 (see TCON register, Figure 10-6 on page 10-9) are
set by timer overflow (the exception is Timer 0 in Mode 3, see Figure 10-4 on page 10-7). When
a timer interrupt is generated, the bit is cleared by an on-chip hardware vector to an interrupt ser-
vice routine. Timer interrupts are enabled by bits ET0, ET1, and ET2 in the IEN0 register (see
Figure 6-4).

Timer 2 interrupts are generated by a logical OR of bits TF2 and EXF2 in register T2CON (see
Figure 10-12 on page 10-18). Neither flag is cleared by a hardware vector to a service routine. In
fact, the interrupt service routine must determine if TF2 or EXF2 generated the interrupt, and then
clear the bit. Timer 2 interrupt is enabled by ET2 in register IEN0.

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

The programmable counter array (PCA) interrupt is generated by the logical OR of five event
flags (CCFx) and the PCA timer overflow flag (CF) in the CCON register (see Figure 11-8 on
page 11-14). All PCA interrupts share a common interrupt vector. Bits are not cleared by hard-
ware vectors to service routines. Normally, interrupt service routines resolve interrupt requests
and clear flag bits. This allows the user to define the relative priorities of the five PCA interrupts.

Table 6-4. USB Interrupt Control Matrix

Interrupt Name USB Global
Suspend/Resume

USB Function
[Non-Isochronous

Endpoint]

Any SOF
[Isochronous

Endpoint]

Bit Name in IEN1
Register ESR EF ESOF

Interrupt Priority-
Within-Level
(10 = Low Priority,
1 = High Priority)

10 9 8

Bit Names in:
IPH1
IPL1

IPH1.2
IPL1.2

IPH1.1
IPL1.1

IPH1.0
IPL1.0

Programmable for
Negative-edge
Triggered or Level-
triggered Detect?

N/A N/A N/A

Interrupt Request
Flag in PCON1,
FIFLG, or SOFH
Register

GSUS
GRSM

FTXDx, FRXDx
x=0,1,2,3 ASOF

Interrupt Request
Flag Cleared by
Hardware?

No No No

ISR Vector Address FF:0053H FF:004BH FF:0043H
6-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
The PCA interrupt is enabled by bit EC in the IEN0 register (see Figure 6-1). In addition, the CF
flag and each of the CCFx flags must also be individually enabled by bits ECF and ECCFx in reg-
isters CMOD and CCAPMx, respectively, for the flag to generate an interrupt (see Figure 11-7 on
page 11-13 and Figure 11-9 on page 11-15).

NOTE
CCFx refers to five separate bits, one for each PCA module (CCF0, CCF1,
CCF2, CCF3, CCF4). CCAPMx refers to 5 separate registers, one for each
PCA module (CCAPM0, CCAPM1, CCAPM2, CCAPM3, CCAPM4).

6.4 SERIAL PORT INTERRUPT

Serial port interrupts are generated by the logical OR of bits RI and TI in the SCON register (see
Figure 12-2 on page 12-5). Neither flag is cleared by a hardware vector to the service routine. The
service routine resolves RI or TI interrupt generation and clears the serial port request flag. The
serial port interrupt is enabled by bit ES in the IEN0 register (see Figure 6-4).

6.5 USB INTERRUPTS

There are three types of USB interrupts: The USB function interrupt, to control the flow of non-
isochronous data; the start of frame interrupt (SOF), to monitor the transfer of isochronous data;
and the global suspend/resume interrupt, to allow USB power control. These interrupts are en-
abled using the IEN1 register. See Table 6-4 and Figure 6-5.

6.5.1 USB Function Interrupt

The USB function generates two types of interrupts to control the transfer of non-isochronous da-
ta: the receive done interrupt and the transmit done interrupt. Individual USB Function interrupts
are enabled by setting the corresponding bits in the FIE register (Figure 6-2).

NOTE
In order to use any of the USB function interrupts, the EF bit in the IEN1
register must be enabled.
6-6

INTERRUPT SYSTEM

vely
IFLG

(Figure

ceive

Figure 6-2. USB Function Interrupt Enable Register

The USB Function Interrupt Flag Register (FIFLG, as shown in Figure 6-3) is used to indicate
pending function interrupts. For all bits in FIFLG, a ‘1’ indicates that an interrupt is acti
pending; a ‘0’ indicates that the interrupt is not active. The interrupt status is shown in the F
register regardless of the state of the corresponding interrupt enable bit in the FIE Register
6-2).

The USB function generates a receive done interrupt for an endpoint x (x = 0–3) by setting the
FRXDx bit in the FIFLG register (Figure 6-3). Only non-isochronous transfer can cause a re
done interrupt. Receive done interrupts are generated only when all of the following are true:

1. A valid SETUP or OUT token is received to function endpoint x, and

2. Endpoint x is enabled for reception (RXEPEN in EPCON = ‘1’), and

FIE Address: S:A2H
Reset State: 0000 0000B

7 0

FRXIE3 FTXIE3 FRXIE2 FTXIE2 FRXIE1 FTXIE1 FRXIE0 FTXIE0

Bit
Number

Bit
Mnemonic Function

7 FRXIE3 Function Receive Interrupt Enable 3:

Enables receive done interrupt for endpoint 3 (FRXD3).

6 FTXIE3 Function Transmit Interrupt Enable 3:

Enables transmit done interrupt for endpoint 3 (FTXD3).

5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).

4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).

3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).

2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).

1 FRXIE0 Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint 0 (FRXD0).

0 FTXIE0 Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpoint0 (FTXD0).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit’s value will still be reflected in the FIFLG
register.
6-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

s

ission

heck

nsmit

 in

ission

o

s
d
3. Receive is enabled (RXIE = ‘1’) and STALL is disabled (RXSTL = ‘0’) for OUT token
(or the token received is a SETUP token), and

4. A data packet is received with no time-out — regardless of transmission errors (CRC, bit-
stuffing) or FIFO errors (overrun, underrun), and

5. There is no data sequence PID error.

Because the FRXDx bit is set and a receive done interrupt is generated regardless of transm
errors, this condition means either:

1. Valid data is waiting to be serviced in the receive FIFO for function endpoint x and that the
data was received without error and has been acknowledged; or

2. Data was received with a receive data error and requires firmware intervention to be
cleared. This could be either a transmission error or a FIFO-related error. You must c
for these conditions and respond accordingly in the interrupt service routine (ISR).

The USB function generates a transmit done interrupt for an endpoint x (x = 0–3) by setting the
FTXDx bit in the FIFLG register (Figure 6-3). Only non-isochronous transfer can cause a tra
done interrupt. Transmit done interrupts are generated only when all of the following are true:

1. A valid IN token is received to function endpoint x, and

2. Endpoint x is enabled for transmission (TXEPEN = ‘1’), and

3. Transmit is enabled (TXIE = ‘1’) and STALL is disabled (TXSTL = ‘0’), and

4. A data packet/byte count has been loaded in the transmit FIFO and was transmitted
response to the IN token — regardless of whether or not a FIFO error occurs, and

5. An ACK is received from the host or there was a time-out in the SIE.

Because the FTXDx bit is set and a transmit done interrupt is generated regardless of transm
errors, this condition means either:

1. The transmit data has been transmitted and the host has sent an acknowledgment t
indicate that is was successfully received; or

2. A transmit data error occurred during transmission of the data packet, which require
servicing by firmware to be cleared. You must check for these conditions and respon
accordingly in the ISR.

NOTE
Setting an endpoint interrupt’s bit in the Function Interrupt Enable register
(FIE register, as shown in Figure 6-2) means that the interrupt is enabled and
will cause an interrupt to be signaled to the microcontroller. Clearing a bit in
the FIE register disables the associated interrupt source, which can no longer
cause an interrupt even though its value will still be reflected in the FIFLG
register.
6-8

INTERRUPT SYSTEM

OF bit

mory
r

d

ed with-
d. The
llotted
me

Figure 6-3. USB Function Interrupt Flag Register

6.5.2 USB Start of Frame Interrupt

The USB start of frame interrupt (SOF) is used to control the transfer of isochronous data. The
8X930Ax frame timer attempts to synchronize to the frame time automatically. When the frame
timer is locked to the USB frame time, hardware sets the FTLOCK bit in SOFH (Figure 7-5 on
page 7-12). To enable the start of frame interrupt, set the SOFIE bit in SOFH. The 8X930Ax gen-
erates a SOF interrupt whenever a start of frame packet is received from the USB lines (or when-
ever an SOF packet should have been received — i.e., an artificial SOF) by setting the AS
in SOFH.

The 8X930Ax uses the SOF interrupt to signal either of two complementary events:

1. When transmitting: The next isochronous data packet needs to be retrieved from me
and loaded into the transmit FIFO in preparation for transmission in the next frame; o

2. When receiving: An isochronous packet has been received in the previous frame an
needs to be retrieved from the receive FIFO.

Since the SOF packet could be corrupted, there is a chance that a new frame could be start
out successful reception of the SOF packet. For this reason, an artificial SOF is provide
frame timer signals a time-out when an SOF packet has not been received within the a
amount of time. In this fashion, the 8X930Ax generates an SOF interrupt reliably once each fra

FIFLG Address: S:C0H
Reset State: 0000 0000B

7 0

FRXD3 FTXD3 FRXD2 FTXD2 FRXD1 FTXD1 FRXD0 FTXD0

Bit
Number

Bit
Mnemonic Function

7 FRXD3 Function Receive Done Flag, Endpoint 3

6 FTXD3 Function Transmit Done Flag, Endpoint 3

5 FRXD2 Function Receive Done Flag, Endpoint 2

4 FTXD2 Function Transmit Done Flag, Endpoint 2

3 FRXD1 Function Receive Done Flag, Endpoint 1

2 FTXD1 Function Transmit Done Flag, Endpoint 1

1 FRXD0 Function Receive Done Flag, Endpoint 0

0 FTXD0 Function Transmit Done Flag, Endpoint 0

NOTE: For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a
‘0’ indicates that the interrupt is not active. The interrupt status is shown regardless of the
state of the corresponding interrupt enable bit in the FIE. Bits are set-only by hardware and
clearable in software. Software can also set the bits for text purposes, allowing the interrupt
to be generated in software.
6-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ts out-

sfer,

 set in

r)

ster
0A

is
vity for
e” on

s
s detect-
e rou-
pend

f the
eup

t has to
nd/re-

U in
cuting
 mode
within 1 µs of accuracy, except when this interrupt is suspended or when the frame timer ge
of-sync with the USB bus frame time.

In summary, in order to utilize the USB start of frame functionality for isochronous data tran
the following must all be true:

1. The global enable bit must be set (i.e., the EA bit must be set in the IEN0 register)

2. The isochronous endpoint any SOF interrupt must be enabled (the ESOF bit must be
the IEN1 register)

3. The SOF interrupt must be enabled (the SOFIE bit must be set in the SOFH Registe

NOTE
The SOF interrupt is brought out to an external pin (SOF#) in order to provide
a 1 ms pulse, subject to the accuracy of the USB SOF. This pin is enabled by
clearing the SOFODIS bit in the SOFH register.

6.5.3 USB Global Suspend/Resume Interrupt

The 8X930Ax supports USB power control through firmware. The USB power control regi
(PCON1, as shown in Figure 14-2 on page 14-3) facilitates USB power control of the 8X93x,
including global suspend/resume and USB function resume.

6.5.3.1 Global Suspend

When a global suspend is detected by the 8X930Ax, the global suspend bit (GSUS of PCON1)
set and the GS/Resume interrupt is generated. Global suspend is defined as bus inacti
more than 3 ms on the USB lines. For additional information, see “Global Suspend Mod
page 14-6.

6.5.3.2 Global Resume

When a global resume is detected by the 8X930Ax, the global resume bit (GRSM of PCON1) i
set and the Global Suspend/Resume interrupt is generated. As soon as resume signaling i
ed on the USB lines, the oscillator is restarted. After executing the resume interrupt servic
tine, the 8X930Ax resumes operation from where it was when it was interrupted by the sus
interrupt. For additional information, see “Global Resume Mode” on page 14-8.

6.5.3.3 USB Remote Wake-up

The 8X930Ax can also initiate resume signaling to the USB lines through remote wakeup o
USB function while it is in powerdown/idle mode. While in powerdown mode, remote wak
has to be initiated through assertion of an enabled external interrupt. The external interrup
be enabled and it must be configured with level trigger and with higher priority than a suspe
sume interrupt. An external interrupt restarts the clocks to the 8X930Ax and program execution
branches to the external interrupt service routine.

Within this external interrupt service routine, you must set the remote wakeup bit (RW
PCON1) to drive resume signaling on the USB lines to the host or upstream hub. After exe
the external ISR, the program continues execution from where it was put into powerdown
6-10

INTERRUPT SYSTEM

d by
 IEN1

A is
r, all
and the 8X930Ax resumes normal operation. For additional information, see “USB Remote
Wake-up” on page 14-8.

6.6 INTERRUPT ENABLE

Each interrupt source (with the exception of TRAP) may be individually enabled or disable
the appropriate interrupt enable bit in the IEN0 register at S:A8H (see Figure 6-4) or the
register at S:B1H (see Figure 6-5). Note IEN0 also contains a global disable bit (EA). If E
set, interrupts are individually enabled or disabled by bits in IEN0 and IEN1. If EA is clea
interrupts are disabled.

Figure 6-4. Interrupt Enable Register 0

IEN0 Address: S:A8H
Reset State: 0000 0000B

7 0

EA EC ET2 ES ET1 EX1 ET0 EX0

Bit
Number

Bit
Mnemonic Function

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits
0–6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.

6 EC PCA Interrupt Enable:

Setting this bit enables the PCA interrupt.

5 ET2 Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial I/O Port Interrupt Enable:

Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:

Setting this bit enables external interrupt 1.

1 ET0 Timer 0 Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

0 EX0 External Interrupt 0 Enable:

Setting this bit enables external interrupt 0.
6-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 6-5. USB Interrupt Enable Register

IEN1 Address: S:B1H
Reset State: XXXX X000H

7 0

— — — — — ESR EF ESOF

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 ESR Enable Suspend/Resume:

USB Global Suspend/Resume Interrupt Enable bit.

1 EF Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.

0 ESOF Enable Start of Frame:

Any start of frame interrupt enable bit for isochronous endpoints.
6-12

INTERRUPT SYSTEM
6.7 INTERRUPT PRIORITIES

Ten of the eleven 8X930Ax interrupt sources (TRAP excluded) may be individually programmed
to one of four priority levels. This is accomplished with the IPHX.x/IPLX.x bit pairs in the inter-
rupt priority high (IPH1/IPH0 in Figure 6-6 and 6-8) and interrupt priority low (IPL1/IPL0) reg-
isters (Figures 6-7 and 6-9). Specify the priority level as shown in Table 6-5 using IPH0.x (or
IPH1.x) as the MSB and IPL0.x (or IPL1.x) as the LSB.

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in-
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other in-
terrupt source. Higher priority interrupts are serviced before lower priority interrupts. The
response to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same
four-state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table
6-6).

Table 6-5. Level of Priority

Priority Level IPH1.x, IPL1.x IPH0.x, IPL0.x

0 Lowest Priority 00 00

1 01 01

2 10 10

3 Highest Priority 11 11

Table 6-6. Interrupt Priority Within Level

Priority Number Interrupt Name

1 (Highest Priority) INT0#

2 Timer 0

3 INT1#

4 Timer 1

5 Serial Port

6 Timer 2

7 PCA

8 USB Any SOF

9 USB Function

10 USB Global Suspend/Resume
6-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 6-6. IPH0: Interrupt Priority High Register 0

Figure 6-7. IPL0: Interrupt Priority Low Register 0

IPH0 Address: S:B7H
Reset State: X000 0000B

7 0

— IPH0.6 IPH0.5 IPH0.4 IPH0.3 IPH0.2 IPH0.1 IPH0.0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.

6 IPH0.6 PCA Interrupt Priority Bit High

5 IPH0.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPH0.4 Serial I/O Port Interrupt Priority Bit High

3 IPH0.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPH0.2 External Interrupt 1 Priority Bit High

1 IPH0.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPH0.0 External Interrupt 0 Priority Bit High

IPL0 Address: S:B8H
Reset State: X000 0000B

7 0

— IPL0.6 IPL0.5 IPL0.4 IPL0.3 IPL0.2 IPL0.1 IPL0.0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.

6 IPL0.6 PCA Interrupt Priority Bit Low

5 IPL0.5 Timer 2 Overflow Interrupt Priority Bit Low

4 IPL0.4 Serial I/O Port Interrupt Priority Bit Low

3 IPL0.3 Timer 1 Overflow Interrupt Priority Bit Low

2 IPL0.2 External Interrupt 1 Priority Bit Low

1 IPL0.1 Timer 0 Overflow Interrupt Priority Bit Low

0 IPL0.0 External Interrupt 0 Priority Bit Low
6-14

INTERRUPT SYSTEM

Figure 6-8. IPH1: Interrupt Priority High Register 1

Figure 6-9. IPL1: Interrupt Priority Low Register 1

IPH1 Address: S:B3H
Reset State: X000 0000B

7 0

— — — — — IPH1.2 IPH1.1 IPH1.0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High

1 IPH1.1 USB Function Interrupt Priority Bit High

0 IPH1.0 USB Any SOF Interrupt Priority Bit High

IPL1 Address: S:B2H
Reset State: X000 0000B

7 0

— — — — — IPL1.2 IPL1.1 IPL1.0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low

1 IPL1.1 USB Function Interrupt Priority Bit Low

0 IPL1.0 USB Any SOF Interrupt Priority Bit Low
6-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
6.8 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and
lasts until the execution of the first instruction in the interrupt service routine (see Figure 6-10).
Response time is the amount of time between the interrupt request and the resulting break in the
current instruction stream. Latency is the amount of time between the interrupt request and the
execution of the first instruction in the interrupt service routine. These periods are dynamic due
to the presence of both fixed-time sequences and several variable conditions. These conditions
contribute to total elapsed time.

Figure 6-10. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed sequence
comprises the interrupt sample, poll, and request operations. The variables consist of (but are not
limited to): specific instructions in use at request time, internal versus external interrupt source
requests, internal versus external program operation, stack location, presence of wait states, page-
mode operation, and branch pointer length.

NOTE

In the following discussion, external interrupt request pins are assumed to be
inactive for at least four state times prior to assertion. In this chapter all
external hardware signals maintain some setup period (i.e., less than one state
time). Signals must meet VIH and VIL specifications prior to any state time
under discussion. This setup state time is not included in examples or calcula-
tions for either response or latency.

OSC

Ending Instructions Push PC

A4153-01

State

Time

External

Interrupt

Request

ISR

Latency

Response Time

Call ISR
6-16

INTERRUPT SYSTEM

cture’s
).
 before
nd la-

interrupt
0). Re-
he re-
 in the
6.8.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state-times (see Figure 6-10). Two of eight inter-
rupts are latched and polled per state time within any given window of four state-times. One ad-
ditional state time is required for a context switch request. For code branches to jump locations
in the current 64-Kbyte memory region (compatible with MCS 51 microcontrollers), the context
switch time is 11 states. Therefore, the minimum fixed poll and request time is 16 states (4 poll
states + 1 request state + 11 states for the context switch = 16 state times).

Therefore, this minimum fixed period rests upon four assumptions:

• The source request is an internal interrupt with high enough priority to take precedence over
other potential interrupts,

• The request is coincident with internal execution and needs no instruction completion time,

• The program uses an internal stack location, and

• The ISR is in on-chip ROM.

6.8.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By defini-
tion, it is often difficult to predict exact timing calculations for real-time requests. One large vari-
able is the completion time of an instruction cycle coincident with the occurrence of an interrupt
request. Worst-case predictions typically use the longest-executing instruction in an archite
code set. In the case of the 8X930Ax, the longest-executing instruction is a 16-bit divide (DIV
However, even this 21- state instruction may have only 1 or 2 remaining states to complete
the interrupt system injects a context switch. This uncertainty affects both response time a
tency.

6.8.2.1 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an
and lasts until a break in the current instruction execution stream occurs (see Figure 6-1
sponse time (and therefore latency) is affected by two primary factors: the incidence of t
quest relative to the four-state-time sample window and the completion time of instructions
response period (i.e., shorter instructions complete earlier than longer instructions).

NOTE

External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interrupts. The sample occurs in the first half of the state time and the
poll/request occurs in the second half of the next state time. Therefore, this
sample and poll/request portion of the minimum fixed response and latency
6-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
time is five states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guarantee
interrupt recognition when the request occurs immediately after a sample has
been taken (i.e., requested in the second half of a sample state time).

If the external interrupt goes active one state after the sample state, the pin is not resampled for
another three states. After the second sample is taken and the interrupt request is recognized, the
interrupt controller requests the context switch. The programmer must also consider the time to
complete the instruction at the moment the context switch request is sent to the execution unit. If
9 states of a 10-state instruction have completed when the context switch is requested, the total
response time is 6 states, with a context switch immediately after the final state of the 10-state
instruction (see Figure 6-11).

Figure 6-11. Response Time Example #1

Conversely, if the external interrupt requests service in the state just prior to the next sample, re-
sponse is much quicker. One state asserts the request, one state samples, and one state requests
the context switch. If at that point the same instruction conditions exist, one additional state time
is needed to complete the 10-state instruction prior to the context switch (see Figure 6-12). The
total response time in this case is four state times. The programmer must evaluate all pertinent
conditions for accurate predictability.

OSC

State Time

INT0#

Sample INT0#

Response Time = 6

Ten State

Instruction

Request

Push PC

A4155-02
6-18

INTERRUPT SYSTEM

Figure 6-12. Response Time Example #2

6.8.2.2 Computation of Worst-case Latency With Variables

Worst-case latency calculations assume that the longest 8X930Ax instruction used in the program
must fully execute prior to a context switch. The instruction execution time is reduced by one
state with the assumption the instruction state overlaps the request state (therefore, 16-bit DIV is
21 state times - 1 = 20 states for latency calculations). The calculations add fixed and variable
interrupt times (see Table 6-7) to this instruction time to predict latency. The worst-case latency
(both fixed and variable times included) is expressed by a pseudo-formula:

OSC

State Time

INT0#

Sample INT0#

Response Time = 4

Ten State

Instruction

Request

Push PC

A4154-02

FIXED_TIME VARIABLES LONGEST_INSTRUCTION+ + MAXIMUM LATENCY PREDICTION=
6-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
6.8.2.3 Latency Calculations

Assume the use of a zero-wait-state external memory where current instructions, the ISR, and the
stack are located within the same 64-Kbyte memory region (compatible with memory maps for
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the current 21-
state DIV instruction when INT0# requests service. Also assume INT0# has made the request one
state prior to the sample state (as in Figure 6-12). Unlike Figure 6-12, the response time for this
assumption is three state times as the current instruction completes in time for the branch to occur.
Latency calculations begin with the minimum fixed latency of 16 states. From Table 6-7, one state
is added for an INT0# request from external hardware; two states are added for external execu-
tion; and four states for an external stack in the current 64-Kbyte region. Finally, three states are
added for the current instruction to complete. The actual latency is 26 states. Worst-case latency
calculations predict 43 states for this example due to inclusion of total DIV instruction time (less
one state).

Table 6-7. Interrupt Latency Variables

Variable
INT0#,
INT1#,
T2EX

External
Execution

Page
Mode

>64K
Jump to
ISR (1)

External
Memory

Wait
State

External
Stack

<64K (1)

External
Stack

>64K (1)

External
Stack

Wait State

Number
of

States
Added

1 2 1 8 1 per
bus cycle 4 8 1 per

bus cycle

NOTES:
1. <64K/>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

— A 2-byte instruction is the first ISR byte. — Internal execution

— <64K jump to ISR — Internal stack

— Internal peripheral interrupt

Table 6-8. Actual vs. Predicted Latency Calculations

Latency Factors Actual Predicted

Base Case Minimum Fixed Time 16 16

INT0# External Request 1 1

External Execution 2 2

<64K Byte Stack Location 4 4

Execution Time for Current DIV Instruction 3 20

TOTAL 26 43
6-20

INTERRUPT SYSTEM

ware-

oint

 or

he in-
ures at
the in-
om-

ce, re-
nto the

ber of
e 4-6)
e is il-
6.8.2.4 Blocking Conditions

If all enable and priority requirements have been met, a single prioritized interrupt request at a
time generates a vector cycle to an interrupt service routine (see CALL instructions in Appendix
A, “Instruction Set Reference”). There are three causes of blocking conditions with hard
generated vectors:

1. An interrupt of equal or higher priority level is already in progress (defined as any p
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

3. The instruction in progress is RETI or any write to the IEN0, IEN1, IPH0, IPH1, IPL0
IPL1 registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures t
struction in progress completes before the system vectors to the ISR. Condition three ens
least one more instruction executes before the system vectors to additional interrupts if
struction in progress is a RETI or any write to IEN0, IEN1, IPH0, IPH1, IPL0 or IPL1. The c
plete polling cycle is repeated every four state-times.

6.8.2.5 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU breaks the instruction stream sequen
solves all instruction pipeline decisions, and pushes multiple program counter (PC) bytes o
stack. The CPU then reloads the PC with a start address for the appropriate ISR. The num
bytes pushed to the stack depends upon the INTR bit in the UCONFIG1 (Figure 4-4 on pag
configuration byte. The complete sample, poll, request and context switch vector sequenc
lustrated in the interrupt latency timing diagram (Figure 6-10).

NOTE

If the interrupt flag for a level-triggered external interrupt is set but denied for
one of the above conditions and is clear when the blocking condition is
removed, then the denied interrupt is ignored. In other words, blocked interrupt
requests are not buffered for retention.
6-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
6.8.3 ISRs in Process

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction informs
the processor that the interrupt routine is completed. The RETI instruction in the ISR pops PC
address bytes off the stack (as well as PSW1 for INTR = 1) and execution resumes at the suspend-
ed instruction stream.

NOTE

Some programs written for MCS 51 microcontrollers use RETI instead of RET
to return from a subroutine that is called by ACALL or LCALL (i.e., not an
interrupt service routine (ISR)). In the 8X930Ax, this causes a compatibility
problem if INTR = 1 in configuration byte CONFIG1. In this case, the CPU
pushes four bytes (the three-byte PC and PSW1) onto the stack when the
routine is called and pops the same four bytes when the RETI is executed. In
contrast, RET pushes and pops only the lower two bytes of the PC. To
maintain compatibility, configure the 8X930Ax with INTR = 0.

With the exception of TRAP, the start addresses of consecutive interrupt service routines are eight
bytes apart. If consecutive interrupts are used (IE0 and TF0, for example, or TF0 and IE1), the
first interrupt routine (if more than seven bytes long) must execute a jump to some other memory
location. This prevents overlap of the start address of the following interrupt routine.
6-22

7
Universal Serial Bus

0A
tion.”
ndix B.

layers
ibes
n.

bedded
n pro-
nsfer

gram
y inter-

een the
 “SIE

” sec-

“Tim-

,
 control
 on the

sfer,
a

CHAPTER 7
UNIVERSAL SERIAL BUS

This chapter and Chapter 8, “USB Programming Models,” describe the operation of the 8X93x
serving as a USB function. For an overview of the USB module, see Chapter 2, “Introduc
Table 7-1 lists device signals associated with the USB. Pin assignments are shown in Appe

A data flow model for the USB transactions, intended to bridge the hardware and firmware
of the 8X930Ax, is presented in truth table form in Appendix D. The data flow model descr
8X930Ax behavior in response to a particular USB event, given a known state/configuratio

7.1 USB FUNCTION INTERFACE

The USB function interface manages communications between the USB host and the em
function. It consists of a serial bus interface engine (SIE), which handles the communicatio
tocol of the universal serial bus, and a function interface unit (FIU), which handles data tra
and provides the interface between the SIE and the 8X930Ax CPU. These units, along with the
differential transceiver and the FIFO data buffers, comprise the USB module. The block dia
in Figure 2-3 on page 2-3 shows the relationships between these components and how the
face with the CPU.

The USB module interfaces with the USB by means of the differential USB root port, DP0 and
DM0.

7.1.1 Serial Bus Interface Engine (SIE)

The SIE is the universal serial bus protocol interpreter. It serves as the communicator betw
8X930Ax and the host PC through the USB lines. For additional information on the SIE, see
Details” on page 7-33.

A complete description of the USB can be found in Universal Serial Bus Specification. For a de-
scription of the transceiver see the “Driver Characteristics” and “Receiver Characteristics
tions of the “Electrical” chapter of the Universal Serial Bus Specification. For electrical
characteristics and data signal timing, see the “Bus Timing/Electrical Characteristics” and
ing Diagram” sections of the same chapter.

7.1.2 Function Interface Unit (FIU)

The FIU manages USB data transactions for the 8X930Ax. It controls the operation of the FIFOs
monitors the status of the data transaction, and at the appropriate moment transfers event
to the CPU through an interrupt request. The exact nature of a data transaction depends
type of data transfer and the initial conditions of the transmit and receive FIFOs.

The 8X930Ax supports four types of data transfer: control transfer (endpoint 0), interrupt tran
isochronous transfer, and bulk transfer. The 8X930Ax provides a pair of FIFO data buffers —
transmit FIFO and a receive FIFO — dedicated to each endpoint.
7-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ll the

, and

nd
18.

and
27.

int-in-
the se-

, 3).

7.1.3 SPECIAL FUNCTION REGISTERS (SFRs)

The FIU controls operations through the use of four sets of special functions registers (SFRs): the
FIU SFRs, the transmit FIFO SFRs, the receive FIFO SFRs, and the USB interrupt SFRs. Table
7-2 lists the special function registers (SFRs) described in this chapter. USB interrupt SFRs are
described in Chapter 6, “Interrupt System.” Table 3-5 on page 3-16 is an address map of a
8X930Ax SFRs.

The registers in the FIU SFR set are: EPINDEX, EPCON, TXSTAT, RXSTAT, SOFL, SOFH
FADDR. These registers are defined in Figures 7-1 through Figure 7-7.

The registers in the transmit FIFO SFR set are TXDAT, TXCON, TXFLG, TXCNTL, a
TXCNTH. These registers are defined in Figures 7-10 through 7-13 beginning on page 7-

The registers in the receive FIFO SFR set are RXDAT, RXCON, RXFLG, RXCNTL,
RXCNTH. These registers are defined in Figures 7-15 through 7-18 beginning on page 7-

The transmit SFR set, the receive SFR set, EPCON, TXSTAT, and RXSTAT are endpo
dexed, i.e., they are assigned to operate in conjunction with the FIFO pair associated with
lected endpoint.

The endpoint index SFR (EPINDEX) specifies the current endpoint (index value x = 0, 1, 2

CAUTION
Unless otherwise noted in the bit definition, SFR bits can be read and written
by software. All SFRs should be written using read-modify-write instructions
only, due to the possibility of simultaneous writes by hardware and firmware.

Table 7-1. Signal Descriptions

Signal
Name Type Description Alternate

Function

PLLSEL2:0 I Phase Lock Loop Select. Three-bit code selects the USB data
rate (see Table 2-2 on page 2-8).

—

SOF# O Start of Frame. The SOF# pin is asserted for eight states when
an SOF token is received.

—

DP0, DM0 I/O USB Port 0. DP0 and DM0 are the data plus and data minus
lines of differential USB port 0. These lines do not have internal
pullup resistors. For low-speed devices, provide an external 1.5
KΩ pullup resistor at DM0. For full-speed devices, provide an
external 1.5 KΩ pullup resistor at DP0.

NOTE: Either DP0 or DM0 must be pulled high. Otherwise a
continuous SEO (USB reset) will be applied to these inputs
causing the 8X930Ax to stay in reset.

—

ECAP I External Capacitor. Must be connected to a 0.1µF capacitor
(or larger) to ensure proper operation of the differential line
driver. The other lead of the capacitor must be connected to
VSS.

—

7-2

UNIVERSAL SERIAL BUS

Table 7-2. USB Function SFRs

Mnemonic Description Address

EPCON Endpoint Control Register. Configures the operation of the endpoint
specified by EPINDEX.

S:E1H

EPINDEX Endpoint Index Register. Selects the appropriate endpoint. S:F1H

FADDR Function Address Register. Stores the USB function address for the
device. The host PC assigns the address and informs the device via
endpoint 0.

S:8FH

RXCNTH Receive FIFO Byte-Count High Register. High register in a two-register
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

S:E7H

RXCNTL Receive FIFO Byte-Count Low Register. Low register in a two-register
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

S:E6H

RXCON Receive FIFO Control Register. Controls the receive FIFO specified by
EPINDEX.

S:E4H

RXDAT Receive FIFO Data Register. Receive FIFO data is read from this register
(specified by EPINDEX).

S:E3H

RXFLG Receive FIFO Flag Register. These flags indicate the status of data
packets in the receive FIFO specified by EPINDEX.

S:E5H

RXSTAT Endpoint Receive Status Register. Contains the endpoint status of the
receive FIFO specified by EPINDEX.

S:E2H

SOFH Start of Frame High Register. Contains isochronous data transfer enable
and interrupt bits and the upper three bits of the 11-bit time stamp received
from the host.

S:D3H

SOFL Start of Frame Low Register. Contains the lower eight bits of the 11-bit
time stamp received from the host.

S:D2H

TXCNTH Transmit Count High Register. High register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

S:F7H

TXCNTL Transmit Count Low Register. Low register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

S:F6H

TXCON Transmit FIFO Control Register. Controls the transmit FIFO specified by
EPINDEX.

S:F4H

TXDAT Transmit FIFO Data Register. Transmit FIFO data is written to this register
(specified by EPINDEX).

S:F3H

TXFLG Transmit Flag Register. These flags indicate the status of data packets in
the transmit FIFO specified by EPINDEX.

S:F5H

TXSTAT Endpoint Transmit Status Register. Contains the endpoint status of the
transmit FIFO specified by EPINDEX.

S:FAH
7-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

mit/
-
 of 16
it/re-

or
 then
ve the

 the
 bi-

oded

ch rou-
 SFR.
r at the
X reg-
7.1.4 USB Function FIFO’s

The 8X930Ax provides eight FIFOs in support of the four USB function endpoints — a trans
receive FIFO pair for each endpoint. Table 7-3 lists the 8X930Ax FIFOs and gives the byte ca
pacity of each. The FIFOs associated with function endpoints 0, 2, and 3 have capacities
bytes. As shown in the table, bits FFSZ.1:0 of the TXCON SFR permit the endpoint 1 transm
ceive FIFO pair to be partitioned as follows: 256/256, 512/512, 1024/0, or 0/1024 bytes.

Transmit FIFOs are written by the 8X930Ax CPU and then read by the function interface f
transmission. Receive FIFOs are written by the function interface following reception and
read by the CPU. All transmit FIFOs have the same architecture, and all receive FIFOs ha
same architecture.

7.1.5 The FIU SFR Set

The two low-order bits of the endpoint index register (EPINDEX, bits EPINX1:0) contain
current endpoint index value (x = 0, 1, 2, 3). The index value indicates the endpoint. Use the
nary form 0xxxxxyyB to write the index value to the EPINDEX register, where yy is the enc
endpoint address (i.e., 00 for endpoint 0, 01 for endpoint 1, etc.). See Table 7-3.

It is recommended that programmers set the contents of EPINDEX once, at the start of ea
tine, instead of writing the EPINDEX register prior to each access of an endpoint-indexed
This means that interrupt service routines must save the contents of the EPINDEX registe
start of the routine and restore the contents at the end of the routine to prevent the EPINDE
ister from being corrupted.

Table 7-3. 8X930Ax FIFO Configurations

Endpoint Select
(EPINDEX.1:0)

Transmit FIFOs Receive FIFOs FIFO Size
(FFSZ.1:0)†

0 0 Endpoint 0
(Control)

16 bytes 16 bytes XX

0 1 Endpoint 1 256 bytes 256 bytes 0 0

512 bytes 512 bytes 0 1

1024 bytes 0 bytes 1 0

0 bytes 1024 bytes 1 1

1 0 Endpoint 2 16 bytes 16 bytes XX

1 1 Endpoint 3 16 bytes 16 bytes XX

† Bits FFSZ.1:0 are bits 7:6 of register TXCON, and are accessible for endpoint 1
only (EPINDEX = 01).
7-4

UNIVERSAL SERIAL BUS

Figure 7-1. EPINDEX: Endpoint Index Register

EPINDEX Address S:F1H
Reset State 1XXX XX00B

7 0

— — — — — — EPINX1 EPINX0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

Note: Although the reset state for bit 7 is ‘1’, always write zeros to bits 7:2 of
this register.

1:0 EPINX1:0 Endpoint Index Select:

Used to select the function endpoint number to be indexed. The 8X930Ax is
set up accordingly: the USB SFR definitions for TXDAT, TXCON, TXFLG,
TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTH/L, EPCON, TXSTAT, and
RXSTAT are adjusted for the selected endpoint. The SFRs are connected to
the appropriate transmit/receive FIFO pair. This register is hardware read-
only.

EPINX1 EPINX0
0 0 Endpoint 0. Control Transfer
0 1 Endpoint 1.
1 0 Endpoint 2.
1 1 Endpoint 3.
7-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

EPCON Address S:E1H
Reset State x = 0† 0011 0101B

x = 1, 2, 3† 0001 0000B

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. This bit does not affect the reception of
SETUP tokens by a control endpoint. The state of this bit is sampled on a
valid OUT token.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should only be cleared
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will respond
with a STALL handshake to a valid IN token.The state of this bit is sampled
on a valid IN token.

5 CTLEP Control Endpoint:

Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens. The state of this bit is
sampled on a valid SETUP token.

4 RXSPM Receive Single Packet Mode:

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO. The state of this bit is sampled on a valid OUT token.
Note: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model. However, it is
acceptable to have a control endpoint with dual packet mode configuration
as long as the firmware handles the endpoint correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, it returns a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token.

2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. The state of this bit is
sampled on a valid OUT or SETUP token. This bit is hardware read-only and
has the highest priority among RXIE and RXSTL. Note that endpoint 0 is
enabled for reception upon reset.

† x = endpoint index. See EPINDEX.
7-6

UNIVERSAL SERIAL BUS
Figure 7-2. EPCON: Control Endpoint Register

1 TXOE Transmit Output Enable.

This bit is used to enable the data in the transmit FIFO to be transmitted. If
cleared, the endpoint returns a NAK handshake to a valid IN token if the
TXSTL bit is not set. The state of this bit is sampled on a valid IN token.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. The state of this bit is
sampled on a valid IN token. This bit is hardware read only. Note that
endpoint 0 is enabled for transmission upon reset.

EPCON (Continued) Address S:E1H
Reset State x = 0† 0011 0101B

x = 1, 2, 3† 0001 0000B

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

† x = endpoint index. See EPINDEX.
7-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TXSTAT Address: S:F2H
Reset State: 0000 0000B

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

7 TXSEQ Transmitter’s Current Sequence Bit (read, conditional write): †

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

4 TXFLUSH Transmit FIFO Packet Flushed:

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF = ‘11’ at SOF. This bit is set by
hardware, but can also be set by software with the same effect.†

3 TXSOVW Transmit Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. ††

2 TXVOID Transmit Void (read-only):

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by function
after a valid IN token, due to the conditions that cause the transmit FIFO to
be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake ever returned by function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
7-8

UNIVERSAL SERIAL BUS
Figure 7-3. TXSTAT: Transmit FIFO Status Register

1 TXERR Transmit Error (read-only):

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received.
2. Transmit FIFO goes into underrun condition while transmitting.

The corresponding transmit done bit (FTXDx in FIFLG) is set when active.
For non-isochronous transactions, this bit is updated by hardware together
with the TXACK bit at the end of the data transmission (this bit is mutually
exclusive with TXACK). For isochronous transactions, this bit is not updated
until the next SOF.

0 TXACK Transmit Acknowledge (read-only):

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit (FTXDx in FIFLG) is set when active. For
non-isochronous transactions, this bit is updated by hardware together with
the TXERR bit at the end of data transmission (this bit is mutually exclusive
with TXERR). For isochronous transactions, this bit is not updated until the
next SOF.

TXSTAT (Continued) Address: S:F2H
Reset State: 0000 0000B

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
7-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

RXSTAT Address: S:E2H
Reset State: 0000 0000B

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write): †

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
together with the new RXSEQ value.

Note: Always verify this bit after writing to ensure that there is no conflict with
hardware, which could occur if a new SETUP token is received.

6 RXSETUP Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware during the
handshake phase of the setup stage.

This bit is only used for control endpoints.

4 EDOVW End Overwrite Flag:

This flag is set by hardware during the handshake phase of a SETUP stage.
It is set after every SETUP packet is received and must be cleared prior to
reading the contents of the FIFO. When set, the FIFO state (FIF and read
pointer) remains locked for this endpoint until this bit is cleared. This
prevents a prior, ongoing firmware read from corrupting the read pointer
after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
7-10

UNIVERSAL SERIAL BUS
Figure 7-4. RXSTAT: Receive FIFO Status Register

3 RXSOVW Receive Data Sequence Overwrite Bit: †

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
This is needed to clear a STALL on a control endpoint. Writing a ‘0’ to this bit
has no effect on RXSEQ. This bit always returns ‘0’ when read. ††

2 RXVOID Receive Void Condition (read-only):

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked.

2. The EPCON register’s RXSTL bit is set for a non-control endpoint.

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in respond to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

1 RXERR Receive Error (read-only):

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.

This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXACK bit at the end of data reception and is mutually
exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXERR bit at the end of data reception and is mutually
exclusive with RXERR.

RXSTAT (Continued) Address: S:E2H
Reset State: 0000 0000B

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new

configuration or interface.
7-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 7-5. SOFH: Start of Frame High Register

SOFH Address: S:D3H
Reset State: 0000 0000B

7 0

SOFACK ASOF SOFIE FTLOCK SOFODIS TS10 TS9 TS8

Bit
Number

Bit
Mnemonic Function

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start-of-Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by software or inverted and driven to the SOF# pin. The effect of
setting this bit by software is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight TCLKs.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight TCLKs.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.
7-12

UNIVERSAL SERIAL BUS

Figure 7-6. SOFL: Start of Frame Low Register

Figure 7-7. FADDR: Function Address Register

SOFL Address: S:D2H
Reset State: 0000 0000B

7 0

TS7:0

Bit
Number

Bit
Mnemonic Function

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

FADDR Address: S:8FH
Reset State: 0000 0000B

7 0

— A6:0

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.
7-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
7.2 TRANSMIT FIFOS

The 8X930Ax has four USB function transmit FIFOs, one for each endpoint. In this manual, the
term transmit FIFO refers to the transmit FIFO associated with the current endpoint as specified
by the EPINDEX register.

7.2.1 Transmit FIFO Overview

The transmit FIFOs are circulating data buffers with the following features:

• support for up to two separate data sets of variable sizes†

• a byte count register to store the number of bytes in the data sets

• protection against overwriting data in a full FIFO

• capability to retransmit the current data set

All transmit FIFOs have the same architecture (Figure 7-8). The transmit FIFO and its associated
logic can manage up to two data sets, data set 0 (ds0) and data set 1 (ds1). The ability to have two
data sets in the FIFO supports back-to-back transmissions.

Figure 7-8. Transmit FIFO Outline

The CPU writes to the FIFO location specified by the write pointer, which increments by one au-
tomatically following a write. The read marker points to the first byte of data written to a data
set, and the read pointer points to the next FIFO location to be read by the function interface. The
read pointer increments by one automatically following a read.

† When operating in dual packet mode, the maximum packet size should be at most half the
FIFO size to ensure that both packets will simultaneously fit in the FIFO (see the Endpoint
description in the Universal Serial Bus Specification).

A4258-02

Write Pointer

Data Set 0

Data Set 1

Read Marker

Read Pointer

REVRP ADVRM

FIU Reads FIFO

8X930 CPU

Writes to FIFO

TXCNTH

TXCNTL

To USB Interface

From CPU

Byte Count

Registers
7-14

UNIVERSAL SERIAL BUS
When a good transmission is completed, the read marker can be advanced to the position of the
read pointer to set up for reading the next data set. When a bad transmission is completed, the
read pointer can be reversed to the position of the read marker to enable the function interface to
re-read the last data set for retransmission. The read marker advance and read pointer reversal can
be accomplished two ways: explicitly by software or automatically by hardware, as specified by
bits in the transmit FIFO control register (TXCON).

7.2.2 Transmit FIFO Registers

There are five registers directly involved in the operation of the transmit FIFOs:

• TXDAT, the transmit FIFO data register

• TXCNTH and TXCNTL, the transmit FIFO byte count registers referred to jointly as
TXCNT

• TXCON, the transmit FIFO control register

• TXFLG, the transmit FIFO flag register

These registers are endpoint indexed, i.e., they are used as a set to control the operation of the
transmit FIFO associated with the current endpoint specified by the EPINDEX register. Figures
7-10 through 7-13 beginning on page 7-18 describe the transmit FIFO registers and provide bit
definitions.

7.2.3 Transmit Data Register (TXDAT)

Bytes are written to the transmit FIFO via the transmit FIFO data register (TXDAT).

7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH)

The format of the transmit byte count register depends on the endpoint. For endpoint 1, registers
TXCNTH and TXCNTL form a two-register, ten-bit ring buffer which accommodates packet siz-
es of 0 to 1023 bytes. For endpoints 0, 2, and 3, TXCNTL is used alone as a five-bit ring buffer
to accommodate packet sizes of 0 to 16 bytes. These formats are shown in Figure 7-11 on page
7-19. The term TXCNT refers to either of these arrangements.

The transmit FIFO byte count register (TXCNT) stores the number of bytes in either of the two
data sets, data set 0 (ds0) and data set 1 (ds1). The FIFO logic for maintaining the data sets as-
sumes that data is written to the FIFO in the following sequence:

1. The CPU first writes data bytes to TXDAT.

2. The CPU writes the number of bytes that were written to TXDAT to the byte count
register TXCNT. TXCNT must be written after the write to TXDAT to guarantee data
integrity. For function endpoint 1, TXCNTL should be written after TXCNTH. Writing to
TXCNTH does not affect the TXFIF bits, however writing to TXCNTHL does set the
associated TXFIF bits.
7-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

e set.

i-
 set 0.
NOTE
TXCNTH does not need to be written if it is always 00H, as the reset value is
00H. However, if TXCNTH is not 00H, it should always be written even
though the value does not change from the previous cycle; this is because the
byte count registers are 2-byte circular buffers and not “static” registers.

For all endpoints except function endpoint 1, TXCNTH is not available and
TXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and should
always be written with ‘0’.

The function interface reads the byte count register to determine the number of bytes in th

The transmit byte count register has a read/write index to allow it to access the byte count for e
ther of the two data sets (see Figure 7-9). After reset, the read/write index points to data
Thereafter, the following logic determines the position of the read/write index:

• After a write to TXCNT, the read/write index (TXFIF) is toggled

• After a read of TXCNT, the read/write index (TXFIF) is unchanged

The position of the read/write index can also be determined from the data set index bits, FIF1:0
(see “Transmit Data Set Management” on page 7-17).

Figure 7-9. Transmit Byte Count Registers

Byte Count, ds0 Byte Count, ds1

Byte Count

Byte Count Register

Read/Write Select

A4261-02

Endpoint 1: TXCNTL/TXCNTH

Endpoint 0,2,3: TXCNTL
7-16

UNIVERSAL SERIAL BUS
7.2.5 Transmit Data Set Management

Two read-only data set index bits, FIF1:0 in the TXFLG register, indicate which data sets (ds0
and/or ds1) have been written into the FIFO (see the left side of Table 7-4). FIFx = 1 indicates
that data set x has been written. Following reset, FIF1:0 = 00, signifying an empty FIFO. FIF1:0
also determine which data set is written next. Note that FIF0 specifies the next data set to be writ-
ten, except for the case of FIF1:0 = 11. In this case further writes to TXDAT or TXCNT are ig-
nored.

NOTE
To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

Two events cause the data set index bits to be updated:

• A new data set is written to the FIFO: the 8X930Ax writes bytes to the FIFO via TXDAT
and writes the number of bytes to TXCNT. The data set index bits are updated after the
write to TXCNT. This process is illustrated in Table 7-4.

• A data set in the FIFO is successfully transmitted: the function interface reads a data set
from the FIFO, and when a good transmission is acknowledged, the read marker is
advanced to the read pointer. The data set index bits are updated after the read marker is
advanced. Note that in ISO mode, this happens at the next SOF.

Table 7-4. Writing to the Byte Count Register

FIF1:0
 Data Sets Written Set for Next Write

to TXCNT
Write bytes
to TXDAT.

FIF1:0
ds1 ds0

0 0 No No (Empty) ds0 —> Write byte
count to
TXCNT

—> 0 1

0 1 No Yes (1 set) ds1 1 1

1 0 Yes No (1 set) ds0 1 1

1 1 Yes Yes (2 sets) Write ignored 1 1
7-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Table 7-5 summarizes how the actions following a transmission depend on the TXISO bit, the
ATM bit, the TXACK bit, and the TXERR bit.

NOTE
For normal operation, set the ATM bit in TXCON. Hardware will
automatically control the read pointer and read marker, and track the TXFIF
bits.

Figure 7-10. TXDAT: Transmit FIFO Data Register

Table 7-5. Truth Table for Transmit FIFO Management

TXISO
(TXCON.3)

ATM
(TXCON.2)

TXERR
(TXSTAT.1)

TXACK
(TXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by software.

X 0 1 0 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by software.

0 1 0 1 Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared.

0 1 1 0 Read pointer reversed automatically. The
TXFIF bit for the corresponding data set
remains unchanged.

1 1 X X Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared at the SOF.

TXDAT Address: S:F3H
Reset State: xxxx xxxxB

7 0

Transmit Data Byte

Bit
Number

Bit
Mnemonic Function

7:0 TXDAT[7:0] Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer
and read pointer are incremented automatically after a write and read
respectively.
7-18

UNIVERSAL SERIAL BUS

Figure 7-11. TXCNTH/TXCNTL Transmit FIFO Byte Count Registers

NOTE
To send a status stage after a control write or no data control command or a
null packet, write 0 to TXCNT.

TXCNTH,
TXCNTL

Address: S:F7H
S:F6H

Reset States: Endpoint 1 TXCNTH XXXX XX00B
TXCNTL 0000 0000B

Endpoints 0, 2, 3 TXCNTL XXX0 0000B

15 (TXCNTH) Endpoint 1 8

— — — — — — BC9 BC8

7 (TXCNTL) 0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

7 (TXCNTL) Endpoints 0, 2, 3 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

Endpoint 1 (x = 1)†

15:10 — Reserved.

Write zeros to these bits.

9:0 BC9:0 Transmit Byte Count.
Ten-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x = 0, 2, 3)†

7:0 — Reserved.

Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count.
Five-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

† x = endpoint index. See the EPINDEX register.
7-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TXCON Address: S:F4H
Reset State: x = 1† 000X 0100B

x = 0, 2, 3† 0XXX 0100B

7 0

TXCLR FFSZ.1 FFSZ.0 — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, sets the EMPTY bit in TXFLG, and
clears all other bits in TXFLG. After the flush, hardware clears this bit.
Setting this bit does not affect the ATM, TXISO, and FFSZ bits, or the
TXSEQ bit in the TXSTAT register.

6:5 FFSZ[1:0] FIFO Size:

These two bits are used for FIFO size configuration by function endpoint 1
only (EPINDEX = 01). The endpoint 1 FIFO size configurations (in bytes)
are:

FFSZ[1:0] Transmit Size Receive Size

00 256 256
01 512 512
10 1024 0
11 0 1024

These bits are not reset when the TXCLR bit is set in the TXCON register.

NOTE: The receive FIFO size is also set by the TXCON FFSZ bits.
Therefore, there are no corresponding FFSZ bits in RXCON.

4 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

3 TXISO Transmit Isochronous Data:

Software sets this bit to indicate that the transmit FIFO contains isochronous
data. The FIU uses this bit to set up the handshake protocol at the end of a
transmission. This bit is not reset when TXCLR is set and must be cleared
by software.

† x = endpoint index. See EPINDEX.
†† The read marker and read pointer should only be controlled manually for testing (when the ATM bit is

clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.
7-20

UNIVERSAL SERIAL BUS
Figure 7-12. TXCON: Transmit FIFO Control Register

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

ISO TX Status Read Pointer Read Marker

X ACK Unchanged Advanced*
0 NAK Reversed** Unchanged
1 NAK Unchanged Advanced*

* to origin of next data set ** to origin of the data set last read

When this bit is set, setting REVRP or ADVRM has no effect. This is a sticky
bit that is not reset when TXCLR is set, but can be set and cleared by
software. Hardware neither clears nor sets this bit.

Note: This bit should always be set, except as a testability feature.

1 ADVRM Advance Read Marker Control (non-ATM mode only) ††:

Setting this bit advances the read marker to point to the origin of the next
data packet (the position of the read pointer) to prepare for the next packet
transmission. Hardware clears this bit after the read marker is advanced.
Setting this bit is effective only when the REVRP, ATM, and TXCLR bits are
all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only) ††:

In the case of bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. Setting this bit is effective only when the ADVRM,
ATM, and TXCLR bits are all clear.

TXCON (Continued) Address: S:F4H
Reset State: x = 1† 000X 0100B

x = 0, 2, 3† 0XXX 0100B

7 0

TXCLR FFSZ.1 FFSZ.0 — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

† x = endpoint index. See EPINDEX.
†† The read marker and read pointer should only be controlled manually for testing (when the ATM bit is

clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.
7-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
TXFLG Address: S:F5H
Reset State: 00XX 1000B

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

7:6 TXFIF[1:0] FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIF0 are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
software (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF[1:0] Operation Flag Next TXFIF[1:0] Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF = 1

00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged

XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF.

You must check the TXFIF flags before and after writes to the transmit FIFO
and TXCNT for traceability.

NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

5:4 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

† When set, all transmissions are NAKed.
7-22

UNIVERSAL SERIAL BUS
Figure 7-13. TXFLG: Transmit FIFO Flag Register

2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun Flag:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through software. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.†

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
software. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.†

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

TXFLG (Continued) Address: S:F5H
Reset State: 00XX 1000B

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.
7-23

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

l, the
ified by
7.3 RECEIVE FIFOs

The 8X930Ax has four USB function receive FIFOs — one for each endpoint. In this manua
term receive FIFO refers to the receive FIFO associated with the current endpoint as spec
the EPINDEX register.

7.3.1 Receive FIFO Overview

The receive FIFOs are circulating data buffers with the following features:

• support for up to two separate data sets of variable sizes†

• a byte count register that accesses the number of bytes in the data sets

• flags to signal a full FIFO and an empty FIFO

• capability to re-receive the last data set

Figure 7-14 illustrates a receive FIFO. A receive FIFO and its associated logic can manage up to
two data sets, data set 0 (ds0) and data set 1 (ds1). The ability to have two data sets in the FIFO
supports back-to-back receptions.

In many ways the receive FIFO is symmetrical to the transmit FIFO. The FIU writes to the FIFO
location specified by the write pointer, which increments by one automatically following a write.
The write marker points to the first byte of data written to a data set, and the read pointer points
to the next FIFO location to be read by the 8X930Ax. The read pointer increments by one auto-
matically following a read.

When a good reception is completed, the write marker can be advanced to the position of the write
pointer to set up for writing the next data set. When a bad reception is completed, the write pointer
can be reversed to the position of the write marker to enable the FIU to rewrite the last data set
after receiving the data again. The write marker advance and write pointer reversal can be accom-
plished two ways: explicitly by software or automatically by hardware, as specified by bits in the
receive FIFO control register.

It is not practical for the 8X930Ax to begin scooping the receive FIFO before all bytes are re-
ceived and successfully acknowledged because the reception may be bad. Once it begins scoop-
ing the FIFO, the 8X930Ax can use the FIFO empty flag to signal an end to reading data.

The FIU can monitor the FIFO full flag (RXFULL bit in RXFLG) to avoid overwriting data in
the receive FIFO. The 8X930Ax can monitor the FIFO empty flag (RXEMP bit in RXFLG) to
avoid reading a byte when the FIFO is empty.

† When operating in dual packet mode, the maximum packet size should be at most half the
FIFO size to ensure that both packets will simultaneously fit in the FIFO (see the endpoint
descriptor in the Universal Serial Bus Specification).
7-24

UNIVERSAL SERIAL BUS

Figure 7-14. Receive FIFO

7.3.2 Receive FIFO Registers

There are five registers directly involved in the operation of the receive FIFOs:

• RXDAT, the receive FIFO data register

• RXCNTH and RXCNTL, the receive FIFO byte count registers referred to jointly as
RXCNT

• RXCON, the receive FIFO control register

• RXFLG, the receive FIFO flag register

These registers are endpoint indexed, i.e., they are used as set to control the operation of the re-
ceive FIFO associated with the current endpoint specified by the EPINDEX register. Figures 7-15
through 7-13 beginning on page 7-27 describe the receive FIFO registers and provide bit defini-
tions.

7.3.2.1 Receive Data Register (RXDAT)

Bytes read from the receive FIFO via the receive FIFO data register (RXDAT).

7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH)

The format of the receive byte count register depends on the endpoint. For endpoint 1, registers
RXCNTH and RXCNTL form a ten-bit ring buffer which accommodates packet sizes of 0 to
1023 bytes. For endpoints 0, 2, and 3, RXCNTL is used alone as five-bit ring buffer to accommo-
date packet sizes of 0 to 16 bytes. These formats are shown in Table 7-16 on page 7-28. The term
RXCNT refers to either of these arrangements.

A4259-02

Read Pointer

Data Set 0

Data Set 1

Write Marker

Write Pointer

FIU Writes to FIFO

8X930 CPU

Reads FIFO

From USB Interface

To CPU

RXCNTH

RXCNTL

Byte Count

Registers
7-25

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

r
gister

reafter,

er) to

 ARM
The receive FIFO byte count register (RXCNT) stores the number of bytes in either of the two
data sets, data set 0 (ds0) and data set 1 (ds1). The FIFO logic for maintaining the data sets as-
sumes that data is written to the FIFO in the following sequence:

1. The USB interface first writes the received data packet into the receive FIFO.

2. The USB interface then writes the number of bytes that were written into the receive FIFO
to the byte count register RXCNT. RXCNTL must be written after the data packet has
been received into the receive FIFO to guarantee data integrity.

NOTE
For all endpoints except function endpoint 1, RXCNTH is not available and
RXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and will
always be read as ‘0’.

The CPU reads the byte count register to determine the number of bytes in the set.

The receive byte count register has a read/write index to allow it to access the byte count for eithe
of the two data sets. This is similar to the methodology used for the transmit byte count re
— see Figure 7-9 on page 7-16. After reset, the read/write index points to data set 0. The
the following logic determines the position of the read/write index:

• After a read of RXCNT, the read/write index (RXFIF) is unchanged

• After a write of RXCNT, the read/write index (RXFIF) is toggled

The position of the read/write index can also be determined from the data set index bits, FIF1:0
(see “Receive FIFO Data Set Management” on page 7-26).

NOTE
RXCNT should only be read if FIF1:0 ≠ 00.

7.3.3 Receive FIFO Data Set Management

As in the transmit FIFO, the receive FIFO uses a pair of bits (FIF1:0 in the RXFLG regist
indicate which data sets are present in the receive FIFO (see Table 7-6).

Table 7-7 summarizes how the actions following a reception depend on the RXISO bit, the
bit, and the handshake issued by the 8X930Ax.

Table 7-6. Status of the Receive FIFO Data Sets

FIF1:0
 Data Sets Written

ds1 ds0

0 0 No No (Empty)

0 1 No Yes (1 set)

1 0 Yes No (1 set)

1 1 Yes Yes (2 sets)
7-26

UNIVERSAL SERIAL BUS
NOTE
For normal operation, set the ARM bit in RXCON: hardware will
automatically control the write pointer and write marker and track the RXFIF
bits.

Figure 7-15. RXDAT: Receive FIFO Data Register

Table 7-7. Truth Table for Receive FIFO Management

RXISO
(RXCON.3)

ARM
(RXCON.2)

RXERR
(RXSTAT.1)

RXACK
(RXSTAT.0) Action at End of Transfer Cycle

X X 0 0 No operation.

X 0 0 1 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by software.

X 0 1 0 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by software.

0 1 0 1 Write marker advanced automatically. The
RXFIF bit for the corresponding data set is
set.

0 1 1 0 Write pointer reversed automatically.The
RXFIF bit for the corresponding data set is
cleared.

1 1 X X Write marker advanced automatically. If data
was written to the receive FIFO, the RXFIF bit
for the corresponding data set is set.

RXDAT Address: S:E3H
Reset: XXXX XXXXB

7 0

RXDAT.7:0

Bit
Number

Bit
Mnemonic Function

7:0 RXDAT.7:0 To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8X930Ax reads from this register. The
write pointer and read pointer are incremented automatically after a write
and read, respectively.
7-27

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 7-16. RXCNTH/RXCNTL: Receive FIFO Byte Count Registers

CAUTION
Do not read RXCNT to determine if data is present in the receive FIFO.
Always read the FIF bits in the RXFLG register. RXCNT contains random
data during a receive operation. A read attempt to RXCNT during the time the
receive FIFO is empty causes the RXURF flag in RXFLG to be set. Always
read the FIF bits to determine if data is present in the receive FIFO. The
RXFLG FIF bits are updated after RXCNT is written (at the end of the receive
operation).

RXCNTH,
RXCNTL

Address: S:E7H
 S:E6H

Reset States:
Endpoint 1 RXCNTH XXXX XX00B

RXCNTL 0000 0000B

Endpoints 0, 2, 3 RXCNTL XXX0 0000B

15 (RXCNT) Endpoint 1 8

— — — — — — BC9 BC8

7 (RXCNTL) 0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

7 (RXCNTL) Endpoints 0, 2, 3 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

Endpoint 1 (x = 1)†

15:10 — Reserved. Write zeros to these bits.

9:0 BC9:0 Receive Byte Count.
Ten-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x = 0, 2, 3)†

7:0 — Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

† x = endpoint index. See the EPINDEX register.
7-28

UNIVERSAL SERIAL BUS

RXCON Address: S:E4H
Reset State: 0X00 0100B

7 0

RXCLR — RXWS RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation
is completed.

6 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

5 RXWS Receive FIFO Wait-state Read:

At the 8X930Ax core frequency of 12 MHz, not all instructions that access
the receive FIFO are guaranteed to work due to critical paths inherent in the
8X930Ax architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state — this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

4 RXFFRC FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

3 RXISO Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by software.

† The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.
7-29

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Figure 7-17. RXCON: Receive FIFO Control Register

2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker

X ACK Unchanged Advanced

0 NAK Reversed Unchanged

1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

Note: This bit should always be set, except for testing.

1 ADVWM Advance Write Marker: †

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.

0 REVWP Reverse Write Pointer: †

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

RXCON Address: S:E4H
Reset State: 0X00 0100B

7 0

RXCLR — RXWS RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

† The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.
7-30

UNIVERSAL SERIAL BUS

RXFLG Address: S:E5H
Reset State: 00XX 1000B

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

7:6 RXFIF[1:0] Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-6 on page 7-26). The RXFIF bits are updated after each
write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF[1:0] Operation Flag Next RXFIF[1:0] Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged

00 Set RXFFRC X 00 Unchanged
01 Set RXFFRC X 00 Unchanged
11 Set RXFFRC X 10/01 Unchanged
10 Set RXFFRC X 00 Unchanged

XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements”
RXFIF immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.

NOTE: To simplify firmware development, it is recommended that you utilize
control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

3 RXEMP Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer AND the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

† When set, all transmissions are NAKed.
7-31

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Figure 7-18. RXFLG: Receive FIFO Flag Register

2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flag:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.†

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bit is set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag.

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through software, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.†

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.†

RXFLG (Continued) Address: S:E5H
Reset State: 00XX 1000B

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.
7-32

UNIVERSAL SERIAL BUS

ical”
-
ect,
efer to

yed by
onsult
-

nd so
 LSB

ol Lay-
d
ption,”

IFO is
TAT
VW

 com-
ceive
et, re-
OVW,

F bit
esets
mine
ar the

nter

 flags
d, set-
lear
7.4 SIE DETAILS

The USB employs differential data signaling; refer to the signaling levels table in the “Electr
chapter of Universal Serial Bus Specification. The specification defines: differential’1’, differen
tial’0’, idle (’J’ state), non-idle (’K’ state), start of packet, end of packet, disconnect, conn
reset, and resume. The USB employs NRZI data encoding when transmitting packets. R
“Data Encoding/Decoding” in the Universal Serial Bus Specification for a description of NRZI
data encoding and decoding. To ensure adequate signal transitions, bit stuffing is emplo
the SIE when transmitting data. The SIE also does bit unstuffing when receiving data. C
the “Flow Diagram for Bit Stuffing” figure in the “Bit Stuffing” section of the “Electrical” chap
ter for more information on bit stuffing.

Bits are sent out onto the bus, least significant bit (LSb) first, followed by the next LSb, a
on. Bytes are sent out onto the bus least significant byte (LSB) first, followed by the next
and so on. The SIE ensures that the LSb is first, but the 8X930Ax programmer must order the
bytes.

The SIE decodes and takes care of all packet types and packet fields mentioned in “Protoc
er” chapter of Universal Serial Bus Specification. The FIU communicates data information an
handshaking instructions to the SIE. Programmers should consult the “Interconnect Descri
“USB Devices,” and “USB Host” chapters of Universal Serial Bus Specification for detailed in-
formation on how the host and function communicate.

7.5 SETUP TOKEN RECEIVE FIFO HANDLING

SETUP tokens received by a control endpoint must be ACKed even though the receive F
not empty. When a SETUP token is detected by the FIU, the FIU sets the STOVW bit of RXS
and then flushes the receive FIFO by hardware, setting the RXCLR bit of RXCON. The STO
indicates a SETUP initiated over-write (flush) is in progress. After the SETUP transaction is
pleted (i.e., ACK handshake), the FIU clears STOVW and sets EDOVW, indicating the re
FIFO over-write is complete and FIFO contents are stable. Reception of any SETUP pack
gardless of whether the receive FIFO is full or empty always sequences through the ST
EDOVW sequence described above.

Note that if the receive FIFO flush occurs in the middle of an 8X930Ax CPU data read cycle
(from a previous USB transaction), the receive FIFO may underrun, thus setting the RXUR
of RXFLG and positioning the read pointer in an unknown state. To prevent this, STOVW r
and locks the read pointer. Firmware can monitor the STOVW and EDOVW flags to deter
whether the underrun was due to a SETUP token received. If so, firmware needs to cle
EDOVW bit. Clearing the EDOVW bit will also clear the RXURF bit and revert the read poi
to the reset position. At this point, firmware is ready to read the SETUP data packet.

CAUTION
For SETUP packets, firmware must clear EDOVW prior to reading data from
the FIFO. If this is not done, data read from the FIFO will be invalid.

After processing a data packet, firmware should always check the STOVW and EDOVW
before setting the RXFFRC bit. When a SETUP packet either has been or is being receive
ting of RXFFRC does not occur if either STOVW or EDOVW is set. It is up to the user to c
7-33

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

is oc-
arkers
dated.
t data

thers
irm-
 at SOF.

re,
EDOVW which disables the RXFFRC blocking mechanism. Also note that the RXSETUP=1
condition will cause IN tokens to automatically be NAKed until RXSETUP is cleared. This is true
even if the transmit and/or receive endpoint is stalled (TXSTL=1, RXSTL=1), and is done to al-
low the clearing of a stall condition on a control endpoint.

NOTE
To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

7.6 ISO DATA MANAGEMENT

ISO data management must always be performed in dual-packet mode. Interrupts are not gener-
ated when an ISO transmit or receive cycle is completed; ISO protocols should always be syn-
chronized to the SOF interrupt. When transmitting, data written into the transmit FIFO at frame
n is pre-buffered to be transmitted in frame n+1. This guarantees that data is always available to
the host when requested anytime in a frame. When receiving, data written into the receive FIFO
at frame n is pre-buffered to be read-out in frame n+1. This guarantees that data from the host is
always available to the function every frame.

Isochronous data transfer is always guaranteed if the OUT or IN tokens from the host are not cor-
rupted. When IN or OUT tokens to a function are corrupted, the host does not re-send the token.
The function will need to recognize this error condition and reconfigure the endpoints according-
ly.

7.6.1 Transmit FIFO ISO Data Management

When an IN token is corrupted, the data to be transmitted from the transmit FIFO for an isochro-
nous endpoint in the current frame will be flushed. Due to latency concerns, this is handled by
hardware. This error condition can be detected by checking TXFIF = “11” at SOF. When th
curs, the first data packet will be flushed and the transmit FIFO read-pointers and read-m
will be advanced to the start “address” of the second data packet. The TXFIF will also be up
Therefore, the second packet will be ready to be transmitted for the next frame. The firs
packet is lost.

For firmware traceability of FIFO status flags, some flags are updated immediately while o
are updated only at SOF. TXOVF, TXURF and TXFIF are handled using the following rule: f
ware events cause status change immediately while USB events only cause status change
For example:

• TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.

• TXURF: Since underrun can only be caused by SIE, TXURF is updated at SOF.

• TXFIF: TXFIF is “incremented” by firmware and “decremented” by hardware. Therefo
writes to TXCNT will “increment” TXFIF immediately. However, a successful USB
transaction anytime in a frame will only “decrement” TXFIF at SOF.
7-34

UNIVERSAL SERIAL BUS

d be

thers
firm-
 at SOF.

re,
The following bits do not follow the above rule:

• TXEMP/TXFULL: These always reflect the current status of the FIFO.

• TXFLUSH: Firmware can detect a flush by monitoring this bit.

7.6.2 Receive FIFO ISO Data Management

When an OUT token is corrupted, the data to be received by the receive FIFO for an isochronous
endpoint in the current frame will be lost. There is no hardware implementation to track this error
condition and should be managed by firmware. This condition can be detected by checking
RXFIF = “00” at SOF. “Reconstruction” of the lost data is application specific and shoul
managed by firmware.

For firmware traceability of FIFO status flags, some flags are updated immediately while o
are updated only at SOF. RXOVF, RXURF and RXFIF are handled using the following rule:
ware events cause status change immediately while USB events only cause status change

• RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.

• RXOVF: Since overrun can only be caused by SIE, RXOVF is updated at SOF.

• RXFIF: RXFIF is “incremented” by hardware and “decremented” by firmware. Therefo
setting RXFFRC will “decrement” RXFIF immediately. However, a successful USB
transaction anytime in a frame will only “increment” RXFIF at SOF.

• RXEMP/RXFULL: The rule does not apply to the RXEMP and RXFULL flags, which
always reflect the current status of the FIFO.
7-35

8
USB Programming
Models

 event
in USB

ceive
 each
r enu-
s.
CHAPTER 8
USB PROGRAMMING MODELS

This chapter describes the programming models of the USB function interface. It provides flow
charts of suggested firmware routines for using the transmit and receive FIFOs to perform data
transfers between the host PC and the embedded function. It also describes briefly how the firm-
ware interacts with the USB module hardware during these operations. For a description of the
USB function interface as well as its FIFOs and special functions registers (SFRs), refer to Chap-
ter 7, “Universal Serial Bus.” Data operations refer to data transfers over the USB, whereas
operations are hardware operations such as attach and detach. For details on data flow
transactions refer to Appendix D.

8.1 OVERVIEW OF PROGRAMMING MODELS

The USB function interface employs four types of routines: receive, transmit, setup, and re
SOF. Program flow is depicted in Figure 8-1 along with the type of token associated with
routine. Following device reset, the USB function enters the unenumerated state and afte
meration by the host, the idle state. From the idle state, it can enter any of the four routine

Figure 8-1. Program Flow

Receive SOFTransmit

Unenumerated

Reset

IN

token OUT

token
SETUP

token

SOF

token

Setup

A4260-02

Idle/Application Code

Receive
8-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ction

o
sfer

r,

he

ith the

oper-
and the
 affect
,
 be re-
he FIFO
ent is

hapter
8.1.1 Unenumerated State

Following device reset, the USB function enters the unenumerated state. Initially the function ad-
dress register FADDR contains the default value 00H. The host PC performs bus enumeration in
which it identifies and addresses devices attached to the bus. During enumeration, a unique ad-
dress assigned by the host is written to FADDR. The bus enumeration process has four steps:

1. Get descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet size
for endpoint 0, vendor id, product id, etc. For detailed information on device descriptors,
see the “Device Framework” chapter in Universal Serial Bus Specification.

2. Set address. The host sends the 8X930Ax’s function address in a data packet using
endpoint 0. Device firmware interprets the data and instructs the CPU to write the fun
address to FADDR.

3. Get configuration. The host requests and reads the device configuration descriptor t
determine such information as the number of interfaces and endpoints; endpoint tran
type, packet size, and direction; power source; maximum power; etc. For detailed
information on configuration descriptors, see the “Device Framework” chapter in
Universal Serial Bus Specification. When the host requests the configuration descripto
all related interface and endpoint descriptors are returned.

4. Set configuration. The host assigns a configuration value to the device to establish t
current configuration. Devices can have multiple configurations.

8.1.2 Idle State

Following bus enumeration, the USB function enters the idle state. In this state, the 8X930Ax ex-
ecutes application code associated with the embedded function. Upon receipt of a token w
assigned address, the module enters the designated routine.

8.1.3 Transmit and Receive Routines

When the 8X930Ax is sending and receiving packets in the transmit and receive modes, its
ation depends on the type of data that is transferred—isochronous or non-isochronous—
adjustment of the FIFO markers and pointers—automatic or manual. These differences
both the 8X930Ax firmware and the operation of the 8X930Ax hardware. For isochronous data
a failed transfer is not retried (lossy data). For non-isochronous data, a failed transfer can
peated. Data that can be repeated is considered lossless data. Automatic adjustment of t
markers and pointers is accomplished by the function interface hardware. Manual adjustm
accomplished by the 8X930Ax firmware.

8.1.4 USB Interrupts

For an explanation of the USB global suspend/resume, function, and SOF interrupts, see C
6, “Interrupt System.”
8-2

USB PROGRAMMING MODELS

edded
 data
pt of
t over

s data

is then
U. The
ement

 initi-
er, and
updated

ajor
8.2 TRANSMIT OPERATIONS

8.2.1 Overview

A transmit operation occurs in three major steps:

1. Pre-transmit data preparation by firmware

2. Data packet transmission by function interface hardware

3. Post-transmit management by firmware

These steps are depicted in a high-level view of transmit operations (Figure 8-2). The pre-trans-
mit and post-transmit operations are executed by the two firmware routines shown on the left side
of the figure. Function interface hardware (right side of the figure) transmits the data packet over
the USB line. Details of these operations are described in “Pre-transmit Operations” on page 8-5
and “Post-transmit Operations” on page 8-6.

Transmit operations for non-isochronous data begin with an interrupt request from the emb
function (e.g., a keyboard entry). The pre-transmit routine (ISR) for the function writes the
from the function to the transmit FIFO where it is held until the next IN token. Upon recei
the next valid IN token, the function interface shifts the data out of the FIFO and transmits i
the USB. If the data packet is not ready for transmission, 8X930Ax hardware responds to the IN
token with a NAK. The post-transmit routine checks the transmission status and perform
management tasks.

Completion of data transmission is indicated by a handshake returned by the host. This
used to generate a transmit done interrupt to signal the end of data transmission to the CP
interrupt can also be used for activity tracking and fail-safe management. Fail-safe manag
permits recovery from lockups that can only be cleared by software.

For ISO data transmission, the cycle is similar. The significant differences are: the cycle is
ated by a start of frame (SOF) interrupt, there is no handshake associated with ISO transf
a transmit done interrupt is not generated. For ISO data transfers, the transaction status is
at the end of the USB frame. The 8X930Ax supports one ISO packet per frame per endpoint.

Two bits in the transmit FIFO control register (TXCON, Figure 7-12 on page 7-21) have a m
influence on transmit operation:

• The TXISO bit (TXCON.3) determines whether the transmission is for isochronous data
(TXISO = 1) or non-isochronous data (TXISO = 0). For non-isochronous data only, the
function interface receives a handshake from the host, toggles or does not toggle the
sequence bit, and generates a transmission done interrupt (Figure 8-2). Also, for non-
isochronous data, the post-transmit routine is an ISR; for isochronous data the post-transmit
routine is an ISR initiated by an SOF token.

• The ATM bit (TXCON.2) determines whether the FIFO read marker and read pointer are
managed automatically by the FIFO hardware (ATM = 1) or manually by the second
firmware routine (ATM = 0). Use of the ATM mode is recommended. The ADVRM and
REVRP bits, which control the read marker and read pointer when ATM = 0, are used
primarily for test purposes. See bit definitions in TXCON (Figure 7-12).
8-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 8-2. High-level View of Transmit Operations

Interrupt

(keyboard, joystick, modem)

ISR

Write data to transmit FIFO

Write TXCNT

TXISO = 0: Transmit done interrupt

TXISO = 1: SOF interrupt

IN Token

Send data over USB

RETI

Firmware Hardware

RETI

– Receive host handshake

– Manage TXSEQ bit

If TXISO = 0:

If ATM = 1:

A4262-02

(SIE, FIU, FIFOs)

Post-

Transmit

Routine

Pre-transmit

Routine

– Adjust FIFO read

 marker and read pointer

– Adjust FIFO read marker and

 read pointer

•

•

•
•

ISR

Check status

If ATM = 0:

•

•

•

Generate transmit done interrupt

or SOF interrupt

•

8-4

USB PROGRAMMING MODELS
8.2.2 Pre-transmit Operations

Transmitted data originates in the embedded function, which might be a keyboard, mouse, joy-
stick, scanner, etc. In event-control applications, the end function signals the availability of data
with an interrupt request for the pre-transmit interrupt service routine (ISR). The ISR should pre-
pare the data for transmission and initiate the transmission process. The flow chart in Figure 8-3
illustrates a typical pre-transmit ISR.

For the case of isochronous data, the interrupt is triggered by the USB function in response to a
start of frame (SOF) packet.

Figure 8-3. Pre-transmit ISR (Non-Isochronous)

RETI

Start: Non-ISO

 A5071-01

Yes

No

Yes

NoVacancy

in Transmit

FIFO?

Transfer Packet to

Transmit FIFO through

TXDAT

TXFIF1:0 = 11 in Dual-packet Mode

TXFIF1:0 = 00 in Single-packet Mode

Write Packet Size to

TXCNT

Error in

Transmit FIFO? TXOVF = 1 (overflow)

Error

Recovery
8-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

 ensure
uld be

 flow of
) and
8.2.3 Post-transmit Operations

Transmission status is updated at the end of data transmission based on the handshake received
from the host (non-isochronous data) or based on the transmission process itself (isochronous
data). For a non-isochronous transfer, the function interface generates a transmit done interrupt.
The purpose of the post-transmit service routines is to manage the transmitter’s state and to
data integrity for the next transmission. For isochronous data, the post-transmit routine sho
embedded within the transfer request routine because both are triggered by an SOF. The
operations of typical post-transmit ISRs is illustrated in Figure 8-4 (non-isochronous data
Figure 8-5 (isochronous data).

Figure 8-4. Post-transmit ISR (Non-isochronous)

RETI

Identify Interrupt and Endpoint

(check FTXDx bits in FIFLG register)

Start: Transmit Done ISR

 A5072-01

No(TXACK = 1) Yes

Read Transaction Status

(TXSTAT Register)

Clear Interrupt Flag

(FTXDx Bit)

Transmit

Error?

(TXERR = 1)

Error in

Transmit

FIFO?

Yes

Data Error recovery

Reverse Transmit FIFO to

Current Packet Retry

No

Failed CRC,

Bit-stuffing, or

Timeout from Host

Advance Transmit FIFO to

Next Packet Transmit

(Underrun Flag

TXURF = 1?)

Buffer Segmentation Management. Executed automatically by hardware, based on transaction

status, if ATM bit in TXCON is set.

†

† †
8-6

USB PROGRAMMING MODELS

Figure 8-5. Post-transmit ISR (Isochronous)

No

RETI

Start: SOF ISR

 A5073-01

Overflow

Error in Transmit

FIFO?

No

Yes (TXURF = 1)

YesNo
For

Each Endpoint,

Read Transaction Status

(TXSTAT)

Transmit Error?

Write Next Packet

to Transmit FIFO

(TXERR = 1)(TXACK = 1)

Error in

Transmit FIFO?

Advance Transmit

FIFO to next packet No

(Failed CRC, Bit

Stuffing, or Timeout

from Host)

Transmit FIFO

Error Recovery

Write Packet Size

to TXCNT

Error Recovery

Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction if ATM bit

in TXCON is set. For isochronous transactions, there is no retry of current packet regardless of transaction status.

†

Write Packet Size

to TXCNT

Write Next Packet

to Transmit FIFO

Advance Transmit

FIFO to Next Packet

Overflow

Error in Transmit

FIFO?(TXOVF = 1)

Yes

(TXOVF = 1)Yes
†

†

8-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

f fig-

U
 routine
lso be

d by an
to the
for post

major
8.3 RECEIVE OPERATIONS

8.3.1 Overview

A receive operation is always initiated by the host, which sends an OUT token to the 8X930Ax.
The operation occurs in two major steps:

1. Data packet reception by the function interface (hardware)

2. Post-receive management by firmware

These steps are depicted in a high-level view of the receive operations in Figure 8-6. The post-
receive operations are executed by the firmware routine shown on the left side of the figure. For
details see “Post-receive Operations” on page 8-9. Function interface hardware (right side o
ure) receives the data packet over the USB line.

Receive operations for non-isochronous data begin when the 8X930Ax receives a valid OUT to-
ken from the host. The received data is written to a data buffer FIFO. The 8X930Ax indicates
completion of data received by returning a handshake to the host.

At the end of the receive cycle, the 8X930Ax generates a receive done interrupt to notify the CP
that a receive operation has occurred. Program execution branches to the interrupt service
and transfers the data packet from the receive FIFO to its destination. The interrupt can a
used for fail-safe management and activity tracking.

For isochronous data, receive cycles are somewhat different. Data transactions are initiate
OUT token. At the end of the OUT transaction, the 8x930Ax does not return handshake
host and the receive done interrupt is not generated. Instead, the SOF interrupt is used
receive management. The data reception status is updated at the next SOF. The 8X930Ax supports
one ISO packet per frame per endpoint.

Two bits in the receive FIFO control register (RXCON, Figure 7-17 on page 7-30) have a
influence on receive operation:

• The ISO bit (RXCON.3) determines whether the reception is for isochronous data (ISO = 1)
or non-isochronous data (ISO = 0). For non-isochronous data only, the function interface
sends a handshake to the host, checks the sequence bit, and generates a receive-done
(FRXDx) interrupt. Also, for non-isochronous data, the post-receive routine is an ISR; for
isochronous data the post-receive routine can be a normal subroutine or ISR initiated by an
SOF token.

• The ARM bit (RXCON.2) determines whether the FIFO write marker and write pointer are
managed automatically by the FIFO hardware (ARM = 1) or manually by the firmware
routine (ARM = 0). Use of the ARM mode is recommended. The ADVWM and REVWP
bits, which control the write marker and write pointer when ARM = 0, are used primarily
for test purposes. See bit definitions in RXCON (Figure 7-17).
8-8

USB PROGRAMMING MODELS

ta integ-
the re-
 called

us da-

Figure 8-6. High-level View of Receive Operations

8.3.2 Post-receive Operations

Reception status is updated at the end of data reception based on the handshake received from the
host (non-isochronous data) or based on the transmission process itself (isochronous data). For a
non-isochronous transfer, the function interface generates a receive done interrupt (FRXDx). The
purpose of the post-receive service routine is to manage the receiver’s state to ensure da
rity and latency for the next reception. The post-receive routine also transfers the data in
ceive FIFO to the end function. For isochronous data, the post-receive routine should be
by the SOF ISR.

Flow diagrams for typical post-receive routines are presented in Figure 8-7 (non-isochrono
ta) and Figure 8-8 (isochronous data).

RXISO = 0: Receive done interrupt

RXISO = 1: SOF interrupt

ISR

OUT Token

Firmware

Hardware

RETI

A4265-02

(SIE, FIU, FIFOs)

Post-

Receive

Routine

Send data over USB

– Send host handshake

– Adjust RXSEQ bit

Generate receive done interrupt

or SOF interrupt

If ISO = 0:

If ARM = 1:
– Adjust FIFO write marker and

 write pointer

•
•

•

Check status and read data

If ARM = 0:
– Adjust FIFO write marker

 and write pointer

•
•

•

8-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 8-7. Post-receive ISR (Non-isochronous)

No

RETI

Start: Receive Done ISR

Clear Interrupt Flag

Identify Function Interrupt and Endpoint

(Check FRXDx Bits in FIFLG Register)

Error in

Receive

FIFO?

No

Yes (RXOVF=1)

Yes

YesNo
Check

RXSTAT for

Receive

Error

Read Data Packet(s)

(RXERR=1)(RXACK=1)

Error in

Receive FIFO?

Advance Receive FIFO

to next packet

Reverse Receive FIFO

to current packet retry

No(Failed CRC or Bit Stuffing)

Receive FIFO

Error Recovery

Check for

Another Packet in

Receive FIFO

(RXFIF1:0 = 00 in Dual

Port Mode)

Receive FIFO

Error Recovery

Unlock Current Packet from

Receive FIFO (set RXFFRC

Bit in RXCON)

Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction

if ARM bit in RXCON is set.

†

†

†

 A5070-01

Yes (RXURF = 1)

(RXOVF=1)
8-10

USB PROGRAMMING MODELS

Figure 8-8. Receive SOF ISR (Isochronous)

Yes

RETI

Start: SOF ISR

 A5074-01

Error

in Receive

FIFO?

Yes (RXOVF = 1)

YesNo
For

Each Endpoint,

Read Transaction Status

(RXSTAT)

Transmit Error?

Read Data Packet

(RXERR = 1)(RXACK = 1)

Error in

Receive FIFO?

Advance Receive

FIFO to Next Packet No

(Failed CRC

or Bit Stuffing)

Receive FIFO

Error Recovery

Data Reconstruction

by Application for

Lost Data

Receive FIFO

Error Recovery

Unlock Current Packet

from Receive FIFO

(set RXFFRC bit in RXCON)

Buffer Segmentation Management. Executed automatically by hardware at the end of a data

transaction if ARM bit in TXCON is set. For isochronous transactions, there is no retry of current

packet regardless of transaction status.

†

(RXURF = 1)

No

Advance Receive FIFO

to Next Packet Receive

Data Reconstruction

by Application for

Lost Data

†

†

Unlock FIFO

(set RXFFRC)
8-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ayer”
o-

ood).
n non-

fferent

t of a
ith re-
 nature
trates
8.4 SETUP TOKEN

An endpoint must be configured as a control endpoint in order to respond to SETUP tokens. (This
will only be endpoint 0, since it must serve as a control endpoint.) Refer to the “Protocol L
section of the Universal Serial Bus Specification for details of SETUP token transactions and pr
tocol.

A control data transfer is initiated by a valid SETUP token (i.e., the token PID received is g
Receive data transfer operations for a control endpoint are very similar to data transfers o
control endpoints for non-setup tokens. However, the response of a control endpoint is di
when it receives a setup token.

USB protocol specifies that setup tokens must be received and ACKed. Following receip
setup token, a control endpoint flushes the contents of the receive FIFO before writing it w
ceived setup data. This may create an error condition in the FIFO due to the asynchronous
of FIFO reads by the CPU and simultaneous writes by the function interface. Figure 8-9 illus
the operations of a typical post-receive routine for a control endpoint.
8-12

USB PROGRAMMING MODELS

Figure 8-9. Post-receive ISR (Control)

RETI

Start: Receive Done ISR

 A5075-01

No

YesNo

Read Data Packet

OUT Token

Received

Clear Firmware

Setup Flag

Setup Token Received

Clear EDOVW

(RXERR = 1)(RXACK = 1)

Clear Overwrite Bit

(EDOVW)

Unlock Current Packet

from Receive FIFO

(set RXFFRC bit in RXCON)

Inhibited in hardware if STOVW or EDOVW are asserted.
†

No

No

Yes

(STOVW = 0 and

EDOVW = 1)

Yes

(STOVW = 1 or

 EDOVW = 1)

Normal

Error

Handling

†

Identify Interrupt Endpoint

(check FRXDx bits in the FIFLG register) Clear Interrupt Flag

Check

RXSTAT for

Receive

Error

Setup

Token?

Yes (RXSETUP = 1)

Overwrite

Completed?

Receive FIFO

Overwrite?

Error in

Receive FIFO?

No

No

Yes

Error

Recovery

(RXURF = 1)

Yes

Yes

Clear Overwrite Bit

(EDOVW)

No

Overwrite

Completed

Receive FIFO

Overwrite?

(STOVW = 0 and

EDOVW = 0)

(STOVW = 1 or

EDOVW = 1)

(STOVW = 0 and

EDOVW = 1)

(STOVW = 0 and

EDOVW = 0)
8-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
8.5 START OF FRAME (SOF) TOKEN

Figure 8-10 illustrates the hardware operations performed by the function interface for a start of
frame (SOF) token. The host issues an SOF token at a nominal rate of once every 1.0 ms. An SOF
token is valid if the PID is good. The SOF token is not endpoint-specific; it should be received
by every node on the bus.

Figure 8-10. Hardware Operations for SOF Token

Set ASOF Bit

End of

Transfer

No

Pass

CRC?

Yes

Write SOF Registers

Clear

SOFACK

Bit

Done

Yes

Valid SOF Token

No

Set SOFACK.

(SOF token received

without error)

Generate SOF Pulse

by Asserting SOF# Pin

(SOFH.7)

(SOFH.7)

(SOFH, SOFL)

(SOFH.6)

A4267-02
8-14

9
Input/Output Ports

CHAPTER 9
INPUT/OUTPUT PORTS

The 8X930Ax has four 8-bit input/output (I/O) ports for general-purpose I/O, external memory
operations, and specific alternate functions (see Table 9-1). This chapter describes the ports and
provides information on port loading, read-modify-write instructions, and external memory ac-
cesses.

9.1 INPUT/OUTPUT PORT OVERVIEW

All four 8X930Ax I/O ports are bidirectional. Each port contains a latch, an output driver, and an
input buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory opera-
tions. Port 0 drives the lower address byte onto the parallel address bus, and port 2 drives the up-
per address byte onto the bus. In nonpage mode, the data is multiplexed with the lower address
byte on port 0. In page mode, the data is multiplexed with the upper address byte on port 2. Port
1 and port 3 provide both general-purpose I/O and special alternate functions.

Table 9-1. Input/Output Port Pin Descriptions

Pin
Name Type Alternate

Pin Name Alternate Description Alternate
Type

P0.7:0 I/O AD7:0 Address/Data (Nonpage Mode), Address (Page Mode) I/O

P1.0 I/O T2 Timer 2 Clock Input/Output I/O

P1.1 I/O T2EX Timer 2 External Input I

P1.2 I/O ECI PCA External Clock Input I

P1.3 I/O CEX0 PCA Module 0 I/O I/O

P1.4 I/O CEX1 PCA Module 1 I/O I/O

P1.5 I/O CEX2 PCA Module 2 I/O I/O

P1.6 I/O CEX3/WAIT# PCA Module 3 I/O I/O

P1.7 I/O CEX4/A17/WCLK PCA Module 4 I/O or 18th Address Bit I/O(O)

P2.7:0 I/O A15:8 Address (Nonpage Mode), Address/Data (Page Mode) I/O

P3.0 I/O RXD Serial Port Receive Data Input I (I/O)

P3.1 I/O TXD Serial Port Transmit Data Output O (O)

P3.2 I/O INT0# External Interrupt 0 I

P3.3 I/O INT1# External Interrupt 1 I

P3.4 I/O T0 Timer 0 Input I

P3.5 I/O T1 Timer 1 Input I

P3.6 I/O WR# Write Signal to External Memory O

P3.7 I/O RD#/A16 Read Signal to External Memory or 17th Address Bit O
9-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ead
ignal
” sig-

odify-
e in-

ource
its al-

t

e
rts 1

0, shown
e 9-4
9.2 I/O CONFIGURATIONS

Each port SFR operates via type-D latches, as illustrated in Figure 9-1 for ports 1 and 3. A CPU
“write to latch” signal initiates transfer of internal bus data into the type-D latch. A CPU “r
latch” signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” s
transfers the logical level of the port pin. Some port data instructions activate the “read latch
nal while others activate the “read pin” signal. Latch instructions are referred to as read-m
write instructions (see “Read-Modify-Write Instructions” on page 9-4). Each I/O line may b
dependently programmed as input or output.

9.3 PORT 1 AND PORT 3

Figure 9-1 shows the structure of ports 1 and 3, which have internal pullups. An external s
can pull the pin low. Each port pin can be configured either for general-purpose I/O or for
ternate input or output function (Table 9-1).

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
1, 3). To use a pin for general-purpose input, set the bit in the Px register. This turns off the outpu
driver FET.

To configure a pin for its alternate function, set the bit in the Px register. When the latch is set, th
“alternate output function” signal controls the output level (Figure 9-1). The operation of po
and 3 is discussed further in “Quasi-bidirectional Port Operation” on page 9-5.

9.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port
in Figure 9-2, differs from the other ports in not having internal pullups. Figure 9-3 on pag
shows the structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x =
0, 2). To use a pin for general-purpose input set the bit in the Px register to turn off the output
driver FET.
9-2

INPUT/OUTPUT PORTS
Figure 9-1. Port 1 and Port 3 Structure

Figure 9-2. Port 0 Structure

Read

Latch

Read

Pin

Write to

Latch

Internal

Bus

Alternate

Output

Function

D

CL

Q

Q#

P3.x

Latch

Internal

Pullup

P3.x

Alternate

Input

Function

A2239-01

VCC

Read

Latch

Read

Pin

Address/

Data Control

D

CL

Q

Q#

P0.x

A2238-01

VCC

Write to

Latch

Internal

Bus P0.x

Latch 1

0

9-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ata bus.

ns read
e” in-
rand is
Figure 9-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, an internal control signal switches
the output-driver input from the latch output to the internal address/data line. “External Memory
Access” on page 9-6 discusses the operation of port 0 and port 2 as the external address/d

NOTE
Port 0 and port 2 are precluded from use as general purpose I/O ports when
used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off. All other port 0 outputs are
open drain.

9.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructio
the data, modify the data, and then rewrite the latch. These are called “read-modify-writ
structions. Below is a complete list of these special instructions. When the destination ope
a port, or a port bit, these instructions read the latch rather than the pin:
ANL (logical AND, e.g., ANL P1, A)
ORL (logical OR, e.g., ORL P2, A)
XRL (logical EX-OR, e.g., XRL P3, A)
JBC (jump if bit = 1 and clear bit, e.g., JBC P1.1, LABEL)
CPL (complement bit, e.g., CPL P3.0)
INC (increment, e.g., INC P2)

Read

Latch

Read

Pin

Address

Control

D

CL

Q

Q#

P2.x

Latch

VCC

Internal

Pullup

A2240-01

P2.x

Write to

Latch

Internal

Bus

1

0

9-4

INPUT/OUTPUT PORTS

c zero.

ional”
 current
e bi-

 port
itions

rrent

 this
es 100
ather
 when
d on for
ne at
 pair

ssoci-
s are
DEC (decrement, e.g., DEC P2)
DJNZ (decrement and jump if not zero, e.g., DJNZ P3, LABEL)
MOV PX.Y, C (move carry bit to bit Y of port X)
CLR PX.Y (clear bit Y of port X)
SETB PX.Y (set bit Y of port x)

It is not obvious that the last three instructions in this list are read-modify-write instructions.
These instructions read the port (all 8 bits), modify the specifically addressed bit, and write the
new byte back to the latch. These read-modify-write instructions are directed to the latch rather
than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at
the pin. For example, a port bit used to drive the base of an external bipolar transistor cannot rise
above the transistor’s base-emitter junction voltage (a value lower than VIL). With a logic one
written to the bit, attempts by the CPU to read the port at the pin are misinterpreted as logi
A read of the latch rather than the pin returns the correct logic-one value.

9.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as “quasi-bidirect
ports. When configured as an input, the pin impedance appears as logic one and sources
(see the 8X930Ax datasheet) in response to an external logic-zero condition. Port 0 is a “tru
directional” pin. The pin floats when configured as input. Resets write logical one to all
latches. If logical zero is subsequently written to a port latch, it can be returned to input cond
by a logical one written to the latch. For additional electrical information, refer to the cu
8X930Ax datasheet.

NOTE
Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Logical zero-to-one transitions in port 1, port 2, and port 3 utilize an additional pullup to aid
logic transition (see Figure 9-4). This increases switch speed. The extra pullup briefly sourc
times the normal internal circuit current. The internal pullups are field-effect transistors r
than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on
the gate senses logical zero and off when the gate senses logical one. pFET #1 is turne
two oscillator periods immediately after a zero-to-one transition in the port latch. A logic o
the port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFET
form a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the a
ated nFET is switched off. This is a traditional CMOS switch convention. Current strength
1/10 that of pFET #3.
9-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Figure 9-4. Internal Pullup Configurations

9.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zero (see VOL specifica-
tions in the 8X930Ax data sheet). These port pins can be driven by open-collector and open-drain
devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to a logic-one
condition (Figure 9-4 on page 9-6). A logic-zero input turns off pFET #3. This leaves only pFET
#2 weakly in support of the transition. In external bus mode, port 0 output buffers each sink 3.2
mA at logic zero (see VOL1 in the 8X930Ax data sheet). However, the port 0 pins require external
pullups to drive external gate inputs. See the latest revision of the 8X930Ax datasheet for com-
plete electrical design information. External circuits must be designed to limit current require-
ments to these conditions.

9.8 EXTERNAL MEMORY ACCESS

The external bus structure is different for page mode and nonpage mode. In nonpage mode (used
by MCS 51 microcontrollers), port 2 outputs the upper address byte; the lower address byte and
the data are multiplexed on port 0. In page mode, the upper address byte and the data are multi-
plexed on port 2, while port 0 outputs the lower address byte.

The 8X930Ax CPU writes FFH to the P0 register for all external memory bus cycles. This over-
writes previous information in P0. In contrast, the P2 register is unmodified for external bus cy-
cles. When address bits or data bits are not on the port 2 pins, the bit values in P2 appear on the
port 2 pins.

Q#

From

Port

Latch

P3P2P1

n

Port

Input Data

Read Port Pin

2 Osc. Periods

A2242-01

VCCVCCVCC
9-6

INPUT/OUTPUT PORTS

sig-
strobe

it ad-
ry ad-

 the in-
e used

ddress
r
s,
driven
ing.
In nonpage mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte and the data. Port 0 is in a high-impedance
state for data input.

In page mode, port 0 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte or a strong internal pulldown FET to output
zeros for the upper address byte.

In nonpage mode, port 2 uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the upper address byte. In page mode, port 2 uses a strong internal
pullup FET to output ones or a strong internal pulldown FET to output zeros for the upper address
byte and data. Port 2 is in a high-impedance state for data input.

NOTE
In external bus mode port 0 outputs do not require external pullups.

There are two types of external memory accesses: external program memory and external data
memory (see Chapter 15, “External Memory Interface”). External program memories utilize
nal PSEN# as a read strobe. MCS 51 microcontrollers use RD# (read) or WR# (write) to
memory for data accesses. Depending on its RD1:0 configuration bits, the 8X930Ax uses PSEN#
or RD# for data reads (See “Configuration Bits RD1:0” on page 4-8).

During instruction fetches, external program memory can transfer instructions with 16-b
dresses for binary-compatible code or with the external bus configured for extended memo
dressing (17-bit or 18-bit).

External data memory transfers use an 8-, 16-, 17-, or 18-bit address bus, depending on
struction and the configuration of the external bus. Table 9-2 lists the instructions that can b
for these bus widths.

NOTE
Avoid MOV P0 instructions for external memory accesses. These instructions
can corrupt input code bytes at port 0.

External signal ALE (address latch enable) facilitates external address latch capture. The a
byte is valid after the ALE pin drives VOL. For write cycles, valid data is written to port 0 just prio
to the write (WR#) pin asserting VOL. Data remains valid until WR# is undriven. For read cycle
data returned from external memory must appear at port 0 before the read (RD#) pin is un
(refer to the 8X930Ax datasheet for specifications). Wait states, by definition, affect bus-tim

Table 9-2. Instructions for External Data Moves

Bus Width Instructions

8 MOVX @Ri; MOV @Rm; MOV dir8

16 MOVX @DPTR; MOV @WRj; MOV @WRj+dis; MOV dir16

17 MOV @DRk; MOV @DRk+dis

18 MOV @DRk; MOV @DRk+dis
9-7

10
Timer/Counters and
WatchDog Timer

tified
iety of
ed sep-
 capture
Rs pro-

rate is
CHAPTER 10
TIMER/COUNTERS AND WATCHDOG TIMER

This chapter describes the timer/counters and the watchdog timer (WDT) included as peripherals
on the 8X930Ax. When operating as a timer, a timer/counter runs for a programmed length of
time, then issues an interrupt request. When operating as a counter, a timer/counter counts nega-
tive transitions on an external pin. After a preset number of counts, the counter issues an interrupt
request.

The watchdog timer provides a way to monitor system operation. It causes a system reset if a soft-
ware malfunction allows it to expire. The watchdog timer is covered in “Watchdog Timer” on
page 10-17.

10.1 TIMER/COUNTER OVERVIEW

The 8X930Ax contains three general-purpose, 16-bit timer/counters. Although they are iden
as timer 0, timer 1, and timer 2, you can independently configure each to operate in a var
modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, us
arately or in cascade, to maintain the count. The timer registers and associated control and
registers are implemented as addressable special function registers (SFRs). Four of the SF
vide programmable control of the timers as follows:

• Timer/counter mode control register (TMOD) and timer/counter control register (TCON)
control timer 0 and timer 1

• Timer/counter 2 mode control register (T2MOD) and timer/counter 2 control register
(T2CON) control timer 2

Table 10-1 describes the external signals referred to in this chapter. Table 10-2 briefly describes
the SFRs referred to in this chapter. For a map of the SFR address space, see Table 3-5 on page
3-16. Timer/Counter Operation

10.2 TIMER/COUNTER OPERATION

The block diagram in Figure 10-1 depicts the basic logic of the timers. Here timer registers THx
and TLx (x = 0, 1, and 2) connect in cascade to form a 16-bit timer. Setting the run control bit
(TRx) turns the timer on by allowing the selected input to increment TLx. When TLx overflows
it increments THx; when THx overflows it sets the timer overflow flag (TFx) in the TCON or
T2CON register. Setting the run control bit does not clear the THx and TLx timer registers. The
timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can also be controlled by external pin INTx# to facilitate pulse width measurements.

The C\Tx# control bit selects timer operation or counter operation by selecting the divided-down
system clock or external pin Tx as the source for the counted signal.

For timer operation (C/Tx# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle, i.e., once every six states (see “Clock
and Reset Unit” on page 2-7). Since six states equals 12 clock cycles, the timer clock
10-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

 Unit”
 high in
 in the

ates (24
he os-
but to
 at least
FOSC/12. Exceptions are the timer 2 baud rate and clock-out modes, where the timer register is
incremented by the system clock divided by two.

NOTE
For the case of PLL on (PLLSEL2:0 =110), a peripheral cycle equals six TOSC
so the timer clock rate is FOSC /6. For the timer 2 baud rate and clock-out
modes, the timer register is incremented at the PLL rate (12 MHz). See “Clock
and Reset Unit” on page 2-7.

For counter operation (C/Tx# = 1), the timer register counts the negative transitions on the Tx ex-
ternal input pin. The external input is sampled during every S5P2 state. “Clock and Reset
on page 2-7 describes the notation for the states in a peripheral cycle. When the sample is
one cycle and low in the next, the counter is incremented. The new count value appears
register during the next S3P1 state after the transition was detected. Since it takes 12 st
oscillator periods) to recognize a negative transition, the maximum count rate is 1/24 of t
cillator frequency. There are no restrictions on the duty cycle of the external input signal,
ensure that a given level is sampled at least once before it changes, it should be held for
one full peripheral cycle.

Table 10-1. External Signals

Signal
Name Type Description Alternate

Function

T2 I/O Timer 2 Clock Input/Output. This signal is the external clock input
for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

P1.0

T2EX I Timer 2 External Input. In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

P1.1

INT1:0# I External Interrupts 1:0. These inputs set the IE1:0 interrupt flags in
the TCON register. TCON bits IT1:0 select the triggering method:
IT1:0 = 1 selects edge-triggered (high-to-low);IT1:0 = 0 selects level-
triggered (active low). INT1:0# also serves as external run control for
timer 1:0 when selected by TCON bits GATE1:0#.

P3.3:2

T1:0 I Timer 1:0 External Clock Inputs. When timer 1:0 operates as a
counter, a falling edge on the T1:0 pin increments the count.

P3.5:4
10-2

TIMER/COUNTERS AND WATCHDOG TIMER

Figure 10-1. Basic Logic of the Timer/Counters †

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/Tx# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

A4121-02

TRx

TLx

(8 Bits)

THx

(8 Bits) TFx

Interrupt

Request

12

Tx

Overflow

x = 0, 1, or 2

XTAL1

C/Tx#

0

1

10-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

e

rrupt

10.3 TIMER 0

Timer 0 functions as either a timer or event counter in four modes of operation. Figures 10-2,
10-3, and 10-4 show the logical configuration of each mode.

Timer 0 is controlled by the four low-order bits of the TMOD register (Figure 10-5) and bits 5, 4,
1, and 0 of the TCON register (Figure 10-6). The TMOD register selects the method of timer gat-
ing (GATE0), timer or counter operation (T/C0#), and mode of operation (M10 and M00). The
TCON register provides timer 0 control functions: overflow flag (TF0), run control (TR0), inter-
rupt flag (IE0), and interrupt type control (IT0).

For normal timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by the se-
lected input. Setting GATE0 and TR0 allows external pin INT0# to control timer operation. This
setup can be used to make pulse width measurements. See “Pulse Width Measurements” on pag
10-11.

Timer 0 overflow (count rolls over from all 1s to all 0s) sets the TF0 flag generating an inte
request.

Table 10-2. Timer/Counter and Watchdog Timer SFRs

Mnemonic Description Address

TL0
TH0

Timer 0 Timer Registers. Used separately as 8-bit counters or in cascade
as a 16-bit counter. Counts an internal clock signal with frequency FOSC/12
(timer operation) or an external input (event counter operation).

S:8AH
S:8CH

TL1
TH1

Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade
as a 16-bit counter. Counts an internal clock signal with frequency FOSC/12
(timer operation) or an external input (event counter operation).

S:8BH
S:8DH

TL2
TH2

Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a
16-bit counter. Counts an internal clock signal with frequency FOSC/12
(timer operation) or an external input (event counter operation).

S:CCH
S:CDH

TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags,
interrupt flags, and interrupt-type control bits for timer 0 and timer 1.

S:88H

TMOD Timer 0/1 Mode Control Register. Contains the mode select bits,
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.

S:89H

T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and
capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.

S:C8H

T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and
down count enable bits.

S:C9H

RCAP2L
RCAP2H

Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H). Provide values
to and receive values from the timer registers (TL2,TH2).

S:CAH
S:CBH

WDTRST Watchdog Timer Reset Register (WDTRST). Used to reset and enable
the WDT.

S:A6H
10-4

TIMER/COUNTERS AND WATCHDOG TIMER
10.3.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer which is set up as an 8-bit timer (TH0 register) with
a modulo 32 prescalar implemented with the lower five bits of the TL0 register (Figure 10-2). The
upper three bits of the TL0 register are indeterminate and should be ignored. Prescalar overflow
increments the TH0 register.

10.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 0 as a 16-bit timer with TH0 and TL0 connected in cascade (Figure
10-2). The selected input increments TL0.

10.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer 0 as an 8-bit timer (TL0 register) that automatically reloads from the
TH0 register (Figure 10-3). TL0 overflow sets the timer overflow flag (TF0) in the TCON register
and reloads TL0 with the contents of TH0, which is preset by software. When the interrupt re-
quest is serviced, hardware clears TF0. The reload leaves TH0 unchanged. See “Auto-load Setup
Example” on page 10-10.

Figure 10-2. Timer 0/1 in Mode 0 and Mode 1 †

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/Tx# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

A4110-02

GATEx

INTx#

TRx

TLx

(8 Bits)

THx

(8 Bits) TFx

Interrupt

Request

12

Tx

Overflow

Mode 0: 13-bit Timer/Counter

Mode 1: 16-bit Timer/Counter

x = 0 or 1

XTAL1

C/Tx#

0

1

10-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

nd
re an
nd out

-2 and
ode.

ts 7,
 timer
. The
ter-

ud rate
10.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configures timer 0 such that registers TL0 and TH0 operate as separate 8-bit timers (Fig-
ure 10-4). This mode is provided for applications requiring an additional 8-bit timer or counter.
TL0 uses the timer 0 control bits C/T0# and GATE0 in TMOD, and TR0 and TF0 in TCON in the
normal manner. TH0 is locked into a timer function (counting FOSC /12) and takes over use of the
timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of timer 1 is restricted when
timer 0 is in mode 3. See “When timer 0 is in mode 3, it uses timer 1’s overflow flag (TF1) a
run control bit (TR1). For this situation, use timer 1 only for applications that do not requi
interrupt (such as a baud rate generator for the serial interface port) and switch timer 1 in a
of mode 3 to turn it off and on.” on page 10-7 and “Mode 3 (Halt)” on page 10-10.

10.4 TIMER 1

Timer 1 functions as either a timer or event counter in three modes of operation. Figures 10
10-3 show the logical configuration for modes 0, 1, and 2. Timer 1’s mode 3 is a hold-count m

Timer 1 is controlled by the four high-order bits of the TMOD register (Figure 10-5) and bi
6, 3, and 2 of the TCON register (Figure 10-6). The TMOD register selects the method of
gating (GATE1), timer or counter operation (T/C1#), and mode of operation (M11 and M01)
TCON register provides timer 1 control functions: overflow flag (TF1), run control (TR1), in
rupt flag (IE1), and interrupt type control (IT1).

Timer 1 operation in modes 0, 1, and 2 is identical to timer 0. Timer 1 can serve as the ba
generator for the serial port. Mode 2 is best suited for this purpose.

Figure 10-3. Timer 0/1 in Mode 2, Auto-Reload †

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/Tx# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

A4111-02

GATEx

INTx#

TRx

TLx

(8 Bits) TFx

Interrupt

Request

12

Tx

Overflow

x = 0 or 1

XTAL1

Reload

THx

(8 Bits)

C/Tx#

0

1

10-6

TIMER/COUNTERS AND WATCHDOG TIMER

rrupt

 For
ud rate
d on.

) with
. The
er.

igure
For normal timer operation (GATE1 = 0), setting TR1 allows timer register TL1 to be increment-
ed by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control timer op-
eration. This setup can be used to make pulse width measurements. See “Pulse Width
Measurements” on page 10-11.

Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag, generating an inte
request.

When timer 0 is in mode 3, it uses timer 1’s overflow flag (TF1) and run control bit (TR1).
this situation, use timer 1 only for applications that do not require an interrupt (such as a ba
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off an

10.4.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer, which is set up as an 8-bit timer (TH1 register
a modulo-32 prescalar implemented with the lower 5 bits of the TL1 register (Figure 10-2)
upper 3 bits of the TL1 register are ignored. Prescalar overflow increments the TH1 regist

10.4.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 1 as a 16-bit timer with TH1 and TL1 connected in cascade (F
10-2). The selected input increments TL1.
 .

Figure 10-4. Timer 0 in Mode 3, Two 8-bit Timers †

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/Tx# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

A4112-02

GATE0

INT0#

TR0

TL0

(8 Bits) TF0

Interrupt

Request

12

T0

Overflow

XTAL1

TF1
OverflowTH0

(8 Bits)

TR1

1/12 FOSC

Interrupt

Request

1/12 FOSC

C/T0#

0

1

10-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 10-5. TMOD: Timer/Counter Mode Control Register

TMOD Address: S:89H
Reset State: 0000 0000B

7 0

GATE1 C/T1# M11 M01 GATE0 C/T0# M10 M00

Bit
Number

Bit
Mnemonic Function

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 C/T1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

5, 4 M11, M01 Timer 1 Mode Select:

M11 M01
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded

from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATE0 Timer 0 Gate:

When GATE0 = 0, run control bit TR0 gates the input signal to the timer
register. When GATE0 = 1 and TR0 = 1, external signal INT0 gates the
timer input.

2 C/T0# Timer 0 Counter/Timer Select:

C/T0# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/T0# = 1 selects counter operation: timer 0 counts
negative transitions on external pin T0.

1, 0 M10, M00 Timer 0 Mode Select:

M10 M00
0 0 Mode 0: 8-bit timer/counter (T0) with 5-bit prescalar (TL0)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL0). Reloaded

from TH0 at overflow.
1 1 Mode 3: TL0 is an 8-bit timer/counter. TH0 is an 8-bit

timer using timer 1’s TR1 and TF1 bits.
10-8

TIMER/COUNTERS AND WATCHDOG TIMER

Figure 10-6. TCON: Timer/Counter Control Register

TCON Address: S:88H
Reset State: 0000 0000B

7 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit
Number

Bit
Mnemonic Function

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:

Set/cleared by software to turn timer 1 on/off.

5 TF0 Timer 0 Overflow Flag:

Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TR0 Timer 0 Run Control Bit:

Set/cleared by software to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IE0 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT0# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).
10-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

imer 1
 para-

e timer
t repre-
xamples
ters.

 2

r
10.4.3 Mode 2 (8-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (TL1 register) with automatic reload from the TH1
register on overflow (Figure 10-3). Overflow from TL1 sets overflow flag TF1 in the TCON reg-
ister and reloads TL1 with the contents of TH1, which is preset by software. The reload leaves
TH1 unchanged. See “Auto-load Setup Example” on page 10-10.

10.4.4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt t
when the TR1 run control bit is not available (i.e., when timer 0 is in mode 3). See the final
graph of “Timer 1” on page 10-6.

10.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purpose timers that can be used in a variety of ways. Th
applications presented in this section are intended to demonstrate timer setup, and do no
sent the only arrangement nor necessarily the best arrangement for a given task. These e
employ timer 0, but timer 1 can be set up in the same manner using the appropriate regis

10.5.1 Auto-load Setup Example

Timer 0 can be configured as an eight-bit timer (TL0) with automatic reload as follows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode
for timer 0, C/T0# = 0 to select FOSC/12 (with PLL on, PLLSEL2:0 = 110, this becomes
FOSC/6) as the timer input, and GATE0 = 0 to select TR0 as the timer run control.

2. Enter an eight-bit initial value (n0) in timer register TL0, so that the timer overflows afte
the desired number of peripheral cycles.

3. Enter an eight-bit reload value (nR) in register TH0. This can be the same as n0 or
different, depending on the application.

4. Set the TR0 bit in the TCON register (Figure 10-6) to start the timer. Timer overflow
occurs after FFH + 1 - n0 peripheral cycles, setting the TF0 flag and loading nR into TL0
from TH0. When the interrupt is serviced, hardware clears TF0.

5. The timer continues to overflow and generate interrupt requests every FFH + 1 - nR
peripheral cycles.

6. To halt the timer, clear the TR0 bit.
10-10

TIMER/COUNTERS AND WATCHDOG TIMER

 and
in Fig-
Figure

te gen-
D and
e. Set-

 clock
 TF2

s 10-7
10.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GATEx and TRx allows an external waveform at pin INTx# to
turn the timer on and off. This setup can be used to measure the width of a positive-going pulse
present at pin INTx#. Pulse width measurements using timer 0 in mode 1 can be made as follows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode 1
for timer 0, C/T0# = 0 to select FOSC/12 as the timer input (with PLL on, PLLSEL2:0 =
110, this becomes FOSC/6), and GATE0 = 1 to select INT0 as timer run control.

2. Enter an initial value of all zeros in the 16-bit timer register TH0/TL0, or read and store
the current contents of the register.

3. Set the TR0 bit in the TCON register (Figure 10-6) to enable INT0.

4. Apply the pulse to be measured to pin INT0. The timer runs when the waveform is high.

5. Clear the TR0 bit to disable INT0.

6. Read timer register TH0/TL0 to obtain the new value.

7. Calculate pulse width as follows:

a. For PLL off, pulse width = 12 TOSC × (new value - initial value)

b. For PLL on (PLLSEL2:0 = 110), pulse width = 24 TOSC × (new value - initial value)

8. Example (with PLL off, PLLSEL2:0 = 100): FOSC = 12 MHz and 12TOSC = 1 µs. If the new
value = 10,00010 and the initial value = 0, the pulse width = 1 µs × 10,000 = 10 ms.

10.6 TIMER 2

Timer 2 is a 16-bit timer/counter. The count is maintained by two 8-bit timer registers, TH2
TL2, connected in cascade. The timer/counter 2 mode control register (T2MOD) as shown
ure 10-11 on page 10-17) and the timer/counter 2 control register (T2CON) as shown in
10-12 on page 10-18) control the operation of timer 2.

Timer 2 provides the following operating modes: capture mode, auto-reload mode, baud ra
erator mode, and programmable clock-out mode. Select the operating mode with T2MO
TCON register bits as shown in Table 10-3 on page 10-16. Auto-reload is the default mod
ting RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C/T2# selects the divided-down system
(timer operation) or external pin T2 (counter operation) as the timer register input. Setting
allows TL2 to be incremented by the selected input.

The operating modes are described in the following paragraphs. Block diagrams in Figure
through 10-10 show the timer 2 configuration for each mode.
10-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
10.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 10-7). An overflow
condition sets bit TF2, which you can use to request an interrupt. Setting the external enable bit
EXEN2 allows the RCAP2H and RCAP2L registers to capture the current value in timer registers
TH2 and TL2 in response to a 1-to-0 transition at external input T2EX. The transition at T2EX
also sets bit EXF2 in T2CON. The EXF2 bit, like TF2, can generate an interrupt.

Figure 10-7. Timer 2: Capture Mode †

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/Tx# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

Interrupt

Request

T2EX

TF2
12

T2

Overflow

RCAP2H

TR2

RCAP2L

TH2

(8 Bits)

EXEN2

EXF2

Capture

A4113-02

XTAL1

C/T2#

0

1
TL2

(8 Bits)
10-12

TIMER/COUNTERS AND WATCHDOG TIMER
10.6.2 Auto-reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload.
The timer operates an as an up counter or as an up/down counter, as determined by the down
counter enable bit (DCEN). At device reset, DCEN is cleared, so in the auto-reload mode, timer
2 defaults to operation as an up counter.

10.6.2.1 Up Counter Operation

When DCEN = 0, timer 2 operates as an up counter (Figure 10-8). The external enable bit EXEN2
in the T2CON register provides two options (Figure 10-12). If EXEN2 = 0, timer 2 counts up to
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in the re-
load/capture registers (RCAP2H, RCAP2L) into the timer registers (TH2, TL2). The values in
RCAP2H and RCAP2L are preset by software.

If EXEN2 = 1, the timer registers are reloaded by either a timer overflow or a high-to-low tran-
sition at external input T2EX. This transition also sets the EXF2 bit in the T2CON register. Either
TF2 or EXF2 bit can generate a timer 2 interrupt request.

Figure 10-8. Timer 2: Auto Reload Mode (DCEN = 0) †

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/T2# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

Interrupt

Request

T2EX

TF2

12

T2

Overflow

TR2

TH2

(8 Bits)

TL2

(8 Bits)

EXEN2

EXF2

Reload

A4115-02

XTAL1

RCAP2H RCAP2L

C/T2#

0

1

10-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
10.6.3 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 10-9). External pin T2EX con-
trols the direction of the count (Table 10-1 on page 10-2). When T2EX is high, timer 2 counts up.
The timer overflow occurs at FFFFH which sets the timer 2 overflow flag (TF2) and generates an
interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L to be load-
ed into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer
registers (TH2, TL2) equals the value stored in RCAP2H and RCAP2L. The underflow sets the
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows, changing the direction of the count.
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. This bit can
be used to provide 17-bit resolution.

Figure 10-9. Timer 2: Auto Reload Mode (DCEN = 1) †

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/T2# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

Interrupt

Request

T2

Overflow

TR2

TH2

(8 Bits)

TL2

(8 Bits)

FFH FFH

12

T2EX

Count

Direction

1 = Up

0 = Down

TF2

EXF2

Toggle

(Down Counting Reload Value)

(Up Counting Reload Value)

RCAP2LRCAP2H

A4114-01

XTAL1

C/T2#

0

1

10-14

TIMER/COUNTERS AND WATCHDOG TIMER

igure

P2H
erate
r fre-

 47.8

.

2L

load

er 2 as
d rates
AP2H
10.6.4 Baud Rate Generator Mode

This mode configures timer 2 as a baud rate generator for use with the serial port. Select this mode
by setting the RCLK and/or TCLK bits in T2CON. See Table 10-3. For details regarding this
mode of operation, refer to “Baud Rates” on page 12-10.

10.6.5 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (F
10-10). The input clock increments TL0 at FOSC/2 for PLL off or FOSC for PLL on. The timer re-
peatedly counts to overflow from a preloaded value. At overflow, the contents of the RCA
and RCAP2L registers are loaded into TH2/TL2. In this mode, timer 2 overflows do not gen
interrupts. The formula gives the clock-out frequency as a function of the system oscillato
quency and the value in the RCAP2H and RCAP2L registers:

For a 12 MHz system clock with PLL off, timer 2 has a programmable frequency range of
Hz to 3 MHz. The generated clock signal is brought out to the T2 pin.

Timer 2 is programmed for the clock-out mode as follows:

1. Set the T2OE bit in T2MOD. This gates the timer register overflow to the ÷2 counter

2. Clear the C/T2# bit in T2CON to select FOSC/2 (PLL off) or FOSC (PLL on) as the timer
input signal. This also gates the output of the ÷2 counter to pin T2.

3. Determine the 16-bit reload value from the formula and enter in the RCAP2H/RCAP
registers.

4. Enter a 16-bit initial value in timer register TH2/TL2. This can be the same as the re
value, or different, depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.

Operation is similar to timer 2 operation as a baud rate generator. It is possible to use tim
a baud rate generator and a clock generator simultaneously. For this configuration, the bau
and clock frequencies are not independent since both functions use the values in the RC
and RCAP2L registers.

For PLL off, Clock-out Frequency
FOSC

4 (65535 - RCAP2H, RCAP2L)×--=

For PLL on, Clock-out Frequency
FOSC

2 (65535 - RCAP2H, RCAP2L)×--=
10-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 10-10. Timer 2: Clock Out Mode †

 .

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input 0 of the C/T2# selector is twice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

Table 10-3. Timer 2 Modes of Operation

Mode RCLK OR TCLK
(in T2CON)

CP/RL2#
(in T2CON)

T2OE
(in T2MOD)

Auto-reload Mode 0 0 0

Capture Mode 0 1 0

Baud Rate Generator Mode 1 X X

Programmable Clock-Out X 0 1

Interrupt

Request

T2EX

2

T2OE

RCAP2H

TR2

RCAP2L

TH2

(8 Bits)

EXEN2

EXF2

TL2

(8 Bits)

2

A4116-02

XTAL1

T2

C/T2#

0

1

10-16

TIMER/COUNTERS AND WATCHDOG TIMER

n and
2 ms.

read

Figure 10-11. T2MOD: Timer 2 Mode Control Register

10.7 WATCHDOG TIMER

The peripheral section of the 8X930Ax contains a dedicated, hardware watchdog timer (WDT)
that automatically resets the chip if it is allowed to time out. The WDT provides a means of re-
covering from routines that do not complete successfully due to software malfunctions. The WDT
described in this section is not associated with the PCA watchdog timer, which is implemented
in software.

10.7.1 Description

The WDT is a 14-bit counter that counts peripheral cycles, i.e., (FOSC/12 with PLL off; FOSC/6
with PLL on). The WDTRST special function register at address S:A6H provides control access
to the WDT. Two operations control the WDT:

• Device reset clears and disables the WDT (see “Reset” on page 13-4).

• Writing a specific two-byte sequence to the WDTRST register clears and enables the WDT.

If it is not cleared, the WDT overflows on count 3FFFH + 1. With PLL off and FOSC = 12 MHz,
a peripheral cycle is 1 µs and the WDT overflows in 1 µs × 16384 = 16.384 ms. With PLL o
FOSC = 12 MHz, a peripheral cycle is 0.5 µs and the WDT overflows in 0.5 µs × 16384 = 8.19

The WDTRST is a write-only register. Attempts to read it return FFH. The WDT itself is not
or write accessible. The WDT does not drive the external RESET pin.

T2MOD Address: S:C9H
Reset State: XXXX XX00B

7 0

— — — — — — T2OE DCEN

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

1 T2OE Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.
10-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 10-12. T2CON: Timer 2 Control Register

T2CON Address: S:C8H
Reset State: 0000 0000B

7 0

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#

Bit
Number

Bit
Mnemonic Function

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK = 1 or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 C/T2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.
10-18

TIMER/COUNTERS AND WATCHDOG TIMER

rs

 WDT
ice the
t when
heral

to hold
ated
own
 if the
10.7.2 Using the WDT

To use the WDT to recover from software malfunctions, the user program should control the
WDT as follows:

1. Following device reset, write the two-byte sequence 1EH-E1H to the WDTRST register to
enable the WDT. The WDT begins counting from 0.

2. Repeatedly for the duration of program execution, write the two-byte sequence 1EH-E1H
to the WDTRST register to clear and enable the WDT before it overflows. The WDT
starts over at 0.

If the WDT overflows, it initiates a device reset (see “Reset” on page 13-4). Device reset clea
the WDT and disables it.

10.7.3 WDT During Idle Mode

Operation of the WDT during the power reduction modes deserves special attention. The
continues to count while the microcontroller is in idle mode. This means the user must serv
WDT during idle. One approach is to use a peripheral timer to generate an interrupt reques
the timer overflows. The interrupt service routine then clears the WDT, reloads the perip
timer for the next service period, and puts the microcontroller back into idle.

10.7.4 WDT During PowerDown

The powerdown mode stops all phase clocks. This causes the WDT to stop counting and
its count. The WDT resumes counting from where it left off if the powerdown mode is termin
by INT0/INT1. To ensure that the WDT does not overflow shortly after exiting the powerd
mode, clear the WDT just before entering powerdown. The WDT is cleared and disabled
powerdown mode is terminated by a reset.
10-19

11
Programmable
Counter Array

CHAPTER 11
PROGRAMMABLE COUNTER ARRAY

This chapter describes the programmable counter array (PCA), an on-chip peripheral of the
8X930Ax that performs a variety of timing and counting operations, including pulse width mod-
ulation (PWM). The PCA provides the capability for a software watchdog timer (WDT).

11.1 PCA DESCRIPTION

The programmable counter array (PCA) consists of a 16-bit timer/counter and five 16-bit com-
pare/capture modules. The timer/counter serves as a common time base and event counter for the
compare/capture modules, distributing the current count to the modules by means of a 16-bit bus.
A special function register (SFR) pair, CH/CL, maintains the count in the timer/counter, while
five SFR pairs, CCAPxH/CCAPxL, store values for the modules (see Figure 11-1). Additional
SFRs provide control and mode select functions as follows:

• The PCA timer/counter mode register (CMOD) and the PCA timer/counter control register
(CCON) control the operation of the timer/counter. See Figure 11-7 on page 11-13 and
Figure 11-8 on page 11-14.

• Five PCA module mode registers (CCAPMx) specify the operating modes of the
compare/capture modules. See Figure 11-9 on page 11-15.

For a list of SFRs associated with the PCA, see Table 11-1. For an SFR address map, see Table
3-5 on page 3-16. Port 1 provides external I/O for the PCA on a shared basis with other functions.
Table 11-2 identifies the port pins associated with the timer/counter and compare/capture mod-
ules. When not used for PCA I/O, these pins can be used for standard I/O functions.

The operating modes of the five compare/capture modules determine the functions performed by
the PCA. Each module can be independently programmed to provide input capture, output com-
pare, or pulse width modulation. Module 4 only also has a watchdog-timer mode.

The PCA timer/counter and the five compare/capture modules share a single interrupt vector. The
EC bit in the IEN0 special function register is a global interrupt enable for the PCA. Capture
events, compare events in some modes, and PCA timer/counter overflows set flags in the CCON
register. Setting the overflow flag (CF) generates a PCA interrupt request if the PCA tim-
er/counter interrupt enable bit (ECF) in the CMOD register is set (Figure 11-1). Setting a com-
pare/capture flag (CCFx) generates a PCA interrupt request if the ECCFx interrupt enable bit in
the corresponding CCAPMx register is set (Figures 11-2 and 11-3). For a description of the
8X930Ax interrupt system see Chapter 6, “Interrupt System.”
11-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

spond-

hen

ecial
he CL
scil-
gen-

 to the
11.1.1 Alternate Port Usage

PCA modules 3 and 4 share port pins with the real-time wait state and address functions as fol-
lows:

• PCA module 3 — P1.6/CEX3/WAIT#

• PCA module 4 — P1.7/CEX4/A17/WCLK

When the real-time wait state functions are enabled (using the WCON register), the corre
ing PCA modules are automatically disabled. Configuring the 8X930Ax to use address line A17
(specified by UCONFIG0, bits RD1:0) overrides the PCA module 3 and WCLK functions. W
a real-time wait state function is enabled, do not use the corresponding PCA module.

NOTE
It is not advisable to alternate between PCA operations and real-time wait state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK). See
“External Bus Cycles with Real-time Wait States” on page 15-11.

11.2 PCA TIMER/COUNTER

Figure 11-1 depicts the basic logic of the timer/counter portion of the PCA. The CH/CL sp
function register pair operates as a 16-bit timer/counter. The selected input increments t
(low byte) register. When CL overflows, the CH (high byte) register increments after two o
lator periods; when CH overflows it sets the PCA overflow flag (CF in the CCON register)
erating a PCA interrupt request if the ECF bit in the CMOD register is set.

The CPS1 and CPS0 bits in the CMOD register select one of four signals as the input
timer/counter (Figure 11-7 on page 11-13):

• FOSC/12. Provides a clock pulse at S5P2 of every peripheral cycle. With PLLSEL2:0 = 100
and FOSC = 12 MHz, the timer/counter increments every 1000 nanoseconds. With
PLLSEL2:0 = 110 and FOSC = 12 MHz, the timer/counter increments every 500
nanoseconds.

• FOSC/4. Provides clock pulses at S1P2, S3P2, and S5P2 of every peripheral cycle. With
PLLSEL2:0 = 100 and FOSC = 12 MHz, the timer/counter increments every 333 1/3
nanoseconds. With PLLSEL2:0 = 110 and FOSC = 12 MHz, the timer/counter increments
every 166 2/3 nanoseconds.

• Timer 0 overflow. The CL register is incremented at S5P2 of the peripheral cycle when
timer 0 overflows. This selection provides the PCA with a programmable frequency input.

• External signal on P1.2/ECI. The CPU samples the ECI pin at S1P2, S3P2, and S5P2 of
every peripheral cycle. The first clock pulse (S1P2, S3P2, or S5P2) that occurs following a
high-to-low transition at the ECI pin increments the CL register. The maximum input
frequency for this input selection is FOSC/8.

For a description of peripheral cycle timing, see “Clock and Reset Unit” on page 2-7.
11-2

PROGRAMMABLE COUNTER ARRAY
Setting the run control bit (CR in the CCON register) turns the PCA timer/counter on, if the out-
put of the NAND gate (Figure 11-1) equals logic 1. The PCA timer/counter continues to operate
during idle mode unless the CIDL bit of the CMOD register is set. The CPU can read the contents
of the CH and CL registers at any time. However, writing to them is inhibited while they are
counting (i.e., when the CR bit is set).

Figure 11-1. Programmable Counter Array†

† This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequencies at inputs 00 and 01 of the CPSx selector are twice that for PLLSEL2:0 = 100 (PLL off). See Table
2-2 on page 2-8.

16-bit

Bus

CL

(8 Bits)

CH

(8 Bits) CF

Interrupt

Request

FOSC /12

PCA

Timer/Counter

CCON.7

Overflow

ECF

CMOD.0

Enable

CR

CCON.6

Run Control

IDL

PCON.0

Idle Mode

CIDL
CMOD.7

CPS0
CMOD.1

CPS1
CMOD.2

00

01

10

11

FOSC /4

Timer 0 Overflow

P1.2/ECI

Module 0 P1.3/CEX0

Module 1 P1.4/CEX1

Module 2 P1.5/CEX2

Module 3 P1.6/CEX3/WAIT#

Module 4 P1.7/CEX4/

A17/WCLK

(16 Bits)

Compare/Capture

Modules

 A4162-04
11-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 11-1. PCA Special Function Registers (SFRs)

Mnemonic Description Address

CL
CH

PCA Timer/Counter. These registers serve as a common 16-bit timer or
event counter for the five compare/capture modules. Counts FOSC/12,
FOSC/4, timer 0 overflow, or the external signal on P1.2/ECI, as selected by
CMOD. In PWM mode CL operates as an 8-bit timer.

S:E9H
S:F9H

CCON PCA Timer/Counter Control Register. Contains the run control bit and
the overflow flag for the PCA timer/counter, and interrupt flags for the five
compare/capture modules.

S:D8H

CMOD PCA Timer/Counter Mode Register. Contains bits for disabling the PCA
timer/counter during idle mode, enabling the PCA watchdog timer (module
4), selecting the timer/counter input, and enabling the PCA timer/counter
overflow interrupt.

S:D9H

CCAP0H
CCAP0L

PCA Module 0 Compare/Capture Registers. This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FAH
S:EAH

CCAP1H
CCAP1L

PCA Module 1 Compare/Capture Registers. This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FBH
S:EBH

CCAP2H
CCAP2L

PCA Module 2 Compare/Capture Registers. This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FCH
S:ECH

CCAP3H
CCAP3L

PCA Module 3 Compare/Capture Registers. This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FDH
S:EDH

CCAP4H
CCAP4L

PCA Module 4 Compare/Capture Registers. This register pair stores the
comparison value or the captured value. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

S:FEH
S:EEH

CCAPM0
CCAPM1
CCAPM2
CCAPM3
CCAPM4

PCA Compare/Capture Module Mode Registers. Contain bits for
selecting the operating mode of the compare/capture modules and
enabling the compare/capture flag. See Table 11-3 on page 11-14 for mode
select bit combinations.

S:DAH
S:DBH
S:DCH
S:DDH
S:DEH

Table 11-2. External Signals

Signal
Name Type Description Alternate

Function

ECI I PCA Timer/counter External Input. This signal is the external
clock input for the PCA timer/counter.

P1.2

CEX0
CEX1
CEX2
CEX3
CEX4

I/O Compare/Capture Module External I/O. Each compare/capture
module connects to a Port 1 pin for external I/O. When not used by
the PCA, these pins can handle standard I/O.

P1.3
P1.4
P1.5

P1.6/WAIT#
P1.7/A17/WCLK
11-4

PROGRAMMABLE COUNTER ARRAY

-3 lists
ce un-

 time
in the
ccur-

ule sets
pt

pulse
 CEX0
hen a

ition, it
detect-
11.3 PCA COMPARE/CAPTURE MODULES

Each compare/capture module is made up of a compare/capture register pair
(CCAPxH/CCAPxL), a 16-bit comparator, and various logic gates and signal transition selectors.
The registers store the time or count at which an external event occurred (capture) or at which an
action should occur (comparison). In the PWM mode, the low-byte register controls the duty cy-
cle of the output waveform.

The logical configuration of a compare/capture module depends on its mode of operation (Fig-
ures 11-2 through 11-5). Each module can be independently programmed for operation in any of
the following modes:

• 16-bit capture mode with triggering on the positive edge, negative edge, or either edge.

• Compare modes: 16-bit software timer, 16-bit high-speed output, 16-bit WDT (module 4
only), or 8-bit pulse width modulation.

• No operation.

Bit combinations programmed into a compare/capture module’s mode register (CCAPMx) deter-
mine the operating mode. Figure 11-9 on page 11-15 provides bit definitions and Table 11
the bit combinations of the available modes. Other bit combinations are invalid and produ
defined results.

The compare/capture modules perform their programmed functions when their common
base, the PCA timer/counter, runs. The timer/counter is turned on and off with the CR bit
CCON register. To disable any given module, program it for the no operation mode. The o
rence of a capture, software timer, or high-speed output event in a compare/capture mod
the module’s compare/capture flag (CCFx) in the CCON register and generates a PCA interru
request if the corresponding enable bit in the CCAPMx register is set.

The CPU can read or write the CCAPxH and CCAPxL registers at any time.

11.3.1 16-bit Capture Mode

The capture mode (Figure 11-2) provides the PCA with the ability to measure periods,
widths, duty cycles, and phase differences at up to five separate inputs. External I/O pins
through CEX4 are sampled for signal transitions (positive and/or negative as specified). W
compare/capture module programmed for the capture mode detects the specified trans
captures the PCA timer/counter value. This records the time at which an external event is
ed, with a resolution equal to the timer/counter clock period.

To program a compare/capture module for the 16-bit capture mode, program the CAPPx and
CAPNx bits in the module’s CCAPMx register as follows:

• To trigger the capture on a positive transition, set CAPPx and clear CAPNx.

• To trigger the capture on a negative transition, set CAPNx and clear CAPPx.

• To trigger the capture on a positive or negative transition, set both CAPPx and CAPNx.
11-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

g
A

st clear
ptured
re the

event
ftware
se, the
e 16-

, the
 with
ipheral
Table 11-3 on page 11-14 lists the bit combinations for selecting module modes. For modules in
the capture mode, detection of a valid signal transition at the I/O pin (CEXx) causes hardware to
load the current PCA timer/counter value into the compare/capture registers (CCAPxH/CCAPxL)
and to set the module’s compare/capture flag (CCFx) in the CCON register. If the correspondin
interrupt enable bit (ECCFx) in the CCAPMx register is set (Figure 11-9 on page 11-15), the PC
sends an interrupt request to the interrupt handler.

Since hardware does not clear the event flag when the interrupt is processed, the user mu
the flag in software. A subsequent capture by the same module overwrites the existing ca
value. To preserve a captured value, save it in RAM with the interrupt service routine befo
next capture event occurs.

Figure 11-2. PCA 16-bit Capture Mode

11.3.2 Compare Modes

The compare function provides the capability for operating the five modules as timers,
counters, or pulse width modulators. Four modes employ the compare function: 16-bit so
timer mode, high-speed output mode, WDT mode, and PWM mode. In the first three of the
compare/capture module continuously compares the 16-bit PCA timer/counter value with th
bit value pre-loaded into the module’s CCAPxH/CCAPxL register pair. In the PWM mode
module continuously compares the value in the low-byte PCA timer/counter register (CL)
an 8-bit value in the CCAPxL module register. Comparisons are made three times per per

A4163-02

CCAPxH CCAPxL

CH

(8 Bits)

CL

(8 Bits)

CEXx

External I/O

X O CAPPx CAPNx O O ECCFxO

CCFx

CCON Register

PCA Timer/Counter

Enable

Interrupt

Request

Capture

07 CCAPMx Mode Register

x = 0,1,2,3 or 4

X = Don't Care

Count

Input
11-6

PROGRAMMABLE COUNTER ARRAY

 for
erve the

et the
s

pt

er must
ritten
cycle to match the fastest PCA timer/counter clocking rate (FOSC/4). For a description of periph-
eral cycle timing, see “Clock and Reset Unit” on page 2-7.

Setting the ECOMx bit in a module’s mode register (CCAPMx) selects the compare function
that module (Figure 11-9 on page 11-15). To use the modules in the compare modes, obs
following general procedure:

1. Select the module’s mode of operation.

2. Select the input signal for the PCA timer/counter.

3. Load the comparison value into the module’s compare/capture register pair.

4. Set the PCA timer/counter run control bit.

5. After a match causes an interrupt, clear the module’s compare/capture flag.

11.3.3 16-bit Software Timer Mode

To program a compare/capture module for the 16-bit software timer mode (Figure 11-3), s
ECOMx and MATx bits in the module’s CCAPMx register. Table 11-3 lists the bit combination
for selecting module modes.

A match between the PCA timer/counter and the compare/capture registers (CCAPxH/CCAPxL)
sets the module’s compare/capture flag (CCFx in the CCON register). This generates an interru
request if the corresponding interrupt enable bit (ECCFx in the CCAPMx register) is set. Since
hardware does not clear the compare/capture flag when the interrupt is processed, the us
clear the flag in software. During the interrupt routine, a new 16-bit compare value can be w
to the compare/capture registers (CCAPxH/CCAPxL).

NOTE
To prevent an invalid match while updating these registers, user software
should write to CCAPxL first, then CCAPxH. A write to CCAPxL clears the
ECOMx bit disabling the compare function, while a write to CCAPxH sets the
ECOMx bit re-enabling the compare function.
11-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

’s
 soft-
nse

ns
apture
ag
s

 setting
t
 in soft-

Figure 11-3. PCA Software Timer and High-speed Output Modes

11.3.4 High-speed Output Mode

The high-speed output mode (Figure 11-3) generates an output signal by toggling the module
I/O pin (CEXx) when a match occurs. This provides greater accuracy than toggling pins in
ware because the toggle occurs before the interrupt request is serviced. Thus, interrupt respo
time does not affect the accuracy of the output.

To program a compare/capture module for the high-speed output mode, set the ECOMx, MATx,
TOGx bits in the module’s CCAPMx register. Table 11-3 on page 11-14 lists the bit combinatio
for selecting module modes. A match between the PCA timer/counter and the compare/c
registers (CCAPxH/CCAPxL) toggles the CEXx pin and sets the module’s compare/capture fl
(CCFx in the CCON register). By setting or clearing the CEXx pin in software, the user select
whether the match toggles the pin from low to high or vice versa.

The user also has the option of generating an interrupt request when the match occurs by
the corresponding interrupt enable bit (ECCFx in the CCAPMx register). Since hardware does no
clear the compare/capture flag when the interrupt is processed, the user must clear the flag
ware.

A4164-01

CCAPxH

(8 Bits)

CCAPxL

(8 Bits)

CH

(8 Bits)

CL

(8 Bits)

CEXx

X ECOMx 0 0 TOGx 0 ECCFxMATx

CCFx

PCA Timer/Counter

Enable

Interrupt

Request

07 CCAPMx Mode Register

X = Don't Care

x = 0, 1, 2, 3, 4

For software timer mode, set ECOMx and MATx.

For high speed output mode, set ECOMx, MATx, and TOGx.

Compare/Capture

Module

16-Bit

Comparator

Count

Input

Reset
Write to

CCAPxL

"0"

Match

"1"

Write to CCAPxH

Toggle

Enable

CCON
11-8

PROGRAMMABLE COUNTER ARRAY

en-
device
 com-

ule 4 is
e used

its in
bina-
y pro-
). Enter
16-bit
ence
to “ex-
DT.

 reset,
If the user does not change the compare/capture registers in the interrupt routine, the next toggle
occurs after the PCA timer/counter rolls over and the count again matches the comparison value.
During the interrupt routine, a new 16-bit compare value can be written to the compare/capture
registers (CCAPxH/CCAPxL).

NOTE
To prevent an invalid match while updating these registers, user software
should write to CCAPxL first, then CCAPxH. A write to CCAPxL clears the
ECOMx bit disabling the compare function, while a write to CCAPxH sets the
ECOMx bit re-enabling the compare function.

11.3.5 PCA Watchdog Timer Mode

A watchdog timer (WDT) provides the means to recover from routines that do not complete suc-
cessfully. A WDT automatically invokes a device reset if it does not regularly receive hold-off
signals. WDTs are used in applications that are subject to electrical noise, power glitches, elec-
trostatic discharges, etc., or where high reliability is required.

In addition to the 8X930Ax’s 14-bit hardware WDT, the PCA provides a programmable-frequ
cy 16-bit WDT as a mode option on compare/capture module 4. This mode generates a
reset when the count in the PCA timer/counter matches the value stored in the module 4
pare/capture registers. A PCA WDT reset has the same effect as an external reset. Mod
the only PCA module that has the WDT mode. When not programmed as a WDT, it can b
in the other modes.

To program module 4 for the PCA WDT mode (Figure 11-4), set the ECOM4 and MAT4 b
the CCAPM4 register and the WDTE bit in the CMOD register. Table 11-3 lists the bit com
tions for selecting module modes. Also select the desired input for the PCA timer/counter b
gramming the CPS0 and CPS1 bits in the CMOD register (see Figure 11-7 on page 11-13
a 16-bit comparison value in the compare/capture registers (CCAP4H/CCAP4L). Enter a
initial value in the PCA timer/counter (CH/CL) or use the reset value (0000H). The differ
between these values multiplied by the PCA input pulse rate determines the running time
piration.” Set the timer/counter run control bit (CR in the CCON register) to start the PCA W

The PCA WDT generates a reset signal each time a match occurs. To hold off a PCA WDT
the user has three options:

• periodically change the comparison value in CCAP4H/CCAP4L so a match never occurs

• periodically change the PCA timer/counter value so a match never occurs

• disable the module 4 reset output signal by clearing the WDTE bit before a match occurs,
then later re-enable it

The first two options are more reliable because the WDT is not disabled as in the third option.
The second option is not recommended if other PCA modules are in use, since the five modules
share a common time base. Thus, in most applications the first option is the best one.
11-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 11-4. PCA Watchdog Timer Mode

11.3.6 Pulse Width Modulation Mode

The five PCA comparator/capture modules can be independently programmed to function as
pulse width modulators (Figure 11-5). The modulated output, which has a pulse width resolution
of eight bits, is available at the CEXx pin. The PWM output can be used to convert digital data to
an analog signal with simple external circuitry.

In this mode the value in the low byte of the PCA timer/counter (CL) is continuously compared
with the value in the low byte of the compare/capture register (CCAPxL). When CL < CCAPxL,
the output waveform (Figure 11-6) is low. When a match occurs (CL = CCAPxL), the output
waveform goes high and remains high until CL rolls over from FFH to 00H, ending the period.
At rollover the output returns to a low, the value in CCAPxH is loaded into CCAPxL, and a new
period begins.

A4165-01

CCAP4H

(8 Bits)

CCAP4L

(8 Bits)

CH

(8 Bits)

CL

(8 Bits)

X ECOM4 0 0 X 0 X1

WDTE

PCA Timer/Counter

PCA WDT Reset

07 CCAPM4 Mode Register

X = Don't Care

Compare/Capture

Module

16-Bit

Comparator

Count

Input

Reset
Write to

CCAP4L

"0"

Match

"1"

Write to CCAP4H

Enable
CMOD.6
11-10

PROGRAMMABLE COUNTER ARRAY

Figure 11-5. PCA 8-bit PWM Mode

The value in CCAPxL determines the duty cycle of the current period. The value in CCAPxH de-
termines the duty cycle of the following period. Changing the value in CCAPxL over time mod-
ulates the pulse width. As depicted in Figure 11-6, the 8-bit value in CCAPxL can vary from 0
(100% duty cycle) to 255 (0.4% duty cycle).

NOTE
To change the value in CCAPxL without glitches, write the new value to the
high byte register (CCAPxH). This value is shifted by hardware into CCAPxL
when CL rolls over from FFH to 00H.

The frequency of the PWM output equals the frequency of the PCA timer/counter input signal
divided by 256. The highest frequency occurs when the FOSC/4 input is selected for the PCA tim-
er/counter. For PLLSEL2:0 = 100 and FOSC = 12 MHz, this is 11.7 KHz. For PLLSEL2:0 = 110
and FOSC = 12 MHz, this is 23.4 KHz.

A4166-01

CCAPxH

CEXx

X ECOMx 0 0 0 PWMx 00

07 CCAPMx Mode Register

X = Don't Care

x = 0, 1, 2, 3, 4.

8-Bit

Comparator

CL rollover from FFH to 00H loads

CCAPxH contents into CCAPxL

"0"

"1"
CL ≥ CCAPxL

CL < CCAPxL

CCAPxL

CL

(8 Bits)

8

8

Enable
11-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ting
g the
xL to
e in

t (CR
To program a compare/capture module for the PWM mode, set the ECOMx and PWMx bits in
the module’s CCAPMx register. Table 11-3 on page 11-14 lists the bit combinations for selec
module modes. Also select the desired input for the PCA timer/counter by programmin
CPS0 and CPS1 bits in the CMOD register (see Figure 11-7). Enter an 8-bit value in CCAP
specify the duty cycle of the first period of the PWM output waveform. Enter an 8-bit valu
CCAPxH to specify the duty cycle of the second period. Set the timer/counter run control bi
in the CCON register) to start the PCA timer/counter.

Figure 11-6. PWM Variable Duty Cycle

A4161-01

Duty

CycleCCAPxL

255

230

128

25

0

0.4%

10%

50%

90%

100%

1

0

1

0

1

0

1

0

Output Waveform

1

0

11-12

PROGRAMMABLE COUNTER ARRAY
Figure 11-7. CMOD: PCA Timer/Counter Mode Register

CMOD Address: S:D9H
Reset State: 00XX X000B

7 0

CIDL WDTE — — — CPS1 CPS0 ECF

Bit
Number

Bit
Mnemonic Function

7 CIDL PCA Timer/Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL = 0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2:1 CPS1:0 PCA Timer/Counter Input Select:

CPS1 CPS0

0 0 FOSC /12
0 1 FOSC /4
1 0 Timer 0 overflow
1 1 External clock at ECI pin (maximum rate = FOSC /8)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF = 1 enables the CF bit in the CCON register to generate an interrupt
request.
11-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 11-8. CCON: PCA Timer/Counter Control Register

CCON Address: S:D8H
Reset State: 00X0 0000B

7 0

CF CR — CCF4 CCF3 CCF2 CCF1 CCF0

Bit
Number

Bit
Mnemonic Function

7 CF PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.

6 CR PCA Timer/Counter Run Control Bit:

Set and cleared by software to turn the PCA timer/counter on and off.

5 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

4:0 CCF4:0 PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMx register is set. Must be cleared by software.

Table 11-3. PCA Module Modes

ECOMx CAPPx CAPNx MATx TOGx PWMx ECCFx Module Mode

0 0 0 0 0 0 0 No operation

X 1 0 0 0 0 X 16-bit capture on positive-edge
trigger at CEXx

X 0 1 0 0 0 X 16-bit capture on negative-edge
trigger at CEXx

X 1 1 0 0 0 X 16-bit capture on positive- or
negative-edge trigger at CEXx

1 0 0 1 0 0 X Compare: software timer

1 0 0 1 1 0 X Compare: high-speed output

1 0 0 0 0 1 0 Compare: 8-bit PWM

1 0 0 1 X 0 X Compare: PCA WDT
(CCAPM4 only) (Note 3)

NOTES:
1. This table shows the CCAPMx register bit combinations for selecting the operating modes of the PCA

compare/capture modules. Other bit combinations are invalid. See Figure 11-9 for bit definitions.
2. x = 0–4, X = Don’t care.
3. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.
11-14

PROGRAMMABLE COUNTER ARRAY

Figure 11-9. CCAPMx: PCA Compare/Capture Module Mode Registers

CCAPMx (x = 0–4) Address: CCAPM0 S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: X000 0000B

7 0

— ECOMx CAPPx CAPNx MATx TOGx PWMx ECCFx

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6 ECOMx Compare Modes:

ECOMx = 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):

CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):

CAPNx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:

Set ECOMx and MATx to implement the software timer mode. When
MATx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGx Toggle:

Set ECOMx, MATx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.
11-15

12
Serial I/O Port

ers are

e RXD
n and
lds re-

isters.
ift reg-
wever,
yte will
spec-

rt.
CHAPTER 12
SERIAL I/O PORT

The serial input/output port supports communication with modems and other external peripheral
devices. This chapter provides instructions for programming the serial port and generating the se-
rial I/O baud rates with timer 1 and timer 2.

12.1 OVERVIEW

The serial I/O port provides both synchronous and asynchronous communication modes. It oper-
ates as a universal asynchronous receiver and transmitter (UART) in three full-duplex modes
(modes 1, 2, and 3). Asynchronous transmission and reception can occur simultaneously and at
different baud rates. The UART supports framing-bit error detection, multiprocessor communi-
cation, and automatic address recognition. The serial port also operates in a single synchronous
mode (mode 0).

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operates at two baud
rates. Modes 1 and 3 operate over a wide range of baud rates, which are generated by timer 1 and
timer 2. Baud rates are detailed in “Baud Rates” on page 12-10.

NOTE
The baud rate calculations in this chapter are for PLL off. For the case of PLL
on (PLLSEL2:0 = 110), the internal clock distributed to the CPU and the
peripherals is twice as fast, so all baud rates are two times greater than shown
(PLLSEL2:0 = 100). See Table 2-2 on page 2-8.

The serial port signals are defined in Table 12-1, and the serial port special function regist
described in Table 12-2. Figure 12-1 is a block diagram of the serial port.

For the three asynchronous modes, the UART transmits on the TXD pin and receives on th
pin. For the synchronous mode (mode 0), the UART outputs a clock signal on the TXD pi
sends and receives messages on the RXD pin (Figure 12-1). The SBUF register, which ho
ceived bytes and bytes to be transmitted, actually consists of two physically different reg
To send, software writes a byte to SBUF; to receive, software reads SBUF. The receive sh
ister allows reception of a second byte before the first byte has been read from SBUF. Ho
if software has not read the first byte by the time the second byte is received, the second b
overwrite the first. The UART sets interrupt bits TI and RI on transmission and reception, re
tively. These two bits share a single interrupt request and interrupt vector.

The serial port control (SCON) register (Figure 12-2) configures and controls the serial po
12-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

12.2 MODES OF OPERATION

The serial I/O port can operate in one synchronous and three asynchronous modes.

12.2.1 Synchronous Mode (Mode 0)

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/O capabil-
ities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock puls-
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data bits are
transmitted and received least-significant bit (LSB) first. Shifts occur in the last phase (S6P2) of
every peripheral cycle, which corresponds to a baud rate of FOSC/12. Figure 12-3 on page 12-6
shows the timing for transmission and reception in mode 0.

12.2.1.1 Transmission (Mode 0)

Follow these steps to begin a transmission:

1. Write to the SCON register, clearing bits SM0, SM1, and REN.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of
the following cycle, hardware shifts the LSB (D0) onto the RXD pin. At S3P1 of the next cycle,
the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycle. In
the ninth cycle after the write to SBUF, the MSB (D7) is on the RXD pin. At the beginning of the

Table 12-1. Serial Port Signals

Function
Name Type Description Multiplexed

With

TXD O Transmit Data. In mode 0, TXD transmits the clock signal. In
modes 1, 2, and 3, TXD transmits serial data.

P3.1

RXD I/O Receive Data. In mode 0, RXD transmits and receives serial
data. In modes 1, 2, and 3, RXD receives serial data.

P3.0

Table 12-2. Serial Port Special Function Registers

Mnemonic Description Address

SBUF Serial Buffer. Two separate registers, accessed with same address
comprise the SBUF register. Writing to SBUF loads the transmit buffer;
reading SBUF accesses the receive buffer.

S:99H

SCON Serial Port Control. Selects the serial port operating mode. SCON enables
and disables the receiver, framing bit error detection, multiprocessor
communication, automatic address recognition, and the serial port interrupt
bits.

S:98H

SADDR Serial Address. Defines the individual address for a slave device. S:A8H

SADEN Serial Address Enable. Specifies the mask byte that is used to define the
given address for a slave device.

S:B8H
12-2

SERIAL I/O PORT
tenth cycle, hardware drives the RXD pin high and asserts TI (S1P1) to indicate the end of the
transmission.

12.2.1.2 Reception (Mode 0)

To start a reception in mode 0, write to the SCON register. Clear bits SM0, SM1, and RI and set
the REN bit.

Hardware executes the write to SCON in the last phase (S6P2) of a peripheral cycle (Figure 12-3).
In the second peripheral cycle following the write to SCON, TXD goes low at S3P1 for the first
clock-signal pulse, and the LSB (D0) is sampled on the RXD pin at S5P2. The D0 bit is then shift-
ed into the shift register. After eight shifts at S6P2 of every peripheral cycle, the LSB (D7) is shift-
ed into the shift register, and hardware asserts RI (S1P1) to indicate a completed reception.
Software can then read the received byte from SBUF.

Figure 12-1. Serial Port Block Diagram

A4123-01

SBUF

(Receive)

Receive

Shift Register

SBUF

(Transmit)

Read SBUFWrite SBUF

Mode 0

Transmit

TxD

RxD

SCON

TIRI

Interrupt

Request

Serial I/O

Control

IB Bus

Load SBUF
12-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
SCON Address: S:98H
Reset State: 0000 0000B

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function

7 FE

SM0

Framing Error Bit:

To select this function, set the SMOD0 bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software, not by valid
frames.

Serial Port Mode Bit 0:

To select this function, clear the SMOD0 bit in the PCON register.
Software writes to bits SM0 and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SM0 (above) to select the serial port
operating mode.

SM0 SM1 Mode Description Baud Rate†

0 0 0 Shift register FOSC/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART FOSC/32†† or FOSC/64††

1 1 3 9-bit UART Variable
†For the case of PLL on, see note on page page 12-1.
††Select by programming the SMOD bit in the PCON register (see
section “Baud Rates” on page 12-10).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:

To enable reception, set this bit. To enable transmission, clear this bit.

3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:

Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.
12-4

SERIAL I/O PORT
Figure 12-2. SCON: Serial Port Control Register

1 TI Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
software.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

SCON (Continued) Address: S:98H
Reset State: 0000 0000B

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function
12-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 12-3. Mode 0 Timing

Figure 12-4. Data Frame (Modes 1, 2, and 3)

A4124-02

TXD

RXD D1

Shift
S6P2 S6P2 S6P2 S6P2

Write to

SBUF

S3P1 S6P1

D2D0 D6 D7

S6P2S6P2

Transmit

TI

TXD

S3P1 S6P1
Write to

SCON

RI

Shift
S6P2 S6P2 S6P2 S6P2

RXD

S1P1
Receive

Set REN, Clear RI

D0 D1 D6 D7

S6P2

S5P2
S6P2

S1P1

S6P2

S6P2

D0 D7 D8D1 D2 D3 D4 D5 D6

Stop Bit

Ninth Data Bit (Modes 2 and 3 only)Start Bit

Data Byte

A2261-01
12-6

SERIAL I/O PORT

cy.

he

ion.

en ini-

aming
 page
lid stop
ssion
gister

ly soft-
ot clear
12.2.2 Asynchronous Modes (Modes 1, 2, and 3)

The serial port has three asynchronous modes of operation:

• Mode 1. Mode 1 is a full-duplex, asynchronous mode. The data frame (Figure 12-4)
consists of 10 bits: one start bit, eight data bits, and one stop bit. Serial data is transmitted
on the TXD pin and received on the RXD pin. When a message is received, the stop bit is
read in the RB8 bit in the SCON register. The baud rate is generated by overflow of timer 1
or timer 2 (see “Baud Rates” on page 12-10).

• Modes 2 and 3. Modes 2 and 3 are full-duplex, asynchronous modes. The data frame
(Figure 12-4) consists of 11 bits: one start bit, eight data bits (transmitted and received LSB
first), one programmable ninth data bit, and one stop bit. Serial data is transmitted on the
TXD pin and received on the RXD pin. On receive, the ninth bit is read from the RB8 bit in
the SCON register. On transmit, the ninth data bit is written to the TB8 bit in the SCON
register. Alternatively, you can use the ninth bit as a command/data flag.

— In mode 2, the baud rate is programmable to 1/32 or 1/64 of the oscillator frequen

— In mode 3, the baud rate is generated by overflow of timer 1 or timer 2.

12.2.2.1 Transmission (Modes 1, 2, 3)

Follow these steps to initiate a transmission:

1. Write to the SCON register. Select the mode with the SM0 and SM1 bits, and clear t
REN bit. For modes 2 and 3, also write the ninth bit to the TB8 bit.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmiss

12.2.2.2 Reception (Modes 1, 2, 3)

To prepare for a reception, set the REN bit in the SCON register. The actual reception is th
tiated by a detected high-to-low transition on the RXD pin.

12.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)

Framing bit error detection is provided for the three asynchronous modes. To enable the fr
bit error detection feature, set the SMOD0 bit in the PCON register (see Figure 14-1 on
14-2). When this feature is enabled, the receiver checks each incoming data frame for a va
bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmi
by two CPUs. If a valid stop bit is not found, the software sets the FE bit in the SCON re
(see Figure 12-2).

Software may examine the FE bit after each reception to check for data errors. Once set, on
ware or a reset can clear the FE bit. Subsequently received frames with valid stop bits cann
the FE bit.
12-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

d the RI

s to re-
e waiting

ication

muni-
mand
it in the
mmand

nfigu-
eived

bit.

eg-
12.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To enable
this feature, set the SM2 bit in the SCON register (see Figure 12-2). When the multiprocessor
communication feature is enabled, the serial port can differentiate between data frames (ninth bit
clear) and address frames (ninth bit set). This allows the microcontroller to function as a slave
processor in an environment where multiple slave processors share a single serial line.

When the multiprocessor communication feature is enabled, the receiver ignores frames with the
ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the
received address matches the slave’s address, the receiver hardware sets the RB8 bit an
bit in the SCON register, generating an interrupt.

NOTE
The ES bit must be set in the IEN0 register to allow the RI bit to generate an
interrupt. The IEN0 register is described in Chapter 8, Interrupts.

The addressed slave’s software then clears the SM2 bit in the SCON register and prepare
ceive the data bytes. The other slaves are unaffected by these data bytes because they ar
to respond to their own addresses.

12.5 AUTOMATIC ADDRESS RECOGNITION

The automatic address recognition feature is enabled when the multiprocessor commun
feature is enabled (i.e., the SM2 bit is set in the SCON register).

Implemented in hardware, automatic address recognition enhances the multiprocessor com
cation feature by allowing the serial port to examine the address of each incoming com
frame. Only when the serial port recognizes its own address does the receiver set the RI b
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by co
frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this co
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the rec
command frame address matches the device’s address and is terminated by a valid stop

NOTE
The multiprocessor communication and automatic address recognition features
cannot be enabled in mode 0 (i.e., setting the SM2 bit in the SCON register in
mode 0 has no effect).

To support automatic address recognition, a device is identified by a given address and a broad-
cast address.

12.5.1 Given Address

Each device has an individual address that is specified in the SADDR register; the SADEN r
ister is a mask byte that contains don't-care bits (defined by zeros) to form the device’s given ad-
12-8

SERIAL I/O PORT

laves
t (e.g.,

laves
it 2 set

t, bit 1

with

 most
dress. These don’t-care bits provide the flexibility to address one or more slaves at a time. To
address a device by its individual address, the SADEN mask byte must be 1111 1111 The follow-
ing example illustrates how a given address is formed:

The following is an example of how to use given addresses to address different slaves:

The SADEN byte is selected so that each slave may be addressed separately. For Slave A, bit 0
(the LSB) is a don’t-care bit; for Slaves B and C, bit 0 is a 1. To communicate with Slave A only,
the master must send an address where bit 0 is clear (e.g., 1111 0000).

For Slave A, bit 1 is a 0; for Slaves B and C, bit 1 is a don’t-care bit. To communicate with S
B and C, but not Slave A, the master must send an address with bits 0 and 1 both se
1111 0011).

For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is a 0. To communicate with S
A and B, but not Slave C, the master must send an address with bit 0 set, bit 1 clear, and b
(e.g., 1111 0101).

To communicate with Slaves A, B, and C, the master must send an address with bit 0 se
clear, and bit 2 clear (e.g., 1111 0001).

12.5.2 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers
zeros defined as don't-care bits, e.g.:

The use of don't-care bits provides flexibility in defining the broadcast address, however, in
applications, a broadcast address is 0FFH.

SADDR

SADEN

Given

=

=

=

0101 0110

1111 1100

0101 01XX

Slave A: SADDR

SADEN

Given

=

=

=

1111 0001

1111 1010

1111 0X0X

Slave C: SADDR

SADEN

Given

=

=

=

1111 0010

1111 1101

1111 00X1

Slave B: SADDR

SADEN

Given

=

=

=

1111 0011

1111 1001

1111 0XX1

SADDR

SADEN

(SADDR) OR (SADEN)

=

=

=

0101 0110

1111 1100

1111 111X
12-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

all of

BH.

dcast
ards-
The following is an example of using broadcast addresses:

For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is set. To communicate with
the slaves, the master must send an address FFH.

To communicate with Slaves A and B, but not Slave C, the master can send an address F

12.5.3 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00H, i.e., the given and broa
addresses are XXXX XXXX (all don't-care bits). This ensures that the serial port is backw
compatible with MCS® 51 microcontrollers that do not support automatic address recognition.

12.6 BAUD RATES †

You must select the baud rate for the serial port transmitter and receiver when operating in modes
1, 2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial port can
transmit and receive simultaneously. Depending on the mode, the transmission and reception
rates can be the same or different. Table 12-3 summarizes the baud rates that can be used for the
four serial I/O modes.

12.6.1 Baud Rate for Mode 0 †

With the PLL on, the baud rate for mode 0 is fixed at FOSC/12. For the case of PLL on (PLLSEL2:0
= 110), the baud rate for mode 0 is fixed at FOSC/6.

† See note on page 12-1

Slave A: SADDR

SADEN

Broadcast

=

=

=

1111 0001

1111 1010

1111 1X11

Slave C: SADDR

SADEN

Broadcast

=

=

=

1111 0010

1111 1101

1111 1111

Slave B: SADDR

SADEN

Broadcast

=

=

=

1111 0011

1111 1001

1111 1X11
12-10

SERIAL I/O PORT
12.6.2 Baud Rates for Mode 2 †

Mode 2 has two baud rates, which are selected by the SMOD1 bit in the PCON register (Figure
14-1 on page 14-2). The following expression defines the baud rate:

12.6.3 Baud Rates for Modes 1 and 3 †

In modes 1 and 3, the baud rate is generated by overflow of timer 1 (default) and/or timer 2. You
may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the receiv-
er.

12.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3) †

Timer 1 is the default baud rate generator for the transmitter and the receiver in modes 1 and 3.
The baud rate is determined by the timer 1 overflow rate and the value of SMOD, as shown in the
following formula:

12.6.3.2 Selecting Timer 1 as the Baud Rate Generator †

To select timer 1 as the baud rate generator:

• Disable the timer interrupt by clearing the ET1 bit in the IEN0 register (Figure 6-4 on page
6-11).

• Configure timer 1 as a timer or an event counter (set or clear the C/T# bit in the TMOD
register, Figure 10-5 on page 10-8).

• Select timer mode 0–3 by programming the M1 and M0 bits in the TMOD register.

† See note on page 12-1.

Table 12-3. Summary of Baud Rates

Mode No. of
Baud Rates

Send and Receive
at the Same Rate

Send and Receive
at Different Rates

0 1 N/A N/A

1 Many †† Yes Yes

2 2 Yes No

3 Many †† Yes Yes

 †† Baud rates are determined by overflow of timer 1 and/or timer 2.

Serial I/O Mode 2 Baud Rate 2SMOD1 FOSC

64
--------------×=

Serial I/O Modes 1 and 3 Baud Rate 2SMOD1 Timer 1 Overflow Rate
32

--×=
12-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
In most applications, timer 1 is configured as a timer in auto-reload mode (high nibble of TMOD
= 0010B). The resulting baud rate is defined by the following expression:

Timer 1 can generate very low baud rates with the following setup:

• Enable the timer 1 interrupt by setting the ET1 bit in the IEN0 register.

• Configure timer 1 to run as a 16-bit timer (high nibble of TMOD = 0001B).

• Use the timer 1 interrupt to initiate a 16-bit software reload.

Table 12-4 lists commonly used baud rates and shows how they are generated by timer 1.

12.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3) †

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver (Figure
12-5). The timer 2 baud rate generator mode is similar to the auto-reload mode. A rollover in the
TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers RCAP2H and
RCAP2L, which are preset by software.

The timer 2 baud rate is expressed by the following formula:

12.6.3.4 Selecting Timer 2 as the Baud Rate Generator †

To select timer 2 as the baud rate generator for the transmitter and/or receiver, program the
RCLCK and TCLCK bits in the T2CON register as shown in Table 12-5. (You may select differ-
ent baud rates for the transmitter and receiver.) Setting RCLK and/or TCLK puts timer 2 into its
baud rate generator mode (Figure 12-5). In this mode, a rollover in the TH2 register does not set
the TF2 bit in the T2CON register. Also, a high-to-low transition at the T2EX pin sets the EXF2

† See note on page 12-1.

Table 12-4. Timer 1 Generated Baud Rates for Serial I/O Modes 1 and 3

Baud
Rate

Oscillator
Frequency

(FOSC)
SMOD1

Timer 1

C/T# Mode Reload
Value

62.5 Kbaud (Max) † 12.0 MHz 1 0 2 FFH

110.0 Baud 6.0 MHz 0 0 2 72H

110.0 Baud † 12.0 MHz 0 0 1 FEEBH

Serial I/O Modes 1 and 3 Baud Rate 2SMOD1 FOSC

32 12 256 TH1)(–[]××--×=

Serial I/O Modes 1 and 3 Baud Rate
Timer 2 Overflow Rate

16
--=
12-12

SERIAL I/O PORT

P2H

.

bit in the T2CON register but does not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2).
You can use the T2EX pin as an additional external interrupt by setting the EXEN2 bit in T2CON.

NOTE
Turn the timer off (clear the TR2 bit in the T2CON register) before accessing
registers TH2, TL2, RCAP2H, and RCAP2L.

You may configure timer 2 as a timer or a counter. In most applications, it is configured for timer
operation (i.e., the C/T2# bit is clear in the T2CON register).

Note that timer 2 increments every state time (2TOSC) when it is in the baud rate generator mode.
In the baud rate formula that follows, “RCAP2H, RCAP2L” denotes the contents of RCA
and RCAP2L taken as a 16-bit unsigned integer:

NOTE
When timer 2 is configured as a timer and is in baud rate generator mode, do
not read or write the TH2 or TL2 registers. The timer is being incremented
every state time, and the results of a read or write may not be accurate. In
addition, you may read, but not write to, the RCAP2 registers; a write may
overlap a reload and cause write and/or reload errors.

Table 12-6 lists commonly used baud rates and shows how they are generated by timer 2

Table 12-5. Selecting the Baud Rate Generator(s)

RCLCK
Bit

TCLCK
Bit

Receiver
Baud Rate Generator

Transmitter
Baud Rate Generator

0 0 Timer 1 Timer 1

0 1 Timer 1 Timer 2

1 0 Timer 2 Timer 1

1 1 Timer 2 Timer 2

Serial I/O Modes 1 and 3 Baud Rate
FOSC

32 65536 RCAP2H RCAP2L),(–[]×---=
12-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Figure 12-5. Timer 2 in Baud Rate Generator Mode †

† For the case of PLL on, the clock frequency at the 0 input of the C/T2# selector is FOSC. See note on page 12-1.

Table 12-6. Timer 2 Generated Baud Rates

Baud Rate
Oscillator
Frequency

(FOSC)
RCAP2H RCAP2L

375.0 Kbaud †† 12 MHz FFH FFH

9.6 Kbaud †† 12 MHz FFH D9H

4.8 Kbaud †† 12 MHz FFH B2H

2.4 Kbaud †† 12 MHz FFH 64H

1.2 Kbaud †† 12 MHz FEH C8H

 300.0 baud †† 12 MHz FBH 1EH

110.0 baud †† 12 MHz F2H AFH

300.0 baud 6 MHz FDH 8FH

110.0 baud 6 MHz F9H 57H

†† See note on page page 12-1.

T2EX

2

T2

Timer 1

Overflow

TR2

TH2

(8 Bits)

TL2

(8 Bits)

EXEN2

EXF2

A4120-01

XTAL1

RCAP2H RCAP2L

C/T2#

0

1

Interrupt

Request

0

1

SMOD1

1

0

RCLCK

16

1

0

TCLCK

RX

Clock

TX

Clock

Note:

Oscillator frequency

is divided by 2, not 12.

2

16

Note availability of additional external interrupt.
12-14

13
Minimum Hardware
Setup

3-6.

rating
ion or
See the
rm tim-
CHAPTER 13
MINIMUM HARDWARE SETUP

This chapter discusses the basic operating requirements of the 8X930Ax and describes a mini-
mum hardware setup. Topics covered include power, ground, clock source, and device reset. For
parameter values, refer to the device data sheet.

13.1 MINIMUM HARDWARE SETUP

Figure 13-1 shows a minimum hardware setup that employs the on-chip oscillator for the system
clock and provides power-on reset. Control signals; Ports 0, 1, 2, and 3; and the USB port are not
shown. See section “Clock Sources” on page 13-2 and section “Power-on Reset” on page 1
PLLSEL.2:0 select the USB operating rate. Refer to Table 2-2 on page 2-8.

Figure 13-1. Minimum Setup

13.2 ELECTRICAL ENVIRONMENT

The 8X930Ax is a high-speed CHMOS device. To achieve satisfactory performance, its ope
environment should accommodate the device signal waveforms without introducing distort
noise. Design considerations relating to device performance are discussed in this section.
device data sheet for voltage and current requirements, operating frequency, and wavefo
ing.

8X930

Microcontroller

A4291-03

XTAL2

VSS

VCC

VCC

XTAL1 RST
C1

C2

1µF
+

AVCC

EA#

USB Rate Select

PLLSEL0

PLLSEL1

PLLSEL2
13-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

or
on-

r ce-
l clock
ge 2-8.

e fre-
 as an
tor de-
rasitic

ith high

1 and

 PD
n.

ing
e chip

 of
13.2.1 Power and Ground Pins

Power the 8X930Ax from a well-regulated power supply designed for high-speed digital loads.
Use short, low impedance connections to the power (VCC) and ground (VSS) pins.

13.2.2 Unused Pins

To provide stable, predictable performance, connect unused input pins to VSS or VCC. Untermi-
nated input pins can float to a mid-voltage level and draw excessive current. Unterminated inter-
rupt inputs may generate spurious interrupts.

13.2.3 Noise Considerations

The fast rise and fall times of high-speed CHMOS logic may produce noise spikes on the power
supply lines and signal outputs. To minimize noise and waveform distortion follow good board
layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep noise
within acceptable limits. Connect 0.01 µF bypass capacitors between VCC and each VSS pin. Place
the capacitors close to the device to minimize path lengths.

Multi-layer printed circuit boards with separate VCC and ground planes help minimize noise. F
additional information on noise reduction, see Application Note AP-125, “Designing Microc
troller Systems for Electrically Noisy Environments.”

13.3 CLOCK SOURCES

The 8X930Ax can use an external clock (Figure 13-3), an on-chip oscillator with crystal o
ramic resonator (Figure 13-2), or an on-chip phase-locked oscillator (locked to the externa
or the on-chip oscillator) as its clock source. For USB operating rates, see Table 2-2 on pa

13.3.1 On-chip Oscillator (Crystal)

This clock source uses an external quartz crystal connected from XTAL1 to XTAL2 as th
quency-determining element (Figure 13-2). The crystal operates in its fundamental mode
inductive reactance in parallel resonance with capacitance external to the crystal. Oscilla
sign considerations include crystal specifications, operating temperature range, and pa
board capacitance. Consult the crystal manufacturer’s data sheet for parameter values. W
quality components, C1 = C2 = 30 pF is adequate for this application.

Pins XTAL1 and XTAL2 are protected by on-chip electrostatic discharge (ESD) devices, D
D2, which are diodes parasitic to the RF FETs. They serve as clamps to VCC and VSS. Feedback
resistor RF in the inverter circuit, formed from paralleled n- and p- channel FETs, permits the
bit in the PCON register (Figure 14-1 on page 14-2) to disable the clock during powerdow

Noise spikes at XTAL1 and XTAL2 can disrupt microcontroller timing. To minimize coupl
between other digital circuits and the oscillator, locate the crystal and the capacitors near th
and connect to XTAL1, XTAL2, and VSS with short, direct traces. To further reduce the effects
noise, place guard rings around the oscillator circuitry and ground the metal crystal case.
13-2

MINIMUM HARDWARE SETUP

ded

eramic
tion.

 as
OS

e clock

at ex-

wer is
e (i.e.,
mains
For a more in-depth discussion of crystal specifications, ceramic resonators, and the selection of
C1 and C2 see Applications Note AP-155, “Oscillators for Microcontrollers,” in the Embed
Applications handbook.

13.3.2 On-chip Oscillator (Ceramic Resonator)

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. C
resonator applications may require slightly different capacitor values and circuit configura
Consult the manufacturer’s data sheet for specific information.

Figure 13-2. CHMOS On-chip Oscillator

13.3.3 External Clock

To operate the 8X930Ax from an external clock, connect the clock source to the XTAL1 pin
shown in Figure 13-3. Leave the XTAL2 pin floating. The external clock driver can be a CM
gate. If the clock driver is a TTL device, its output must be connected to VCC through a 4.7 kΩ
pullup resistor.

For external clock drive requirements, see the device data sheet. Figure 13-4 shows th
drive waveform. The external clock source must meet the minimum high and low times (TCHCX
and TCLCX) and the maximum rise and fall times (TCLCH and TCHCL) to minimize the effect of ex-
ternal noise on the clock generator circuit. Long rise and fall times increase the chance th
ternal noise will affect the clock circuitry and cause unreliable operation.

The external clock driver may encounter increased capacitance loading at XTAL1 when po
applied, due to the interaction between the internal amplifier and its feedback capacitanc
the Miller effect). Once the input waveform requirements are met, the input capacitance re
under 20 pF.

A4143-03

XTAL2

XTAL1

C1

C2

VCC

PD#

To Internal

Timing Circuit

In
te

rn
al

RF

Quartz Crystal

or Ceramic Resonator D1

D2

E
xt

er
na

l

13-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 13-3. External Clock Connection for the 8X930Ax

Figure 13-4. External Clock Drive Waveforms

13.4 RESET

A device reset initializes the 8X930Ax and vectors the CPU to address FF:0000H. A reset is re-
quired after applying power. A reset is a means of exiting the idle and powerdown modes or re-
covering from software malfunctions.

To achieve a valid reset, VCC must be within its normal operating range (see device data sheet)
and the reset signal must be maintained for 64 clock cycles (64TOSC) after the oscillator has sta-
bilized.

XTAL2

VSS

XTAL1

N/C

External

Clock

CMOS

Clock Driver

A4142-03

Note: If TTL clock driver is used, connect a 4.7kΩ pullup resistor from driver output to VCC.

0.7 VCC

A4119-01

0.45 V

VCC – 0.5

0.2 VCC – 0.1

TCHCL

TCLCX

TCLCL

TCLCH TCHCX
13-4

MINIMUM HARDWARE SETUP

 exam-
ower-

pplied
he

tes a
og Tim-

e SIE.
set all

e-up,
lated

t the
m-
Device reset is initiated in three ways:

• externally, by asserting the RST pin

• internally, if the hardware WDT or the PCA WDT expires

• over the bus, by a USB-initiated reset

These three reset mechanisms are ORed to create a single reset signal for the 8X930Ax.

The power off flag (POF) in the PCON register indicates whether a reset is a warm start or a cold
start. A cold start reset (POF = 1) is a reset that occurs after power has been off or VCC has fallen
below 3 V, so the contents of volatile memory are indeterminate. POF is set by hardware when
VCC rises from less than 3 V to its normal operating level. See “Power Off Flag” on page 14-1. A
warm start reset (POF = 0) is a reset that occurs while the chip is at operating voltage, for
ple, a reset initiated by a WDT overflow or an external reset used to terminate the idle or p
down modes.

13.4.1 Externally Initiated Resets

To reset the 8X930Ax, hold the RST pin at a logic high for at least 64 clock cycles (64TOSC) while
the oscillator is running. Reset can be accomplished automatically at the time power is a
by capacitively coupling RST to VCC (see Figure 13-1 and “Power-on Reset” on page 13-6). T
RST pin has a Schmitt trigger input and a pulldown resistor.

13.4.2 WDT Initiated Resets

Expiration of the hardware WDT (overflow) or the PCA WDT (comparison match) genera
reset signal. WDT initiated resets have the same effect as an external reset. See “Watchd
er” on page 10-17 and section “PCA Watchdog Timer Mode” on page 11-9.

13.4.3 USB Initiated Resets

The 8X930Ax can be reset by the host or upstream hub if a reset signal is detected by th
This reset signal is defined as an SE0 held longer than 2.5 µs. A USB-initiated reset will re
of the 8X930Ax hardware, even if the device is suspended (in which case it would first wak
then reset. See “USB Power Control” on page 14-6 for additional information about USB-re
suspend and resume.

In the USB system, an 8X930Ax chip reset must be communicated to the host to ensure tha
host is aware of the state of the 8X930Ax to avoid being disabled. This requires board-level e
ulation of a detach and attach signalling upstream whenever there is a chip reset.

NOTE
You must ensure that the time from connection of this USB device to the bus
until the entire reset process is complete (including firmware initialization of
the 8X930Ax) is less than 10 ms. After 10 ms, the host may attempt to
communicate with the 8X930Ax to set its device address. If the 8X930Ax
firmware cannot respond to the host at this time, the host may disable the
device after three attempts to communicate.
13-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

rg-
 of the

ystal

 asyn-

olt-
13.4.4 Reset Operation

When a reset is initiated, whether externally, over the bus, or by a WDT, the port pins are imme-
diately forced to their reset condition as a fail-safe precaution, whether the clock is running or not.

The external reset signal and the WDT- and USB-initiated reset signals are combined internally.
For an external reset the voltage on the RST pin must be held high for 32 internal clock cycles
(TCLK) after the oscillator and on-chip PLL stabilize (approximately 5 ms). For WDT- and USB-
initiated resets, a 5-bit counter in the reset logic maintains the signal for the required 32 clock cy-
cles (TCLK). Refer to Table 2-2 on page 2-8.

The CPU checks for the presence of the combined reset signal every 2TOSC. When a reset is de-
tected, the CPU responds by triggering the internal reset routine. The reset routine loads the SFRs,
including the ACC, B, stack pointer, and data pointer registers, with their reset values (see Table
3-5 on page 3-16). Reset does not affect on-chip data RAM or the register file. (However, follow-
ing a cold start reset, these are indeterminate because VCC has fallen too low or has been off.) Fol-
lowing a synchronizing operation and the configuration fetch, the CPU vectors to address
FF:0000. Figure 13-5 shows the reset timing sequence.

While the RST pin is high ALE, PSEN#, and the port pins are weakly pulled high. The first ALE
occurs 16 internal clock cycles (TCLK) after the reset signal goes low. For this reason, other devices
can not be synchronized to the internal timings of the 8X930Ax.

NOTE
Externally driving the ALE and/or PSEN# pins to 0 during the reset routine
may cause the device to go into an indeterminate state.

Powering up the 8X930Ax without a reset may improperly initialize the
program counter and SFRs and cause the CPU to execute instructions from an
undetermined memory location.

13.4.5 Power-on Reset

To automatically generate a reset when power is applied, connect the RST pin to the VCC pin
through a 1-µF capacitor as shown in Figure 13-1 on page 13-1.

When VCC is applied, the RST pin rises to VCC, then decays exponentially as the capacitor cha
es. The time constant must be such that RST remains high (above the turn-off threshold
Schmitt trigger) long enough for the oscillator to start and stabilize, plus 64TOSC. At power up,
VCC should rise within approximately 10 ms. Oscillator start-up time is a function of the cr
frequency.

During power up, the port pins are in a random state until forced to their reset state by the
chronous logic.

Reducing VCC quickly to 0 causes the RST pin voltage to momentarily fall below 0 V. This v
age is internally limited and does not harm the device.
13-6

MINIMUM HARDWARE SETUP

Figure 13-5. Reset Timing Sequence

RST

XTAL

Internal Reset

Routine

ALE

A4103-01

PSEN#

≥ 64 TOSC

1 2 3 32

First ALE
13-7

14
Special Operating
Modes

e Fig-

vides
elect

leared
et or a
ld clear
 V
CHAPTER 14
SPECIAL OPERATING MODES

This chapter describes the idle, powerdown, low clock, and on-circuit emulation (ONCE) device
operating modes and the USB function suspend and resume operations. The SFRs associated with
these operations (PCON and PCON1) are also described.

14.1 GENERAL

The idle and powerdown modes are power reduction modes for use in applications where power
consumption is a concern. User instructions activate these modes by setting bits in the PCON reg-
ister. Program execution halts, but resumes when the mode is exited by an interrupt. While in idle
or powerdown modes, the VCC pin is the input for backup power.

ONCE is a test mode that electrically isolates the 8X930Ax from the system in which it operates.

14.2 POWER CONTROL REGISTERS

The PCON special function register (Figure 14-1) provides two control bits for the serial I/O
function, bits for selecting the idle, low clock, and powerdown modes, the power off flag, and two
general purpose flags.

The PCON1 SFR (Figure 14-2) provides USB power control, including the USB global sus-
pend/resume and USB function suspend. The PCON1 SFR is discussed further in “USB Power
Control” on page 14-6.

14.2.1 Serial I/O Control Bits

The SMOD1 bit in the PCON register is a factor in determining the serial I/O baud rate. Se
ure 14-1 and “Baud Rates” on page 12-10.

The SMOD0 bit in the PCON register determines whether bit 7 of the SCON register pro
read/write access to the framing error (FE) bit (SMOD0 = 1) or to SM0, a serial I/O mode s
bit (SMOD0 = 0). See Figure 14-1 and Figure 12-2 on page 12-5 (SCON).

14.2.2 Power Off Flag

Hardware sets the Power Off Flag (POF) in PCON when VCC rises from < 3 V to > 3 V to indicate
that on-chip volatile memory is indeterminate (e.g., at power-on). The POF can be set or c
by software. After a reset, check the status of this bit to determine whether a cold start res
warm start reset occurred (see “Reset” on page 13-4). After a cold start, user software shou
the POF. If POF = 1 is detected at other times, do a reset to re-initialize the chip, since forCC <
3 V data may have been lost or some logic may have malfunctioned.
14-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 14-1. Power Control (PCON) Register

PCON Address: S:87H
Reset State: 00XX 0000B

7 0

SMOD1 SMOD0 LC POF GF1 GF0 PD IDL

Bit
Number

Bit
Mnemonic Function

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 12-10.

6 SMOD0 SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SM0 bit.
See the SCON register (Figure 12-2 on page 12-5).

5 LC Low Clock Enable:

When this bit is set, the CPU and peripherals (except the USB module)
operate at 3 MHz. This bit is automatically set after a reset. Clearing this
bit through firmware causes the operating clock to return to the hardware
selection speed.

4 POF Power Off Flag:

Set by hardware as VCC rises above 3 V to indicate that power has been
off or VCC had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

3 GF1 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GF0 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.
14-2

SPECIAL OPERATING MODES

Figure 14-2. USB Power Control (PCON1) Register

PCON1 Address: S:DFH
Reset State: XXXX X000B

7 0

— — — — — RWU GRSM GSUS

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

The value read from these bits are indeterminate. Write zeroes to these
bits.

2 RWU Remote Wake-up Bit: (Cleared by hardware)

1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware. Note: do not set this bit
unless the USB function is suspended (GSUS = 1). See Figure 14-4 on
page 14-10.

1 GRSM Global Resume Bit: (Set by hardware)

1 = resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt.†
Cleared by software when servicing the GRSM interrupt. (This bit can
also be set/cleared by software for testability.) This bit is not set if remote
wakeup is used (see RWU). See Figure 14-4 on page 14-10.

0 GSUS Global Suspend Bit: (Set and cleared by hardware)

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.† During this ISR, software should set the PD bit
to enter the suspend mode. Cleared by firmware when a resume occurs.
See Figure 14-4 on page 14-10.

† Software should prioritize GRSM over GSUS if both bits are set simultaneously.
14-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 14-3. Idle and Powerdown Clock Control

Table 14-1. Pin Conditions in Various Modes

Mode Program
Memory

ALE
Pin

PSEN#
Pin

Port 0
Pins

Port 1
Pins

Port 2
Pins

Port 3
Pins

SOF#
Pin DP0 DM0

Reset Don’t
Care

Weak
 High

Weak
High

Float Weak
High

Weak
High

Weak
High

Weak
 High

Float Float

Idle Internal 1 1 Data Data Data Data Data Data Data

Idle External,
page
mode

1 1 Float Data Float Data Data Data Data

Idle External,
nonpage
 mode

1 1 Float Data Weak
High

Data Data Data Data

Power
down

Internal 0 0 Data Data Data Data Data Float Float

Power
down

External,
page
mode

0 0 Float Data Float Data Data Float Float

Power
down

External
nonpage
 mode

0 0 Float Data Weak
High

Data Data Float Float

ONCE Don’t
Care

Float Float Float Weak
High

Weak
High

Weak
High

Weak
 High

Weak
 High

Float

A5088-01

XTAL2

XTAL1

C1

C2
OSC

PD#

Clock

Gen

IDL#

Interrupt,

Serial Port,

Timer Block,

USB Module

CPU
14-4

SPECIAL OPERATING MODES

 in

e

14.3 IDLE MODE

Idle mode is a power reduction mode that reduces power consumption to about 40% of normal.
In this mode, program execution halts. Idle mode freezes the clocks to the CPU at known states
while the peripherals continue to be clocked (Figure 14-3). The CPU status before entering idle
mode is preserved; i.e., the program counter, program status word register, and register file retain
their data for the duration of idle mode. The contents of the SFRs and RAM are also retained. The
status of the port pins depends upon the location of the program memory:

• Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1, 2,
and 3 pins are driving the port SFR value (Table 14-1).

• External program memory: the ALE and PSEN# pins are pulled high; the port 0 pins are
floating; and the pins of ports 1, 2, and 3 are driving the port SFR value (Table 14-1).

NOTE
If desired, the PCA may be instructed to pause during idle mode by setting the
CIDL bit in the CMOD register (Figure 11-7 on page 11-13).

14.3.1 Entering Idle Mode

To enter idle mode, set the PCON register IDL bit. The 8X930Ax enters idle mode upon execution
of the instruction that sets the IDL bit. The instruction that sets the IDL bit is the last instruction
executed.

CAUTION
If the IDL bit and the PD bit are set simultaneously, the 8X930Ax enters
powerdown mode.

14.3.2 Exiting Idle Mode

There are two ways to exit idle mode:

• Generate an enabled interrupt. Hardware clears the PCON register IDL bit which restores
the clocks to the CPU. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the instruction
immediately following the instruction that activated idle mode. The general purpose flags
(GF1 and GF0 in the PCON register) may be used to indicate whether an interrupt occurred
during normal operation or during idle mode. When idle mode is exited by an interrupt, the
interrupt service routine may examine GF1 and GF0.

• Reset the chip. See “Reset” on page 13-4. A logic high on the RST pin clears the IDL bit
the PCON register directly and asynchronously. This restores the clocks to the CPU.
Program execution momentarily resumes with the instruction immediately following th
instruction that activated the idle mode and may continue for a number of clock cycles
before the internal reset algorithm takes control. Reset initializes the 8X930Ax and vectors
the CPU to address FF:0000H.
14-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

-pow-

ps
 enter-
er, and
 RAM

 mem-
NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated idle mode should not write to a port pin or to the external RAM.

14.4 USB POWER CONTROL

The 8X930Ax supports USB power control through firmware, including global suspend/resume
and remote wake-up. For flow charts of these operations, see Figure 14-4 on page 14-10.

14.4.1 Global Suspend Mode

When a global suspend is detected by the 8X930Ax, the global suspend bit (GSUS in PCON1) is
set and the GS/Resume interrupt is generated. Global suspend is defined as bus inactivity for
more than 3 ms on the USB lines. A device that is already in suspend mode will not change state.
Hardware does not invoke any particular power-saving mode on detection of a global suspend.
You must implement power control through firmware within the global suspend/resume ISR.

NOTE
Firmware must set the PD bit (PCON.1 in Figure 14-1 on page 14-2).

For global suspend on a bus powered device, firmware must put the 8X930Ax into powerdown
mode to meet the USB limit of 500 µA. For consistency, it is recommended that you put self
ered devices into powerdown mode as well.

14.4.1.1 Powerdown Mode

The powerdown mode places the 8X930Ax in a very low power state. Powerdown mode sto
the oscillator and freezes all clocks at known states (Figure 14-3). The CPU status prior to
ing powerdown mode is preserved, i.e., the program counter, program status word regist
register file retain their data for the duration of powerdown mode. In addition, the SFRs and
contents are preserved. The status of the port pins depends on the location of the program
ory:

• Internal program memory: the ALE and PSEN# pins are pulled low and the ports 0, 1, 2,
and 3 pins are reading data (Table 14-1 on page 14-4).

• External program memory: the ALE and PSEN# pins are pulled low; the port 0 pins are
floating; and the pins of ports 1, 2, and 3 are reading data (Table 14-1).

NOTE
VCC may be reduced to as low as 2 V during powerdown to further reduce
power dissipation. Take care, however, that VCC is not reduced until power-
down is invoked.
14-6

SPECIAL OPERATING MODES

cks to

PD bit
res

h the

l.
14.4.1.2 Entering Powerdown Mode

To enter powerdown mode, set the PCON register PD bit. The 8X930Ax enters powerdown mode
upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit is the
last instruction executed.

CAUTION
Do not put the 8X930Ax into powerdown mode unless the USB suspend signal
is detected on the USB lines (GSUS = 1). Otherwise, the device will not be
able to wake up from powerdown mode by a resume signal sent through the
USB lines. See “USB Power Control” on page 14-6.

14.4.1.3 Exiting Powerdown Mode

CAUTION
If V CC was reduced during the powerdown mode, do not exit powerdown until
VCC is restored to the normal operating level.

There are two ways to exit the powerdown mode:

1. Generate an enabled external interrupt. The interrupt signal must be held active long
enough of the oscillator to restart and stabilize (normally less than 10 ms). Hardware
clears the PD bit in the PCON register which starts the oscillator and restores the clo
the CPU and peripherals. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the
instruction immediately following the instruction that activated powerdown mode.

NOTE
To enable an external interrupt, set the IEN0 register EX0 and/or EX1 bit[s].
The external interrupt used to exit powerdown mode must be configured as
level sensitive and must be assigned the highest priority. Holding the interrupt
pin (INT0# or INT1#) low restarts the oscillator and bringing the pin high
completes the exit. The duration of the interrupt signal must be long to allow
the oscillator to stabilize (normally less than 10 ms).

2. Generate a reset. See “Reset” on page 13-4. A logic high on the RST pin clears the
in the PCON register directly and asynchronously. This starts the oscillator and resto
the clocks to the CPU and peripherals. Program execution momentarily resumes wit
instruction immediately following the instruction that activated powerdown and may
continue for a number of clock cycles before the internal reset algorithm takes contro
Reset initializes the 8X930Ax and vectors the CPU to address FF:0000H.

NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
14-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

on (K

e
xecu-
rvices

USB
as to
 be en-
sume
s

sume
e pro-

odule

A) for

ate for

y the
that activated the powerdown mode should not write to a port pin or to the
external RAM.

14.4.2 Global Resume Mode

When a global resume is detected by the 8X930Ax, the global resume bit (GRSM of PCON1) is
set and the GS/Resume interrupt is generated. As soon as resume signaling is detected on the USB
lines, the oscillator is restarted. A resume condition is defined as a “J to anything” transiti
transition or reset signaling on the USB lines).

Upon detection of a resume condition, the 8X930Ax applies power to the USB transceivers, th
crystal oscillator, and the PLL. After the clocks are restarted, the CPU program continues e
tion from where it was when the device was put into powerdown mode. The device then se
the Resume interrupt service routine. After executing the Resume ISR, the 8X930Ax resumes op-
eration from where it was when it was interrupted by the suspend interrupt.

14.4.3 USB Remote Wake-up

The 8X930Ax can initiate resume signaling to the USB lines through remote wake-up of the
function while it is in powerdown/idle mode. While in powerdown mode, remote wake-up h
be initiated through assertion of an enabled external interrupt. The external interrupt has to
abled and it must be configured with level trigger and with higher priority than a Suspend/Re
interrupt. A function resume restarts the clocks to the 8X930Ax and program execution branche
to an external interrupt service routine.

Within this external ISR, you must set the remote wake-up bit (RWU in PCON1) to drive re
signaling on the USB lines to the host or upstream hub. After executing the external ISR, th
gram continues execution from where it was put into powerdown mode and the 8X930Ax re-
sumes normal operation.

14.5 LOW CLOCK MODE

Low clock mode is the default operation mode for the 8X930Ax upon reset. After reset, the CPU
and peripherals (excluding the USB module) default to a 3 MHz clock rate while the USB m
always operates at the hardware-selected clock rate. Low clock mode ensures that the ICC drawn
by the 8X930Ax upon reset and in the unconfigured state is less than one unit load (100 m
the whole USB device.

After configuration (and given that the request for more than one unit load of ICC is granted), you
may switch the clock of the CPU and the peripherals back to the hardware-selected clock r
performance reasons.

14.5.1 Entering Low Clock Mode

Low clock mode can be invoked through firmware anytime the device is unconfigured b
host. To invoke low clock Mode, set the LC bit in the PCON Register (Figure 14-1).
14-8

SPECIAL OPERATING MODES

=

kly
s the

 by an
NOTE
After reset, the 8X930Ax automatically switches to low clock mode,
regardless of whether the LC bit has been set.

14.5.2 Exiting Low Clock Mode

To switch the clock of the CPU and the peripherals to the hardware-selected clock rate, clear the
LC bit in the PCON SFR (Figure 14-1). The hardware clock rate selection determines the highest
operating clock rate for the 8X930Ax.

14.6 ON-CIRCUIT EMULATION (ONCE) MODE

The on-circuit emulation (ONCE) mode permits external testers to test and debug 8X930Ax-
based systems without removing the chip from the circuit board. A clamp-on emulator or test
CPU is used in place of the 8X930Ax which is electrically isolated from the system.

14.6.1 Entering ONCE Mode

To enter the ONCE mode:

1. Assert RST to initiate a device reset. See “Externally Initiated Resets” on page 13-5 and
the reset waveforms in Figure 13-5 on page 13-7.

2. While holding RST asserted, apply and hold logic levels to I/O pins as follows: PSEN
low, P0.7:5 = low, P0.4 = high, P0.3:0 = low (i.e., port 0 = 10H).

3. Deassert RST, then remove the logic levels from PSEN# and port 0.

These actions cause the 8X930Ax to enter the ONCE mode. Port 1, 2, and 3 pins are wea
pulled high and port 0, ALE, and PSEN# pins are floating (Table 14-1 on page 14-4). Thu
device is electrically isolated from the remainder of the system which can then be tested
emulator or test CPU. Note that in the ONCE mode the device oscillator remains active.

14.6.2 Exiting ONCE Mode

To exit ONCE mode, reset the device.
14-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 14-4. Suspend/Resume Program with/without Remote Wake-up

A5089-01

Suspend Command

Host sends Suspend

 down USB

Suspend is detected by

8X930 setting GSUS

and causes interrupt

Suspend ISR should

shut down all

external peripherals

Suspend ISR sets PD bit

† (GSUS must not

be cleared)

Setting PD bits causes

8X930 to enter

powerdown mode.

Entire function must draw

less than 500 µ�A from USB.

Suspend Mode Entered

† If GSUS is cleared, the 8X930 will not be able to detect resume signaling from the host.

Remote Wake-up using

an external interrupt

Hold external interrupt pin

(INT0# or INT1#) low until

oscillator stabilizes.

Normally 10ms or less

Program returns to

command immediately

following the 'setb PD'

command in the original

Suspend ISR

Host sends Resume

 down bus

8X930 detects resume,

hardware sets GRSM,

clears GSUS and

starts oscillator

When oscillator stabilizes,

program begins execution

at location immediately

following the

'setb PD' command.

External ISR entered

External ISR serviced

RET1 (from external ISR)

Resume Command

from Host

.
.
.
.
.
.
14-10

SPECIAL OPERATING MODES

Figure 14-4. Suspend/Resume Program with/without Remote Wake-up (Continued)

A5090-01

Resume already applied by

host. GSUS cleared by

hardware. No need to send

Remote Wake-up to host.

Software sets RWU bit

.
.
.
.
.
.

(continued) (continued)

GRSM bit = 0?

†

GRSM = 0

GRSM = 1

Software clears GSUS bit

RWU will clear

automatically when

RESUME signaling is done

Software clears GRSM

Software enables

external peripherals

RETI

(from suspend ISR)

† Check to see if host has driven a resume onto the bus before function drives resume onto bus.
14-11

15
External Memory
Interface

e or
18); the
al wait
pecial
ation.
7.

 shows
ge mode
de does
CHAPTER 15
EXTERNAL MEMORY INTERFACE

This chapter covers various aspects of the external memory interface. It describes the signals as-
sociated with external memory operations, page mode/nonpage mode operation, and external bus
cycle timing (for normal accesses, accesses with configurable wait states, accesses with real-time
wait states, and configuration byte accesses). This chapter also describes the real-time wait state
register (WCON), gives the status of the pins for ports P0 and P2 during bus cycles and bus idle,
and includes several external memory design examples.

15.1 OVERVIEW

The 8X930Ax interfaces with a variety of external memory devices. It can be configured to have
a 16-bit, 17-bit, or 18-bit external address bus. Data transfer operations (8 bits) are multiplexed
on the address bus.

The external memory interface comprises the external bus (ports 0 and 2, and when so configured,
address bits A17 and A16) and the bus control signals described in Table 15-1. Chip configuration
bytes (see Chapter 4, “Device Configuration”) provide several interface options: page mod
nonpage mode for external code fetches; the number of external address bits (16, 17, or
address ranges for RD#, WR#, and PSEN#; and the number of preprogrammed extern
states to extend RD#, WR#, PSEN#, or ALE. Real-time wait states can be enabled with s
function register WCON.1:0. You can use these options to tailor the interface to your applic
For additional information refer to “Configuring the External Memory Interface” on page 4-

The external memory interface operates in either page mode or nonpage mode. Figure 15-1
the structure of the external address bus for page mode and nonpage mode operation. Pa
provides increased performance by reducing the time for external code fetches. Page mo
not apply to code fetches from on-chip memory.

Figure 15-1. Bus Structure in Nonpage Mode and Page Mode

A4273-02

D7:0

A15:8

A7:0

A15:8
P2

P0

A7:0

8X930

Micro-

controller�

RAM/

EPROM/

Flash

AD7:0

Latch

A7:0

D7:0

A15:8

A7:0

P2

P0

A15.8

8X930

Micro-

controller

RAM/

EPROM/

Flash

A15:8/D7:0

Latch

Nonpage Mode Page Mode
15-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 15-1. External Memory Interface Signals

Signal
Name Type Description Alternate

Function

A17 O Address Line 17. P1.7/CEX4/WCLK

A16 O Address Line 16. See RD#. P3.7/RD#

A15:8† O Address Lines. Upper address for external bus (non-page mode). P2.7:0

AD7:0† I/O Address/Data Lines. Multiplexed lower address and data for the
external bus (non-page mode).

P0.7:0

ALE O Address Latch Enable. ALE signals the start of an external bus
cycle and indicates that valid address information is available on
lines A15:8 and AD7:0.

PROG#

EA# I External Access. Directs program memory accesses to on-chip
or off-chip code memory. For EA# strapped to ground, all program
memory accesses are off-chip. For EA# = strapped to VCC, an
access is to on-chip ROM if the address is within the range of the
on-chip ROM; otherwise the access is off-chip. The value of EA# is
latched at reset. For devices without on-chip ROM, EA# must be
strapped to ground.

VPP

PSEN# O Program Store Enable. Read signal output. This output is
asserted for a memory address range that depends on bits RD0
and RD1 in the configuration byte (see also RD#):

RD1 RD0 Address Range for Assertion
0 0 All addresses
0 1 All addresses
1 0 All addresses
1 1 All addresses Š 80:0000H

—

RD# O Read or 17th Address Bit (A16). Read signal output to external
data memory or 17th external address bit (A16), depending on the
values of bits RD0 and RD1 in configuration byte. (See PSEN#):

RD1 RD0 Function
0 0 The pin functions as A16 only.
0 1 The pin functions as A16 only.
1 0 The pin functions as P3.7 only.
1 1 RD# asserted for reads at all addresses ≤7F:FFFFH.

P3.7/A16

WAIT# I Real-time Wait State Input. The real-time WAIT# input is enabled
by writing a logical ‘1’ to the WCON.0 (RTWE) bit at S:A7H. During
bus cycles, the external memory system can signal ‘system ready’
to the microcontroller in real time by controlling the WAIT# input
signal on the port 1.6 input.

P1.6/CEX3

WCLK O Wait Clock Output. The real-time WCLK output is driven at port
1.7 (WCLK) by writing a logical ‘1’ to the WCON.1 (RTWCE) bit at
S:A7H. When enabled, the WCLK output produces a square wave
signal with a period of one-half the oscillator frequency.

A17/P1.7/CEX4

WR# O Write. Write signal output to external memory. WR# is asserted for
writes to all valid memory locations.

P3.6

† If the chip is configured for page-mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries the
upper address bits (A15:8) and the data (D7:0).
15-2

EXTERNAL MEMORY INTERFACE

“Con-
 the

is
The reset routine configures the 8X930Ax for operation in page mode or nonpage mode accord-
ing to bit 1 of configuration byte UCONFIG0. P0 carries address A7:0 while P2 carries address
A15:8. Data D7:0 is multiplexed with A7:0 on P0 in nonpage mode and with A15:8 on P2 in page
mode.

Table 15-1 describes the external memory interface signals. The address and data signals (AD7:0
on port 0 and A15:8 on port 2) are defined for nonpage mode.

15.2 EXTERNAL BUS CYCLES

This section describes the bus cycles the 8X930Ax executes to fetch code, read data, and write
data in external memory. Both page mode and nonpage mode are described and illustrated. For
simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and do not
provide precise timing information. This section does not cover wait states (see “External Bus
Cycles With Configurable Wait States” on page 15-8) or configuration byte bus cycles (see
figuration Byte Bus Cycles” on page 15-15). For bus cycle timing parameters refer to
8X930Ax datasheet.

An “inactive external bus” exists when the 8X930Ax is not executing external bus cycles. Th
occurs under any of the three following conditions:

• Bus Idle (The chip is in normal operating mode but no external bus cycles are executing.)

• The chip is in idle mode

• The chip is in powerdown mode

15.2.1 Bus Cycle Definitions

Table 15-2 lists the types of external bus cycles. It also shows the activity on the bus for nonpage
mode and page mode bus cycles with no wait states. There are three types of nonpage mode bus
cycles: code fetch, data read, and data write. There are four types of page mode bus cycles: code
fetch (page miss), code fetch (page hit), data read, and data write. The data read and data write
cycles are the same for page mode and nonpage mode (except the multiplexing of D7:0 on ports
0 and 2).

15.2.2 Nonpage Mode Bus Cycles

In nonpage mode, the external bus structure is the same as for MCS 51 microcontrollers. The up-
per address bits (A15:8) are on port 2, and the lower address bits (A7:0) are multiplexed with the
data (D7:0) on port 0. External code read bus cycles execute in approximately two state times.
See Table 15-2 and Figure 15-2. External data read bus cycles (Figure 15-3) and external write
bus cycles (Figure 15-4) execute in approximately three state times. For the write cycle (Figure
15-4), a third state is appended to provide recovery time for the bus. Note that the write signal
WR# is asserted for all memory regions, except for the case of RD1:0 = 11, where WR# is assert-
ed for regions 00:–01: but not for regions FE:–FF:.
15-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 15-2. External Code Fetch (Nonpage Mode)

Table 15-2. Bus Cycle Definitions (No Wait States)

Mode Bus Cycle
Bus Activity

State 1 State 2 State 3

Nonpage
Mode

Code Read ALE RD#/PSEN#, code in

Data Read (2) ALE RD#/PSEN# data in

Data Write (2) ALE WR# WR# high, data out

Page
Mode

Code Read, Page Miss ALE RD#/PSEN#, code in

Code Read, Page Hit (3) PSEN#, code in

Data Read (2) ALE RD#/PSEN# data in

Data Write (2) ALE WR# WR# high, data out

NOTES:
1. Signal timing implied by this table is approximate (idealized).
2. Data read (page mode) = data read (nonpage mode) and write (page mode) = write (nonpage mode)

except that in page mode data appears on P2 (multiplexed with A15:0), whereas in nonpage mode
data appears on P0 (multiplexed with A7:0).

3. The initial code read page hit bus cycle can execute only following a code read page miss cycle.

P0

A17/A16/P2

ALE

RD#/PSEN#

State 1 State 2

A4282-02

A17/A16/A15:8

A7:0 D7:0
15-4

EXTERNAL MEMORY INTERFACE

Figure 15-3. External Data Read (Nonpage Mode)

Figure 15-4. External Data Write (Nonpage Mode)

P0

A17/A16/P2

ALE

RD#/PSEN#

State 1 State 2

A4283-02

A17/A16/A15:8

A7:0 D7:0

State 3

P0

A17/A16/P2

ALE

WR#

A4284-02

A17/A16/A15:8

A7:0 D7:0

State 1 State 2 State 3
15-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ubse-
.
-

15.2.3 Page Mode Bus Cycles

Page mode increases performance by reducing the time for external code fetches. Under certain
conditions the controller fetches an instruction from external memory in one state time instead of
two (Table 15-2). Page mode does not affect internal code fetches.

The first code fetch to a 256-byte “page” of memory always uses a two-state bus cycle. S
quent successive code fetches to the same page (page hits) require only a one-state bus cycle
When a subsequent fetch is to a different page (a page miss), it again requires a two-state bus cy
cle. The following external code fetches are always page-miss cycles:

• the first external code fetch after a page rollover†

• the first external code fetch after an external data bus cycle

• the first external code fetch after powerdown or idle mode

• the first external code fetch after a branch, return, interrupt, etc.

In page mode, the 8X930Ax bus structure differs from the bus structure in MCS 51 controllers
(Figure 15-1). The upper address bits A15:8 are multiplexed with the data D7:0 on port 2, and the
lower address bits (A7:0) are on port 0.

Figure 15-5 shows the two types of external bus cycles for code fetches in page mode. The page-
miss cycle is the same as a code fetch cycle in nonpage mode (except D7:0 is multiplexed with
A15:8 on P2.). For the page-hit cycle, the upper eight address bits are the same as for the preced-
ing cycle. Therefore, ALE is not asserted, and the values of A15:8 are retained in the address
latches. In a single state, the new values of A7:0 are placed on port 0, and memory places the in-
struction byte on port 2. Notice that a page hit reduces the available address access time by one
state. Therefore, faster memories may be required to support page mode.

Figure 15-6 and Figure 15-7 show the bus cycles for data reads and data writes in page mode.
These cycles are identical to those for nonpage mode, except for the different signals on ports 0
and 2.

† A page rollover occurs when the address increments from the top of one 256-byte page to the bottom of the next (e.g.,
from FF:FAFFH to FF:FB00H).
15-6

EXTERNAL MEMORY INTERFACE

Figure 15-5. External Code Fetch (Page Mode)

Figure 15-6. External Data Read (Page Mode)

A17/A16/P0

P2

ALE

PSEN#

A17/A16/A7:0

Cycle 1, Page-Miss Cycle 2, Page-Hit

A17/A16/A7:0

† During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

 A4274-02

†

D7:0A15:8 D7:0

State 1 State 2 State 1

A17/A16/P0

P2

ALE

PSEN#

A17/A16/A7:0

 A4275-02

D7:0A15:8

State 1 State 2 State 3
15-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

n

s cy-
s” on

nd data
.

config-
ted. For
o not

 and
 the

ith one
 shows
the bus
ead ex-

Figure 15-7. External Data Write (Page Mode)

15.3 WAIT STATES

The 8X930Ax provides three types of wait state solutions to external memory problems: real-
time, RD#/WR#/PSEN#, and ALE wait states. The 8X930Ax supports traditional real-time wait
state operations for dynamic bus control. Real-time wait state operations are controlled by means
of the WCON special function register. See “External Bus Cycles with Real-time Wait States” o
page 15-11.

In addition, the 8X930Ax device can be configured at reset to add wait states to external bu
cles by extending the ALE or RD#/WR#/PSEN# pulses. See “Wait State Configuration Bit
page 4-11.

You can configure the chip to use multiple types of wait states. Accesses to on-chip code a
memory always use zero wait states. The following sections demonstrate wait state usage

15.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES

This section describes the code fetch, read data, and write data external bus cycles with
urable wait states. Both page mode and nonpage mode operation are described and illustra
simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and d
provide precise timing information.

15.4.1 Extending RD#/WR#/PSEN#

You can use bits WSA1:0# in configuration byte UCONFIG0 (Figure 4-3 on page 4-5)
WSB1:0# in UCONFIG1 (Figure 4-4 on page 4-6) to add 0, 1, 2, or 3 wait states to
RD#/WR#/PSEN pulses. Figure 15-8 shows the nonpage mode code fetch bus cycle w
RD#/PSEN# wait state. The wait state extends the bus cycle to three states. Figure 15-9
the nonpage mode data write bus cycle with one WR# wait state. The wait state extends
cycle to four states. The waveforms in Figure 15-9 also apply to the nonpage mode data r
ternal bus cycle if RD#/PSEN# is substituted for WR#.

A17/A16/P0

P2

ALE

WR#

A17/A16/A7:0

 A4276-02

D7:0A15:8

State 1 State 2 State 3
15-8

EXTERNAL MEMORY INTERFACE

Figure 15-8. External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State)

Figure 15-9. External Data Write (Nonpage Mode, One WR# Wait State)

P0

A17/A16/P2

ALE

RD#/PSEN#

A4277-02

A7:0 D7:0

A17/A16/A15:8

State 1 State 3State 2

P0

A17/A16/P2

ALE

WR#

A4278-02

A7:0 D7:0

A17/A16/A15:8

State 1 State 2 State 4State 3
15-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
15.4.2 Extending ALE

Use the XALE# bit of configuration byte UCONFIG0 to extend the ALE pulse 1 wait state. Fig-
ure 15-10 shows the nonpage mode code fetch external bus cycle with ALE extended. The wait
state extends the bus cycle from two states to three. For read and write external bus cycles, the
extended ALE extends the bus cycle from three states to four.

Figure 15-10. External Code Fetch (Nonpage Mode, One ALE Wait State)

P0

A17/A16/P2

ALE

RD#/PSEN#

A4279-02

A7:0 D7:0

A17/A18/A15:8

State 1 State 2 State 3
15-10

EXTERNAL MEMORY INTERFACE
15.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES

There are two ways of using real-time wait states: the WAIT# pin used as an input bus control and
the WAIT# signal used in conjunction with the WCLK output signal. These two signals are en-
abled with the WCON special function register in the SFR space at S:0A7H. Refer to Figure
15-11.

NOTE
The WAIT# and WCLK signals are alternate functions for the port 1.6:7 input
and output buffers. Use of the alternate functions may conflict with wait state
operation.

When WAIT# is enabled, PCA module 3 is disabled on port 1.6 (CEX3) and
resumes operation only when the WAIT# function is disabled. The same
relationship exists between WCLK on port 1.7 (CEX4) and PCA module 4. It
is not advisable to alternate between PCA operations and real-time wait-state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK).

Port 1.7 can also be enabled to drive address signal A17 in some memory
designs. The A17 address signal always takes priority over the alternate
functions (CEX4 and WCLK). Even if RTWCE is enabled in WCON.1, the
WCLK output does not appear during bus cycles enabled to drive address A17.
The use of WAIT# as an input on port 1.6 is unaffected by address signals.

Figure 15-11. Real-time Wait State Control Register (WCON)

WCON Address: S:A7H
Reset: XXXX XX00B

7 0

— — — — — — RTWCE RTWE

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

The values read from these bits are indeterminate. Write “0” to these
bits.

1 RTWCE Real-time WAIT CLOCK enable. Write a ‘1’ to this bit to enable the WAIT
CLOCK on port 1.7 (WCLK). The square wave output signal is one-half
the oscillator frequency.

0 RTWE Real-time WAIT# enable. Write a ‘1’ to this bit to enable real-time wait
state input on port 1.6 (WAIT#).
15-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

 at
icro-

g of
 bus

mod-
hold

e
e sig-
with
tput.

icts the

e data
15.5.1 Real-time WAIT# Enable (RTWE)

The real-time WAIT# input is enabled by writing a logical ‘1’ to the WCON.0 (RTWE) bit
S:A7H. During bus cycles, the external memory system can signal “system ready” to the m
controller in real time by controlling the WAIT# input signal on the port 1.6 input. Samplin
WAIT# is coincident with the activation of RD#/PSEN# or WR# signals driven low during a
cycle. A “not-ready” condition is recognized by the WAIT# signal held at VIL by the external
memory system. Use of PCA module 3 may conflict with your design. Do not use the PCA
ule 3 I/O (CEX3) interchangeably with the WAIT# signal on the port 1.3 input. Setup and
times are illustrated in the current datasheet.

15.5.2 Real-time WAIT CLOCK Enable (RTWCE)

The real-time WAIT CLOCK output is driven at port 1.7 (WCLK) by writing a logical ‘1’ to th
WCON.1 (RTWCE) bit at S:A7H. When enabled, the WCLK output produces a square wav
nal with a period of one-half the oscillator frequency. Use of PCA module 4 may conflict
your design. Do not use the PCA module 4 I/O (CEX4) interchangeably with the WCLK ou
Use of address signal A17 inhibits both WCLK and PCA module 4 usage of port 1.7.

15.5.3 Real-time Wait State Bus Cycle Diagrams

Figure 15-12 shows the code fetch/data read bus cycle in nonpage mode. Figure 15-14 dep
data read cycle in page mode.

CAUTION

The real-time wait function has critical external timing for code fetch. For this
reason, it is not advisable to use the real-time wait feature for code fetch in
page mode.

The data write bus cycle in nonpage mode is shown in Figure 15-13. Figure 15-15 shows th
write bus cycle in page mode.
15-12

EXTERNAL MEMORY INTERFACE

Figure 15-12. External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)

Figure 15-13. External Data Write (Nonpage Mode, Real-time Wait State)

A0-A7

WCLK

	ALE

RD#/PSEN#

WAIT#

P0

P2 A8-A15

A5007-01

State 1 State 2 State 3 State 1 (next cycle)

A0-A7D0-D7 stretched

A8-A15 stretched

RD#/PSEN# stretched

A0-A7

WCLK

	ALE

WR#

WAIT#

P0

P2

A5009-01

State 1 State 2 State 3 State 4

D0-D7 stretched

A8-A15 stretched

WR# stretched
15-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 15-14. External Data Read (Page Mode, Real-time Wait State)

Figure 15-15. External Data Write (Page Mode, Real-time Wait State)

A8-A15

WCLK

	ALE

RD#/PSEN#

WAIT#

P2

P0 A0-A7

A5008-01

State 1 State 2 State 3 State 1 (next cycle)

A8-A15D0-D7 stretched

A0-A7 stretched

RD#/PSEN# stretched

A8-A15

WCLK

	ALE

WR#

WAIT#

P2

P0

A5010-01

State 1 State 2 State 3 State 4

D0-D7 stretched

A0-A7 stretched

WR# stretched
15-14

EXTERNAL MEMORY INTERFACE

eration,
. See
FIG0
15:8

 are

 state.

d as the
pter 9,
15.6 CONFIGURATION BYTE BUS CYCLES

If EA# = 0, devices obtain configuration information from a configuration array in external mem-
ory. This section describes the bus cycles executed by the reset routine to fetch user configuration
bytes from external memory. Configuration bytes are discussed in Chapter 4, “Device Configu-
ration.”

To determine whether the external memory is set up for page mode or nonpage mode op
the 8X930Ax accesses external memory using internal address FF:FFF8H (UCONFIG0)
states 1–4 in Figure 15-16. If the external memory is set up for page mode, it places UCON
on P2 as D7:0, overwriting A15:8 (FFH). If external memory is set up for nonpage mode, A
is not overwritten. The 8X930Ax examines P2 bit 1. Subsequent configuration byte fetches
in page mode if P2.1 = 0 and in nonpage mode if P2.1 = 1. The 8X930Ax fetches UCONFIG0
again (states 5–8 in Figure 15-16) and then UCONFIG1 via internal address FF:FFF9H.

The configuration byte bus cycles always execute with ALE extended and one PSEN# wait

Figure 15-16. Configuration Byte Bus Cycles

15.7 PORT 0 AND PORT 2 STATUS

This section summarizes the status of the port 0 and port 2 pins when these ports are use
external bus. A more comprehensive description of the ports and their use is given in Cha
“Input/Output Ports.”

P0

P2

ALE

PSEN#

XTAL

A7:0 = F8H A7:0 = F8H A7:0 = F8H

A15:8 = FFH D7:0 D7:0A15:8 = FFH

Nonpage Mode

State 1

A4228-01

State 2 State 3 State 4 State 5 State 6 State 7 State 8

P0

P2

A7:0 = F8H D7:0

A15:8 = FFH

Page Mode
15-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
When port 0 and port 2 are used as the external memory bus, the signals on the port pins can orig-
inate from three sources:

• the 8X930Ax CPU (address bits, data bits)

• the port SFRs: P0 and P2 (logic levels)

• an external device (data bits)

The port 0 pins (but not the port 2 pins) can also be held in a high-impedance state. Table 15-3
lists the status of the port 0 and port 2 pins when the chip in is the normal operating mode and the
external bus is idle or executing a bus cycle.

15.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode

In nonpage mode, the port pins have the same signals as those on the 8XC51FX. For an external
memory instruction using a 16-bit address, the port pins carry address and data bits during the bus
cycle. However, if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are
driven onto the pins. These pin signals can be used to select 256-bit pages in external memory.

During a bus cycle, the CPU always writes FFH to P0, and the former contents of P0 are lost. A
bus cycle does not change the contents of P2. When the bus is idle, the port 0 pins are held at high
impedance, and the contents of P2 are driven onto the port 2 pins.

15.7.2 Port 0 and Port 2 Pin Status in Page Mode

In a page-mode bus cycle, the data is multiplexed with the upper address byte on port 2. However,
if the instruction uses an 8-bit address (e.g., MOVX @Ri), the contents of P2 are driven onto the
pins when data is not on the pins. These logic levels can be used to select 256-bit pages in external
memory. During bus idle, the port 0 and port 2 pins are held at high impedance. For port pin status
when the chip in is idle mode, powerdown mode, or reset, see Chapter 14, “Special Operating
Modes.”

Table 15-3. Port 0 and Port 2 Pin Status In Normal Operating Mode

Port 8-bit/16-bit
Addressing

Nonpage Mode Page Mode

 Bus Cycle Bus Idle Bus Cycle Bus Idle

Port 0 8 or 16 AD7:0 (1) High Impedance A7:0 (1) High Impedance

Port 2
8 P2 (2) P2 P2/D7:0 (2) High Impedance

16 A15:8 P2 A15:8/D7:0 High Impedance

NOTES:
1. During external memory accesses, the CPU writes FFH to the P0 register and the register

contents are lost.
2. The P2 register can be used to select 256-byte pages in external memory.
15-16

EXTERNAL MEMORY INTERFACE

nternal
15.8 EXTERNAL MEMORY DESIGN EXAMPLES

This section presents several external memory designs for 8X930Ax systems. These examples il-
lustrate the design flexibility provided by the configuration options, especially for the PSEN# and
RD# signals. Many designs are possible. The examples employ the 80930AD and 83930AE but
also apply to the other 8X930Ax devices if the differences in on-chip memory are allowed for.
For a general discussion on external memory see “Configuring the External Memory Interface”
on page 4-7. Figure 4-5 on page 4-8 and Figure 4-6 on page 4-9 depict the mapping of i
memory space into external memory.
15-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
15.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM

In this example, an 80930AD operates in page mode with an 18-bit external address bus inter-
faced to 128 Kbytes of external flash memory and 128 Kbytes of external RAM (Figure 15-17).
Figure 15-18 shows how the external flash and RAM are addressed in the internal memory space.
On-chip data RAM (1056 bytes) occupies the lowest addresses in region 00:.

Figure 15-17. Bus Diagram for Example 1: 80930AD in Page Mode

Microcontroller

(without on-chip

 code memory)

A17

P2

P0

A16

EA#

WR# PSEN#

CE#

D7:0

A15:8

A7:0

A16

OE# WE#

CE#

D7:0

A15:8

A7:0

A16

OE# WE#

RAM

(128 Kbytes)

Flash

(128 Kbytes)

Latch

A4285-02
15-18

EXTERNAL MEMORY INTERFACE

Figure 15-18. Address Space for Example 1

A4220-02

1056 Bytes On-chip RAM

01:

00:

FE:

FF:

128 Kbytes External Flash

Address Space

(256 Kbytes)

0000H

FFFFH

0420H

FFFFH
128 Kbytes –1056 Bytes

External RAM

00:0000H
15-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

n-chip
15.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM

In this example, an 80930AD operates in page mode with a 17-bit external address bus interfaced
to 64 Kbytes of flash memory for code storage and 32 Kbytes of external RAM (Figure 15-19).
The 80930AD is configured so that PSEN# is asserted for all reads, and RD# functions as A16
(RD1:0 = 01). Figure 15-20 shows how the external flash and RAM are addressed in the internal
memory space. Addresses 0420H–7FFFH in external RAM are addressed in region 00:. O
data RAM (1056 bytes) occupies the lowest addresses in region 00:.

Figure 15-19. Bus Diagram for Example 2: 80930AD in Page Mode

PSEN#WR#

RAM

(32 Kbytes)

OE#

FLASH

(64 Kbytes)

OE# WE#WE#

CE# CE#

A15:8/D7:0 A15:8

P2

P0

EA#

D7:0

A15:8

A7:0

A15:8

A7;0

D7:0
A16

A7:0

Latch

Data Code

A4286-02

Microcontroller

(without on-chip

 code memory)
15-20

EXTERNAL MEMORY INTERFACE

Figure 15-20. Address Space for Example 2

A4168-03

1056 Bytes On-chip RAM

01:

00:

FE:

FF: 64 Kbytes External Flash

Address Space

(256 Kbytes)

0000H

FFFFH

0420H
32 Kbytes –1056 Bytes External RAM

00:0000H

7FFFH
15-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
15.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM

In this example, an 83930AE operates in nonpage mode with a 17-bit external address bus inter-
faced to 128 Kbytes of external RAM (Figure 15-21). The 83930AE is configured so that RD#
functions as A16, and PSEN# is asserted for all reads. Figure 15-22 shows how the external RAM
is addressed in the internal memory space.

Figure 15-21. Bus Diagram for Example 3: 83930AE in Nonpage Mode

PSEN#

A5004-01

WR#

D7:0

A15:8

A7:0

A16

OE# WE#

A15:8

A16

P2

P0

A7:0

Microcontroller

(with on-chip

code memory)

RAM

(128 Kbytes)

CE#EA#

VCC

AD7:0

Latch

A16

Data
15-22

EXTERNAL MEMORY INTERFACE

Figure 15-22. Memory Space for Example 3

A4169-03

1056 Bytes On-chip RAM

01:

00:

FE:

FF:

16 Kbytes On-chip Code Memory

Address Space

(256 Kbytes)

0000H

FFFFH

0420H

FFFFH

128 Kbytes –1056 Bytes External RAM

00:0000H

3FFFH
15-23

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
15.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM

In this example, an 83930AE operates in nonpage mode with a 16-bit external address bus inter-
faced to 64 Kbytes of RAM (Figure 15-23). This configuration leaves P3.7/RD#/A16 available
for general I/O (RD1:0 = 10). A maximum of 64 Kbytes of external memory can be used and all
regions of internal memory map into the single 64-Kbyte region in external memory (see Figure
4-6 on page 4-9). Figure 15-24 shows how the external RAM is addressed in the internal memory
space. User code is stored in on-chip ROM.

Figure 15-23. Bus Diagram for Example 4: 83930AE in Nonpage Mode

PSEN#

A5005-01

WR#

D7:0

A15:8

A7:0

OE# WE#

P2

P0

Microcontroller

(with on-chip

code memory)

RAM

(64 Kbytes)

CE#EA#

VCC

Latch
15-24

EXTERNAL MEMORY INTERFACE

Figure 15-24. Address Space for Example 4

A4224-02

1056 Bytes On-chip RAM

01:

00:

FE:

FF:

16 Kbytes On-chip Code Memory

Address Space

(256 Kbytes)

FFFFH

0420H

FFFFH
External RAM 64 Kbytes – 1056 Bytes

00:0000H

0000H 3FFFH
15-25

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

. See
if the
ternal

 can be
. If the
ternal

H roll
15.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, an 80930AD operates in nonpage mode with a 16-bit external address bus inter-
faced to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 15-25). The 80930AD is config-
ured so that RD# is asserted for addresses ≤ 7F:FFFFH and PSEN# is asserted for addresses ≥
80:0000H. Figure 15-26 shows two ways to address the external memory in the internal memory
space.

Addressing external RAM locations in either region 00: or region 01: produces the same address
at the external bus pins. However, if the external EPROM and the external RAM require different
numbers of wait states, the external RAM must be addressed entirely in region 01:. Recall that
the number of wait states for region 01: is independent of the remaining regions and always have
the same number of wait states (see Table 4-3 on page 4-11) unless the real-time wait states are
selected (see Figure 15-11 on page 15-11).

The examples that follow illustrate two possibilities for addressing the external RAM.

15.8.5.1 An Application Requiring Fast Access to the Stack

If an application requires fast access to the stack, the stack can reside in the fast on-chip data
RAM (00:0020H–00:041FH) and, when necessary, roll out into the slower external RAM
the left side of Figure 15-26. In this case, the external RAM can have wait states only
EPROM has wait states. Otherwise, if the stack rolls out above location 00:041FH, the ex
RAM would be accessed with no wait state.

15.8.5.2 An Application Requiring Fast Access to Data

If fast access to a block of data is more important than fast access to the stack, the data
stored in the on-chip data RAM, and the stack can be located entirely in external memory
external RAM requires a different number of wait states than the EPROM, address the ex
RAM entirely in region 01:. See the right side of Figure 15-26. Addresses above 00:041F
out to external memory beginning at 0420H.
15-26

EXTERNAL MEMORY INTERFACE

Figure 15-25. Bus Diagram for Example 5: 80930AD in Nonpage Mode

A7:0

Latch

A15:8

A/D7:0

EPROM

(64 Kbytes)

OE#

CE#

A15:8

A7:0

D7:0

PSEN#

Microcontroller

(without on-chip

code memory��)

RD#WR#

EA#

P2

P0

D7:0

A15:8

A7:0

RAM

(64 Kbytes)

CE#

OE# WE#

DataCode

A4287-02
15-27

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 15-26. Address Space for Examples 5 and 6

1056 Bytes

On-chip RAM

01:

00:

FE:

FF:
64 Kbytes

External EPROM

Address Space

(256 Kbytes)

0000H

FFFFH

0420H

FFFFH
External RAM

64 Kbytes –

1056 Bytes

1056 Bytes

On-chip RAM

01:

00:

FE:

FF:
64 Kbytes

External

EPROM

Address Space

(256 Kbytes)

0000H

FFFFH

0420H

64 Kbytes

External

RAM

00:0000H

FFFFH

0000H

4175-03
15-28

EXTERNAL MEMORY INTERFACE
15.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, an 80930AD operates in page mode with a 16-bit external address bus interfaced
to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 15-27). The 80930AD is configured so
that RD# is asserted for addresses ≤ 7F:FFFFH, and PSEN# is asserted for addresses ≥ 80:0000.

This system is the same as Example 5 (Figure 15-25) except that it operates in page mode. Ac-
cordingly, the two systems have the same memory map (Figure 15-26), and the comments on ad-
dressing external RAM apply here also.

Figure 15-27. Bus Diagram for Example 6: 80930AD in Page Mode

A7:0

A15:8/D7:0 A15:8

Latch

PSEN#

Microcontroller

(without on-chip

code memory)

RD#WR#

P2

P0

EA#

EPROM

(64 Kbytes)

OE#

D7:0

A15:8

A7:0

CE# CE#

A15:8

A7;0

RAM

(64 Kbytes)

D7:0

OE# WE#

Code Data

A4288-02
15-29

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
15.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash

In this example, an 80930AD operates in page mode with a 17-bit external address bus interfaced
to 128 Kbytes of flash memory (Figure 15-28). Port 2 carries both the upper address bits (A15:0)
and the data (D7:0), while port 0 carries only the lower address bits (A7:0). The 80930AD is con-
figured for a single read signal (PSEN#). The 128 Kbytes of external flash are accessed via inter-
nal memory regions FE: and FF: in the internal memory space.

Figure 15-28. Bus Diagram for Example 7: 80930AD in Page Mode

PSEN#

Microcontroller

(without on-chip

code memory)

WR#

FLASH

(128 Kbytes)

OE# WE#

A15:8/D7:0 A15:8

P2

P0

A15:8

A7:0

A7:0

Latch

D7:0

A16

CE#

A16

EA#

A16

Code

A4289-02
15-30

16
Verifying Nonvolatile
Memory

= 1 and
highest
on, pro-
e dual

 device
t rou-
. (For
CHAPTER 16
VERIFYING NONVOLATILE MEMORY

This chapter provides instructions for verifying on-chip nonvolatile memory on the 8X930Ax.
The verify instructions permit reading memory locations to verify their contents. Features cov-
ered in this chapter are:

• verifying the on-chip program code memory (8 Kbytes, 16 Kbytes)

• verifying the on-chip configuration bytes (8 bytes)

• verifying the lock bits (3 bits)

• using the encryption array (128 bytes)

• verifying the signature bytes (3 bytes)

16.1 GENERAL

The 8X930Ax is verified in the same manner as the 87C51FX and 87C251Sx microcontrollers.
Verify operations differ from normal operation. Memory accesses are made one byte at a time,
input/output port assignments are different, and ALE, EA#, and PSEN# are held high or low ex-
ternally. See Tables 16-1 and 16-2 for lead usage during verify operations. For a complete list of
device signal descriptions, see Appendix B.

In some applications, it is desirable that program code be secure from unauthorized access. The
8X930Ax offers two types of protection for program code stored in the on-chip array:

• Program code in the on-chip code memory area is encrypted when read out for verification
if the encryption array is programmed.

• A three-level lock bit system restricts external access to the on-chip program code memory.

16.1.1 Considerations for On-chip Program Code Memory

On-chip, nonvolatile code memory is located at the lower end of the FF: region. (Example: for
devices with 16 Kbytes of ROM, code memory is located at FF:0000H-FF:3FFFH.) The first in-
struction following device reset is fetched from FF:0000H. It is recommended that user program
code start at address FF:0100H. Use a jump instruction to FF:0100H to begin execution of the
program. For information on address spaces, see Chapter 3, “Memory Partitions.”

Addresses outside the range of on-chip code memory access external memory. With EA#
both on-chip and external code memory implemented, you can place program code at the
on-chip memory addresses. When the highest on-chip address is exceeded during executi
gram code fetches automatically rollover from on-chip memory to external memory. See th
note on page 3-8.

The top eight bytes of the memory address space (FF:FFF8H–FF:FFFFH) are reserved for
configuration. Do not read or write program code at these locations. For EA# = 1, the rese
tine obtains configuration information from a configuration array located these addresses
16-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
EA# = 0, the reset routine obtains configuration information from a configuration array in exter-
nal memory using these internal addresses.) For a detailed discussion of device configuration, see
Chapter 4.

With EA# = 1 and only on-chip program code memory, multi-byte instructions and instructions
that result in call returns or prefetches should be located a few bytes below the maximum address
to avoid inadvertently exceeding the top address. Use an EJMP instruction, five or more address-
es below the top of memory, to continue execution in other areas of memory. See the dual note
on page 3-8

CAUTION
Execution of program code located in the top few bytes of the on-chip memory
may cause prefetches from the next higher addresses (i.e. external memory).
External memory fetches make use of port 0 and port 3 and may disrupt
program execution if the program uses port 0 or port 3 for a different purpose.

.

Table 16-1. Signal Descriptions

Signal
Name Type Description Alternate

Function

P0.7:0 I/O Port 0. Eight-bit, open-drain, bidirectional I/O port. For verify
operations, use to specify the verify mode. See Table 16-2 and
Figures 16-1 and 16-2.

AD7:0

P1.0
P1.1
P1.2
P1.5:3
P1.6
P1.7

I/O Port 1. Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use for high byte of address. See Table 16-2 and
Figures 16-1 and 16-2.

T2
T2EX
ECI
CEX2:0
CEX3/WAIT#
CEX4/A17\WCLK

P2.7:0 I/O Port 2. Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use as the data port. See Table 16-2 and Figures
16-1 and 16-2.

A15:8

P3.0
P3.1
P3.3:2
P3.5:4
P3.6
P3.7

I/O Port 3. Eight-bit, bidirectional I/O port with internal pullups. For
verify operations, use for low byte of address. See Table 16-2 and
Figures 16-1 and 16-2.

RXD
TXD
INT1:0#
T1:0
WR#
RD#/A16

ALE — Address Latch Enable. For verify operations, connect this pin to
VCC

—

EA# — External Enable. For verify operations, connect this pin to VCC —

PSEN# — Program Store Enable. For verify operations, connect this pin to
VSS

—

16-2

VERIFYING NONVOLATILE MEMORY
16.2 VERIFY MODES

Table 16-2 lists the verify modes and provides details about the setup. The value applied to port
0 determines the mode. The upper digit specifies verify and the lower digit selects the memory
function to verify (e.g., on-chip program code memory, configuration bytes, etc.). The addresses
applied to port 1 and port 3 address locations in the selected memory function. The encryption
array, lock bits, and signature bytes reside in nonvolatile memory outside the memory address
space. Configuration bytes, UCONFIG0 and UCONFIG1, reside in nonvolatile memory at top of
the memory address space (Figure 4-1 on page 4-2) for devices with on-chip ROM, and in exter-
nal memory as shown in (Figure 4-2 on page 4-3) for devices without on-chip ROM.

16.3 GENERAL SETUP

Figure 16-1 shows the general setup for verifying nonvolatile memory on the 8X930Ax. The con-
troller must be running with an oscillator frequency of 4 MHz to 6 MHz. Set up the controller as
shown in Table 16-2 with the mode of operation specified on port 0 and the address with respect
to the starting address of the memory area applied to ports 1 and 3. Data appears on port 2. Con-
nect RST, ALE, and EA# to VCC and PSEN# to ground.

Figure 16-2 shows the bus cycle waveforms for the verify operations. Timing symbols are defined
in Table 16-5 on page 16-6.

Table 16-2. Verify Modes

Mode RST PSEN# EA# ALE Port
0

Port
2

Address
Port 1 (high)
Port 3 (low)

Notes

Verify Mode. On-chip
program code Memory

High Low 5 V High 28H data 0000H-3FFFH 1

Verify Mode. Configuration
Bytes (UCONFIG0,
UCONFIG1)

High Low 5 V High 29H data FFF8H-FFFFH 1

Verify Mode. Lock bits High Low 5 V High 2BH data 0000H 2

Verify Mode. Signature
Bytes

High Low 5 V High 29H data
0030H, 0031H,
0060H, 0061H

NOTES:
1. For these modes, the internal address is FF:xxxxH.
2. The three lock bits are verified in a single operation. The states of the lock bits appear simultaneously

at port 2 as follows: LB3 - P2.3, LB2 - P2.2. LB1 - P2.1. High = programmed.
16-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Figure 16-1. Setup for Verifying Nonvolatile Memory

Figure 16-2. Verify Bus Cycles

16.4 VERIFY ALGORITHM

Use this procedure to verify program code, signature bytes, configuration bytes, and lock bits
stored in nonvolatile memory on the 8X930Ax. To preserve the secrecy of the encryption key byte
sequence, the encryption array cannot be verified. Verification can be performed on a block of
bytes. The procedure for verifying the 8X930Ax is as follows:

1. Set up the microcontroller for operation in the appropriate mode according to Table 16-2.

2. Input the 16-bit address on ports P1 and P3.

PSEN#

P1

P2

A4376-01

4 MHz

to

6 MHz

XTAL2

A0 - A7

A8 - A15

P3

P1

Data

(8 Bits)

VSS

VCC

VCC

XTAL1

Verify Modes

(8 Bits)

Address

(16 Bits) EA#

RST

ALE

P1, P3

 A4377-01

Address

P0

P2 Data Out

Mode

Verification Cycle

TELQV

TAVQV

TEHQV
16-4

VERIFYING NONVOLATILE MEMORY

 the
n low-
mory is
ryp-

s orig-
 code

 be ver-
3. Wait for the data on port P2 to become valid (TAVQV = 48 clock cycles, Figure 16-5), then
compare the data with the expected value.

4. Repeat steps 1 through 3 until all memory locations are verified.

16.5 LOCK BIT SYSTEM

The 8X930Ax provides a three-level lock system for protecting program code stored in the on-
chip program code memory from unauthorized access. To verify that the lock bits are correctly
programmed, perform the procedure described in “Verify Algorithm” on page 16-4 using the ver-
ify lock bits mode (Table 16-2).

16.5.1 Encryption Array

The 8X930Ax includes a 128-byte encryption array located in nonvolatile memory outside
memory address space. During verification of the on-chip program code memory, the seve
order address bits also address the encryption array. As the byte of the program code me
read, it is exclusive-NORed (XNOR) with the key byte from the encryption array. If the enc
tion array is not programmed (still all 1s), the program code is placed on the data bus in it
inal, unencrypted form. If the encryption array is programmed with key bytes, the program
is encrypted and can not be used without knowledge of the key byte sequence.

CAUTION
If the encryption feature is implemented, the portion of the on-chip program
code memory that does not contain program code should be filled with
“random” byte values other than FFH to prevent the encryption key sequence
from being revealed.

To preserve the secrecy of the encryption key byte sequence, the encryption array can not
ified.

Table 16-3. Lock Bit Function

Lock Bits Programmed Protection Type

LB3 LB2 LB1

Level 1 U U U No program lock features are enabled. On-chip program code
is encrypted when verified, if encryption array is programmed.

Level 2 U U P External program code is prevented from fetching program
code bytes from on-chip code memory.

Level 3 U P P Same as level 2, plus on-chip program code memory verify is
disabled.

Level 4 P P P Same as level 3, plus external memory execution is disabled.

NOTE: Other combinations of the lock bits are not defined.
16-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
16.6 SIGNATURE BYTES

The 8X930Ax contains factory-programmed signature bytes. These bytes are located in nonvol-
atile memory outside the memory address space at 30H, 31H, 60H, and 61H. To read the signature
bytes, perform the procedure described in “Verify Algorithm” on page 16-4 using the verify sig-
nature mode (Table 16-2). Signature byte values are listed in Table 16-4.

Table 16-4. Contents of the Signature Bytes

ADDRESS CONTENTS DEVICE TYPE

30H 89H Indicates Intel Devices

31H 41H Indicates USB core product

60H 7BH Indicates 8X930Ax device

Table 16-5. Timing Definitions

Symbol Definition

1/TCLCL Oscillator Frequency

TAVQV Address to Data Valid

TEHQZ Data Float after ENABLE

TELQV ENABLE Low to Data Valid

NOTE: A = Address, E = Enable, H = High, L = Low,
Q = Data out, V = Valid, Z = Floating
16-6

A
Instruction Set
Reference

.

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix contains reference material for the 8X930Ax instruction set, which is identical to
instruction set for the MCS® 251 architecture. The appendix includes an opcode map, a detailed
description of each instruction, and the following tables that summarize notation, addressing, in-
structions types, instruction lengths and execution times:

• Tables A-1 through A-4 describe the notation used for the instruction operands. Table A-5
describes the notation used for control instruction destinations.

• Table A-6 and Table A-7 on page A-5 comprise the opcode map for the instruction set.

• Table A-8 on page A-6 through Table A-17 on page A-10 contain supporting material for
the opcode map.

• Table A-18 on page A-12 lists execution times for a group of instructions that access the
port SFRs.

• The following tables list the instructions giving length (in bytes) and execution time:

Add and Subtract Instructions, Table A-19 on page A-14

Compare Instructions, Table A-20 on page A-15

Increment and Decrement Instructions, Table A-21 on page A-15

Multiply, Divide, and Decimal-adjust Instructions, Table A-22 on page A-16

Logical Instructions, Table A-23 on page A-17

Move Instructions, Table A-24 on page A-19

Exchange, Push, and Pop Instructions, Table A-25 on page A-22

Bit Instructions, Table A-26 on page A-23

Control Instructions, Table A-27 on page A-24

“Instruction Descriptions” on page A-26 contains a detailed description of each instruction

NOTE
The instruction execution times given in this appendix are for an internal
BASE_TIME using data that is read from and written to on-chip RAM. These
times do not include your application’s system bus performance time
necessary to fetch and execute code from external memory, accessing
peripheral SFRs, using wait states, or extending the ALE pulse.

For some instructions, accessing the port SFRs, Px, x = 0–3, increases the
execution time beyond that of the BASE_TIME. These cases are listed in
Table A-18 and are noted in the instruction summary tables and the instruction
descriptions.
A-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
A.1 NOTATION FOR INSTRUCTION OPERANDS

Table A-1. Notation for Register Operands

Register Notation 8X930Ax MCS 51
Arch.

@Ri A memory location (00H–FFH) addressed indirectly via byte register
R0 or R1 ✔

Rn Byte register R0–R7 of the currently selected register bank

n Byte register index: n = 0–7

r r r Binary representation of n

✔

Rm Byte register R0–R15 of the currently selected register file

Rmd Destination register

Rms Source register

m, md, ms Byte register index: m, md, ms = 0–15

s s s s Binary representation of m or md

S S S S Binary representation of ms

✔

WRj Word register WR0, WR2, ..., WR30 of the currently selected register
file

WRjd Destination register

WRjs Source register

@WRj A memory location (00:0000H–00:FFFFH) addressed indirectly
through word register WR0–WR30

@WRj Data RAM location (00:0000H–00:FFFFH) addressed indirectly
+dis16 through a word register (WR0–WR30) + displacement value, where

the displacement value is from 0 to 64 Kbytes.

j, jd, js Word register index: j, jd, js = 0–30

t t t t Binary representation of j or jd

T T T T Binary representation of js

✔

DRk Dword register DR0, DR4, ..., DR28, DR56, DR60 of the currently
selected register file

DRkd Destination Register

DRks Source Register

@DRk A memory location (00:0000H–FF:FFFFH) addressed Indirectly
through dword register DR0–DR28, DR56, DR60

@DRk Data RAM location (00:0000H–FF:FFFFH) addressed indirectly
+dis24 through a dword register (DR0–DR28, DR56, DR60) + displacement

value, where the displacement value is from 0 to 64 Kbytes

k, kd, ks Dword register index: k, kd, ks = 0, 4, 8, ..., 28, 56, 60

u u u u Binary representation of k or kd

U U U U Binary representation of ks

✔

A-2

INSTRUCTION SET REFERENCE
Table A-2. Notation for Direct Addresses

Direct
Address. Description 8X930Ax

Arch.
MCS 51
Arch.

dir8 An 8-bit direct address. This can be a memory address
(00:0000H–00:007FH) or an SFR address (S:00H - S:FFH). ✔ ✔

dir16 A 16-bit memory address (00:0000H–00:FFFFH) used in direct
addressing. ✔

Table A-3. Notation for Immediate Addressing

Immediate
Data Description 8X930Ax

Arch.
MCS 51
Arch.

#data An 8-bit constant that is immediately addressed in an instruction. ✔ ✔

#data16 A 16-bit constant that is immediately addressed in an instruction. ✔

#0data16
#1data16

 A 32-bit constant that is immediately addressed in an instruction. The
upper word is filled with zeros (#0data16) or ones (#1data16). ✔

#short

v v

A constant, equal to 1, 2, or 4, that is immediately addressed in an
instruction.

Binary representation of #short.
✔

Table A-4. Notation for Bit Addressing

Bit
Address Description 8X930Ax

Arch.
MCS 51
Arch.

bit

y y y

A directly addressed bit in memory locations 00:0020H–00:007FH or in
any defined SFR.
A binary representation of the bit number (0–7) within a byte.

✔

bit51 A directly addressed bit (bit number = 00H–FFH) in memory or an SFR.
Bits 00H–7FH are the 128 bits in byte locations 20H–2FH in the on-chip
RAM. Bits 80H–FFH are the 128 bits in the 16 SFR’s with addresses
that end in 0H or 8H: S:80H, S:88H, S:90H, . . . , S:F0H, S:F8H.

✔

Table A-5. Notation for Destinations in Control Instructions

Destination
Address Description 8X930Ax

Arch.
MCS 51
Arch.

rel A signed (two's complement) 8-bit relative address. The destination is
-128 to +127 bytes relative to first byte of the next instruction. ✔ ✔

addr11 An 11-bit destination address. The destination is in the same 2-Kbyte
block of memory as the first byte of the next instruction. ✔ ✔

addr16 A 16-bit destination address. A destination can be anywhere within
the same 64-Kbyte region as the first byte of the next instruction. ✔ ✔

addr24 A 24-bit destination address. A destination can be anywhere within
the 16-Mbyte address space. ✔
A-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
A.2 OPCODE MAP AND SUPPORTING TABLES

Table A-6. Instructions for MCS® 51 Microcontrollers

Bin. 0 1 2 3 4 5 6-7 8-F

Src. 0 1 2 3 4 5 A5x6–A5x7 A5x8–A5xF

0 NOP AJMP
addr11

LJMP
addr16

RR
A

INC
A

INC
dir8

INC
@Ri

INC
Rn

1 JBC
bit,rel

ACALL
addr11

LCALL
addr16

RRC
A

DEC
A

DEC
dir8

DEC
@Ri

DEC
Rn

2 JB
bit,rel

AJMP
addr11

RET RLA ADD
A,#data

ADD
A,dir8

ADD
A,@Ri

ADD
A,Rn

3 JNB
bit,rel

ACALL
addr11

RETI RLCA ADDC
A,#data

ADDC
A,dir8

ADDC
A,@Ri

ADDC
A,Rn

4 JC
rel

AJMP
addr11

ORL
dir8,A

ORL
dir8,#data

ORL
A,#data

ORL
A,dir8

ORL
A,@Ri

ORL
A,Rn

5 JNC
rel

ACALL
addr11

ANL
dir8,A

ANL
dir8,#data

ANL
A,#data

ANL
A,dir8

ANL
A,@Ri

ANL
A,Rn

6 JZ
rel

AJMP
addr11

XRL
dir8,A

XRL
dir8,#data

XRL
A,#data

XRL
A,dir8

XRL
A,@Ri

XRL
A,Rn

7 JNZ
rel

ACALL
addr11

ORL
CY,bit

JMP
@A+DPTR

MOV
A,#data

MOV
dir8,#data

MOV
@Ri,#data

MOV
Rn,#data

8 SJMP
rel

AJMP
addr11

ANL
CY,bit

MOVC
A,@A+PC

DIV
AB

MOV
dir8,dir8

MOV
dir8,@Ri

MOV
dir8,Rn

9 MOV
DPTR,#data16

ACALL
addr11

MOV
bit,CY

MOVC
A,@A+DPTR

SUBB
A,#data

SUBB
A,dir8

SUBB
A,@Ri

SUBB
A,Rn

A ORL
CY,bit

AJMP
addr11

MOV
CY,bit

INC
DPTR

MUL
AB

ESC MOV
@Ri,dir8

MOV
Rn,dir8

B ANL
CY,bit

ACALL
addr11

CPL
bit

CPL
CY

CJNE
A,#data,rel

CJNE
A,dir8,rel

CJNE
@Ri,#data,rel

CJNE
Rn,#data,rel

C PUSH
dir8

AJMP
addr11

CLR
bit

CLR
CY

SWAP
A

XCH
A,dir8

XCH
A,@Ri

XCH
A,Rn

D POP
dir8

ACALL
addr11

SETB
bit

SETB
CY

DA
A

DJNZ
dir8,rel

XCHD
A,@Ri

DJNZ
Rn,rel

E MOVX
A,@DPTR

AJMP
addr11

MOVX
A,@Ri

CLR
A

MOV
A,dir8

MOV
A,@Ri

MOV
A,Rn

F MOV
@DPTR,A

ACALL
addr11

MOVX
@Ri,A

CPL
A

MOV
dir8,A

MOV
@Ri,A

MOV
Rn,A
A-4

INSTRUCTION SET REFERENCE

Table A-7. Instructions for the 8X930Ax Architecture

Bin. A5x8 A5x9 A5xA A5xB A5xC A5xD A5xE A5xF

Src. x8 x9 xA xB xC xD xE xF

0 JSLE
rel

MOV
Rm,@WRj+dis

MOVZ
WRj,Rm

INC R,#short (1)
MOV reg,ind

SRA
reg

1 JSG
rel

MOV
@WRj+dis,Rm

MOVS
WRj,Rm

DEC R,#short (1)
MOV ind,reg

SRL
reg

2 JLE
rel

MOV
Rm,@DRk+dis

ADD
Rm,Rm

ADD
WRj,WRj

ADD
reg,op2 (2)

ADD
DRk,DRk

3 JG
rel

MOV
@DRk+dis,Rm

SLL
reg

4 JSL
rel

MOV
WRj,@WRj+dis

ORL
Rm,Rm

ORL
WRj,WRj

ORL
reg,op2 (2)

5 JSGE
rel

MOV
@WRj+dis,WRj

ANL
Rm,Rm

ANL
WRj,WRj

ANL
reg,op2 (2)

6 JE
rel

MOV
WRj,@DRk+dis

XRL
Rm,Rm

XRL
WRj,WRj

XRL
reg,op2 (2)

7 JNE
rel

MOV
@DRk+dis,WRj

MOV
op1,reg (2)

MOV
Rm,Rm

MOV
WRj,WRj

MOV
reg,op2 (2)

MOV
DRk,DRk

8 LJMP @WRj
EJMP @DRk

EJMP
addr24

DIV
Rm,Rm

DIV
WRj,WRj

9 LCALL@WRj
ECALL @DRk

ECALL
addr24

SUB
Rm,Rm

SUB
WRj,WRj

SUB
reg,op2 (2)

SUB
DRk,DRk

A Bit
Instructions (3)

ERET MUL
Rm,Rm

MUL
WRj,WRj

B TRAP CMP
Rm,Rm

CMP
WRj,WRj

CMP
reg,op2 (2)

CMP
DRk,DRk

C PUSH op1 (4)
MOV DRk,PC

D POP
op1 (4)

E

F

NOTES:
1. R = Rm/WRj/DRk.
2. op1, op2 are defined in Table A-8.
3. See Tables A-10 and A-11.
4. See Table A-12.
A-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table A-8. Data Instructions

Instruction Byte 0 Byte 1 Byte 2 Byte 3

Oper Rmd,Rms x C md ms

Oper WRjd,WRjs x D jd/2 js/2

Oper DRkd,DRks x F kd/4 ks/4

Oper Rm,#data x E m 0000 #data

Oper WRj,#data16 x E j/2 0100 #data (high) #data (low)

Oper DRk,#data16 x E k/4 1000 #data (high) #data (low)

MOV DRk(h),#data16

MOV DRk,#1data16

CMP DRk,#1data16

7

7

B

A

E

E

k/4 1100 #data (high) #data (low)

Oper Rm,dir8 x E m 0001 dir8 addr

Oper WRj,dir8 x E j/2 0101 dir8 addr

Oper DRk,dir8 x E k/4 1101 dir8 addr

Oper Rm,dir16 x E m 0011 dir16 addr (high) dir16 addr (low)

Oper WRj,dir16 x E j/2 0111 dir16 addr (high) dir16 addr (low)

Oper DRk,dir16 (1) x E k/4 1111 dir16 addr (high) dir16 addr (low)

Oper Rm,@WRj x E j/2 1001 m 00

Oper Rm,@DRk x E k/4 1011 m 00

NOTE:
1. For this instruction, the only valid operation is MOV.

Table A-9. High Nibble, Byte 0 of Data Instructions

x Operation Notes

2 ADD reg,op2

All addressing modes are
supported.

9 SUB reg,op2

B CMP reg,op2 (1)

4 ORL reg,op2 (2)

5 ANL reg,op2 (2)

6 XRL reg,op2 (2)

7 MOV reg,op2

8 DIV reg,op2 Two modes only:
reg,op2 = Rmd,Rms
reg,op2 = Wjd,WjsA MUL reg,op2

NOTES:
1. The CMP operation does not support DRk, direct16.
2. For the ORL, ANL, and XRL operations, neither reg nor op2

can be DRk.
A-6

INSTRUCTION SET REFERENCE
All of the bit instructions in the 8X930Ax architecture (Table A-7) have opcode A9, which serves
as an escape byte (similar to A5). The high nibble of byte 1 specifies the bit instruction, as given
in Table A-10.

Table A-10. Bit Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

1 Bit Instr (dir8) A 9 xxxx 0 bit dir8 addr rel addr

Table A-11. Byte 1 (High Nibble) for Bit Instructions

xxxx Bit Instruction

0001 JBC bit

0010 JB bit

0011 JNB bit

0111 ORL CY,bit

1000 ANL CY,bit

1001 MOV bit,CY

1010 MOV CY,bit

1011 CPL bit

1100 CLR bit

1101 SETB bit

1110 ORL CY, /bit

1111 ANL CY, /bit
A-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Table A-12. PUSH/POP Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

PUSH #data C A 0000 0010 #data

PUSH #data16 C A 0000 0110 #data16 (high) #data16 (low)

PUSH Rm C A m 1000

PUSH WRj C A j/2 1001

PUSH DRk C A k/4 1011

MOV DRk,PC C A k/4 0001

POP Rm D A m 1000

POP WRj D A j/2 1001

POP DRk D A k/4 1011

Table A-13. Control Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

EJMP addr24 8 A addr[23:16] addr[15:8] addr[7:0]

ECALL addr24 9 A addr[23:16] addr[15:8] addr[7:0]

LJMP @WRj 8 9 j/2 0100

LCALL @WRj 9 9 j/2 0100

EJMP @DRk 8 9 k/4 1000

ECALL @DRk 9 9 k/4 1000

ERET A A

JE rel 8 8 rel

JNE rel 7 8 rel

JLE rel 2 8 rel

JG rel 3 8 rel

JSL rel 4 8 rel

JSGE rel 5 8 rel

JSLE rel 0 8 rel

JSG rel 1 8 rel

TRAP B 9
A-8

INSTRUCTION SET REFERENCE
Table A-14. Displacement/Extended MOVs

Instruction Byte 0 Byte 1 Byte 2 Byte 3

MOV Rm,@WRj+dis 0 9 m j/2 dis[15:8] dis[7:0]

MOV WRk,@WRj+dis 4 9 j/2 k2 dis[15:8] dis[7:0]

MOV Rm,@DRk+dis 2 9 m k/4 dis[15:8] dis[7:0]

MOV WRj,@DRk+dis 6 9 j/2 k/4 dis[15:8] dis[7:0]

MOV @WRj+dis,Rm 1 9 m j/2 dis[15:8] dis[7:0]

MOV @WRj+dis,WRk 5 9 j/2 k2 dis[15:8] dis[7:0]

MOV @DRk+dis,Rm 3 9 m k/4 dis[15:8] dis[7:0]

MOV @DRk+dis,WRj 7 9 j/2 k/4 dis[15:8] dis[7:0]

MOVS WRj,Rm 1 A j/2 m

MOVZ WRj,Rm 0 A j/2 m

MOV WRj,@WRj 0 B j/2 1000 j/2 0000

MOV WRj,@DRk 0 B k/4 1010 j/2 0000

MOV @WRj,WRj 1 B j/2 1000 j/2 0000

MOV @DRk,WRj 1 B k/4 1010 j/2 0000

MOV dir8,Rm 7 A m 0001 dir8 addr

MOV dir8,WRj 7 A j/2 0101 dir8 addr

MOV dir8,DRk 7 A k/4 1101 dir8 addr

MOV dir16,Rm 7 A m 0011 dir16 addr (high) dir16 addr (low)

MOV dir16,WRj 7 A j/2 0111 dir16 addr (high) dir16 addr (low)

MOV dir16,DRk 7 A k/4 1111 dir16 addr (high) dir16 addr (low)

MOV @WRj,Rm 7 A j/2 1001 m 0000

MOV @DRk,Rm 7 A k/4 1011 m 0000
A-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Table A-15. INC/DEC

Instruction Byte 0 Byte 1

1 INC Rm,#short 0 B m 00 ss

2 INC WRj,#short 0 B j/2 01 ss

3 INC DRk,#short 0 B k/4 11 ss

4 DEC Rm,#short 1 B m 00 ss

5 DEC WRj,#short 1 B j/2 01 ss

6 DEC DRk,#short 1 B k/4 11 ss

Table A-16. Encoding for INC/DEC

ss #short

00 1

01 2

10 4

Table A-17. Shifts

Instruction Byte 0 Byte 1

1 SRA Rm 0 E m 0000

2 SRA WRj 0 E j/2 0100

3 SRL Rm 1 E m 0000

4 SRL WRj 1 E j/2 0100

5 SLL Rm 3 E m 0000

6 SLL WRj 3 E j/2 0100
A-10

INSTRUCTION SET REFERENCE
A.3 INSTRUCTION SET SUMMARY

This section contains tables that summarize the instruction set. For each instruction there is a
short description, its length in bytes, and its execution time in states.

NOTE
Execution times are increased by executing code from external memory,
accessing peripheral SFRs, accessing data in external memory, using a wait
state, or extending the ALE pulse.

For some instructions, accessing the port SFRs, Px, x = 0–3, increases the
execution time. These cases are noted individually in the tables.

A.3.1 Execution Times for Instructions Accessing the Port SFRs

Table A-18 lists these instructions and the execution times.

• Case 1. Code executes from external memory with no wait state and a short ALE (not
extended) and accesses a port SFR.

• Case 2. Code executes from external memory with one wait state and a short ALE (not
extended) and accesses a port SFR.

• Case 3. Code executes from external memory with one wait state and an extended ALE, and
accesses a port SFR.

Times for each case are expressed as the number of state times to be added to the BASE_TIME.
A-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Table A-18. State Times to Access the Port SFRs

Instruction
BASE_TIME Additional State Times

(Add to the BASE_TIME column)

Binary Source Case 1 Case 2 Case 3

ADD A,dir8 1 1 2 3 4

ADD Rm,dir8 3 2 2 3 4

ADDC A,dir8 1 1 2 3 4

ANL A,dir8 1 1 2 3 4

ANL CY,bit 3 2 2 3 4

ANL CY,bit51 1 1 2 3 4

ANL CY,/bit 3 2 2 3 4

ANL CY,/bit51 1 1 2 3 4

ANL dir8,#data 3 3 4 6 8

ANL dir8,A 2 2 4 6 8

ANL Rm,dir8 3 2 2 3 4

CLR bit 4 3 4 6 8

CLR bit51 2 2 4 6 8

CMP Rm,dir8 3 2 2 3 4

CPL bit 4 3 4 6 8

CPL bit51 2 2 4 6 8

DEC dir8 2 2 4 6 8

INC dir8 2 2 4 6 8

MOV A,dir8 1 1 2 3 4

MOV bit,CY 4 3 4 6 8

MOV bit51,CY 2 2 4 6 8

MOV CY,bit 3 2 2 3 4

MOV CY,bit51 1 1 2 3 4

MOV dir8,#data 3 3 2 3 4

MOV dir8,A 2 2 2 3 4

MOV dir8,Rm 4 3 2 3 4

MOV dir8,Rn 2 3 2 3 4

MOV Rm,dir8 3 2 2 3 4

MOV Rn,dir8 1 2 2 3 4

ORL A,dir8 1 1 2 3 4

ORL CY,bit 3 2 2 3 4

ORL CY,bit51 1 1 2 3 4

ORL CY,/bit 3 2 2 3 4
A-12

INSTRUCTION SET REFERENCE
ORL CY,/bit51 1 1 2 3 4

ORL dir8,#data 3 3 2 3 4

ORL dir8,A 2 2 4 6 8

ORL Rm,dir8 3 2 2 3 4

SETB bit 4 3 4 6 8

SETB bit51 2 2 4 6 8

SUB Rm,dir8 3 2 2 3 4

SUBB A,dir8 1 1 2 3 4

XCH A,dir8 3 3 4 6 8

XRL A,dir8 1 1 2 3 4

XRL dir8,#data 3 3 4 6 8

XRL dir8,A 2 2 4 6 8

XRL Rm,dir8 3 2 2 3 4

Table A-18. State Times to Access the Port SFRs (Continued)

Instruction
BASE_TIME Additional State Times

(Add to the BASE_TIME column)

Binary Source Case 1 Case 2 Case 3
A-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
A.3.2 Instruction Summaries

Table A-19. Summary of Add and Subtract Instructions

Add ADD <dest>,<src> dest opnd ← dest opnd + src opnd
Subtract SUB <dest>,<src> dest opnd ← dest opnd - src opnd
Add with Carry ADDC <dest>,<src> (A) ← (A) + src opnd + carry bit
Subtract with Borrow SUBB <dest>,<src> (A) ← (A) - src opnd - carry bit

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

ADD

A,Rn Reg to acc 1 1 2 2

A,dir8 Dir byte to acc 2 1 (2) 2 1 (2)

A,@Ri Indir addr to acc 1 2 2 3

A,#data Immediate data to acc 2 1 2 1

ADD;

SUB

Rmd,Rms Byte reg to/from byte reg 3 2 2 1

WRjd,WRjs Word reg to/from word reg 3 3 2 2

DRkd,DRks Dword reg to/from dword reg 3 5 2 4

Rm,#data Immediate 8-bit data to/from byte reg 4 3 3 2

WRj,#data16 Immediate 16-bit data to/from word reg 5 4 4 3

DRk,#0data16 16-bit unsigned immediate data to/from
dword reg

5 6 4 5

Rm,dir8 Dir addr to/from byte reg 4 3 (2) 3 2 (2)

WRj,dir8 Dir addr to/from word reg 4 4 3 3

Rm,dir16 Dir addr (64K) to/from byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) to/from word reg 5 4 4 3

Rm,@WRj Indir addr (64K) to/from byte reg 4 3 3 2

Rm,@DRk Indir addr (16M) to/from byte reg 4 4 3 3

ADDC;

SUBB

A,Rn Reg to/from acc with carry 1 1 2 2

A,dir8 Dir byte to/from acc with carry 2 1 (2) 2 1 (2)

A,@Ri Indir RAM to/from acc with carry 1 2 2 3

A,#data Immediate data to/from acc with carry 2 1 2 1

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 3:0), add 1 to the number of states.
A-14

INSTRUCTION SET REFERENCE
Table A-20. Summary of Compare Instructions

Compare CMP <dest>,<src> dest opnd – src opnd

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

CMP

Rmd,Rms Reg with reg 3 2 2 1

WRjd,WRjs Word reg with word reg 3 3 2 2

DRkd,DRks Dword reg with dword reg 3 5 2 4

Rm,#data Reg with immediate data 4 3 3 2

WRj,#data16 Word reg with immediate 16-bit data 5 4 4 3

DRk,#0data16 Dword reg with zero-extended 16-bit
immediate data

5 6 4 5

DRk,#1data16 Dword reg with one-extended 16-bit
immediate data

5 6 4 5

Rm,dir8 Dir addr from byte reg 4 3† 3 2†

WRj,dir8 Dir addr from word reg 4 4 3 3

Rm,dir16 Dir addr (64K) from byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) from word reg 5 4 4 3

Rm,@WRj Indir addr (64K) from byte reg 4 3 3 2

Rm,@DRk Indir addr (16M) from byte reg 4 4 3 3

† If this instruction addresses an I/O port (Px, x = 3:0), add 1 to the number of states.

Table A-21. Summary of Increment and Decrement Instructions

Increment INC DPTR (DPTR) ← (DPTR) + 1
Increment INC byte byte ← byte + 1
Increment INC <dest>,<src> dest opnd ← dest opnd + src opnd
Decrement DEC byte byte ← byte – 1
Decrement DEC <dest>,<src> dest opnd ← dest opnd - src opnd

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

INC;

DEC

A acc 1 1 1 1

Rn Reg 1 1 2 2

dir8 Dir byte 2 2 (2) 2 2 (2)

@Ri Indir RAM 1 3 2 4

Rm,#short Byte reg by 1, 2, or 4 3 2 2 1

WRj,#short Word reg by 1, 2, or 4 3 2 2 1

DRk,#short Double word reg by 1, 2, or 4 3 4 2 3

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
INC DPTR Data pointer 1 1 1 1

Table A-22. Summary of Multiply, Divide, and Decimal-adjust Instructions

Multiply MUL <reg1,reg2> (2)
MUL AB (B:A) = A x B

Divide DIV <reg1>,<reg2> (2)
DIV AB (A) = Quotient; (B) =Remainder

Decimal-adjust ACC DA A (2)
for Addition (BCD)

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

MUL

AB Multiply A and B 1 5 1 5

Rmd,Rms Multiply byte reg and byte reg 3 6 2 5

WRjd,WRjs Multiply word reg and word reg 3 12 2 11

DIV

AB Divide A by B 1 10 1 10

Rmd,Rms Divide byte reg by byte reg 3 11 2 10

WRjd,WRjs Divide word reg by word reg 3 21 2 20

DA A Decimal adjust acc 1 1 1 1

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. See “Instruction Descriptions” on page A-26.

Table A-21. Summary of Increment and Decrement Instructions

Increment INC DPTR (DPTR) ← (DPTR) + 1
Increment INC byte byte ← byte + 1
Increment INC <dest>,<src> dest opnd ← dest opnd + src opnd
Decrement DEC byte byte ← byte – 1
Decrement DEC <dest>,<src> dest opnd ← dest opnd - src opnd

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-16

INSTRUCTION SET REFERENCE
Table A-23. Summary of Logical Instructions

Logical AND ANL <dest>,<src> dest opnd ←dest opnd Λ src opnd
Logical OR ORL <dest>,<src> dest opnd ← dest opnd V src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ← dest opnd ∀ src opnd
Clear CLR A (A) ← 0
Complement CPL A (Ai) ← Ø(Ai)
Rotate RXX A (1)
Shift SXX Rm or Wj (1)
SWAP A A3:0 ↔ A7:4

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

ANL;

ORL;

XRL;

A,Rn Reg to acc 1 1 2 2

A,dir8 Dir byte to acc 2 1 (3) 2 1 (3)

A,@Ri Indir addr to acc 1 2 2 3

A,#data Immediate data to acc 2 1 2 1

dir8,A Acc to dir byte 2 2 (4) 2 2 (4)

dir8,#data Immediate data to dir byte 3 3 (4) 3 3 (4)

Rmd,Rms Byte reg to byte reg 3 2 2 1

WRjd,WRjs Word reg to word reg 3 3 2 2

Rm,#data 8-bit data to byte reg 4 3 3 2

WRj,#data16 16-bit data to word reg 5 4 4 3

Rm,dir8 Dir addr to byte reg 4 3 (3) 3 2 (3)

WRj,dir8 Dir addr to word reg 4 4 3 3

Rm,dir16 Dir addr (64K) to byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) to word reg 5 4 4 3

Rm,@WRj Indir addr (64K) to byte reg 4 3 3 2

Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3

CLR A Clear acc 1 1 1 1

CPL A Complement acc 1 1 1 1

RL A Rotate acc left 1 1 1 1

RLC A Rotate acc left through the carry 1 1 1 1

RR A Rotate acc right 1 1 1 1

RRC A Rotate acc right through the carry 1 1 1 1

SLL
Rm Shift byte reg left 3 2 2 1

WRj Shift word reg left 3 2 2 1

NOTES:
1. See “Instruction Descriptions” on page A-26.
2. A shaded cell denotes an instruction in the MCS® 51 architecture.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
SRA
Rm Shift byte reg right through the MSB 3 2 2 1

WRj Shift word reg right through the MSB 3 2 2 1

SRL
Rm Shift byte reg right 3 2 2 1

WRj Shift word reg right 3 2 2 1

SWAP A Swap nibbles within the acc 1 2 1 2

Table A-23. Summary of Logical Instructions (Continued)

Logical AND ANL <dest>,<src> dest opnd ←dest opnd Λ src opnd
Logical OR ORL <dest>,<src> dest opnd ← dest opnd V src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd ← dest opnd ∀ src opnd
Clear CLR A (A) ← 0
Complement CPL A (Ai) ← Ø(Ai)
Rotate RXX A (1)
Shift SXX Rm or Wj (1)
SWAP A A3:0 ↔ A7:4

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

NOTES:
1. See “Instruction Descriptions” on page A-26.
2. A shaded cell denotes an instruction in the MCS® 51 architecture.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-18

INSTRUCTION SET REFERENCE
Table A-24. Summary of Move Instructions

Move (2) MOV <dest>,<src> destination ← src opnd
Move with Sign Extension MOVS <dest>,<src> destination ← src opnd with sign extend
Move with Zero Extension MOVZ <dest>,<src> destination ← src opnd with zero extend
Move Code Byte MOVC <dest>,<src> A ← code byte
Move to External Mem MOVX <dest>,<src> external mem ← (A)
Move from External Mem MOVX <dest>,<src> A ← source opnd in external mem

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

MOV

A,Rn Reg to acc 1 1 2 2

A,dir8 Dir byte to acc 2 1 (3) 2 1 (3)

A,@Ri Indir RAM to acc 1 2 2 3

A,#data Immediate data to acc 2 1 2 1

Rn,A Acc to reg 1 1 2 2

Rn,dir8 Dir byte to reg 2 1 (3) 3 2 (3)

Rn,#data Immediate data to reg 2 1 3 2

dir8,A Acc to dir byte 2 2 (3) 2 2 (3)

dir8,Rn Reg to dir byte 2 2 (3) 3 3 (3)

dir8,dir8 Dir byte to dir byte 3 3 3 3

dir8,@Ri Indir RAM to dir byte 2 3 3 4

dir8,#data Immediate data to dir byte 3 3 (3) 3 3 (3)

@Ri,A Acc to indir RAM 1 3 2 4

@Ri,dir8 Dir byte to indir RAM 2 3 3 4

@Ri,#data Immediate data to indir RAM 2 3 3 4

DPTR,#data16 Load Data Pointer with a 16-bit const 3 2 3 2

Rmd,Rms Byte reg to byte reg 3 2 2 1

WRjd,WRjs Word reg to word reg 3 2 2 1

DRkd,DRks Dword reg to dword reg 3 3 2 2

Rm,#data 8-bit immediate data to byte reg 4 3 3 2

WRj,#data16 16-bit immediate data to word reg 5 3 4 2

DRk,#0data16 zero-extended 16-bit immediate data
to dword reg

5 5 4 4

DRk,#1data16 one-extended 16-bit immediate data
to dword reg

5 5 4 4

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.
A-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
MOV

DRk,dir8 Dir addr to dword reg 4 6 3 5

DRk,dir16 Dir addr (64K) to dword reg 5 6 4 5

Rm,dir8 Dir addr to byte reg 4 3 (3) 3 2 (3)

WRj,dir8 Dir addr to word reg 4 4 3 3

Rm,dir16 Dir addr (64K) to byte reg 5 3 4 2

WRj,dir16 Dir addr (64K) to word reg 5 4 4 3

Rm,@WRj Indir addr (64K) to byte reg 4 2 3 2

Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3

WRjd,@WRjs Indir addr(64K) to word reg 4 4 3 3

WRj,@DRk Indir addr(16M) to word reg 4 5 3 4

dir8,Rm Byte reg to dir addr 4 4 (3) 3 3 (3)

dir8,WRj Word reg to dir addr 4 5 3 4

dir16,Rm Byte reg to dir addr (64K) 5 4 4 3

dir16,WRj Word reg to dir addr (64K) 5 5 4 4

@WRj,Rm Byte reg to indir addr (64K) 4 4 3 3

@DRk,Rm Byte reg to indir addr (16M) 4 5 3 4

@WRjd,WRjs Word reg to indir addr (64K) 4 5 3 4

@DRk,WRj Word reg to indir addr (16M) 4 6 3 5

dir8,DRk Dword reg to dir addr 4 7 3 6

dir16,DRk Dword reg to dir addr (64K) 5 7 4 6

Rm,@WRj+dis16 Indir addr with disp (64K) to byte reg 5 6 4 5

WRj,@WRj+dis16 Indir addr with disp (64K) to word reg 5 7 4 6

Rm,@DRk+dis16 Indir addr with disp (16M) to byte reg 5 7 4 6

WRj,@DRk+dis16 Indir addr with disp (16M) to word reg 5 8 4 7

@WRj+dis16,Rm Byte reg to Indir addr with disp (64K) 5 6 4 5

Table A-24. Summary of Move Instructions (Continued)

Move (2) MOV <dest>,<src> destination ← src opnd
Move with Sign Extension MOVS <dest>,<src> destination ← src opnd with sign extend
Move with Zero Extension MOVZ <dest>,<src> destination ← src opnd with zero extend
Move Code Byte MOVC <dest>,<src> A ← code byte
Move to External Mem MOVX <dest>,<src> external mem ← (A)
Move from External Mem MOVX <dest>,<src> A ← source opnd in external mem

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.
A-20

INSTRUCTION SET REFERENCE
MOV

@WRj+dis16,WRj Word reg to Indir addr with disp (64K) 5 7 4 6

@DRk+dis16,Rm Byte reg to Indir addr with disp (16M) 5 7 4 6

@DRk+dis16,WRj Word reg to Indir addr with disp
(16M)

5 8 4 7

MOVH DRk(hi), #data16 16-bit immediate data into upper
word of dword reg

5 3 4 2

MOVS WRj,Rm Byte reg to word reg with sign
extension

3 2 2 1

MOVZ WRj,Rm Byte reg to word reg with zeros
extension

3 2 2 1

MOVC
A,@A+DPTR Code byte relative to DPTR to acc 1 6 1 6

A,@A+PC Code byte relative to PC to acc 1 6 1 6

MOVX

A,@Ri External mem (8-bit addr) to acc (4) 1 4 2 5

A,@DPTR External mem (16-bit addr) to acc (4) 1 5 1 5

@Ri,A Acc to external mem (8-bit addr) (4) 1 4 1 4

@DPTR,A Acc to external mem (16-bit addr) (4) 1 5 1 5

Table A-24. Summary of Move Instructions (Continued)

Move (2) MOV <dest>,<src> destination ← src opnd
Move with Sign Extension MOVS <dest>,<src> destination ← src opnd with sign extend
Move with Zero Extension MOVZ <dest>,<src> destination ← src opnd with zero extend
Move Code Byte MOVC <dest>,<src> A ← code byte
Move to External Mem MOVX <dest>,<src> external mem ← (A)
Move from External Mem MOVX <dest>,<src> A ← source opnd in external mem

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.
A-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Table A-25. Summary of Exchange, Push, and Pop Instructions

Exchange Contents XCH <dest>,<src> A ↔ src opnd
Exchange Digit XCHD <dest>,<src> A3:0 ↔ on-chip RAM bits 3:0
Push PUSH <src> SP ← SP + 1; (SP) ← src
Pop POP <dest> dest ← (SP); SP ← SP – 1

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States Bytes States

XCH

A,Rn Acc and reg 1 3 2 4

A,dir8 Acc and dir addr 2 3 (2) 2 3 (2)

A,@Ri Acc and on-chip RAM (8-bit addr) 1 4 2 5

XCHD A,@Ri Acc and low nibble in on-chip RAM
(8-bit addr)

1 4 2 5

PUSH

dir8 Push dir byte onto stack 2 2 2 2

#data Push immediate data onto stack 4 4 3 3

#data16 Push 16-bit immediate data onto
stack

5 5 4 5

Rm Push byte reg onto stack 3 4 2 3

WRj Push word reg onto stack 3 6 2 5

DRk Push double word reg onto stack 3 10 2 9

POP

Dir Pop dir byte from stack 2 3/3 2 3/3

Rm Pop byte reg from stack 3 3 2 2

WRj Pop word reg from stack 3 5 2 4

DRk Pop double word reg from stack 3 9 2 8

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
A-22

INSTRUCTION SET REFERENCE
Table A-26. Summary of Bit Instructions

Clear Bit CLR bit bit ← 0
Set Bit SETB bit bit ← 1
Complement Bit CPL bit bit← Øbit
AND Carry with Bit ANL CY,bit CY ← CY Λ bit
AND Carry with Complement of Bit ANL CY,/bit CY ← CY Λ Øbit
OR Carry with Bit ORL CY,bit CY ← CY V bit
ORL Carry with Complement of Bit ORL CY,/bit CY ← CY V Øbit
Move Bit to Carry MOV CY,bit CY ← bit
Move Bit from Carry MOV bit,CY bit ← CY

Mnemonic <src>,<dest> Notes
Binary Mode Source Mode

Bytes States Bytes States

CLR

CY Clear carry 1 1 1 1

bit51 Clear dir bit 2 2 (2) 2 2 (2)

bit Clear dir bit 4 4 3 3

SETB

CY Set carry 1 1 1 1

bit51 Set dir bit 2 2 (2) 2 2 (2)

bit Set dir bit 4 4 (2) 3 3 (2)

CPL

CY Complement carry 1 1 1 1

bit51 Complement dir bit 2 2 (2) 2 2 (2)

bit Complement dir bit 4 4 (2) 3 3 (2)

ANL
CY,bit51 AND dir bit to carry 2 1 (3) 2 1 (3)

CY,bit AND dir bit to carry 4 3 (3) 3 2 (3)

ANL/
CY,/bit51 AND complemented dir bit to carry 2 1 (3) 2 1 (3)

CY,/bit AND complemented dir bit to carry 4 3 (3) 3 2 (3)

ORL
CY,bit51 OR dir bit to carry 2 1 (3) 2 1 (3)

CY,bit OR dir bit to carry 4 3 (3) 3 2 (3)

ORL/
CY,/bit51 OR complemented dir bit to carry 2 1 (3) 2 1 (3)

CY,/bit OR complemented dir bit to carry 4 3 (3) 3 2 (3)

MOV

CY,bit51 Move dir bit to carry 2 1 (3) 2 1 (3)

CY,bit Move dir bit to carry 4 3 (3) 3 2 (3)

bit51,CY Move carry to dir bit 2 2 (2) 2 2 (2)

bit,CY Move carry to dir bit 4 4 (2) 3 3 (2)

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0–3), add 2 to the number of states.
3. If this instruction addresses an I/O port (Px, x = 0–3), add 1 to the number of states.
A-23

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Table A-27. Summary of Control Instructions

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States (2) Bytes States (2)

ACALL addr11 Absolute subroutine call 2 9 2 9

ECALL
@DRk Extended subroutine call, indirect 3 12 2 11

addr24 Extended subroutine call 5 14 4 13

LCALL
@WRj Long subroutine call, indirect 3 9 2 8

addr16 Long subroutine call 3 9 3 9

RET Return from subroutine 1 6 1 6

ERET Extended subroutine return 3 10 2 9

RETI Return from interrupt 1 6 1 6

AJMP addr11 Absolute jump 2 3 2 3

EJMP
addr24 Extended jump 5 6 4 5

@DRk Extended jump, indirect 3 7 2 6

LJMP
@WRj Long jump, indirect 3 6 2 5

addr16 Long jump 3 4 3 4

SJMP rel Short jump (relative addr) 2 3 2 3

JMP @A+DPTR Jump indir relative to the DPTR 1 5 1 5

JC rel Jump if carry is set 2 1/4 2 1/4

JNC rel Jump if carry not set 2 1/4 2 1/4

JB

bit51,rel Jump if dir bit is set 3 2/5 3 2/5

bit,rel Jump if dir bit of 8-bit addr location
is set

5 4/7 4 3/6

JNB

bit51,rel Jump if dir bit is not set 3 2/5 3 2/5

bit,rel Jump if dir bit of 8-bit addr location
is not set

5 4/7 4 3/6

JBC
bit51,rel Jump if dir bit is set & clear bit 3 4/7 3 4/7

bit,rel Jump if dir bit of 8-bit addr location
is set and clear bit

5 7/10 4 6/9

JZ rel Jump if acc is zero 2 2/5 2 2/5

JNZ rel Jump if acc is not zero 2 2/5 2 2/5

JE rel Jump if equal 3 2/5 2 1/4

JNE rel Jump if not equal 3 2/5 2 1/4

JG rel Jump if greater than 3 2/5 2 1/4

JLE rel Jump if less than or equal 3 2/5 2 1/4

JSL rel Jump if less than (signed) 3 2/5 2 1/4

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.
A-24

INSTRUCTION SET REFERENCE
JSLE rel Jump if less than or equal (signed) 3 2/5 2 1/4

JSG rel Jump if greater than (signed) 3 2/5 2 1/4

JSGE rel Jump if greater than or equal
(signed)

3 2/5 2 1/4

CJNE

A,dir8,rel Compare dir byte to acc and jump
if not equal

3 2/5 3 2/5

A,#data,rel Compare immediate to acc and
jump if not equal

3 2/5 3 2/5

Rn,#data,rel Compare immediate to reg and
jump if not equal

3 2/5 4 3/6

@Ri,#data,rel Compare immediate to indir and
jump if not equal

3 3/6 4 4/7

DJNZ

Rn,rel Decrement reg and jump if not
zero

2 2/5 3 3/6

dir8,rel Decrement dir byte and jump if not
zero

3 3/6 3 3/6

TRAP — Jump to the trap interrupt vector 2 10 1 9

NOP — No operation 1 1 1 1

Table A-27. Summary of Control Instructions (Continued)

Mnemonic <dest>,<src> Notes
Binary Mode Source Mode

Bytes States (2) Bytes States (2)

NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.
A-25

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

a flag
A.4 INSTRUCTION DESCRIPTIONS

This section describes each instruction in the 8X930Ax architecture. See the note on page A-11
regarding execution times.

Table A-28 defines the symbols (—, ✓, 1, 0,?) used to indicate the effect of the instruction on the
flags in the PSW and PSW1 registers. For a conditional jump instruction, “!” indicates that
influences the decision to jump.

ACALL <addr11>

Function: Absolute call

Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-
byte PC twice to obtain the address of the following instruction, then pushes bytes 0 and 1 of
the result onto the stack (byte 0 first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15–11 of the incremented PC,
opcode bits 7–5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte “page” of the program memory as the first byte of the
instruction following ACALL.

Flags:

Example: The stack pointer (SP) contains 07H and the label "SUBRTN" is at program memory location
0345H. After executing the instruction

ACALL SUBRTN

at location 0123H, SP contains 09H; on-chip RAM locations 08H and 09H contain 01H
and 25H, respectively; and the PC contains 0345H.

Binary Mode Source Mode

Bytes: 2 2

States: 9 9

Table A-28. Flag Symbols

Symbol Description

— The instruction does not modify the flag.

✓ The instruction sets or clears the flag, as appropriate.

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

! For a conditional jump instruction: The state of the flag before the
instruction executes influences the decision to jump or not jump.

CY AC OV N Z

— — — — —
A-26

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ACALL
(PC) ← (PC) + 2
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC.10:0) ← page address

ADD <dest>,<src>

Function: Add

Description: Adds the source operand to the destination operand, which can be a register or the accumu-
lator, leaving the result in the register or accumulator. If there is a carry out of bit 7 (CY), the
CY flag is set. If byte variables are added, and if there is a carry out of bit 3 (AC), the AC flag
is set. For addition of unsigned integers, the CY flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

Flags:

Example: Register 1 contains 0C3H (11000011B) and register 0 contains 0AAH (10101010B). After
executing the instruction

ADD R1,R0

register 1 contains 6DH (01101101B), the AC flag is clear, and the CY and OV flags are set.

Variations

ADD A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

[Encoding] a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

CY AC OV N Z

✓ ✓ ✓ ✓ ✓

[Encoding] 0 0 1 0 0 1 0 0 immed. data
A-27

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADD
(A) ← (A) + #data

ADD A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADD
(A) ← (A) + (dir8)

ADD A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADD
(A) ← (A) + ((Ri))

ADD A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADD
(A) ← (A) + (Rn)

ADD Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

[Encoding] 0 0 1 0 0 1 0 1 direct addr

[Encoding] 0 0 1 0 0 1 1 i

[Encoding] 0 0 1 0 1 r r r
A-28

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rmd) ← (Rmd) + (Rms)

ADD WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRjd) ← (WRjd) + (WRjs)

ADD DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(DRkd) ← (DRkd) + (DRks)

ADD Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + #data

[Encoding] 0 0 1 0 1 1 0 0 s s s s S S S S

[Encoding] 0 0 1 0 1 1 0 1 t t t t T T T T

[Encoding] 0 0 1 0 1 1 1 1 u u u u U U U U

[Encoding] 0 0 1 0 1 1 1 0 s s s s 0 0 0 0 #data
A-29

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
ADD WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRj) ← (WRj) + #data16

ADD DRk,#0data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(DRk) ← (DRk) + #data16

ADD Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + (dir8)

ADD WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

0 0 1 0 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

0 0 1 0 1 1 1 0 u u u u 1 0 0 0 #data hi #data low

[Encoding] 0 0 1 0 1 1 1 0 s s s s 0 0 0 1 direct addr

[Encoding] 0 0 1 0 1 1 1 0 t t t t 0 1 0 1 direct addr
A-30

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding

Operation: ADD
(WRj) ← (WRj) + (dir8)

ADD Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + (dir16)

ADD WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRj) ← (WRj) + (dir16)

ADD Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + ((WRj))

0 0 1 0 1 1 1 0 s s s s 0 0 1 1 direct addr direct add

0 0 1 0 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

0 0 1 0 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0
A-31

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
ADD Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) ← (Rm) + ((DRk))

ADDC A,<src>

Function: Add with carry

Description: Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY
flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit)

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

Flags:

Example: The accumulator contains 0C3H (11000011B), register 0 contains 0AAH (10101010B), and
the CY flag is set. After executing the instruction

ADDC A,R0

the accumulator contains 6EH (01101110B), the AC flag is clear, and the CY and OV flags
are set.

Variations

ADDC A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

0 0 1 0 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

CY AC OV N Z

✓ ✓ ✓ ✓ ✓
A-32

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) ← (A) + (CY) + #data

ADDC A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) ← (A) + (CY) + (dir8)

ADDC A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADDC
(A) ← (A) + (CY) + ((Ri))

ADDC A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ADDC
(A) ← (A) + (CY) + (Rn)

[Encoding] 0 0 1 1 0 1 0 0 immed. data

[Encoding] 0 0 1 1 0 1 0 1 direct addr

[Encoding] 0 0 1 1 0 1 1 i

[Encoding] 0 0 1 1 1 r r r
A-33

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
AJMP addr11

Function: Absolute jump

Description: Transfers program execution to the specified address, which is formed at run time by
concatenating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7–
5, and the second byte of the instruction. The destination must therefore be within the same
2-Kbyte “page” of program memory as the first byte of the instruction following AJMP.

Flags:

Example: The label "JMPADR" is at program memory location 0123H. After executing the instruction

AJMP JMPADR

at location 0345H, the PC contains 0123H.

Binary Mode Source Mode

Bytes: 2 2

States: 3 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: AJMP
(PC) ← (PC) + 2
(PC.10:0) ← page address

ANL <dest>,<src>

Function: Logical-AND

Description: Performs the bitwise logical-AND (Λ) operation between the specified variables and stores
the results in the destination variable.

The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or immediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

CY AC OV N Z

— — — — —

[Encoding] a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

CY AC OV N Z

— — — ✓ ✓
A-34

INSTRUCTION SET REFERENCE
Example: Register 1 contains 0C3H (11000011B) and register 0 contains 55H (01010101B). After
executing the instruction

ANL R1,R0

register 1 contains 41H (01000001B).

When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction

ANL P1,#01110011B

clears bits 7, 3, and 2 of output port 1.

Variations

ANL dir8,A

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) ← (dir8) Λ (A)

ANL dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) ← (dir8) Λ #data

ANL A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

[Encoding] 0 1 0 1 0 0 1 0 direct addr

[Encoding] 0 1 0 1 0 0 1 1 direct addr immed. data

[Encoding] 0 1 0 1 0 1 0 0 immed. data
A-35

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) ← (A) Λ #data

ANL A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(A) ← (A) Λ (dir8)

ANL A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ANL
(A) ← (A) Λ ((Ri))

ANL A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ANL
(A) ← (A) Λ (Rn)

ANL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

[Encoding] 0 1 0 1 0 1 0 1 direct addr

[Encoding] 0 1 0 1 0 1 1 i

[Encoding] 0 1 0 1 1 r r r

[Encoding] 0 1 0 1 1 1 0 0 s s s s S S S S
A-36

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rmd) ← (Rmd) Λ (Rms)

ANL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRjd) ← (WRjd) Λ (WRjs)

ANL Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ #data

ANL WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) ← (WRj) Λ #data16

ANL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding] 0 1 0 1 1 1 0 1 t t t t T T T T

[Encoding] 0 1 0 1 1 1 1 0 s s s s 0000 #data

0 1 0 1 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

[Encoding] 0 1 0 1 1 1 1 0 s s s s 0 0 0 1 direct addr
A-37

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ (dir8)

ANL WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) ← (WRj) Λ (dir8)

ANL Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ (dir16)

ANL WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRj) ← (WRj) Λ (dir16)

[Encoding] 0 1 0 1 1 1 10 t t t t 0 1 0 1 direct addr

0 1 0 1 1 1 1 0 s s s s 0 0 1 1 direct direct

0 1 0 1 1 1 1 0 t t t t 0 1 1 1 direct direct
A-38

INSTRUCTION SET REFERENCE
ANL Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ ((WRj))

ANL Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) ← (Rm) Λ ((DRk))

ANL CY,<src–bit>

Function: Logical-AND for bit variables

Description: If the Boolean value of the source bit is a logical 0, clear the CY flag; otherwise leave the CY
flag in its current state. A slash ("/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

Flags:

Example: Set the CY flag if, and only if, P1.0 = 1, ACC. 7 = 1, and OV = 0:

MOV CY,P1.0 ;Load carry with input pin state
ANL CY,ACC.7 ;AND carry with accumulator bit 7
ANL CY,/OV ;AND with inverse of overflow flag

0 1 0 1 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 0 1 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

CY AC OV N Z

✓ — — — —
A-39

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
ANL CY,bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) ← (CY) Λ (bit51)

ANL CY,/bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) ← (CY) Λ Ø (bit51)

ANL CY,bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

 [Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) ← (CY) Λ (bit)

ANL CY,/bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding] 1 0 0 0 0 0 1 0 bit addr

[Encoding] 1 0 1 1 0 0 0 0 bit addr

1 0 1 0 1 0 0 1 1 0 0 0 0 y y y dir addr
A-40

INSTRUCTION SET REFERENCE
 [Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) ← (CY) Λ Ø (bit)

CJNE <dest>,<src>,rel

Function: Compare and jump if not equal.

Description: Compares the magnitudes of the first two operands and branches if their values are not

equal. The branch destination is computed by adding the signed relative displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-
byte>, the CY flag is set. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

Flags:

Example: The accumulator contains 34H and R7 contains 56H. After executing the first instruction in
the sequence

CJNE R7,#60H,NOT_EQ

; ;R7 = 60H

NOT_EQ: JC REQ_LOW ; IF R7 < 60H

; ;R7 > 60H

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,

WAIT: CJNE A,P1,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

Variations

1 0 1 0 1 0 0 1 1 1 1 1 0 y y y dir addr

CY AC OV N Z

✓ — — ✓ ✓
A-41

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
CJNE A,#data,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: (PC) ← (PC) + 3
IF (A) ≠ #data
THEN

(PC) ← (PC) + relative offset
IF (A) < #data
THEN

(CY) ← 1
ELSE

(CY) ← 0

CJNE A,dir8,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 3 6 3 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: (PC) ← (PC) + 3
IF (A) ≠ dir8
THEN

(PC) ← (PC) + relative offset
IF (A) < dir8
THEN

(CY) ← 1
ELSE

(CY) ← 0

[Encoding] 1 0 1 1 0 1 0 0 immed. data rel. addr

[Encoding] 1 0 1 1 0 1 0 1 direct addr rel. addr
A-42

INSTRUCTION SET REFERENCE
CJNE @Ri,#data,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 4 4

States: 3 6 4 7

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: (PC) ← (PC) + 3
IF ((Ri)) ≠ #data
THEN

(PC) ← (PC) + relative offset
IF ((Ri)) < #data
THEN

(CY) ← 1
ELSE

(CY) ← 0

CJNE Rn,#data,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 4 4

States: 2 5 3 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: (PC) ← (PC) + 3
IF (Rn) ≠ #data
THEN

(PC) ← (PC) + relative offset
IF (Rn) < #data
THEN

(CY) ← 1
ELSE

(CY) ← 0

CLR A

Function: Clear accumulator

Description: Clears the accumulator (i.e., resets all bits to zero).

Flags:

[Encoding] 1 0 1 1 0 1 1 i immed. data rel. addr

[Encoding] 1 01 1 1 r r r immed. data rel. addr

CY AC OV N Z

— — — ✓ ✓
A-43

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Example: The accumulator contains 5CH (01011100B). The instruction

CLR A

clears the accumulator to 00H (00000000B).

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(A) ← 0

CLR bit

Function: Clear bit

Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.

Flags: Only for instructions with CY as the operand.

Example: Port 1 contains 5DH (01011101B). After executing the instruction

CLR P1.2

port 1 contains 59H (01011001B).

Variations

CLR bit51

Binary Mode Source Mode

Bytes: 4 3

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(bit51) ← 0

[Encoding] 1 1 1 0 0 1 0 0

CY AC OV N Z

✓ — — — —

[Encoding] 1 1 0 0 0 0 1 0 Bit addr
A-44

INSTRUCTION SET REFERENCE
CLR CY

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CLR
(CY) ← 0

CLR bit

Binary Mode Source Mode

Bytes: 4 4

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CLR
(bit) ← 0

CMP <dest>,<src>

Function: Compare

Description: Subtracts the source operand from the destination operand. The result is not stored in the
destination operand. If a borrow is needed for bit 7, the CY (borrow) flag is set; otherwise it is
clear.

When subtracting signed integers, the OV flag indicates a negative result when a negative
value is subtracted from a positive value, or a positive result when a positive value is
subtracted from a negative value.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit)

The source operand allows four addressing modes: register, direct, immediate and indirect.

Flags:

[Encoding] 1 1 0 0 0 0 1 1

 1 0 1 0 1 0 0 1 1 1 0 0 0 y y y dir addr

CY AC OV N Z

✓ ✓ ✓ ✓ ✓
A-45

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). The
instruction

CMP R1,R0

clears the CY and AC flags and sets the OV flag.

Variations

CMP Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rmd) – (Rms)

CMP WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRjd) – (WRjs)

CMP DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRkd) – (DRks)

[Encoding] 1 0 1 1 1 1 0 0 s s s s S S S S

[Encoding] 1 0 1 1 1 1 1 0 t t t t T T T T

[Encoding] 1 0 1 1 1 1 1 1 u u u u UUUU
A-46

INSTRUCTION SET REFERENCE
CMP Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – #data

CMP WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) – #data16

CMP DRk,#0data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRk) – #0data16

CMP DRk,#1data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

[Encoding] 1 0 1 1 1 1 1 0 s s s s 0 0 0 0 # data

1 0 1 1 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

1 0 1 1 1 1 1 0 u u u u 1 0 0 0 #data hi #data low

1 0 1 1 1 1 1 0 u u u u 1 1 0 0 #data hi #data hi
A-47

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRk) – #1data16

CMP Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – (dir8)

CMP WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) – (dir8)

CMP Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – (dir16)

[Encoding] 1 0 1 1 1 1 1 0 s s s s 0001 dir addr

[Encoding] 1 0 1 1 1 1 10 t t t t 0 1 0 1 dir addr

1 0 1 1 1 1 1 0 s s s s 0 0 1 1 dir addr dir addr
A-48

INSTRUCTION SET REFERENCE
CMP WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) – (dir16)

CMP Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – ((WRj))

CMP Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) – ((DRk))

CPL A

Function: Complement accumulator

Description: Logically complements (Ø) each bit of the accumulator (one's complement). Clear bits are
set and set bits are cleared.

1 0 1 1 1 1 1 0 t t t t 0 1 1 1 dir addr dir addr

1 0 1 1 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

1 0 1 1 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0
A-49

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Flags:

Example: The accumulator contains 5CH (01011100B). After executing the instruction

CPL A

the accumulator contains 0A3H (10100011B).

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(A) ← Ø(A)

CPL bit

Function: Complement bit
Description: Complements (Ø) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL

can operate on the CY or any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.

Flags: Only for instructions with CY as the operand.

Example: Port 1 contains 5BH (01011101B). After executing the instruction sequence

CPL P1.1
CPL P1.2

port 1 contains 5BH (01011011B).

Variations

CPL bit51

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

CY AC OV N Z

— — — ✓ ✓

[Encoding] 1 1 1 1 0 1 0 0

CY AC OV N Z

✓ — — — —

[Encoding] 1 0 1 1 0 0 1 0 bit addr
A-50

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(bit51) ← Ø(bit51)

CPL CY

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: CPL
(CY) ← Ø(CY)

CPL bit

Binary Mode Source Mode

Bytes: 4 3

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CPL
(bit) ← Ø(bit)

DA A

Function: Decimal-adjust accumulator for addition

Description: Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two
variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010–XXXX1111), or if the AC flag is set,
six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set, or if the upper four bits now exceed nine (1010XXXX–1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.

[Encoding] 1 0 1 1 0 0 1 1

1 0 1 0 1 0 0 1 1 0 1 1 0 y y y dir addr
A-51

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

Flags:

Example: The accumulator contains 56H (01010110B), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence

ADDC A,R3
DA A

the accumulator contains 0BEH (10111110) and the CY and AC flags are clear. The
Decimal Adjust instruction then alters the accumulator to the value 24H (00100100B),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56, 67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,

ADD A,#99H
DA A

leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 – 1 = 29.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DA
(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V [(AC) = 1]]
 THEN (A.3:0) ← (A.3:0) + 6
 AND
IF [[(A.7:4) > 9] V [(CY) = 1]]
 THEN (A.7:4) ← (A.7:4) + 6

CY AC OV N Z

✓ — — ✓ ✓

[Encoding] 1 1 0 1 0 1 0 0
A-52

INSTRUCTION SET REFERENCE
DEC byte

Function: Decrement

Description: Decrements the specified byte variable by 1. An original value of 00H underflows to 0FFH.
Four operands addressing modes are allowed: accumulator, register, direct, or register-
indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: Register 0 contains 7FH (01111111B). On-chip RAM locations 7EH and 7FH contain 00H
and 40H, respectively. After executing the instruction sequence

DEC @R0
DEC R0
DEC @R0

register 0 contains 7EH and on-chip RAM locations 7EH and 7FH are set to 0FFH and 3FH,
respectively.

Variations

DEC A

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DEC
(A) ← (A) – 1

DEC dir8

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

CY AC OV N Z

— — — ✓ ✓

[Encoding] 0 0 0 1 0 1 0 0

[Encoding] 0 0 0 1 0 1 0 1 dir addr
A-53

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DEC
(dir8) ← (dir8) – 1

DEC @Ri

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: DEC
((Ri)) ← ((Ri)) – 1

DEC Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: DEC
(Rn) ← (Rn) – 1

DEC <dest>,<src>

Function: Decrement

Description: Decrements the specified variable at the destination operand by 1, 2, or 4. An original value
of 00H underflows to 0FFH.

Flags:

Example: Register 0 contains 7FH (01111111B). After executing the instruction sequence

DEC R0,#1

register 0 contains 7EH.

Variations

[Encoding] 0 0 0 1 0 1 1 i

[Encoding] 0 0 0 1 1 r r r

CY AC OV N Z

— — — ✓ ✓
A-54

INSTRUCTION SET REFERENCE
DEC Rm,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(Rm) ← (Rm) – #short

DEC WRj,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(WRj) ← (WRj) – #short

DEC DRk,#short

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DEC
(DRk) ← (DRk) – #short

DIV <dest>,<src>

Function: Divide

Description: Divides the unsigned integer in the register by the unsigned integer operand in register
addressing mode and clears the CY and OV flags.

[Encoding] 0 0 0 1 1 0 1 1 s s s s 0 1 v v

[Encoding] 0 0 0 1 1 0 1 1 t t t t 0 1 v v

[Encoding] 0 0 0 1 1 0 1 1 u u u u 1 1 v v
A-55

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
For byte operands (<dest>,<src> = Rmd,Rms) the result is 16 bits. The 8-bit quotient is
stored in the higher byte of the word where Rmd resides; the 8-bit remainder is stored in the
lower byte of the word where Rmd resides. For example: Register 1 contains 251 (0FBH or
11111011B) and register 5 contains 18 (12H or 00010010B). After executing the instruction

DIV R1,R5

register 1 contains 13 (0DH or 00001101B); register 0 contains 17 (11H or 00010001B),
since 251 = (13 X 18) + 17; and the CY and OV bits are clear (see Flags).

Flags: The CY flag is cleared. The N flag is set if the MSB of the quotient is set. The Z flag is set if
the quotient is zero.

Exception: if <src> contains 00H, the values returned in both operands are undefined; the
CY flag is cleared, OV flag is set, and the rest of the flags are undefined.

Variations

DIV Rmd Rms

Binary Mode Source Mode

Bytes: 3 2

States: 11 10

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DIV (8-bit operands)
(Rmd) ← remainder (Rmd) / (Rms) if <dest> md = 0,2,4,..,14
(Rmd+1) ← quotient (Rmd) / (Rms)

(Rmd–1) ← remainder (Rmd) / (Rms) if <dest> md = 1,3,5,..,15
(Rmd) ← quotient (Rmd) / (Rms)

DIV WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 22 21

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CY AC OV N Z

0 — ✓ ✓ ✓

CY AC OV N Z

0 — 1 ? ?

[Encoding] 1 0 0 0 1 1 0 0 s s s s S S S S

[Encoding] 1 0 0 0 1 1 0 1 t t t t T T T T
A-56

INSTRUCTION SET REFERENCE
Operation: DIV (16-bit operands)
(WRjd) ← remainder (WRjd) / (WRjs) if <dest> jd = 0, 4, 8,... 28
(WRjd+2) ← quotient (WRjd) / (WRjs)

(WRjd–2) ← remainder (WRjd) / (WRjs) if <dest> jd = 2, 6, 10,... 30
(WRjd) ← quotient (WRjd) / (WRjs)

For word operands (<dest>,<src> = WRjd,WRjs) the 16-bit quotient is in WR(jd+2), and the
16-bit remainder is in WRjd. For example, for a destination register WR4, assume the
quotient is 1122H and the remainder is 3344H. Then, the results are stored in these register
file locations:

DIV AB

Function: Divide

Description: Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register
B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and OV flags are cleared.

Exception: if register B contains 00H, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.

Flags:

For division by zero:

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Example: The accumulator contains 251 (0FBH or 11111011B) and register B contains 18 (12H or
00010010B). After executing the instruction

DIV AB

the accumulator contains 13 (0DH or 00001101B); register B contains 17 (11H or
00010001B), since 251 = (13 X 18) + 17; and the CY and OV flags are clear.

Binary Mode Source Mode

Bytes: 1 1

States: 10 10

Location 4 5 6 7

Contents 33H 44H 11H 22H

CY AC OV N Z

0 — ✓ ✓ ✓

CY AC OV N Z

0 — 1 ? ?

[Encoding] 1 0 0 0 0 1 0 0
A-57

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DIV
(A) ← quotient (A)/(B)
(B) ← remainder (A)/(B)

DJNZ <byte>,<rel–addr>

Function: Decrement and jump if not zero

Description: Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of 00H underflows to 0FFH. The
branch destination is computed by adding the signed relative-displacement value in the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: The on-chip RAM locations 40H, 50H, and 60H contain 01H, 70H, and 15H, respectively.
After executing the following instruction sequence

DJNZ 40H,LABEL1
DJNZ 50H,LABEL2
DJNZ 60H,LABEL

on-chip RAM locations 40H, 50H, and 60H contain 00H, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.

The instruction sequence,

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three states: two for DJNZ and one to alter the pin.

Variations

CY AC OV N Z

— — — ✓ ✓

TOGGLE:
MOV R2,#8
CPL P1.7
DJNZ R2,TOGGLE
A-58

INSTRUCTION SET REFERENCE
DJNZ dir8,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 3 6 3 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: DJNZ
(PC) ← (PC) + 2
(dir8) ← (dir8) – 1
IF (dir8) > 0 or (dir8) < 0
 THEN
 (PC) ← (PC) + rel

DJNZ Rn,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 3 3

States: 2 5 3 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: DJNZ
(PC) ← (PC) + 2
(Rn) ← (Rn) – 1
IF (Rn) > 0 or (Rn) < 0
 THEN
 (PC) ← (PC) + rel

ECALL <dest>

Function: Extended call

Description: Calls a subroutine located at the specified address. The instruction adds four to the program
counter to generate the address of the next instruction and then pushes the 24-bit result
onto the stack (high byte first), incrementing the stack pointer by three. The 8 bits of the high
word and the 16 bits of the low word of the PC are then loaded, respectively, with the
second, third and fourth bytes of the ECALL instruction. Program execution continues with
the instruction at this address. The subroutine may therefore begin anywhere in the full 16-
Mbyte memory space.

Flags:

[Encoding] 1 1 0 1 0 1 0 1 direct addr rel. addr

[Encoding] 1 1 0 1 1 r r r rel. addr

CY AC OV N Z

— — — — —
A-59

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Example: The stack pointer contains 07H and the label “SUBRTN” is assigned to program memory
location 123456H. After executing the instruction

ECALL SUBRTN

at location 012345H, SP contains 0AH; on-chip RAM locations 08H, 09H and 0AH contain
01H, 23H and 45H, respectively; and the PC contains 123456H.

Variations

ECALL addr24

Binary Mode Source Mode

Bytes: 5 4

States: 14 13

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ECALL
(PC) ← (PC) + 4
(SP) ← (SP) + 1
((SP)) ← (PC.23:16)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(PC) ← (addr.23:0)

ECALL @DRk

Binary Mode Source Mode

Bytes: 3 2

States: 12 11

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ECALL
(PC) ← (PC) + 4
(SP) ← (SP) + 1
((SP)) ← (PC.23:16)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(PC) ← ((DRk))

 EJMP <dest>

Function: Extended jump

[Encoding] 1 0 0 1 1 0 1 0 addr23–
addr16

addr15–addr8 addr7–addr0

[Encoding] 1 0 0 1 1 0 0 1 u u u u
A-60

INSTRUCTION SET REFERENCE
Description: Causes an unconditional branch to the specified address by loading the 8 bits of the high
order and 16 bits of the low order words of the PC with the second, third, and fourth
instruction bytes. The destination may be therefore be anywhere in the full 16-Mbyte
memory space.

Flags:

Example: The label "JMPADR" is assigned to the instruction at program memory location 123456H.
The instruction is

EJMP JMPADR
Variations

EJMP addr24

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: EJMP
(PC) ← (addr.23:0)

EJMP @DRk

Binary Mode Source Mode

Bytes: 3 2

States: 7 6

Hex Code in: Binary Mode =[A5][Encoding]
Source Mode = [Encoding]

Operation: EJMP
(PC) ← ((DRk))

ERET

Function: Extended return

Description: Pops byte 2, byte 1, and byte 0 of the 3-byte PC successively from the stack and
decrements the stack pointer by 3. Program execution continues at the resulting address,
which normally is the instruction immediately following ECALL.

Flags: No flags are affected.

CY AC OV N Z

— — — — —

[Encoding] 1 0 0 0 1 0 1 0 addr23–
addr16

addr15–addr8 addr7–addr0

[Encoding] 1 0 0 0 1 0 0 1 u u u u
A-61

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Example: The stack pointer contains 0BH. On-chip RAM locations 08H, 09H and 0AH contain 01H,
23H and 49H, respectively. After executing the instruction

ERET

the stack pointer contains 08H and program execution continues at location 012349H.

Binary Mode Source Mode

Bytes: 3 2

States: 10 9

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ERET

(PC.23:16) ← ((SP))
(SP) ← (SP) – 1
(PC.15:8) ← ((SP))
(SP) ← (SP) – 1
(PC.7:0) ← ((SP))
(SP) ← (SP) – 1

INC <Byte>

Function: Increment

Description: Increments the specified byte variable by 1. An original value of FFH overflows to 00H.
Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: Register 0 contains 7EH (011111110B) and on-chip RAM locations 7EH and 7FH contain
0FFH and 40H, respectively. After executing the instruction sequence

INC @R0
INC R0
INC @R0

register 0 contains 7FH and on-chip RAM locations 7EH and 7FH contain 00H and 41H,
respectively.

Variations

INC A

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

[Encoding] 1 0 1 0 1 0 1 0

CY AC OV N Z

— — — ✓ ✓

[Encoding] 0 0 0 0 0 1 0 0
A-62

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(A) ← (A) + 1

INC dir8

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(dir8) ← (dir8) + 1

INC @Ri

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: INC
((Ri) ← ((Ri)) + 1

INC Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: INC
(Rn) ← (Rn) + 1

INC <dest>,<src>

Function: Increment

Description: Increments the specified variable by 1, 2, or 4. An original value of 0FFH overflows to 00H.

[Encoding] 0 0 0 0 0 1 0 1 direct addr

[Encoding] 0 0 0 0 0 1 1 i

[Encoding] 0 0 0 0 1 r r r
A-63

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Flags:

Example: Register 0 contains 7EH (011111110B). After executing the instruction

INC R0,#1

register 0 contains 7FH.
Variations

INC Rm,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(Rm) ← (Rm) + #short

INC WRj,#short

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(WRj) ← (WRj) + #short

INC DRk,#short

Binary Mode Source Mode

Bytes: 3 2

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(DRk) ← (DRk) + #shortdata pointer

CY AC OV N Z

— — — ✓ ✓

[Encoding] 0 0 0 0 1 0 1 1 s s s s 00 v v

[Encoding] 0 0 0 0 1 0 1 1 t t t t 01 v v

[Encoding] 0 0 0 0 1 0 1 1 u u u u 11 v v
A-64

INSTRUCTION SET REFERENCE
INC DPTR

Function: Increment data pointer

Description: Increments the 16-bit data pointer by one. A 16-bit increment (modulo 216) is performed; an
overflow of the low byte of the data pointer (DPL) from 0FFH to 00H increments the high
byte of the data pointer (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pointer (DPX = DR56).

Flags:

Example: Registers DPH and DPL contain 12H and 0FEH, respectively. After the instruction
sequence

INC DPTR
INC DPTR
INC DPTR

DPH and DPL contain 13H and 01H, respectively.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(DPTR) ← (DPTR) + 1

JB bit51,rel
JB bit,rel

Function: Jump if bit set

Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

Flags:

CY AC OV N Z

— — — ✓ ✓

[Encoding] 1 0 1 0 0 0 1 1

CY AC OV N Z

— — — — —
A-65

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Example: Input port 1 contains 11001010B and the accumulator contains 56 (01010110B). After the
instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

program execution continues at label LABEL2.
Variations

JB bit51,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JB
(PC) ← (PC) + 3
IF (bit51) = 1
 THEN
 (PC) ← (PC) + rel

JB bit,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 5 5 4 4

States: 4 7 3 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JB
(PC) ← (PC) + 3
IF (bit) = 1
 THEN
 (PC) ← (PC) + rel

[Encoding] 0 0 1 0 0 0 0 0 bit addr rel. addr

1 0 1 0 1 0 0 1 0 0 1 0 0 y y direct addr rel. addr
A-66

INSTRUCTION SET REFERENCE
JBC bit51,rel
JBC bit,rel

Function: Jump if bit is set and clear bit
Description: If the specified bit is one, branch to the specified address; otherwise proceed with the next

instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre-
menting the PC to the first byte of the next instruction.

Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.

Flags:

Example: The accumulator contains 56H (01010110B). After the instruction sequence

JBC ACC.3,LABEL1
JBC ACC.2,LABEL2

the accumulator contains 52H (01010010B) and program execution continues at label
LABEL2.

Variations

JBC bit51,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 4 7 4 7

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JBC
(PC) ← (PC) + 3
IF (bit51) = 1
 THEN
 (bit51) ← 0
 (PC) ← (PC) + rel

JBC bit,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 5 5 4 4

States: 4 7 3 6

CY AC OV N Z

— — — — —

[Encoding] 0 0 0 1 0 0 0 0 bit addr rel. addr
A-67

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JBC
(PC) ← (PC) + 3
IF (bit51) = 1
THEN
(bit51) ← 0
(PC) ← (PC) + rel

JC rel

Function: Jump if carry is set

Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example: The CY flag is clear. After the instruction sequence

JC LABEL1
CPL CY
JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 1 4 1 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JC
(PC) ← (PC) + 2
IF (CY) = 1
 THEN
 (PC) ← (PC) + rel

1 0 1 0 1 0 0 1 0 0 0 1 0 y y y direct addr rel. addr

CY AC OV N Z

! — — — —

[Encoding] 0 1 0 0 0 0 0 0 rel. addr
A-68

INSTRUCTION SET REFERENCE
JE rel

Function: Jump if equal

Description: If the Z flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example: The Z flag is set. After executing the instruction

JE LABEL1

program execution continues at label LABEL1.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JE
(PC) ← (PC) + 2
IF (Z) = 1
 THEN (PC) ← (PC) + rel

JG rel

Function: Jump if greater than

Description: If the Z flag and the CY flag are both clear, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.

Flags:

Example: The instruction

JG LABEL1

causes program execution to continue at label LABEL1 if the Z flag and the CY flag are both
clear.

CY AC OV N Z

— — — — !

[Encoding] 0 1 1 0 1 0 0 0 rel. addr

CY AC OV N Z

— — — ! —
A-69

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JG
(PC) ← (PC) + 2
IF (Z) = 0 AND (CY) = 0
 THEN (PC) ← (PC) + rel

JLE rel

Function: Jump if less than or equal

Description: If the Z flag or the CY flag is set, branch to the address specified; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example: The instruction

JLE LABEL1

causes program execution to continue at LABEL1 if the Z flag or the CY flag is set.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JLE
(PC) ← (PC) + 2
IF (Z) = 1 OR (CY) = 1
 THEN (PC) ← (PC) + rel

[Encoding] 0 0 1 1 1 0 0 0 rel. addr

CY AC OV N Z

— — — ! !

[Encoding] 0 0 1 0 1 0 0 0 rel. addr
A-70

INSTRUCTION SET REFERENCE
JMP @A+DPTR

Function: Jump indirect

Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit data pointer and load the
resulting sum into the lower 16 bits of the program counter. This is the address for
subsequent instruction fetches. The contents of the accumulator and the data pointer are
not affected.

Flags:

Example: The accumulator contains an even number from 0 to 6. The following sequence of instruc-
tions branch to one of four AJMP instructions in a jump table starting at JMP_TBL:

If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other
address.

Binary Mode Source Mode

Bytes: 1 1

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JMP
(PC.15:0) ← (A) + (DPTR)

JNB bit51,rel
JNB bit,rel

Function: Jump if bit not set

Description: If the specified bit is clear, branch to the specified address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

CY AC OV N Z

— — — — —

JMP_TBL:

MOV
JMP
AJMP
AJMP
AJMP
AJMP

DPTR,#JMP_TBL
@A+DPTR
LABEL0
LABEL1
LABEL2
LABEL3

[Encoding] 0 1 1 1 0 0 1 1
A-71

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Flags:

Example: Input port 1 contains 11001010B and the accumulator contains 56H (01010110B). After
executing the instruction sequence

JNB P1.3,LABEL1
JNB ACC.3,LABEL2

program execution continues at label LABEL2.

Variations

JNB bit51,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNB
(PC) ← (PC) + 3
IF (bit51) = 0
 THEN (PC) ← (PC) + rel

JNB bit,rel

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 5 5 4 4

States: 4 7 3 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JNB
(PC) ← (PC) + 3
IF (bit) = 0
 THEN
 (PC) ← (PC) + rel

CY AC OV N Z

— — — — —

[Encoding] 0 0 1 1 0 0 0 0 bit addr rel. addr

1 0 1 0 1 0 0 1 0 0 1 1 0 y y direct addr rel. addr
A-72

INSTRUCTION SET REFERENCE
JNC rel

Function: Jump if carry not set

Description: If the CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.

Flags:

Example: The CY flag is set. The instruction sequence

JNC LABEL1
CPL CY
JNC LABEL2

clears the CY flag and causes program execution to continue at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 1 4 1 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNC
(PC) ← (PC) + 2
IF (CY) = 0
 THEN (PC) ← (PC) + rel

JNE rel

Function: Jump if not equal

Description: If the Z flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.

Flags:

Example: The instruction

JNE LABEL1

causes program execution to continue at LABEL1 if the Z flag is clear.

CY AC OV N Z

! — — — —

[Encoding] 0 1 0 1 0 0 0 0 rel. addr

CY AC OV N Z

— — — — !
A-73

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JNE
(PC) ← (PC) + 2
IF (Z) = 0
 THEN (PC) ← (PC) + rel

JNZ rel

Function: Jump if accumulator not zero

Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
accumulator is not modified.

Flags:

Example: The accumulator contains 00H. After executing the instruction sequence

JNZ LABEL1
INC A
JNZ LABEL2

the accumulator contains 01H and program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JNZ
(PC) ← (PC) + 2
IF (A) ≠ 0
 THEN (PC) ← (PC) + rel

[Encoding] 0 1 1 1 1 0 0 0 rel. addr

CY AC OV N Z

— — — — !

[Encoding] 0 1 1 1 0 0 0 0 rel. addr
A-74

INSTRUCTION SET REFERENCE
JSG rel

Function: Jump if greater than (signed)

Description: If the Z flag is clear AND the N flag and the OV flag have the same value, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

Example: The instruction

JSG LABEL1

causes program execution to continue at LABEL1 if the Z flag is clear AND the N flag and
the OV flag have the same value.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSG
(PC) ← (PC) + 2
IF [(N) = 0 AND (N) = (OV)]
 THEN (PC) ← (PC) + rel

JSGE rel

Function: Jump if greater than or equal (signed)

Description: If the N flag and the OV flag have the same value, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

CY AC OV N Z

— — ! ! !

[Encoding] 0 0 0 1 1 0 0 0 rel. addr

CY AC OV N Z

— — ! ! !
A-75

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Example: The instruction

JSGE LABEL1

causes program execution to continue at LABEL1 if the N flag and the OV flag have the
same value.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSGE
(PC) ← (PC) + 2
IF [(N) = (OV)]
 THEN (PC) ← (PC) + rel

JSL rel

Function: Jump if less than (signed)

Description: If the N flag and the OV flag have different values, branch to the address specified;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

Example: The instruction

JSL LABEL1

causes program execution to continue at LABEL1 if the N flag and the OV flag have different
values.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

[Encoding] 0 1 0 1 1 0 0 0 rel. addr

CY AC OV N Z

— — ! ! !

[Encoding] 0 1 0 0 1 0 0 0 rel. addr
A-76

INSTRUCTION SET REFERENCE
Operation: JSL
(PC) ← (PC) + 2
IF (N) ≠ (OV)
 THEN (PC) ← (PC) + rel

JSLE rel

Function: Jump if less than or equal (signed)

Description: If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

Example: The instruction

JSLE LABEL1

causes program execution to continue at LABEL1 if the Z flag is set OR if the the N flag and
the OV flag have different values.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JSLE
(PC) ← (PC) + 2
IF {(Z) = 1 OR [(N) ≠ (OV)]}
 THEN (PC) ← (PC) + rel

JZ rel

Function: Jump if accumulator zero

Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.

Flags:

CY AC OV N Z

— — ! ! !

[Encoding] 0 0 0 0 1 0 0 0 rel. addr

CY AC OV N Z

— — — — !
A-77

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Example: The accumulator contains 01H. After executing the instruction sequence

JZ LABEL1
DEC A
JZ LABEL2

the accumulator contains 00H and program execution continues at label LABEL2.

Binary Mode Source Mode

Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2

States: 2 5 2 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JZ
(PC) ← (PC) + 2
IF (A) = 0
 THEN (PC) ← (PC) + rel

LCALL <dest>

Function: Long call

Description: Calls a subroutine located at the specified address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.

Flags:

Example: The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01H and 26H, and the PC contains 1234H.

LCALL addr16

Binary Mode Source Mode

Bytes: 3 3

States: 9 9

[Encoding] 0 1 1 0 0 0 0 0 rel. addr

CY AC OV N Z

— — — — —

[Encoding] 0 0 0 1 0 0 1 0 addr15–addr8 addr7–addr0
A-78

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LCALL
(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC) ← (addr.15:0)

LCALL @WRj

Binary Mode Source Mode

Bytes: 3 2

States: 9 8

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: LCALL
(PC) ← (PC) + 3
(SP) ← (SP) + 1
((SP)) ← (PC.7:0)
(SP) ← (SP) + 1
((SP)) ← (PC.15:8)
(PC) ← ((WRj))

LJMP <dest>

Function: Long Jump

Description: Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.

Flags:

Example: The label "JMPADR" is assigned to the instruction at program memory location 1234H. After
executing the instruction

LJMP JMPADR

at location 0123H, the program counter contains 1234H.

[Encoding] 1 0 0 1 1 0 0 1 t t t t 0 1 0 0

CY AC OV N Z

— — — — —
A-79

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
LJMP addr16

Binary Mode Source Mode

Bytes: 3 3

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LJMP
(PC) ← (addr.15:0)

LJMP @WRj

Binary Mode Source Mode

Bytes: 3 2

States: 6 5

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: LJMP
(PC) ← ((WRj))

MOV <dest>,<src>

Function: Move byte variable

Description: Copies the byte variable specified by the second operand into the location specified by the
first operand. The source byte is not affected.

This is by far the most flexible operation. Twenty-four combinations of source and
destination addressing modes are allowed.

Flags:

[Encoding] 0 0 0 0 0 0 1 0 addr15–addr8 addr7–addr0

[Encoding] 1 0 0 0 1 0 0 1 t t t t 0 1 0 0

CY AC OV N Z

— — — — —
A-80

INSTRUCTION SET REFERENCE
Example: On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 10H, and
input port 1 contains 11001010B (0CAH). After executing the instruction sequence

register 0 contains 30H, the accumulator and register 1 contain 40H, register B contains
10H, and on-chip RAM location 40H and output port 2 contain 0CAH (11001010B).

Variations

MOV A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) ← #data

MOV dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← #data

MOV @Ri,#data

Binary Mode Source Mode

Bytes: 2 3

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

MOV
MOV
MOV
MOV
MOV
MOV

R0,#30H
A,@R0
R1,A
B,@R1
@R1,P1
P2,P1

;R0 < = 30H
;A < = 40H
;R1 < = 40H
;B < = 10H
;RAM (40H) < = 0CAH
;P2 #0CAH

[Encoding] 0 1 1 1 0 1 0 0 immed. data

[Encoding] 0 1 1 1 0 1 0 1 direct addr immed. data

[Encoding] 0 1 1 1 0 1 1 i immed. data
A-81

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Operation: MOV
((Ri)) ← #data

MOV Rn,#data

Binary Mode Source Mode

Bytes: 2 3

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(Rn) ← #data

MOV dir8,dir8

Binary Mode Source Mode

Bytes: 3 3

States: 3 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (dir8)

MOV dir8,@Ri

Binary Mode Source Mode

Bytes: 2 3

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(dir8) ← ((Ri))

MOV dir8,Rn

Binary Mode Source Mode

Bytes: 2 3

States: 2† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding] 0 1 1 1 1 r r r r immed. data

[Encoding] 1 0 0 0 0 1 0 1 direct addr direct addr

[Encoding] 1 0 0 0 0 1 1 i direct addr

[Encoding] 1 0 0 0 1 r r r direct addr
A-82

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(dir8) ← (Rn)

MOV @Ri,dir8

Binary Mode Source Mode

Bytes: 2 3

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
((Ri)) ← (dir8)

MOV Rn,dir8

Binary Mode Source Mode

Bytes: 2 3

States: 1† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(Rn) ← (dir8)

MOV A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) ← (dir8)

[Encoding] 1 0 1 0 0 1 1 i direct addr

[Encoding] 1 0 1 0 1 r r r direct addr

[Encoding] 1 1 1 0 0 1 0 1 direct addr
A-83

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
MOV A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(A) ← ((Ri))

MOV A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(A) ← (Rn)

MOV dir8,A

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (A)

MOV @Ri,A

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

[Encoding] 1 1 1 0 0 1 1 i

[Encoding] 1 1 1 0 1 r r r

[Encoding] 1 1 1 1 0 1 0 1 direct addr

[Encoding] 1 1 1 1 0 1 1 i
A-84

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
((Ri)) ← (A)

MOV Rn,A

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(Rn) ← (A)

MOV Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rmd) ← (Rms)

MOV WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRjd) ← (WRjs)

[Encoding] 1 1 1 1 1 1 1 r

[Encoding] 0 1 1 1 1 1 0 0 s s s s S S S S

[Encoding] 0 1 1 1 1 1 0 1 t t t t T T T T
A-85

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
MOV DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRkd) ← (DRks)

MOV Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← #data

MOV WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← #data16

MOV DRk,#0data16

Binary Mode Source Mode

Bytes: 5 4

States: 5 4

[Encoding]

[Encoding] 0 1 1 1 1 1 1 1 u u u u UUUU

[Encoding] 0 1 1 1 1 1 1 0 s s s s 0 0 0 0 #data

0 1 1 1 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

0 1 1 1 1 1 1 0 u u u u 1 0 0 0 #data hi #data low
A-86

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ← #0data16

MOV DRk,#1data16

Binary Mode Source Mode

Bytes: 5 4

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ← #1data16

MOV Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← (dir8)

MOV WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← (dir8)

0 1 1 1 1 1 1 0 u u u u 1 1 0 0 #data hi #data low

[Encoding] 0 1 1 1 1 1 1 0 s s s s 0 0 0 1 direct addr

[Encoding] 0 1 1 1 1 1 1 0 t t t t 0 1 0 1 direct addr
A-87

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
MOV DRk,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 6 5

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ← (dir8)

MOV Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← (dir16)

MOV WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← (dir16)

MOV DRk,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

[Encoding] 0 1 1 1 1 1 1 0 u u u u 1 1 0 1 direct addr

0 1 1 1 1 1 1 0 s s s s 0 0 1 1 direct addr direct addr

0 1 1 1 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

0 1 1 1 1 1 1 0 u u u u 1 1 1 1 direct addr direct addr
A-88

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRk) ← (dir16)

MOV Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 2 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← ((WRj))

MOV Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← ((DRk))

MOV WRjd,@WRjs

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRjd) ← ((WRjs))

0 1 1 1 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 1 1 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

0 0 0 0 1 0 1 1 T T T T 1 0 0 0 t t t t 0 0 0 0
A-89

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
MOV WRj,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← ((DRk))

MOV dir8,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (Rm)

MOV dir8,WRj

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (WRj)

MOV dir8,DRk

Binary Mode Source Mode

Bytes: 4 3

States: 7 6

0 0 0 0 1 0 1 1 u u u u 1 0 1 0 t t t t 0 0 0 0

[Encoding] 0 1 1 1 1 0 1 0 s s s s 0 0 1 1 direct addr

[Encoding] 0 1 1 1 1 0 1 0 t t t t 0 1 0 1 direct addr

[Encoding] 0 1 1 1 1 0 1 0 u u u u 1 1 0 1 direct addr
A-90

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ← (DRk)

MOV dir16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir16) ← (Rm)

MOV dir16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir16) ← (WRj)

MOV dir16,DRk

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir16) ← (DRk)

0 1 1 1 1 0 1 0 s s s s 0 0 1 1 direct addr direct addr

0 1 1 1 1 0 1 0 t t t t 0 1 1 1 direct addr direct addr

0 1 1 1 1 0 1 0 u u u u 1 1 1 1 direct addr direct addr
A-91

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
MOV @WRj,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) ← (Rm)

MOV @DRk,Rm

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) ← (Rm)

MOV @WRjd,WRjs

Binary Mode Source Mode

Bytes: 4 3

States: 5 4

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRjd)) ← (WRjs)

MOV @DRk,WRj

Binary Mode Source Mode

Bytes: 4 3

States: 6 5

0 1 1 1 1 0 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 1 1 1 0 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

0 0 0 1 1 0 1 1 t t t t 1 0 0 0 T T T T 0 0 0 0
A-92

INSTRUCTION SET REFERENCE
[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) ← (WRj)

MOV Rm,@WRj + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← ((WRj)) + (dis)

MOV WRj,@WRj + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← ((WRj)) + (dis)

MOV Rm,@DRk + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ← ((DRk)) + (dis)

0 0 0 1 1 0 1 1 u u u u 1 0 1 0 t t t t 0 0 0 0

0 0 0 0 1 0 0 1 s s s s t t t t dis hi dis low

0 1 0 0 1 0 0 1 t t t t T T T T dis hi dis low

0 0 1 0 1 0 0 1 s s s s u u u u dis hi dis low
A-93

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
MOV WRj,@DRk + dis16

Binary Mode Source Mode

Bytes: 5 4

States: 8 7

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ← ((DRk)) + (dis)

MOV @WRj + dis16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) + (dis) ← (Rm)

MOV @WRj + dis16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) + (dis) ← (WRj)

MOV @DRk + dis16,Rm

Binary Mode Source Mode

Bytes: 5 4

States: 7 6

[Encoding]

0 1 1 0 1 0 0 1 t t t t u u u u dis hi dis low

0 0 0 1 1 0 0 1 t t t t s s s s dis hi dis low

0 1 0 1 1 0 0 1 t t t t T T T T dis hi dis low

0 0 1 1 1 0 0 1 u u u u s s s s dis hi dis low
A-94

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) + (dis) ← (Rm)

MOV @DRk + dis16,WRj

Binary Mode Source Mode

Bytes: 5 4

States: 8 7

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRk)) + (dis) ← (WRj)

MOV <dest–bit>,<src–bit>

Function: Move bit data

Description: Copies the Boolean variable specified by the second operand into the location specified by
the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.

Flags:

Example: The CY flag is set, input Port 3 contains 11000101B, and output Port 1 contains 35H
(00110101B). After executing the instruction sequence

MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY

the CY flag is clear and Port 1 contains 39H (00111001B).
Variations

MOV bit51,CY

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

0 1 1 1 1 0 0 1 u u u u t t t t dis hi dis low

CY AC OV N Z

✓ — — — —

[Encoding] 1 0 0 1 0 0 1 0 bit addr
A-95

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Operation: MOV
(bit51) ← (CY)

MOV CY,bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) ← (bit51)

MOV bit,CY

Binary Mode Source Mode

Bytes: 4 3

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(bit) ← (CY)

MOV CY,bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) ← (bit)

[Encoding] 1 0 1 0 0 0 1 0 bit addr

1 0 1 0 1 0 0 1 1 0 0 1 0 y y y direct addr

1 0 1 0 1 0 0 1 1 0 1 0 0 y y y direct addr
A-96

INSTRUCTION SET REFERENCE
MOV DPTR,#data16

Function: Load data pointer with a 16-bit constant

Description: Loads the 16-bit data pointer (DPTR) with the specified 16-bit constant. The high byte of the
constant is loaded into the high byte of the data pointer (DPH). The low byte of the constant
is loaded into the low byte of the data pointer (DPL).

Flags:

Example: After executing the instruction

MOV DPTR,#1234H

DPTR contains 1234H (DPH contains 12H and DPL contains 34H).

Binary Mode Source Mode

Bytes: 3 3

States: 2 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(DPTR) ← #data16

MOVC A,@A+<base–reg>

Function: Move code byte

Description: Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition is
performed.

Flags:

CY AC OV N Z

— — — — —

[Encoding] 1 0 0 1 0 0 0 0 data hi data low

CY AC OV N Z

— — — — —
A-97

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Example: The accumulator contains a number between 0 and 3. The following instruction sequence
translates the value in the accumulator to one of four values defined by the DB (define byte)
directive.

If the subroutine is called with the accumulator equal to 01H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.

Variations

MOVC A,@A+PC

Binary Mode Source Mode

Bytes: 1 1

States: 6 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(PC) ← (PC) + 1
(A) ← ((A) + (PC))

MOVC A,@A+DPTR

Binary Mode Source Mode

Bytes: 1 1

States: 6 6

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(A) ← ((A) + (DPTR))

MOVH DRk,#data16

Function: Move immediate 16-bit data to the high word of a dword (double-word) register

Description: Moves 16-bit immediate data to the high word of a dword (32-bit) register. The low word of
the dword register is unchanged.

RELPC: INC
MOVC
RET
DB
DB
DB
DB

A
A,@A+PC

66H
77H
88H
99H

[Encoding] 1 0 0 0 0 0 1 1

[Encoding] 1 0 0 1 0 0 1 1
A-98

INSTRUCTION SET REFERENCE
Flags:

Example: The dword register DRk contains 5566 7788H. After the instruction

MOVH DRk,#1122H

executes, DRk contains 1122 7788H.
Variations

MOVH DRk,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOVH
(DRk).31:16 ← #data16

MOVS WRj,Rm

Function: Move 8-bit register to 16-bit register with sign extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The high byte of
the 16-bit register is filled with the sign extension, which is obtained from the MSB of the 8-
bit source register.

Flags:

Example: Eight-bit register Rm contains 055H (01010101B) and the 16-bit register WRj contains
0FFFFH (11111111 11111111B). The instruction

MOVS WRj,Rm

moves the contents of register Rm (01010101B) to register WRj (i.e., WRj contains
00000000 01010101B).

Variations

CY AC OV N Z

— — — — —

0 1 1 1 1 0 1 0 u u u u 1 1 0 0 #data hi #data low

CY AC OV N Z

— — — — —
A-99

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
MOVS WRj,Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOVS
(WRj).7–0 ← (Rm).7–0
(WRj).15–8 ← MSB

MOVX <dest>,<src>

Function: Move external

Description: Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to external data RAM; the
second provides a 16-bit indirect address to external data RAM.

In the first type of MOVX instruction, the contents of R0 or R1 in the current register bank
provides an 8-bit address on port 0. Eight bits are sufficient for external I/O expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOVX instruction, the data pointer generates a 16-bit address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves in nonpage mode, the data is multiplexed with the lower address
bits on port 0. In page mode, the data is multiplexed with the contents of P2 on port 2 (8-bit
address) or with the upper address bits on port 2 (16-bit address).

It is possible in some situations to mix the two MOVX types. A large RAM array with its
upper address lines driven by P2 can be addressed via the data pointer, or with code to
output upper address bits to P2 followed by a MOVX instruction using R0 or R1.

Flags:

Example: The 8X930Ax controller is operating in nonpage mode. An external 256-byte RAM using
multiplexed address/data lines (e.g., an Intel 8155 RAM/I/O/Timer) is connected to port 0.
Port 3 provides control lines for the external RAM. ports 1 and 2 are used for normal I/O. R0
and R1 contain 12H and 34H. Location 34H of the external RAM contains 56H. After
executing the instruction sequence

MOVX A,@R1
MOVX @R0,A

the accumulator and external RAM location 12H contain 56H.
Variations

[Encoding] 0 0 0 1 1 0 1 0 t t t t s s s s

CY AC OV N Z

— — — — —
A-100

INSTRUCTION SET REFERENCE
MOVX A,@DPTR

Binary Mode Source Mode

Bytes: 1 1

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVX
(A) ← ((DPTR))

MOVX A,@Ri

Binary Mode Source Mode

Bytes: 1 1

States: 3 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOVX
(A) ← ((Ri))

MOVX @DPTR,A

Binary Mode Source Mode

Bytes: 1 1

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVX
((DPTR)) ← (A)

MOVX @Ri,A

Binary Mode Source Mode

Bytes: 1 1

States: 4 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

[Encoding] 1 1 1 0 0 0 0 0

[Encoding] 1 1 1 0 0 0 1 i

[Encoding] 1 1 1 1 0 0 0 0

[Encoding] 1 1 1 1 0 0 1 i
A-101

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Operation: MOVX
((Ri)) ← (A)

MOVZ WRj,Rm

Function: Move 8-bit register to 16-bit register with zero extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The upper byte of

the 16-bit register is filled with zeros.

Flags:

Example: Eight-bit register Rm contains 055H (01010101B) and 16-bit register WRj contains 0FFFFH
(11111111 11111111B). The instruction

MOVZ WRj,Rm

moves the contents of register Rm (01010101B) to register WRj. At the end of the operation,
WRj contains 00000000 01010101B.

Variations

MOVZ WRj,Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOVZ
(WRj)7–0 ← (Rm)7–0
(WRj)15–8 ← 0

MUL <dest>,<src>

Function: Multiply

Description: Multiplies the unsigned integer in the source register with the unsigned integer in the
destination register. Only register addressing is allowed.

For 8-bit operands, the result is 16 bits. The most significant byte of the result is stored in the
low byte of the word where the destination register resides. The least significant byte is
stored in the following byte register. The OV flag is set if the product is greater than 255
(0FFH); otherwise it is cleared.

For 16-bit operands, the result is 32 bits. The most significant word is stored in the low word
of the dword where the destination register resides. The least significant word is stored in
the following word register. In this operation, the OV flag is set if the product is greater than
0FFFFH, otherwise it is cleared. The CY flag is always cleared. The N flag is set when the
MSB of the result is set. The Z flag is set when the result is zero.

CY AC OV N Z

— — — — —

[Encoding] 0 0 0 0 1 0 1 0 t t t t s s s s
A-102

INSTRUCTION SET REFERENCE
Flags:

Example: Register R1 contains 80 (50H or 10010000B) and register R0 contains 160 (0A0H or
10010000B). After executing the instruction

MUL R1,R0

which gives the product 12,800 (3200H), register R0 contains 32H (00110010B), register R1
contains 00H, the OV flag is set, and the CY flag is clear.

MUL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 6 5

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (8-bit operands)
if <dest> md = 0, 2, 4, .., 14
Rmd ← high byte of the Rmd X Rms
Rmd+1 ← low byte of the Rmd X Rms
if <dest> md = 1, 3, 5, .., 15
Rmd–1 ← high byte of the Rmd X Rms
Rmd ← low byte of the Rmd X Rms

MUL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 12 11

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (16-bit operands)
if <dest> jd = 0, 4, 8, .., 28
WRjd ← high word of the WRjd X WRjs
WRjd+2 ← low word of the WRjd X WRjs
if <dest> jd = 2, 6, 10, .., 30
WRjd–2 ← high word of the WRjd X WRjs
WRjd ← low word of the WRjd X WRjs

CY AC OV N Z

0 — ✓ ✓ ✓

[Encoding] 1 0 1 0 1 1 0 0 s s s s S S S S

[Encoding] 1 0 1 0 1 1 0 1 t t t t t t t t
A-103

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
MUL AB

Function: Multiply

Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register B. If the product is
greater than 255 (0FFH) the OV flag is set; otherwise it is clear. The CY flag is always clear.

Flags:

Example: The accumulator contains 80 (50H) and register B contains 160 (0A0H). After executing the
instruction

MUL AB

which gives the product 12,800 (3200H), register B contains 32H (00110010B), the
accumulator contains 00H, the OV flag is set, and the CY flag is clear.

Binary Mode Source Mode

Bytes: 1 1

States: 5 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MUL
(A) ← low byte of (A) X (B)
(B) ← high byte of (A) X (B)

NOP

Function: No operation

Description: Execution continues at the following instruction. Affects the PC register only.

Flags:

CY AC OV N Z

0 — ✓ ✓ ✓

[Encoding] 1 0 1 0 0 1 0 0

CY AC OV N Z

— — — — —
A-104

INSTRUCTION SET REFERENCE
Example: You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states. A
simple CLR-SETB sequence generates an eight-state pulse. (Each instruction requires four
states to write to a port SFR.) You can insert three additional states (if no interrupts are
enabled) with the following instruction sequence:

CLR P2.7
NOP
NOP
NOP
SETB P2.7

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: NOP
(PC) ← (PC) + 1

ORL <dest> <src>

Function: Logical-OR for byte variables

Description: Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

The destination operand can be a register, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data. When the destination is register the source can be register, immediate, direct and
indirect addressing.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

Flags:

Example: The accumulator contains 0C3H (11000011B) and R0 contains 55H (01010101B). After
executing the instruction

ORL A,R0

the accumulator contains 0D7H (11010111B).

[Encoding] 0 0 0 0 0 0 0 0

CY AC OV N Z

— — — ✓ ✓
A-105

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

ORL dir8,A

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) ← (dir8) V (A)

ORL dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) ← (dir8) V #data

ORL A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(A) ← (A) V #data

[Encoding] 0 1 0 0 0 0 1 0 direct addr

[Encoding] 0 1 0 0 0 0 1 1 direct addr immed. data

[Encoding] 0 1 0 0 0 1 0 0 immed. data
A-106

INSTRUCTION SET REFERENCE
ORL A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(A) ← (A) V (dir8)

ORL A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ORL
(A) ← (A) V ((Ri))

ORL A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: ORL
(A) ← (A) V (Rn)

ORL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

[Encoding] 0 1 0 0 0 1 0 1 direct addr

[Encoding] 0 1 0 0 0 1 1 i

[Encoding] 0 1 0 0 1 r r r

[Encoding] 0 1 0 0 1 1 0 0 s s s s S S S S
A-107

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rmd) ← (Rmd) V (Rms)

ORL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRjd)←(WRjd) V (WRjs)

ORL Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V #data

ORL WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) ← (WRj) V #data16

[Encoding] 0 1 0 0 1 1 0 1 t t t t T T T T

[Encoding] 0 1 0 0 1 1 1 0 s s s s 0 0 0 0 #data

0 1 0 0 1 1 1 0 t t t t 0 1 0 0 #data hi #data low
A-108

INSTRUCTION SET REFERENCE
ORL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V (dir8)

ORL WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) ← (WRj) V (dir8)

ORL Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V (dir16)

ORL WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding] 0 1 0 0 1 1 1 0 s s s s 0 0 0 1 direct addr

[Encoding] 0 1 0 0 1 1 1 1 t t t t 0101 direct addr

0 1 0 0 1 1 1 0 s s s s 0 0 1 1 direct addr direct addr
A-109

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRj) ← (WRj) V (dir16)

ORL Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V ((WRj))

ORL Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ← (Rm) V ((DRk))

ORL CY,<src–bit>

Function: Logical-OR for bit variables

Description: Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state
otherwise . A slash ("/") preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself
is not affected.

Flags:

0 1 0 0 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

0 1 0 0 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 0 0 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

CY AC OV N Z

✓ — — — —
A-110

INSTRUCTION SET REFERENCE
Example: Set the CY flag if and only if P1.0 = 1, ACC. 7 = 1, or OV = 0:

MOV CY,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL CY,/OV ;OR CARRY WITH THE INVERSE OF OV.

Variations

ORL CY,bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) ← (CY) V (bit51)

ORL CY,/bit51

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) ← (CY) V¬ (bit51)

ORL CY,bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) ← (CY) V (bit)

[Encoding] 0 1 1 1 0 0 1 0 bit addr

[Encoding] 1 0 1 0 0 0 0 0 bit addr

1 0 1 0 1 0 0 1 0 1 1 1 0 y y y direct addr
A-111

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
ORL CY,/bit

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) ← (CY) V ¬ (bit)

POP <src>
Function: Pop from stack

Description: Reads the contents of the on-chip RAM location addressed by the stack pointer, then
decrements the stack pointer by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.

Flags:

Example: The stack pointer contains 32H and on-chip RAM locations 30H through 32H contain 01H,
23H, and 20H, respectively. After executing the instruction sequence

POP DPH
POP DPL

the stack pointer contains 30H and the data pointer contains 0123H. After executing the
instruction

POP SP

the stack pointer contains 20H. Note that in this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).

Variations

POP dir8

Binary Mode Source Mode

Bytes: 2 2

States: 3 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

1 0 1 0 1 0 0 1 1 1 1 0 0 y y y direct addr

CY AC OV N Z

— — — — —

[Encoding] 1 1 0 1 0 0 0 0 direct addr
A-112

INSTRUCTION SET REFERENCE
Operation: POP
(dir8) ← ((SP))
(SP) ← (SP) – 1

POP Rm

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(Rm) ← ((SP))
(SP) ← (SP) – 1

POP WRj

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(SP) ← (SP) – 1
(WRj) ← ((SP))
(SP) ← (SP) – 1

POP DRk

Binary Mode Source Mode

Bytes: 3 2

States: 10 9

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: POP
(SP) ← (SP) – 3
(DRk) ← ((SP))
(SP) ← (SP) – 1

PUSH <dest>
Function: Push onto stack

Description: Increments the stack pointer by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pointer.

[Encoding] 1 1 0 1 1 0 1 0 s s s s 1 0 0 0

[Encoding] 1 1 0 1 1 0 1 0 t t t t 1 0 0 1

[Encoding] 1 1 0 1 1 0 1 0 u u u u 1 0 1 1
A-113

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Flags:

Example: On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence

PUSH DPL
PUSH DPH

the stack pointer contains 0BH and on-chip RAM locations 0AH and 0BH contain 01H and
23H, respectively.

Variations

PUSH dir8

Binary Mode Source Mode

Bytes: 2 2

States: 4 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (dir8)

PUSH #data

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← #data

PUSH #data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

CY AC OV N Z

— — — — —

[Encoding] 1 1 0 0 0 0 0 0 direct addr

[Encoding] 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 #data

1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 #data hi #data lo
A-114

INSTRUCTION SET REFERENCE
Operation: PUSH
(SP) ← (SP) + 2
((SP)) ← MSB of #data16
((SP)) ← LSB of #data16

PUSH Rm

Binary Mode Source Mode

Bytes: 3 2

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (Rm)

PUSH WRj

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (WRj)
(SP) ← (SP) + 1

PUSH DRk

Binary Mode Source Mode

Bytes: 3 2

States: 9 8

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) ← (SP) + 1
((SP)) ← (DRk)
(SP) ← (SP) + 3

RET
Function: Return from subroutine

Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack

pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.

[Encoding] 1 1 0 0 1 0 1 0 s s s s 1 0 0 0

[Encoding] 1 1 0 0 1 0 1 0 t t t t 1 0 0 1

[Encoding] 1 1 0 0 1 0 1 0 u u u u 1 0 1 1
A-115

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Flags:

Example: The stack pointer contains 0BH and on-chip RAM locations 0AH and 0BH contain 01H and
23H, respectively. After executing the instruction,

RET

the stack pointer contains 09H and program execution continues at location 0123H.

Binary Mode Source Mode

Bytes: 1 1

States: 7 7

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RET
(PC).15:8 ← ((SP))
(SP) ← (SP) – 1
(PC).7:0 ← ((SP))
(SP) ← (SP) – 1

RETI

Function: Return from interrupt

Description: This instruction pops two or four bytes from the stack, depending on the INTR bit in the
CONFIG1 register.

If INTR = 0, RETI pops the high and low bytes of the PC successively from the stack and
uses them as the 16-bit return address in region FF:. The stack pointer is decremented by
two. No other registers are affected, and neither PSW nor PSW1 is automatically restored to
its pre-interrupt status.

If INTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The
three bytes of the PC are the return address, which can be anywhere in the 16-Mbyte
memory space. The stack pointer is decremented by four. PSW1 is restored to its pre-
interrupt status, but PSW is not restored to its pre-interrupt status. No other registers are
affected.

For either value of INTR, hardware restores the interrupt logic to accept additional interrupts
at the same priority level as the one just processed. Program execution continues at the
return address, which normally is the instruction immediately after the point at which the
interrupt request was detected. If an interrupt of the same or lower priority is pending when
the RETI instruction is executed, that one instruction is executed before the pending
interrupt is processed.

Flags:

CY AC OV N Z

— — — — —

[Encoding] 0 0 1 0 0 0 1 0

CY AC OV N Z

— — — — —
A-116

INSTRUCTION SET REFERENCE
Example: INTR = 0. The stack pointer contains 0BH. An interrupt was detected during the instruction
ending at location 0122H. On-chip RAM locations 0AH and 0BH contain 01H and 23H,
respectively. After executing the instruction

RETI

the stack pointer contains 09H and program execution continues at location 0123H.

Binary Mode Source Mode

Bytes: 1 1

States (INTR = 0): 9 9

States (INTR = 1): 12 12

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation for INTR = 0:
RETI
(PC).15:8 ←((SP))
(SP) ← (SP) – 1
(PC).7:0 ¨ ((SP))
(SP) ←(SP) – 1

Operation for INTR = 1:
RETI
(PC).15:8 ← ((SP))
(SP) ← (SP) – 1
PC).7:0 ← ((SP))
(SP) ← (SP) – 1
(PC).23:16 ← ((SP))
(SP) ← (SP) – 1
PSW1 ← ((SP))
(SP) ← (SP) – 1

RL A

Function: Rotate accumulator left

Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated into the bit 0
position.

Flags:

Example: The accumulator contains 0C5H (11000101B). After executing the instruction,

RL A

the accumulator contains 8BH (10001011B); the CY flag is unaffected.

[Encoding] 0 0 1 1 0 0 1 0

CY AC OV N Z

— — — ✓ ✓
A-117

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RL
(A).a+1 ← (A).a
(A).0 ← (A).7

RLC A

Function: Rotate accumulator left through the carry flag

Description: Rotates the eight bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into
the CY flag position and the original state of the CY flag moves into bit 0 position.

Flags:

Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction

RLC A

the accumulator contains 8AH (10001010B) and the CY flag is set.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RLC
(A).a+1 ← (A).a
(A).0 ← (CY)
(CY) ← (A).7

RR A

Function: Rotate accumulator right

Description: Rotates the 8 or 16 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 or
15 position.

Flags:

[Encoding] 0 0 1 0 0 0 1 1

CY AC OV N Z

✓ — — ✓ ✓

[Encoding] 0 0 1 1 0 0 1 1

CY AC OV N Z

— — — ✓ ✓
A-118

INSTRUCTION SET REFERENCE
Example: The accumulator contains 0C5H (11000101B). After executing the instruction

RR A

the accumulator contains 0E2H (11100010B) and the CY flag is unaffected.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RR
(A).a ← (A).a+1
(A).7 ← (A) .0

RRC A

Function: Rotate accumulator right through carry flag

Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into
the CY flag position; the original value of the CY flag moves into the bit 7 position.

Flags:

Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction

RRC A

the accumulator contains 62 (01100010B) and the CY flag is set.

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RRC
(A).a ← (A).a+1
(A).7 ← (CY)
(CY) ← (A).0

SETB <bit>

Function: Set bit

[Encoding] 0 0 0 0 0 0 1 1

CY AC OV N Z

✓ — — ✓ ✓

[Encoding] 0 0 0 1 0 0 1 1
A-119

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Description: Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable
bit.

Flags: No flags are affected except the CY flag for instruction with CY as the operand.

Example: The CY flag is clear and output Port 1 contains 34H (00110100B). After executing the
instruction sequence

SETB CY
SETB P1.0

the CY flag is set and output Port 1 contains 35H (00110101B).

SETB bit51

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETB
(bit51) ← 1

SETB CY

Binary Mode Source Mode

Bytes: 1 1

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETB
(CY) ← 1

SETB bit

Binary Mode Source Mode

Bytes: 4 3

States: 4† 3†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding]

CY AC OV N Z

✓ — — — —

[Encoding] 1 1 0 1 0 0 1 0 bit addr

[Encoding] 1 1 0 1 0 0 1 1

1 0 1 0 1 0 0 1 1 1 0 1 0 y y y direct addr
A-120

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SETB
(bit) ← 1

SJMP rel

Function: Short jump

Description: Program control branches unconditionally to the specified address. The branch destination
is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it.

Flags:

Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The
instruction

SJMP RELADR

assembles into location 0100H. After executing the instruction, the PC contains 0123H.

(Note: In the above example, the instruction following SJMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H–0102H) = 21H. Put
another way, an SJMP with a displacement of 0FEH would be a one-instruction infinite loop.)

Binary Mode Source Mode

Bytes: 2 2

States: 4 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SJMP
(PC) ← (PC) + 2
(PC) ← (PC) + rel

SLL <src>

Function: Shift logical left by 1 bit

Description: Shifts the specified variable to the left by 1 bit, replacing the LSB with zero. The bit shifted
out (MSB) is stored in the CY bit.

Flags:

CY AC OV N Z

— — — — —

[Encoding] 1 0 0 0 0 0 0 0 rel. addr

CY AC OV N Z

✓ — — ✓ ✓
A-121

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SLL register 1

Register 1 contains 8AH (10001010B) and CY = 1.
Variations

SLL Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SLL
(Rm).a+1 ← (Rm).a
(Rm).0 ← 0
CY ← (Rm).7

SLL WRj

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SLL
WRj).b+1 ← (WRj).b
(WRj).0 ← 0
CY← (WRj).15

SRA <src>

Function: Shift arithmetic right by 1 bit

Description: Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged. The bit
shifted out (LSB) is stored in the CY bit.

Flags:

[Encoding] 0 0 1 1 1 1 1 0 s s s s 0 0 0 0

[Encoding] 0 0 1 1 1 1 1 0 t t t t 0 1 0 0

CY AC OV N Z

✓ — — ✓ ✓
A-122

INSTRUCTION SET REFERENCE
Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SRA register 1

Register 1 contains 0E2H (11100010B) and CY = 1.
Variations

SRA Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRA
(Rm).7 ← (Rm).7
(Rm).a ← (Rm).a+1
CY← (Rm).0

SRA WRj

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRA
(WRj).15 ← (WRj).15
(WRj).b ← (WRj).b+1
CY← (WRj).0

SRL <src>

Function: Shift logical right by 1 bit

Description: SRL shifts the specified variable to the right by 1 bit, replacing the MSB with a zero. The bit
shifted out (LSB) is stored in the CY bit.

Flags:

Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SRL register 1

Register 1 contains 62H (01100010B) and CY = 1.

[Encoding] 0 0 0 0 1 1 1 0 s s s s 0 0 0 0

[Encoding] 0 0 0 0 1 1 1 0 t t t t 0 1 0 0

CY AC OV N Z

✓ — — ✓ ✓
A-123

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
SRL Rm

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRL
(Rm).7 ← 0
(Rm).a ← (Rm).a+1
CY← (Rm).0

SRL WRj

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SRL
(WRj).15 ← 0
(WRj).b ← (WRj).b+1
CY← (WRj).0

SUB <dest>,<src>

Function: Subtract

Description: Subtracts the specified variable from the destination operand, leaving the result in the
destination operand. SUB sets the CY (borrow) flag if a borrow is needed for bit 7.
Otherwise, CY is clear.

When subtracting signed integers, the OV flag indicates a negative number produced when
a negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit).

The source operand allows four addressing modes: immediate, indirect, register and direct.

Flags:

†For word and dword subtractions, AC is not affected.

[Encoding] 0 0 0 1 1 1 1 0 s s s s 0 0 0 0

[Encoding] 0 0 0 1 1 1 1 0 t t t t 0 1 0 0

CY AC OV N Z

✓ ✓† ✓ ✓ ✓
A-124

INSTRUCTION SET REFERENCE
Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). After
executing the instruction

SUB R1,R0

register 1 contains 75H (01110101B), the CY and AC flags are clear, and the OV flag is set.
Variations

SUB Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rmd) ← (Rmd) – (Rms)

SUB WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRjd) ← (WRjd) – (WRjs)

SUB DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2

States: 5 4

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRkd) ← (DRkd) – (DRks)

[Encoding] 1 0 0 1 1 1 0 0 s s s s S S S S

[Encoding] 1 0 0 1 1 1 0 1 t t t t T T T T

[Encoding] 1 0 0 1 1 1 1 1 u u u u U U U U
A-125

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
SUB Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ← (Rm) – #data

SUB WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) ← (WRj) – #data16

SUB DRk,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 6 5

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRk) ← (DRk) – #data16

SUB Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

[Encoding] 1 0 0 1 1 1 1 0 s s s s 0 0 0 0 #data

1 0 0 1 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

1 0 0 1 1 1 1 0 u u u u 1 0 0 0 #data hi #data low

[Encoding] 1 0 0 1 1 1 1 0 s s s s 0 0 0 1 direct addr
A-126

INSTRUCTION SET REFERENCE
Operation: SUB
(Rm) ← (Rm) – (dir8)

SUB WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) ← (WRj) – (dir8)

SUB Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ← (Rm) – (dir16)

SUB WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(WRj) ← (WRj) – (dir16)

SUB Rm,@WRj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

[Encoding] 1 0 0 1 1 1 1 0 t t t t 0 1 0 1 direct addr

1 0 0 1 1 1 1 0 s s s s 0 0 1 1 direct addr direct addr

1 0 0 1 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

1 0 0 1 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0
A-127

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ← (Rm) – ((WRj))

SUB Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rm) ← (Rm) – ((DRk))

SUBB A,<src–byte>

Function: Subtract with borrow

Description: SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers the OV flag indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

Flags:

Example: The accumulator contains 0C9H (11001001B), register 2 contains 54H (01010100B), and
the CY flag is set. After executing the instruction

SUBB A,R2

the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.

1 0 0 1 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0

CY AC OV N Z

✓ ✓ ✓ ✓ ✓
A-128

INSTRUCTION SET REFERENCE
Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR CY instruction.

Variations

SUBB A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SUBB
(A) ← (A) – (CY) – #data

SUBB A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SUBB
(A) ← (A) – (CY) – (dir8)

SUBB A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: SUBB
(A) ← (A) – (CY) – ((Ri))

SUBB A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

[Encoding] 1 0 0 1 0 1 0 0 immed. data

[Encoding] 1 0 0 1 0 1 0 1 direct addr

[Encoding] 1 0 0 1 0 1 1 i

[Encoding] 1 0 0 1 1 r r r
A-129

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: SUBB
(A) ← (A) – (CY) – (Rn)

SWAP A

Function: Swap nibbles within the accumulator

Description: Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3–0 and bits 7–
4). This operation can also be thought of as a 4-bit rotate instruction.

Flags:

Example: The accumulator contains 0C5H (11000101B). After executing the instruction

SWAP A

the accumulator contains 5CH (01011100B).

Binary Mode Source Mode

Bytes: 1 1

States: 2 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SWAP
(A).3:0 → ← (A).7:4

TRAP

Function: Causes interrupt call

Description: Causes an interrupt call that is vectored through location 0FF007BH. The operation of this
instruction is not affected by the state of the interrupt enable flag in PSW0 and PSW1.
Interrupt calls can not occur immediately following this instruction. This instruction is
intended for use by Intel-provided development tools. These tools do not support user
application of this instruction.

Flags:

Example: The instruction

TRAP

causes an interrupt call to location 0FF007BH during normal operation.

CY AC OV N Z

— — — — —

[Encoding] 1 1 0 0 0 1 0 0

CY AC OV N Z

— — — — —
A-130

INSTRUCTION SET REFERENCE
Binary Mode Source Mode

Bytes: 2 1

States (2 bytes): 11 10

States (4 bytes): 16 15

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: TRAP
SP ← SP – 2
(SP) ← PC
PC ← (0FF007BH)

XCH A,<byte>

Function: Exchange accumulator with byte variable

Description: Loads the accumulator with the contents of the specified variable, at the same time writing

the original accumulator contents to the specified variable. The source/destination operand
can use register, direct, or register-indirect addressing.

Flags:

Example: R0 contains the address 20H, the accumulator contains 3FH (00111111B) and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction

XCH A,@R0

RAM location 20H contains 3FH (00111111B) and the accumulator contains 75H
(01110101B).

Variations

XCH A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 3† 3†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCH
(A) → ← (dir8)

[Encoding] 1 0 1 1 1 0 0 1

CY AC OV N Z

— — — — —

[Encoding] 1 1 0 0 0 1 0 1 direct addr
A-131

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
XCH A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 4 5

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: XCH
(A) → ← ((Ri))

XCH A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 3 4

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: XCH
(A) → ← (Rn)

Variations

XCHD A,@Ri

Function: Exchange digit

Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a

hexadecimal or BCD digit, with that of the on-chip RAM location indirectly addressed by the
specified register. Does not affect the high nibble (bits 7-4) of either register.

Flags:

Example: R0 contains the address 20H, the accumulator contains 36H (00110110B), and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction

XCHD A,@R0

on-chip RAM location 20H contains 76H (01110110B) and 35H (00110101B) in the accumu-
lator.

Binary Mode Source Mode

Bytes: 1 2

States: 4 5

[Encoding] 1 1 0 0 0 1 1 i

[Encoding] 1 1 0 0 1 r r r

CY AC OV N Z

— — — — —
A-132

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCHD
(A).3:0 → ← ((Ri)).3:0

XRL <dest>,<src>

Function: Logical Exclusive-OR for byte variables

Description: Performs the bitwise logical Exclusive-OR operation (∀) between the specified variables,

storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.

The two operands allow 12 addressing mode combinations. When the destination is the
accumulator or a register, the source addressing can be register, direct, register-indirect, or
immediate; when the destination is a direct address, the source can be the accumulator or
immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

Flags:

Example: The accumulator contains 0C3H (11000011B) and R0 contains 0AAH (10101010B). After
executing the instruction

XRL A,R0

the accumulator contains 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be comple-
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction

XRL P1,#00110001B

complements bits 5, 4, and 0 of output Port 1.
Variations

XRL dir8,A

Binary Mode Source Mode

Bytes: 2 2

States: 2† 2†

†If this instruction addresses a port (Px, x = 0–3), add 2 states.

[Encoding] 1 1 0 1 0 1 1 i

CY AC OV N Z

— — — ✓ ✓

[Encoding] 0 1 1 0 0 0 1 0 direct addr
A-133

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) ← (dir8) ∀ (A)

XRL dir8,#data

Binary Mode Source Mode

Bytes: 3 3

States: 3† 3†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(dir8) ← (dir8) ∀ #data

XRL A,#data

Binary Mode Source Mode

Bytes: 2 2

States: 1 1

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) ← (A) ∀ #data

XRL A,dir8

Binary Mode Source Mode

Bytes: 2 2

States: 1† 1†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XRL
(A) ← (A) ∀ (dir8)

XRL A,@Ri

Binary Mode Source Mode

Bytes: 1 2

States: 2 3

[Encoding] 0 1 1 0 0 0 1 1 direct addr immed. data

[Encoding] 0 1 1 0 0 1 0 0 immed. data

[Encoding] 0 1 1 0 0 1 0 1 direct addr
A-134

INSTRUCTION SET REFERENCE
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: XRL
(A) ← (A) ∀ ((Ri))

XRL A,Rn

Binary Mode Source Mode

Bytes: 1 2

States: 1 2

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: XRL
(A) ← (A) ∀ (Rn)

XRL Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2

States: 2 1

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rmd) ← (Rmd) ∀ (Rms)

XRL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2

States: 3 2

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRds) ← (WRjd) ∀ (WRjs)

XRL Rm,#data

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding] 0 1 1 0 0 1 1 i

[Encoding] 0 1 1 0 1 r r r

[Encoding] 0 1 1 0 1 1 0 0 s s s s S S S S

[Encoding] 0 1 1 0 1 1 0 1 t t t t T T T T
A-135

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ #data

XRL WRj,#data16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) ← (WRj) ∀ #data16

XRL Rm,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 3† 2†

†If this instruction addresses a port (Px, x = 0–3), add 1 state.

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ (dir8)

XRL WRj,dir8

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) ← (WRj) ∀ (dir8)

[Encoding] 0 1 1 0 1 1 1 0 s s s s 0 0 0 0 #data

0 1 1 0 1 1 1 0 t t t t 0 1 0 0 #data hi #data low

[Encoding] 0 1 1 0 1 1 1 0 s s s s 0 0 0 1 direct addr

[Encoding] 0 1 1 0 1 1 1 0 t t t t 0 1 0 1 direct addr
A-136

INSTRUCTION SET REFERENCE
XRL Rm,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ (dir16)

\XRL WRj,dir16

Binary Mode Source Mode

Bytes: 5 4

States: 4 3

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRj) ← (WRj) ∀ (dir16)

XRL Rm,@Wrj

Binary Mode Source Mode

Bytes: 4 3

States: 3 2

[Encoding]

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ ((WRj))

XRL Rm,@Drk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

0 1 1 0 1 1 1 0 s s s s 0 0 1 1 direct addr dir8 addr

0 1 1 0 1 1 1 0 t t t t 0 1 1 1 direct addr direct addr

0 1 1 0 1 1 1 0 t t t t 1 0 0 1 s s s s 0 0 0 0

0 1 1 0 1 1 1 0 u u u u 1 0 1 1 s s s s 0 0 0 0
A-137

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Hex Code In: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ← (Rm) ∀ ((DRk))
A-138

B
Signal Descriptions

APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the external signals of the 8X930Ax. Pin as-
signments for the 68-pin 8X930Ax are shown in Figure B-1 and listed by functional category in
Table B-1.

Table B-2 describes each of the signals. It lists the signal type (input, output, power, or ground)
and the alternative functions of multi-function pins. Table B-3 shows how configuration bits
RD1:0 (referred to in Table B-2) configure the A17, A16, RD#, WR# and PSEN# pins for exter-
nal memory accesses. Table B-4 gives the USB rates and the 8X930Ax operating frequencies as
a function of PLLSEL2:0.

Figure B-1. 8X930Ax 68-pin PLCC Package

Reserved

Reserved

Reserved

Reserved

Reserved

DP0

DM0

ECAP

VSSP

VCCP

SOF#

Reserved

Reserved

Reserved

Reserved

Reserved

PLLSEL0

A
8

/ P
2.

0

A

9
/ P

2.
1

A
10

 /
P

2.
2

A
11

 /
P

2.
3

A
12

 /
P

2.
4

A
13

 /
P

2.
5

A
14

 /
P

2.
6

A
15

 /
P

2.
7

V
S

S

V
C

C

E
A

#

A

LE

P
S

E
N

#

R

es
er

ve
d

R
es

er
ve

d

R

es
er

ve
d

R
es

er
ve

d

A4392-01

AD7 / P0.7

AD6 / P0.6

AD5 / P0.5

AD4 / P0.4

AD3 / P0.3

AD2 / P0.2

AD1 / P0.1

AD0 / P0.0

VSSP

VCCP

P3.0 / RXD

P3.1 / TXD

P3.2 / INT0#

P3.3 / INT1#

P3.4 / T0

P3.5 / T1

P3.6 / WR#

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

View of component as

mounted on PC board

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

A
16

 /
P

3.
7

/ R
D

#

P

1.
0

/ T
2

P
1.

1
/ T

2E
X

P

1.
2

/ E
C

I

P

1.
3

/ C
E

X
0

P
1.

4
/ C

E
X

1

P

1.
5

/ C
E

X
2

P
1.

6
/ C

E
X

3
/ W

A
IT

#

 A

17
 /

P
1.

7
/ C

E
X

4
/ W

C
LK

V

C
C

V

S
S

X

T
A

L1

X
T

A
L2

A

V
C

C

R
S

T

P
LL

S
E

L1

P
LL

S
E

L2

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

9
 8
 7
 6
 5
 4
 3
 2
 1
 68

67

66

65

64

63

62

61
B-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table B-1. 8X930Ax Pin Assignments Arranged by Functional Categories

Address & Data Input/Output USB Signals

Name Pin Name Pin Name Pin

AD0/P0.0 17 P1.0/T2 28 ECAP 53

AD1/P0.1 16 P1.1/T2EX 29 DP0 54

AD2/P0.2 15 P1.2/ECI 30 DM0 55

AD3/P0.3 14 P1.3/CEX0 31 PLLSEL0 44

AD4/P0.4 13 P1.4/CEX1 32 PLLSEL1 42

AD5/P0.5 12 P1.5/CEX2 33 PLLSEL2 43

AD6/P0.6 11 P1.6/CEX3/WAIT# 34 SOF# 50

AD7/P0.7 10 P1.7/CEX4/A17/WCLK 35

A8/P2.0 9 P3.0/RXD 20

A9/P2.1 8 P3.1/TXD 21

A10/P2.2 7 P3.2/INT0# 22

A11/P2.3 6 P3.3/INT1# 23

A12/P2.4 5 P3.4/T0 24

A13/P2.5 4 P3.5/T1 25

A14/P2.6 3 P3.6/WR# 26

A15/P2.7 2 P3.7/RD#/A16 27

A16/P3.7/RD# 27

A17/P1.7/CEX4/WCLK 35

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin

P3.2/INT0# 22 VCC 36, 68 P3.6/WR# 26

P3.3/INT1# 23 VCCP 19, 51 A16/P3.7/RD# 27

EA# 67 VSS 1, 37 ALE 66

RST 41 VSSP 18, 52 PSEN# 65

XTAL1 38 AVCC 40

XTAL2 39
B-2

SIGNAL DESCRIPTIONS

Table B-2. Signal Descriptions

Signal
Name Type Description Alternate

Function

A17 O Address Line 17. Eighteenth external address bit (A17) in
extended bus applications. Selected by configuration bits
RD1:0 (UCONFIG0.3:2). See Table B-3.

P1.7/CEX4/WCLK

A16 O Address Line 16. Seventeenth external address bit (A16) in
extended bus applications. Selected by configuration bits
RD1:0 (UCONFIG0.3:2). See Table B-3.

RD#

A15:8† O Address Lines. Upper address lines of the external bus. P2.7:0

AD7:0† I/O Address/Data Lines. Multiplexed lower address lines and data
lines of the external bus.

P0.7:0

ALE O Address Latch Enable. ALE signals the start of an external
bus cycle and indicates that valid address information is
available on lines A15:8 and AD7:0. An external latch can use
ALE to demultiplex the address from the address/data bus.

—

AVCC PWR Analog VCC. A separate VCC input for the USB phase-locked
loop circuitry.

—

CEX2:0
CEX3
CEX4

I/O Programmable Counter Array (PCA) Input/Output Pins.
These are input signals for the PCA capture mode and output
signals for the PCA compare and PWM modes.

P1.5:3
P1.6/WAIT#
P1.7/A17/WCLK

DP0, DM0 I/O USB Port 0. Root USB port. DP0 and DM0 are the data plus and
data minus lines of differential USB port 0. These lines do not
have internal pullup resistors. For low-speed devices, provide
an external 1.5 KΩ pullup resistor at DM0. For full-speed
devices, provide external 1.5 KΩ pullup resistor at DP0.

NOTE: Either DP0 or DM0 must be pulled high. Otherwise a
continuous SEO (USB reset) will be applied to these inputs
causing the 8X930Ax to stay in reset.

—

EA# I External Access. Directs program memory accesses to on-
chip or off-chip code memory. EA# = 1 directs program memory
accesses to on-chip code memory if the address is within the
range of the on-chip code memory; otherwise the access is to
external memory. EA# = 0 directs program memory accesses to
external memory. Devices without on-chip program memory
should have EA# strapped to VSS. The value of EA# is latched
at reset.

—

ECAP I External Capacitor. Must be connected to a 0.1µF capacitor
(or larger) to ensure proper operation of the differential line
driver. The other lead of the capacitor must be connected to
VSS.

—

ECI I PCA External Clock Input. External clock input to the 16-bit
PCA timer.

P1.2

† The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration. If the
chip is configured for page mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries
the upper address bits (A15:8) and the data (D7:0).
B-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
INT1:0# I External Interrupts 0 and 1. These inputs set bits IE1:0 in the
TCON register. If bits IT1:0 in the TCON register are set, bits
IE1:0 are set by a falling edge on INT1#/INT0#. If bits INT1:0
are clear, bits IE1:0 are set by a low level on INT1:0#.

P3.3:2

P0.7:0 I/O Port 0. This is an 8-bit, open-drain, bidirectional I/O port. AD7:0

P1.0
P1.1
P1.2
P1.5:3
P1.6
P1.7

I/O Port 1. This is an 8-bit, bidirectional I/O port with internal
pullups.

T2
T2EX
ECI
CEX2:0
CEX3/WAIT#
CEX4/A17/WCLK

P2.7:0 I/O Port 2. This is an 8-bit, bidirectional I/O port with internal
pullups.

A15:8

P3.0
P3.1
P3.3:2
P3.5:4
P3.6
P3.7

I/O Port 3. This is an 8-bit, bidirectional I/O port with internal
pullups.

RXD
TXD
INT1:0#
T1:0
WR#
RD#/A16

PLLSEL.2:0 I Phase Locked Loop Select. Three-bit code selects USB data
rate (see Table B-4).

—

PSEN# O Program Store Enable. Read signal output to external
memory. Asserted for the memory address range specified by
configuration bits RD1:0 (UCONFIG0.3:2) See Table B-3. Also
see RD#.

—

RD# O Read. Read signal output to external data memory. Asserted
for the memory address range specified by configuration bits
RD1:0 (UCONFIG0.3:2). See Table B-3. Also see PSEN#.

P3.7/A16

RST I Reset. Reset input to the chip. Holding this pin high for 64
oscillator periods while the oscillator is running resets the
device. The port pins are driven to their reset conditions when a
voltage greater than VIH1 is applied, whether or not the
oscillator is running. This pin has an internal pulldown resistor,
which allows the device to be reset by connecting a capacitor
between this pin and VCC.

Asserting RST when the chip is in idle mode or powerdown
mode returns the chip to normal operation.

—

RXD I/O Receive Serial Data. RXD sends and receives data in serial
I/O mode 0 and receives data in serial I/O modes 1, 2, and 3.

P3.0

SOF# O Start of Frame. This pin is asserted for eight states when an
SOF token is received.

—

T1:0 I Timer 1:0 External Clock Inputs. When timer 1:0 operates as
a counter, a falling edge on the T1:0 pin increments the count.

P3.5:4

Table B-2. Signal Descriptions (Continued)

Signal
Name Type Description Alternate

Function

† The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration. If the
chip is configured for page mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries
the upper address bits (A15:8) and the data (D7:0).
B-4

SIGNAL DESCRIPTIONS
T2 I/O Timer 2 Clock Input/Output. For the timer 2 capture mode,
this signal is the external clock input. For the clock-out mode, it
is the timer 2 clock output.

P1.0

T2EX I Timer 2 External Input. In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode,
a falling edge causes the timer 2 registers to be reloaded. In the
up-down counter mode, this signal determines the count
direction: 1 = up, 0 = down.

P1.1

TXD O Transmit Serial Data. TXD outputs the shift clock in serial I/O
mode 0 and transmits serial data in serial I/O modes 1, 2, and
3.

P3.1

VCC PWR Supply Voltage. Connect this pin to the +5V supply voltage. —

VCCP PWR Supply Voltage. Connect this pin to the +5V supply voltage. —

VSS GND Circuit Ground. Connect this pin to ground. —

VSSP GND Circuit Ground. Connect this pin to ground. —

WAIT# I Real-time Wait State Input. The real-time WAIT# input is enabled
by writing a logical ‘1’ to the WCON.0 (RTWE) bit at S:A7H.
During bus cycles, the external memory system can signal
‘system ready’ to the microcontroller in real time by controlling
the WAIT# input signal on the port 1.6 input.

P1.6/CEX3

WCLK O Wait Clock Output. The real-time WCLK output is driven at port
1.7 (WCLK) by writing a logical ‘1’ to the WCON.1 (RTWCE) bit
at S:A7H. When enabled, the WCLK output produces a square
wave signal with a period of one-half the oscillator frequency.

P1.7/CEX4/A17

WR# O Write. Write signal output to external memory. Asserted for the
memory address range specified by configuration bits RD1:0
(UCONFIG0.3:2) See RD# and Table B-3.

P3.6

XTAL1 I Input to the On-chip, Inverting, Oscillator Amplifier. To use
the internal oscillator, a crystal/resonator circuit is connected to
this pin. If an external oscillator is used, its output is connected
to this pin. XTAL1 is the clock source for internal timing.

—

XTAL2 O Output of the On-chip, Inverting, Oscillator Amplifier. To
use the internal oscillator, a crystal/resonator circuit is
connected to this pin. If an external oscillator is used, leave
XTAL2 unconnected.

—

Table B-2. Signal Descriptions (Continued)

Signal
Name Type Description Alternate

Function

† The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration. If the
chip is configured for page mode operation, port 0 carries the lower address bits (A7:0), and port 2 carries
the upper address bits (A15:8) and the data (D7:0).
B-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table B-3. Memory Signal Selections (RD1:0)

RD1:0 A17/P1.7/
CEX4/WCLK A16/P3.7/RD# PSEN# P3.6/WR# Features

0 0 A17 A16 Asserted for
all addresses

Asserted for writes to
all memory locations

256-Kbyte external
memory

0 1 P1.7/CEX4/
WCLK

A16 Asserted for
all addresses

Asserted for writes to
all memory locations

128-Kbyte external
memory

1 0 P1.7/CEX4/
WCLK

P3.7 only Asserted for
all addresses

Asserted for writes to
all memory locations

64-Kbyte external
memory. One
additional port pin.

1 1 P1.7/CEX4/
WCLK

RD# asserted
for addresses
≤ 7F:FFFFH

Asserted for
addresses
≥ 80:0000H

Asserted only for
writes to MCS® 51
microcontroller data
memory locations.

64-Kbyte external
memory. Compatible
with MCS 51
microcontrollers.

NOTE: RD1:0 are bits 3:2 of configuration byte UCONFIG0 (Figure 4-3 on page 4-5).

Table B-4. 8X930Ax Operating Frequency

PLLSEL2
Pin 43

(1)

PLLSEL1
Pin 42

(1)

PLLSEL0
Pin 44

(1)

USB Rate
(2)

Internal
Frequency

for CPU
and

Peripherals
 (1/TCLK) (3)

XTAL1
Frequency

 FOSC

XTAL1
Clocks

per
State

TOSC /State
(5)

Comments

0 0 1 1.5 Mbps
(Low Speed)

3 Mhz 6 Mhz 2 PLL Off

1 0 0 1.5 Mbps
(Low Speed)

6 Mhz (4) 12 Mhz 2 PLL Off

1 1 0 12 Mbps
(Full Speed)

12 Mhz (4) 12 Mhz 1 PLL On

NOTES:
1. Other PLLSELx combinations are not valid.
2. The sampling rate is 4X the USB rate.
3. The 8X930Ax datasheet AC timing specification defines the following symbols: CPU frequency = FCLK

= 1/TCLK.
4. The 8X930Ax CPU and peripherals frequency is 3 Mhz (low clock mode) until the LC bit in PCON is

cleared.
5. The number of XTAL1 clocks per state (TOSC/state) depends on the PLLSEL2:0 selection. When the

CPU is operating in low clock mode (3 MHz), there are four TOSC/state for PLLSEL2:0 = 100 or 110.
B-6

C
Registers

main-
er. Use
APPENDIX C
REGISTERS

This appendix is a reference source of information on the 8X930Ax special function registers
(SFRs). The SFR map in Table C-1 provides the address and reset value for each SFR. SFRs with
double borders are endpoint-indexed. For additional information, see “Special Function Registers
(SFRs)” on page 3-15. Tables C-2 through C-7 list the SFRs by functional category. The re
der of the appendix contains descriptive tables of the SFRs arranged in alphabetical ord
the prefix “S:” with SFR addresses to distinguish them from other addresses.

Table C-1. 8X930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

F8 CH
00000000

CCAP0H
xxxxxxxx

CCAP1H
xxxxxxxx

CCAP2H
xxxxxxxx

CCAP3H
xxxxxxxx

CCAP4H
xxxxxxxx

FF

F0 B
00000000

EPINDEX
1xxxxx00

TXSTAT
0xxx0000

TXDAT
xxxxxxxx

TXCON
000x0100

TXFLG
00xx1000

TXCNTL
xxxxxxxx

TXCNTH
xxxxxxxx

F7

E8 CL
00000000

CCAP0L
xxxxxxxx

CCAP1L
xxxxxxxx

CCAP2L
xxxxxxxx

CCAP3L
xxxxxxxx

CCAP4L
xxxxxxxx

EF

E0 ACC
00000000

EPCON
00x1xxxx

RXSTAT
00000000

RXDAT
xxxxxxxx

RXCON
0x000100

RXFLG
00xx1000

RXCNTL
xxxxxxxx

RXCNTH
xxxxxxxx

E7

D8 CCON
00x00000

CMOD
00xxx000

CCAPM0
x0000000

CCAPM1
x0000000

CCAPM2
x0000000

CCAPM3
x0000000

CCAPM4
x0000000

PCON1
xxxx0000

DF

D0 PSW
00000000

PSW1
00000000

SOFL
00000000

SOFH
00000000

D7

C8 T2CON
00000000

T2MOD
xxxxxx00

RCAP2L
00000000

RCAP2H
00000000

TL2
00000000

TH2
00000000

CF

C0 FIFLG
00000000

C7

B8 IPL0
x0000000

SADEN
00000000

SPH
0000000

BF

B0 P3
11111111

IEN1
00000000

IPL1
00000000

IPH1
00000000

IPH0
x0000000

B7

A8 IEN0
00000000

SADDR
00000000

AF

A0 P2
11111111

FIE
00000000

WDTRST
xxxxxxxx

WCON
xxxxxx00

A7

98 SCON
00000000

SBUF
xxxxxxxx

9F

90 P1
11111111

97

88 TCON
00000000

TMOD
00000000

TL0
00000000

TL1
00000000

TH0
00000000

TH1
00000000

FADDR
00000000

8F

80 P0
11111111

SP
00000111

DPL
00000000

DPH
00000000

DPXL
00000001

PCON
00XX0000

87

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F

MCS 251 microcontroller SFRs Endpoint-indexed SFRs
C-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
C.1 SFRS BY FUNCTIONAL CATEGORY

Table C-2. Core SFRs

Mnemonic Name Address

ACC† Accumulator S:E0H

B† B register S:F0H

PSW Program Status Word S:D0H

PSW1 Program Status Word 1 S:D1H

SP† Stack Pointer – LSB of SPX S:81H

SPH† Stack Pointer High – MSB of SPX S:BEH

DPTR† Data Pointer (2 bytes) —

DPL† Low Byte of DPTR S:82H

DPH† High Byte of DPTR S:83H

DPXL† Data Pointer Extended, Low S:84H

PCON Power Control S:87H

PCON1 USB Power Control. S:DFH

IEN0 Interrupt Enable Control Register 0 S:A8H

IEN1 Interrupt Enable Control Register 1 S:B1H

IPH0 Interrupt Priority Control High 0 S:B7H

IPL0 Interrupt Priority Control Low 0 S:B8H

IPH1 Interrupt Priority High Control Register 1. S:B3H

IPL1 Interrupt Priority Low Control Register 1. S:B2H
†These SFRs can also be accessed by their corresponding registers in the
register file.

Table C-3. I/O Port SFRs

Mnemonic Name Address

P0 Port 0 S:80H

P1 Port 1 S:90H

P2 Port 2 S:A0H

P3 Port 3 S:B0H
C-2

REGISTERS

Table C-4. Serial I/O SFRs

Mnemonic Name Address

SCON Serial Control S:98H

SBUF Serial Data Buffer S:99H

SADEN Slave Address Mask S:B9H

SADDR Slave Address S:A9H

Table C-5. USB Function SFRs

Mnemonic Name Address

EPCON Endpoint Control Register. S:E1H

EPINDEX Endpoint Index Register. S:F1H

FADDR Function Address Register. S:8FH

FIE Function Interrupt Enable Register. S:A2H

FIFLG Function Interrupt Flag Register. S:C0H

RXCNTH Receive FIFO Byte-Count High Register. S:E7H

RXCNTL Receive FIFO Byte-Count Low Register. S:E6H

RXCON Receive FIFO Control Register. S:E4H

RXDAT Receive FIFO Data Register. S:E3H

RXFLG Receive FIFO Flag Register. S:E5H

RXSTAT Endpoint Receive Status Register. S:E2H

SOFH Start of Frame High Register. S:D3H

SOFL Start of Frame Low Register. S:D2H

TXCNTH Transmit Count High Register. S:F7H

TXCNTL Transmit Count Low Register. S:F6H

TXCON Transmit FIFO Control Register. S:F4H

TXDAT Transmit FIFO Data Register. S:F3H

TXFLG Transmit Flag Register. S:F5H

TXSTAT Endpoint Transmit Status Register. S:FAH
C-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Table C-6. Timer/Counter and Watchdog Timer SFRs

Mnemonic Name Address

TL0 Timer/Counter 0 Low Byte S:8AH

TH0 Timer/Counter 0 High Byte S:8CH

TL1 Timer/Counter 1 Low Byte S:8BH

TH1 Timer/Counter 1 High Byte S:8DH

TL2 Timer/Counter 2 Low Byte S:CCH

TH2 Timer/Counter 2 High Byte S:CDH

TCON Timer/Counter 0 and 1 Control S:88H

TMOD Timer/Counter 0 and 1 Mode Control S:89H

T2CON Timer/Counter 2 Control S:C8H

T2MOD Timer/Counter 2 Mode Control S:C9H

RCAP2L Timer 2 Reload/Capture Low Byte S:CAH

RCAP2H Timer 2 Reload/Capture High Byte S:CBH

WDTRST WatchDog Timer Reset S:A6H
C-4

REGISTERS
Table C-7. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address

CCON PCA Timer/Counter Control S:D8H

CMOD PCA Timer/Counter Mode S:D9H

CCAPM0 PCA Timer/Counter Mode 0 S:DAH

CCAPM1 PCA Timer/Counter Mode 1 S:DBH

CCAPM2 PCA Timer/Counter Mode 2 S:DCH

CCAPM3 PCA Timer/Counter Mode 3 S:DDH

CCAPM4 PCA Timer/Counter Mode 4 S:DEH

CL PCA Timer/Counter Low Byte S:E9H

CH PCA Timer/Counter High Byte S:F9H

CCAP0L PCA Compare/Capture Module 0 Low Byte S:EAH

CCAP1L PCA Compare/Capture Module 1 Low Byte S:EBH

CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH

CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH

CCAP4L PCA Compare/Capture Module 4 Low Byte S:EEH

CCAP0H PCA Compare/Capture Module 0 High Byte S:FAH

CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH

CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH

CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH

CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH
C-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
C.2 SFR DESCRIPTIONS

This section contains a complete description of all 8X930Ax SFRs in alphabetical order.

NOTE
All SFR bits are software read/write unless otherwise noted in the bit
definition.

ACC Address: S:E0H
Reset State: 0000 0000B

Accumulator. ACC provides SFR access to the accumulator, which resides in the register file as byte
register R11 (also named ACC). Instructions in the MCS® 51 architecture use the accumulator as both
source and destination for calculations and moves. Instructions in the MCS 251 architecture assign no
special significance to R11. These instructions can use byte registers Rm (m = 0–15) interchangeably.

7 0

Accumulator Contents

Bit
Number

Bit
Mnemonic Function

7:0 ACC.7:0 Accumulator.

B Address: S:F0H
Reset State: 0000 0000B

B Register. The B register provides SFR access to byte register R10 (also named B) in the register
file. The B register is used as both a source and destination in multiply and divide operations. For all
other operations, the B register is available for use as one of the byte registers Rm, m = 0–15.

7 0

B Register Contents

Bit
Number

Bit
Mnemonic Function

7:0 B.7:0 B Register.
C-6

REGISTERS

CCAPxH, CCAPxL (x = 0–4) Address: CCAP0H,L S:FAH, S:EAH
CCAP1H,L S:FBH, S:EBH
CCAP2H,L S:FCH, S:ECH
CCAP3H,L S:FDH, S:EDH
CCAP4H,L S:FEH, S:EEH

Reset State: XXXX XXXXB

PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

7 0

High/Low Byte of Compare/Capture Values

Bit
Number

Bit
Mnemonic Function

7:0 CCAPxH.7:0

CCAPxL.7:0

High byte of PCA comparison or capture values.

Low byte of PCA comparison or capture values.
C-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

CCAPMx (x = 0–4) Address: CCAPM0 S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: X000 0000B

PCA Compare/Capture Module Mode Registers. These five registers select the operating mode of the
corresponding compare/capture module. Each register also contains an enable interrupt bit (ECCFx)
for generating an interrupt request when the module’s compare/capture flag (CCFx in the CCON
register) is set. See Table 11-3 on page 11-14 for mode select bit combinations.

7 0

— ECOMx CAPPx CAPNx MATx TOGx PWMx ECCFx

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit

6 ECOMx Compare Modes:

ECOMx = 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPx Capture Mode (Positive):

CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNx Capture Mode (Negative):

CAPNx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:

Set ECOMx and MATx to implement the software timer mode. When
MATx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGx Toggle:

Set ECOMx, MATx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.
C-8

REGISTERS

CCON Address: S:D8H
Reset State: 00X0 0000B

PCA Timer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

7 0

CF CR — CCF4 CCF3 CCF2 CCF1 CCF0

Bit
Number

Bit
Mnemonic Function

7 CF PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.

6 CR PCA Timer/Counter Run Control Bit:

Set and cleared by software to turn the PCA timer/counter on and off.

5 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

4:0 CCF4:0 PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMx register is set. Must be cleared by software.

CH, CL Address: S:F9H
S:E9H

Reset State: 0000 0000B

CH, CL Registers. These registers operate in cascade to form the 16-bit PCA timer/counter.

7 0

High/Low Byte PCA Timer/Counter

Bit
Number

Bit
Mnemonic Function

7:0 CH.7:0

CL.7:0

High byte of the PCA timer/counter

Low byte of the PCA timer/counter
C-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
CMOD Address: S:D9H
Reset State: 00XX X000B

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WDT reset output (module 4 only), and
enabling the PCA timer/counter overflow interrupt.

7 0

CIDL WDTE — — — CPS1 CPS0 ECF

Bit
Number

Bit
Mnemonic Function

7 CIDL PCA Timer/Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL = 0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2:1 CPS1:0 PCA Timer/Counter Input Select:

CPS1 CPS0

0 0 FOSC /12
0 1 FOSC /4
1 0 Timer 0 overflow
1 1 External clock at ECI pin (maximum rate = FOSC /8)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF = 1 enables the CF bit in the CCON register to generate an interrupt
request.
C-10

REGISTERS

DPH Address: S:83H
Reset State: 0000 0000B

Data Pointer High. DPH provides SFR access to register file location 58 (also named DPH). DPH is
the upper byte of the 16-bit data pointer, DPTR. Instructions in the MCS® 51 architecture use DPTR
for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPL and DPXL.

7 0

DPH Contents

Bit
Number

Bit
Mnemonic Function

7:0 DPH.7:0 Data Pointer High:

Bits 8–15 of the extended data pointer, DPX (DR56).

DPL Address: S:82H
Reset State: 0000 0000B

Data Pointer Low. DPL provides SFR access to register file location 59 (also named DPL). DPL is the
low byte of the 16-bit data pointer, DPTR. Instructions in the MCS® 51 architecture use the 16-bit data
pointer for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPH and
DPXL.

7 0

DPL Contents

Bit
Number

Bit
Mnemonic Function

7:0 DPL.7:0 Data Pointer Low:

Bits 0–7 of the extended data pointer, DPX (DR56).
C-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

DPXL Address: S:84H
Reset State: 0000 0001B

Data Pointer Extended Low. DPXL provides SFR access to register file location 57 (also named
DPXL). Location 57 is the lower byte of the upper word of the extended data pointer, DPX = DR56,
whose lower word is the 16-bit data pointer, DPTR. See also DPH and DPL.

7 0

DPXL Contents

Bit
Number

Bit
Mnemonic Function

7:0 DPXL.7:0 Data Pointer Extended Low:

Bits 16–23 of the extended data pointer, DPX (DR56).

EPCON Address S:E1H
Reset State x = 0† 0011 0101B

x = 1, 2, 3† 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint referenced by EPINDEX.
The reset value is 00110101B for endpoint 1 and 00010000B for endpoints 1, 2, and 3.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. This bit does not affect the reception of
SETUP tokens by a control endpoint. The state of this bit is sampled on a
valid OUT token.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should only be cleared
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will respond
with a STALL handshake to a valid IN token.The state of this bit is sampled
on a valid IN token.

† x = endpoint index. See EPINDEX.
C-12

REGISTERS
5 CTLEP Control Endpoint:

Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens. The state of this bit is
sampled on a valid SETUP token.

4 RXSPM Receive Single Packet Mode:

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO. The state of this bit is sampled on a valid OUT token.
Note: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model. However, it is
acceptable to have a control endpoint with dual packet mode configuration
as long as the firmware handles the endpoint correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, it returns a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token.

2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. The state of this bit is
sampled on a valid OUT or SETUP token. This bit is hardware read-only and
has the highest priority among RXIE and RXSTL. Note that endpoint 0 is
enabled for reception upon reset.

1 TXOE Transmit Output Enable.

This bit is used to enable the data in the transmit FIFO to be transmitted. If
cleared, the endpoint returns a NAK handshake to a valid IN token if the
TXSTL bit is not set. The state of this bit is sampled on a valid IN token.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. The state of this bit is
sampled on a valid IN token. This bit is hardware read only. Note that
endpoint 0 is enabled for transmission upon reset.

EPCON (Continued) Address S:E1H
Reset State x = 0† 0011 0101B

x = 1, 2, 3† 0001 0000B

Endpoint Control Register. This SFR configures the operation of the endpoint referenced by EPINDEX.
The reset value is 00110101B for endpoint 1 and 00010000B for endpoints 1, 2, and 3.

7 0

RXSTL TXSTL CTLEP RXSPM RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic Function

† x = endpoint index. See EPINDEX.
C-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

EPINDEX Address S:F1H
Reset State 1XXX XX00B

Endpoint Index Register. This SFR selects the endpoint to use as an index to endpoint-specific SFRs.

7 0

— — — — — — EPINX1 EPINX0

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Write zeros to these bits.

Note: Although the reset state for bit 7 is ‘1’, always write zeros to bits 7:2 of
this register.

1:0 EPINX1:0 Endpoint Index Select:

Used to select the function endpoint number to be indexed. The 8X930Ax is
set up accordingly: the USB SFR definitions for TXDAT, TXCON, TXFLG,
TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTH/L, EPCON, TXSTAT, and
RXSTAT are adjusted for the selected endpoint. The SFRs are connected to
the appropriate transmit/receive FIFO pair. This register is hardware read-
only.

EPINX1 EPINX0
0 0 Endpoint 0. Control Transfer
0 1 Endpoint 1.
1 0 Endpoint 2.
1 1 Endpoint 3.

FADDR Address: S:8FH
Reset State: 0000 0000B

Function Address Register. This SFR holds the address for the USB device. During bus enumeration it
is written with a unique value assigned by the host.

7 0

— A6:0

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.
C-14

REGISTERS

FIE Address: S:A2H
Reset State: 0000 0000B

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the four function endpoints.

7 0

FRXIE3 FTXIE3 FRXIE2 FTXIE2 FRXIE1 FTXIE1 FRXIE0 FTXIE0

Bit
Number

Bit
Mnemonic Function

7 FRXIE3 Function Receive Interrupt Enable 3:

Enables receive done interrupt for endpoint 3 (FRXD3).

6 FTXIE3 Function Transmit Interrupt Enable 3:

Enables transmit done interrupt for endpoint 3 (FTXD3).

5 FRXIE2 Function Receive Interrupt Enable 2:

Enables the receive done interrupt for endpoint 2 (FRXD2).

4 FTXIE2 Function Transmit Interrupt Enable 2:

Enables the transmit done interrupt for endpoint 2 (FTXD2).

3 FRXIE1 Function Receive Interrupt Enable 1:

Enables the receive done interrupt for endpoint 1 (FRXD1).

2 FTXIE1 Function Transmit Interrupt Enable 1:

Enables the transmit done interrupt for endpoint 1 (FTXD1).

1 FRXIE0 Function Receive Interrupt Enable 0:

Enables the receive done interrupt for endpoint 0 (FRXD0).

0 FTXIE0 Function Transmit Interrupt Enable 0:

Enables the transmit done interrupt for endpoint0 (FTXD0).

NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to
the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit’s value will still be reflected in the FIFLG
register.
C-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

FIFLG Address: S:C0H
Reset State: 0000 0000B

Function Interrupt Flag Register. Contains the USB Function’s Transmit and Receive Done interrupt
flags for non-isochronous endpoints.

7 0

FRXD3 FTXD3 FRXD2 FTXD2 FRXD1 FTXD1 FRXD0 FTXD0

Bit
Number

Bit
Mnemonic Function

7 FRXD3 Function Receive Done Flag, Endpoint 3:

This bit is set by hardware to indicate that there is either:

1. Valid data waiting to be serviced in the receive FIFO for function
endpoint 3 and that the data was received without error and has been
acknowledged; or

2. Data was received with a Receive Data Error requiring firmware
intervention to be cleared.

6 FTXD3 Function Transmit Done Flag, Endpoint 3:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit FIFO for function endpoint 3:

1. The transmit data has been transmitted and the Host has sent an
acknowledgment which was successfully received; or

2. A transmit data-related error occurred during transmission of the data
packet, which requires servicing by firmware to be cleared.

5 FRXD2 Function Receive Done Flag, Endpoint 2:

This bit is similar to FRXD3, above, except that it applies to function
endpoint 2.

4 FTXD2 Function Transmit Done Flag, Endpoint 2:

This bit is similar to FTXD3, above, except that it applies to function
endpoint 2.

3 FRXD1 Function Receive Done Flag, Endpoint 1:

This bit is similar to FRXD3, above, except that it applies to endpoint 1.

2 FTXD1 Function Transmit Done Flag, Endpoint 1:

This bit is similar to FTXD3, above, except that it applies to endpoint 1.

1 FRXD0 Function Receive Done Flag, Endpoint 0:

This bit is similar to FRXD3, above, except that it applies to endpoint 0.

0 FTXD0 Function Transmit Done Flag, Endpoint 0:

This bit is similar to FTXD3, above, except that it applies to endpoint 0.

NOTE: For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a
‘0’ indicates that the interrupt is not active. The interrupt status is shown regardless of the
state of the corresponding interrupt enable bit in the FIE. Bits are set-only by hardware and
clearable in software. Software can also set the bits for text purposes, allowing the interrupt
to be generated in software.
C-16

REGISTERS

IEN0 Address: S:A8H
Reset State: 0000 0000B

Interrupt Enable Register 0. IEN0 contains two types of interrupt enable bits. The global enable bit
(EA) enables/disables all of the interrupts (including those in IEN1), except the TRAP interrupt, which
is always enabled. The remaining bits enable/disable the other individual interrupts.

7 0

EA EC ET2 ES ET1 EX1 ET0 EX0

Bit
Number

Bit
Mnemonic Function

7 EA Global Interrupt Enable:

Setting this bit enables all interrupts that are individually enabled by bits
0–6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.

6 EC PCA Interrupt Enable:

Setting this bit enables the PCA interrupt.

5 ET2 Timer 2 Overflow Interrupt Enable:

Setting this bit enables the timer 2 overflow interrupt.

4 ES Serial I/O Port Interrupt Enable:

Setting this bit enables the serial I/O port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:

Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:

Setting this bit enables external interrupt 1.

1 ET0 Timer 0 Overflow Interrupt Enable:

Setting this bit enables the timer 0 overflow interrupt.

0 EX0 External Interrupt 0 Enable:

Setting this bit enables external interrupt 0.
C-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

IEN1 Address: S:B1H
Reset State: XXXX X000H

Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.

7 0

— — — — — ESR EF ESOF

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 ESR Enable Suspend/Resume:

USB Global Suspend/Resume Interrupt Enable bit.

1 EF Enable Function:

Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.

0 ESOF Enable Start-of-Frame:

Any Start-of-Frame interrupt enable bit for isochronous endpoints.
C-18

REGISTERS

IPH0 Address: S:B7H
Reset State: X000 0000B

Interrupt Priority High Control Register 0. IPH0, together with IPL0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0.x IPL0.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— IPH0.6 IPH0.5 IPH0.4 IPH0.3 IPH0.2 IPH0.1 IPH0.0

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.

6 IPH0.6 PCA Interrupt Priority Bit High

5 IPH0.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPH0.4 Serial I/O Port Interrupt Priority Bit High

3 IPH0.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPH0.2 External Interrupt 1 Priority Bit High

1 IPH0.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPH0.0 External Interrupt 0 Priority Bit High
C-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

IPL0 Address: S:B8H
Reset State: X000 0000B

Interrupt Priority Low Control Register 0. IPL0, together with IPH0, assigns each interrupt in IEN0 a
priority level from 0 (lowest) to 3 (highest):

IPH0.x IPL0.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— IPL0.6 IPL0.5 IPL0.4 IPL0.3 IPL0.2 IPL0.1 IPL0.0

Bit
Number

Bit
Mnemonic Function

7 — Reserved:

The value read from this bit is indeterminate.

Write a zero to this bit.

6 IPL0.6 PCA Interrupt Priority Bit Low

5 IPL0.5 Timer 2 Overflow Interrupt Priority Bit Low

4 IPL0.4 Serial I/O Port Interrupt Priority Bit Low

3 IPL0.3 Timer 1 Overflow Interrupt Priority Bit Low

2 IPL0.2 External Interrupt 1 Priority Bit Low

1 IPL0.1 Timer 0 Overflow Interrupt Priority Bit Low

0 IPL0.0 External Interrupt 0 Priority Bit Low
C-20

REGISTERS

IPH1 Address: S:B3H
Reset State: X000 0000B

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — — — — IPH1.2 IPH1.1 IPH1.0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High

1 IPH1.1 USB Function Interrupt Priority Bit High

0 IPH1.0 USB Any SOF Interrupt Priority Bit High
C-21

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

IPL1 Address: S:B2H
Reset State: X000 0000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from 0 (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— — — — — IPL1.2 IPL1.1 IPL1.0

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low

1 IPL1.1 USB Function Interrupt Priority Bit Low

0 IPL1.0 USB Any SOF Interrupt Priority Bit Low

P0 Address: S:80H
Reset State: 1111 1111B

Port 0. P0 is the SFR that contains data to be driven out from the port 0 pins. Read-modify-write
instructions that read port 0 read this register. The other instructions that read port 0 read the port 0
pins. When port 0 is used for an external bus cycle, the CPU always writes FFH to P0, and the former
contents of P0 are lost.

7 0

P0 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P0.7:0 Port 0 Register:

Write data to be driven onto the port 0 pins to these bits.
C-22

REGISTERS
P1 Address: S:90H
Reset State: 1111 1111B

Port 1. P1 is the SFR that contains data to be driven out from the port 1 pins. Read-modify-write
instructions that read port 1 read this register. Other instructions that read port 1 read the port 1 pins.

7 0

P1 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P1.7:0 Port 1 Register:

Write data to be driven onto the port 1 pins to these bits.

P2 Address: S:A0H
Reset State: 1111 1111B

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0

P2 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P2.7:0 Port 2 Register:

Write data to be driven onto the port 2 pins to these bits.
C-23

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
P3 Address: S:B0H
Reset State: 1111 1111B

Port 3. P3 is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0

P3 Contents

Bit
Number

Bit
Mnemonic Function

7:0 P3.7:0 Port 3 Register:

Write data to be driven onto the port 3 pins to these bits.
C-24

REGISTERS

PCON Address: S:87H
Reset State: 00XX 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bits that control serial I/O
functions—the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SM0 bit.

7 0

SMOD1 SMOD0 LC POF GF1 GF0 PD IDL

Bit
Number

Bit
Mnemonic Function

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 12-10.

6 SMOD0 SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SM0 bit.
See Figure 12-2 on page 12-5.

5 LC Low Clock Enable:

When this bit is set, the CPU and peripherals (except the USB module)
operate at 3 MHz. This bit is automatically set after a reset. Clearing this
bit through firmware causes the operating clock to return to the hardware
selection speed.

4 POF Power Off Flag:

Set by hardware as VCC rises above 3 V to indicate that power has been
off or VCC had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

3 GF1 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GF0 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.
C-25

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

PCON1 Address: S:DFH
Reset State: XXXX X000B

USB Power Control Register. Facilitates USB power control of the 8X930Ax, including global
suspend/resume and USB function resume.

7 0

— — — — — RWU GRSM GSUS

Bit
Number

Bit
Mnemonic Function

7:3 — Reserved:

The value read from these bits are indeterminate. Write zeroes to these
bits.

2 RWU Remote Wake-up Bit: (Cleared by hardware)

1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware. Note: do not set this bit
unless the USB function is suspended (GSUS = 1). See Figure 14-4 on
page 14-10.

1 GRSM Global Resume Bit: (Set by hardware)

1 = resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt.†
Cleared by software when servicing the GRSM interrupt. (This bit can
also be set/cleared by software for testability.) This bit is not set if remote
wakeup is used (see RWU). See Figure 14-4 on page 14-10.

0 GSUS Global Suspend Bit: (Set and cleared by hardware)

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.† During this ISR, software should set the PD bit
to enter the suspend mode. Cleared by firmware when a resume occurs.
See Figure 14-4 on page 14-10.

† Software should prioritize GRSM over GSUS if both bits are set simultaneously.
C-26

REGISTERS
 .

PSW Address: S:D0H
Reset State: 0000 0000B

Program Status Word. PSW contains bits that reflect the results of operations, bits that select the
register bank for registers R0–R7, and two general-purpose flags that are available to the user.

7 0

CY AC F0 RS1 RS0 OV UD P

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10 on page 5-16).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10 on page 5-16).

5 F0 Flag 0:

This general-purpose flag is available to the user.

4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers R0–R7).

RS1 RS0 Bank Address

0 0 0 00H–07H
0 1 1 08H–0FH
1 0 2 10H–17H
1 1 3 18H–1FH

2 OV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2’s-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 UD User-definable Flag:

This general-purpose flag is available to the user.

0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).
C-27

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

PSW1 Address: S:D1H
Reset State: 0000 0000B

Program Status Word 1. PSW1 contains bits that reflect the results of operations and bits that select
the register bank for registers R0–R7.

7 0

CY AC N RS1 RS0 OV Z —

Bit
Number

Bit
Mnemonic Function

7 CY Carry Flag:

Identical to the CY bit in the PSW register.

6 AC Auxiliary Carry Flag:

Identical to the AC bit in the PSW register.

5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative. Otherwise it is cleared.

4:3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to the RS1:0 bits in the PSW register.

2 OV Overflow Flag:

Identical to the OV bit in the PSW register.

1 Z Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 — Reserved:

The value read from this bit is indeterminate. Write a zero to this bit.
C-28

REGISTERS

RCAP2H, RCAP2L Address: RCAP2H S:CBH
RCAP2L S:CAH

Reset State: 0000 0000B

Timer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2/TL2) in timer 2.

7 0

High/Low Byte of Timer 2 Reload/Capture Value

Bit
Number

Bit
Mnemonic Function

7:0 RCAP2H.7:0

RCAP2L.7:0

High byte of the timer 2 reload/recapture register

Low byte of the timer 2 reload/recapture register
C-29

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

RXCNTH,
RXCNTL

Address: S:E7H
 S:E6H

Reset States:
Endpoint 1 RXCNTH XXXX XX00B

RXCNTL 0000 0000B

Endpoints 0, 2, 3 RXCNTL XXX0 0000B

Receive FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets received in the receive FIFO specified by EPINDEX.

15 (RXCNT) Endpoint 1 8

— — — — — — BC9 BC8

7 (RXCNTL) 0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

7 (RXCNTL) Endpoints 0, 2, 3 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

Endpoint 1 (x = 1)†

15:10 — Reserved. Write zeros to these bits.

9:0 BC9:0 Receive Byte Count.
Ten-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x = 0, 2, 3)†

7:0 — Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

† x = endpoint index. See the EPINDEX register.
C-30

REGISTERS

RXCON Address: S:E4H
Reset State: 0X00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — RXWS RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

7 RXCLR Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation
is completed.

6 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

5 RXWS Receive FIFO Wait-state Read:

At the 8X930Ax core frequency of 12 MHz, not all instructions that access
the receive FIFO are guaranteed to work due to critical paths inherent in the
8X930Ax architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state — this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

4 RXFFRC FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

3 RXISO Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by software.

† The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.
C-31

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker

X ACK Unchanged Advanced

0 NAK Reversed Unchanged

1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

Note: This bit should always be set, except for testing.

1 ADVWM Advance Write Marker: †

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.

0 REVWP Reverse Write Pointer: †

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

RXCON Address: S:E4H
Reset State: 0X00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7 0

RXCLR — RXWS RXFFRC RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic Function

† The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.
C-32

REGISTERS
RXDAT Address: S:E3H
Reset: XXXX XXXXB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0

RXDAT.7:0

Bit
Number

Bit
Mnemonic Function

7:0 RXDAT.7:0 To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8X930Ax reads from this register. The
write pointer and read pointer are incremented automatically after a write
and read, respectively.
C-33

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

RXFLG Address: S:E5H
Reset State: 00XX 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function

7:6 RXFIF[1:0] Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-6 on page 7-26). The RXFIF bits are updated after each
write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF[1:0] Operation Flag Next RXFIF[1:0] Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged

00 Set RXFFRC X 00 Unchanged
01 Set RXFFRC X 00 Unchanged
11 Set RXFFRC X 10/01 Unchanged
10 Set RXFFRC X 00 Unchanged

XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements”
RXFIF immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.

NOTE: To simplify firmware development, it is recommended that you utilize
control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

3 RXEMP Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer AND the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.
C-34

REGISTERS

2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flag.

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear the bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

n ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bit is set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag.

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through software, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

n ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.

RXFLG (Continued) Address: S:E5H
Reset State: 00XX 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0

RXFIF1 RXFIF0 — — RXEMP RXFULL RXURF RXOVF

Bit
Number

Bit
Mnemonic Function
C-35

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

RXSTAT Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write):

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
together with the new RXSEQ value. †

Note: Always verify this bit after writing to ensure that there is no conflict with
hardware, which could occur if a new SETUP token is received.

6 RXSETUP Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware during the
handshake phase of the setup stage.

This bit is only used for control endpoints.

4 EDOVW End Overwrite Flag:

This flag is set by hardware during the handshake phase of a SETUP stage.
It is set after every SETUP packet is received and must be cleared prior to
reading the contents of the FIFO. When set, the FIFO state (FIF and read
pointer) remains locked for this endpoint until this bit is cleared. This
prevents a prior, ongoing firmware read from corrupting the read pointer
after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.
† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new

configuration or interface.
C-36

REGISTERS
3 RXSOVW Receive Data Sequence Overwrite Bit:

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
This is needed to clear a STALL on a control endpoint. Writing a ‘0’ to this bit
has no effect on RXSEQ. This bit always returns ‘0’ when read. †, ††

2 RXVOID Receive Void Condition (read-only):

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked.

2. The EPCON register’s RXSTL bit is set for a non-control endpoint.

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in respond to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

1 RXERR Receive Error (read-only):

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. A receive FIFO goes into overrun or underrun condition while receiving.

This bit is updated by hardware at the end of a valid SETUP or OUT token
transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXACK bit at the end of data reception and is mutually
exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXERR bit at the end of data reception and is mutually
exclusive with RXERR.

RXSTAT (Continued) Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0

RXSEQ RXSETUP STOVW EDOVW RXSOVW RXVOID RXERR RXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new

configuration or interface.
C-37

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

SADDR Address: S:A9H
Reset State: 0000 0000B

Slave Individual Address Register. SADDR contains the device’s individual address for multiprocessor
communication.

7 0

Slave Individual Address

Bit
Number

Bit
Mnemonic Function

7:0 SADDR.7:0

SADEN Address: S:B9H
Reset State: 0000 0000B

Mask Byte Register. This register masks bits in the SADDR register to form the device’s given address
for multiprocessor communication.

7 0

Mask for SADDR

Bit
Number

Bit
Mnemonic Function

7:0 SADEN.7:0

SBUF Address: S:99H
Reset State: XXXX XXXXB

Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial I/O port. Reading SBUF
reads the receive buffer of the serial I/O port.

7 0

Data Sent/Received by Serial I/O Port

Bit
Number

Bit
Mnemonic Function

7:0 SBUF.7:0
C-38

REGISTERS
SCON Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function

7 FE

SM0

Framing Error Bit:

To select this function, set the SMOD0 bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software, not by valid
frames.

Serial Port Mode Bit 0:

To select this function, clear the SMOD0 bit in the PCON register.
Software writes to bits SM0 and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SM0 (above) to select the serial port
operating mode.

SM0 SM1 Mode Description Baud Rate
0 0 0 Shift register FOSC/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART FOSC/32† or FOSC/64†

1 1 3 9-bit UART Variable
†Select by programming the SMOD bit in the PCON register (see section
“Baud Rates” on page 12-10).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:

To enable reception, set this bit. To enable transmission, clear this bit.

3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:

Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.
C-39

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
1 TI Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
software.

0 RI Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

SCON (Continued) Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

7 0

FE/SM0 SM1 SM2 REN TB8 RB8 TI RI

Bit
Number

Bit
Mnemonic Function
C-40

REGISTERS

SOFH Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0

SOFACK ASOF SOFIE FTLOCK SOFODIS TS10 TS9 TS8

Bit
Number

Bit
Mnemonic Function

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start-of-Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by software or inverted and driven to the SOF# pin. The effect of
setting this bit by software is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight TCLKs.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight TCLKs.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.
C-41

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

SOFL Address: S:D2H
Reset State: 0000 0000B

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0

TS7:0

Bit
Number

Bit
Mnemonic Function

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. IF an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

SP Address: S:81H
Reset State: 0000 0111B

Stack Pointer. SP provides SFR access to location 63 in the register file (also named SP). SP is the
lowest byte of the extended stack pointer (SPX = DR60). The extended stack pointer points to the
current top of stack. When a byte is saved (PUSHed) on the stack, SPX is incremented, and then the
byte is written to the top of stack. When a byte is retrieved (POPped) from the stack, it is copied from
the top of stack, and then SPX is decremented.

7 0

SP Contents

Bit
Number

Bit
Mnemonic Function

7:0 SP.7:0 Stack Pointer:

Bits 0–7 of the extended stack pointer, SPX (DR60).
C-42

REGISTERS
SPH Address: S:BEH
Reset State: 0000 0000B

Stack Pointer High. SPH provides SFR access to location 62 in the register file (also named SPH).
SPH is the upper byte of the lower word of DR60, the extended stack pointer (SPX). The extended
stack pointer points to the current top of stack. When a byte is saved (PUSHed) on the stack, SPX is
incremented, and then the byte is written to the top of stack. When a byte is retrieved (POPped) from
the stack, it is copied from the top of stack, and then SPX is decremented.

7 0

SPH Contents

Bit
Number

Bit
Mnemonic Function

7:0 SPH.7:0 Stack Pointer High:

Bits 8–15 of the extended stack pointer, SPX (DR(60)).
C-43

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

T2CON Address: S:C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#

Bit
Number

Bit
Mnemonic Function

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK = 1 or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:

Setting this bit starts the timer.

1 C/T2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.
C-44

REGISTERS

T2MOD Address: S:C9H
Reset State: XXXX XX00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2 .

7 0

— — — — — — T2OE DCEN

Bit
Number

Bit
Mnemonic Function

7:2 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

1 T2OE Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:

Configures timer 2 as an up/down counter.
C-45

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TCON Address: S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Bit
Number

Bit
Mnemonic Function

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:

Set/cleared by software to turn timer 1 on/off.

5 TF0 Timer 0 Overflow Flag:

Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TR0 Timer 0 Run Control Bit:

Set/cleared by software to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IE0 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT0# pin.
Edge- or level- triggered (see IT0). Cleared when interrupt is processed
if edge-triggered.

0 IT0 Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).
C-46

REGISTERS
TMOD Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0

GATE1 C/T1# M11 M01 GATE0 C/T0# M10 M00

Bit
Number

Bit
Mnemonic Function

7 GATE1 Timer 1 Gate:

When GATE1 = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 C/T1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

5, 4 M11, M01 Timer 1 Mode Select:

M11 M01
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded

from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATE0 Timer 0 Gate:

When GATE0 = 0, run control bit TR0 gates the input signal to the timer
register. When GATE0 = 1 and TR0 = 1, external signal INT0 gates the
timer input.

2 C/T0# Timer 0 Counter/Timer Select:

C/T0# = 0 selects timer operation: timer 0 counts the divided-down
system clock. C/T0# = 1 selects counter operation: timer 0 counts
negative transitions on external pin T0.

1, 0 M10, M00 Timer 0 Mode Select:

M10 M00
0 0 Mode 0: 8-bit timer/counter (T0) with 5-bit prescalar (TL0)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL0). Reloaded

from TH0 at overflow.
1 1 Mode 3: TL0 is an 8-bit timer/counter. TH0 is an 8-bit

timer using timer 1’s TR1 and TF1 bits.
C-47

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TH0, TL0 Address: TH0 S:8CH
TL0 S:8AH

Reset State: 0000 0000B

TH0, TL0 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
0 or separately as 8-bit timer/counters.

7 0

High/Low Byte of Timer 0 Register

Bit
Number

Bit
Mnemonic Function

7:0 TH0.7:0

TL0.7:0

High byte of the timer 0 timer register.

Low byte of the timer 0 timer register.

TH1, TL1 Address: TH1 S:8DH
TL1 S:8BH

Reset State: 0000 0000B

TH1, TL1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
1 or separately as 8-bit timer/counters.

7 0

High/Low Byte of Timer 1 Register

Bit
Number

Bit
Mnemonic Function

7:0 TH1.7:0

TL1.7:0

High byte of the timer 1 timer register.

Low byte of the timer 1 timer register.
C-48

REGISTERS

TH2, TL2 Address: TH2 S:CDH
TL2 S:CCH

Reset State: 0000 0000B

TH2, TL2 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
2.

7 0

High/Low Byte of Timer 2 Register

Bit
Number

Bit
Mnemonic Function

7:0 TH2.7:0

TL2.7:0

High byte of the timer 2 timer register.

Low byte of the timer 2 timer register.
C-49

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TXCNTH,
TXCNTL

Address: S:F7H
S:F6H

Reset States: Endpoint 1 TXCNTH XXXX XX00B
TXCNTL 0000 0000B

Endpoints 0, 2, 3 TXCNTL XXX0 0000B

Transmit FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO specified by EPINDEX. Note that
TXCNTH exists only for function endpoint 1 and is unavailable for all other endpoints. During normal
operations, these registers should only be written by the 8X930Ax CPU.

15 (TXCNTH) Endpoint 1 8

— — — — — — BC9 BC8

7 (TXCNTL) 0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

7 (TXCNTL) Endpoints 0, 2, 3 0

— — — BC4 BC3 BC2 BC1 BC0

Bit
Number

Bit
Mnemonic Function

Endpoint 1 (x = 1)†

15:10 — Reserved.

Write zeros to these bits.

9:0 BC9:0 Transmit Byte Count.
Ten-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x = 0, 2, 3)†

7:0 — Reserved.

Write zeros to these bits.

4:0 BC4:0 Transmit Byte Count.
Five-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

† x = endpoint index. See the EPINDEX register.
NOTE: To send a status stage after a CNTL write or no data control command or a null packet, write 0 to

TXCNT.
C-50

REGISTERS

TXCON Address: S:F4H
Reset State: x = 1† 000X 0100B

x = 0, 2, 3† 0XXX 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

TXCLR FFSZ.1 FFSZ.0 — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, sets the EMPTY bit in TXFLG, and
clears all other bits in TXFLG. After the flush, hardware clears this bit.
Setting this bit does not affect the ATM, TXISO, and FFSZ bits.

6:5 FFSZ[1:0] FIFO Size:

These two bits are used for FIFO size configuration by function endpoint 1
only. The endpoint 1 FIFO size configurations (in bytes) are:

FFSZ[1:0] Transmit Size Receive Size

00 256 256
01 512 512
10 1024 0
11 0 1024

These bits are not reset when the TXCLR bit is set in the TXCON register.

NOTE: The receive FIFO size is also set by the TXCON FFSZ bits.
Therefore, there are no corresponding FFSZ bits in RXCON.

4 — Reserved:

Values read from this bit are indeterminate. Write zero to this bit.

3 TXISO Transmit Isochronous Data:

Software sets this bit to indicate that the transmit FIFO contains isochronous
data. The FIU uses this bit to set up the handshake protocol at the end of a
transmission. This bit is not reset when TXCLR is set and must be cleared
by software.

† x = endpoint index. See EPINDEX.
†† The read marker and read pointer should only be controlled manually for testing (when the ATM bit is

clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.
C-51

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

ISO TX Status Read Pointer Read Marker

X ACK Unchanged Advanced*
0 NAK Reversed** Unchanged
1 NAK Unchanged Advanced*

* to origin of next data set ** to origin of the data set last read

When this bit is set, setting REVRP or ADVRM has no effect. This is a sticky
bit that is not reset when TXCLR is set, but can be set and cleared by
software. Hardware neither clears nor sets this bit.

Note: This bit should always be set, except for testing.

1 ADVRM Advance Read Marker Control (non-ATM mode only) ††:

Setting this bit advances the read marker to point to the origin of the next
data packet (the position of the read pointer) to prepare for the next packet
transmission. Hardware clears this bit after the read marker is advanced.
Setting this bit is effective only when the REVRP, ATM, and TXCLR bits are
all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only) ††:

In the case of bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. Setting this bit is effective only when the ADVRM,
ATM, and TXCLR bits are all clear.

TXCON (Continued) Address: S:F4H
Reset State: x = 1† 000X 0100B

x = 0, 2, 3† 0XXX 0100B

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0

TXCLR FFSZ.1 FFSZ.0 — TXISO ATM ADVRM REVRP

Bit
Number

Bit
Mnemonic Function

† x = endpoint index. See EPINDEX.
†† The read marker and read pointer should only be controlled manually for testing (when the ATM bit is

clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.
C-52

REGISTERS

TXDAT Address: S:F3H
Reset State: XXXX XXXXB

USB Transmit FIFO Data Register. Data from the transmit FIFO specified by EPINDEX is written to and
stored in this register.

7 0

Transmit Data Byte

Bit
Number

Bit
Mnemonic Function

7:0 TXDAT[7:0] Transmit Data Byte (write-only)†:

To write data to the transmit FIFO, write to this register. The write pointer
and read pointer are incremented automatically after a write and read
respectively.

† This register can be read by firmware, but it should only be read if FIF1:0 ≠ 00.
C-53

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
TXFLG Address: S:F5H
Reset State: 00XX 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

7:6 TXFIF[1:0] FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIF0 are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
software (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF[1:0] Operation Flag Next TXFIF[1:0] Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF = 1

00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged

XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF.

You must check the TXFIF flags before and after writes to the transmit FIFO
and TXCNT for traceability.

NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

5:4 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

† When set, all transmissions are NAKed.
C-54

REGISTERS
2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun Flag:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through software. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.†

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
software. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.†

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

TXFLG (Continued) Address: S:F5H
Reset State: 00XX 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0

TXFIF1 TXFIF0 — — TXEMP TXFULL TXURF TXOVF

Bit
Number

Bit
Mnemonic Function

† When set, all transmissions are NAKed.
C-55

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

TXSTAT Address: S:F2H
Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

7 TXSEQ Transmitter’s Current Sequence Bit (read, conditional write):

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.†

6:5 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.

4 TXFLUSH Transmit FIFO Packet Flushed:

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF = ‘11’ at SOF. This bit is set by
hardware, but can also be set by software with the same effect.†

3 TXSOVW Transmit Data Sequence Overwrite Bit:

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read.†, ††

2 TXVOID Transmit Void (read-only):

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by function
after a valid IN token, due to the conditions that cause the transmit FIFO to
be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake ever returned by function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new

configuration or interface.
C-56

REGISTERS

1 TXERR Transmit Error (read-only):

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received.
2. Transmit FIFO goes into underrun condition while transmitting.

The corresponding transmit done bit (FTXDx in FIFLG) is set when active.
For non-isochronous transactions, this bit is updated by hardware together
with the TXACK bit at the end of the data transmission (this bit is mutually
exclusive with TXACK). For isochronous transactions, this bit is not updated
until the next SOF.

0 TXACK Transmit Acknowledge (read-only):

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit (FTXDx in FIFLG) is set when active. For
non-isochronous transactions, this bit is updated by hardware together with
the TXERR bit at the end of data transmission (this bit is mutually exclusive
with TXERR). For isochronous transactions, this bit is not updated until the
next SOF.

WDTRST Address: S:A6H
Reset State: XXXX XXXXB

Watchdog Timer Reset Register. Writing the two-byte sequence 1EH-E1H to the WDTRST register
clears and enables the hardware WDT. The WDTRST register is a write-only register. Attempts to
read it return FFH. The WDT itself is not read or write accessible. See Chapter 10, “Timer/Counters
and WatchDog Timer.”

7 0

WDTRST Contents (Write-only)

Bit
Number

Bit
Mnemonic Function

7:0 WDTRST.7:0 Provides user control of the hardware WDT.

TXSTAT (Continued) Address: S:F2H
Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0

TXSEQ — — TXFLUSH TXSOVW TXVOID TXERR TXACK

Bit
Number

Bit
Mnemonic Function

† Under normal operation, this bit should not be modified by the user.
†† The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new

configuration or interface.
C-57

D
Data Flow Model

APPENDIX D
DATA FLOW MODEL

This appendix describes the data flow model for the 8X930Ax USB transactions. This data flow
model, presented in truth table form, is intended to bridge the hardware and firmware layers of
the 8X930Ax. It describes the behavior of the 8X930Ax in response to a particular USB event,
given a known state/configuration.

The types of data transfer supported by the 8X930Ax are:

• Non-isochronous transfer (interrupt, bulk)

• Isochronous transfer

• Control Transfer

Table D-1. Non-isochronous Transmit Data Flow

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

00 Received IN
token, but no
data or
TXOE = 0

00 no
chg

no
chg

1 no
chg

no
chg

None NAK No data was
loaded, so
NAK

Received IN
token,
RXSETUP =
1

00 no
chg

no
chg

1 no
chg

no
chg

None NAK Control
endpoint only.
Endpoint will
NAK when
RXSETUP =
1 even if
TXSTL = 1

Data loaded
into FIFO
from CPU,
CNT written

01 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Software
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded
into FIFO,
FIFO error
occurs

00 no
chg

no
chg

no
chg

1 no
chg

None NAKs
future trans-
actions

Only overrun
FIFO error can
occur here.
Software
should always
check TXOVF
before write
CNT.

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
01/10 Received IN
token, data
transmitted,
host ACKs

00 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data ACK
received, so
no errors.
Read marker
advanced

Received IN
token, data
transmitted,
no ACK
(time-out)

01/10 1 0 0 no
chg

no
chg

Set
transmit
interrupt

Send data SIE times-out.
Read ptr
reversed.

Received IN
token, but
RXSETUP =
1 (or TXOE =
0)

01/10 no
chg

no
chg

1 no
chg

no
chg

None NAK, NAKs
future trans-
actions
except
SETUP.

Received
Setup token
(or transmit
disabled), so
IN tokens are
NAKed. (2)

Received IN
token, data
transmitted,
FIFO error
occurs

01/10 1 0 0 no
chg

1 Set
transmit
Inter-
rupt

Send data
with bit-
stuff error.
NAKs
future trans-
actions.

Only
underrun FIFO
error can
occur here.
Read ptr
reversed.

Received IN
token with
existing
FIFO error
and TXERR
set.

01/10 1
(no
chg)

0 (no
chg)

1 no
chg

1 (no
chg)

None NAK Treated like a
“void”
condition.

Received IN
token
without
existing
FIFO error
but TXERR
set, data
retrans-
mitted, host
ACKs

00 0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data Data is
retransmitted.
TXACK is set
and TXERR is
cleared. The
TXERR was
set by
previous
transaction
when host
time-out.

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-2

DATA FLOW MODEL
Data loaded
into FIFO
from CPU,
CNT written

11 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Software
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded
into FIFO,
FIFO error
occurs. CNT
not written
yet.

01/10 no
chg

no
chg

no
chg

1 no
chg

None NAKs
future trans-
actions

Only overrun
FIFO error can
occur here.
Software
should always
check TXOVF
before write
CNT

Note: no
TXERR, but
TXOVF set.

11 Received IN
token, data
transmitted,
host ACKs

10 or
01

0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data ACK
received, so
no errors.
Read marker
advanced.

Received IN
token, data
transmitted,
no ACK
(time-out)

11 1 0 0 no
chg

no
chg

Set
transmit
interrupt

Send data SIE times-out.
Read ptr
reversed.

Received IN
token, but
RXSETUP =
1 (or TXOE =
0)

11 0 0 1 no
chg

no
chg

None NAK, NAKs
future trans-
actions

Received
Setup token
(or transmit
disabled), so
IN tokens are
NAKed. (2)

Received IN
token, data
transmitted,
FIFO error
occurs

11 1 0 0 no
chg

1 Set
transmit
interrupt

Send data
with bit-
stuff error,
NAK future
transactions

Only FIFO
underrun
error can
occur here.
Read ptr
reversed.

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
Received IN
token with
existing
FIFO error
and TXERR
set.

11 1
(no
chg)

0
(no
chg)

1 no
chg

1
(no
chg)

None NAK Treated like a
“void”
condition.

Received IN
token
without
existing
FIFO error
but TXERR
set, data
retrans-
mitted, host
ACKs

10 or
01

0 1 0 no
chg

no
chg

Set
transmit
interrupt

Send data Data is
retransmitted.
TXACK is set
and TXERR is
cleared. The
TXERR was
set by
previous
transaction
when host
time-out.

Data loaded
into FIFO
from CPU,
CNT written

11 no
chg

no
chg

no
chg

1 no
chg

None N/A Writing into
CNT when
TXFIF = 11
sets TXOVF
bit. Software
should always
check TXFIF
bits before
loading.

Table D-1. Non-isochronous Transmit Data Flow (Continued)

TXFIF
(1:0) Event

New
TXFIF
(1:0)

TX
ERR

TX
ACK

TX
Void

TX
OVF
(1)

TX
URF
(1)

TX
Inter-
rupt

USB
Response Comments

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.
D-4

DATA FLOW MODEL

TX
(

00

01

N
1.
2.

”

3.
Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode

FIF
1:0) Event

New
TX
FIF

(1:0)
(2)

(at next SOF)
TX

OVF
(1,2)

TX
URF
(1,2)

TX
Inter-
rupt

USB
Response CommentsTX

ERR
TX

ACK
TX

Void

Received IN
token, but no data
or TXOE=0

00 no
chg

no
chg

1 no
chg

no
chg

None Send null
data packet

No data was
loaded, so send
null data
packet. This
event should
never happen.

Data loaded into
FIFO from CPU,
CNT written

01 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Software
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded into
FIFO, FIFO error

00 no
chg

no
chg

no
chg

1 no
chg

None N/A Only overrun
FIFO error can
occur here.
Software
should always
check TXOVF
before write
CNT

/10 Received IN
token, data
transmitted with
or without trans-
mission error

00 0 1 0 no
chg

no
chg

None Send data No ACK (time-
out) for ISO.
Read marker
advanced.

Received IN
token, data trans-
mitted, FIFO
error occurs

00 1 0 0 no
chg

1 None Send CRC
with bit-stuff
error

Only underrun
FIFO error can
occur here.
Read marker
advanced.

OTES:
These are sticky bits, which must be cleared by firmware.
TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.
Note: This table assumes TXEPEN and ATM are enabled.
D-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

.

11

TX
(

N
1.
2.

”

3.
Received IN
token with
existing FIFO
error

01/10 1
(no
chg)

0
(no
chg)

1 no
chg

1
(no
chg)

None Send null
data packet

Treated like a
“void” condition

Received IN
token, but TXOE
= 0

01/10 0 0 1 no
chg

no
chg

None Send null
data packet

Endpoint not
enabled for
transmit, but
no NAK for
ISO.

Data loaded into
FIFO from CPU,
CNT written

11 no
chg

no
chg

no
chg

no
chg

no
chg

None N/A Software
should always
check TXFIF
bits before
loading and
TXOVF after
loading.

Data loaded into
FIFO, FIFO error
occurs

01/10 no
chg

no
chg

no
chg

1 no
chg

None N/A Only overrun
FIFO error can
occur here.
Software
should always
check TXOVF
before write
CNT

Note: no
TXERR, but
TXOVF set.

Received IN
token, data
transmitted with
or without trans-
mission error

10 or
01

0 1 0 no
chg

no
chg

None Send data No ACK (time-
out) for ISO.
Read marker
advanced.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

FIF
1:0) Event

New
TX
FIF

(1:0)
(2)

(at next SOF)
TX

OVF
(1,2)

TX
URF
(1,2)

TX
Inter-
rupt

USB
Response CommentsTX

ERR
TX

ACK
TX

Void

OTES:
These are sticky bits, which must be cleared by firmware.
TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.
Note: This table assumes TXEPEN and ATM are enabled.
D-6

DATA FLOW MODEL

.

1

TX
(

N
1.
2.

”

3.
Received IN
token, data trans-
mitted, FIFO
error occurs

10 or
01

1 0 0 no
chg

1 None Send data
with bit-stuff
error

Only a FIFO
underrun error
can occur
here. Read
marker
advanced.

Received IN
token with
existing FIFO
error

11 1
(no
chg)

0
(no
chg)

1 no
chg

1
(no
chg)

None Send null
data packet

Treated like a
“void” condition

Received IN
token, but TXOE
= 0

11 0 0 1 no
chg

no
chg

None Send null
data packet

Endpoint not
enabled for
transmit, but
no NAK for
ISO.

Receive SOF
indication

10 or
01

no
chg

no
chg

no
chg

no
chg

no
chg

None
(SOF
interrupt
 set)

ASOF
set.

None Host never read
last frame’s
ISO. packet.
Read marker
and ptr
advanced,
oldest packet
is flushed from
FIFO.

Data loaded into
FIFO from CPU,
CNT written

11 no
chg

no
chg

no
chg

1 no
chg

None N/A CNT written
when TXFIF=1
will set TXOVF
bit.

Software
should always
check TXFIF
bits before
loading.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

FIF
1:0) Event

New
TX
FIF

(1:0)
(2)

(at next SOF)
TX

OVF
(1,2)

TX
URF
(1,2)

TX
Inter-
rupt

USB
Response CommentsTX

ERR
TX

ACK
TX

Void

OTES:
These are sticky bits, which must be cleared by firmware.
TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.
TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.
Note: This table assumes TXEPEN and ATM are enabled.
D-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

F
(1

0

.

N
1

2
Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

0 Received
OUT token,
but RXIE = 0

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready.

Received
OUT token,
but timed-out
waiting for
data

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None FIFO not
loaded. Write
ptr reversed.

Received
OUT token,
no errors

01 0 1 0 0 no
chg

no
chg

Set
receive
interrupt

ACK Received, no
errors, advance
write marker.

Received
OUT token,
data CRC or
bit-stuff error

00 1 0 0 0 no
chg

no
chg

Set
receive
interrupt

Time-out Write ptr
reversed.
(Possible to
have RXERR
cleared by
hardware
before seen by
software.)

Received
OUT token,
FIFO error
occurs

00 1 0 0 0 1 no
chg

Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

Only RXOVF
FIFO error can
occur, requires
firmware inter-
vention.

Received
OUT token
with FIFO
error already
existing

00 1
(no
chg)

0
(no
chg)

1 0 1
(no
chg)

no
chg

None NAK Considered to
be a “void”
condition. Will
NAK until
software clears
condition.

Received
OUT token,
but data
sequence
mismatch

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None ACK Last ACK
corrupted, so
send again but
ignore the data.

Received
SETUP
token, no
errors

01 0 1 0 1 0 0 Set
receive
interrupt

ACK RXIE or RXSTL
has no effect.
(2)
RXSETUP will
be set (control
endpoints only)

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-8

DATA FLOW MODEL

.

0

r

T

F
(1

N
1

2
Received
SETUP
token, but
timed-out
waiting for
data

00 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically
and FIFO data
is invalid. (2)

Received
SETUP
token, data
CRC or bit-
stuff error

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed, (2)

Received
SETUP
token, FIFO
error occurs

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

(2)

Received
SETUP
token with
FIFO error
already
existing

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO
to reset
automatically,
forcing new
SETUP to be
received.RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

CPU reads
FIFO,
causes FIFO
error

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAK
future
transac-
tions,
except
SETUP

FIFO was
empty when
read. Should
always check
RXFIF bits
before reading.

1 Received
OUT token

01 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready,
so data is
ignored (CRC o
FIFO error not
possible)

able D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-9

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

.

.

.

.

T

F
(1

N
1

2
Received
SETUP
token, no
errors

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO
to reset
automatically,
forcing new
SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data

01 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically
and FIFO data
is invalid. (2)

Received
SETUP
token, data
CRC or bit-
stuff error

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

Received
SETUP
token, FIFO
error occurs

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

(2) (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO
to reset
automatically,
forcing new
SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only)

CPU reads
FIFO, sets
RXFFRC

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None

able D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-10

DATA FLOW MODEL

FI
(1:

00 .

.

NO
1. d.
2.

3.

T

F
(1

N
1

2
CPU reads
FIFO,
causes FIFO
error.
RXFFRC not
set yet.

01 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transac-
tions

Software
should check
RXURF bit
before writing
RXFFRC.

CPU reads
FIFO,
causes FIFO
error. Set
RXFFRC.

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transac-
tions

Software
should check
RXURF bit
before writing
RXFFRC.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

Received
OUT token,
but RXIE = 0

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready

Received
OUT token,
but timed-out
waiting for
data

00 no
chg

no
chg

1 no
chg

no
chg

no
chg

None None FIFO not loaded
Write ptr
reversed.

Received
OUT token,
no errors

01 0 1 0 0 no
chg

no
chg

Set
receive
interrupt

ACK Received, no
errors, advance
write marker.

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
Note: Dual-packet mode is NOT recommended for Control endpoints.

able D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

IF
:0) Event

New
 FIF
(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

OTE:
. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are

enabled.
. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.
D-11

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

e

e

w

o

e

.

d

FI
(1:

NO
1. d.
2.

3.
Received
OUT token,
data CRC or
bit-stuff error

00 1 0 0 0 no
chg

no
chg

Set
receive
interrupt

Time-out Write ptr
reversed.
(Possible to hav
RXERR cleared
by hardware
before seen by
software.)

Received
OUT token,
FIFO error
occurs

00 1 0 0 0 1 no
chg

Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

Only RXOVF
FIFO error can
occur, requires
firmware inter-
vention.

Received
OUT token
with FIFO
error already
existing

00 1
(no
chg)

0 (no
chg)

1 0 1
(no
chg)

no
chg

None NAK Considered to b
a “void”
condition. Will
NAK until
software clears
condition.

Received
OUT token,
but data
sequence
mismatch

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None ACK Last ACK
corrupted, so
send again but
ignore the data.

Received
SETUP
token, no
errors (dual
packet mode
not recom-
mended!)

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data

00 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically an
FIFO data is
invalid. (2)

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
Note: Dual-packet mode is NOT recommended for Control endpoints.
D-12

DATA FLOW MODEL

o

e

.

)
e

.

w

o

e

.

y

ts

01/ .

.

FI
(1:

NO
1. d.
2.

3.
Received
SETUP
token, data
CRC or bit-
stuff error
(dual packet
mode not
recom-
mended)

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed, RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token, FIFO
error occurs

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

RXIE or RXSTL
has no effect. (2
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

CPU reads
FIFO,
causes FIFO
error

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAK
future
transac-
tions

FIFO was empt
when read.
Should always
check RXFIF bi
before reading.

10 Received
OUT token,
but RXIE = 0

01/10 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready

Received
OUT token,
but timed-out
waiting for
data

01/10 no
chg

no
chg

1 no
chg

no
chg

no
chg

None None FIFO not loaded
Write ptr
reversed.

Received
OUT token,
no errors

11 0 1 0 0 no
chg

no
chg

Set
receive
interrupt

ACK Received, no
errors, advance
write marker.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
Note: Dual-packet mode is NOT recommended for Control endpoints.
D-13

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

e

e

w

o

e

.

FI
(1:

NO
1. d.
2.

3.
Received
OUT token,
data CRC or
bit-stuff error

01/10 1 0 0 0 no
chg

no
chg

Set
receive
interrupt

Time-out Write ptr
reversed.
(Possible to hav
RXERR cleared
by hardware
before seen by
software.)

Received
OUT token,
FIFO error
occurs

01/10 1 0 0 0 1 no
chg

Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

Only RXOVF
FIFO error can
occur, requires
firmware inter-
vention.

Received
OUT token
with FIFO
error already
existing

01/10 1
(no
chg)

0 (no
chg)

1 0 1
(no
chg)

no
chg

None NAK Considered to b
a “void”
condition. Will
NAK until
software clears
condition.

Received
OUT token,
but data
sequence
mismatch

01/10 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None ACK Last ACK
corrupted, so
send again but
ignore the data.

Received
SETUP
token, no
errors (dual-
packet mode
not recom-
mended)

01/10 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. RXIE
or RXSTL has n
effect. (2)
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data

01/10 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically,
forcing new
SETUP to be
received. (2)

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
Note: Dual-packet mode is NOT recommended for Control endpoints.
D-14

DATA FLOW MODEL

o

)
e

.

w

e

.

it

it

11 ,

r

FI
(1:

NO
1. d.
2.

3.
Received
SETUP
token, data
CRC or bit-
stuff error
(dual-packet
mode not
recom-
mended)

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed. RXIE
or RXSTL has n
effect. (2)

Received
SETUP
token, FIFO
error occurs

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

RXIE or RXSTL
has no effect, (2
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing

01/10 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. (2)
RXSETUP will b
set (control
endpoints only)

CPU reads
FIFO, sets
RXFFRC

00 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None

CPU reads
FIFO,
causes FIFO
error.
RXFFRC not
set yet.

01/10 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transac-
tions

Software should
check RXURF b
before writing
RXFFRC.

CPU reads
FIFO,
causes FIFO
error. Set
RXFFRC.

00 no
chg

no
chg

no
chg

no
chg

no
chg

1 None Time-out,
NAK
future
transac-
tions

Software should
check RXURF b
before writing
RXFFRC.

Received
OUT token

11 no
chg

no
chg

1 no
chg

no
chg

no
chg

None NAK FIFO not ready
so data is
ignored (CRC o
FIFO error not
possible).

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
Note: Dual-packet mode is NOT recommended for Control endpoints.
D-15

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

w

e

.

d

o

)
e

.

w

e

.

FI
(1:

NO
1. d.
2.

3.
Received
SETUP
token, no
errors (dual-
packet mode
not recom-
mended!)

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. (2)
RXSETUP will b
set. (control
endpoints only)

Received
SETUP
token, but
timed-out
waiting for
data

11 1 0 0 0 0 0 Set
receive
interrupt

Time-out FIFO is reset
automatically an
FIFO data is
invalid. (2)

Received
SETUP
token, data
CRC or bit-
stuff error
(dual-packet
mode not
recom-
mended).

00 1 0 0 1 0 0 Set
receive
interrupt

Time-out Write ptr
reversed. RXIE
or RXSTL has n
effect. (2)

Received
SETUP
token, FIFO
error (dual-
packet mode
not recom-
mended).

00 1 0 0 1 1 0 Set
receive
interrupt

Time-out,
NAK
future
transac-
tions

RXIE or RXSTL
has no effect. (2
RXSETUP will b
set (control
endpoints only)

Received
SETUP
token with
FIFO error
already
existing

01 0 1 0 1 0 0 Set
receive
interrupt

ACK Causes FIFO to
reset automati-
cally, forcing ne
SETUP to be
received. (2)
RXSETUP will b
set (control
endpoints only)

CPU reads
FIFO, sets
RXFFRC

10/01 no
chg

no
chg

no
chg

no
chg

no
chg

no
chg

None None

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
Note: Dual-packet mode is NOT recommended for Control endpoints.
D-16

DATA FLOW MODEL

it

it

FI
(1:

NO
1. d.
2.

3.
CPU reads
FIFO,
causes FIFO
error.
RXFFRC not
written yet.

11 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAKs
future
transac-
tions

Software should
check RXURF b
before writing
FFRC

CPU reads
FIFO,
causes FIFO
error. Set
RXFFRC.

10/01 no
chg

no
chg

no
chg

no
chg

no
chg

1 None NAKs
future
transac-
tions

Software should
check RXURF b
before writing
FFRC

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
FIF

(1:0)

RX
ERR

RX
ACK

RX
Void

RX
Setup

RX
OVF
(1)

RX
URF
(1)

RX
Inter-
rupt

USB
Response Comments

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
Note: Dual-packet mode is NOT recommended for Control endpoints.
D-17

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

FI
(1:

00 y,

a

d.

e

n.

.

NO
1. d.
2.

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

F
0) Event

New
RXFIF
(1:0)
(2)

(at next SOF) RX
OVF
(1,2)

RX
URF
(1,2)

RX
Inter-
rupt

USB
Response CommentsRX

ERR
RX

ACK
RX

Void

Received OUT
token, but RXIE
= 0

00 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

FIFO not read
or timed-out
waiting for dat
packet, but no
NAK sent

Received OUT
token, but
timed-out
waiting for data

00 no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

FIFO not loade

Received OUT
token, no errors

01 0 1 0 no
chg

no
chg

None None/
Time-out

Received, no
errors, advanc
write marker

Received OUT
token, data
CRC or bit-stuff
error

01 1 0 0 no
chg

no
chg

None None/
Time-out

Bad data still
loaded into
FIFO.

Received OUT
token, FIFO
error occurs

01 1 0 0 1 no
chg

None None/
Time-out

Only RXOVF
FIFO error can
occur, requires
firmware inter-
vention.

Received OUT
token with
FIFO error
already existing

00 1 (no
chg)

0 (no
chg)

1 1 (no
chg)

no
chg

None None/
Time-out

Treated like a
“void” conditio

CPU reads
FIFO, causes
FIFO error

00 no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

FIFO was
empty when
read. Should
always check
RXFIF bits
before reading

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.
D-18

DATA FLOW MODEL

F.

IF

O
d

01/ y.

d.

e

r,

n.

FI
(1:

NO
1. d.
2.

Receive SOF
indication

no
chg/up
dated

up-
dated

up-
dated

up-
dated

up-
dated

no
chg

None
(SOF
interrupt)

None/
Time-out

Flags are
updated at SO
Software must
check for RXF
= 00 condition
to detect no IS
packet receive
this frame.

10 Received OUT
token, but RXIE
= 0

01/10 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

FIFO not read

Received OUT
token, but
timed-out
waiting for data

01/10 no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

FIFO not loade

Received OUT
token, no errors

11 0 1 0 no
chg

no
chg

None None/
Time-out

Received, no
errors, advanc
write marker.

Received OUT
token, data
CRC or bit-stuff
error

11 1 0 0 no
chg

no
chg

None None/
Time-out

Possible to
have RXERR
cleared by
hardware
before seen by
software.
Reverse write
pointer.

Received OUT
token, FIFO
error occurs

11 1 0 0 1 no
chg

None None/
Time-out

Only OVF FIFO
error can occu
requires
firmware inter-
vention.

Received OUT
token with
FIFO error
already existing

01/10 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

Treated like a
“void” conditio

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
RXFIF
(1:0)
(2)

(at next SOF) RX
OVF
(1,2)

RX
URF
(1,2)

RX
Inter-
rupt

USB
Response CommentsRX

ERR
RX

ACK
RX

Void

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.
D-19

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

ld

C.

11 y,
e

d

y

ld

ld

C.

ld

C.

FI
(1:

NO
1. d.
2.

CPU reads
FIFO, sets
RXFFRC

00 no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

CPU reads
FIFO, causes
FIFO error

00 no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

Software shou
check RXURF
bit before
writing RXFFR

Received OUT
token

11 no
chg

no
chg

1 no
chg

no
chg

None None/
Time-out

FIFO not read
but data must b
taken. This
situation shoul
never happen.

Received SOF
indication

no
chg/
up-
dated

up-
dated

up-
dated

up-
dated

up-
dated

no
chg

None
(SOF
interrupt)

None/
Time-out

Error condition
(not handled b
hardware).
Software shou
not allow this
condition.

CPU reads
FIFO, sets
RXFFRC

10 or
01

no
chg

no
chg

no
chg

no
chg

no
chg

None None/
Time-out

CPU reads
FIFO, causes
FIFO error.
RXFFRC not
set yet.

11 no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

Software shou
check RXURF
bit before
writing RXFFR

CPU reads
FIFO, causes
FIFO error. Set
RXFFRC.

10 or
01

no
chg

no
chg

no
chg

no
chg

1 None None/
Time-out

Software shou
check RXURF
bit before
writing RXFFR

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

F
0) Event

New
RXFIF
(1:0)
(2)

(at next SOF) RX
OVF
(1,2)

RX
URF
(1,2)

RX
Inter-
rupt

USB
Response CommentsRX

ERR
RX

ACK
RX

Void

TES:
These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enable
RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.
D-20

Glossary

inol-

n

n

n

n

f

be
he

st

y
by
o
GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ual. (Chapter 1, “Guide to this Manual,” discusses notational conventions and general term
ogy.)

#0data16 A 32-bit constant that is immediately addressed in a
instruction. The upper word is filled with zeros.

#1data16 A 32-bit constant that is immediately addressed in a
instruction. The upper word is filled with ones.

#data An 8-bit constant that is immediately addressed in a
instruction.

#data16 A 16-bit constant that is immediately addressed in a
instruction.

#short A constant, equal to 1, 2, or 4, that is immediately
addressed in an instruction.

ACK Acknowledgment. Handshake packet indicating a
positive acknowledgment.

accumulator A register or storage location that forms the result o
an arithmetic or logical operation.

addr11 An 11-bit destination address. The destination can
anywhere in the same 2 Kbyte block of memory as t
first byte of the next instruction.

addr16 A 16-bit destination address. The destination can be
anywhere within the same 64 Kbyte region as the fir
byte of the next instruction.

addr24 A 24-bit destination address. The destination can be
anywhere within the 16 Mbyte address space.

ALU Arithmetic-logic unit. The part of the CPU that
processes arithmetic and logical operations.

assert The term assert refers to the act of making a signal
active (enabled). The polarity (high/low) is defined b
the signal name. Active-low signals are designated
a pound symbol (#) suffix; active-high signals have n
suffix. To assert RD# is to drive it low; to assert ALE
is to drive it high.
Glossary-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

le
 is

f

ss

ta
big endien form Method of storing data that places the most significant
byte at lower storage addresses.

binary-code compatibility The ability of an 8X930Ax to execute, without
modification, binary code written for an MCS 51
microcontroller.

binary mode An operating mode, selected by a configuration bit,
that enables an 8X930Ax to execute, without
modification, binary code written for an MCS 51
microcontroller.

bit A binary digit.

bit (operand) An addressable bit in the 8X930Ax architecture.

bit51 An addressable bit in the MCS 51 architecture.

bit stuffing Insertion of a ‘0’ bit into a data stream to cause an
electrical transition on the data wires allowing a PLL
to remain locked.

bulk transfer Non-periodic, large, “bursty” communication
typically used for a transfer that can use any availab
bandwidth and can also be delayed until bandwidth
available.

bus enumeration Detecting and identifying USB devices.

byte Any 8-bit unit of data.

clear The term clear refers to the value of a bit or the act o
giving it a value. If a bit is clear, its value is “0”;
clearing a bit gives it a “0” value.

code memory See program memory.

configuration bytes Bytes, residing in on-chip non-volatile memory, that
determine a set of operating parameters for the
8X930Ax.

dir8 An 8-bit direct address. This can be a memory addre
or an SFR address.

dir16 A 16-bit memory address (00:0000H–00:FFFFH)
used in direct addressing.

DPTR The 16-bit data pointer. In 8X930Ax microcontrollers,
DPTR is the lower 16 bits of the 24-bit extended da
pointer, DPX.
Glossary-2

GLOSSARY

e.

ch

s
DPX The 24-bit extended data pointer in 8X930Ax
microcontrollers. See also DPTR.

deassert The term deassert refers to the act of making a signal
inactive (disabled). The polarity (high/low) is defined
by the signal name. Active-low signals are designated
by a pound symbol (#) suffix; active-high signals have
no suffix. To deassert RD# is to drive it high; to
deassert ALE is to drive it low.

doping The process of introducing a periodic table Group III
or Group V element into a Group IV element (e.g.,
silicon). A Group III impurity (e.g., indium or
gallium) results in a p-type material. A Group V
impurity (e.g., arsenic or antimony) results in an n-
type material.

double word A 32-bit unit of data. In memory, a double word
comprises four contiguous bytes.

dword See double word.

edge-triggered The mode in which a device or component recognizes
a falling edge (high-to-low transition), a rising edge
(low-to-high transition), or a rising or falling edge of
an input signal as the assertion of that signal. See also
level-triggered.

encryption array An array of key bytes used to encrypt user code in the
on-chip code memory as that code is read; protects
against unauthorized access to user’s code.

endpoint A uniquely identifiable portion of a USB device that
is the source or sink of information in a
communication flow between the host and the devic

EPROM Erasable, programmable read-only memory

external address A 16-bit or 17-bit address presented on the device
pins. The address decoded by an external device
depends on how many of these address bits the
external system uses. See also internal address.

FET Field-effect transistor.

FIFO Circular data buffer associated with an endpoint. Ea
endpoint has a transmit FIFO and a receive FIFO.
Transmit FIFOs are written by the 8X930Ax CPU
then read by the FIU for transmission. Receive FIFO
Glossary-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
are written by the FIU following reception then read
by the CPU.

FIU Function Interface Unit. Manages data received and
transmitted by the USB module.

function A USB device that provides a capability to the host.

idle mode The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

input leakage Current leakage from an input pin to power or ground.

integer Any member of the set consisting of the positive and
negative whole numbers and zero.

internal address The 24-bit address that the device generates. See also
external address.

interrupt handler The module responsible for handling interrupts that
are to be serviced by user-written interrupt service
routines.

interrupt latency The delay between an interrupt request and the time
when the first instruction in the interrupt service
routine begins execution.

interrupt response time The time delay between an interrupt request and the
resulting break in the current instruction stream.

interrupt service routine (ISR) The software routine that services an interrupt.

isochronous data A stream of data whose timing is implied by its
delivery rate.

isochronous transfer One of four USB transfer types, isochronous transfers
provide periodic, continuous communication between
host and device.

level-triggered The mode in which a device or component recognizes
a high level (logic one) or a low level (logic zero) of
an input signal as the assertion of that signal. See also
edge-triggered.

low clock mode The default mode upon reset, low clock mode ensures
that the ICC drawn by the 8X930Ax is less than one
unit load.

LSB Least-significant bit of a byte or least-significant byte
of a word.
Glossary-4

GLOSSARY

d

k

n

or
maskable interrupt An interrupt that can be disabled (masked) by its
individual mask bit in an interrupt enable register. All
8X930Ax interrupts, except the software trap
(TRAP), are maskable.

MSB Most-significant bit of a byte or most-significant byte
of a word.

multiplexed bus A bus on which the data is time-multiplexed with
(some of) the address bits.

n-channel FET A field-effect transistor with an n-type conducting
path (channel).

n-type material Semiconductor material with introduced impurities
(doping) causing it to have an excess of negatively
charged carriers.

nonmaskable interrupt An interrupt that cannot be disabled (masked). The
software trap (TRAP) is the 8X930Ax’s only
nonmaskable interrupt.

npn transistor A transistor consisting of one part p-type material and
two parts n-type material.

NRZI Non Return to Zero Invert. A method of encoding
serial data in which ones and zeroes are represente
by opposite and alternating high and low voltages
where there is no return to zero (reference) voltage
between encoded bits. Eliminates the need for cloc
pulses.

OTPROM One-time-programmable read-only memory, a versio
of EPROM.

p-channel FET A field-effect transistor with a p-type conducting
path.

p-type material Semiconductor material with introduced impurities
(doping) causing it to have an excess of positively
charged carriers.

PC Program counter.

phase-locked loop A circuit that acts as a phase detector to keep an
oscillator in phase with an incoming frequency.

PLL See phase-locked loop.

program memory A part of memory where instructions can be stored f
fetching and execution.
Glossary-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

can

rt
o
powerdown mode The power conservation mode that freezes both the
core clocks and the peripheral clocks.

PWM Pulse-width modulated (outputs).

rel A signed (two’s complement) 8-bit, relative
destination address. The destination is -128 to +127
bytes relative to the first byte of the next instruction.

reserved bits Register bits that are not used in this device but may
be used in future implementations. Avoid any
software dependence on these bits. In the 8X930Ax,
the value read from a reserved bit is indeterminate; do
not write a “1” to a reserved bit.

resume Once a device is in the suspend state, its operation
be resumed by receiving non-idle signaling on the
bus. See also suspend.

RT Real-time

SIE Serial Bus Interface Engine. Handles the
communications protocol of the USB.

set The term set refers to the value of a bit or the act of
giving it a value. If a bit is set, its value is “1”; setting
a bit gives it a “1” value.

SFR A special function register that resides in its
associated on-chip peripheral or in the 8X930Ax core.

sign extension A method for converting data to a larger format by
filling the extra bit positions with the value of the
sign. This conversion preserves the positive or
negative value of signed integers.

sink current Current flowing into a device to ground. Always a
positive value.

SOF Start of Frame. The SOF is the first transaction in
each frame. SOF allows endpoints to identify the sta
of frame and synchronize internal endpoint clocks t
the host.

source-code compatibility The ability of an 8X930Ax to execute re-compiled
source code written for an MCS 51 microcontroller.

source current Current flowing out of a device from VCC. Always a
negative value.
Glossary-6

GLOSSARY

n

 the
source mode An operating mode that is selected by a configuration
bit. In source mode, an 8X930Ax can execute re-
compiled source code written for an MCS 51
microcontroller. In source mode, the 8X930Ax cannot
execute unmodified binary code written for an MCS
51 microcontroller. See binary mode.

SP Stack pointer.

SPX Extended stack pointer.

state time (or state) The basic time unit of the device; the combined
period of the two internal timing signals, PH1 and
PH2. (The internal clock generator produces PH1 and
PH2 by halving the frequency of the signal on
XTAL1.) With a 16 MHz crystal, one state time
equals 125 ns. Because the device can operate at
many frequencies, this manual defines time
requirements in terms of state times rather than in
specific units of time.

suspend A low current mode used when the USB bus is idle.
The 8X930Ax enters suspend when there is a constant
idle state on the bus lines for more than 3.0 msec.
When a device is in suspend state, it draws less than
500 µA from the bus. See also resume.

UART Universal asynchronous receiver and transmitter. A
part of the serial I/O port.

USB Universal Serial Bus. An industry-standard extensio
to the PC architecture with a focus on Computer
Telephony Integration (CTI), consumer, and
productivity applications.

WDT Watchdog timer, an internal timer that resets the
device if the software fails to operate properly.

word A 16-bit unit of data. In memory, a word comprises
two contiguous bytes.

wraparound The result of interpreting an address whose
hexadecimal expression uses more bits than the
number of available address lines. Wraparound
ignores the upper address bits and directs access to
value expressed by the lower bits.
Glossary-7

Index

INDEX

#0data16, A-3
#1data16, A-3
#data

definition, A-3
#data16, A-3
#short, A-3
8X930Ax, 1-1

block diagram, 2-2

A
A15:8, 9-1

description, 15-2
A16

description, 15-2
AC flag, 5-17, 5-18
ACALL instruction, 5-14, A-24, A-26
ACC, 3-12, 3-17, C-2, C-6
Accumulator, 3-14

in register file, 3-12
AD7:0, 9-1

description, 15-2
ADD instruction, 5-8, A-14
ADDC instruction, 5-8, A-14
addr11, 5-12, A-3
addr16, 5-12, A-3
addr24, 5-12, A-3
Address spaces, See Memory space, SFRs, Register

file, External memory, Compatibility
Addresses

internal vs external, 4-10
Addressing modes, 3-5, 5-4

See also Data instructions, Bit instructions,
Control instructions

AJMP instruction, 5-14, A-24
ALE

caution, 13-6
description, 15-2
extended, 4-11
following reset, 13-6
idle mode, 14-5

ANL instruction, 5-9, 5-10
for bits, A-23

ANL/ instruction, 5-10
for bits, A-23

Arithmetic instructions, 5-8, 5-9
table of, A-14, A-15, A-16

B
B register, 3-14, C-6

as SFR, 3-17, C-2
in register file, 3-12

Base address, 5-4
Baud rate, See Serial I/O port, Timer 1, Timer 2
Big endien form, 5-2
Binary and source modes, 2-4, 4-12–4-13, 5-1

opcode maps, 4-12
selection guidelines, 4-12

Bit address
addressing modes, 5-11
definition, A-3
examples, 5-10

Bit instructions, 5-10–5-11
addressing modes, 5-4, 5-10

bit51, 5-10, A-3
Broadcast address, See Serial I/O port
Bulletin board service (BBS), 1-7, 1-9
Bus cycles

See External bus cycles

C
Call instructions, 5-14
Capacitors

bypass, 13-2
CCAP1H–CCAP4H, CCAP1L–CCAP4L, 3-20,

C-5, C-7
CCAPM1–4, 3-20, 11-15, C-5, C-8

interrupts, 6-6
CCON, 3-20, 11-14, C-5, C-9
CEX4:0, 9-1
CH, CL, 3-20, C-5, C-9
CJNE instruction, A-25
Clock, 2-7

external, 2-7, 13-3
idle and powerdown modes, 14-5
idle mode, 14-5
on-chip crystal, 2-7
on-chip PLL, 2-7
PLLSEL2:0, 2-8, 13-1
Index-1

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

9

powerdown mode, 14-6, 14-7
sources, 13-2
USB rates (table), 2-8, B-6

CLR instruction, 5-9, 5-10, A-17, A-23
CMOD, 3-20, 11-13, C-5, C-10

interrupts, 6-6
CMP instruction, 5-8, 5-13, A-15
Code constants, 4-14
Code fetches

external, 15-1, 15-6
internal, 15-6
page hit and page miss, 15-6
page mode, 15-6

Code memory
MCS 51 architecture, 3-3
See also On-chip code memory, External code

memory
Compatibility (MCS 251 and MCS 51

architectures), 3-2–3-5
address spaces, 3-2, 3-4
external memory, 3-5
instruction set, 5-1
SFR space, 3-5
See also Binary and source modes

CompuServe, 1-7
Configuration

array, 4-1
external, 4-3
on-chip, 4-2

bits, 4-4
external memory, 4-7
overview, 4-1
wait state, 4-11

Configuration bytes
bus cycles, 15-15
UCONFIG0, 4-1
UCONFIG0 (table), 4-5
UCONFIG1, 4-1
UCONFIG1 (table), 4-6
verifying, 16-1

Control instructions, 5-11–5-15
addressing modes, 5-11, 5-13
table of, A-24

Core, 2-6
SFRs, 3-17, C-2

CPL instruction, 5-9, 5-10, A-17, A-23
CPU, 2-6

block diagram, 2-6

Crystal
on-chip oscillator, 13-2

CY flag, 5-17, 5-18

D
DA instruction, A-16
Data instructions, 5-4–5-10

addressing modes, 5-4
Data Pointer, C-2
Data pointer, See DPH, DPL, DPTR, DPX, DPXL
Data transfer instructions, 5-9–5-10

table of, A-22
See also Move instructions

Data types, 5-2
Datasheets

on WWW, 1-7
DEC instruction, 5-8, A-15
Destination register, 5-3
dir16, A-3
dir8, A-3
Direct addressing, 5-4

in control instructions, 5-12
Displacement addressing, 5-4, 5-7
DIV instruction, 5-8, A-16
Division, 5-8
DJNZ instruction, A-25
Documents

ordering, 1-7
related, 1-5

DPH, DPL, 3-14, C-11
as SFRs, 3-17, C-2

DPTR, 3-14
in jump instruction, 5-12

DPX, 3-5, 3-12, 3-14, 5-4
DPXL, 3-14, C-12

as SFR, 3-17, C-2
external data memory mapping, 3-5, 5-4, 5-
reset value, 3-5

E
EA#, 3-8

description, 15-2
ECALL instruction, 5-14, A-24
ECI, 9-1
EJMP instruction, 5-14, A-24
EMAP# bit, 3-9, 4-14
Encryption, 16-1
Index-2

INDEX
Encryption array, 16-1
key bytes, 16-5

EPCON, 7-6, C-12
EPINDEX, 7-5, C-14
ERET instruction, 5-14, A-24
Escape prefix (A5H), 4-12
Extended ALE, A-1, A-11
Extended stack pointer, See SPX
External address lines

number of, 4-8
See also External bus

External bus
inactive, 15-3
pin status, 15-15, 15-16
structure in page mode, nonpage mode, 15-6

External bus cycles, 15-3–15-16
definitions, 15-3
extended ALE wait state, 15-10
extended RD#/WR#/PSEN# wait state, 15-8
nonpage mode, 15-3, 15-5
page mode, 15-6–15-8
page-hit vs page-miss, 15-6
Real-time wait states, 15-8

External code memory
example, 15-20, 15-30
idle mode, 14-5
powerdown mode, 14-6

External memory, 3-9
design examples, 15-17–15-30
MCS 51 architecture, 3-2, 3-4, 3-5

External memory interface
configuring, 4-7–4-14
signals, 15-3

External RAM
example, 15-26
exiting idle mode, 14-6

F
F0 flag, 5-17
FADDR, 7-13, C-14
FaxBack service, 1-7, 1-8
FIE, 6-3, 6-7, C-15
FIFLG, 6-3, 6-9, C-16
Flash memory

example, 15-18, 15-20, 15-30
Frame Timer, 6-9

G
Given address, See Serial I/O port
Global resume interrupt, 6-10
Global suspend interrupt, 6-10

H
Hardware

application notes, 1-6
Help desk, 1-7

I
I/O ports, 9-1–9-7

external memory access, 9-6, 9-7
latches, 9-2
loading, 9-6
pullups, 9-5
quasi-bidirectional, 9-5
SFRs, 3-15
See also Ports 0–3

Idle mode, 2-6, 14-1, 14-5
entering, 14-5
exiting, 13-5, 14-5
external bus, 15-3

IEN0, 3-17, 6-3, 6-6, 6-11, 6-21, 12-11, 14-7, C-2,
C-17

IEN1, 3-17, 6-3, 6-12, 6-21, C-2, C-18
Immediate addressing, 5-4
INC instruction, 5-8, A-15
Indirect addressing, 5-4

in control instructions, 5-12
in data instructions, 5-6

Instruction set
MCS 251 architecture, A-1–A-138
MCS 51 architecture, 5-1

Instructions
arithmetic, 5-8
bit, 5-10
data, 5-4
data transfer, 5-9
logical, 5-9

INT1:0#, 6-1, 9-1, 10-1, 10-2
pulse width measurements, 10-11

Intel Architecture Labs, 1-8
Interrupt request, 6-1

cleared by hardware, 6-4, 6-5
Interrupt service routine

exiting idle mode, 14-5
Index-3

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
exiting powerdown mode, 14-7
Interrupts, 6-1–6-22

blocking conditions, 6-21
detection, 6-4
edge-triggered, 6-4, 6-5
enable/disable, 6-11
exiting idle mode, 14-5
exiting powerdown mode, 14-7
external (INT1:0#), 6-1, 6-3, 6-18, 14-7
global enable, 6-11
global resume (GRSM), 14-3, 14-6
global suspend (GSUS), 14-3, 14-6
instruction completion time, 6-17
latency, 6-16–6-20
level-triggered, 6-4, 6-5
PCA, 6-5
polling, 6-16, 6-17
priority, 6-1, 6-3, 6-4, 6-5, 6-13–6-15
priority within level, 6-13
processing, 6-16–6-22
request, See Interrupt request
response time, 6-16, 6-17
sampling, 6-4, 6-17
serial port, 6-6
service routine (ISR), 6-4, 6-5, 6-16, 6-21, 6-

22
sources, 6-3
timer/counters, 6-5
vector cycle, 6-21
vectors, 3-3, 6-4, 6-5

INTR bit
and RETI instruction, 4-14, 5-15

IPH0, 3-17, 6-3, 6-14, 6-21, C-2, C-19
bit definitions, 6-13

IPH1, 3-17, 6-3, 6-15, 6-21, C-2, C-21
bit definitions, 6-13

IPL0, 3-17, 6-3, 6-14, 6-21, C-2, C-20
bit definitions, 6-13

IPL1, 3-17, 6-3, 6-15, C-2, C-22
bit definitions, 6-13

Isochronous RX dataflow
Dual-packet mode, D-18

Isochronous TX dataflow
Dual-packet mode, D-5

ISR, See Interrupts, service routine

J
JB instruction, 5-13, A-24
JBC instruction, 5-13, A-24
JC instruction, A-24
JE instruction, A-24
JG instruction, A-24
JLE instruction, A-24
JMP instruction, A-24
JNB instruction, 5-13, A-24
JNC instruction, A-24
JNE instruction, A-24
JNZ instruction, A-24
JSG instruction, A-25
JSGE instruction, A-25
JSL instruction, A-24
JSLE instruction, A-25
Jump instructions

bit-conditional, 5-13
compare-conditional, 5-13, 5-14
unconditional, 5-14

JZ instruction, A-24

K
Key bytes, See Encryption array

L
Latency, 6-16
LCALL instruction, 5-14, A-24
LJMP instruction, 5-14, A-24
Lock bits

protection types, 16-5
verifying, 16-1

Logical instructions, 5-9
table of, A-17

Low clock mode, 14-1, 14-8
entering, 14-8
exiting, 14-9

M
MCS 251 microcontroller

core, 2-6
Memory space, 2-5, 3-1, 3-5–3-9

compatibility, See Compatibility (MCS 251
and MCS 51 architectures)

regions, 3-2, 3-5
reserved locations, 3-5
Index-4

INDEX
Miller effect, 13-3
MOV instruction, A-19, A-20, A-21

for bits, 5-10, A-23
MOVC instruction, 3-2, 5-9, A-21
Move instructions

table of, A-19
MOVH instruction, 5-9, A-21
MOVS instruction, 5-9, A-21
MOVX instruction, 3-2, 5-9, A-21
MOVZ instruction, 5-9, A-21
MUL instruction, 5-8
Multiplication, 5-8

N
N flag, 5-9, 5-18
Noise reduction, 13-2, 13-3
Non-isochronous RX dataflow

Dual-packet mode, D-11
Single-packet mode, D-8

Non-isochronous TX dataflow, D-1
Nonpage mode

bus cycles, See External bus cycles, Nonpage
mode

bus structure, 15-3
configuration, 4-7
design example, 15-22, 15-26
port pin status, 15-16

Nonvolatile memory
verifying, 16-1–16-6

NOP instruction, 5-14, A-25

O
On-chip code memory, 15-8

accessing in data memory, 4-14
accessing in region 00:, 3-9
idle mode, 14-5
setup for verifying, 16-3–16-4
starting address, 3-8, 16-1
top eight bytes, 3-8, 4-1, 16-2
verifying, 16-1

On-chip oscillator
hardware setup, 13-1

On-chip RAM, 3-8
bit addressable, 3-8, 5-11
bit addressable in MCS 51 architecture, 5-11
idle mode, 14-5
MCS 51 architecture, 3-2, 3-4

reset, 13-6
ONCE mode, 14-1

entering, 14-9
exiting, 14-9

Opcodes
for binary and source modes, 4-12, 5-1
map, A-4

binary mode, 4-13
source mode, 4-13

See also Binary and source modes
ORL instruction, 5-9, 5-10

for bits, A-23
ORL/ instruction, 5-10

for bits, A-23
Oscillator

at startup, 13-6
ceramic resonator, 13-3
during reset, 13-4
on-chip crystal, 2-7, 13-2
on-chip PLL, 2-7
ONCE mode, 14-9
powerdown mode, 14-6, 14-7
verifying nonvolatile memory, 16-3

OV bit, 5-17, 5-18
Overflow See OV bit

P
P bit, 5-17
P0, 3-19, 9-2, C-2, C-22
P1, 3-19, 9-2, C-2, C-23
P2, 3-19, 9-2, C-2, C-23
P3, 3-19, 9-2, C-2, C-24
Page mode, 2-6

address access time, 15-6
bus cycles, See External bus cycles, page

mode
configuration, 4-7
design example, 15-20, 15-29
port pin status, 15-16

PAGE# bit, 4-7
Parity See P bit
PCA

compare/capture modules, 11-1
idle mode, 14-5
pulse width modulation, 11-10
SFRs, 3-20, C-5
timer/counter, 11-1
Index-5

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
watchdog timer, 11-1, 11-9
PCON, 3-17, 12-7, 14-2, 14-5, 14-6, C-2, C-25

idle mode, 14-5
powerdown mode, 14-7
reset, 13-5

PCON1, 3-17, 14-3, 14-6, C-2, C-26
Peripheral cycle, 2-7
Phase 1 and phase 2, 2-7
Phone numbers, customer support, 1-7
Pin conditions, 14-4
Pins

unused inputs, 13-2
Pipeline, 2-7
POP instruction, 3-14, 5-10, A-22
Port 0, 9-2

and top of on-chip code memory, 16-2
pullups, 9-7
structure, 9-3
See also External bus

Port 1, 9-2
structure, 9-3

Port 2, 9-2
and top of on-chip code memory, 16-2
structure, 9-4
See also External bus

Port 3, 9-2
structure, 9-3

Ports
at power on, 13-6
exiting idle mode, 14-6
exiting powerdown mode, 14-6
extended execution times, 5-1, A-1, A-11
verifying nonvolatile memory, 16-3, 16-4

Power supply, 13-2
Powerdown mode, 2-6, 14-1, 14-6–14-7

accidental entry, 14-5
entering, 14-7
exiting, 13-5, 14-7
external bus, 15-3

Program status word See PSW, PSW1
PSEN#

caution, 13-6
description, 15-2
idle mode, 14-5
regions for asserting, 4-8

PSW, 5-17, A-26
PSW, PSW1, 3-17, 5-15–5-16, C-2, C-27, C-28

conditional jumps, 5-13

effects of instructions on flags, 5-16
PSW1, 5-18, A-26, C-2
Pullups, 9-7

ports 1, 2, 3, 9-5
Pulse width measurements, 10-11
PUSH instruction, 3-14, 5-10, A-22

R
RCAP2H, RCAP2L, 3-19, 10-4, 12-12, C-4, C-29
RD#, 9-1

described, 15-2
regions for asserting, 4-8

RD1:0 configuration bits, 4-8
Read-modify-write instructions, 9-2, 9-4
Real-time wait states, 15-11
Register addressing, 5-4, 5-5
Register banks, 3-2, 3-9

accessing in memory address space, 5-4
implementation, 3-9, 3-12
MCS 51 architecture, 3-2
selection bits (RS1:0), 5-17, 5-18

Register file, 2-7, 3-1, 3-5, 3-9–3-14
address space, 3-2
addressing locations in, 3-12
and reset, 13-6
MCS 51 architecture, 3-4
naming registers, 3-12
register types, 3-12

Registers, See Register addressing, Register banks,
Register file

rel, A-3
Relative addressing, 5-4, 5-12
Reset, 13-4–13-7

cold start, 13-5, 14-1
entering ONCE mode, 14-9
exiting idle mode, 14-5
exiting powerdown mode, 14-7
externally initiated, 13-5
need for, 13-6
operation, 13-6
power-on reset, 13-1, 13-6
timing sequence, 13-6, 13-7
USB initiated, 13-5
warm start, 13-5, 14-1
WDT initiated, 13-5

RET instruction, 5-14, A-24
RETI instruction, 5-15, 6-1, 6-21, 6-22, A-24
Index-6

INDEX

-

Return instructions, 5-14
RL instruction, A-17
RLC instruction, A-17
Rotate instructions, 5-9
RR instruction, A-17
RRC instruction, A-17
RST, 13-5, 13-6, B-4

ONCE mode, 14-9
See Reset

RTWCE (Real-time WAIT CLOCK Enable) Bit,
15-12

RTWE (Real-time WAIT# Enable) Control Bit,
15-12

RXCNTH, 7-28, C-30
RXCNTL, 7-28, C-30
RXCON, 7-29, C-31
RXD, 9-1, 12-1

mode 0, 12-2
modes 1, 2, 3, 12-7

RXDAT, 7-27, C-33
RXFLG, 7-31, C-34
RXSTAT, 7-10, C-36

S
SADDR, 3-19, 12-2, 12-8, 12-9, 12-10, C-3, C-38
SADEN, 3-19, 12-2, 12-8, 12-9, 12-10, C-3, C-38
SBUF, 3-19, 12-2, 12-3, C-3, C-38
SCON, 3-19, 12-2, 12-3, 12-4, 12-7, C-3, C-39

bit definitions, 12-1
interrupts, 6-6

Security, 16-1
Serial Bus Interface Engine, 7-1
Serial I/O port, 12-1–12-13

asynchronous modes, 12-7
automatic address recognition, 12-8–12-10
baud rate generator, 10-7
baud rate, mode 0, 12-2, 12-10
baud rate, modes 1, 2, 3, 12-7, 12-11–12-13
broadcast address, 12-9
data frame, modes 1, 2, 3, 12-7
framing bit error detection, 12-7
full-duplex, 12-7
given address, 12-8
half-duplex, 12-2
interrupts, 12-1, 12-8
mode 0, 12-2–12-3
modes 1, 2, 3, 12-7

multiprocessor communication, 12-8
SFRs, 3-19, 12-2, C-3
synchronous mode, 12-2
timer 1 baud rate, 12-11, 12-12
timer 2 baud rate, 12-12–12-13
timing, mode 0, 12-6

SETB instruction, 5-10, A-23
SFRs

accessing, 3-15
address space, 3-1, 3-2
idle mode, 14-5
MCS 51 architecture, 3-4
powerdown mode, 14-6
reset initialization, 13-6
reset values, 3-15
tables of, 3-15
unimplemented, 3-15

Shift instruction, 5-9
Signature bytes

values, 16-6
verifying, 16-1, 16-6

SJMP instruction, 5-14, A-24
SLL instruction, 5-9, A-17
SOF# pin, 6-10
SOFH, 7-12, C-41
SOFL, 7-13, C-42
Software

application notes, 1-6
Solutions OEM, 1-8
Source register, 5-3
SP, 3-14, 3-17, C-2, C-42
Special function registers See SFRs
SPH, 3-14, 3-17, C-2, C-43
SPX, 3-12, 3-14
SRA instruction, 5-9, A-18
SRL instruction, 5-9, A-18
State time, 2-7
SUB instruction, 5-8, A-14
SUBB instruction, 5-8, A-14
SWAP instruction, 5-9, A-18

T
T1:0, 9-1, 10-2
T2, 9-1, 10-2
T2CON, 3-19, 10-1, 10-4, 10-11, 10-18, 12-13, C

4, C-44
baud rate generator, 12-12
Index-7

8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL
T2EX, 9-1, 10-2, 10-12, 12-12
T2MOD, 3-19, 10-1, 10-4, 10-11, 10-17, C-4, C-45
Target address, 5-4
TCON, 3-19, 10-1, 10-4, 10-6, 10-9, C-4, C-46

interrupts, 6-1
Tech support, 1-7
TH2, TL2

baud rate generator, 12-12, 12-13
THx, TLx (x = 0, 1, 2), 3-19, 10-4, C-4, C-48, C-49
Timer 0, 10-4–10-9

applications, 10-10
auto-reload, 10-5
interrupt, 10-4
mode 0, 10-4
mode 1, 10-5
mode 2, 10-5
mode 3, 10-6
pulse width measurements, 10-11

Timer 1
applications, 10-10
auto-reload, 10-10
baud rate generator, 10-6
interrupt, 10-6
mode 0, 10-7
mode 1, 10-7
mode 2, 10-10
mode 3, 10-10
pulse width measurements, 10-11

Timer 2, 10-11–10-18
auto-reload mode, 10-13
baud rate generator, 10-15
capture mode, 10-12
clock out mode, 10-15
interrupt, 10-12
mode select, 10-16

Timer/counters, 10-1–10-18
external input sampling, 10-2
internal clock, 10-1
interrupts, 10-1
overview, 10-1–10-2
registers, 10-4
SFRs, 3-19, C-4
signal descriptions, 10-2
See also Timer 0, Timer 1, Timer 2

TMOD, 3-19, 10-1, 10-4, 10-6, 10-8, 12-11, C-4,
C-47

Tosc, 2-9
TRAP instruction, 5-15, 6-3, 6-11, 6-22, A-25

TXCNTH, 7-19, C-50
TXCNTL, 7-19, C-50
TXCON, 7-20, C-51
TXD, 9-1, 12-1

mode 0, 12-2
modes 1, 2, 3, 12-7

TXFLG, 7-22, C-54
TXSTAT, 7-8, C-56

U
UART, 12-1
UCONFIG1:0

See Configuration bytes
UD flag, 5-17
USB

configuration descriptor, 8-2
device descriptor, 8-2
function

suspend and resume, 14-1
function operations

post-receive, 8-9
post-transmit, 8-6
pre-transmit, 8-5
receive, 8-8
transmit, 8-3

function resume interrupt, 6-10
function routines

overview, 8-1
receive, 8-2
receive SOF, 8-1, 8-14
setup, 8-1, 8-12
transmit, 8-2

global resume, 14-8
global suspend, 14-6
idle state, 8-1, 8-2
Interrupts

Any SOF, 6-5
Function, 6-5, 6-6–6-9
Function resume, 6-10
Global suspend/resume, 6-5, 6-10
Start-of-Frame, 6-9–6-10

module, 2-3, 2-10
block diagram, 2-3

power control, 14-6
powerdown, 14-6
programming models, 8-1
remote wake-up, 14-8
Index-8

INDEX
Transaction dataflow model, 7-1, D-1
unenumerated state, 8-1, 8-2

USB FIFO Information
Receive, 7-24

RXFLG, 7-31, C-34
scooping, 7-24
write marker, 7-24, 8-8
write pointer, 7-24, 8-8

Transmit
Capacities, 7-4
Data Set Management, 7-17
Data/Byte Count Registers, 7-15
read marker, 7-14
read pointer, 7-14, 8-3
Transmit FIFO, 7-14
TXCNTL/TXCNTH, 7-15
write pointer, 8-3

V
Vcc, 13-2

during reset, 13-4
power off flag, 14-1
power-on reset, 13-6
powerdown mode, 14-7

Verifying nonvolatile memory, 16-1
Vss, 13-2

W
Wait state, 5-1, A-1, A-11

configuration bits, 4-11
extended ALE, 4-11
RD#/WR#/PSEN#, 4-11

WAIT# (Wait State) Input, 15-2
Watchdog timer (hardware), 10-1, 10-17, 10-19

enabling, disabling, 10-17
in idle mode, 10-19
in powerdown mode, 10-19
initiated reset, 13-5
overflow, 10-17
SFR (WDTRST), 3-19, 10-4, C-4

Watchdog Timer (PCA), 11-1, 11-9
WCLK (Wait Clock) Output, 15-2
WCON (Real-time wait state control), 15-11
WDTRST, 3-19, 10-4, 10-17, C-4, C-57
World Wide Web, 1-7
WR#, 9-1

described, 15-2

X
XALE# bit, 4-11
XCH instruction, 5-9, A-22
XCHD instruction, 5-9, A-22
XRL instruction, 5-9
XTAL1, XTAL2, 13-2

capacitance loading, 13-3

Z
Z flag, 5-9, 5-18
Index-9

	Cover
	Title Page
	Copyright Page
	CONTENTS
	CHAPTER 1 Guide to this Manual
	1.1 Manual Contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents
	1.3.1 Data Sheet
	1.3.2 Application Notes

	1.4 Application Support Services
	1.4.1 World Wide Web
	1.4.2 CompuServe Forums
	1.4.3 FaxBack Service
	1.4.4 Bulletin Board System (BBS)

	CHAPTER 2 Introduction
	2.1 Product overview
	2.1.1 8X930Ax Features

	2.2 MCS 251 Microcontroller Core
	2.2.1 CPU
	2.2.2 Clock and Reset Unit
	2.2.3 Interrupt Handler

	2.3 On-chip Memory
	2.4 Universal Serial Bus Module
	2.5 On-chip Peripherals
	2.5.1 Timer/Counters and Watchdog Timer
	2.5.2 Programmable Counter Array (PCA)
	2.5.3 Serial I/O Port

	2.6 Operating Conditions

	CHAPTER 3 Memory Partitions
	3.1 Address Spaces for 8X930Ax
	3.1.1 Compatibility with the MCS® 51 Architecture

	3.2 8X930Ax Memory Space
	3.2.1 On-chip General-purpose Data RAM
	3.2.2 On-chip Code Memory
	3.2.2.1 Accessing On-chip Code Memory in Region 00...

	3.2.3 External Memory

	3.3 8X930Ax Register File
	3.4 Byte, Word, and Dword Registers
	3.4.1 Dedicated Registers
	3.4.1.1 Accumulator and B Register
	3.4.1.2 Extended Data Pointer, DPX
	3.4.1.3 Extended Stack Pointer, SPX

	3.5 Special Function Registers (SFRs)

	CHAPTER 4 Device Configuration
	4.1 Configuration Overview
	4.2 Device Configuration
	4.3 The Configuration Bits
	4.4 Configuring the External Memory Interface
	4.4.1 Page Mode and Nonpage Mode (PAGE#)
	4.4.2 Configuration Bits RD1:0
	4.4.2.1 RD1:0 = 00 (18 External Address Bits)
	4.4.2.2 RD1:0 = 01 (17 External Address Bits)
	4.4.2.3 RD1:0 = 10 (16 External Address Bits)
	4.4.2.4 RD1:0 = 11 (Compatible with MCS 51 Microco...

	4.4.3 Wait State Configuration Bits
	4.4.3.1 Configuration Bits WSA1:0#, WSB1:0#
	4.4.3.2 Configuration Bit XALE#

	4.5 Opcode Configurations (SRC)
	4.5.1 Selecting Binary Mode or Source Mode

	4.6 Mapping On-chip Code Memory to Data Memory (EM...
	4.7 Interrupt Mode (INTR)

	CHAPTER 5 Instructions and Addressing
	5.1 Source Mode or Binary Mode Opcodes
	5.2 Programming Features of the 8X930Ax Architectu...
	5.2.1 Data Types
	5.2.1.1 Order of Byte Storage for Words and Double...

	5.2.2 Register Notation
	5.2.3 Address Notation
	5.2.4 Addressing Modes

	5.3 Data Instructions
	5.3.1 Data Addressing Modes
	5.3.1.1 Register Addressing
	5.3.1.2 Immediate
	5.3.1.3 Direct
	5.3.1.4 Indirect
	5.3.1.5 Displacement

	5.3.2 Arithmetic Instructions
	5.3.3 Logical Instructions
	5.3.4 Data Transfer Instructions

	5.4 Bit Instructions
	5.4.1 Bit Addressing

	5.5 Control Instructions
	5.5.1 Addressing Modes for Control Instructions
	5.5.2 Conditional Jumps
	5.5.3 Unconditional Jumps
	5.5.4 Calls and Returns

	5.6 Program Status Words

	CHAPTER 6 Interrupt System
	6.1 OVERVIEW
	6.2 8X930Ax Interrupt Sources
	6.2.1 External Interrupts
	6.2.2 Timer Interrupts

	6.3 Programmable Counter Array (PCA) Interrupt
	6.4 SERIAL POrt Interrupt
	6.5 USB Interrupts
	6.5.1 USB Function Interrupt
	6.5.2 USB Start of Frame Interrupt
	6.5.3 USB Global Suspend/Resume Interrupt
	6.5.3.1 Global Suspend
	6.5.3.2 Global Resume
	6.5.3.3 USB Remote Wake-up

	6.6 Interrupt Enable
	6.7 Interrupt Priorities
	6.8 Interrupt Processing
	6.8.1 Minimum Fixed Interrupt Time
	6.8.2 Variable Interrupt Parameters
	6.8.2.1 Response Time Variables
	6.8.2.2 Computation of Worst-case Latency With Var...
	6.8.2.3 Latency Calculations
	6.8.2.4 Blocking Conditions
	6.8.2.5 Interrupt Vector Cycle

	6.8.3 ISRs in Process

	CHAPTER 7 Universal Serial Bus
	7.1 USB Function Interface
	7.1.1 Serial Bus Interface Engine (SIE)
	7.1.2 Function Interface Unit (FIU)
	7.1.3 Special Function Registers (SFRs)
	7.1.4 USB Function FIFO’s
	7.1.5 The FIU SFR Set

	7.2 Transmit FIFOs
	7.2.1 Transmit FIFO Overview
	7.2.2 Transmit FIFO Registers
	7.2.3 Transmit Data Register (TXDAT)
	7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH...
	7.2.5 Transmit Data Set Management

	7.3 Receive FIFOs
	7.3.1 Receive FIFO Overview
	7.3.2 Receive FIFO Registers
	7.3.2.1 Receive Data Register (RXDAT)
	7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNT...

	7.3.3 Receive FIFO Data Set Management

	7.4 SIE Details
	7.5 SETUP Token Receive FIFO Handling
	7.6 ISO Data Management
	7.6.1 Transmit FIFO ISO Data Management
	7.6.2 Receive FIFO ISO Data Management

	CHAPTER 8 USB Programming Models
	8.1 Overview of Programming Models
	8.1.1 Unenumerated State
	8.1.2 Idle State
	8.1.3 Transmit and Receive Routines
	8.1.4 USB Interrupts

	8.2 Transmit Operations
	8.2.1 Overview
	8.2.2 Pre-transmit Operations
	8.2.3 Post-transmit Operations

	8.3 Receive Operations
	8.3.1 Overview
	8.3.2 Post-receive Operations

	8.4 SETUP Token
	8.5 Start Of Frame (SOF) Token

	CHAPTER 9 Input/Output Ports
	9.1 Input/Output port overview
	9.2 I/O Configurations
	9.3 Port 1 and Port 3
	9.4 Port 0 and Port 2
	9.5 Read-Modify-Write Instructions
	9.6 Quasi-bidirectional Port Operation
	9.7 Port Loading
	9.8 External Memory Access

	CHAPTER 10 Timer/Counters and WatchDog Timer
	10.1 Timer/Counter Overview
	10.2 Timer/Counter Operation
	10.3 Timer 0
	10.3.1 Mode 0 (13-bit Timer)
	10.3.2 Mode 1 (16-bit Timer)
	10.3.3 Mode 2 (8-bit Timer With Auto-reload)
	10.3.4 Mode 3 (Two 8-bit Timers)

	10.4 Timer 1
	10.4.1 Mode 0 (13-bit Timer)
	10.4.2 Mode 1 (16-bit Timer)
	10.4.3 Mode 2 (8-bit Timer with Auto-reload)
	10.4.4 Mode 3 (Halt)

	10.5 Timer 0/1 Applications
	10.5.1 Auto-load Setup Example
	10.5.2 Pulse Width Measurements

	10.6 Timer 2
	10.6.1 Capture Mode
	10.6.2 Auto-reload Mode
	10.6.2.1 Up Counter Operation

	10.6.3 Up/Down Counter Operation
	10.6.4 Baud Rate Generator Mode
	10.6.5 Clock-out Mode

	10.7 Watchdog Timer
	10.7.1 Description
	10.7.2 Using the WDT
	10.7.3 WDT During Idle Mode
	10.7.4 WDT During PowerDown

	CHAPTER 11 Programmable Counter Array
	11.1 PCA Description
	11.1.1 Alternate Port Usage

	11.2 PCA Timer/Counter
	11.3 PCA Compare/Capture Modules
	11.3.1 16-bit Capture Mode
	11.3.2 Compare Modes
	11.3.3 16-bit Software Timer Mode
	11.3.4 High-speed Output Mode
	11.3.5 PCA Watchdog Timer Mode
	11.3.6 Pulse Width Modulation Mode

	CHAPTER 12 Serial I/O Port
	12.1 Overview
	12.2 Modes of Operation
	12.2.1 Synchronous Mode (Mode 0)
	12.2.1.1 Transmission (Mode 0)
	12.2.1.2 Reception (Mode 0)

	12.2.2 Asynchronous Modes (Modes 1, 2, and 3)
	12.2.2.1 Transmission (Modes 1, 2, 3)
	12.2.2.2 Reception (Modes 1, 2, 3)

	12.3 Framing Bit Error Detection (Modes 1, 2, and ...
	12.4 Multiprocessor Communication (Modes 2 and 3)
	12.5 Automatic Address Recognition
	12.5.1 Given Address
	12.5.2 Broadcast Address
	12.5.3 Reset Addresses

	12.6 Baud Rates
	12.6.1 Baud Rate for Mode 0 †
	12.6.2 Baud Rates for Mode 2
	12.6.3 Baud Rates for Modes 1 and 3 †
	12.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and...
	12.6.3.2 Selecting Timer 1 as the Baud Rate Genera...
	12.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and...

	12.6.3.4 Selecting Timer 2 as the Baud Rate Genera...

	CHAPTER 13 Minimum Hardware Setup
	13.1 Minimum Hardware Setup
	13.2 Electrical Environment
	13.2.1 Power and Ground Pins
	13.2.2 Unused Pins
	13.2.3 Noise Considerations

	13.3 Clock Sources
	13.3.1 On-chip Oscillator (Crystal)
	13.3.2 On-chip Oscillator (Ceramic Resonator)
	13.3.3 External Clock

	13.4 Reset
	13.4.1 Externally Initiated Resets
	13.4.2 WDT Initiated Resets
	13.4.3 USB Initiated Resets
	13.4.4 Reset Operation
	13.4.5 Power-on Reset

	CHAPTER 14 Special Operating Modes
	14.1 General
	14.2 Power Control Registers
	14.2.1 Serial I/O Control Bits
	14.2.2 Power Off Flag

	14.3 Idle Mode
	14.3.1 Entering Idle Mode
	14.3.2 Exiting Idle Mode

	14.4 USB Power Control
	14.4.1 Global Suspend Mode
	14.4.1.1 Powerdown Mode
	14.4.1.2 Entering Powerdown Mode
	14.4.1.3 Exiting Powerdown Mode

	14.4.2 Global Resume Mode
	14.4.3 USB Remote Wake-up

	14.5 Low Clock Mode
	14.5.1 Entering Low Clock Mode
	14.5.2 Exiting Low Clock Mode

	14.6 ON-Circuit emulation (Once) Mode
	14.6.1 Entering ONCE Mode
	14.6.2 Exiting ONCE Mode

	CHAPTER 15 External Memory Interface
	15.1 Overview
	15.2 External Bus Cycles
	15.2.1 Bus Cycle Definitions
	15.2.2 Nonpage Mode Bus Cycles
	15.2.3 Page Mode Bus Cycles

	15.3 Wait States
	15.4 External Bus Cycles With Configurable Wait St...
	15.4.1 Extending RD#/WR#/PSEN#
	15.4.2 Extending ALE

	15.5 External Bus Cycles with Real-time Wait State...
	15.5.1 Real-time WAIT# Enable (RTWE)
	15.5.2 Real-time WAIT CLOCK Enable (RTWCE)
	15.5.3 Real-time Wait State Bus Cycle Diagrams

	15.6 Configuration Byte Bus Cycles
	15.7 Port 0 and Port 2 Status
	15.7.1 Port 0 and Port 2 Pin Status in Nonpage Mod...
	15.7.2 Port 0 and Port 2 Pin Status in Page Mode

	15.8 External Memory Design Examples
	15.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External...
	15.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External...
	15.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External...
	15.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External...
	15.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External...
	15.8.5.1 An Application Requiring Fast Access to t...
	15.8.5.2 An Application Requiring Fast Access to D...

	15.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External...
	15.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External...

	CHAPTER 16 Verifying Nonvolatile Memory
	16.1 General
	16.1.1 Considerations for On-chip Program Code Mem...

	16.2 Verify Modes
	16.3 General Setup
	16.4 Verify Algorithm
	16.5 Lock Bit System
	16.5.1 Encryption Array

	16.6 Signature Bytes

	APPENDIX A Instruction Set Reference
	A.1 Notation for instruction Operands
	A.2 Opcode Map and Supporting Tables
	A.3 Instruction Set Summary
	A.3.1 Execution Times for Instructions Accessing t...
	A.3.2 Instruction Summaries����������

	A.4 Instruction Descriptions

	APPENDIX B Signal Descriptions
	APPENDIX C Registers
	C.1 SFRs by Functional Category
	C.2 SFR Descriptions

	APPENDIX D Data Flow Model
	Glossary
	Index
	TABLES
	Table 1�1. Intel Application Support Services
	Table 2�1. 8X930Ax Features Summary
	Table 2�2. 8X930Ax Operating Frequency
	Table 3�2. Minimum Times to Fetch Two Bytes of Cod...
	Table 3�3. Register Bank Selection
	Table 3�1. Address Mappings
	Table 3�4. Dedicated Registers in the Register Fil...
	Table 3�5. 8X930Ax SFR Map
	Table 3�6. Core SFRs
	Table 3�7. USB Function SFRs �
	Table 3�8. I/O Port SFRs
	Table 3�9. Serial I/O SFRs
	Table 3�10. Timer/Counter and Watchdog Timer SFRs
	Table 3�11. Programmable Counter Array (PCA) SFRs�...
	Table 4�1. External Addresses for Configuration Ar...
	Table 4�2. Memory Signal Selections (RD1:0)
	Table 4�3. RD#, WR#, PSEN# External Wait States
	Table 4�4. Examples of Opcodes in Binary and Sourc...
	Table 5�1. Data Types
	Table 5�2. Notation for Byte Registers, Word Regis...
	Table 5�3. Addressing Modes for Data Instructions ...
	Table 5�4. Addressing Modes for Data Instructions ...
	Table 5�5. Bit-addressable Locations
	Table 5�6. Addressing Two Sample Bits
	Table 5�7. Addressing Modes for Bit Instructions
	Table 5�8. Addressing Modes for Control Instructio...
	Table 5�9. Compare-conditional Jump Instructions
	Table 5�10. The Effects of Instructions on the PSW...
	Table 6�1. Interrupt System Input Signals
	Table 6�2. Interrupt System Special Function Regis...
	Table 6�3. Interrupt Control Matrix�
	Table 6�4. USB Interrupt Control Matrix�
	Table 6�5. Level of Priority
	Table 6�6. Interrupt Priority Within Level
	Table 6�7. Interrupt Latency Variables
	Table 7�1. Signal Descriptions �
	Table 7�2. USB Function SFRs
	Table 7�3. 8X930Ax FIFO Configurations
	Table 7�4. Writing to the Byte Count Register
	Table 7�5. Truth Table for Transmit FIFO Managemen...
	Table 7�6. Status of the Receive FIFO Data Sets
	Table 7�7. Truth Table for Receive FIFO Management...
	Table 6�8. Actual vs. Predicted Latency Calculatio...
	Table 9�1. Input/Output Port Pin Descriptions �
	Table 9�2. Instructions for External Data Moves
	Table 10�1. External Signals�
	Table 10�2. Timer/Counter and Watchdog Timer SFRs
	Table 10�3. Timer 2 Modes of Operation
	Table 11�1. PCA Special Function Registers (SFRs)�...
	Table 11�2. External Signals
	Table 11�3. PCA Module Modes
	Table 12�1. Serial Port Signals
	Table 12�2. Serial Port Special Function Registers...
	Table 12�3. Summary of Baud Rates
	Table 12�4. Timer 1 Generated Baud Rates for Seria...
	Table 12�5. Selecting the Baud Rate Generator(s)
	Table 12�6. Timer 2 Generated Baud Rates
	Table 14�1. Pin Conditions in Various Modes
	Table 15�1. External Memory Interface Signals
	Table 15�2. Bus Cycle Definitions (No Wait States)...
	Table 15�3. Port 0 and Port 2 Pin Status In Normal...
	Table 16�1. Signal Descriptions
	Table 16�2. Verify Modes
	Table 16�3. Lock Bit Function
	Table 16�4. Contents of the Signature Bytes
	Table 16�5. Timing Definitions
	Table A�1. Notation for Register Operands
	Table A�2. Notation for Direct Addresses
	Table A�3. Notation for Immediate Addressing
	Table A�4. Notation for Bit Addressing
	Table A�5. Notation for Destinations in Control In...
	Table A�6. Instructions for MCS® 51 Microcontrolle...
	Table A�7. Instructions for the 8X930Ax Architectu...
	Table A�8. Data Instructions
	Table A�9. High Nibble, Byte 0 of Data Instruction...
	Table A�10. Bit Instructions
	Table A�11. Byte 1 (High Nibble) for Bit Instructi...
	Table A�12. PUSH/POP Instructions
	Table A�13. Control Instructions
	Table A�14. Displacement/Extended MOVs
	Table A�15. INC/DEC
	Table A�16. Encoding for INC/DEC
	Table A�17. Shifts
	Table A�18. State Times to Access the Port SFRs (C...
	Table A�19. Summary of Add and Subtract Instructio...
	Table A�20. Summary of Compare Instructions
	Table A�21. Summary of Increment and Decrement Ins...
	Table A�22. Summary of Multiply, Divide, and Decim...
	Table A�23. Summary of Logical Instructions (Conti...
	Table A�24. Summary of Move Instructions (Continue...
	Table A�25. Summary of Exchange, Push, and Pop Ins...
	Table A�26. Summary of Bit Instructions �
	Table A�27. Summary of Control Instructions (Conti...
	Table A�28. Flag Symbols
	Table B�1. 8X930Ax Pin Assignments Arranged by Fun...
	Table B�2. Signal Descriptions (Continued)
	Table B�3. Memory Signal Selections (RD1:0)
	Table B�4. 8X930Ax Operating Frequency
	Table C�1. 8X930Ax SFR Map
	Table C�2. Core SFRs
	Table C�3. I/O Port SFRs
	Table C�4. Serial I/O SFRs
	Table C�5. USB Function SFRs �
	Table C�6. Timer/Counter and Watchdog Timer SFRs �...
	Table C�7. Programmable Counter Array (PCA) SFRs��...
	Table D�1. Non-isochronous Transmit Data Flow (Con...
	Table D�2. Isochronous Transmit Data Flow in Dual-...
	Table D�3. Non-isochronous Receive Data Flow in Si...
	Table D�4. Non-isochronous Receive Data Flow in Du...
	Table D�5. Isochronous Receive Data Flow in Dual-p...

	FIGURES
	Figure 2�1. 8X930Ax in a Universal Serial Bus Syst...
	Figure 2�2. Functional Block Diagram of the 8X930A...
	Figure 2�3. 8X930Ax USB Module Block Diagram
	Figure 2�4. The CPU
	Figure 2�5. Clocking Definitions (PLL off)
	Figure 2�6. Clocking Definitions (PLL on)
	Figure 3�1. Address Spaces for the 8X930Ax
	Figure 3�2. Address Spaces for the MCS® 51 Archite...
	Figure 3�3. Address Space Mappings MCS® 51 Archite...
	Figure 3�4. 8X930Ax Address Space
	Figure 3�5. Hardware Implementation of the 8X930Ax...
	Figure 3�6. The Register File
	Figure 3�7. Register File Locations 0–7
	Figure 3�8. Dedicated Registers in the Register Fi...
	Figure 4�1. Configuration Array (On-chip)
	Figure 4�2. Configuration Array (External)
	Figure 4�3. User Configuration Byte 0 (UCONFIG0)
	Figure 4�4. User Configuration Byte 1 (UCONFIG1)
	Figure 4�5. Internal/External Address Mapping (RD1...
	Figure 4�6. Internal/External Address Mapping (RD1...
	Figure 4�7. Binary Mode Opcode Map
	Figure 4�8. Source Mode Opcode Map
	Figure 5�1. Word and Double-word Storage in Big En...
	Figure 5�2. Program Status Word Register
	Figure 5�3. Program Status Word 1 Register
	Figure 6�1. Interrupt Control System
	Figure 6�2. USB Function Interrupt Enable Register...
	Figure 6�3. USB Function Interrupt Flag Register
	Figure 6�4. Interrupt Enable Register 0
	Figure 6�5. USB Interrupt Enable Register
	Figure 6�6. IPH0: Interrupt Priority High Register...
	Figure 6�7. IPL0: Interrupt Priority Low Register ...
	Figure 6�8. IPH1: Interrupt Priority High Register...
	Figure 6�9. IPL1: Interrupt Priority Low Register ...
	Figure 6�10. The Interrupt Process
	Figure 6�11. Response Time Example #1
	Figure 6�12. Response Time Example #2
	Figure 7�1. EPINDEX: Endpoint Index Register
	Figure 7�2. EPCON: Control Endpoint Register
	Figure 7�3. TXSTAT: Transmit FIFO Status Register
	Figure 7�4. RXSTAT: Receive FIFO Status Register
	Figure 7�5. SOFH: Start of Frame High Register
	Figure 7�6. SOFL: Start of Frame Low Register
	Figure 7�7. FADDR: Function Address Register
	Figure 7�8. Transmit FIFO Outline
	Figure 7�9. Transmit Byte Count Registers
	Figure 7�10. TXDAT: Transmit FIFO Data Register
	Figure 7�11. TXCNTH/TXCNTL Transmit FIFO Byte Coun...
	Figure 7�12. TXCON: Transmit FIFO Control Register...
	Figure 7�13. TXFLG: Transmit FIFO Flag Register
	Figure 7�14. Receive FIFO
	Figure 7�15. RXDAT: Receive FIFO Data Register
	Figure 7�16. RXCNTH/RXCNTL: Receive FIFO Byte Coun...
	Figure 7�17. RXCON: Receive FIFO Control Register
	Figure 7�18. RXFLG: Receive FIFO Flag Register
	Figure 8�1. Program Flow
	Figure 8�2. High-level View of Transmit Operations...
	Figure 8�3. Pre-transmit ISR (Non-Isochronous)
	Figure 8�4. Post-transmit ISR (Non-isochronous)
	Figure 8�5. Post-transmit ISR (Isochronous)
	Figure 8�6. High-level View of Receive Operations
	Figure 8�7. Post-receive ISR (Non-isochronous)
	Figure 8�8. Receive SOF ISR (Isochronous)
	Figure 8�9. Post-receive ISR (Control)
	Figure 8�10. Hardware Operations for SOF Token
	Figure 9�1. Port 1 and Port 3 Structure
	Figure 9�2. Port 0 Structure
	Figure 9�3. Port 2 Structure
	Figure 9�4. Internal Pullup Configurations
	Figure 10�1. Basic Logic of the Timer/Counters
	Figure 10�2. Timer 0/1 in Mode 0 and Mode 1
	Figure 10�3. Timer 0/1 in Mode 2, Auto-Reload
	Figure 10�4. Timer 0 in Mode 3, Two 8-bit Timers
	Figure 10�5. TMOD: Timer/Counter Mode Control Regi...
	Figure 10�6. TCON: Timer/Counter Control Register
	Figure 10�7. Timer 2: Capture Mode
	Figure 10�8. Timer 2: Auto Reload Mode (DCEN = 0)
	Figure 10�9. Timer 2: Auto Reload Mode (DCEN = 1)
	Figure 10�10. Timer 2: Clock Out Mode
	Figure 10�11. T2MOD: Timer 2 Mode Control Register...
	Figure 10�12. T2CON: Timer 2 Control Register
	Figure 11�1. Programmable Counter Array
	Figure 11�2. PCA 16-bit Capture Mode
	Figure 11�3. PCA Software Timer and High-speed Out...
	Figure 11�4. PCA Watchdog Timer Mode
	Figure 11�5. PCA 8-bit PWM Mode
	Figure 11�6. PWM Variable Duty Cycle
	Figure 11�7. CMOD: PCA Timer/Counter Mode Register...
	Figure 11�8. CCON: PCA Timer/Counter Control Regis...
	Figure 11�9. CCAPMx: PCA Compare/Capture Module Mo...
	Figure 12�1. Serial Port Block Diagram
	Figure 12�2. SCON: Serial Port Control Register
	Figure 12�3. Mode 0 Timing
	Figure 12�4. Data Frame (Modes 1, 2, and 3)
	Figure 12�5. Timer 2 in Baud Rate Generator Mode
	Figure 13�1. Minimum Setup
	Figure 13�2. CHMOS On-chip Oscillator
	Figure 13�3. External Clock Connection for the 8X9...
	Figure 13�4. External Clock Drive Waveforms
	Figure 13�5. Reset Timing Sequence
	Figure 14�1. Power Control (PCON) Register
	Figure 14�2. USB Power Control (PCON1) Register
	Figure 14�3. Idle and Powerdown Clock Control
	Figure 14�4. Suspend/Resume Program with/without R...
	Figure 15�1. Bus Structure in Nonpage Mode and Pag...
	Figure 15�2. External Code Fetch (Nonpage Mode)
	Figure 15�3. External Data Read (Nonpage Mode)
	Figure 15�4. External Data Write (Nonpage Mode)
	Figure 15�5. External Code Fetch (Page Mode)
	Figure 15�6. External Data Read (Page Mode)
	Figure 15�7. External Data Write (Page Mode)
	Figure 15�8. External Code Fetch (Nonpage Mode, On...
	Figure 15�9. External Data Write (Nonpage Mode, On...
	Figure 15�10. External Code Fetch (Nonpage Mode, O...
	Figure 15�11. Real-time Wait State Control Registe...
	Figure 15�12. External Code Fetch/Data Read (Nonpa...
	Figure 15�13. External Data Write (Nonpage Mode, R...
	Figure 15�14. External Data Read (Page Mode, Real-...
	Figure 15�15. External Data Write (Page Mode, Real...
	Figure 15�16. Configuration Byte Bus Cycles
	Figure 15�17. Bus Diagram for Example 1: 80930AD i...
	Figure 15�18. Address Space for Example 1
	Figure 15�19. Bus Diagram for Example 2: 80930AD i...
	Figure 15�20. Address Space for Example 2
	Figure 15�21. Bus Diagram for Example 3: 83930AE i...
	Figure 15�22. Memory Space for Example 3
	Figure 15�23. Bus Diagram for Example 4: 83930AE i...
	Figure 15�24. Address Space for Example 4
	Figure 15�25. Bus Diagram for Example 5: 80930AD i...
	Figure 15�26. Address Space for Examples 5 and 6
	Figure 15�27. Bus Diagram for Example 6: 80930AD i...
	Figure 15�28. Bus Diagram for Example 7: 80930AD i...
	Figure 16�1. Setup for Verifying Nonvolatile Memor...
	Figure 16�2. Verify Bus Cycles
	Figure B�1. 8X930Ax 68-pin PLCC Package

