8X930Ax Universal Serial Bus
Microcontroller User’s Manual







intgl.

8X930AX

Universal Serial Bus
M icrocontroller
User’'s Manual

July 1996



Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or oth-
erwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel retains the right to make changes to specifications and product descriptions at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
*Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, July 1996



Inte|® CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL
11 MANUAL CONTENTS ..ottt 1-1
12 NOTATIONAL CONVENTIONS AND TERMINOLOGY .......ccccviiiiiiiiiiiiieieriee e 1-3
1.3 RELATED DOCUMENTS
1.3.1 Data Sheet .........ccccoevivveinenenns
1.3.2  Application NOteS .......ccveveeriiiiiiieeiiiiieeenn.
14 APPLICATION SUPPORT SERVICES
141 WOrld WIde WED ...t
1.4.2 COMPUSEIVE FOIUMS ...ttt ettt ee e e e e e e e e e e e et e e e e e e eeeaeaeeaaeesaaesaannnnenes
143 FAXBACK SEIVICE ....ciiiiiiiiiiiceiet ettt
144 Bulletin Board SysStem (BBS) .......couiiiiiiiiiaiiiiiiee e

CHAPTER 2
INTRODUCTION
21 PRODUCT OVERVIEW. ...ttt ettt 2-3
211 BXOB0AX FEAUIES ....oeiiiiiiiii e 2-4
2.2 MCS 251 MICROCONTROLLER CORE ...ttt 2-6
2,21 CPU e e 2-6
2.2.2 Clock and RESEE UNIt ......cc.vviiiiiieiiiee et 2-7
2.2.3 Interrupt Handler
2.3 ON-CHIP MEMORY
24 UNIVERSAL SERIAL BUS MODULE
25 ON-CHIP PERIPHERALS. ...ttt
2.5.1  Timer/Counters and Watchdog TIMEr .........ccociiiiiiiiiiiie e 2-10
252 Programmable Counter Array (PCA) ....oooiiieeiiee et 2-10
2.5.3  SErIAI O POIt ..ottt e 2-11
2.6 OPERATING CONDITIONS ...ttt 2-11

CHAPTER 3
MEMORY PARTITIONS
3.1 ADDRESS SPACES FOR 8X930AX....ccutttteitrtarteeeiireesaiieessieeessseeessssesassnnessneeesssneenns
3.1.1  Compatibility with the MCS® 51 ArchiteCture ..........cccoiveeiiiieiiiie e
3.2 8X930AX MEMORY SPACE ......coiiiieiiite ettt e
321 On-chip General-purpose Data RAM .......cociiiiiiiiiiiieeeesee e
3.2.2 On-chip Code MEMOIY ....ccvveeiiiieiiee e
3.2.2.1  Accessing On-chip Code Memory in Region 00: ......
3.23 EXIEINAI MEIMOIY ..ottt ettt e et
3.3 8X930AX REGISTER FILE ...ttt
34 BYTE, WORD, AND DWORD REGISTERS........ccccoiteiiiiiiiiieie et
341 Dedicated REGISIEIS .......uiiiiiiiiiiii ettt e e e e
3.4.1.1  Accumulator and B REQISTEr ........ccoiiiiiiiiiiiiiiiiie ettt
3.4.1.2 Extended Data POINtEr, DPX ......uiiiiiiiiiiieeeeeee et e e e reaaanaaas




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

3.4.1.3 Extended Stack POINTEN, SPX ..ovviiiiiiiiiiiieceee e 3-14
3.5 SPECIAL FUNCTION REGISTERS (SFRS) ...uviiiiiiiiiiec ettt 3-15
CHAPTER 4

DEVICE CONFIGURATION
4.1 CONFIGURATION OVERVIEW ..ottt s et a e

4.2 DEVICE CONFIGURATION ....cooiiiiiiiiiitit ettt
4.3 THE CONFIGURATION BITS...c ottt ettt nne e
4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE
441 Page Mode and Nonpage Mode (PAGEH) ........cooi e
442 Configuration BitS RDLI0 .....cceoiiuiiiiieei ittt et e e s e e e e nee e e e e eeneeeeaeeannnees
4421 RD21:0=00 (18 External Address BitS) ........cc.cc.......
4422 RD1:0=01 (17 External Address BitS) .........cc.........
4.4.2.3 RD1:0 =10 (16 External Address BitS) .......ccccccceeviirierieiiiiiinnenenn.
4424 RD1:0 =11 (Compatible with MCS 51 Microcontrollers) .........cccccecvveveeeiicvennenn.
4.4.3  Wait State Configuration BitS ...........cciiiiiiiieiiiiiiiiie e
4.4.3.1 Configuration Bits WSAL:0#, WSBL:0# ......eeeeiiiiiiiie e
4.4.3.2 Configuration Bit XALEH# ..ottt
45 OPCODE CONFIGURATIONS (SRC)....utiiiieitiaiiieiienieesiee ettt ne et
45.1 Selecting Binary Mode Or SOUIrCe MOE ...........ueiieiiiiiiiiee e

4.6 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)
4.7 INTERRUPT MODE (INTR) ..ottt sre e

CHAPTER 5
INSTRUCTIONS AND ADDRESSING
5.1 SOURCE MODE OR BINARY MODE OPCODES .........cccocviiiiiiiiiinii e 5-1
5.2 PROGRAMMING FEATURES OF THE 8X930Ax ARCHITECTURE.............ccoviininnns 5-1
521 Data TYPES ...eiiiiiiiiiiiiiiiii it

5.2.1.1  Order of Byte Storage for Words and Double Words
5.2.2  Register Notation
5.2.3  Address Notation
5.2.4  Addressing Modes
5.3 DATA INSTRUCTIONS ...ttt e et s e e e e e e e e e e e e et aeeeeeeaeeaseeneas
531 Data ADAreSSiNg MOUES ......cc.uiiiiiiiiiiiieeee ettt e
5.3.1.1  RegIStEr AQArESSING ...coiuveeeiieeeiiiie ettt et
5.3.1.2 Immediate
LT 201 O T B 11 (= o! AP PUTRPPPPRPPRRRE
5.3.1.4 Indirect

5.3.1.5  DISPIACEMENT ....oiiiiiiiiiiiiie ettt
5.3.2 ArthmeEtic INSIIUCLIONS ...ooeiiiiiiieece e e e e e e e
5.3.3 LOQICAl INSIIUCHIONS ....eiiiiiieiiiie ettt
534 Data Transfer INSIIUCLIONS .........coooiiiiiiccce e eee e

5.4 BIT INSTRUCTIONS
54.1 Bit Addressing



Inte|® CONTENTS

55 CONTROL INSTRUCTIONS ...ttt ae e e e aeaaaaaeas 5-11
5.5.1  Addressing Modes for Control INStruCtionsS ............cccciveeeiiiiiiieee s 5-12
5.5.2 CoNditioNal JUMPS ..oiiiiiieii et e e re e e e s st e e e e e e satbeeaeeearaes 5-13
5.5.3 UNCONItioNal JUMPS ...vvviiieiiiiiiie ettt e e e a e e et be e e e e ansaae s 5-14
554  Calls @NA RELUIMS ...coiuiiiiiiiiiiiiiecie ettt et s 5-14

5.6 PROGRAM STATUS WORDS ......uiiiiiiiiiiiiiiiiiie e ren e ae e e e e e s s e s s nnnnnes 5-15

CHAPTER 6

INTERRUPT SYSTEM
6.1 OVERVIEW ..ttt e e e e e e e e e e e e s s s st e e e et e e e e eeeaaeeaeas

6.2 8X930Ax INTERRUPT SOURCES
6.2.1 External Interrupts
6.2.2  TIMEr INTEITUPLES ....vviieiee ittt e e et e e e ea e e

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

6.4 SERIAL PORT INTERRUPT ..ottt

6.5 USB INTERRUPTS. ...ttt sttt n et
6.5.1 USB FUNCLON INTEITUPL ..ottt ettt e e enb e e e e e eeeeeas
6.5.2 USB Start of Frame Interrupt
6.5.3 USB Global Suspend/Resume Interrupt ....

6.5.3.1  GlODal SUSPENG ...
6.5.3.2  GlODAl RESUME ...ociiiiiiiiiie et
6.5.3.3  USB REMOE WAKE-UD ...ooiiiiiiiiiiiiiiie ettt

6.6 INTERRUPT ENABLE ......ooiitiiiiiit ettt

6.7 INTERRUPT PRIORITIES .....ooiiiiiiieiiinit ettt nne e

6.8 INTERRUPT PROCESSING ......ooiiiiiiiiiiit ittt nne e
6.8.1 Minimum Fixed INterrupt TIME ......ooiiiiiieiiie e
6.8.2  Variable Interrupt Parameters

6.8.2.1 Response Time Variables
6.8.2.2  Computation of Worst-case Latency With Variables

6.8.2.3  Latency CalCUlatiONS ........coccieiiiiiiiiie e
6.8.2.4  BIOCKING CONILIONS ....cuveieiiiie ettt
6.8.2.5 Interrupt Vector Cycle ........
6.8.3 ISRS IN PTOCESS ...eiieiiiieitiee ettt ettt ettt s bbb e e es
CHAPTER 7
UNIVERSAL SERIAL BUS
7.1 USB FUNCTION INTERFACE.......ccoiiiiiei et 7-1
7.11 Serial Bus Interface ENQINe (SIE) ...ccooiiiiiiiiiiiiiiee e 7-1
7.1.2 Function Interface UNit (FIU) .......oooiiiii e 7-1
7.1.3  Special Function RegisSters (SFRS) .......ueiiiiiiiiiiii et 7-2
7.1.4 USB FUNCLION FIFO'S ...ttt 7-4
715 THE FIU SFR SELU ..ooiiiiiiiiiici ettt 7-4
7.2 TRANSMIT FIFOS ...ttt ettt 7-14
7.2.1  TransSmit FIFO OVEIVIEW ......ccuuiiiiiiieiiiie ittt ettt ettt e st 7-14



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

7.2.2  Transmit FIFO REQISIEIS ...c.iciiiiiiiie ittt e e e eiabaae e e e e saeaaeeeeaeennes 7-15
7.2.3  Transmit Data RegiSter (TXDAT) ..eiiiiiiiiiieeiiiiiiiee e eesiir e este e e e e eaiare e e e s sasbraaeeaennees 7-15
7.2.4  Transmit Byte Count Registers (TXCNTL/TXCNTH) ...ooviiiiiiiiieieiiiieee e 7-15
7.2.5 Transmit Data Set ManagemMENT .........ccoiiiiiiiee e ettt ee e e ee e e e e e s sraeeee s 7-17
7.3 RECEIVE FIFOS ...ttt ettt e et e e site e sebe e e entne e 7-24
7.3.1 RECEIVE FIFO OVEIVIEW ....eeiiiiiiiiiiiie ittt ettt ettt 7-24
7.3.2 RECEIVE FIFO REQISIEIS .oiiiiiiiiiei ettt e et a e e 7-25
7.3.2.1 Receive Data Register (RXDAT) ..ocioiiiiieeieeiiiiie ettt raa e 7-25
7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH) .....ccocovivieiiiiiiiecieiiiieeeee 7-25
7.3.3 Receive FIFO Data Set Management ........cc.eeieeiiiiieieee e esiee e e e siie e e e 7-26
7.4 SIE DETAILS ..ttt et ettt et e et e et eae s 7-33
7.5 SETUP TOKEN RECEIVE FIFO HANDLING ...ttt 7-33
7.6 ISO DATA MANAGEMENT ..ottt ee et ee e ste e s a e snee e e sree e e sneeeesneeeenns 7-34
7.6.1 Transmit FIFO ISO Data Management ..........coocuueeieriiiiieieeeeaiiiieeeeeseeeeeeessineeeee s 7-34
7.6.2 Receive FIFO ISO Data Management ...........coooiiiiieiieiiniiiieeeeeieeee e 7-35
CHAPTER 8
USB PROGRAMMING MODELS
8.1 OVERVIEW OF PROGRAMMING MODELS .......ccotiiiiiiiiiiieeieeeiec e 8-1
8.1.1 UNenUMErated STALE .......ooiiiiiiiiiiiee et e b ee e e e s bt e e e e s sta e e e e e s nnbaees 8-2
8.1.2 [ | LT = L (= PR PUPRRRN 8-2
8.1.3 Transmit and RECEIVE ROULINES ......cooiiiiiiiiiee it see e aae e e e 8-2
8.1.4 USB INEEITUDES ...eeeeeieeiete ettt e e e e st e e e s s e e e e e aenenes 8-2
8.2 TRANSMIT OPERATIONS ...ttt ettt ettt ee e e e st e e e nnee e e nneeas 8-3
8.2.1 OVBIVIBW ittt ettt ettt e e ettt e e e e e a bttt e e e e nb bt e e e e sabbeeee e e ebbbseeeeeannnaeaaeaannn 8-3
8.2.2 Pre-transmit OPEIAtiONS .........oiiuiieiiiiiieii ettt e et e e e s eeaeeee e e e annenes 8-5
8.2.3 POSE-tranSmit OPEratiONS .......c..ueiiiiiiiiiiiee ettt et ee e e sbe e e e e e ebeeeas 8-6
8.3 RECEIVE OPERATIONS..................
8.3.1 OVEIVIEW ..ooiiiiiiiiieeee i
8.3.2 Post-receive Operations
8.4 SETUP TOKEN ..ottt ettt sttt et e e sttt e e sae e e e st b e e e snte e e enneeesanbeeeanseeesnneas
8.5 START OF FRAME (SOF) TOKEN ....ouiiiiiiieiiieeeiieeester e stteeesteeesiae e ssaee s sntaeessaeesneas 8-14
CHAPTER 9
INPUT/OUTPUT PORTS
9.1 INPUT/OUTPUT PORT OVERVIEW .......uoiiiiiiieiie et eee e neeenneee e 9-1
9.2 1/O CONFIGURATIONS . .....teie ittt ettt s e e tbe e e st e e s te e e s sbeeeentaeeesaeeesnaeeennes 9-2
9.3 PORT 1 AND PORT 3 ...ttt iiiie i itiee ettt ettt e e st e s aaa e st e e s ante e e saeaeasteeeentaeeensanaessneennnes 9-2
9.4 PORT O AND PORT 2 ...ttt iiiiie ittt ettt st et s taa e tte e e snte e e sae e e s steeeentaeeensanaensneennnes 9-2
9.5 READ-MODIFY-WRITE INSTRUCTIONS .......oiiiiiiiiiiiie et 9-4
9.6 QUASI-BIDIRECTIONAL PORT OPERATION ....ccctitiitiiieiiieeniiiee et see e 9-5
9.7 PORT LOADING ... .uieiiiiieitiee st e estee e staea e stteeesstaeessaaee s taaessssee s ssbeeeanseeessaaessseeeeasseeennees 9-6
9.8 EXTERNAL MEMORY ACCESS ...ttt iiiieiiiie e st siteae s steessaee e saaeaesstaeesaneessseessnsaenns 9-6

Vi



Inte|® CONTENTS

CHAPTER 10
TIMER/COUNTERS AND WATCHDOG TIMER

10.1 TIMER/COUNTER OVERVIEW.......cccoiiiiiiiiiiiiii et
10.2 TIMER/COUNTER OPERATION
10.3 TIMER O..oovviiiieiiieieccee e
10.3.1 Mode 0 (13-bit Timer) .............
10.3.2 Mode 1 (16-bit Timer) .......ccoocooeeeiiiiiinenn.
10.3.3 Mode 2 (8-bit Timer With Auto-reload)
10.3.4 Mode 3 (TWO 8-Dit TIMEIS) ...ueiiiiiieiiiiii et e e
L0.4  TIMER Lottt bttt a ekt e bt ekt sae e et e e kb e bt e b e e e b e e nnnennneans
10.4.1  Mode 0 (13-Dit TIMEI) ..eueiiiieiiiii ettt et e e e e e e e e annees
10.4.2  Mode 1 (16-Dit TIMEI) ..eeeiiiiiiiie et e s
10.4.3 Mode 2 (8-bit Timer with Auto-reload)
10.4.4  MOAE 3 (HAIL) et e e e et e e e e e e e e e e ennee
10.5 TIMER O/1 APPLICATIONS......cotiiiitieiieitt ettt ettt
10.5.1 Auto-load Setup EXAMPIE .......oeiiiiiiiiiiie e
10.5.2 Pulse Width MEASUIEMENLS .........uviiiiriiireieiiiie e
L10.6  TIMER 2.ttt e et e ettt ettt et e e te e e e e e e e e e eaaeaeaa e rneae
10.6.1  CaAptUre MOOE .....ooiiiiiiiiiiiie ettt eb et e e e e
10.6.2  AULO-Teload MOUE .......ooiiiiiiiiiieiiie et
10.6.2.1 Up Counter Operation ........
10.6.3 Up/Down Counter Operation ...
10.6.4 Baud Rate Generator Mode ....
10.6.5 Clock-out Mode ............cccvvene
10.7  WATCHDOG TIMER ...ttt ettt s
10.7.1  DESCIIPUOMN «.eeiiiiiieeeiiie ettt ettt e e st e st et e e abr e e e aab et e naneeennnnees
10.7.2  USING the WDT ..ottt ettt
10.7.3  WDT DUrNg 1dIe MOAE ......coimiiiiiiii et
10.7.4 WDT DUNNG POWEIDOWN .....cuviiiiiiiiiiiie ettt

CHAPTER 11
PROGRAMMABLE COUNTER ARRAY

11.1  PCA DESCRIPTION ...ttt ettt sbe e r e sne e e nan e ne s 11-1
11,11 ARErnate PO USAQGE .......ooiiiiiiiiiiiie ettt et e e e e e nnen e e e e e s e 11-2

11.2  PCA TIMER/COUNTER......coiititie ittt sttt sttt 11-2

11.3 PCA COMPARE/CAPTURE MODULES ........coociiiianiiiiteicenee e 11-5
11.3.1  16-bit Capture Mode ..........ccccovvvvrveeeniineenns
11.3.2 Compare Modes ..........ccccuveene
11.3.3 16-bit Software Timer Mode ....
11.3.4 High-speed Output Mode ........
11.3.5 PCA Watchdog Timer Mode .......
11.3.6  Pulse Width Modulation Mode

vii



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

CHAPTER 12
SERIAL I/O PORT
12,1 OVERVIEW .ottt ettt et e e ebe e et e et eenabee s
12.2  MODES OF OPERATION.....cttiiititiiti ettt ettt sttt saae et e e s
12.2.1  Synchronous Mode (MOGE 0) .....cccceiuiiiieeeiiiiiiie e esiiieeee e e e e e e s s ae e e s e e e e e s e
12.2.1.1  TransmisSion (MOGAE 0) ......eeieiiiiiiiiiieeiiiiiiee e e ee e s e e e e e et e e e e aneaae s
12.2.1.2 Reception (MOUE 0) ....coceiiiiiiiieeeeiiiiiie e sttt e ettt e e et e e e s s b e e e e s st e e e e e s snaees
12.2.2  Asynchronous Modes (Modes 1, 2, and 3)
12.2.2.1 Transmission (Modes 1, 2, 3) ....ccceveeiiiiieieeeeeeeeeen.
12.2.2.2 Reception (Modes 1, 2, 3)
12.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)
12.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)...ccccuvtiiiiianiiienieeeninennn 12-8
12.5 AUTOMATIC ADDRESS RECOGNITION ...ttt ettt 12-8
12.5.1  GIVEN AGAIESS ....eeiiiiiie ittt ettt e rb e e st e et be e e nsbeeesnbneeaas
12.5.2  BroadCast AQUIESS ......coovuiiiiiiiiiiiiieiieie sttt ettt e sab e e st snne e eas
12.5.3  RESEEAUAIESSES ..cooiuiiiiiiiie ittt ettt e ennaaeas
126 BAUD RATES.....cccciiiiiiiiinieene
12.6.1 Baud Rate for Mode 0 T
12.6.2 Baud Rates for Mode 2
12.6.3 Baud Rates for Modes Tand 3T ..........ccooovviiviiieennnn,
12.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and 3) T
12.6.3.2 Selecting Timer 1 as the Baud Rate Generator T
12.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and 3) ........ccccceviiiieiieeiiiiiceeen e,
12.6.3.4 Selecting Timer 2 as the Baud Rate Generator LA

CHAPTER 13
MINIMUM HARDWARE SETUP
13.1 MINIMUM HARDWARE SETUP
13.2 ELECTRICAL ENVIRONMENT
13.2.1  Power and GrouNd PiNS .......ccoiiiieiiiiiiii i r e e e e e e e e e e e e e e s s saenenenaaneeees
R T2 U T 11 =1 Yo I o USSP
R 70C B o T 1Y @] o S0 1= =1 1o o
13.3  CLOCK SOURCES. ... ..ottt ettt e e e e e e e e e e e e s s s s e e e eaaaaeaaaaeaeeasasasnnnnnsnsnnnes
13.3.1  On-chip OSCllator (CryStal) ........oooiiiiiiiieaiie e
13.3.2  On-chip Oscillator (Ceramic Resonator) ....
13.3.3  EXEEINAI ClOCK .....uvviiiiiiiiiiiiiiie et e e e e e e e e e e e e e s e e e s nrennnanees
13.4  RESET soeeiteeeeeeee ettt e et et e ettt e et et et et et ettt et et et et et et et ettt et e ettt et et e e et nen
13.4.1  Externally Initiated RESELS ....ccoiiiiiiiiiiiiiie ettt
13.4.2 WDT INItIALEA RESELS ..oeviiiiiiieiiiiii et e e e e e e e e e s e e e s a e e e e ee s
13.4.3  USB INItIAtEA RESELS ..ocvviiiiiiieiiiiee et e e e e e e e e s e e e s a e e eeee s
13.4.4  RESEEOPEIALION ...oiiiiiiiiiiie ittt ettt sb et st e ebreeesibeeen
13.4.5  POWEI-0N RESEL ..ottt e e e e e e e e e e et eeeeaeeeeeesaaees

viii



Inte|® CONTENTS

CHAPTER 14
SPECIAL OPERATING MODES
141 GENERAL....oiiiiiit ettt 14-1
142 POWER CONTROL REGISTERS......cciiitiiiiieiie ittt s 14-1
14.2.1  Serial I/O CONrOl BiItS ......ccueciiiiiiieiieiiie et 14-1
14.2.2  POWEE Off FIAQ oiviiiiiiiiiiii ettt e e et ae e e e e esat e e e e e e sntrbeaeeasnnnes
14.3 IDLE MODE ......ccoeiiieiiiiieeee
14.3.1 Entering Idle Mode
14.3.2  EXItING 1AIE MOUE ...ttt e et e e e e e e e e nneeas
14.4  USB POWER CONTROL ....ootiiitiiiitie ittt ettt nn st beesne e nneesne s 14-6
14.4.1  Global SUSPENT MOUE ....ccoiiiiiiiiee ettt e e 14-6
14.4.1.1 POWErdOWN MOGE ......oiiiiiiiiiii ettt e e et e e e e saeaeeae e e aeaes 14-6
14.4.1.2 Entering POWErdown MOGE ........cccciuuiieiiiiiiiie i eriiiie e e sirie e e e stvevee e s s e sreneeae e s snaes 14-7
14.4.1.3 EXiting POWerdown MOCE .........ccccuiiiiieiiiiiiie ettt et
14.4.2  Global RESUME MOUE .......ccocoiiiiiiiie i
14.4.3  USB REMOE WEKE-UD ...uveiiiiiiiiiiiiieiieee ettt
145 LOW CLOCK MODE..........cccvvrvveenen.
14.5.1 Entering Low Clock Mode
14.5.2  EXiting LOW CIOCK MOGE .....coviiiiiiiieiiiieiieee ettt
14.6  ON-CIRCUIT EMULATION (ONCE) MODE ........cciiiiiiiiiiciiieiie et 14-9
14.6.1 ENtering ONCE MOUE ......oiiiiiiiiiieee ettt e et e e e eantre e e e eaeee 14-9
14.6.2  EXItiNg ONCE MOE ...ttt 14-9
CHAPTER 15
EXTERNAL MEMORY INTERFACE
15.1  OVERVIEW Lottt ettt e et e e e e e e e e e e e e s e s sabnbbbbbarenees 15-1
15.2 EXTERNAL BUS CYCLES ..ottt 15-3
15.2.1 BuUS Cycle DEefiNItIONS ......ooiiiiiiiiiiiieiiie ettt e s 15-3
15.2.2 Nonpage Mode BUS CYCIES ......ooiiiiiiiiiieiiiieii ettt 15-3
15.2.3  Page MOde BUS CYCIES .....cooiiiiiiie ittt 15-6
15.3  WAIT STATES ...ttt sttt ettt s bbb e sneenanenneens 15-8
15.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES..........cccoceveeennen. 15-8
15.4.1 Extending RDH/WRHIPSENH ........oooiiiiiiiiiiiii ettt 15-8
15.4.2 EXENdING ALE ..o 15-10
15.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES.......cccocoiiiiieeieenen 15-11
15.5.1 Real-time WAIT# Enable (RTWE) ....cccviiiiieeiiee e

15.5.2 Real-time WAIT CLOCK Enable (RTWCE)
15.5.3 Real-time Wait State Bus Cycle Diagrams

15.6 CONFIGURATION BYTE BUS CYCLES.............

15.7 PORT O AND PORT 2 STATUS ...oiiiiitiiiee ettt
15.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode ..........ccccoevveiniieiiieeeniiecneeeen 15-16
15.7.2 Port 0 and Port 2 Pin Status in Page Mode ... 15-16

15.8 EXTERNAL MEMORY DESIGN EXAMPLES.........cccccctiiitiiieiiteiie e 15-17



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

15.8.1 Example 1: RD1:0 = 00, 18-hit Bus, External Flash and RAM ............ccccceeeeennee.

15.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM ............cccccceeeeennee.

15.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM .........ccccceiiiiiiiieiiiiiieee e,

15.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM .........ccccceeiiiiiiieeiiiiieee e,

15.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM
15.8.5.1 An Application Requiring Fast Access to the Stack ........ccccccovviiiiieeeiiiiiiee e,
15.8.5.2 An Application Requiring Fast Access to Data ...........ccccceeeveuennnen.

15.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM ....

15.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash ............ccccooiiiiiiiniiiinniie,

CHAPTER 16
VERIFYING NONVOLATILE MEMORY

16.1  GENERAL .. ..oiiiiiii ettt ettt b ekt e s et b e n et enne e n
16.1.1 Considerations for On-chip Program Code Memory

16.2  VERIFY MODES ... ... e

16.3  GENERAL SETUP ...ttt te e e e e e e e e e e e e s e e s ss s ssaeaenereneees
16.4  VERIFY ALGORITHM. .. .uiiiiiiiiiiiiiiiiiiitiie ettt e e e e e e e e e e s s s sbaanennaneaees
16.5 LOCK BIT SYSTEM ...ttt ee e e e e e e e e e e e e s e s e s sinsnbnrneneees

16.5.1  ENCIYPUON AITAY ..ooiiiiiiiiiiiie ittt ekt ettt nat et e st e e e nenee s
16.6  SIGNATURE BYTES ... .oiiiiiiiiiiiiie ittt sttt b et s
APPENDIX A

INSTRUCTION SET REFERENCE

Al NOTATION FOR INSTRUCTION OPERANDS .......ccoiiiiiiiiiiiieeeeee e
A.2  OPCODE MAP AND SUPPORTING TABLES .......ccccoiiiiiiiiieeie e

A3 INSTRUCTION SET SUMMARY
A3.1 Execution Times for Instructions Accessing the Port SFRs
A3.2 INSErUCLION SUMIMANIES ...oovviieiiee et

A4 INSTRUCTION DESCRIPTIONS

APPENDIX B
SIGNAL DESCRIPTIONS

APPENDIX C

REGISTERS
Ci1 SFRS BY FUNCTIONAL CATEGORY ..ooiiiiiiiiiiieie ettt C-2
Cc.2 SFR DESCRIPTIONS ... C-6



intel.
APPENDIX D
DATA FLOW MODEL

GLOSSARY

INDEX

CONTENTS

Xi



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

FIGURES
Figure
2-1 8X930Ax in a Universal Serial BUS SYSIEM........ccvviieiiiiiiiiee et
2-2 Functional Block Diagram of the 8X930AX ........uuuiiiiiiiiiieeeiiiiiiee e eeirree e srrree e
2-3 8X930Ax USB Module BIOCK DIiagram ...........cceiiciiiieeiiiiiieeeeesiieeeeesiiieeeeesssineaeeesnnns
2-4 The CPU ..o
2-5 Clocking Definitions (PLL Off) ...oooiiiiiiiee e
2-6 Clocking DefinitioNS (PLL ON) ..coiiiiiiiiieeeeeeiie ettt e e s eeeee e e e s e e e e e s enae e e e e anes
3-1 Address Spaces for the 8X930AX .....cccvvveeeeiviiiereeeiiinnene.
3-2 Address Spaces for the MCS® 51 Architecture
3-3 Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture............. 3-4
3-4 BXI30AX AQUIESS SPACE ....eieeiieeieiiii e e ettt e e e et ee e e e e sttt e e e e s atee e e e e s e aneeeeaesaantaeeaaeanne
3-5 Hardware Implementation of the 8X930Ax Address Space
3-6 The RegISter File ...
3-7 Register File Locations 0-7
3-8 Dedicated Registers in the Register File and their Corresponding SFRs
4-1 Configuration Array (ON-ChiP).....ccociiiiee et e e ere e e e s
4-2 Configuration Array (EXTEINAL) .......c..ueiiiiiiie et e e

4-3 User Configuration Byte 0 (UCONFIGO)
4-4 User Configuration Byte 1 (UCONFIG1)
4-5 Internal/External Address Mapping (RD1:0 = 00 and 01)
4-6 Internal/External Address Mapping (RD1:0 = 10 and 11)

4-7 Binary Mode OPCO0e Map.......coiuiiiiiee it e ettt stite e e st e e e e e e s sabe e e e e e eaaae s
4-8 Source Mode Opcode Map

5-1 Word and Double-word Storage in Big Endien FOrmM ............ccoooiiiiiiiiieeciinc e
5-2 Program Status Word REQISIET..........cciriiiiiiieiiiie e
5-3 Program Status Word 1 REQISTEI........cociuiiieiiiiiiee ettt
6-1 INterrupt CONLrol SYSIEIM ....ooiiiiiieiee e ee s
6-2 USB Function Interrupt Enable Register

6-3 USB Function Interrupt Flag REJISTEr.......cc.vviiiiiire et
6-4 Interrupt Enable REJISIEr O .......ooiiiiiiiiiee et
6-5 USB Interrupt Enable Register ......................

6-6 IPHO: Interrupt Priority High Register O .........

6-7 IPLO: Interrupt Priority Low Register O...........

6-8 IPH1: Interrupt Priority HiIgh REQISIEr L.....ccciiiiiiiee it
6-9 IPL1: Interrupt Priority LOW REQISIEr L.....cccuvviiiiiiiiiieeniie e
6-10 The Interrupt ProCess.......cccocvevviiieiiieennneenn

6-11 Response Time Example #1
6-12 Response Time Example #2
7-1 EPINDEX: Endpoint INdeX REGISIET .......uuviiiiiiiiiiei ettt

7-2 EPCON: Control ENdpoint REGISIEN........ccciuiiiiiieiiie et
7-3 TXSTAT: Transmit FIFO Status Register

7-4 RXSTAT: Receive FIFO Status REJISTEr........ccccviiiiieeiiieeece e
7-5 SOFH: Start of Frame High REeQISLEr.........ccoiiiiiiiiieee e
7-6 SOFL: Start of Frame LOW ReQISEN .......ccvviiiei it
7-7 FADDR: Function Address REQISIEN........cccuuiiiiiiiiiiee ettt

Xii



Inu@; CONTENTS

FIGURES
Figure
7-8 Transmit FIFO OULINE .......oiiiiie it
7-9 Transmit Byte COUNt REQISTEIS......c.uuuiiieiiiiiiie e et e et e e e e e e e e sareeeae s
7-10 TXDAT: Transmit FIFO Data REQISIEr........ccuviiiiiiiiiiie e
7-11 TXCNTH/TXCNTL Transmit FIFO Byte Count Registers
7-12 TXCON: Transmit FIFO Control REQISLEN .......ccoiiiiiiiiee et
7-13 TXFLG: Transmit FIFO Flag REQISIEN .....c.ueiiiiiiiiiiiie et
7-14 Receive FIFO .....occociiiieieeec e
7-15 RXDAT: Receive FIFO Data REQIStEr ........cccevviiiiiieeiiiiiieeceeiiieeee e
7-16 RXCNTH/RXCNTL: Receive FIFO Byte Count Registers...
7-17 RXCON: Receive FIFO CoNntrol RIS ........oiiueeiiaiiiiiiie et e e
7-18 RXFLG: Receive FIFO Flag RegISEr ........oco i
8-1 Program FIOW ........ccoeeiiiiiiiie e
8-2 High-level View of Transmit Operations.........
8-3 Pre-transmit ISR (Non-Isochronous) .............
8-4 Post-transmit ISR (NON-ISOCNIONOUS)........ciiiiiiiiiiiie ettt
8-5 Post-transmit ISR (ISOCNITONOUS) ......ccoiuuiiiiiiieiiiii et
8-6 High-level View of Receive Operations .........
8-7 Post-receive ISR (Non-isochronous).............
8-8 Receive SOF ISR (Isochronous) ...................
8-9 Post-receive ISR (CONLIOI).........ccuuiiiiiiiiiee e e e e e ennes
8-10 Hardware Operations for SOF TOKEN........cccoiiiiiiee e i
9-1 Port 1 and Port 3 Structure
9-2 PO O STIUCLUIE ...ttt ettt e et e e e e e e e e s s e s e bbb nbernnneeeees
9-3 PO 2 STIUCKUIE ...ttt e et e e e e e e e e e e e s e bbb benreraeeeees
9-4 Internal Pullup Configurations ...........ccccuuiieiiiiiiiie ettt
10-1 Basic Logic of the TIMEr/COUNLEIS .........uueieeiiiiiiie ettt
10-2 Timer 0/1 in Mode 0 and Mode 1
10-3 Timer 0/1 in Mode 2, AUtO-REI0AA............covviiiieeee e
10-4 Timer 0in Mode 3, TWO 8-Dit TIMEIS......covvuiiiie e e e e e e eeeens

10-5 TMOD: Timer/Counter Mode Control Register
10-6 TCON: Timer/Counter Control Register
10-7 Timer 2: Capture Mode .........cccceeevviviieeeenns
10-8 Timer 2: Auto Reload Mode (DCEN = 0)
10-9 Timer 2: Auto Reload Mode (DCEN = 1)

10-10  Timer 2: Clock Out Mode..........cceeveeeeiunnnennn.

10-11 T2MOD: Timer 2 Mode Control Register

10-12 T2CON: Timer 2 Control Register .................

11-1 Programmable COUNTEN AITAY..........coiiiiiiiieeieiiiiiee e et e e ertte e e e e saarae e e e e sataaaeeeeeennes
11-2 PCA 16-bit Capture MOUE ......cc.uiiiiiiiiiiiiie ettt s
11-3 PCA Software Timer and High-speed Output Modes

11-4 PCA Watchdog Timer MOGE.........ccociiiiiiiiiiiie ettt
11-5 PCA 8-Dit PWM MOUGE ......ceveieciiieeeiiie et se ettt e ntee e st e e nneeeannaeeenes
11-6 PWM Variable DULY CYCIE ......ccoiiiiieiiieeeeee et
11-7 CMOD: PCA Timer/Counter MOde REJISLEN .........ccoviuiieiiiie et

xiii



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

FIGURES
Figure Page
11-8 CCON: PCA Timer/Counter Control REQISter...........uvvieiiiiieieeeiciiiiie e 11-14
11-9 CCAPMx: PCA Compare/Capture Module Mode Registers..........ccccoevvevveeiiiinenenn. 11-15
12-1 Serial Port BIOCK DIiagQram ..........ccoiiviieeeiiiiiiie e st e siiaee e e etaee e e e s s saae e e e s s saveeeae s
12-2 SCON: Serial Port Control Register
12-3 YT e [0 Ty 11 o RSP RRPPIN
12-4 Data Frame (Modes 1, 2, @Nd 3) ...ccoeeiuiiiiieaiiiiiie et a e ee e e e e
12-5 Timer 2 in Baud Rate Generator Mode
13-1 Minimum Setup .......ccccceeeeviinneenn.

13-2 CHMOS On-chip Oscillator
13-3 External Clock Connection for the 8X930Ax
13-4 External Clock Drive WavefOormMS...........uuiii i
13-5 Reset Timing Sequence ........c.ccoocceeeeeriaeneen.

14-1 Power Control (PCON) Register
14-2 USB Power Control (PCON1) Register
14-3 Idle and Powerdown ClOCK CONIOL .........oiiiiiiiiiiieiiee et
14-4 Suspend/Resume Program with/without Remote Wake-up ...........ccccoooeeeiniiiienennns 14-10
15-1 Bus Structure in Nonpage Mode and Page Mode
15-2 External Code Fetch (Nonpage Mode)
15-3 External Data Read (Nonpage Mode) ...........

15-4 External Data Write (NONPage MOAE) .......cociiiiiiiieieciiiiie ettt et

15-5 External Code Fetch (Page MOUE) ..........uuiieiiiiiiiee et
15-6 External Data Read (Page Mode)

15-7 External Data Write (Page Mode)

15-8 External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State) ...........cccccve... 15-9
15-9 External Data Write (Nonpage Mode, One WR# Wait State) ..........cccccceeveevveeeeeennen, 15-9
15-10 External Code Fetch (Nonpage Mode, One ALE Wait State)..........cc.cccoevvvveeeevnnnn. 15-10
15-11 Real-time Wait State Control Register (WCON).......cc.vevveiiiiieiie e 15-11
15-12  External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)................ 15-13
15-13  External Data Write (Nonpage Mode, Real-time Wait State)

15-14  External Data Read (Page Mode, Real-time Wait State) ....................

15-15 External Data Write (Page Mode, Real-time Wait State)......................

15-16  Configuration Byte Bus CyCleS..........cccovvveeeiiiiiieeeeeeiinen.

15-17  Bus Diagram for Example 1: 80930AD in Page Mode ........ccccceeevvciveiee i,
15-18  Address Space for EXamPpPle L.......cooviiiiiiiiiiiiie e
15-19 Bus Diagram for Example 2: 80930AD in Page Mode

15-20 Address Space for Example 2........cccocoveiiieeeniieenieeennenn

15-21 Bus Diagram for Example 3: 83930AE in Nonpage Mode ...................

15-22  Memory Space for EXamPple 3 ......ooo oot
15-23  Bus Diagram for Example 4: 83930AE in Nonpage Mode ..........cccooveeviviiniieneninnen.
15-24  Address Space for Example 4

15-25 Bus Diagram for Example 5: 80930AD in Nonpage Mode ..........cccovvverciniiiineeennnnn.
15-26  Address Space for EXamplesS 5 and 6 ..........coovvviiiiieiiiiie i
15-27 Bus Diagram for Example 6: 80930AD in Page Mode .........ccccooeveiiieeeiiiieenieeennen,
15-28 Bus Diagram for Example 7: 80930AD in Page Mode .........cccoveeeinieeeiiiieeniecennen,

Xiv



Inu@; CONTENTS

FIGURES
Figure Page
16-1 Setup for Verifying Nonvolatile MEemOIY ........ccooiiiiiiiiiiiieeeeeciee e 16-4
16-2 VENITY BUS CYCIES ...veiiiiiiiiiiiee ettt e e e sttt e e e s et aaaa e e e s sbaaaeaeessnaes 16-4
B-1 8X930AX 68-PiN PLCC PACKAGE .....vvvvieiiiiiiiie et s ettt et e e st e e e satvan e e enens B-1

XV



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TABLES
Table
1-1 Intel Application SUPPOIt SEIVICES.........uueiie et e e eaeeeeas
2-1 8XO930AX FEAUIES SUMMEANY ...ttt et et e e e e e e e e e e e e e e e e e aeeeeeeeaaeeannnns
2-2 8X930Ax Operating Frequency ..
3-1 Y Yo (o LY SV F= o] o1 T 1= TSP PPR PSPPI
3-2 Minimum Times to Fetch Two Bytes of Code..........cccciiiiiiiiiiiiiiee e
3-3 Register Bank SEIECHON .........coiiiiiii et
34 Dedicated Registers in the Register File and their Corresponding SFRs .
3-5 BXIB0AX SFR IMAP ...tttk nb ettt ettt
3-6 (070 (=BT o T TP PPPP PPN
3-7 USB Function SFRs
3-8 /O POrt SFRS .....ccocvviiiiiiiciee

39 Serial I/0 SFRs
3-10 Timer/Counter and Watchdog Timer SFRs...

3-11 Programmable Counter Array (PCA) SFRS......oociiiiiiiiiee e
4-1 External Addresses for Configuration ArTay ............cccccueeieeeiiiiiiree e
4-2 Memory Signal Selections (RD1:0) .......ccccceeevvivvieeeeinnnen.

4-3 RD#, WR#, PSEN# External Wait States

4-4 Examples of Opcodes in Binary and Source Modes

5-1 D2 1= B Y oSS TP PO TSPPPPOPPPPINY
5-2 Notation for Byte Registers, Word Registers, and Dword Registers ...........cccccvcvvennee.
5-3 Addressing Modes for Data Instructions in the MCS® 51 Architecture.............c.c........
5-4 Addressing Modes for Data Instructions in the MCS 251 Architecture.............cccoeec....
5-5 Bit-addressable LOCAtIONS ..........coouiiiiiiieiiii it
5-6 Addressing Two Sample Bits..............ccuveeee...

5-7 Addressing Modes for Bit Instructions...........

5-8 Addressing Modes for Control Instructions....
5-9 Compare-conditional Jump INStIUCIONS ........cooiiiiiiiie e
5-10 The Effects of Instructions on the PSW and PSW1 Flags

6-1 Interrupt System INPUt SIgNAIS .........cocviveiiiiiiieec e

6-2 Interrupt System Special Function Registers ....................

6-3 Interrupt Control MatriX.........ccovveeenierenieeereee e

6-4 USB Interrupt CONtrol MALIIX ......ociveeeirieeeinieseees e
6-5 LEVEI OF PrIOITEY ..ttt e e s e e s e e
6-6 Interrupt Priority Within Level

6-7 Interrupt Latency Variables ........

6-8 Actual vs. Predicted Latency Calculations .
7-1 SIGNAI DESCIIPHIONS ... iiteee ettt sr e e e st e e e e e st e nnee
7-2 USB FUNCHON SFRS ..ottt e ettt ee e e e e saee e e e e e staee e e e s anneeeas
7-3 8X930Ax FIFO Configurations

7-4 Writing to the Byte CoUNt REQISIET ........cviiiiiiiiiiiie e e
7-5 Truth Table for Transmit FIFO Management..........coocuveiiieeininieeiieeeniieee e seeee e
7-6 Status of the Receive FIFO Data Sets .........ccccoeueeineeenne .
7-7 Truth Table for Receive FIFO Management..............c....... "
9-1 Input/Output Port Pin DESCHPLIONS .....c.vviieiiiiiiiiee it

Xvi



Inte|® CONTENTS

TABLES
Table
9-2 Instructions for External Data MOVES...........ooiuiiiiiiiiiiieee et
10-1 EXEErNal SIGNAUS ... .eeeeeiiiei ettt et e e e e e e nees
10-2 Timer/Counter and Watchdog Timer SFRs...
10-3 Timer 2 Modes Of OPEIatiON .........ccciiiiiee e esttee e e s e e
11-1 PCA Special Function REQISLErS (SFRS) ...uciiiiiiiiiiie ittt esiiree e sitreea e
11-2 External Signals .........ccccoeevvievieiiiciiieee e,
11-3 PCA Module Modes ....
12-1 Serial Port Signals........ccccoeceiieeiiiiiiiiee e,
12-2 Serial Port Special Function Registers
12-3 Summary of BaUd RAES ........ovviiiiiiiiie ettt e et bae e

12-4 Timer 1 Generated Baud Rates for Serial /0O Modes 1 and 3
12-5 Selecting the Baud Rate Generator(s)

12-6 Timer 2 Generated Baud Rates ....................
14-1 Pin Conditions in VarioUS MOUES.........c.uuuuiiiiiiieeeeeeeeeeie e e e e e e e e eeeeaaanes
15-1 External Memory Interface SIgNalS.........ccoviiiriiiiiiiie e

15-2 Bus Cycle Definitions (No Wait States)
15-3 Port 0 and Port 2 Pin Status In Normal Operating Mode
16-1 Signal Descriptions

16-2 VEITY IMOUES ..ot e e e e are e nnn e e e snreeenee
16-3 LOCK Bit FUNCLION ........oviiiiiie ettt e et e e e e e e e e e e e erereaaaans
16-4 Contents of the Signature Bytes

16-5 TimMING DefINItIONS ... e s et ea s
A-1 Notation for Register OPErandS..........cccuuiiiieiiiiiiie ettt e
A-2 Notation for Direct Addresses...............ceee.....

A-3 Notation for Immediate Addressing

A-4 Notation for Bit ADdreSSing.......ccccovvevevrveerieeeniieeeee e

A-5 Notation for Destinations in Control INStrUCLIONS ...........uceeviiieiiiieieeeccee e,
A-6 Instructions for MCS® 51 MICrOCONIIOIEIS ........uuuvvvviiiiiiiiiieiieeeee e eee e
A-7 Instructions for the 8X930Ax Architecture.....

A-8 Data INStructions ........cccovvvvvvvveeeieeeeeeeeeeeeeennn

A-9 High Nibble, Byte 0 of Data Instructions........

A-10 Bit INSEIUCTIONS ...ttt e e e e e e e e e e e e e e e e e e e e eeeesearaans
A-11 Byte 1 (High Nibble) for Bit INStrUCLIONS.........cocveiiiiie e
A-12 PUSH/POP INStructions ........ccccevvvveeeeeeeeeeennn.

A-13 Control Instructions ...................

A-14 Displacement/Extended MOVs...
A-15 INCIDEC ... ettt bttt b et a bt e st e et ekt e bt e enb e e sneeeneenbne e
A-16 ENcoding fOr INC/DEC ........ooiiiiiiiiiiie ettt
A-17 Shifts
A-18 State Times to ACCESS the POrt SFRS ..ottt
A-19 Summary of Add and Subtract INStUCHONS .......c.eeviiiiiiiieei e
A-20 Summary of Compare INStructions............coccceevvveeeiieeennne.

A-21 Summary of Increment and Decrement Instructions
A-22 Summary of Multiply, Divide, and Decimal-adjust Instructions



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TABLES
Table
A-23 Summary of Logical INStIUCHIONS ........ccoiiiiiiiiie i
A-24 Summary of MOVE INSITUCTIONS ........vviieiiiieiie ettt e e e e e e
A-25 Summary of Exchange, Push, and Pop Instructions
A-26 Summary of Bit INStruCtioNS..........cuveeeiiiiiiiiiiee e
A-27 Summary of Control INSTFUCLIONS ........coeiiiiiiee e
A-28 FIag SYMDOIS....co et ee e e e e e eees
B-1 8X930Ax Pin Assignments Arranged by Functional Categories
B-2 Signal Descriptions...........cccccvveeiiiiiiiee e,
B-3 Memory Signal Selections (RD1:0)
B-4 8X930AX Operating FrEOUEINCY ......ccciiiiiiiiieeeaiiie e e ettt e et ee e e eatee e e e e seeeeeee s eeeees
C-1 1) 1T 07N QY o = 1V - o RS
C-2 Core SFRS........uevvevneees
C-3 /0 Port SFRs...............
C-4 Serial /0 SFRs ...........
C-5 USB Function SFRs
C-6 Timer/Counter and Watchdog Timer SFRS .......cooiiiiiiiiiiie e
C-7 Programmable Counter Array (PCA) SFRs...
D-1 Non-isochronous Transmit Data Flow ...........
D-2 Isochronous Transmit Data Flow in Dual-packet Mode
D-3 Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM =1) ............... D-8
D-4 Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)................ D-11
D-5 Isochronous Receive Data Flow in Dual-packet Mode (RXSPM =0) ......c.ccoccveernnnen. D-18

XViii



intel.

Guideto this Manual






intel.

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8X930Ax microcontroller; a new family of products for universal se-
rial bus (USB) applications. This manual isintended for use by both software and hardware de-
signers familiar with the principles of microcontroller architecture.

1.1 MANUAL CONTENTS

This chapter provides an overview of the manual with brief summaries of the chapters and appen-
dices. It also explains the terminology and notational conventions used throughout the manual,
provides references to related documentation, and tells how to contact Intel for additional infor-
mation.

Chapter 2, “Introduction” — providesan overview of device hardware. It covers corefunctions
(pipelined CPU, clock and reset unit, and interrupts), 1/0 ports, on-chip memory, and on-chip pe-
ripherals (USB, timer/counters, watchdog timer, programmable counter array, and seria 1/0
port).

Chapter 3, “Memory Partitions” — describes the three address spaces of the 8X930Ax: mem-
ory address space, special function register (SFR) space, and the register file. It also provides a
map of the SFR space showing the location of the SFRs and their reset values and explains the
mapping of the address spaces relative to the MCS® 51 and MCS® 251 architectures into the ad-
dress spaces of the 8X930Ax.

Chapter 4, “Device Configuration” — describes microcontroller featuresthat are configured at
device reset, including the external memory interface (the number of external address bits, the
number of wait states, page mode, memory regions for asserting RD#, WR#, and PSEN#), bina-
ry/source opcodes, interrupt mode, and the mapping of a portion of on-chip code memory to data
memory. It describes the configuration bytes and how to program them for the desired configu-
ration. It also describes how internal memory maps into external memory.

Chapter 5, “Instructions and Addressing” — provides an overview of theinstruction set. It de-
scribes each instruction type (control, arithmetic, logical, etc.) and lists the instructionsin tabular

form. This chapter also discusses the addressing modes, bit instructions, and the program status
words. Appendix A, “Instruction Set Reference” provides a detailed description of each instruc-
tion.

Chapter 6, “Interrupt System” — describes the 8X930Ax interrupt circuitry which provides a
TRAP instruction interrupt and ten maskableinterrupts: two external interrupts, threetimer inter-
rupts, aPCA interrupt, aserial port interrupt, and three USB interrupts. This chapter al so discuss-
es the interrupt priority scheme, interrupt enable, interrupt processing, and interrupt response
time.

Chapter 7, “Universal Serial Bus” — describes the operation of the 8X930Ax serving asaUSB
function. The USB function interface manages communications between the USB host and the
embedded function. The USB module consists of a seria bus interface engine (SIE), a function
interface unit (FIU), adifferential transceiver and FIFO data buffers.

I 1-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Chapter 8, “USB Programming Models” — describes the programming models of the
8X930Ax USB function interface. This chapter provides flow charts of suggested firmware rou-
tines for using the transmit and receive FIFOs to perform data transfers between the host PC and
the embedded function and describes how the firmware interacts with the USB modul e hardware.

Chapter 9, “Input/Output Ports"— describes the four 8-bit /0 ports (ports 0-3) and discusses
their configuration for general-purpose I/O. This chapter also discusses external memory access-
es (ports 0, 2) and alternative special functions.

Chapter 10, “Timer/Counters and WatchDog Timer” — describes the three on-chip tim-
er/counters and discusses their application. This chapter also provides instructions for using the
hardware watchdog timer (WDT) and describes the operation of the WDT during the idle and
powerdown modes.

Chapter 11, “Programmable Counter Array” — describesthe PCA on-chip peripheral and ex-
plains how to configure it for general-purpose applications (timers and counters) and special ap-
plications (programmable WDT and pul se-width modulator).

Chapter 12, “Serial 1/0 Port” — describes the full-duplex serial 1/0 port and explains how to
program it to communicate with external peripherals. This chapter also discusses baud rate gen-
eration, framing error detection, multiprocessor communications, and automatic address recog-
nition.

Chapter 13, “Minimum Hardware Setup” — describes the basic requirements for operating
the 8X930AXx in a system. It also discusses on-chip and external clock sources and describes de-
vice resets, including power-on reset.

Chapter 14, “Special Operating Modes” —provides an overview of theidle, powerdown, and
on-circuit emulation (ONCE) modes and describes how to enter and exit each mode. This chapter
also describesthe power control (PCON) special function register and liststhe status of the device
pins during the special modes and reset.

Chapter 15, “External Memory Interface” — describes the external memory signals and bus
cycles and provides examples of external memory design. It provides waveform diagrams for the
bus cycles, bus cycleswith wait states, and the configuration byte bus cycles. It also provides bus
cycle diagrams with AC timing symbols and definitions of the symbols.

Chapter 16, “Verifying Nonvolatile Memory” — provides instructions for verifying on-chip
program memory, configuration bytes, signature bytes, and lock bits.

Appendix A, “Instruction Set Reference”— provides reference information for theinstruction
set. It describes each instruction; defines the bits in the program status word registers (PSW,
PSW1); shows the relationships between instructions and PSW flags; and lists hexadecimal op-
codes, instruction lengths, and execution times.

Appendix B, “Signal Descriptions” — describes the function(s) of each device pin. Descrip-
tions are listed aphabetically by signal name. This appendix also provides alist of the signals
grouped by functional category.

Appendix C, “Registers” — accumulates, for convenient reference, copies of the register defi-
nition figures that appear throughout the manual.

1-2 I



|nte|® GUIDE TO THIS MANUAL

Appendix D, “Data Flow Model"— describes the data flow model for the 8X930Ax USB trans-
actions.

Glossary —aglossary of terms has been provided for reference of technical terms.

Index — an index has been included for your convenience.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are used in this manual. The Glossary defines other
terms with special meanings.

# The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used with an instruction pneumonic, the
symbol prefixes an immediate value in immediate addressing mode.

italics Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x andy, wherex represents the first variable agdepresents the
second variable. For example, in registecyPx represents the
variable [1-4] that identifies the specific port, ancepresents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or identifying
signals.

XXXX Uppercase X (no italics) represents an unknown value or a “don’t
care” state or condition. The value may be either binary or
hexadecimal, depending on the context. For example, 2XAFH (hex)
indicates that bits 11:8 are unknown; 10XX in binary context
indicates that the two LSBs are unknown.

Assert and Deassert The termsassert and deassert refer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated by a pound symbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

Instructions Instruction mnemonics are shown in upper case to avoid confusion.
When writing code, either upper case or lower case may be used.

I 1-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Logic 0 (Low) An input voltage level equal to or less than the maximum value of
V,_ or an output voltage level equal to or less than the maximum
value of V. See data sheet for values.

Logic 1 (High) An input voltage level equal to or greater than the minimum value of
V,, or an output voltage level equal to or greater than the minimum
vaue of V. See data sheet for values.

Numbers Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the character H. Decimal and binary numbers are
represented by their customary notations. That is, 255 is a decimal
number and 1111 1111 isabinary number. In some cases, the |etter B
is added for clarity.

Register Bits Bit locations are indexed by 7:0 for byte registers, 15:0 for word
registers, and 31:0 for double-word (dword) registers, where bit O is
the least-significant bit and 7, 15, or 31 isthe most-significant bit. An
individual bit is represented by the register name, followed by a
period and the bit number. For example, PCON.4 is bit 4 of the
power control register. In some discussions, bit names are used. For
example, the name of PCON.4 is POF, the power-off flag.

Register Names Register names are shown in upper case. For example, PCON is the
power control register. If a register name contains a lowercase
character, it represents more than one register. For example,
CCAPMX represents the five registers: CCAPMO through CCAPMA4.

Reserved Bits Some registers contain reserved bits. These bits are not used in this
device, but they may be used in future implementations. Do not write
a “1” to a reserved bit. The value read from a reserved bit is indeter-
minate.

Set and Clear The termsset andclear refer to the value of a bit or the act of giving
it a value. If a bit isset, its value is “1”;setting a bit gives it a “1”
value. If a bit isclear, its value is “0”;clearing a bit gives it a “0”
value.

Signal Names Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. Port pins are represented by the port abbrevi-
ation, a period, and the pin number (e.g., P0.0, P0.1). A pound
symbol (#) appended to a signal name identifies an active-low signal.

1-4 I



|nte|® GUIDE TO THIS MANUAL

Units of Measure The following abbreviations are used to represent units of measure:
A amps, amperes
DCV  direct current volts
Kbyte kilobytes
KQ kilo-ohms
mA milliamps, milliamperes
Mbyte megabytes
MHz  megahertz
ms milliseconds
mw milliwatts
ns nanoseconds

pF picofarads

W watts

\% volts

HA microamps, microamperes
pF microfarads

Hs microseconds

pW microwatts

1.3 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that
incorporate the 8X930Ax. To order documents, please call Intel Literature Fulfillment (1-800-
548-4725 in the U.S. and Canada; +44(0) 793-431155 in Europe).

Embedded Microcontrollers Order Number 270646
Embedded Processors Order Number 272396
Embedded Applications Order Number 270648
Packaging Order Number 240800
Universal Serial Bus Specification Order Number 272904

I 1-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

1.3.1 Data Sheet
The data sheet isincluded in Embedded Microcontrollers and is also available individually.

8X930AX Universal Serial Bus Microcontroller Order Number 272917

1.3.2 Application Notes
The following MCS 251 application notes apply to the 8X930AX.

AP-125, Designing Microcontroller Systems Order Number 210313
for Electrically Noisy Environments

AP-155, Oscillators for Microcontrollers Order Number 230659
AP-708, Introducing the MCS® 251 Microcontroller Order Number 272670
—the8XC251SB

AP-709, Maximizing Performance Using M@251 Microcontroller ~ Order Number 272671
—Programming the 8XC251SB

AP-710, Migrating from the MC8551 Microcontroller to the Order Number 272672
MCS 251 Microcontroller (8XC251SB)—Software and Hardware
Considerations

The following MCS 51 microcontroller application notes also apply to the 8X930AX.

AP70, Using the Intel M(®551 Boolean Processing Capabilities Order Number 203830
AP-223, 8051 Based CRT Terminal Controller Order Number 270032
AP-252, Designing With the 80C51BH Order Number 270068
AP-425, Small DC Motor Control Order Number 270622
AP-410, Enhanced Serial Port on the 83C51FA Order Number 270490
AP-415, 83C51FA/FB PCA Cookbook Order Number 270609
AP-476, How to Implement 12C Serial Communication Order Number 272319

Using Intel MCS® 51 Microcontrollers

1-6 I



|nte|® GUIDE TO THIS MANUAL

1.4 APPLICATION SUPPORT SERVICES

You can get up-to-date technical information from a variety of electronic support systems: the

World Wide Web, CompuServe, the FaxBack* service, and Intel's Brand Products and Applica-
tions Support bulletin board service (BBS). These systems are available 24 hours a day, 7 days a
week, providing technical information whenever you need it.

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. Pacific Standard Time (PST). Outside the U.S. and Canada, please con-

tact your local distributor. You can order product literature from Intel literature centers and sales
offices.

Table 1-1 lists the information you need to access these services.

Table 1-1. Intel Application Support Services

Service U.S. and Canada Asia-Pacific and Japan Europe
World Wide Web | URL: http://www.intel.com/ | URL: http://www.intel.com/ | URL: http://www.intel.com/
CompuServe go intel go intel go intel
FaxBack* 800-525-3019 503-264-6835 +44(0)1793-496646
916-356-3105
BBS 503-264-7999 503-264-7999 +44(0)1793-432955
916-356-3600 916-356-3600
Help Desk 800-628-8686 Please contact your local | Please contact your local
916-356-7999 distributor. distributor.
Literature 800-548-4725 708-296-9333 +44(0)1793-431155 England
+81(0)120 47 88 32 +44(0)1793-421777 France
+44(0)1793-421333 Germany

1.4.1 World Wide Web

We offer a variety of technical and product information through the World Wide Web (URL: ht-
tp://lwww.intel.com/design/mcs96). Also visit Intel's Web site for financials, history, and news.

1.4.2 CompuServe Forums

Intel maintains several CompuServe forums that provide a means for you to gather information,
share discoveries, and debate issues. Type “go intel” for access. The INTELC forum is set up to
support designers using various Intel components. For information about CompuServe access and
service fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S.).

1-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

1.4.3 FaxBack Service

The FaxBack service is an on-demand publishing system that sends documents to your fax ma-
chine. Y ou can get product announcements, change notifications, product literature, device char-
acterigtics, design recommendations, and quality and reliability information from FaxBack 24
hours aday, 7 days a week.

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select adoc-
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catal ogs are updated twice monthly. In addition, daily update catalogs list
the title, status, and order number of each document that has been added, revised, or deleted dur-
ing the past eight weeks. The daily update catal ogs are numbered with the subject catalog number
followed by a zero. For example, for the complete microcontroller and flash catal og, request doc-
ument number 2; for the daily update to the microcontroller and flash catal og, request document
number 20.
The following catalogs and information are available at the time of publication:

1. Solutions OEM subscription form

2. Microcontroller and flash catalog

3. Development tools catalog
Systems catalog
Multimedia catalog
Multibus and iIRMX® software catalog and BBS file listings
Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

© ®© N o g &

iAL (Intel Architecture Labs) technology catalog

1-8 I



|nte|® GUIDE TO THIS MANUAL

1.4.4 Bulletin Board System (BBS)

Intel's Brand Products and Applications Support bulletin board system (BBS) lets you download
files to your PC. The BBS has the late§iBUILDER software, hypertext manuals and
datasheets, software drivers, firmware upgrades, application notes and utilities, and quality and
reliability data.

Any customer with a PC and modem can access the BBS. The system provides automatic config-
uration support for 1200- through 19200-baud modems. Use these modem settings: no parity, 8
data bits, and 1 stop bit (N, 8, 1).

To access the BBS, just dial the telephone number (see Table 1-1 on page 1-7) and respond to the
system prompts. During your first session, the system asks you to register with the system oper-
ator by entering your name and location. The system operator will set up your access account
within 24 hours. At that time, you can access the files on the BBS.

NOTE

In the U.S. and Canada, you can get a BBS user’s guide, a master list of BBS
files, and lists of FaxBack documents by calling 1-800-525-3019. Use these
modem settings: no parity, 8 data bits, and 1 stop bit (N, 8, 1).

I 1-9






intel.

| ntroduction






intel.

CHAPTER 2
INTRODUCTION

The 8X930Ax is a peripheral interface chip for Universal Serial Bus (USB) applications. It sup-
portsthe connection of aPC peripheral, such asakeyboard or amodem, to ahost PC viathe USB.
The USB is specified by the Universal Serial Bus Specification. Much of the material in this doc-
ument rests on this USB specification.

In the language of the USB specification, the 8X930Ax isaUSB device. A USB device can serve
as a function by providing an interface for a peripheral, and it can serve as a hub by providing
additional connectionsto the USB. The 8X930Ax described in this manual servesasaUSB func-
tion. Figure 2-1 depicts the 8X930Ax in a USB system.

Host pC

NI

USB Hub
8X930AX 8X930Ax 8X930Ax
Mouse Modem Printer
Function Function Function

A4395-01

Figure 2-1. 8X930Ax in a Universal Serial Bus System

I 2-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

P0.7:0 P2.7:0 P1.7:0

g ¢ i g

I/O Ports and
System Bus and 1/O Ports Peripheral Signals

P3.7:0

g

Port 0 Port 2 <——E::; Port 1
Drivers Drivers ROM RAM Drivers

Port 3
Drivers

Memory Data (16)

HH L 3T 1l

| 1
| Memory Address (16) | <:> Watchdog
Timer
AV 4 A N
<_> Peripheral 1 !
Bus Interface Interface <:>
< <:> Timer/
Code Bus (16) l I i iCode Address (24) Counters
A 1
Instruction Sequencer (‘ N lﬂ;enr(rjlljgrt . 1
Q
U ) <:> PCA
[ src1 (g) sl |8
VANVAN @ S ©
> o ~ 1 1
N/ o < 2] .
8 8 @
[ src2 (8) < B B @
<:> Serial I/O
Clock
¢ K
Register Data reset ! I
ALU é]”e Memory i
Interface >
! I I/\I I/\I K ), USBT
| DST (16) L= !
Microcontroller Core
USB Ports
K T For details, see the USB module block diagram. /
A4340-01

Figure 2-2. Functional Block Diagram of the 8X930Ax




|nte|® INTRODUCTION

2.1 PRODUCT OVERVIEW

The 8X930Ax can be briefly described as an MCS® 251 microcontroller with an on-chip USB
module, and additional pinouts provided for USB operations. As shown in the functional block
diagram (Figure 2-2), the 8X930Ax consists of a microcontroller core, on-chip ROM (optional)
and RAM, 1/O ports, the on-chip USB module, and on-chip peripherals.

The microcontroller core together with the USB module provide the capabilities of aUSB device.
The block diagram in Figure 2-3 shows the main components of the USB module and how they
interface with the CPU. The other microcontroller peripherals are not essential to operation as a

USB device.
The 8X930AX uses the standard instruction set of the MCS 251 architecture.

A

usB
Wires

&
Y ¥

Transceiver

A

Y

Serial Bus
Interface Engine
(SIE)

A
Y

r- Control -
- Function
Interface Unit <:>
— (FIU)

A

Control

LT SR

Data Bus

Y
FIFOs <:>

| Transmit/Receive Bus

—

L Control

A4231-02

Figure 2-3. 8X930Ax USB Module Block Diagram

2-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

2.1.1 8X930AXx Features

The major features of the 8X930Ax are listed below and summarized in Table 2-1. The 8X930Ax
is derived from the 8X C251Sx microcontroller which provides the following features:

e 256 Khytes of external memory addressability

* On-chip RAM (512 or 1024 bytes)

* On-chip ROM (0, 8 or 16 Kbytes)

* Four 8-bit I/O ports: one open drain port, three quasi-bidirectional ports
¢ Code compatibility with MCS® 51 microcontrollers

* On-chip peripherals:

— Serial I/0 port: standard MCS 51 microcontroller Universal Asynchronous Receiver
Transmitter (UART)

— Programmable counter array (PCA): 5 capture/compare modules configurable for
timing, counting, or PWM

— Three general-purpose timer/counters
— Dedicated 14-bit hardware watchdog timer

In addition, the 8X930& has an on-chip USB module which provides the USB capability. The
major features of the USB module include:

¢ Standard universal seria bus interface
¢ Four USB function endpoints.
* Three pairs of 16-byte transmit/receive FIFO data buffers for endpoints 0, 2, 3.

* One pair of configurable transmit/receive FIFO data buffersfor endpoint 1. (Sizes: 256/256,
512/512, 0/1024, or 1024/0 bytes)

* Phase-locked loop (1.5 Mbps and 12 Mbps USB data rates)

Y ou can configure the 8X930AX to specify binary mode or source mode as the opcode arrange-
ment. Either mode executes al of the MCS 51 architecture instructions and al of the MCS 251
architecture instructions. However, source mode is more efficient for MCS 251 architecture in-
structions, and binary mode is more efficient for MCS 51 architecture instructions. In binary
mode, object code for an MCS 51 microcontroller runs on the 8X 930Ax without recompiling. For
details see “Opcode Configurations (SRC)” on page 4-12.

Certain instructions operate on 8-, 16-, or 32-bit operands, providing easier and more efficient
programming in high-level languages such as C. Additional features include the TRAP instruc-
tion, a displacement addressing mode, and several conditional jump instructions. Chapter 5, “In-
structions and Addressing,” describes the instruction set and compares it with the instruction set
for MCS 51 microcontrollers.

2-4 I



|nte|® INTRODUCTION

Table 2-1. 8X930Ax Features Summary

On-chip Memory

Device ROM RAM
Number (Kbytes) (Bytes)
80930AA 0 512
83930AA 8 512
83930AB 16 512
80930AD 0 1024
83930AD 8 1024
83930AE 16 1024

General features:
Address space 256 Kbytes
External bus (multiplexed)

Address 16, 17, or 18 bits
Data 8 bits

Register file 40 bytes

Interrupt sources 11

1/0 ports Four 8-bit 1/0 ports

On-chip Peripherals:
Serial 1/0 port
Programmable counter array (5 modules)
Three general-purpose timer/counters
Hardware WDT.

USB features:
Standard Universal Serial Bus Interface
4 function endpoints — one pair of configurable
transmit/receive FIFOs (up to 1023 bytes total)
and three 16 byte transmit/receive FIFO pairs
On-chip clock/PLL
USB rates 1.5 and 12 Mbps

MCS 251 microcontrollers store both code and datain asingle, linear 16-Mbyte memory space.
The usable memory space of the 8X930Ax consists of four 64-Kbyte regions (256 Kbytes). The
external bus provides up to 256 Kbytes of external memory addressability. The specia function
registers (SFRs) and the register file have separate address spaces. Refer to Chapter 3, “Memory
Partitions” for a description of the address modes.

Each pin of the four 8-bit I/O ports can be individually programmed as a general I/O signal or as
a special-function signal that supports the external bus or one of the on-chip peripherals. Ports PO
and P2 comprise a 16-line external bus, which transmits a 16-bit address multiplexed with 8 data
bits. (You can also configure the 8X930t have a 17-bit or an 18-bit external address bus. Re-

fer to “Configuring the External Memory Interface” on page 4-7.) Ports P1 and P3 carry bus-con-
trol and peripheral signals.

2-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

The 8X930Ax hastwo power-saving modes. In idle mode, the CPU clock is stopped, while clocks
to the peripherals continue to run. In global suspend mode (powerdown), the on-chip oscillator is
stopped, and the chip enters a static state. An enabled interrupt or a hardware reset can bring the
chip back to its normal operating mode from idle or powerdown. Refer to Chapter 14, “Special
Operating Modes,” for details on the power-saving modes.

2.2 MCS 251 MICROCONTROLLER CORE

The MCS 251 microcontroller core contains the CPU, the clock and reset unit, the interrupt han-
dler, the bus interface, and the peripheral interface. The CPU contains the instruction sequencer,
ALU, register file, and data memory interface.

221 CPU

Figure 2-4 is a functional block diagram of the CPU (central processor unit). The 8XR@36Hx

es instructions from on-chip code memory two bytes at a time, or from external memory in single

bytes. The instructions are sent over the 16-bit code bus to the execution unit. You can configure
the 8X930A to operate ipage mode for accelerated instruction fetches from external memory.

In page mode, if an instruction fetch is to the same 256-byte “page” as the previous fetch, the
fetch requires one state (two clocks) rather than two states (four clocks).

Code Bus (16) I I i iCode Address (24)

Instruction Sequencer <:> Interrupt Handler
| srcig)

VANEIDAN

vV

| src2 (8)

LT 1L

. Data <:> Data Bus (8)
ALU Re'gi'lzter Memory
Interface [ > Data Address (24)

I i}ms) it ﬁ_l

Figure 2-4. The CPU

2-6 I

A4272-01




|nte|® INTRODUCTION

The 8X930AX register file has forty registers, which can be accessed as bytes, words, and double
words. As in the MCS 51 architecture, registers 0—7 consist of four banks of eight registers each,
where the active bank is selected by the program status word (PSW) for fast context switches.

The 8X930A is a single-pipeline machine. When the pipeline is full and code is executing from
on-chip code memory, an instruction is completed every state time. When the pipeline is full and
code is executing from external memory (with no wait states and no extension of the ALE signal),
an instruction is completed every two state times.

2.2.2 Clock and Reset Unit
The timing signal for the 8X9304&can be provided by:
* anexterna frequency source connected to X TAL4

* an on-chip oscillator employing an external crystal/resonator connected across XTAL 4 and
XTAL,.

¢ an on-chip oscillator phase-locked to one of the above sources.

Device pins PLLSEL 2:0 select the operating rate of the USB module and turn the PLL on and

off. Table 2-2 lists the USB operating rates and crystal frequencies as a function of the phase-

locked loop select code. “Clock Sources” on page 13-2 discusses the requirements for external-
clock signals and on-chip oscillators.

The basic unit of time for 8X930&microcontrollers is thetatetime (or state). States are divided

into two phases identified @base 1 andphase 2. See Figures 2-5 and 2-6. The 8X93@®&riph-

erals operate oneripheral cycle, which is six state times. A specific time within a peripheral

cycle is denoted by its state and phase. For example, the PCA timer is incremented once each pe-
ripheral cycle in phase 2 of state 5 (denoted as S5P2).

When the PLL is on, the frequency of the internal clock distributed to the CPU and peripherals is
twice as great as for the case of PLL off (gi-= 12 MHz).

As shown in Table 2-2 and Figure 2-5, when the PLL is off (PLLSEL2:0 = 001 or 100), there are
2 Tog/state. As shown in Table 2-2 and Figure 2-6, when the PLL is on (PLLSEL2:0 = 110), there
is 1 Tog/state.

The reset unit places the 8X930Mto a known state. A chip reset is initiated by asserting the
RST pin, by a USB initiated reset, or by allowing the watchdog timer to time out (refer to Chapter
13, “Minimum Hardware Setup”).

I 2-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 2-2. 8X930Ax Operating Frequency

intel.

Internal XTAL1L XTAL1
PLLSEL2 | PLLSEL1 | PLLSELO | USB Rate F}[g? uce;ljy Frequency C'ogrks
Pin 43 Pin 42 Pin 44 2) Fosc P Comments
@) @) @) _and State
Peripherals Tosc/State
(UTek) (3) (5)
0 0 1 1.5 Mbps 3 Mhz 6 Mhz 2 PLL Off
(Low Speed)
1 0 0 1.5 Mbps 6 Mhz (4) 12 Mhz 2 PLL Off
(Low Speed)
1 1 0 12 Mbps 12 Mhz (4) 12 Mhz 1 PLL On
(Full Speed)
NOTES:

1. Other PLLSELx combinations are not valid.

2. The sampling rate is 4X the USB rate.

3. The 8X930Ax datasheet AC timing specification defines the following symbols: CPU frequency = Fg ¢
= UTek

4. The 8X930Ax CPU and peripherals frequency is 3 Mhz (low clock mode) until the LC bit in PCON is
cleared.

5. The number of XTALL clocks per state (Tgc/State) depends on the PLLSEL2:0 selection. When the
CPU is operating in low clock mode (3 MHz), there are four Tyg/state for PLLSEL2:0 = 100 or 110.

2.2.3 Interrupt Handler

Theinterrupt handler can receive interrupt requests from eleven maskable sources and the TRAP
instruction. When the interrupt handler grants an interrupt request, the CPU discontinues the nor-
mal flow of instructions and branches to a routine that services the source that requested the in-
terrupt. You can enable or disable the interrupts individually (except for TRAP) and you can
assign one of four priority levels to each interrupt. Refer to Chapter 6, “Interrupt System,” for a
detailed description.

2.3 ON-CHIP MEMORY

For ROM devices, the 8X930Aprovides on-chip program memory beginning at location
FF:0000H. See Table 2-1 for memory options. Following a reset, the first instruction is fetched
from location FF:0000H. For devices without ROM, instruction fetches are always from external
memory.

The 8X930A provides on-chip data RAM beginning at location 00:0020H (i.e., just above the
four banks of registers RO—R7 which occupy the first 32 bytes of the memory space). See Table
2-1 for memory options. Data RAM locations can be accessed with direct, indirect, and displace-
ment addressing. Ninety-six of these locations (20H-7FH) are bit addressable.

2-8



|nte|® INTRODUCTION

Phase 1 Phase 2
P1 P2
XTALL |
—
Tosc

2 Tpsc = State Time

‘ State 1 ‘ State 2 ‘ State 3 ‘ State 4 State 5 State 6 ‘
P1 | P2 P1 | P2 P1 | P2 P1 | P2 P1 | P2 P1 | P2

I Peripheral Cycle I

A2604-02

Figure 2-5. Clocking Definitions (PLL off) T

|P1|P2|

XTAL1 |
Tosc
1 Tosc = State Time
State 1 2 3 4 5 6

|P1P2|P1 P2|P1 P2|P1 P2|P1 P2|P1 P2

XTAL1|||||||||||||
}«— Peripheral Cycle —»{

(6 States)

A5086-01

Figure 2-6. Clocking Definitions (PLL on) "

TFi gure 2-5 shows timing for PLL off (PLLSEL2:0 = 001 or 100) and 8X930Ax not in low-clock mode. 2 T4../State.
1T Figure 2-6 shows timing for PLL on (PLLSEL2:0 = 110) and 8X930Ax not in low-clock mode. 1 To../State.



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

2.4 UNIVERSAL SERIAL BUS MODULE

The universal serial bus module provides a USB interface between the host PC and the product
in which the 8X930Ax is embedded. Data port O (Dpq, Dy,q) provides the upstream connection.
Figure 2-3 shows the main components of the USB module.

The serial interface engine (SIE) handles the communication protocol of universal serial bus. The
function interface unit (FIU) manages data received and transmitted by the USB module. The
8X930AXx supports four function endpoints. Each endpoint containsatransmit FIFO and areceive
FIFO. See Table 2-1. Transmit FIFOs are written by the CPU, then read by the FIU for transmis-
sion. Receive FIFOs are written by the FIU following reception, then read by the CPU. All trans-
mit FIFOs have the same architecture, and all receive FIFOs have the same architecture.

Operation of the USB module is described in detail in Chapter 7, “Universal Serial Bus,” and
Chapter 8, “USB Programming Models.”

2.5 ON-CHIP PERIPHERALS

The on-chip peripherals, which reside outside the microcontroller core, perform specialized func-
tions. Software accesses the peripherals via their special function registers (SFRs). The«8X930A
has four peripherals: the watchdog timer, the timer/counters, the programmable counter array
(PCA), and the serial I/O port.

2.5.1 Timer/Counters and Watchdog Timer

The timer/counter unit has three timer/counters, which can be clocked by the oscillator (for timer
operation) or by an external input (for counter operation). You can set up an 8-bit, 13-bit, or 16-
bit timer/counter, and you can program them for special applications, such as capturing the time
of an event on an external pin, outputting a programmable clock signal on an external pin, or gen-
erating a baud rate for the serial /O port. Timer/counter events can generate interrupt requests.

The watchdog timer is a circuit that automatically resets the 8X980the event of a hardware

or software upset. When enabled by software, the watchdog timer begins running, and unless
software intervenes, the timer reaches a maximum count and initiates a chip reset. In normal op-
eration, software periodically clears the timer register to prevent the reset. If an upset occurs and
software fails to clear the timer, the resulting chip reset disables the timer and returns the system
to a known state. The watchdog and the timer/counters are described in Chapter 10, “Tim-

er/Counters and WatchDog Timer.”

2.5.2 Programmable Counter Array (PCA)

The programmable counter array (PCA) has its own timer and five capture/compare modules that
perform several functions: capturing (storing) the timer value in response to a transition on an in-

put pin; generating an interrupt request when the timer matches a stored value; toggling an output
pin when the timer matches a stored value; generating a programmable PWM (pulse width mod-
ulator) signal on an output pin; and serving as a software watchdog timer. Chapter 11, “Program-
mable Counter Array,” describes this peripheral in detail.

2-10 I



|nte|® INTRODUCTION

2.5.3 Serial I/O Port

The serial 1/0O port provides one synchronous and three asynchronous communication modes.
The synchronous mode (mode 0) is half-duplex: the serial port outputs a clock signal on one pin
and transmits or receives data on another pin.

The asynchronous modes (modes 1-3) are full-duplex (i.e., the port can send and receive simul-
taneously). Mode 1 uses a serial frame of 10 bits: a start bit, 8 data bits, and a stop bit. The baud
rate is generated by overflow of timer 1 or timer 2. Modes 2 and 3 use a serial frame of 11 bits: a
start bit, eight data bits, a programmable ninth data bit, and a stop bit. The ninth bit can be used
for parity checking or to specify that the frame contains an address and data. In mode 2, you can
use a baud rate of 1/32 or 1/64 of the oscillator frequency. In mode 3, you can use the overflow
from timer 1 or timer 2 to determine the baud rate.

In its synchronous modes (modes 1-3) the serial port can operate as a slave in an environment
where multiple slaves share a single serial line. It can accept a message intended for itself or a
message that is being broadcast to all of the slaves, and it can ignore a message sent to anothe
slave.

2.6 OPERATING CONDITIONS

The 8X930A is designed for a commercial operating environment and to accommodate the op-
erating rates of the USB interface. For detailed specifications, refer to the current 8X830A
versal Serial Bus Microcontroller datasheet. For USB module operating rates see “Clock and
Reset Unit” on page 2-7.

I 2-11






intel.

Memory Partitions






intel.

CHAPTER 3
MEMORY PARTITIONS

The 8X930AXx has three address spaces. amemory space, aspecial function register (SFR) space,
and aregister file. This chapter describes these address spaces as they apply to the 8X930Ax. It
also discusses the compatibility of the MCS® 251 architecture and the MCS® 51 architecture in
terms of their address spaces.

3.1 ADDRESS SPACES FOR 8X930Ax

Figure 3-1 shows the memory space, the SFR space, and the register file for 8X930Ax. (The ad-
dress spaces are depicted as being eight bytes wide with addresses increasing from left to right
and from bottom to top.)

Memory Address Space
16 Mbytes
FF:FFFFH
SFR Space
512 Bytes
S:1FFH
S:000H S:007H
Register File
64 Bytes
63
00:0000H 00:0007H 0 7
A4100-01

Figure 3-1. Address Spaces for the 8X930Ax

I 3-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

It isconvenient to view the unsegmented, 16-Mbyte memory space as consisting of 256 64-Kbyte
regions, numbered 00: to FF:.

NOTE
The memory space in the 8X930Ax is unsegmented. The 64-Kbyte “regions”
00:, 01:, ..., FF: are introduced only as a convenience for discussions.

Addressing in the 8X930Ais linear; there areo segment registers.

On-chip RAM is located at the bottom of the memory space, beginning at location 00:0000H. The
first 32 bytes (00:0000H—-00:001FH) provide storage for a part of the register file. The on-chip,
general-purpose data RAM resides just above this, beginning at location 00:0020H.

On-chip ROM (code memory) is located in the top region of the memory space, beginning at lo-
cation FF:0000H. Following device reset, execution begins at this address. The top eight bytes of
region FF: are reserved for the configuration array.

The register file has its own address space (Figure 3-1). The 64 locations in the register file are
numbered decimally from 0 to 63. Locations 0—7 represent one of four switchable register banks,

each having eight registers. The 32 bytes required for these banks occupy locations 00:0000H—
00:001FH in the memory space. Register file locations 8—-63 do not appear in the memory space.
See “8X930Ax Register File” on page 3-9 for a further description of the register file.

The SFR space accommodates up to 512 8-bit special function registers with addresses S:000H-
S:1FFH. SFRs implemented in the 8X930#e shown in Table 3-6 on page 3-10. In the MCS

251 architecture, use the prefix “S:” with SFR addresses to distinguish them from the memory
space addresses 00:0000H-00:01FFH. See “Special Function Registers (SFRs)” on page 3-15 for
details on the SFR space.

3.1.1 Compatibility with the MCS® 51 Architecture

The address spaces in the MCS 51 architecturet are mapped into the address spaces in the MCS

251 architecture. This mapping alows code written for MCS 51 microcontrollersto run on MCS

251 microcontrollers. (Chapter 5, “Instructions and Addressing” discusses the compatibility of
the two instruction sets.)

Figure 3-2 shows the address spaces for the MCS 51 architecture. Internal data memory locations
00H-7FH can be addressed directly and indirectly. Internal data locations 80H—FFH can only be
addressed indirectly. Directly addressing these locations accesses the SFRs. The 64-Kbyte code
memory has a separate memory space. Data in the code memory can be accessed only with the
MOVC instruction. Similarly, the 64-Kbyte external data memory can be accessed only with the
MOVX instruction.

The register file (registers RO—R7) comprises four switchable register banks, each having eight
registers. The 32 bytes required for the four banks occupy locations 00H-1FH in the on-chip data
memory.

Figure 3-3 shows how the address spaces in the MCS 51 architecture map into the address space:
in the MCS 251 architecture; details are listed in Table 3-1.

T MCS®P51 Microcontroller Family User's ManudOrder Number: 272383)

3-2 I



|nte|® MEMORY PARTITIONS

The 64-K byte code memory for MCS 51 microcontrollers maps into region FF; of the memory
space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble code
for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to
this region. The assembler also maps the interrupt vectors to region FF:. This mapping is trans-
parent to the user; code executes just as before, without modification.

FFFFH
Code
(MOVC)
0000H
FFFFH RO Register File R7
External Data
(MOVX)
0000H
FFH FFH
Internal Data SFRs
(indirect) (direct)
80H 80H
7FH
Internal Data
(direct, indirect)
00H
A4139-01

Figure 3-2. Address Spaces for the MCS® 51 Architecture

3-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Memory Address Space
16 Mbytes

FFFFH
McsU 51 Architecture
Code Memory
FF:0000H| 0000H
02:0000H
FFFFH
MCS 51 Architecture
External Data Memory
01:0000H | 0000H
MCS 51 Architecture FFH
) Internal Data Memory
00:0000H | O0H

S:100H

S:000H

SFR Space
512 Bytes
S:1FFH
FFH
MCS 51 Architecture
80H SFRs
S:07FH
Register File
64 Bytes
63

0 MCS51 Architecture R. F. 7

A4133-01

Figure 3-3. Address Space Mappings MCS® 51 Architecture to MCS® 251 Architecture

Table 3-1. Address Mappings

MCS®51 Architecture MCS® 251 Architecture
Memory Type
Size Location Data_ Location
Addressing
Indirect using . .
Code 64 Kbytes 0000H-FFFFH MOVG instr. FF:0000H-FF:FFFFH
Indirect using . .
External Data 64 Kbytes 0000H-FFFFH MOVX instr. 01:0000H-01:FFFFH
128 bytes 00H-7FH Direct, Indirect | 00:0000H-00:007FH
Internal Data -
128 bytes 80H-FFH Indirect 00:0080H-00:00FFH
SFRs 128 bytes S:80H-S:FFH Direct S:080H-S:0FFH
Register File 8 bytes RO-R7 Register RO-R7




|nte|® MEMORY PARTITIONS

The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into the memory

region specified by bits 16—23 of the data pointer DPX, i.e., DPXL. DPXL is accessible as register
file location 57 and also as the SFR at S:084H (see “Dedicated Registers” on page 3-12). The re-
set value of DPXL is 01H, which maps the external memory to region 01: as shown in Figure 3-3.
You can change this mapping by writing a different value to DPXL. A mapping of the MCS 51
microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 archi-
tecture provides complete run-time compatibility because the lower 16 address bits are identical
in the two address spaces.

The 256 bytes of on-chip data memory for MCS 51 microcontrollers (OOH-FFH) are mapped to
addresses 00:0000H-00:00FFH to ensure complete run-time compatibility. In the MCS 51 archi-
tecture, the lower 128 bytes (00H-7FH) are directly and indirectly addressable; however the up-
per 128 bytes are accessible by indirect addressing only. In the MCS 251 architecture, all
locations in region 00: are accessible by direct, indirect, and displacement addressing (see
“8X930Ax Memory Space” on page 3-5).

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 512-byte SFR space of
the MCS 251 architecture starting at address S:080H, as shown in Figure 3-3. This provides com-
plete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit ad-
dressing). The SFR addresses are unchanged in the new architecture. In the MCS 251
architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) reside in
the register file for high performance. However, to maintain compatibility, they are also mapped
into the SFR space at the same addresses as in the MCS 51 architecture.

3.2 8X930Ax MEMORY SPACE

Figure 3-4 shows the logical memory space for the 8X93@ikrocontroller. The usable mem-

ory space of the 8X930Aconsists of four 64-Kbyte regions: 00:, 01:, FE:, and FF:. Code can
execute from all four regions; code execution begins at FF:0000H. Regions 02:-FD are reserved.
Reading a location in the reserved area returns an unspecified value. Software can execute a write
to the reserved area, but nothing is actually written.

All four regions of the memory space are available at the same time. The maximum number of
external address lines is 18, which limits external memory to a maximum of four regions (256
Kbytes). See “Configuring the External Memory Interface” on page 4-7, and “External Memory
Design Examples” on page 15-17.

Locations FF:FFF8H-FF:FFFFH are reserved for the configuration array (see Chapter 4, “Device
Configuration”). The two configuration bytes for the 8X930Are accessed at locations
FF:FFF8H and FF:FFF9H; locations FF:FFFAH-FF:FFFFH are reserved for configuration bytes
in future products. Do not attempt to execute code from locations FF:FFF8H—-FF:FFFFH. Also,
see the caution on page 4-3 regarding execution of code from locations immediately below the
configuration array.

Figure 3-4 also indicates the addressing modes that can be used to access different areas of mem
ory. The first 64 Kbytes can be directly addressed. The first 96 bytes of general-purpose RAM
(00:0020H-00:007FH) are bit addressable. Chapter 5, “Instructions and Addressing,” discusses
addressing modes.

I 3-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Memory Address Space
16 Mbytes
FRFFFFH| 1
FF:0000H
FE:FFFFH
FE:0000H
Indirect and
Displacement
) Addressing
J Regions 02-FD L
T are Reserved 3| (16 Mbytes)
O01:FFFFH
01:0000H
00:FFFFH Direct Addressing
(64 Kbytes)
00:0080H
00:007FH "f Bit Addressing
00:0020H
Register Addressing w F - - - -~ - - - - - - - - S0 001EH Y (96 Bytes)
(32 Bytes) 00:0000H . y
A4385-01

Figure 3-4. 8X930Ax Address Space

3-6



MEMORY PARTITIONS

Tt

FF:FFF7H

External Memory

On-chip ROM
8 or 16 Kbytes
FF:0000H

FE:FFFFH

External Memory

FE:0000H

Regions 02—-FD
are Reserved

01:FFFFH

External Memory

01:0000H

00:FFFFH
External Memory

On-chip RAM
512 or 1024 Bytes

00:0000H Registers RO-R7

T Eight-byte configuration array (FF:FFF8H - FF:FFFFH)
TT Four banks of registers RO-R7 (32 bytes, 00:0000H - 00:001FH)

A4382-02

Figure 3-5. Hardware Implementation of the 8X930Ax Address Space




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Figure 3-5 shows how areas of the memory space are implemented by on-chip RAM and external
memory. The first 32 bytes of on-chip RAM store banks 0-3 of the register file (see “8X930Ax
Register File” on page 3-9).

3.2.1 On-chip General-purpose Data RAM

On-chip RAM (512 or 1024 bytes) provides general data storage (Figure 3-5). Instructions cannot
execute from on-chip data RAM. The data is accessible by direct, indirect, and displacement ad-
dressing. Locations 00:0020H-00:007FH are also bit addressable.

3.2.2 On-chip Code Memory

The 8X930A is available with 0, 8 or 16 Kbytes of on-chip ROM located in memory region FF:.
(Figure 3-5). Table 2-1 on page 2-5 lists the amount of on-chip code memory for each device. On-
chip ROM is intended primarily for code storage, although its contents can also be read as data
with the indirect and displacement addressing modes. Following a chip reset, program execution
begins at FF:0000H. Chapter 16, “Verifying Nonvolatile Memory,” describes the procedure for
verifying the contents of on-chip ROM.

A code fetch within the address range of the on-chip ROM accesses the on-chip ROM only if
EA# = 1. For EA# = 0, a code fetch in this address range accesses external memory. The value of
EA# is latched when the chip leaves the reset state. Code is fetched faster from on-chip code
memory than from external memory. Table 3-2 lists the minimum times to fetch two bytes of code
from on-chip memory and external memory.

NOTE

If your program executes exclusively from on-chip ROM (not from external
memory), beware of executing code from the upper eight bytes of the on-chip
ROM (FF:1FF8H-FF:1FFFH for 8 Kbytes, FF:3FF8H—FF:3FFFH for 16
Kbytes). Because of its pipeline capability, the 8XC26tay attempt to

prefetch code from external memory (at an address above FF:1FFFH/
FF:3FFFH) and thereby disrupt I/O ports 0 and 2. Fetching code constants
from these eight bytes does not affect ports 0 and 2.

If your program executes from both on-chip ROM and external memory, code
can be placed in the upper eight bytes of on-chip ROM. As the 8X@251S
fetches bytes above the top address in the on-chip ROM, code fetches automat-
ically become external bus cycles. In other words, the rollover from on-chip
ROM to external code memory is transparent to the user.

3-8 I



|nte|® MEMORY PARTITIONS

Table 3-2. Minimum Times to Fetch Two Bytes of Code

Type of Code Memory State Times
On-chip Code Memory 1
External Memory (page mode) 2
External Memory (nonpage mode) 4

3221 Accessing On-chip Code Memory in Region 00:

Devices with 16 Kbytes of on-chip code memory can be configured so that the upper half of the

on-chip code memory can also be read as data at locations at the top of region 00: (see “Mapping

On-chip Code Memory to Data Memory (EMAP#)” on page 4-14). That s, locations FF:2000H—
FF:3FFFH can also be accessed at locations 00:E000H—-00:FFFFH. This is useful for accessing
code constants stored in ROM. Note, however, that all of the following three conditions must hold
for this mapping to be effective:

* The deviceis configured with EMAP# = 0 in the UCONFIGL register (See Figure 4-3 on
page 4-5).
s EA#=1

* Theaccessto thisarea of region 00: is adata read, not a code fetch.

If one or more of these conditions do not hold, accessesto the locations in region 00: are referred
to external memory.

3.2.3 External Memory

Regions 01:, FE:, and portions of regions 00: and FF: of the memory space are implemented as
external memory (Figure 3-5). For discussions of external memory, see “Configuring the Exter-
nal Memory Interface” on page 4-7, and Chapter 15, “External Memory Interface.”

3.3 8X930Ax REGISTER FILE

The 8X930A register file consists of 40 locations: 0-31 and 56-63, as shown in Figure 3-6.
These locations are accessible as bytes, words, and dwords, as described in “Byte, Word, and
Dword Registers” on page 3-12.” Several locations are dedicated to special registers (see “Dedi-
cated Registers” on page 3-12); the remainder are general-purpose registers.

Register file locations 0—7 actually consist of four switchable banks of eight registers each, as il-
lustrated in Figure 3-7 on page 3-11. The four banks are implemented as the first 32 bytes of on-
chip RAM and are always accessible as locations 00:0000H-00:001FH in the memory address
spacet Only one of the four banks is accessible via the register file at a given time. The accessi-

T Because these locations are dedicated to the register file, they are not considered a part of the general-purpose,
1-Kbyte, on-chip RAM (locations 00:0020H-00:041FH).

I 3-9



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

ble, or “active,” bank is selected by bits RS1 and RSO0 in the PSW register, as shown in Table 3-3.

(The PSW is described in “Program Status Words” on page 5-15.”) This bank selection can be
used for fast context switches.

Register file locations 8-31 and 56—63 are always accessible. These locations are implemented
as registers in the CPU. Register file locations 32-55 are reserved and cannot be accessed.

Byte Registers

Note: R10=B
R11=ACC

R8 | R9 |[R10|R11|R12[{R13|R14|R15
RO|JR1|R2|R3|R4[R5|R6|R7

Register File

Word Registers
56 | 57 [ 58 [59 | 60 [ 61 [ 62] 63

Locations 32-55 are Reserved

2412512627128 (29]30|31 WR24 | WR26 | WR28 | WR30
16 | 17118119120 | 21|22 23 WR16 | WR18 | WR20 | WR22
819 |10]11]12]13 WR8 WR10 | WR12 | WR14
O|]1|2]3|4]5 WRO WR2 WR4 WR6

Dword Registers
I I

14 | 15
6|7
T 1 DR56 = DPX DR60 = SPX
[ I I I I 1
[o]1J2TsJ4]s5]s6]7

Banks 0-3
DR24 DR28
DR16 DR20
DR8 DR12
DRO DR4

A4099-01

Figure 3-6. The Register File

3-10



|nte|® MEMORY PARTITIONS

Register File Memory Address Space
63 FF:FFFFH

8
ol1]2]3]4]5]6]7 L ~

7 \ 00:0020H
PSW bits RS1:0 oJi]2|3]4]5]6]7 18H 1FH| Banks 0-3

)

b}
>

\ 100 17H| accessible

select one bank Canks 03 \ é

to be accessed via 08H OFH IndZIEmOFy

the register file. 00H 07H| address space
A4215-01

Figure 3-7. Register File Locations 0—7

Table 3-3. Register Bank Selection

PSW Selection Bits
Bank Address Range

RS1 RSO

Bank 0 00H-07H 0
Bank 1 08H-OFH 0
1
1

Bank 2 10H-17H
Bank 3 18H-1FH

0
1
0
1

3-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

3.4 BYTE, WORD, AND DWORD REGISTERS

Depending on itslocation in the register file, aregister is addressable as a byte, aword, and/or a
dword, as shown on theright side of Figure 3-6. A register isnamed for itslowest numbered byte
location. For example:

R4 isthe byte register consisting of location 4.

WR4 is the word register consisting of registers 4 and 5.

DR4 is the dword register consisting of registers 4—7.

Locations RO—-R15 are addressable as bytes, words, or dwords. Locations 16—31 are addressable
only as words or dwords. Locations 56—63 are addressable only as dwords. Registers are ad-

dressed only by the names shown in Figure 3-6 — except for the 32 registers that comprise the

four banks of registers RO—R7, which can also be accessed as locations 00:0000H—00:001FH in

the memory space.

3.4.1 Dedicated Registers
The register file has four dedicated registers:
* R10istheB-register
¢ RI11isthe accumulator (ACC)
* DR56 isthe extended data pointer, DPX
* DRG60 isthe extended stack pointer, SPX

These registers are located in the register file; however, R10; R11; the DPXL, DPH, and DPL
bytesin DR56; and the SPH and SP bytesin DR60 are al so accessible as SFRs. The bytes of DPX
and SPX can be accessed in the register file only by addressing the dword registers. The dedicated
registers in the register file and their corresponding SFRs areillustrated in Figure 3-8 and listed
in Table 3-4.

3411 Accumulator and B Register

The 8-bit accumulator (ACC) is byte register R11, which is also accessible in the SFR space as
ACC at S:EOH (Figure 3-8). The B register, used in multipliesand divides, isregister R10, which
is also accessible in the SFR space as B at S:FOH. Accessing ACC or B as aregister is one state
faster than accessing them as SFRs.

Instructions in the MCS 51 architecture use the accumulator as the primary register for data

moves and calculations. However, in the MCS 251 architecture, any of registers R1-R15 can
serve for these task\saresult, the accumulator does not play the central rolethat it hasin MCS

51 microcontrollers.

T Bitsinthe PSW and PSW1 registersreflect the status of the accumulator. There are no equivalent statusindicatorsfor
the other registers.

3-12 I



|nte|® MEMORY PARTITIONS

Register File SFRs

Stack Pointer, High > spH | S:BEH

Stack Pointer > sp | s81H

| | [ see | sp |
60 61 62 63
DR60 = Extended Stack Pointer, SPX

Data Pointer Extended, Low :l

: > DPXL | S:84H

Data Pointer, High :l .
>| DPH | S:83H

Data Pointer, Low - .
I 'i DPL IS.82H

| | opxe | opH | op |
56 57 58 59

DR56 = Extended Data Pointer, DPX

;I B IS:FOH
:I ACC IS:EOH

IB |Acc|

R10, B Register R11, Accumulator, ACC
- J (G J

A4152-02

Figure 3-8. Dedicated Registers in the Register File and their Corresponding SFRs

3.4.1.2 Extended Data Pointer, DPX

Dword register DR56 is the extended data pointer, DPX (Figure 3-8). The lower three bytes of
DPX (DPL, DPH, DPXL) are accessible as SFRs. DPL and DPH comprisethe 16-bit data pointer
DPTR. While instructions in the MCS 51 architecture always use DPTR as the data pointer, in-
structions in the MCS 251 architecture can use any word or dword register as a data pointer.

DPXL, the byte in location 57, specifies the region of memory (00:—FF:) that maps into the 64-
Kbyte external data memory space in the MCS 51 architecture. In other words, the MOVX in-
struction addresses the region specified by DPXL when it moves data to and from external mem-
ory. The reset value of DPXL is 01H.

3-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

3.4.13

Dword register DR60 is the stack pointer, SPX (Figure 3-8). The byte at location 63 is the 8-bit

Extended Stack Pointer, SPX

intel.

stack pointer, SP, in the MCS 51 architecture. The byte at location 62 is the stack pointer high,

SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can

be accessed as SFRs.
Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL,

ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. To preserve the

stack, do not use DR60 as a general-purpose register.

Table 3-4. Dedicated Registers in the Register File and their Corresponding SFRs

Register File SFRs
Name Mnemonic | Reg. | Location Mnemonic | Address
— — 60 — —
Stack _ — 61 — —
Pointer - - DR60
(SPX) | Stack Pointer, High SPH 62 SPH S:BEH
Stack Pointer, Low SP 63 SP S:81H
J— J— 56 J— J—
Data Data Pointer Extended, Low DPXL 57 DPXL S:84H
o Data Pointer, High DPH DRS6 58 DPH S:83H
ata Pointer, Hi :
(OPX) DPTR - 9
Data Pointer, Low DPL 59 DPL S:82H
Accumulator (A Register) A R11 11 ACC S:EOH
B Register B R10 10 B S:FOH




|nte|® MEMORY PARTITIONS

3.5 SPECIAL FUNCTION REGISTERS (SFRS)

The special function registers (SFRs) reside in their associated on-chip peripherals or in the core.

The SFR memory map in Table 3-5 gives the addresses and reset values of the 8X930Ax SFRs.

SFR addresses are preceded by “S:” to differentiate them from addresses in the memory space.
Shaded locations in Table 3-5 and locations below S:80H and above S:FFH are unimplemented,
i.e., no register exists. If an instruction attempts to write to an unimplemented SFR location, the
instruction executes, but nothing is actually written. If an unimplemented SFR location is read, it
returns an unspecified value. Descriptive tables for the SFRs are presented in alphabetical order
in Appendix C.

NOTE

SFRs may be accessed only as bytes; they may not be accessed as words or
dwords.

The following tables list the mnemonics, names, and addresses of the SFRs:
Table 3-6 — Core SFRs

Table 3-7 — USB Function SFRs

Table 3-8 — I/O Port SFRs

Table 3-9 — Serial /0 SFRs

Table 3-10 — Timer/Counter and Watchdog Timer SFRs
Table 3-11 — Programmable Counter Array (PCA) SFRs

I 3-15



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 3-5. 8X930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF
F8 CH CCAPOH CCAP1H CCAP2H CCAP3H CCAP4H FF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
FO | B EPINDEX TXSTAT TXDAT TXCON TXFLG TXCNTL TXCNTH F7
00000000 Ixxxxx00 0xxx0000 XXXXXXXX 000x0100 00xx1000 XXXXXXXX XXXXXXXX
E8 CL CCAPOL CCAP1L CCAP2L CCAP3L CCAP4L EF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
EO | ACC EPCON RXSTAT RXDAT RXCON RXFLG RXCNTL RXCNTH E7
00000000 00XLXXXX 00000000 XXXXXXXX 0x000100 00xx1000 XXXXXXXX XXXXXXXX
D8 | CCON CMOD CCAPMO CCAPM1 CCAPM2 CCAPM3 CCAPM4 PCON1 DF
00x00000 00xxx000 x0000000 x0000000 x0000000 x0000000 x0000000 xxxx0000
DO | PSW PSW1 SOFL SOFH D7
00000000 00000000 00000000 00000000
C8 | T2CON T2MOD RCAP2L RCAP2H TL2 TH2 CF
00000000 XXxXxx00 00000000 00000000 00000000 00000000
CO | FIFLG C7
00000000
B8 | IPLO SADEN SPH BF
x0000000 00000000 0000000
BO | P3 IEN1 IPL1 IPH1 IPHO B7
11111111 00000000 00000000 00000000 x0000000
A8 | IENO SADDR AF
00000000 00000000
A0 | P2 FIE WDTRST WCON A7
11111111 00000000 XXXXXXXX XXXXXX00
98 | SCON SBUF 9F
00000000 XXXXXXXX
90 | P1 97
11111111
88 | TCON TMOD TLO TL1 THO TH1 FADDR 8F
00000000 00000000 00000000 00000000 00000000 00000000 00000000
80 | PO SP DPL DPH DPXL PCON 87
11111111 00000111 00000000 00000000 00000001 00XX0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF

I:l MCS 251 microcontroller SFRs lzl Endpoint-indexed SFRs



Table 3-6. Core SFRs

MEMORY PARTITIONS

Mnemonic

Name

Address

ACCT

Accumulator

S:EOH

Bt

B Register

S:FOH

PSW

Program Status Word

S:DOH

PSwW1

Program Status Word 1

S:D1H

Spt

Stack Pointer — LSB of SPX

S:81H

SPHY

Stack Pointer High — MSB of SPX

S:BEH

DPTRT

Data Pointer (2 bytes)

DPL?

Low Byte of DPTR

S:82H

DPH?

High Byte of DPTR

S:83H

DPXLT

Data Pointer Extended, Low

S:84H

PCON

Power Control

S:87H

PCON1

USB Power Control.

S:DFH

IENO

Interrupt Enable Control 0

S:A8H

IEN1

Interrupt Enable Register 1.

S:B1H

IPHO

Interrupt Priority Control High 0

S:B7H

IPLO

Interrupt Priority Control Low 0

S:B8H

IPH1

Interrupt Priority High Control Register 1.

S:B3H

IPL1

Interrupt Priority Low Control Register 1.

S:B2H

T These SFRs can also be accessed by their corresponding registersin the register
file (see Table 3-4).

3-17



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

3-18

Table 3-7. USB Function SFRs

intel.

Mnemonic Name Address
EPCON Endpoint Control Register. S:E1H
EPINDEX Endpoint Index Register. S:F1H
FADDR Function Address Register. S:8FH
FIE Function Interrupt Enable Register. S:A2H
FIFLG Function Interrupt Flag Register. S:COH
RXCNTH Receive FIFO Byte-Count High Register. S:E7H
RXCNTL Receive FIFO Byte-Count Low Register. S:E6H
RXCON Receive FIFO Control Register. S:E4H
RXDAT Receive FIFO Data Register. S:E3H
RXFLG Receive FIFO Flag Register. S:E5H
RXSTAT Endpoint Receive Status Register. S:E2H
SOFH Start of Frame High Register. S:D3H
SOFL Start of Frame Low Register. S:D2H
TXCNTH Transmit Count High Register. S:F7H
TXCNTL Transmit Count Low Register. S:F6H
TXCON Transmit FIFO Control Register. S:F4H
TXDAT Transmit FIFO Data Register. S:F3H
TXFLG Transmit Flag Register. S:F5H
TXSTAT Endpoint Transmit Status Register. S:FAH




Table 3-8. /O Port SFRs

Mnemonic Name Address
PO Port 0 S:80H
P1 Port 1 S:90H
P2 Port 2 S:AOH
P3 Port 3 S:BOH

Table 3-9. Serial /0 SFRs

MEMORY PARTITIONS

Mnemonic Name Address
SCON Serial Control S:98H
SBUF Serial Data Buffer S:99H
SADEN Slave Address Mask S:B9H
SADDR Slave Address S:A9H
Table 3-10. Timer/Counter and Watchdog Timer SFRs
Mnemonic Name Address
TLO Timer/Counter O Low Byte S:8AH
THO Timer/Counter 0 High Byte S:8CH
TL1 Timer/Counter 1 Low Byte S:8BH
TH1 Timer/Counter 1 High Byte S:8DH
TL2 Timer/Counter 2 Low Byte S:CCH
TH2 Timer/Counter 2 High Byte S:CDH
TCON Timer/Counter 0 and 1 Control S:88H
TMOD Timer/Counter 0 and 1 Mode Control S:89H
T2CON Timer/Counter 2 Control S:C8H
T2MOD Timer/Counter 2 Mode Control S:C9H
RCAP2L Timer 2 Reload/Capture Low Byte S:CAH
RCAP2H Timer 2 Reload/Capture High Byte S:CBH
WDTRST WatchDog Timer Reset S:A6H

3-19



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

3-20

Table 3-11. Programmable Counter Array (PCA) SFRs

intel.

Mnemonic Name Address
CCON PCA Timer/Counter Control S:D8H
CMOD PCA Timer/Counter Mode S:D9H
CCAPMO PCA Timer/Counter Mode 0 S:DAH
CCAPM1 PCA Timer/Counter Mode 1 S:DBH
CCAPM2 PCA Timer/Counter Mode 2 S:DCH
CCAPM3 PCA Timer/Counter Mode 3 S:DDH
CCAPM4 PCA Timer/Counter Mode 4 S:DEH
CL PCA Timer/Counter Low Byte S:E9H
CH PCA Timer/Counter High Byte S:F9H
CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH
CCAPI1L PCA Compare/Capture Module 1 Low Byte S:EBH
CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH
CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH
CCAPA4L PCA Compare/Capture Module 4 Low Byte S:EEH
CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH
CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH
CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH
CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH
CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH




intel.

A

Device Configuration






intel.

CHAPTER 4
DEVICE CONFIGURATION

The 8X930Ax provides design flexibility by configuring certain operating features during device
reset. These features fall into the following categories:

¢ external memory interface (page mode, address bits, wait states, range for RD#, WR#, and
PSEN#)

¢ source mode/binary mode opcodes
¢ selection of bytes stored on the stack by an interrupt
* mapping of the upper portion of on-chip code memory to region 00:

You can specify a 16-bit, 17-bit, or 18-bit external addresses bus (256 Kbyte external address
space). Wait state selection provides 0, 1, 2, or 3 wait states.

This chapter provides adetailed discussion of device configuration. It describesthe configuration

bytes and provides information to aid you in selecting a suitable configuration for your applica-

tion. It discusses the choices involved in configuring the external memory interface and shows

how theinternal memory space mapsinto external memory. See “Configuring the External Mem-

ory Interface” on page 4-7. “Opcode Configurations (SRC)” on page 4-12 discusses the choice
of source mode or binary mode opcode arrangements.

4.1 CONFIGURATION OVERVIEW

The configuration of the 8X9304Ais established by the reset routine based on information stored
in configuration bytes. The 8X93&4stores configuration information in two user configuration
bytes (UCONFIGO and UCONFIG1) located in code memory. Devices with no on-chip code
memory fetch configuration data from external memory. Factory programmed ROM devices use
customer-provided configuration data supplied on floppy disk.

4.2 DEVICE CONFIGURATION

The 8X930A reserves the top eight bytes of the memory address space (FF:FFF8H-FF:FFFFH)
for an eight-byte configuration array (Figure 4-1). The two lowest bytes of the configuration array
are assigned to the two configuration bytes UCONFIGO (FF:FFF8H) and UCONFIG1
(FF:FFF9H). Bit definitions of UCONFIGO and UCONFIGL1 are provided in Figures 4-3 and 4-4.
The upper six bytes of the configuration array are reserved for future use.

When EA# = 1, the 8XC25Xbtains configuration information at reset from on-chip nonvola-
tile memory at addresses FF:FFF8H and FF:FFF9H. For ROM devices, configuration informa-
tion is entered at these addresses during fabrication. The user can verify configuration
information stored on-chip using the procedures presented in Chapter 16, “Verifying Nonvolatile
Memory.”

I 4-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

For devices without on-chip program memory, configuration information is accessed from exter-
nal memory using these same addresses. The designer must store configuration informationin an
eight-byte configuration array located at the highest addresses implemented in external code
memory. See Table 4-1 and Figure 4-2. When EA# = 0, the microcontroller obtains configuration
information at reset from external memory using internal addresses FF:FFF8H and FF:FFFOH.

FF:0000H

8-Kbyte
Devices

—>le

FF:

FF:0000H

16-Kbyte
Devices i

For EA# = 1, configuration information is obtained from the
on-chip configuration array located in non-volatile memory
at addresses FF:FFF8H - FF:FFFFH.

FF: T\

FF:FFFFH

FF:FFFEH

FF:FFFDH

FF:FFFCH

FF:FFFBH

FF:FFFAH

FF:FFF9H | UCONFIG1
FF:FFF8H | UCONFIGO

Detail. On-chip configuration array.
A4393-01

Figure 4-1. Configuration Array (On-chip)

Table 4-1. External Addresses for Configuration Array

Size of External
Address Bus

Address of

Configuration Array on

Address of
Configuration Bytes

(Bits) External Bus (2) on External Bus (1)
16 FFF8H-FFFFH UCONFIG1: FFF9H
UCONFIGO: FFF8H
17 1FFF8H-1FFFFH UCONFIG1: 1FFF9H
UCONFIGO: 1FFF8H
18 3FFF8H-3FFFFH UCONFIG1: 3FFF9H
UCONFIGO: 3FFF8H
NOTES:

1. When EA# = 0, the reset routine retrieves UCONFIGO and UCONFIGL1 from
external memory using the internal addresses FF:FFF8H and FF:FFF9H
which appear on the external address bus (A17, A16, A15:0) as shown in this
table. See Figure 4-2.

2. The upper six bytes of the configuration array are reserved for future use.




InU® DEVICE CONFIGURATION

8 Kbytes 16 Kbytes 32 Kbytes 64 Kbytes
FFFOH
FFF8H

>l

7FF9H R
3FFOH R 7FF8H )

1FFOH ¥ 3ren
1FF8H A

-
1

128 Kbytes 256 Kbytes
1:FFF9H y i_ 3:FFF9H Y

1:FFF8H —f 3:FFF8H

XXFFFH

>l

X:XFFEH

X:XFFDH

X:XFFCH

X:XFFBH

X:XFFAH

xxFF9H | UCONFIG1
xxFF8H | UCONFIGO

Detail.
Configuration array in external memory.

This figure shows the addresses of configuration bytes UCONFIG1 and UCONFIGO in external memory for
several memory implementations. For EA# = 0, configuration information is obtained from configuration bytes
in external memory using internal addresses FF:FFF8H and FF:FFF9H. In external memory, the eight-byte
configuration array is located at the highest addresses implemented.

A4394-01

Figure 4-2. Configuration Array (External)

CAUTION
The eight highest addresses in the memory address space (FF:FFF8H-
FF:FFFFH) are reserved for the configuration array. Do not read or write
application code at these locations. These address are also used to access the
configuration array in external memory, so the same restrictions apply to the
eight highest addresses implemented in external memory. Instructions that
might inadvertently cause these addresses to be accessed due to call returns or
prefetches should not be located at addresses immediately below the
configuration array. Use an EJMP instruction, five or more addresses below
the configuration array, to continue execution in other areas of memory.

4-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

4.3 THE CONFIGURATION BITS

This following list briefly describes the configuration bits contained in configuration bytes
UCONFIGO0 and UCONFIG1 (Figures 4-3 and 4-4):

¢ SRC. Selects source mode or binary mode opcode configuration.

* INTR. Selects the bytes pushed onto the stack by interrupts.

* EMAPH. Maps on-chip code memory (16 Kbyte devices only) to memory region 00:.
The following bits configure the external memory interface:

* PAGE#. Selects page/nonpage mode and specifies the data port.

¢ RD1:0. Selectsthe number of external address bus pins and the address range for RD#, WR,
and PSEN#.

¢ XALE#. Extendsthe ALE pulse.
¢ WSAL:O#. Selects 0, 1, 2, or 3 wait states for all memory regions except 01..

* WSBL:0# Selects 0, 1, 2, or 3 wait states for memory region O1..

* EMAPH. Affects the external memory interface in that, when asserted, addresses in the
range 00:E000H-00:FFFFH access on-chip memory.

4-4 I



InU® DEVICE CONFIGURATION

UCONFIGO Address: FF:FFF8H (2)
1), 3)
7 0
— wsAt# | wsao# | xale# || RD1 RDO PAGE# SRC
Bit Bit Function
Number | Mnemonic
7 — Reserved:
Reserved for internal or future use. Set this bit when programming
UCONFIGO.
6:5 WSAL:0# Wait State A (all regions except 01:):

For external memory accesses, selects the number of wait states for RD#,
WR#, and PSEN#.

WSAL#  WSAOQ#

0 0 Inserts 3 wait states for all regions except 01:
0 1 Inserts 2 wait states for all regions except 01:
1 0 Inserts 1 wait state for all regions except 01:
1 1 Zero wait states for all regions except 01:

4 XALE# Extend ALE:

Set this bit for ALE = T

Clear this bit for ALE = 3To4. (adds one external wait state).

3:2 RD1:0 Memory Signal Selection:

RD1:0 bit codes specify an 18-bit, 17-bit, or 16-bit external address bus and
address ranges for RD#, WR#, and PSEN#. See Table 4-2 on page 4-7.

1 PAGE# Page Mode Select:

Clear this bit for page mode enabled with A15:8/D7:0 on P2 and A7:0 on PO.
Set this bit for page mode disabled with A15:8 on P2 and A7:0/D7:0 on PO.
0 SRC Source Mode/Binary Mode Select:

Set this bit for source mode.
Clear this bit for binary mode (opcodes compatible with MCS 51 microcon-
trollers).

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8X930Ax.

2. Address. UCONFIGO is the lowest byte of the 8-byte configuration array. When EA# = 1, the 8X930Ax
fetches configuration information from an on-chip configuration array located in nonvolatile memory at
the top of region FF:.. When EA# = 0, the 8X930Ax fetches configuration information from a configura-
tion array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory
depends on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 16.

Figure 4-3. User Configuration Byte 0 (UCONFIGO)

4-5




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

UCONFIG1 Address: FF:FFF9H (2)
(1).3)
7 0
— — — INTR || — WSB1# | WSBO# | EMAP#
Bit Bit ) Function
Number | Mnemonic
75 — Reserved:
Reserved for internal or future use. Set these bits when programming
UCONFIGL1.
4 INTR Interrupt Mode:

If this bit is set, interrupts push 4 bytes onto the stack (the 3 bytes of the PC
and PSW1). If this bit is clear, interrupts push the 2 lower bytes of the PC
onto the stack. See “Interrupt Mode (INTR)” on page 4-14.

— Reserved. Write a ‘1’ to this bit.

2:1 WSB1:0# | External Wait State B (Region 01:):
WSB1#  WSBO#
0 0 Inserts 3 wait states for region 01:
0 1 Inserts 2 wait states for region 01:
1 0 Inserts 1 wait state for region 01:
1 1 Zero wait states for region 01:

0 EMAP# EPROM Map:

For devices with 16 Kbytes of on-chip code memory, clear this bit to map the
upper half of on-chip code memory to region 00: (data memory). This maps
FF:2000H-FF:3FFFH to 00:E000H-00:FFFFH. If this bit is set, mapping
does not occur and addresses in the range 00:E000H-00:FFFFH access
external RAM. See “Mapping On-chip Code Memory to Data Memory
(EMAP#)” on page 14.

NOTES:

1. User configuration bytes UCONFIGO and UCONFIG1 define the configuration of the 8X930Ax.

2. Address. UCONFIGL1 is the second lowest byte of the 8-byte configuration array. When EA# = 1, the
8X930AXx fetches configuration information from an on-chip configuration array located in nonvolatile
memory at the top of region FF:. When EA# = 0, the 8X930Ax fetches configuration information from a
configuration array located at the highest addresses implemented in external memory using addresses
FF:FFF8H and FF:FFF9H. The physical location of the configuration array in external memory
depends on the size and decode arrangement of the external memory (Table 4-1 and Figure 4-2).

3. Instructions for verifying on-chip configuration bytes are given in Chapter 16.

Figure 4-4. User Configuration Byte 1 (UCONFIG1)



DEVICE CONFIGURATION

Table 4-2. Memory Signal Selections (RD1:0)

AL17/P1.7/

RD1:0 CEXAMWCLK A16/P3.7/RD# PSEN# P3.6/WR# Features
0 0 [Al7 Al6 Asserted for | Asserted for writes to | 256 Kbyte external
all addresses | all memory locations | memory
0 1 |[P1.7/CEX4/ Al16 Asserted for | Asserted for writes to | 128 Kbyte external
WCLK all addresses | all memory locations | memory
1 0 |P1.7/CEX4/ P3.7 only Asserted for | Asserted for writes to | 64 Kbyte external
WCLK all addresses | all memory locations | memory. One
additional port pin.
1 1 |P1.7/CEX4/ RD# asserted | Asserted for | Asserted only for 64 Kbyte external
WCLK for addresses | = 80:0000H writes to MCS® 51 memory. Compatible
< 7F:FFFFH microcontroller data | with MCS 51

memory locations.

microcontrollers.

NOTE: RDZ1:0 are bits 3:2 of configuration byte UCONFIGO (Figure 4-3).

4.4 CONFIGURING THE EXTERNAL MEMORY INTERFACE

This section describes the configuration options that affect the external memory interface. The

configuration bits described here determine the following interface features:

44.1

page mode or nonpage mode (PAGE#)
the number of external address pins — 16, 17, or 18 (RD1:0)
the memory regions assigned to the read signals RD# and PSEN# (RD1:0)
the external wait states (WSA1:0#, WSB1:0#, XALE#)

mapping a portion of on-chip code memory to data memory (EMAPH)

Page Mode and Nonpage Mode (PAGE#)

The PAGE# bit (UCONFIGO0.1) selects page-mode or nonpage-mode code fetches and deter-
mines whether data is transmitted on P2 or PO. See Figure 15-1 on page 15-1 and “Page Mode

Bus Cycles” on page 15-6 for a description of the bus structure and page mode operation.

* Nonpage mode: PAGE# = 1. The bus structure is the same as for the MCS 51 architecture
with data D7:0 multiplexed with A7:0 on PO. External code fetches require two state times

(4Tosc)-

Page mode: PAGE# = 0. The bus structure differs from the bus structure in MCS 51
controllers. Data D7:0 is multiplexed with A15:8 on P2. Under certain conditions, external

code fetches require only one state time (2T o50).

4-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

4.4.2 Configuration Bits RD1:0

The RD1:0 configuration bits (UCONFIGO0.3:2) determine the number of external address lines

and the address ranges for asserting the read signals PSEN#/RD# and the write signal WR#.

These selections offer different ways of addressing external memory. Figures 4-5 and 4-6 show

how internal memory space mapsinto external memory space for the four values of RD1:0. Chap-

ter 15, “External Memory Interface,” provides examples of external memory designs for each
choice of RD1:0.

RD1:0 =00
18 external address bits: Internal Memory with External
PO, P2, Al6, A17 Read/Write Signals Memory
256 Kbytes
Notes: Er: A17:16
1. Maximum external PSEN#, WR# : 11 FF:
memory FE:
2. Single read signal 10 FE:
01 01
PSEN#, WR# ot:
' 00: 00 00
RD1:0=01
17 external address bits: Internal Memory with External
PO, P2, A16 Read/Write Signals Memory
Note: 128 Kbytes
i i FF:
Single read signal PSEN#, WR# Al
FE: 1 01:, FF:
0 00:, FE:
01:
PSEN#, WR#
00:
A4218-02

Figure 4-5. Internal/External Address Mapping (RD1:0 = 00 and 01)

4-8



intel.

DEVICE CONFIGURATION

RD1:0 =10

16 external address bits:
PO, P2

Notes:

1. Single read signal

2. P3.7/RD#/A16 functions
only as P3.7

RD1:.0=11

16 external address bits:
PO, P2

Note:
1. Compatible with MCS® 51
microcontrollers

Internal Memory with
Read/Write Signals

PSEN#, WR#

PSEN#, WR#

Internal Memory with
Read/Write Signals

PSEN#

2. Cannot write to regions FC:—FF:

RD#, WR#

FF:

FE:

01:

00:

FF:

FE:

01:

00:

External
Memory

64 Kbytes

|:| 00:, 01, FE:, FF:

External
Memory

128 Kbytes

FE:, FF:
00:, 01:

A4217-02

Figure 4-6. Internal/External Address Mapping (RD1:0 = 10 and 11)



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

A key to the memory interface is the relationship between internal memory addresses and exter-
nal memory addresses. While the 8X930Ax has 24 internal address bits, the number of external
address linesis less than 24 (i.e,, 16, 17, or 18, depending on the values of RD1:0). This means
that reads/writes to different internal memory addresses can access the same location in external
memory.

For example, if the 8X930AXx is configured for 18 external address lines, a write to location
01:6000H and awrite to location FF:6000H accesses the same 18-hit external address (1:6000H)
because A16 = 1 and A17 = 1 for both internal addresses. In other words, regions 00: and FE:
map into the same 64 Kbyte region in external memory.

In some situations, however, amultiple mapping from internal memory to external memory does

not preclude using morethan one region. For example, for adevice with on-chip ROM configured

for 17 address bits and with EA# = 1, an access to FF:0000H-FF:3FFFH (16 Kbytes) accesses
the on-chip ROM, while an access to 01:0000H-01:3FFFH is to external memory. In this case,
you could execute code from these locations in region FF: and store data in the corresponding
locations in region 01: without conflict. See Figure 4-5 and “Example 1: RD1:0 = 00, 18-bit Bus,
External Flash and RAM” on page 15-18.”

4421 RD1:0 = 00 (18 External Address Bits)

The selection RD1:0 = 00 provides 18 external address bits: A15:0 (ports PO and P2), A16 (from
P3.7/RD#/A16), and A17 (from P1.7/CEX4/A17/WCLK). Bits A16 and A17 can select four 64
Kbyte regions of external memory for a total of 256 Kbytes (top half of Figure 4-5). This is the
largest possible external memory space. See “Example 1: RD1:0 = 00, 18-bit Bus, External Flash
and RAM” on page 15-18.

4422 RD1:0 =01 (17 External Address Bits)

The selection RD1:0 = 01 provides 17 external address bits: A15:0 (ports PO and P2) and Al16
(from P3.7/RD#/A16). Bit A16 can select two 64 Kbyte regions of external memory for a total of
128 Kbytes (bottom half of Figure 4-5). Regions 00: and FE: (each having A16 = 0) map into the
same 64 Kbyte region in external memory. This duplication also occurs for regions 01: and FF:.

This selection provides a 128 Kbyte external address space. The advantage of this selection, in
comparison with the 256 Kbyte external memory space with RD1:0 = 00, is the availability of pin
P1.7/CEX4/A17/WCLK for general /0O, PCA I/O or real-time wait clock output. /O P3.7 is un-
available. All four 64 Kbyte regions are strobed by PSEN# and WR#. Chapter 15, “External
Memory Interface,” shows examples of memory designs with this option.

44.2.3 RD1:0 = 10 (16 External Address Bits)

For RD1:0 = 10, the 16 external address bits (A15:0 on ports PO and P2) provide a single 64 Kbyte
region in external memory (top of Figure 4-6). This selection provides the smallest external mem-
ory space; however, pin P3.7/RD#/A16 is available for general I/O and pin P1.7/CEX4/A17 is
available for general 1/0 or PCA I/O. This selection is useful when the availability of these pins
is required and/or a small amount of external memory is sufficient.

4-10 I



InU® DEVICE CONFIGURATION

44.2.4 RD1:0 = 11 (Compatible with MCS 51 Microcontrollers)

The selection RD1:0 = 11 provides only 16 external address bits (A15:0 on ports PO and P2).
However, PSEN# is the read signal for regions FE:—FF:, while RD# is the read signal for regions
00:-01: (bottom of Figure 4-6). The two read signals effectively expand the external memory
space to two 64 Kbyte regions. WR# is asserted only for writes to regions 00:—01:. This selection
provides compatibility with MCS 51 microcontrollers, which have separate external memory
spaces for code and data.

4.4.3 Wait State Configuration Bits

You can add wait states to external bus cycles by extending the RD#WR#/PSEN# pulse and/or
extending the ALE pulse. Each additional wait state extends the pulsey RFeparate wait

state specification for external accesses via region 01: permits a slow external device to be ad-
dressed in region 01: without slowing accesses to other external devices. Table 4-3 summarizes
the wait state selections for RD#,WR#,PSEN#. For waveform diagrams showing wait states, see
“External Bus Cycles With Configurable Wait States” on page 15-8.

4.43.1 Configuration Bits WSA1:0#, WSB1:0#

The WSA1:0# wait state bits (UCONFIGO0.6:5) permit RD#, WR#, and PSEN# to be extended by
1, 2, or 3 wait states for accesses to external memory via all regions except region 01:. The
WSB1:0# wait state bits (UCONFIG1.2:1) permit RD#, WR#, and PSEN# to be extended by 1,
2, or 3 wait states for accesses to external memory via region 01:.

4.4.3.2 Configuration Bit XALE#

Clearing XALE# (UCONFIGO0.4) extends the time ALE is asserted frgga b 3Tog.. This ac-
commodates an address latch that is too slow for the normal ALE signal. Figure 15-10 on page
15-10 shows an external bus cycle with ALE extended.

Table 4-3. RD#, WR#, PSEN# External Wait States

8X930A X

Regions WSALl# WSAO#

00: FE: FF: 0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

Region 01: WSB1# WSBO#
0 0 3 Wait States
0 1 2 Wait States
1 0 1 Wait State
1 1 0 Wait States

I 4-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

4.5 OPCODE CONFIGURATIONS (SRC)

The SRC configuration bit (UCONFIGO0.0) selects the source mode or binary mode opcode ar-
rangement. Opcodes for the 8X930Ax architecture arelisted in Table A-6 on page A-4 and Table

A-7 on page A-5. Note that in Table A-6 every opcode (OOH—FFH), is used for an instruction ex-
cept A5H (ESC), which provides an alternative set of opcodes for columns 6H through FH. The
SRC bit selects which set of opcodes is assigned to columns 6H through FH and which set is the
alternative.

Binary mode andsource mode refer to two ways of assigning opcodes to the instruction set for

the 8X930A architecture. One of these modes must be selected when the chip is configured. De-
pending on the application, binary mode or source mode may produce more efficient code. This
section describes the binary and source modes and provides some guidelines for selecting the
mode for your application.

The 8X930A architecture has two types of instructions:
* instructions that originate in the MCS® 51 architecture
* instructions that are common with the MCS® 251 architecture

Figure 4-7 shows the opcode map for binary mode. Areal (columns 1 through 5 in Table A-7)

and area |l (columns 6 through F) make up the opcode map for the instructions that originate in

the MCS 51 architecture. Area lll in Figure 4-7 represents the opcode map for the instructions

that are common with the MCS 251 architecture (Table A-7). Some of these opcodes are reserved

for future instructions. Note that the opcode values for areas |1 and |11 are identical (06H—FFH).

To distinguish between the two areas in binary mode, the opcodes in area Il are given the prefix
A5H. The area Ill opcodes are thus A5S06H-A5FFH.

Figure 4-8 shows the opcode map for source mode. Areas Il and Ill have switched places (com-
pare with Figure 4-7). In source mode, opcodes for instructions in area Il require the A5F escape
prefix while opcodes for instructions in area Il do not.

To illustrate the difference between the binary-mode and source-mode opcodes, Table 4-4 shows
the opcode assignments for three sample instructions.

45.1 Selecting Binary Mode or Source Mode

If a system was originally developed using an MCS 51 microcontroller, and if the new 8%930A
based system will run code written for the MCS 51 microcontroller, performance will be better
with the 8X930A running in binary mode. Object code written for the MCS 51 microcontroller
runs faster on the 8X936A

However, if most of the code is rewritten using the MCS 251 instruction set, performance will be
better with the 8X930Arunning in source mode. In this case, the 8X9386&#n run significantly
faster than the MCS 51 microcontroller.

If you have code that was written for an MCS 51 microcontroller and you want to run it unmod-
ified on an 8X9304, choose binary mode. You can use the object code without reassembling the
source code. You can also assemble the source code with an assembler for the MCS 251 architec-
ture and have it produce object code that is binary-compatible with MCS 51 microcontrollers.



DEVICE CONFIGURATION

A5H Prefix
OH 5H 6H FH 6H FH
OH ) OH
| : I Il
FH ' FH
MCS® 51 MCS 51 MCS 251
Architecture Architecture Architecture
A4131-01
Figure 4-7. Binary Mode Opcode Map
A5H Prefix
OH 5H 6H FH 6H FH
OH ) OH
| : Il I
FH ' FH
MCS® 51 MCS 251 MCS 51
Architecture Architecture Architecture

A4130-01

Figure 4-8. Source Mode Opcode Map

4-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 4-4. Examples of Opcodes in Binary and Source Modes

Opcode
Instruction
Binary Mode Source Mode
DEC A 14H 14H
SUBB A,R4 9CH A59CH
SUB R4,R4 A59CH 9CH

If aprogram uses only instructions from the MCS 51 architecture, the binary-mode codeis more
efficient becauseit uses no prefixes. On the other hand, if a program uses many more new instruc-
tions than instructions from the MCS 51 architecture, source mode is likely to produce more ef-
ficient code. For a program where the choice is not clear, the better mode can be found by
experimenting with asimulator.

For both architectures, an instruction with a prefixed opcode requires one more byte for code stor-
age, and if an additional fetch is required for the extra byte, the execution time is increased by
one state. This means that using fewer prefixed opcodes produces more efficient code.

46 MAPPING ON-CHIP CODE MEMORY TO DATA MEMORY (EMAP#)

For deviceswith 16 Kbytes of on-chip code memory (83930AB), the EMAP# bit (UCONFIG1.0)
provides the option of accessing the upper half of on-chip code memory as data memory. This

allows code constants to be accessed asdatain region 00: using direct addressing. See“Accessing
On-chip Code Memory in Region 00:” on page 3-9 for the exact conditions required for this map-
ping to be effective.

EMAP# = 0. For the 83930AB, the upper eight Kbytes of on-chip code memory (FF:2000—
FF:3FFFH are mapped to locations 00:E000H-00:FFFFH.

EMAP# = 1. Mapping of on-chip code memory to region 00: does not occur. Addresses in the
range 00:EO000H—-00:FFFFH access external RAM.

4.7 INTERRUPT MODE (INTR)

The INTR bit (UCONFIG1.4) determines what bytes are stored on the stack when an interrupt
occurs and how the RETI (Return from Interrupt) instruction restores operation.

For INTR = 0, an interrupt pushes the two lower bytes of the PC onto the stack in the following
order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes in the reverse order and uses
them as the 16-bit return address in region FF:.

For INTR =1, an interrupt pushes the three PC bytes and the PSW1 register onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four bytes
and then returns to the specified 24-bit address, which can be anywhere in the 16 Mbyte address
space.



intel.

| nstructions and
Addressing






intel.

CHAPTER 5
INSTRUCTIONS AND ADDRESSING

The instruction set for the architecture supports the instruction set for the MCS® 51 architecture
and MCS® 251 architecture. This chapter describes the addressing modes and summarizesthein-
struction set, which isdivided into datainstructions, bit instructions, and control instructions. The
program status word registers PSW and PSW1 are also described. Appendix A, “Instruction Set
Reference,” contains an opcode map and a detailed description of each instruction.

NOTE
The instruction execution times given in Appendix A are for code executing
from external memory and for data that is read from and written to on-chip
RAM. Execution times are increased by accessing peripheral SFRs, accessing
data in external memory, using a wait state, or extending the ALE pulse.

For some instructions, accessing the port SFRs(® 3:0) increases the
execution time. These cases are noted in the tables in Appendix A.

5.1 SOURCE MODE OR BINARY MODE OPCODES

Source mode andBinary mode refer to the two ways of assigning opcodes to the instruction set

of the 8X930A. Depending on the application, one mode or the other may produce more efficient
code. The mode is established during device reset based on the value of the SRC bit in configu-
ration byte UCONFIGO. For information regarding the selection of the opcode mode, see “Op-
code Configurations (SRC)” on page 4-12.

5.2 PROGRAMMING FEATURES OF THE 8X930Ax ARCHITECTURE

The instruction set for 8X930&microcontrollers provides the user with instructions that exploit

the features of the MCS 251 architecture while maintaining compatibility with the instruction set
for MCS 51 microcontrollers. Many of the MCS 251 architecture instructions operate on 8-bit,
16-bit, or 32-bit operands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are ac-
cessed with fewer addressing modes.) This capability increases the ease and efficiency of pro-
gramming the 8X930Amicrocontroller in a high-level language such as C.

The instruction set is divided into data instructions, bit instructions, and control instructions.
These are described in this chapter. Data instructions process 8-bit, 16-bit, and 32-bit data; bit in-
structions manipulate bits; and control instructions manage program flow.

I 5-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

5.2.1 Data Types

Table 5-1 lists the data types that are addressed by the instruction set. Words or dwords (double
words) can be in stored memory starting at any byte address; alignment on two-byte or four-byte
boundaries is not required. Words and dwords are stored in memory and the register file in big
endien form.

Table 5-1. Data Types

Data Type Number of Bits
Bit 1
Byte 8
Word 16
Dword (Double Word) 32

5.2.1.1 Order of Byte Storage for Words and Double Words

The 8X930AXx microcontroller stores words (2 bytes) and double words (4 bytes) in memory and

in the register filein big endien form. In memory storage, the most significant byte (M SB) of the
word or doubleword is stored in the memory byte specified in the instruction; the remaining bytes

are stored at higher addresses, with the least significant byte (LSB) at the highest address. Words

and double words can be stored in memory starting at any byte address. In the register file, the
MSB is stored in the lowest byte of the register specified in the instruction. For a description of

the register file, see “8X930Ax Register File” on page 3-9. The code fragment in Figure 5-1 il-
lustrates the storage of words and double words in big endien form.

5.2.2 Register Notation

In register-addressing instructions, specific indices denote the registers that can be used in that
instruction. For example, the instruction ADD A,Rn uses “Rn” to denote any one of RO, R1, ...,
R7; i.e., the range of n is 0—7. The instruction ADD Rm,#data uses “Rm” to denote RO, R1, ...,
R15; i.e., the range of m is 0—15. Table 5-2 summarizes the notation used for the register indices.
When an instruction contains two registers of the same type (e.g., MOV Rmd,Rms) the first index
“d” denotes “destination” and the second index “s” denotes “source.”

5.2.3 Address Notation

In the 8X930A architecture, memory addresses include a region number (00:, 01;, ..., FF:) (Fig-
ure 3-5 on page 3-7). SFR addresses have a prefix “S:” (S:000H-S:1FFH). The distinction be-
tween memory addresses and SFR addresses is necessary because memory locations 00:0000H
00:01FFH and SFR locations S:000H-S:1FFH can both be directly addressed in an instruction.

5-2 I



INSTRUCTIONS AND ADDRESSING

Memory
200H 201H 202H 203H
MOV WRO,#A3B6H
| ENES | MOV 00:0201H,WR0
MOV DR4,#0000C4D7H
Register File
0 1 2 3 4 5 6 7
[ AzH | B6H | | [ oon | ooH [ can [o7H |
_ | J
—_—
WRO DR4
Contents of register file and memory after execution
A4242-01

Figure 5-1. Word and Double-word Storage in Big Endien Form

Table 5-2. Notation for Byte Registers, Word Registers, and Dword Registers

Register | Regiter | Destnaton | Source
Ri — — RO, R1
Byte Rn — — RO-R7
Rm Rmd Rms R0O-R15
Word WR;j WRjd WRijs WRO, WR2, WR4, ..., WR30
Dword DRk DRkd DRks DRO, DR4, DRS, ..., DR28, DR56, DR60

Instructions in the MCS 51 architecture use 80H-FFH as addresses for both memory locations
and SFRs, because memory locations are addressed only indirectly and SFR locations are ad-
dressed only directly. For compatibility, software tools for 8X98@#Acrocontrollers recognize

this notation for instructions in the 8X93RArchitecture. No change is necessary in any code
written for MCS 51 controllers.

For the MCS 251 architecture instructions, the memory region prefixes (00:, 01, ..., FF:) and the
SFR prefix (S:) are required. Also, software tools for the 8X33&#&hitecture permit 00: to be

used for memory addresses 00H—FFH and permit the prefix S: to be used for SFR addresses in
instructions in the 8X930Aarchitecture.

5-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

5.2.4 Addressing Modes

The 8X930Ax architecture supports the following addressing modes:
* register addressing: The instruction specifies the register that contains the operand.
* immediate addressing: The instruction contains the operand.
¢ direct addressing: The instruction contains the operand address.

¢ indirect addressing: The instruction specifies the register that contains the operand
address.

¢ displacement addressing: The instruction specifies aregister and an offset. The operand
addressis the sum of the register contents (the base address) and the offset.

¢ relative addressing: Theinstruction contains the signed offset from the next instruction to
the target address (the address for transfer of control, e.g., the jJump address).

¢ bit addressing: The instruction contains the bit address.

More detailed descriptions of the addressing modes are given in “Data Addressing Modes” on
page 5-4, “Bit Addressing” on page 5-10, and “Addressing Modes for Control Instructions” on
page 5-12.

5.3 DATA INSTRUCTIONS

Data instructions consist of arithmetic, logical, and data-transfer instructions for 8-bit, 16-bit, and
32-bit data. This section describes the data addressing modes and the set of data instructions.

5.3.1 Data Addressing Modes

This section describes the data-addressing modes, which are summarized in two tables: Table 5-4
for the instructions that are native to the MCS 51 architecture, and Table 5-4 for the data instruc-
tions in the MCS 251architecture.

NOTE
References to registers RO—R7, WR0-WR6, DRO, and DR2 always refer to the
register bank that is currently selected by the PSW and PSW1 registers (see
“Program Status Words” on page 5-15). Registers in all banks (active and
inactive) can be accessed as memory locations in the range O0OH-1FH.

Instructions from the MCS 51 architecture access external memory through the
region of memory specified by byte DPXL in the extended data pointer
register, DPX (DR56). Following reset, DPXL contains 01H, which maps the
external memory to region 01:. You can specify a different region by writing to
DR56 or the DPXL SFR (see “Dedicated Registers” on page 3-12).

5-4 I



intel.

53.1.1

Register Addressing

INSTRUCTIONS AND ADDRESSING

Both architectures address registers directly:

* MCS 251 architecture. In the register addressing mode, the operand(s) in adata instruction

are in byte registers (R0—-R15), word registers (WR0, WR2, ..., WR30), or dword registers

(DRO, DR4, ..., DR28, DR56, DR60).
* MCS51 architecture. Instructions address registers RO—R7 only.

5.3.1.2

Immediate

Both architectures use immediate addressing.

* MCS 251 architecture. In the immediate addressing mode, the instruction contains the data
operand itself. Byte operations use 8-bit immediate data (#data); word operations use 16-hit
immediate data (#datal6). Dword operations use 16-bit immediate data in the lower word,
and either zeros in the upper word (denoted by #0datal6), or onesin the upper word
(denoted by #1datal6). MOV instructions that place 16-bit immediate datainto a dword
register (DRK), place the data either into the upper word while leaving the lower word
unchanged, or into the lower word with a sign extension or a zero extension.

The increment and decrement instructions contain immediate data (#short = 1, 2, or 4) that
specifies the amount of the increment/decrement.

* MCS 51 architecture. Instructions use only 8-bit immediate data (#data).

5.3.1.3 Direct

* MCS 251 architecture. In the direct addressing mode, the instruction contains the address of
the data operand. The 8-bit direct mode addresses on-chip RAM (dir8 = 00:0000H—
00:007FH) as both bytes and words, and addresses the SFRs (dir8 = S:080H-S:1FFH) as
bytes only. (See the second note in “Data Addressing Modes” on page 5-4 regarding SFRs
in the MCS 251 architecture.) The 16-bit direct mode addresses both bytes and words in

memory (dirl6 = 00:0000H-00:FFFFH).

* MCS 51 architecture. The 8-bit direct mode addresses 256 bytes of on-chip RAM (dir8 =
00H-7FH) as bytes only and the SFRs (dir8 = 80H-FFH) as bytes only.

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51 Architecture

Address Range of Assembly Language
Mode Operand Reference Comments
. RO-R7
Register OOH—LFH (Bank selected by PSW)
Immediate Operand in Instruction | #data = #00H—#FFH
00H-7FH dir8 = 00H—7FH On-chip RAM
Direct ir8 = —
SFRs dir8 = 80H—FH . SFR address
or SFR mnemonic.

5-5




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 5-3. Addressing Modes for Data Instructions in the MCS® 51

Address Range of Assembly Language
Mode Operand Reference Comments

Accesses on-chip RAM or the

O0H-FFH @RO, @R1 lowest 256 bytes of external
data memory (MOVX).

Indirect Accesses external data

0000H-FFFFH @DPTR, @A+DPTR memory (MOVX).
Accesses region FF: of code

0000H-FFFFH @A+DPTR, @A+PC memory (MOVC).

5.3.1.4 Indirect

In arithmetic and logical instructions that use indirect addressing, the source operand is always a
byte, and the destination is either the accumulator or a byte register (RO—R15). The source address
is a byte, word, or dword. The two architectures do indirect addressing via different registers:

* MCS 251 architecture. Memory is indirectly addressed via word and dword registers:

— Word register (@WR], j=0, 2, 4, ..., 30). The 16-bit address in WRj can access
locations 00:0000H—00:FFFFH.

— Dword register (@DRk, k=0, 4, 8, ..., 28, 56, and 60). The 24 least significant bits can
access the entire 16-Mbyte address space. The upper eight bits of DRk must be 0. (If
you use DR60 as a general data pointer, be aware that DR60 is the extended stack
pointer register SPX.)

* MCS51 architecture. Instructions use indirect addressing to access on-chip RAM, code
memory, and external data RAM. (See the second note in “Data Addressing Modes” on
page 5-4 regarding the region of external data RAM that is addressed by instructions in the
MCS 51 architecture.)

— Byte register (@RI, i = 1, 2). Registers R0 and R1 indirectly address on-chip memory
locations 00H—FFH and the lowest 256 bytes of external data RAM.

— 16-bit data pointer (@DPTR or @A+DPTR). The MOVC and MOVX instructions use
these indirect modes to access code memory and external data RAM.

— 16-bit program counter (@A+PC). The MOVC instruction uses this indirect mode to
access code memory.

5-6 I



intel.

INSTRUCTIONS AND ADDRESSING

Table 5-4. Addressing Modes for Data Instructions in the MCS 251 Architecture

Address Range of

Assembly Language

Mode Operand Notation Comments

00:0000H—00:001FH RO-R7, WR0-WR6, DRO, and

Register R0O—R15, WR0—WR30, DR2 are in the register bank

9 (RO-R7, WRO-WRS, DR0O—DR28, DR56, DR60 currently selected by the

DRO, DR2) (1) PSW and PSW1.

Imr_nedlate, N.A. (Qperanq is in the #short=1,2, or 4 Used only in increment and

2 bits instruction) decrement instructions.

Imr_nedlate, N.A. (Qperanq is in the #datas = #OOH—#FEFH

8 bits instruction)

Immediate, N-A. (Operand isinthe | 016 = #0000H—#FFFFH

16 bits instruction)

D 00:0000H-00:007FH dir8 = 00:0000H-00:007FH On-chip RAM

irect,

8 address bits

SFRs

dir8 = S:080H—S:1FFH (2)
or SFR mnemonic

SFR address

Direct,
16 address bits

00:0000H-00:FFFFH

dirl6 = 00:0000H-00:FFFFH

Indirect,
16 address bits

00:0000H-00:FFFFH

@WRO-@WR30

Indirect,
24 address bits

00:0000H-FF:FFFFH

@DRO-@DR30, @DR56,
@DR60

Upper 8 bits of DRk must be
OOH.

Displacement,
16 address bits

00:0000H-00:FFFFH

@WR] + dis16 =

@WRO + OH through
@WR30 + FFFFH

Offset is signed; address
wraps around in region 00:.

Displacement,
24 address bits

00:0000H—FF:FFFFH

@DRK + dis24 =

@DRO + OH through
@DR28 + FFFFH,
@DR56 + (OH-FFFFH),
@DR60 + (OH—FFFFH)

Offset is signed, upper 8 bits
of DRk must be 00H.

NOTES:

1. These registers are accessible in the memory space as well as in the register file (see “8X930AX
Register File” on page 3-9).
2. The MCS 251 architecture supports SFRs in locations S:000H-S:1FFH; however, in the 8X930Ax all
SFRs are in the range S:080H-S:0FFH.

53.15

Displacement

Several move instructions use displacement addressing to move bytes or words from a source to
adestination. Sixteen-bit displacement addressing (@WR;j+dis16) accesses indirectly the lowest
64 Kbytesin memory. The base address can bein any word register WR;j. Theinstruction contains
a 16-bit signed offset which is added to the base address. Only the lowest 16 bits of the sum are
used to compute the operand address. If the sum of the base address and a positive offset exceeds
FFFFH, the computed address wraps around within region 00: (e.g. FOOOH + 2005H becomes



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

1005H). Similarly, if the sum of the base address and a negative offset isless than zero, the com-
puted address wraps around the top of region 00: (e.g., 2005H + FOOOH becomes 1005H).

Twenty-four-bit displacement addressing (@DRKk+dis24) accessesindirectly the entire 16-Mbyte
address space. The base address must be in DRO, DR4, ..., DR24, DR28, DR56, or DR60. The
upper byte in the dword register must be zero. The instruction contains a 16-bit signed offset
which is added to the base address.

5.3.2 Arithmetic Instructions

The set of arithmetic instructionsis greatly expanded inthe MCS 251 architecture. The ADD and
SUB instructions (Table A-19 on page A-14) operate on byte and word data that is accessed in
several ways:

¢ asthe contents of the accumulator, a byte register (Rn), or aword register (WRj)
¢ intheinstruction itself (immediate data)
¢ inmemory viadirect or indirect addressing

The ADDC and SUBB instructions (Table A-19) are the same as those for MCS 51 microcontrol -
lers.

The CMP (compare) instruction (Table A-20 on page A-15) calculatesthe difference of two bytes
or words and then writes to flags CY, OV, AC, N, and Z in the PSW and PSW1 registers. The
differenceis not stored. The operands can be addressed in a variety of modes. The most frequent
use of CMP isto compare data or addresses preceding a conditional jump instruction.

Table A-21 on page A-15 lists the INC (increment) and DEC (decrement) instructions. The in-
structions for MCS 51 microcontrollers are supplemented by instructions that can address byte,
word, and dword registers and increment or decrement them by 1, 2, or 4 (denoted by #short).
These instructions are supplied primarily for register-based address pointers and loop counters.

The 8X930Ax architecture provides the MUL (multiply) and DIV (divide) instructions for un-
signed 8-bit and 16-bit data (Table A-22 on page A-16). Signed multiply and divide are left for
the user to manage through a conversion process. The following operations are implemented:

¢ eight-bit multiplication: 8 bits x 8 bits - 16 bits

¢ sixteen-bit multiplication: 16 bits x 16 bits - 32 bits

¢ eight-bit division: 8 bits~ 8 bits — 16 bits (8-bit quotient, 8-bit remainder)

¢ gsixteen-bit division: 16 bits+ 16 bits - 32 bits (16-bit quotient, 16-bit remainder)
These instructions operate on pairs of byte registers (Rmd,Rms), word registers (WRjd,WRjs), or
the accumulator and B register (A,B). For 8-hit register multiplies, theresult is stored in the word
register that contains the first operand register. For example, the product from an instruction
MUL R3,R8 is stored in WR2. Similarly, for 16-bit multiplies, the result is stored in the dword

register that contains the first operand register. For example, the product from the instruction
MUL WR6,WR18 is stored in DRA4.

5-8 I



Int9|® INSTRUCTIONS AND ADDRESSING

For 8-bit divides, the operands are byteregisters. Theresult is stored in the word register that con-
tainsthefirst operand register. The quotient is stored in thelower byte, and the remainder is stored
inthe higher byte. A 16-bit divideissimilar. Thefirst operand isaword register, and theresult is
stored in the double word register that contains that word register. If the second operand (the di-
visor) iszero, the overflow flag (OV) is set and the other bitsin PSW and PSW1 are meaningless.

5.3.3 Logical Instructions

The 8X930Ax architecture provides a set of instructions that perform logical operations. The
ANL, ORL, and XRL (logical AND, logical OR, and logical exclusive OR) instructions operate
on bytes and words that are accessed via several addressing modes (Table A-23 on page A-17).
A byte register, word register, or the accumulator can be logically combined with aregister, im-
mediate data, or datathat is addressed directly or indirectly. Theseinstructions affect the Z and N

flags.

In additiontothe CLR (clear), CPL (complement), SWAP (swap), and four rotateinstructionsthat
operate on the accumulator, 8X930Ax microcontroller has three shift commands for byte and
word registers:

e SLL (Shift Left Logical) shiftsthe register one bit left and replaces the LSB with O
¢ SRL (Shift Right Logical) shifts the register one bit right and replaces the MSB with 0
¢ SRA (Shift Right Arithmetic) shifts the register one bit right; the MSB is unchanged

5.3.4 Data Transfer Instructions

Data transfer instructions copy data from one register or memory location to another. These in-
structions include the move instructions (Table A-24 on page A-19) and the exchange, push, and
pop instructions (Table A-25 on page A-22). Instructions that move only a single bit are listed
with the other bit instructionsin Table A-26 on page A-23.

MOV (Move) is the most versatile instruction, and its addressing modes are expanded in the
8X930AXx architecture. MOV can transfer a byte, word, or dword between any two registers or
between aregister and any location in the address space.

The MOV X (Move External) instruction moves a byte from external memory to the accumulator
or from the accumulator to memory. The external memory isin the region specified by DPXL,
whose reset value is O1H (see “Dedicated Registers” on page 3-12).

The MOVC (Move Code) instruction moves a byte from code memory (region FF:) to the accu-
mulator.

MOVS (Move with Sign Extension) and MOVZ (Move with Zero Extension) move the contents
of an 8-bit register to the lower byte of a 16-bit register. The upper byte is filled with the sign bit
(MOVS) or zeros (MOVZ). The MOVH (Move to High Word) instruction places 16-bit immedi-
ate data into the high word of a dword register.

The XCH (Exchange) instruction interchanges the contents of the accumulator with a register or
memory location. The XCHD (Exchange Digit) instruction interchanges the lower nibble of the

I 5-9



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

accumulator with the lower nibble of a byte in on-chip RAM. XCHD is useful for BCD (binary
coded decimal) operations.

The PUSH and POP instructions facilitate storing information (PUSH) and then retrieving it
(POP) in reverse order. Push can push abyte, aword, or a dword onto the stack, using the imme-
diate, direct, or register addressing modes. POP can pop abyte or aword from the stack to areg-
ister or to memory.

5.4 BIT INSTRUCTIONS

A bit instruction addresses a specific bit in amemory location or SFR. There are four categories
of bit instructions:

* SETB (Set Bit), CLR (Clear Bit), CPL (Complement Bit). These instructions can set,
clear or complement any addressable bit.

¢ ANL (And Logical), ANL/ (And Logical Complement), ORL (OR Logical), ORL/ (Or
Logical Complement). Theseinstructions allow ANDing and ORing of any addressable bit
or its complement with the CY flag.

* MOV (Move) instructions transfer any addressable bit to the carry (CY) bit or vice versa.

¢ Bit-conditional jump instructions execute ajump if the bit has a specified state. The bit-
conditional jump instructions are classified with the control instructions and are described
in “Conditional Jumps” on page 5-13.

5.4.1 Bit Addressing

The bits that can be individually addressed are in the on-chip RAM and the SFRs (Table 5-5). The
bit instructions that are unique to the MCS 251 architecture can address a wider range of bits than
the instructions from the MCS 51 architecture.

There are some differences in the way the instructions from the two architectures address bits. In
the MCS 51 architecture, a bit (denoted by bit51) can be specified in terms of its location within

a certain register, or it can be specified by a bit address in the range 00H-7FH. The»8X930A
architecture does not have bit addresses as such. A bit can be addressed by name or by its locatior
within a certain register, but not by a bit address.

Table 5-6 illustrates bit addressing in the two architectures by using two sample bits:

¢ RAMBIT is bit 5 in RAMREG, which is location 23H. “RAMBIT” and “RAMREG" are
assumed to be defined in user code.

e [Tlishit2inTCON, whichisan SFR at location 88H.

5-10 I



Int9|® INSTRUCTIONS AND ADDRESSING

Table 5-5. Bit-addressable Locations

Bit-addressable Locations
Architecture

On-chip RAM SFRs

MCS® 251 Architecture 20H-7FH All defined SFRs

SFRs with addresses ending in OH or 8H:

MCS 51 Architecture 20H-2FH 80H, 88H, 90H, 98H. .... F8H

Table5-7 liststhe addressing modesfor bit instructionsand Table A-26 on page A-23 summarizes
the bit instructions. “Bit” denotes a bit that is addressed by an instruction in the MCS 251 archi-
tecture and “bit51” denotes a bit that is addressed by an instruction in the MCS 51 architecture.

Table 5-6. Addressing Two Sample Bits

Location Addressing MCS® 51 MCS 251
Mode Architecture Architecture
Register Name RAMREG.5 RAMREG.5
) Register Address 23H.5 23H.5
On-chip RAM -
Bit Name RAMBIT RAMBIT
Bit Address 1DH NA
Register Name TCON.2 TCON.2
Register Address 88.2H S:88.2H
SFR -
Bit Name IT1 IT1
Bit Address 8A NA

Table 5-7. Addressing Modes for Bit Instructions

Archi- Variants | Bit Address Memory/SFR Address Comments

tecture
MCS® 251 Memory | NA 20H.0—7FH.7
Architecture -
(bit) SFR NA All defined SFRs

Memory | 00OH-7FH 20H.0—7FH.7
Nahtoc SFR defined
Architecture - - s are not define
(bit51) SFR 80H-F8H XXH.0-XXH.7, where XX = 80, at all bit-addressable
88, 90, 98, ..., FO, F8. locations

5.5 CONTROL INSTRUCTIONS

Control instructions—instructions that change program flow—include calls, returns, and condi-
tional and unconditional jumps (see Table A-27 on page A-24). Instead of executing the next in-
struction in the queue, the processor executes a target instruction. The control instruction provides

5-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

the address of atarget instruction either implicitly, asin areturn from a subroutine, or explicitly,
in the form of arelative, direct, or indirect address.

The 8X930Ax has a 24-bit program counter (PC), which allows a target instruction to be any-
wherein the 16-Mbyte address space. However, as discussed in this section, some control instruc-
tionsrestrict thetarget addressto the current 2-Kbyte or 64-K byte addressrange by allowing only
the lowest 11 or lowest 16 bits of the program counter to change.

5.5.1 Addressing Modes for Control Instructions
Table 5-8 lists the addressing modes for the control instructions.

* Relative addressing: The control instruction provides the target address as an 8-bit signed
offset (rel) from the address of the next instruction.

¢ Direct addressing: The control instruction provides atarget address, which can have 11 bits
(addr11), 16 bits (addr16), or 24 bits (addr24). The target address is written to the PC.

— addrll: Only the lower 11 bits of the PC are changed; i.e., the target address must be in
the current 2-Kbyte block (the 2-Kbyte block that includes the first byte of the next
instruction).

— addrl6: Only the lower 16 bits of the PC are changed; i.e., the target address must be in
the current 64-Kbyte region (the 64-Kbyte region that includes the first byte of the next
instruction).

— addr24: The target address can be anywhere in the 16-Mbyte address space.
¢ Indirect addressing: There are two types of indirect addressing for control instructions:

— For the instructions LCALL @WRj and LIMP @WRj, the target address is in the
current 64-Kbyte region. The 16-bit address in WR;j is placed in the lower 16 bits of the
PC. The upper eight bits of the PC remain unchanged from the address of the next
instruction.

— For the instruction JIMP @A+DPTR, the sum of the accumulator and DPTR is placed in
the lower 16 bits of the PC, and the upper eight bits of the PC are FF:, which restricts
the target address to the code memory space of the MCS 51 architecture.



Int9|® INSTRUCTIONS AND ADDRESSING

Table 5-8. Addressing Modes for Control Instructions

Description A?ﬂ:ﬁif‘igts Address Range
Relative, 8-bit relative address (rel) 8 -128 to +127 from first byte of next instruction
Direct, 11-bit target address (addr11) 11 Current 2 Kbytes
Direct, 16-bit target address (addr16) 16 Current 64 Kbytes
Direct, 24-bit target address (addr24)t 24 00:0000H—FF:FFFFH
Indirect (@WR)j)* 16 Current 64 Kbytes
Indirect (@A+DPTR) 16 Sg[lﬁbit%{eHg;ion specified by DPXL (reset

tThese modes are not used by instructions in the MCS® 51 architecture.

5.5.2 Conditional Jumps

The 8X930Ax architecture supports bit-conditional jumps, compare-conditional jumps, and
jumps based on the value of the accumulator. A bit-conditional jump isbased on the state of abit.
In a compare-conditional jump, the jump is based on a comparison of two operands. All condi-
tional jumps are relative, and the target address (rel) must be in the current 256-byte block of
code. The instruction set includes three kinds of bit-conditional jumps:

¢ JB (Jump on Bit): Jump if the bit is set.
¢ JINB (Jump on Not Bit): Jump if the bit isclear.
¢ JBC (Jump on Bit then Clear it): Jump if the bit is set; then clear it.
“Bit Addressing” on page 5-10 describes the bit addressing used in these instructions.

Compare-conditional jumps test a condition resulting from a compare (CMP) instruction that is
assumed to precede the jump instruction. The jump instruction examines the PSW and PSW1 reg-
isters and interprets their flags as though they were set or cleared by a compare (CMP) instruction.
Actually, the state of each flag is determined by the last instruction that could have affected that
flag.

The condition flags are used to test one of the following six relations between the operands:
¢ equal (=), not equal (%)
¢ greater than (>), lessthan (<)
* greater than or equal (=), less than or equal (<)

For each relation there are two instructions, one for signed operands and one for unsigned oper-
ands (Table 5-9).

5-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 5-9. Compare-conditional Jump Instructions

Operand Relation
Type - P > < ] £
Unsigned JG JL JGE JLE
JE JINE
Signed JSG JSL JSGE JSLE

5.5.3 Unconditional Jumps

There are five unconditional jumps. NOP and SIMP jump to addresses relative to the program
counter. AJMP, LIMP, and EIMP jump to direct or indirect addresses.

* NOP (No Operation) is an unconditional jump to the next instruction.
¢ SIMP (Short Jump) jumps to any instruction within -128 to 127 of the next instruction.

¢ AJIMP (Absolute Jump) changes the lowest 11 bits of the PC to jump anywhere within the
current 2-Kbyte block of memory. The address can be direct or indirect.

¢ LJIMP (Long Jump) changes the lowest 16 bits of the PC to jump anywhere within the
current 64-Kbyte region.

¢ EJMP (Extended Jump) changes all 24 bits of the PC to jump anywhere in the 16-Mbyte
address space. The address can be direct or indirect.

5.5.4 Calls and Returns
The 8X930Ax architecture provides relative, direct, and indirect calls and returns.

ACALL (Absolute Call) pushes the lower 16 bits of the next instruction address onto the stack
and then changes the lower 11 bits of the PC to the 11-bit address specified by the instruction.
The call isto an address that is in the same 2-Kbyte block of memory as the address of the next
instruction.

LCALL (Long Call) pushes the lower 16 bits of the next-instruction address onto the stack and
then changes the lower 16 bits of the PC to the 16-bit address specified by the instruction. The
call isto an addressin the same 64-Kbyte block of memory as the address of the next instruction.

ECALL (Extended Call) pushesthe 24 bits of the next instruction address onto the stack and then
changes the 24 bits of the PC to the 24-bit address specified by the instruction. The call isto an
address anywhere in the 16-Mbyte memory space.

RET (Return) pops the top two bytes from the stack to return to the instruction following a sub-
routine call. The return address must be in the same 64-K byte region.

ERET (Extended Return) pops the top three bytes from the stack to return to the address follow-
ing a subroutine call. The return address can be anywhere in the 16-Mbyte address space.



Int9|® INSTRUCTIONS AND ADDRESSING

RETI (Return from Interrupt) provides a return from an interrupt service routine. The operation
of RETI depends on the INTR bit in the UCONFIG1 or CONFIG1 configuration byte:

* For INTR =0, an interrupt pushes the two lower bytes of the PC onto the stack in the
following order: PC.7:0, PC.15:8. The RETI instruction pops these two bytes and uses them
as the 16-bit return address in region FF:. RETI also restores the interrupt logic to accept
additional interrupts at the same priority level as the one just processed.

* For INTR =1, aninterrupt pushes the three PC bytes and PSW1 onto the stack in the
following order: PSW1, PC.23:16, PC.7:0, PC.15:8. The RETI instruction pops these four
bytes and then returns to the specified 24-bit address, which can be anywhere in the 16-
Mbyte address space. RETI aso clears the interrupt request line. (See the notein Table 5-8
regarding compatibility with code written for MCS 51 microcontrollers.)

The TRAP instruction is useful for the development of emulations of an 8X930Ax microcontrol-
ler.

5.6 PROGRAM STATUS WORDS

The Program Status Word (PSW) register (Figure 5-2) and the Program Status Word 1 (PSW1)
register (Figure 5-3) contain four types of bits:

* CY,AC,0V, N, and Z areflags set by hardware to indicate the result of an operation.
¢ The P bit indicates the parity of the accumulator.

* Bits RS0 and RS1 are programmed by software to select the active register bank for
registers RO—R7.

* FOand UD are available to the user as general-purpose flags.

The PSW and PSW1 registers are read/write registers; however, the parity bit in the PSW is not
affected by awrite. Individua bits can be addressed with the bit instructions (see “Bit Address-

ing” on page 5-10). The PSW and PSW1 bits are used implicitly in the conditional jump instruc-
tions (see “Conditional Jumps” on page 5-13).

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSW1 regis-
ter exists only in MCS 251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 are iden-
tical to the corresponding bits in PSWi; i.e., the same bit can be accessed in either register. Table
5-10 lists the instructions that affect the CY, AC, OV, N, and Z bits.

I 5-15



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 5-10. The Effects of Instructions on the PSW and PSW1 Flags

Flags Affected (1), (5)
Instruction Type Instruction
CcY oV | AC(2 N z
ADD, ADDC, SUB, X X X X X
SUBB, CMP
Arithmetic INC, DEC X X
MUL, DIV (3) 0 X X X
DA X X
ANL, ORL, XRL, CLR A, X X
_ CPL A, RL, RR, SWAP
Logical
RLC, RRC, SRL, SLL, X X X
SRA (4)
CJINE X X X
Program Control
DJINE X X
NOTES:
1. X =the flag can be affected by the instruction.

arwd

0 = the flag is cleared by the instruction.

The AC flag is affected only by operations on 8-bit operands.

If the divisor is zero, the OV flag is set, and the other bits are meaningless.

For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.
The parity bit (PSW.0) is set or cleared by instructions that change the contents of the
accumulator (ACC, Register R11).



Int9|® INSTRUCTIONS AND ADDRESSING

PSW Address: S:DOH
Reset State: 0000 0000B
7 0
cy AC FO RS1 || Rso ov uD P
Bit Bit Function
Number Mnemonic
7 CY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise, it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10).

5 FO Flag O:
This general-purpose flag is available to the user.
4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO—R7).

RS1 RSO Bank Address

0 0 0 00H-07H

0 1 1 08H-O0FH

1 0 2 10H-17H

1 1 3 18H-1FH
2 oV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2's-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ub User-definable Flag:
This general-purpose flag is available to the user.
0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).

Figure 5-2. Program Status Word Register

5-17



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

PSW1 Address: S:D1H
Reset State: 0000 0000B
7 0
cy AC N RS1 || Rso ov z —
Bit Bit . Function
Number Mnemonic
7 CY Carry Flag:
Identical to the CY bit in the PSW register.
6 AC Auxiliary Carry Flag:
Identical to the AC bit in the PSW register.
5 N Negative Flag:

This bit is set if the result of the last logical or arithmetic operation was
negative (i.e., bit 15 = 1). Otherwise it is cleared.

4-3 RS1:0 Register Bank Select Bits 0 and 1:

Identical to the RS1:0 bits in the PSW register.
2 oV Overflow Flag:

Identical to the OV bit in the PSW register.
1 A Zero Flag:

This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.

0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

Figure 5-3. Program Status Word 1 Register



intel.

| nterrupt System






CHAPTER 6
INTERRUPT SYSTEM

6.1 OVERVIEW

The 8X930AXx, like other control-oriented microcontroller architectures’, employs a program in-
terrupt method. This operation branches to a subroutine and performs some service in response
to the interrupt. When the subroutine compl etes, execution resumes at the point where the inter-
rupt occurred. Interrupts may occur asaresult of internal 8X930Ax activity (e.g., timer overflow)
or at the initiation of electrical signals external to the microcontroller (e.g., serial port communi-
cation). In all cases, interrupt operation is programmed by the system designer, who determines
priority of interrupt service relative to normal code execution and other interrupt service routines.
Ten of the eleven interrupts are enabled or disabled by the system designer and may be manipu-
lated dynamically.

A typical interrupt event chain occurs asfollows. Aninternal or external deviceinitiates an inter-
rupt-request signal. This signal, connected to an input pin (see Table 6-1) and periodically sam-
pled by the 8X930AX, latches the event into aflag buffer. The priority of the flag (see Table 6-2)
is compared to the priority of other interrupts by the interrupt handler. A high priority causesthe
handler to set an interrupt flag. This signals the instruction execution unit to execute a context
switch. This context switch breaks the current flow of instruction sequences. The execution unit
completes the current instruction prior to a save of the program counter (PC) and rel oads the PC
with the start address of a software service routine. The software service routine executes as-
signed tasks and as a fina activity performs a RETI (return from interrupt) instruction. Thisin-
struction signals completion of the interrupt, resets the interrupt-in-progress priority, and rel oads
the program counter. Program operation then continues from the original point of interruption.

Table 6-1. Interrupt System Input Signals

Signal Lol Multiplexed
Name Type Description With
INT1:0# | External Interrupts 0 and 1. These inputs set bits IE1:0 in the P3.3:2

TCON register. If bits IT1:0 in the TCON register are set, bits IE1:0
are controlled by a negative-edge trigger on INT1#/INTO#. If bits
INT1:0# are clear, bits IE1:0 are controlled by a low level trigger on
INT1:0#.

NOTE: Other signals are defined in their respective chapters and in Appendix B, “Signal Descriptions.”

T A non-maskable interrupt (NMI#) is not included on the 8X930AX.

6-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

nterrupt Enable

Priority Enable

IENO IPHOIPLO [ pionest
A Interrupt
0 [ | o—1
a1
- D_/TDO_ oo a il | 5—?:
1 T_\— | ’
1 S
1 7 ’)
Timer O > @_)”/‘—-’": d :- cd
ETO 1 ® >
1 T o4+—
INTL1# IT1 Bl a2+ .
- EX1 I -— );»
1 T_\— :
1 4- > &
1 g -
Timer 1 :El_)w'—: g :- o §
- . ET1 : ° > §
Overflow 1 A e
1 94 - nc.)
PCA 0 e_—e—e Leie” T 5
EC 1 . 2
Match or ECCRx ] - i %
Capture 1 5 ! £
1
X P
Receive —————>| RI {l_>_) I =
—_ e —o—e oo e
Transmit > T ES 1 ¢ al
1
Timer 2 ———3{ TF2 : '4=°'E)
| e —0—o o1&
T2EX [ }F——>{Exr2 ET2 : ¢ _TI Y
1
USB Endpoint Done 0 |
FRXIEx IEN1 ' IPH1/IPL1
Receive 4 I ot
1 1 ! T e :LLI
0 BRI
_ EF ! -—
Transmit FTXIEX :
Any Start 04 soFie 9 I 4.
ASOF I .
of Frame ~ )-—0' ESOF : o—
usB ; =
Resume 3 ! 7 C
_./.ﬂ_‘? ®
USB ESR ¢ =
Suspend

PCON1.0

Lowest Priority Interrupt <—,
A5042-01

6-2

Figure 6-1. Interrupt Control System




Int9|® INTERRUPT SYSTEM

Table 6-2. Interrupt System Special Function Registers

Mnemonic Description Address

FIE USB Function Interrupt Enable Register. Enables and disables the receive S:A2H
and transmit done interrupts for the four function endpoints.

FIFLG USB Function Interrupt Flag Register. Contains the USB Function’s S:COH

Transmit and Receive Done interrupt flags for non-isochronous endpoints.

IENO Interrupt Enable Register 0. Enables individual programmable interrupts. S:A8H
Also provides a global enable for the programmable interrupts. The reset value
for this register is zero (interrupts disabled).

IEN1 Interrupt Enable Registerl. Enables individual programmable interrupts for S:B1H
the USB interrupts. The reset value of this register is zero (interrupts disabled).

IPLO Interrupt Priority Low Register 0. Establishes relative priority for program- S:B8H
mable interrupts. Used in conjunction with IPHO.

IPHO Interrupt Priority High Register 0. Establishes relative priority for program- S:B7H
mable interrupts. Used in conjunction with IPLO.

IPL1 Interrupt Priority Low Register 1. Establishes relative priority for program- S:B2H
mable interrupts. Used in conjunction with IPH1.

IPH1 Interrupt Priority High Register 1. Establishes relative priority for program- S:B3H
mable interrupts. Used in conjunction with IPL1.

NOTE: Other SFRs are described in their respective chapters and in Appendix C, “Registers.”

6.2 8X930Ax INTERRUPT SOURCES

Figure 6-1 illustratesthe interrupt control system. The 8X930Ax has eleven interrupt sources; ten
maskabl e sources and the TRAP instruction (always enabled). The maskable sourcesinclude two
external interrupts (INTGO# and INT1#), three timer interrupts (timers 0, 1, and 2), one program-
mable counter array (PCA) interrupt, one serial port interrupt, and three USB interrupts. Each in-
terrupt (except TRAP) has an interrupt request flag, which can be set by software as well as by
hardware (see Table 6-3). For some interrupts, hardware clears the request flag when it grants an
interrupt. Software can clear any request flag to cancel an impending interrupt.

6.2.1 External Interrupts

External interrupts INTO# and INT1# (INTx#) pins may each be programmed to be level-trig-
gered or edge-triggered, dependent upon bits ITO and IT1 in the TCON register (see Figure 10-6
on page 10-9). If ITx =0, INTx# is triggered by a detected low at the pin. If ITx =1, INTx# is
negative-edge triggered. External interrupts are enabled with bits EX0 and EX1 (EXX) in the
IENO register (see Figure 6-4). Events on the external interrupt pins set the interrupt request flags
IEx in TCON. These request bits are cleared by hardware vectors to service routines only if the
interrupt is negative-edgetriggered. If the interrupt islevel-triggered, theinterrupt serviceroutine
must clear therequest bit. External hardware must deassert INTx# before the service routine com-
pletes, or an additional interrupt is requested. Externa interrupt pins must be deasserted for at
least four state times prior to arequest.

6-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

External interrupt pins are sampled once every four state times (a frame length of 666.4 nsat 12
MH2z). A level-triggered interrupt pin held low or high for any five-state time period guarantees
detection. Edge-triggered external interrupts must hold the request pin low for at least five state
times. This ensures edge recognition and sets interrupt request bit EXx. The CPU clears EXx au-
tomatically during service routine fetch cycles for edge-triggered interrupts.

Table 6-3. Interrupt Control Matrix

Global Timer | Serial | Timer Timer
T
Interrupt Name Enable PCA > Port 1 INT1# 0 INTO#
Bit Name in [ENO EA EC ET2 ES ET1 EX1 ETO EXO0
Register
Interrupt Priority-
Within-Level
(10 = Low Priority, NA 7 6 5 4 3 2 L
1 = High Priority)
Bit Names in:
IPHO Reserved | IPH0.6 | IPHO0.5 | IPHO0.4 | IPHO.3 | IPH0.2 | IPHO.1 | IPHO0.0
IPLO Reserved | IPLO.6 | IPLO.5 | IPLO.4 | IPLO.3 IPLO.2 IPLO.1 IPLO.O
Programmable for
Negative-edge NA Edge No No No Yes No Yes
Triggered or Level-
triggered Detect?
Interrupt Request
Flag in CCON, CF, TF2,
T2CON, SCON, or NA CCFx EXF2 RI, TI TFL IEL TFO IEO
TCON Register
Interrupt Request Edge Edge
Flag Cleared by No No No No Yes Yes, Yes Yes,
Hardware? Level No Level No
ISR Vector Address NA FF: FF: FF: FF: FF: FF: FF:
0033H | 002BH | 0023H | 001BH 0013H 000BH 0003H

T The 8X930Ax also contains a TRAP interrupt, not cleared by hardware, with a vector address of
FFOO7BH. For a discussion of TRAP and other interrupt sources, see “8X930Ax Interrupt Sources” on
page 6-3.

Additional interrupts specific to USB operation appear in Table 6-4.




intel.

INTERRUPT SYSTEM
Table 6-4. USB Interrupt Control Matrix
Interrupt Name USB Global [Ngr?-?szléﬂfgr?gus [Is’g(r:]%rf)g(l):us
Suspend/Resume Endpoint] Endpoint]

Bit Name in IEN1
Register ESR EF ESOF
Interrupt Priority-
Within-Level
(10 = Low Priority, 10 9 8
1 = High Priority)
Bit Names in:

IPH1 IPH1.2 IPH1.1 IPH1.0

IPL1 IPL1.2 IPL1.1 IPL1.0
Programmable for
Negative-edge N/A N/A N/A
Triggered or Level-
triggered Detect?
Interrupt Request
Flag in PCON1, GSUS FTXDx, FRXDx ASOE
FIFLG, or SOFH GRSM x=0,1,2,3
Register
Interrupt Request
Flag Cleared by No No No
Hardware?
ISR Vector Address FF:0053H FF:004BH FF:0043H

6.2.2 Timer Interrupts

Two timer-interrupt request bits TFO and TF1 (see TCON register, Figure 10-6 on page 10-9) are
set by timer overflow (the exception is Timer 0 in Mode 3, see Figure 10-4 on page 10-7). When
atimer interrupt is generated, the bit is cleared by an on-chip hardware vector to an interrupt ser-
vice routine. Timer interrupts are enabled by bits ETO, ET1, and ET2 in the IENO register (see
Figure 6-4).

Timer 2 interrupts are generated by alogical OR of bits TF2 and EXF2 in register T2CON (see
Figure 10-12 on page 10-18). Neither flag is cleared by a hardware vector to aservice routine. In
fact, theinterrupt service routine must determineif TF2 or EXF2 generated theinterrupt, and then
clear the bit. Timer 2 interrupt is enabled by ET2 in register IENO.

6.3 PROGRAMMABLE COUNTER ARRAY (PCA) INTERRUPT

The programmable counter array (PCA) interrupt is generated by the logical OR of five event
flags (CCFx) and the PCA timer overflow flag (CF) in the CCON register (see Figure 11-8 on
page 11-14). All PCA interrupts share a common interrupt vector. Bits are not cleared by hard-
ware vectors to service routines. Normally, interrupt service routines resolve interrupt requests
and clear flag bits. This allowsthe user to define the relative priorities of the five PCA interrupts.

I 6-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

The PCA interrupt is enabled by bit EC in the IENO register (see Figure 6-1). In addition, the CF
flag and each of the CCFx flags must a so be individually enabled by bits ECF and ECCFx in reg-
isters CMOD and CCAPMX, respectively, for theflag to generate an interrupt (see Figure 11-7 on
page 11-13 and Figure 11-9 on page 11-15).

NOTE
CCFx refersto five separate bits, one for each PCA module (CCFO, CCF1,
CCF2, CCF3, CCF4). CCAPMXx refersto 5 separate registers, one for each
PCA module (CCAPMO, CCAPM1, CCAPM2, CCAPM3, CCAPM4).

6.4 SERIAL PORT INTERRUPT

Serial port interrupts are generated by the logical OR of bits Rl and Tl in the SCON register (see
Figure 12-2 on page 12-5). Neither flag is cleared by ahardware vector to the serviceroutine. The
service routine resolves Rl or Tl interrupt generation and clears the serial port request flag. The
serial port interrupt is enabled by bit ES in the IENO register (see Figure 6-4).

6.5 USB INTERRUPTS

There are three types of USB interrupts: The USB function interrupt, to control the flow of non-
isochronous data; the start of frame interrupt (SOF), to monitor the transfer of isochronous data;
and the global suspend/resume interrupt, to allow USB power control. These interrupts are en-
abled using the IEN1 register. See Table 6-4 and Figure 6-5.

6.5.1 USB Function Interrupt

The USB function generates two types of interruptsto control the transfer of non-isochronous da-
ta: the receive done interrupt and the transmit done interrupt. Individual USB Function interrupts
are enabled by setting the corresponding bitsin the FIE register (Figure 6-2).

NOTE
In order to use any of the USB function interrupts, the EF bit in the IEN1
register must be enabled.

6-6 I



intel.

INTERRUPT SYSTEM
EIE Address: S:A2H
Reset State: 0000 0000B
7 0
FRXIE3 FTXIE3 FRXIE2 FTXIE2 ‘ ‘ FRXIE1 FTXIEL FRXIEO FTXIEO
Bit Bit . Function
Number Mnemonic
7 FRXIE3 Function Receive Interrupt Enable 3:
Enables receive done interrupt for endpoint 3 (FRXD3).
6 FTXIE3 Function Transmit Interrupt Enable 3:
Enables transmit done interrupt for endpoint 3 (FTXD3).
5 FRXIE2 Function Receive Interrupt Enable 2:
Enables the receive done interrupt for endpoint 2 (FRXD2).
4 FTXIE2 Function Transmit Interrupt Enable 2:
Enables the transmit done interrupt for endpoint 2 (FTXD2).
3 FRXIE1 Function Receive Interrupt Enable 1:
Enables the receive done interrupt for endpoint 1 (FRXD1).
2 FTXIE1 Function Transmit Interrupt Enable 1:
Enables the transmit done interrupt for endpoint 1 (FTXD1).
1 FRXIEO Function Receive Interrupt Enable 0:
Enables the receive done interrupt for endpoint 0 (FRXDO).
0 FTXIEO Function Transmit Interrupt Enable O:
Enables the transmit done interrupt for endpoint0 (FTXDO).
NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to

the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit's value will still be reflected in the FIFLG
register.

Figure 6-2. USB Function Interrupt Enable Register

The USB Function Interrupt Flag Register (FIFLG, as shown in Figure 6-3) is used to indicate

pending function interrupts. For all bits in FIFLG, a ‘1’ indicates that an interrupt is actively
pending; a ‘0’ indicates that the interrupt is not active. The interrupt status is shown in the FIFLG
register regardless of the state of the corresponding interrupt enable bit in the FIE Register (Figure

6-2).

The USB function generates a receive done interrupt for an enap@int 0-3) by setting the

FRXDx bit

in the FIFLG register (Figure 6-3). Only non-isochronous transfer can cause a receive

done interrupt. Receive done interrupts are generated onlyallh&fithe following are true:

1. Avalid SETUP or OUT token is received to function endpgiand
2. Endpointx is enabled for reception (RXEPEN in EPCON = ‘&id




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

5.

Receive is enabled (RXIE = ‘1’) and STALL is disabled (RXSTL = ‘0") for OUT tokens
(or the token received is a SETUP tokeand

A data packet is received with no time-outregardless of transmission errors (CRC, bit-
stuffing) or FIFO errors (overrun, underruajhd

There is no data sequence PID error.

Because the FRXEbit is set and a receive done interrupt is generated regardless of transmission
errors, this condition means either:

1.

Valid data is waiting to be serviced in the receive FIFO for function endpaimt that the
data was received without error and has been acknowledged; or

Data was received with a receive data error and requires firmware intervention to be
cleared. This could be either a transmission error or a FIFO-related error. You must check
for these conditions and respond accordingly in the interrupt service routine (ISR).

The USB function generates a transmit done interrupt for an endp@int 0-3) by setting the
FTXDx bitin the FIFLG register (Figure 6-3). Only non-isochronous transfer can cause a transmit
done interrupt. Transmit done interrupts are generated only ahehthe following are true:

1.
2
3.
4

5.

A valid IN token is received to function endpoinand
Endpointx is enabled for transmission (TXEPEN = ‘1dpd
Transmit is enabled (TXIE =‘1") and STALL is disabled (TXSTL = ‘@id

A data packet/byte count has been loaded in the transmit FIFO and was transmitted in
response to the IN token +egardless of whether or not a FIFO error occuasgd

An ACK is received from the host or there was a time-out in the SIE.

Because the FTXBbit is set and a transmit done interrupt is generated regardless of transmission
errors, this condition means either:

1.

6-8

The transmit data has been transmitted and the host has sent an acknowledgment to
indicate that is was successfully received; or

A transmit data error occurred during transmission of the data packet, which requires
servicing by firmware to be cleared. You must check for these conditions and respond
accordingly in the ISR.

NOTE
Setting an endpoint interrupt’s bit in the Function Interrupt Enable register
(FIE register, as shown in Figure 6-2) means that the interrupt is enabled and
will cause an interrupt to be signaled to the microcontroller. Clearing a bit in
the FIE register disables the associated interrupt source, which can no longer
cause an interrupt even though its value will still be reflected in the FIFLG
register.



Int9|® INTERRUPT SYSTEM

EIELG Address: S:COH
Reset State: 0000 0000B
7 0
FRXD3 FTXD3 FRXD2 FTXD2 ‘ ‘ FRXD1 FTXD1 FRXDO FTXDO
Bit Bit Function
Number Mnemonic
7 FRXD3 Function Receive Done Flag, Endpoint 3
6 FTXD3 Function Transmit Done Flag, Endpoint 3
5 FRXD2 Function Receive Done Flag, Endpoint 2
4 FTXD2 Function Transmit Done Flag, Endpoint 2
3 FRXD1 Function Receive Done Flag, Endpoint 1
2 FTXD1 Function Transmit Done Flag, Endpoint 1
1 FRXDO Function Receive Done Flag, Endpoint 0
0 FTXDO Function Transmit Done Flag, Endpoint 0
NOTE: For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a
‘0’ indicates that the interrupt is not active. The interrupt status is shown regardless of the
state of the corresponding interrupt enable bit in the FIE. Bits are set-only by hardware and
clearable in software. Software can also set the bits for text purposes, allowing the interrupt
to be generated in software.

Figure 6-3. USB Function Interrupt Flag Register

6.5.2 USB Start of Frame Interrupt

The USB start of frame interrupt (SOF) is used to control the transfer of isochronous data. The
8X930AX frame timer attempts to synchronize to the frame time automatically. When the frame
timer is locked to the USB frame time, hardware sets the FTLOCK bit in SOFH (Figure 7-5 on
page 7-12). To enablethe start of frameinterrupt, set the SOFIE bit in SOFH. The 8X930Ax gen-
erates a SOF interrupt whenever a start of frame packet is received from the USB lines (or when-

ever an SOF packet should have been received — i.e., an artificial SOF) by setting the ASOF bit

in SOFH.

The 8X930A uses the SOF interrupt to signal either of two complementary events:

1. When transmitting: The next isochronous data packet needs to be retrieved from memory
and loaded into the transmit FIFO in preparation for transmission in the next frame; or

2. When receiving: An isochronous packet has been received in the previous frame and

needs to be retrieved from the receive FIFO.

Since the SOF packet could be corrupted, there is a chance that a new frame could be started with-
out successful reception of the SOF packet. For this reason, an artificial SOF is provided. The
frame timer signals a time-out when an SOF packet has not been received within the allotted
amount of time. In this fashion, the 8X930denerates an SOF interrupt reliably once each frame

6-9



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

within 1 ps of accuracy, except when this interrupt is suspended or when the frame timer gets out-
of-sync with the USB bus frame time.

In summary, in order to utilize the USB start of frame functionality for isochronous data transfer,
the following must all be true:

1. The global enable bit must be set (i.e., the EA bit must be set in the IENO register)

2. The isochronous endpoint any SOF interrupt must be enabled (the ESOF bit must be setin
the IEN1 register)

3. The SOF interrupt must be enabled (the SOFIE bit must be set in the SOFH Register)

NOTE

The SOF interrupt is brought out to an external pin (SOF#) in order to provide
a 1 ms pulse, subject to the accuracy of the USB SOF. This pin is enabled by
clearing the SOFODIS bit in the SOFH register.

6.5.3 USB Global Suspend/Resume Interrupt

The 8X930A supports USB power control through firmware. The USB power control register
(PCON1, as shown in Figure 14-2 on page 14-3) facilitates USB power control of the 8X930A
including global suspend/resume and USB function resume.

6.5.3.1 Global Suspend

When a global suspend is detected by the 8X83@#e global suspend bit (GSUS of PCON1) is

set and the GS/Resume interrupt is generated. Global suspend is defined as bus inactivity for
more than 3 ms on the USB lines. For additional information, see “Global Suspend Mode” on
page 14-6.

6.5.3.2 Global Resume

When a global resume is detected by the 8X93(#e global resume bit (GRSM of PCON1) is

set and the Global Suspend/Resume interrupt is generated. As soon as resume signaling is detect
ed on the USB lines, the oscillator is restarted. After executing the resume interrupt service rou-
tine, the 8X930A4 resumes operation from where it was when it was interrupted by the suspend
interrupt. For additional information, see “Global Resume Mode” on page 14-8.

6.5.3.3 USB Remote Wake-up

The 8X930A can also initiate resume signaling to the USB lines through remote wakeup of the
USB function while it is in powerdown/idle mode. While in powerdown mode, remote wakeup
has to be initiated through assertion of an enabled external interrupt. The external interrupt has to
be enabled and it must be configured with level trigger and with higher priority than a suspend/re-
sume interrupt. An external interrupt restarts the clocks to the 8X080d program execution
branches to the external interrupt service routine.

Within this external interrupt service routine, you must set the remote wakeup bit (RWU in
PCONL1) to drive resume signaling on the USB lines to the host or upstream hub. After executing
the external ISR, the program continues execution from where it was put into powerdown mode

6-10 I



intel.

INTERRUPT SYSTEM

and the 8X930Ax resumes normal operation. For additional information, see “USB Remote

Wake-up” on page 14-8.

6.6 INTERRUPT ENABLE

Each interrupt source (with the exception of TRAP) may be individually enabled or disabled by
the appropriate interrupt enable bit in the IENO register at S:A8H (see Figure 6-4) or the IEN1
register at S:B1H (see Figure 6-5). Note IENO also contains a global disable bit (EA). If EA is
set, interrupts are individually enabled or disabled by bits in IENO and IENL1. If EA is clear, all

interrupts are disabled.

IENO Address: S:A8H
Reset State: 0000 0000B
7 0
EA EC ET2 Es || Em EX1 EX0
Nu?nltber Mne?r:tonic Function
7 EA Global Interrupt Enable:
Setting this bit enables all interrupts that are individually enabled by bits
0-6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.
6 EC PCA Interrupt Enable:
Setting this bit enables the PCA interrupt.
5 ET2 Timer 2 Overflow Interrupt Enable:
Setting this bit enables the timer 2 overflow interrupt.
4 ES Serial I/0 Port Interrupt Enable:
Setting this bit enables the serial /0 port interrupt.
3 ET1 Timer 1 Overflow Interrupt Enable:
Setting this bit enables the timer 1 overflow interrupt.
2 EX1 External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.
1 ETO Timer 0 Overflow Interrupt Enable:
Setting this bit enables the timer 0 overflow interrupt.
0 EXO External Interrupt O Enable:
Setting this bit enables external interrupt 0.

Figure 6-4. Interrupt Enable Register 0

6-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

IEN1 Address: S:B1H
Reset State:  XXXX X000H
7 0
— — — — || - ESR EF ESOF
Bit Bit Function
Number Mnemonic
73 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 ESR Enable Suspend/Resume:
USB Global Suspend/Resume Interrupt Enable bit.
1 EF Enable Function:
Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.
0 ESOF Enable Start of Frame:
Any start of frame interrupt enable bit for isochronous endpoints.

Figure 6-5. USB Interrupt Enable Register




Int9|® INTERRUPT SYSTEM

6.7 INTERRUPT PRIORITIES

Ten of the eleven 8X930Ax interrupt sources (TRAP excluded) may beindividually programmed
to one of four priority levels. Thisis accomplished with the IPHX.x/IPLX.x bit pairsin the inter-
rupt priority high (IPH1/IPHO in Figure 6-6 and 6-8) and interrupt priority low (IPL1/IPLO) reg-
isters (Figures 6-7 and 6-9). Specify the priority level as shown in Table 6-5 using IPHO.x (or
IPH1.X) asthe MSB and IPLO.x (or IPL1.X) asthe LSB.

Table 6-5. Level of Priority

Priority Level IPH1.x, IPL1.x | IPHO.x, IPLO.x
0 Lowest Priority 00 00
1 01 01
2 10 10
3 Highest Priority 11 11

A low-priority interrupt is always interrupted by a higher priority interrupt but not by another in-
terrupt of equal or lower priority. The highest priority interrupt is not interrupted by any other in-
terrupt source. Higher priority interrupts are serviced before lower priority interrupts. The
response to simultaneous occurrence of equal priority interrupts (i.e., sampled within the same
four-state interrupt cycle) is determined by a hardware priority-within-level resolver (see Table
6-6).

Table 6-6. Interrupt Priority Within Level

Priority Number Interrupt Name
1 (Highest Priority) INTO#
2 Timer O
3 INT1#
4 Timer 1
5 Serial Port
6 Timer 2
7 PCA
8 USB Any SOF
9 USB Function
10 USB Global Suspend/Resume

I 6-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

IPHO Address: S:B7H
Reset State: X000 0000B

7 0
— IPHO.6 IPHO.5 IPHO.4 ‘ ‘ IPHO.3 IPHO.2 IPHO.1 IPHO.0
Bit Bit . Function

Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.

6 IPHO.6 PCA Interrupt Priority Bit High

5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High

4 IPHO.4 Serial /0 Port Interrupt Priority Bit High

3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High

2 IPHO.2 External Interrupt 1 Priority Bit High

1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High

0 IPHO0.0 External Interrupt O Priority Bit High

Figure 6-6. IPHO: Interrupt Priority High Register 0

IPLO Address: S:B8H
Reset State: X000 0000B

7 0
— IPLO.6 IPLO.5 | IPLO4 || IPLO3 IPLO.2 IPLO.1 IPL0.0
Bit Bit : Function

Number Mnemonic
7 — Reserved. The value read from this bit is indeterminate. Write a zero to
this bit.

6 IPLO.6 PCA Interrupt Priority Bit Low

5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low

4 IPLO.4 Serial I/0 Port Interrupt Priority Bit Low

3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low

2 IPLO.2 External Interrupt 1 Priority Bit Low

1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low

0 IPLO.0 External Interrupt O Priority Bit Low

Figure 6-7. IPLO: Interrupt Priority Low Register 0



INTERRUPT SYSTEM
IPH1 Address: S:B3H
Reset State: X000 0000B
7 0
— — — | | IPH1.2 IPH1.1 IPH1.0
Bit Bit Function
Number Mnemonic
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High
IPH1.1 USB Function Interrupt Priority Bit High
0 IPH1.0 USB Any SOF Interrupt Priority Bit High
Figure 6-8. IPH1: Interrupt Priority High Register 1
IPL1 Address: S:B2H
Reset State: X000 0000B
7 0
— — — || IPLL.2 IPLL.1 IPL1.0
Bit Bit Function
Number Mnemonic
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low
IPL1.1 USB Function Interrupt Priority Bit Low
0 IPL1.0 USB Any SOF Interrupt Priority Bit Low

Figure 6-9. IPL1: Interrupt Priority Low Register 1

6-15



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

6.8 INTERRUPT PROCESSING

Interrupt processing is a dynamic operation that begins when a source requests an interrupt and
lasts until the execution of the first instruction in the interrupt service routine (see Figure 6-10).
Response time is the amount of time between the interrupt request and the resulting break in the
current instruction stream. Latency is the amount of time between the interrupt request and the
execution of the first instruction in the interrupt service routine. These periods are dynamic due
to the presence of both fixed-time sequences and several variable conditions. These conditions
contribute to total elapsed time.

Response Time
osc MR AR AR LA
Siave (gig Ny N p NNy g NNy Ny NN Ny NN NN p NNy p Ny RNyl Rp Nyl RyNgipRpipipipipipliy
Time
External !
Interrupt B\ S ///

Request ' 1

S ! Ending Instructions Push PC || Call ISR | ISR

'
! '

-
”

Latency

A4153-01

Figure 6-10. The Interrupt Process

Both response time and latency begin with the request. The subsequent minimum fixed sequence
comprises the interrupt sample, poll, and request operations. The variables consist of (but are not
limited to): specific instructions in use at request time, internal versus external interrupt source
requests, internal versus external program operation, stack location, presence of wait states, page-
mode operation, and branch pointer length.

NOTE

In the following discussion, external interrupt request pins are assumed to be
inactive for at least four state times prior to assertion. In this chapter all
external hardware signals maintain some setup period (i.e., less than one state
time). Signals must meet Vi1 and VL specifications prior to any state time
under discussion. This setup state time is not included in examples or calcula-
tions for either response or latency.



Int9|® INTERRUPT SYSTEM

6.8.1 Minimum Fixed Interrupt Time

All interrupts are sampled or polled every four state-times (see Figure 6-10). Two of eight inter-
rupts are latched and polled per state time within any given window of four state-times. One ad-
ditional state time is required for a context switch request. For code branches to jump locations
in the current 64-Kbyte memory region (compatible with MCS 51 microcontrollers), the context
switch timeis 11 states. Therefore, the minimum fixed poll and request time is 16 states (4 poll
states + 1 request state + 11 states for the context switch = 16 state times).

Therefore, this minimum fixed period rests upon four assumptions:

* Thesourcereguest isan internal interrupt with high enough priority to take precedence over
other potential interrupts,

* Therequest iscoincident with internal execution and needs no instruction completion time,
* The program uses an internal stack location, and
* ThelSRisinon-chip ROM.

6.8.2 Variable Interrupt Parameters

Both response time and latency calculations contain fixed and variable components. By defini-

tion, it isoften difficult to predict exact timing cal culations for real-time requests. One large vari-

able isthe completion time of an instruction cycle coincident with the occurrence of an interrupt

request. Worst-case predictions typically use the longest-executing instruction in an architecture’s
code set. In the case of the 8X930Q#he longest-executing instruction is a 16-bit divide (DIV).
However, even this 21- state instruction may have only 1 or 2 remaining states to complete before
the interrupt system injects a context switch. This uncertainty affects both response time and la-
tency.

6.8.2.1 Response Time Variables

Response time is defined as the start of a dynamic time period when a source requests an interrupt
and lasts until a break in the current instruction execution stream occurs (see Figure 6-10). Re-
sponse time (and therefore latency) is affected by two primary factors: the incidence of the re-
guest relative to the four-state-time sample window and the completion time of instructions in the
response period (i.e., shorter instructions complete earlier than longer instructions).

NOTE

External interrupt signals require one additional state time in comparison to
internal interrupts. This is necessary to sample and latch the pin value prior to
a poll of interrupts. The sample occurs in the first half of the state time and the
poll/request occurs in the second half of the next state time. Therefore, this
sample and poll/request portion of the minimum fixed response and latency

6-17



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

timeisfive states for internal interrupts and six states for external interrupts.
External interrupts must remain active for at least five state times to guarantee
interrupt recognition when the request occurs immediately after a sample has
been taken (i.e., requested in the second half of a sample state time).

If the external interrupt goes active one state after the sample state, the pin is not resampled for
another three states. After the second sample istaken and the interrupt request is recognized, the
interrupt controller requests the context switch. The programmer must also consider the time to
complete the instruction at the moment the context switch request is sent to the execution unit. If
9 states of a 10-state instruction have completed when the context switch is requested, the total
response time is 6 states, with a context switch immediately after the final state of the 10-state
instruction (see Figure 6-11).

Response Time = 6

0osC

State Time igigigigiphi
INTO# QSSS [22

Sample INTO# L L L L
Request LI
Ten State
Instruction S Push PC S

A4155-02

Figure 6-11. Response Time Example #1

Conversely, if the external interrupt requests service in the state just prior to the next sample, re-
sponse is much quicker. One state asserts the request, one state samples, and one state requests
the context switch. If at that point the same instruction conditions exist, one additional state time
is needed to complete the 10-state instruction prior to the context switch (see Figure 6-12). The

total response time in this case is four state times. The programmer must evaluate all pertinent
conditions for accurate predictability.

6-18



Int9|® INTERRUPT SYSTEM

Response Time =4

osc

State Time [igigigigigigigh
INTO# “SS [227
Sample INTO# — L] | | L
Request LT
Ten State
Instruction S Push PC S
A4154-02

Figure 6-12. Response Time Example #2

6.8.2.2 Computation of Worst-case Latency With Variables

Worst-case latency cal culations assume that the longest 8X 930AXx instruction used in the program
must fully execute prior to a context switch. The instruction execution time is reduced by one
state with the assumption the instruction state overlaps the request state (therefore, 16-bit DIV is
21 state times - 1 = 20 states for latency calculations). The calculations add fixed and variable
interrupt times (see Table 6-7) to thisinstruction time to predict latency. The worst-case latency
(both fixed and variable times included) is expressed by a pseudo-formula:

FIXED_TIME + VARIABLES + LONGEST_INSTRUCTION = MAXIMUM LATENCY PREDICTION

6-19



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 6-7. Interrupt Latency Variables

intel.

External
INTO#, >64K External External External
Variable | INT1#, Ei)gced?iiln ,\32%2 Jump to Ms\rlr;(ijtry Stack Stack Stack
T2EX ISR (1) State <64K (1) >64K (1) | Wait State
Number
of 1 per 1 per
States 1 2 1 8 bus cycle 4 8 bus cycle
Added
NOTES:

1. <64K/>64K means inside/outside the 64-Kbyte memory region where code is executing.
2. Base-case fixed time is 16 states and assumes:

— A 2-byte instruction is the first ISR byte.
— <64K jump to ISR
— Internal peripheral interrupt

— Internal execution
— Internal stack

6.8.2.3 Latency Calculations

Assume the use of azero-wait-state external memory where current instructions, the ISR, and the
stack are located within the same 64-Kbyte memory region (compatible with memory maps for
MCS 51 microcontrollers.) Further, assume there are 3 states yet to complete in the current 21-
state DIV instruction when INTO# requests service. Also assume INTO# has made the request one
state prior to the sample state (asin Figure 6-12). Unlike Figure 6-12, the response time for this
assumptionisthree state times asthe current instruction completesin time for the branch to occur.
Latency cal cul ations begin with the minimum fixed latency of 16 states. From Table 6-7, one state
is added for an INTO# request from external hardware; two states are added for external execu-
tion; and four states for an external stack in the current 64-Kbyte region. Finally, three states are
added for the current instruction to complete. The actual latency is 26 states. Worst-case latency
calculations predict 43 states for this example due to inclusion of total DIV instruction time (less
one state).

Table 6-8. Actual vs. Predicted Latency Calculations

Latency Factors Actual Predicted
Base Case Minimum Fixed Time 16 16
INTO# External Request 1 1
External Execution
<64K Byte Stack Location 4
Execution Time for Current DIV Instruction | 3 20
TOTAL 26 43

6-20



Int9|® INTERRUPT SYSTEM

6.8.2.4 Blocking Conditions

If al enable and priority requirements have been met, a single prioritized interrupt request at a

time generates a vector cycle to an interrupt service routine (see CALL instructions in Appendix

A, “Instruction Set Reference”). There are three causes of blocking conditions with hardware-
generated vectors:

1. An interrupt of equal or higher priority level is already in progress (defined as any point
after the flag has been set and the RETI of the ISR has not executed).

2. The current polling cycle is not the final cycle of the instruction in progress.

3. The instruction in progress is RETI or any write to the IENO, IEN1, IPHO, IPH1, IPLO or
IPL1 registers.

Any of these conditions blocks calls to interrupt service routines. Condition two ensures the in-
struction in progress completes before the system vectors to the ISR. Condition three ensures at
least one more instruction executes before the system vectors to additional interrupts if the in-
struction in progress is a RETI or any write to IENO, IEN1, IPHO, IPH1, IPLO or IPL1. The com-
plete polling cycle is repeated every four state-times.

6.8.2.5 Interrupt Vector Cycle

When an interrupt vector cycle is initiated, the CPU breaks the instruction stream sequence, re-
solves all instruction pipeline decisions, and pushes multiple program counter (PC) bytes onto the

stack. The CPU then reloads the PC with a start address for the appropriate ISR. The number of
bytes pushed to the stack depends upon the INTR bit in the UCONFIG1 (Figure 4-4 on page 4-6)

configuration byte. The complete sample, poll, request and context switch vector sequence is il-

lustrated in the interrupt latency timing diagram (Figure $-10

NOTE

If the interrupt flag for a level-triggered external interrupt is set but denied for
one of the above conditions and is clear when the blocking condition is
removed, then the denied interrupt is ignored. In other words, blocked interrupt
requests are not buffered for retention.

I 6-21



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

6.8.3 ISRs in Process

ISR execution proceeds until the RETI instruction is encountered. The RETI instruction informs
the processor that the interrupt routine is completed. The RETI instruction in the ISR pops PC
address bytes off the stack (aswell asPSW1 for INTR = 1) and execution resumes at the suspend-
ed instruction stream.

NOTE

Some programs written for MCS 51 microcontrollers use RETI instead of RET
to return from a subroutine that is called by ACALL or LCALL (i.e, not an
interrupt service routine (ISR)). In the 8X930AX, this causes a compatibility
problem if INTR =1 in configuration byte CONFIGL. In this case, the CPU
pushes four bytes (the three-byte PC and PSW1) onto the stack when the
routineis called and pops the same four bytes when the RETI is executed. In
contrast, RET pushes and pops only the lower two bytes of the PC. To
maintain compatibility, configure the 8X930Ax with INTR = 0.

With the exception of TRAP, the start addresses of consecutive interrupt service routines are eight
bytes apart. If consecutive interrupts are used (IEO and TFO, for example, or TFO and I1EL), the
first interrupt routine (if more than seven bytes long) must execute ajump to some other memory
location. This prevents overlap of the start address of the following interrupt routine.

6-22 I



intel.

v

Universal Serial Bus






intel.

CHAPTER 7
UNIVERSAL SERIAL BUS

This chapter and Chapter 8, “USB Programming Models,” describe the operation of the 8%930A
serving as a USB function. For an overview of the USB module, see Chapter 2, “Introduction.”
Table 7-1 lists device signals associated with the USB. Pin assignments are shown in Appendix B.

A data flow model for the USB transactions, intended to bridge the hardware and firmware layers
of the 8X9304, is presented in truth table form in Appendix D. The data flow model describes
8X930Ax behavior in response to a particular USB event, given a known state/configuration.

7.1 USB FUNCTION INTERFACE

The USB function interface manages communications between the USB host and the embedded
function. It consists of a serial bus interface engine (SIE), which handles the communication pro-
tocol of the universal serial bus, and a function interface unit (FIU), which handles data transfer
and provides the interface between the SIE and the 8X08BAJ. These units, along with the
differential transceiver and the FIFO data buffers, comprise the USB module. The block diagram
in Figure 2-3 on page 2-3 shows the relationships between these components and how they inter-
face with the CPU.

The USB module interfaces with the USB by means of the differential USB root pgand
Dyo-

7.1.1 Serial Bus Interface Engine (SIE)

The SIE is the universal serial bus protocol interpreter. It serves as the communicator between the
8X930Ax and the host PC through the USB lines. For additional information on the SIE, see “SIE
Details” on page 7-33.

A complete description of the USB can be fountiniversal Serial Bus Specification. For a de-
scription of the transceiver see the “Driver Characteristics” and “Receiver Characteristics” sec-
tions of the “Electrical” chapter of th&niversal Serial Bus Specification. For electrical
characteristics and data signal timing, see the “Bus Timing/Electrical Characteristics” and “Tim-
ing Diagram” sections of the same chapter.

7.1.2 Function Interface Unit (FIU)

The FIU manages USB data transactions for the 8X23@Aontrols the operation of the FIFOs,
monitors the status of the data transaction, and at the appropriate moment transfers event control
to the CPU through an interrupt request. The exact nature of a data transaction depends on the
type of data transfer and the initial conditions of the transmit and receive FIFOs.

The 8X930A supports four types of data transfer: control transfer (endpoint 0), interrupt transfer,
isochronous transfer, and bulk transfer. The 8X93p/vides a pair of FIFO data buffers — a
transmit FIFO and a receive FIFO — dedicated to each endpoint.

I 7-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 7-1. Signal Descriptions

Signal I Alternate
Name Type Description Function
PLLSEL2:0 | Phase Lock Loop Select. Three-bit code selects the USB data —

rate (see Table 2-2 on page 2-8).

SOF# (0] Start of Frame. The SOF# pin is asserted for eight states when —
an SOF token is received.

Do, Do I/0 | USB Port 0. D,g and D,,q are the data plus and data minus —
lines of differential USB port 0. These lines do not have internal
pullup resistors. For low-speed devices, provide an external 1.5
KQ pullup resistor at Dy,q. For full-speed devices, provide an
external 1.5 KQ pullup resistor at Dgg.

NOTE: Either Dyq or Do must be pulled high. Otherwise a
continuous SEO (USB reset) will be applied to these inputs
causing the 8X930Ax to stay in reset.

ECAP | External Capacitor. Must be connected to a 0.1pF capacitor —
(or larger) to ensure proper operation of the differential line
driver. The other lead of the capacitor must be connected to
Vss-

7.1.3 SPECIAL FUNCTION REGISTERS (SFRs)

The FIU controls operations through the use of four sets of special functionsregisters (SFRs): the

FIU SFRs, the transmit FIFO SFRs, the receive FIFO SFRs, and the USB interrupt SFRs. Table

7-2 lists the special function registers (SFRs) described in this chapter. USB interrupt SFRs are
described in Chapter 6, “Interrupt System.” Table 3-5 on page 3-16 is an address map of all the
8X930AX SFRs.

The registers in the FIU SFR set are: EPINDEX, EPCON, TXSTAT, RXSTAT, SOFL, SOFH, and
FADDR. These registers are defined in Figures 7-1 through Figure 7-7.

The registers in the transmit FIFO SFR set are TXDAT, TXCON, TXFLG, TXCNTL, and
TXCNTH. These registers are defined in Figures 7-10 through 7-13 beginning on page 7-18.

The registers in the receive FIFO SFR set are RXDAT, RXCON, RXFLG, RXCNTL, and
RXCNTH. These registers are defined in Figures 7-15 through 7-18 beginning on page 7-27.

The transmit SFR set, the receive SFR set, EPCON, TXSTAT, and RXSTAT are endpoint-in-
dexed, i.e., they are assigned to operate in conjunction with the FIFO pair associated with the se-
lected endpoint.

The endpoint index SFR (EPINDEX) specifies the current endpoint (index value x = 0, 1, 2, 3).

CAUTION

Unless otherwise noted in the bit definition, SFR bits can be read and written
by software. All SFRs should be written usitegd-modify-write instructions
only, due to the possibility of simultaneous writes by hardware and firmware.

7-2 I



intel.

UNIVERSAL SERIAL BUS

Table 7-2. USB Function SFRs

Mnemonic Description Address

EPCON Endpoint Control Register. Configures the operation of the endpoint S:E1H
specified by EPINDEX.

EPINDEX | Endpoint Index Register. Selects the appropriate endpoint. S:F1H

FADDR Function Address Register. Stores the USB function address for the S:8FH
device. The host PC assigns the address and informs the device via
endpoint 0.

RXCNTH Receive FIFO Byte-Count High Register. High register in a two-register S:E7H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

RXCNTL Receive FIFO Byte-Count Low Register. Low register in a two-register S:E6H
ring buffer used to store the byte count for the data packets received in the
receive FIFO specified by EPINDEX.

RXCON Receive FIFO Control Register. Controls the receive FIFO specified by S:E4H
EPINDEX.

RXDAT Receive FIFO Data Register. Receive FIFO data is read from this register S:E3H
(specified by EPINDEX).

RXFLG Receive FIFO Flag Register. These flags indicate the status of data S:E5H
packets in the receive FIFO specified by EPINDEX.

RXSTAT Endpoint Receive Status Register. Contains the endpoint status of the S:E2H
receive FIFO specified by EPINDEX.

SOFH Start of Frame High Register. Contains isochronous data transfer enable S:D3H
and interrupt bits and the upper three bits of the 11-bit time stamp received
from the host.

SOFL Start of Frame Low Register. Contains the lower eight bits of the 11-bit S:D2H
time stamp received from the host.

TXCNTH Transmit Count High Register. High register in a two-register ring buffer S:F7H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TXCNTL Transmit Count Low Register. Low register in a two-register ring buffer S:F6H
used to store the byte count for the data packets in the transmit FIFO
specified by EPINDEX.

TXCON Transmit FIFO Control Register. Controls the transmit FIFO specified by S:F4H
EPINDEX.

TXDAT Transmit FIFO Data Register. Transmit FIFO data is written to this register S:F3H
(specified by EPINDEX).

TXFLG Transmit Flag Register. These flags indicate the status of data packets in S:F5H
the transmit FIFO specified by EPINDEX.

TXSTAT Endpoint Transmit Status Register. Contains the endpoint status of the S:FAH
transmit FIFO specified by EPINDEX.

7-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

7.1.4 USB Function FIFO’s

The 8X930AXx provides eight FIFOs in support of the four USB function endpoints — a transmit/
receive FIFO pair for each endpoint. Table 7-3 lists the 8X830ROs and gives the byte ca-
pacity of each. The FIFOs associated with function endpoints 0, 2, and 3 have capacities of 16
bytes. As shown in the table, bits FFSZ.1:0 of the TXCON SFR permit the endpoint 1 transmit/re-
ceive FIFO pair to be partitioned as follows: 256/256, 512/512, 1024/0, or 0/1024 bytes.

Transmit FIFOs are written by the 8X930&PU and then read by the function interface for
transmission. Receive FIFOs are written by the function interface following reception and then
read by the CPU. All transmit FIFOs have the same architecture, and all receive FIFOs have the
same architecture.

Table 7-3. 8X930Ax FIFO Configurations

Endpoint Select Transmit FIFOs Receive FIFOs FIFO Size
(EPINDEX.1:0) (FFSZz.1:0)t
00 Endpoint 0 16 bytes 16 bytes XX

(Control)
01 Endpointl 256 bytes 256 bytes 00
512 bytes 512 bytes 01
1024 bytes 0 bytes 10
0 bytes 1024 bytes 11
10 Endpoint2 16 bytes 16 bytes XX
11 Endpoint3 16 bytes 16 bytes XX

T Bits FFSZ.1:0 are bits 7:6 of register TXCON, and are accessible for endpoint 1
only (EPINDEX = 01).

7.1.5 The FIU SFR Set

The two low-order bits of the endpoint index register (EPINDEX, bits EPINX1:0) contain the
current endpoint index valug € 0, 1, 2, 3). The index value indicates the endpoint. Use the bi-

nary form OxxxxxyyB to write the index value to the EPINDEX register, where yy is the encoded
endpoint address (i.e., 00 for endpoint 0, 01 for endpoint 1, etc.). See Table 7-3.

It is recommended that programmers set the contents of EPINDEX once, at the start of each rou-
tine, instead of writing the EPINDEX register prior to each access of an endpoint-indexed SFR.
This means that interrupt service routines must save the contents of the EPINDEX register at the
start of the routine and restore the contents at the end of the routine to prevent the EPINDEX reg-
ister from being corrupted.

7-4 I



intel.

UNIVERSAL SERIAL BUS

EPINDEX Address S:F1H
Reset State  1XXX XX00B
7 0
— — — - || - — EPINX1 | EPINXO
Bit Bit Function
Number | Mnemonic
7:2 — Reserved:
Write zeros to these bits.
Note: Although the reset state for bit 7 is ‘1", always write zeros to bits 7:2 of
this register.
1:0 EPINX1:0 Endpoint Index Select:

Used to select the function endpoint number to be indexed. The 8X930Ax is
set up accordingly: the USB SFR definitions for TXDAT, TXCON, TXFLG,
TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTH/L, EPCON, TXSTAT, and
RXSTAT are adjusted for the selected endpoint. The SFRs are connected to
the appropriate transmit/receive FIFO pair. This register is hardware read-
only.

EPINX1 EPINXO

0 0 Endpoint 0. Control Transfer
0 1 Endpoint 1.
1 0 Endpoint 2.
1 1 Endpoint 3.

Figure 7-1. EPINDEX: Endpoint Index Register

7-5




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

EPCON Address S:E1H
Reset State x=0" 0011 0101B
x=1,2,3" 0001 0000B
7 0
RXSTL TXSTL CTLEP RXSPM | | RXIE RXEPEN TXOE TXEPEN
Bit Bit

. Function
Number | Mnemonic

7 RXSTL Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. This bit does not affect the reception of
SETUP tokens by a control endpoint. The state of this bit is sampled on a
valid OUT token.

6 TXSTL Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should only be cleared
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will respond
with a STALL handshake to a valid IN token.The state of this bit is sampled
on a valid IN token.

5 CTLEP Control Endpoint:

Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens. The state of this bit is
sampled on a valid SETUP token.

4 RXSPM Receive Single Packet Mode:

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO. The state of this bit is sampled on a valid OUT token.
Note: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model. However, it is
acceptable to have a control endpoint with dual packet mode configuration
as long as the firmware handles the endpoint correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, it returns a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token.

2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. The state of this bit is
sampled on a valid OUT or SETUP token. This bit is hardware read-only and
has the highest priority among RXIE and RXSTL. Note that endpoint 0 is
enabled for reception upon reset.

T x = endpoint index. See EPINDEX.

7-6




|nte|® UNIVERSAL SERIAL BUS

EPCON (Continued) Address S:E1H
Reset State x=0T 0011 0101B
x=1,2,3" 000100008
7 0
RXSTL TXSTL CTLEP RXSPM ‘ ‘ RXIE RXEPEN TXOE TXEPEN
Bit Bit Function

Number | Mnemonic

1 TXOE Transmit Output Enable.

This bit is used to enable the data in the transmit FIFO to be transmitted. If
cleared, the endpoint returns a NAK handshake to a valid IN token if the
TXSTL bit is not set. The state of this bit is sampled on a valid IN token.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. The state of this bit is
sampled on a valid IN token. This bit is hardware read only. Note that
endpoint 0 is enabled for transmission upon reset.

T x = endpoint index. See EPINDEX.

Figure 7-2. EPCON: Control Endpoint Register

-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TXSTAT

7

Address: S:F2H
Reset State: 0000 0000B

0

TXSEQ

_ TXFLUSHHTXSOVW TXVOID | TXERR | TXACK

Bit
Number

Bit
Mnemonic

Function

7

TXSEQ

Transmitter’s Current Sequence Bit (read, conditional write): t

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.

6:5

Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.

TXFLUSH

Transmit FIFO Packet Flushed:

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF = ‘11’ at SOF. This bit is set by
hardware, but can also be set by software with the same effect.t

TXSOVW

Transmit Data Sequence Overwrite Bit: T

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read. Tt

TXVOID

Transmit Void (read-only):

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by function

after a valid IN token, due to the conditions that cause the transmit FIFO to
be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake ever returned by function.

This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in
response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

T Under normal operation,

this bit should not be modified by the user.

Tt The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

7-8




|nte|® UNIVERSAL SERIAL BUS

TXSTAT (Continued) Address: S:F2H
Reset State: 0000 0000B
7 0
TXSEQ — — TXFLUSH ‘ ‘ TXSOVW | TXVOID TXERR TXACK
Bit Bit Function

Number | Mnemonic

1 TXERR Transmit Error (read-only):

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received.
2. Transmit FIFO goes into underrun condition while transmitting.

The corresponding transmit done bit (FTXDx in FIFLG) is set when active.
For non-isochronous transactions, this bit is updated by hardware together
with the TXACK bit at the end of the data transmission (this bit is mutually
exclusive with TXACK). For isochronous transactions, this bit is not updated
until the next SOF.

0 TXACK Transmit Acknowledge (read-only):

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit (FTXDx in FIFLG) is set when active. For
non-isochronous transactions, this bit is updated by hardware together with
the TXERR bit at the end of data transmission (this bit is mutually exclusive
with TXERR). For isochronous transactions, this bit is not updated until the
next SOF.

T Under normal operation, this bit should not be modified by the user.

T The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

Figure 7-3. TXSTAT: Transmit FIFO Status Register

7-9




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

RXSTAT

7

Address: S:E2H
Reset State: 0000 0000B

0

RXSEQ

RXSETUP

sTovw | EDOVW HRXSOVW RXVOID | RXERR | RXACK

Bit
Number

Bit
Mnemonic

Function

7

RXSEQ

Receiver Endpoint Sequence Bit (read, conditional write): T

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
together with the new RXSEQ value.

Note: Always verify this bit after writing to ensure that there is no conflict with
hardware, which could occur if a new SETUP token is received.

RXSETUP

Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

STOVW

Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware during the
handshake phase of the setup stage.

This bit is only used for control endpoints.

EDOVW

End Overwrite Flag:

This flag is set by hardware during the handshake phase of a SETUP stage.
Itis set after every SETUP packet is received and must be cleared prior to
reading the contents of the FIFO. When set, the FIFO state (FIF and read
pointer) remains locked for this endpoint until this bit is cleared. This
prevents a prior, ongoing firmware read from corrupting the read pointer
after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.

T Under normal operation,

this bit should not be modified by the user.

Tt The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

7-10




|nte|® UNIVERSAL SERIAL BUS

RXSTAT (Continued) Address: S:E2H
Reset State: 0000 0000B

7 0
RXSEQ | RXSETUP | STOVW EDOVW ‘ ‘ RXSOVW | RXVOID RXERR RXACK

Bit Bit

; Function
Number | Mnemonic

3 RXSOVW | Receive Data Sequence Overwrite Bit: T

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
This is needed to clear a STALL on a control endpoint. Writing a ‘0’ to this bit
has no effect on RXSEQ. This bit always returns ‘0’ when read. t1

2 RXVOID Receive Void Condition (read-only):

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked.
2. The EPCON register's RXSTL bit is set for a non-control endpoint.

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in respond to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

1 RXERR Receive Error (read-only):

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. Areceive FIFO goes into overrun or underrun condition while receiving.
This bit is updated by hardware at the end of a valid SETUP or OUT token

transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXACK bit at the end of data reception and is mutually
exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXERR bit at the end of data reception and is mutually
exclusive with RXERR.

T Under normal operation, this bit should not be modified by the user.

Tt The SIE will handle all sequence bit tracking. This bit should only be used when initializing a new
configuration or interface.

Figure 7-4. RXSTAT: Receive FIFO Status Register

7-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

SOFH Address: S:D3H
Reset State: 0000 0000B
7 0
SOFACK | ASOF SOFIE | FTLOCK \ \ SOFODIS | TS10 TS9 TS8
Bit Bit Function

Number | Mnemonic

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start-of-Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by software or inverted and driven to the SOF# pin. The effect of
setting this bit by software is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight T s.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS | SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight T s.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.

Figure 7-5. SOFH: Start of Frame High Register




UNIVERSAL SERIAL BUS

SOFL Address: S:D2H
Reset State: 0000 0000B
7 0
TS7:0
Bit Bit Function
Number | Mnemonic
7:0 TS7:0 Time stamp received from host:
This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. If an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.
Figure 7-6. SOFL: Start of Frame Low Register
FADDR Address: S:8FH
Reset State: 0000 0000B
7 0
— A6:0
Bit Bit Function
Number | Mnemonic
7 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.
6:0 A6:0 7-bit Programmable Function Address:
This register is programmed through the commands received via endpoint 0
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.

Figure 7-7. FADDR: Function Address Register

7-13




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

7.2 TRANSMIT FIFOS

The 8X930Ax has four USB function transmit FIFOs, one for each endpoint. In this manual, the
term transmit FIFO refers to the transmit FIFO associated with the current endpoint as specified
by the EPINDEX register.

7.2.1 Transmit FIFO Overview
The transmit FIFOs are circulating data buffers with the following features:
* support for up to two separate data sets of variable sizes’
* abyte count register to store the number of bytesin the data sets
* protection against overwriting datain afull FIFO
¢ capability to retransmit the current data set

All transmit FIFOs have the same architecture (Figure 7-8). The transmit FIFO and its associated
logic can manage up to two data sets, data set 0 (dsO) and data set 1 (dsl). The ability to have two
data sets in the FIFO supports back-to-back transmissions.

From CPU> | write Pointer |——
8X930 CPU T
Writes to FIFO
Data Set 1
l FIU Reads FIFO
<—| Read Pointer | |T0 usB Interfac>
REVRP ADVRM
Byte Count Data Set 0
Registers
TXCNTH
TXCNTL l«<— Read Marker |

A4258-02

Figure 7-8. Transmit FIFO Outline

The CPU writesto the FIFO location specified by the write pointer, which increments by one au-
tomatically following a write. The read marker points to the first byte of data written to a data
set, and the read pointer pointsto the next FIFO location to be read by the function interface. The
read pointer increments by one automatically following aread.

t When operating in dual packet mode, the maximum packet size should be at most half the
FIFO sizeto ensure that both packets will simultaneously fit in the FIFO (see the Endpoint
description in the Universal Serial Bus Specification).

7-14 I



|nte|® UNIVERSAL SERIAL BUS

When a good transmission is completed, the read marker can be advanced to the position of the
read pointer to set up for reading the next data set. When a bad transmission is completed, the
read pointer can be reversed to the position of the read marker to enable the function interface to
re-read the last data set for retransmission. The read marker advance and read pointer reversal can
be accomplished two ways: explicitly by software or automatically by hardware, as specified by
bitsin the transmit FIFO control register (TXCON).

7.2.2 Transmit FIFO Registers
There are five registers directly involved in the operation of the transmit FIFOs:
e TXDAT, thetransmit FIFO data register

¢ TXCNTH and TXCNTL, the transmit FIFO byte count registersreferred to jointly as
TXCNT

* TXCON, the transmit FIFO control register
* TXFLG, thetransmit FIFO flag register

These registers are endpoint indexed, i.e., they are used as a set to control the operation of the
transmit FIFO associated with the current endpoint specified by the EPINDEX register. Figures
7-10 through 7-13 beginning on page 7-18 describe the transmit FIFO registers and provide bit
definitions.

7.2.3 Transmit Data Register (TXDAT)
Bytes are written to the transmit FIFO viathe transmit FIFO dataregister (TXDAT).

7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH)

The format of the transmit byte count register depends on the endpoint. For endpoint 1, registers
TXCNTH and TXCNTL form atwo-register, ten-bit ring buffer which accommodates packet siz-
es of 0to 1023 bytes. For endpoints 0, 2, and 3, TXCNTL is used alone as a five-bit ring buffer
to accommodate packet sizes of 0 to 16 bytes. These formats are shown in Figure 7-11 on page
7-19. Theterm TXCNT refers to either of these arrangements.

The transmit FIFO byte count register (TXCNT) stores the number of bytesin either of the two
data sets, data set 0 (dsO) and data set 1 (dsl). The FIFO logic for maintaining the data sets as-
sumes that data is written to the FIFO in the following sequence:

1. TheCPU first writes data bytesto TXDAT.

2. The CPU writes the number of bytes that were written to TXDAT to the byte count
register TXCNT. TXCNT must be written after the write to TXDAT to guarantee data
integrity. For function endpoint 1, TXCNTL should be written after TXCNTH. Writing to
TXCNTH does not affect the TXFIF bits, however writing to TXCNTHL does set the
associated TXFIF bits.

I 7-15



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

NOTE

TXCNTH does not need to be written if it is always O0H, asthe reset value is
O00H. However, if TXCNTH is not O0H, it should always be written even
though the value does not change from the previous cycle; this is because the
byte count registers are 2-byte circular buffers and not “static” registers.

For all endpoints except function endpoint 1, TXCNTH is not available and
TXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and should
always be written with ‘0’.
The function interface reads the byte count register to determine the number of bytes in the set.

The transmit byte count register hasead/write index to allow it to access the byte count for ei-
ther of the two data sets (see Figure 7-9). After reset, the read/write index points to data set 0.
Thereatfter, the following logic determines the position of the read/write index:

¢ After awriteto TXCNT, the read/write index (TXFIF) istoggled
¢ After aread of TXCNT, the read/write index (TXFIF) is unchanged

The position of the read/write index can also be determined from the data set index bits, FIF1:0
(see“Transmit Data Set Management” on page 7-17).

Byte Count, dsO Byte Count, ds1

Read/Write Select

Byte Count

Byte Count Register
Endpoint 1: TXCNTL/TXCNTH
Endpoint 0,2,3: TXCNTL

A4261-02

Figure 7-9. Transmit Byte Count Registers



intel.

7.2.5 Transmit Data Set Management

Two read-only data set index bits, FIF1:0 in the TXFLG register, indicate which data sets (dsO
and/or dsl) have been written into the FIFO (see the left side of Table 7-4). FIFx = 1 indicates
that data set x has been written. Following reset, FIF1:0 = 00, signifying an empty FIFO. FIF1:0
also determine which data set iswritten next. Note that FIFO specifies the next data set to be writ-
ten, except for the case of FIF1:0 = 11. In this case further writesto TXDAT or TXCNT areig-

nored.

NOTE

Two events cause the data set index bits to be updated:

* A new data set is written to the FIFO: the 8X930Ax writes bytes to the FIFO viaTXDAT
and writes the number of bytesto TXCNT. The data set index bits are updated after the
writeto TXCNT. This processisillustrated in Table 7-4.

* A dataset in the FIFO is successfully transmitted: the function interface reads a data set
from the FIFO, and when a good transmission is acknowledged, the read marker is
advanced to the read pointer. The data set index bits are updated after the read marker is
advanced. Note that in ISO mode, this happens at the next SOF.

UNIVERSAL SERIAL BUS

Table 7-4. Writing to the Byte Count Register

To simplify firmware development, it is recommended that you utilize control
endpoints in single-packet mode only.

FIF1:0

Data Sets Written

Set for Next Write

ds1 dso to TXCNT
0 0 No No (Empty) dsO
0 1 No Yes (1 set) dsl
1 0 | Yes No (1 set) ds0
1 1 Yes Yes (2 sets) Write ignored

Write bytes
to TXDAT.

Write byte
count to
TXCNT

—>

FIF1:0

RrlrR|r|oO

RlR|R|F

7-17




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Table 7-5 summarizes how the actions following a transmission depend on the TXISO hit, the

ATM bit, the TXACK bit, and the TXERR bit.

Table 7-5. Truth Table for Transmit FIFO Management

TXISO ATM TXERR TXACK Action at End of Transfer Cycle
(TXCON.3) | (TXCON.2) | (TXSTAT.1) | (TXSTAT.0) y

X X 0 0 No operation.

X 0 0 1 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by software.

X 0 1 0 Read marker, read pointer, and TXFIF bits
remain unchanged. Managed by software.

0 1 0 1 Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared.

0 1 1 0 Read pointer reversed automatically. The
TXFIF bit for the corresponding data set
remains unchanged.

1 1 X X Read marker advanced automatically.The
TXFIF bit for the corresponding data set is
cleared at the SOF.

NOTE

For normal operation, set the ATM bit in TXCON. Hardware will
automatically control the read pointer and read marker, and track the TXFIF

bits.

TXDAT Address: S:F3H
Reset State: XXXX XXXXB

7 0

Transmit Data Byte
Bit Bit )
Number | Mnemonic Function
7:0 TXDATI[7:0] | Transmit Data Byte (write-only):

To write data to the transmit FIFO, write to this register. The write pointer
and read pointer are incremented automatically after a write and read
respectively.

Figure 7-10. TXDAT: Transmit FIFO Data Register




|nte|® UNIVERSAL SERIAL BUS

TXCNTH, Address: S:F7H
TXCNTL S:F6H
Reset States: Endpoint 1 TXCNTH XXXX XX00B

TXCNTL 0000 0000B

Endpoints 0, 2, 3 TXCNTL XXXO 0000B

15 (TXCNTH) Endpoint 1 8
. - - | -1 = J{ = ] - | B | scs |
7 (TXCNTL) 0
\ BC7 \ BC6 \ BC5 \ BC4 \ \ BC3 \ BC2 \ BC1 \ BCO \
7 (TXCNTL) Endpoints 0, 2, 3 0
| — | — | — | BC4 | | BC3 | BC2 | BC1 | BCO |

Bit Bit Function

Number Mnemonic

Endpoint 1 (x= 1)t

15:10 — Reserved.
Write zeros to these bits.
9:0 BC9:0 Transmit Byte Count.

Ten-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x=0, 2, 3)T

7:0 — Reserved.
Write zeros to these bits.
4:0 BC4:0 Transmit Byte Count.

Five-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

T x = endpoint index. See the EPINDEX register.

Figure 7-11. TXCNTH/TXCNTL Transmit FIFO Byte Count Registers

NOTE

To send a status stage after a control write or no data control command or a
null packet, write 0 to TXCNT.

7-19



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TXCON Address: S:F4H
Reset State: x=1% 000X 0100B
x=0,2,3" 0XXX 0100B
7 0
TXCLR FFSZ.1 FFSZ.0 — | | TXISO ATM ADVRM REVRP
Bit Bit Function

Number | Mnemonic

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, sets the EMPTY bit in TXFLG, and
clears all other bits in TXFLG. After the flush, hardware clears this bit.
Setting this bit does not affect the ATM, TXISO, and FFSZ bits, or the
TXSEQ bit in the TXSTAT register.

6:5 FFSZ[1:0] | FIFO Size:

These two bits are used for FIFO size configuration by function endpoint 1
only (EPINDEX = 01). The endpoint 1 FIFO size configurations (in bytes)

are:
FFSZ[1:0] Transmit Size Receive Size
00 256 256
01 512 512
10 1024 0
11 0 1024

These bits are not reset when the TXCLR bit is set in the TXCON register.

NOTE: The receive FIFO size is also set by the TXCON FFSZ bits.
Therefore, there are no corresponding FFSZ bits in RXCON.

4 — Reserved:
Values read from this bit are indeterminate. Write zero to this bit.

3 TXISO Transmit Isochronous Data:

Software sets this bit to indicate that the transmit FIFO contains isochronous
data. The FIU uses this bit to set up the handshake protocol at the end of a
transmission. This bit is not reset when TXCLR is set and must be cleared
by software.

T x=endpoint index. See EPINDEX.

Tt The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.

7-20




|nte|® UNIVERSAL SERIAL BUS

TXCON (Continued) Address: S:F4H
Reset State: x=17 000X 0100B
x=0,2,3" 0XXX 01008
7 0
TXCLR FFSz.1 FFSZ.0 — ‘ ‘ TXISO ATM ADVRM REVRP
Bit Bit Function

Number | Mnemonic

2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

ISO TX Status Read Pointer Read Marker

X ACK Unchanged Advanced*
0 NAK Reversed** Unchanged
1 NAK Unchanged Advanced*
* to origin of next data set ** to origin of the data set last read

When this bit is set, setting REVRP or ADVRM has no effect. This is a sticky
bit that is not reset when TXCLR is set, but can be set and cleared by
software. Hardware neither clears nor sets this bit.

Note: This bit should always be set, except as a testability feature.

1 ADVRM Advance Read Marker Control (non-ATM mode only) T1:

Setting this bit advances the read marker to point to the origin of the next
data packet (the position of the read pointer) to prepare for the next packet
transmission. Hardware clears this bit after the read marker is advanced.
Setting this bit is effective only when the REVRP, ATM, and TXCLR bits are
all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only) t7:

In the case of bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. Setting this bit is effective only when the ADVRM,
ATM, and TXCLR bits are all clear.

T x=endpoint index. See EPINDEX.

Tt The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.

Figure 7-12. TXCON: Transmit FIFO Control Register

7-21




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TXFLG Address: S:F5H
Reset State:  00XX 1000B
7 0
TXFIF1 TXFIFO — — ‘ ‘ TXEMP TXFULL TXURF TXOVF
Bit Bit Function

Number | Mnemonic

7:6 TXFIF[1:0] | FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIFO are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
software (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF[1:0] Operation Flag Next TXFIF[1:0] Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF =1
00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged
XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF.

You must check the TXFIF flags before and after writes to the transmit FIFO
and TXCNT for traceability.

NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-1ISO mode, this bit always tracks the current
transmit FIFO status.

T When set, all transmissions are NAKed.

7-22




|nte|® UNIVERSAL SERIAL BUS

TXFLG (Continued) Address: S:F5H
Reset State:  00XX 1000B
7 0
TXFIF1 TXFIFO — — ‘ ‘ TXEMP TXFULL TXURF TXOVF
Bit Bit Function

Number | Mnemonic

2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-1ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun Flag:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through software. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
software. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

T When set, all transmissions are NAKed.

Figure 7-13. TXFLG: Transmit FIFO Flag Register

7-23




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

7.3 RECEIVE FIFOs

The 8X930AXx has four USB function receive FIFOs — one for each endpoint. In this manual, the
term receive FIFO refers to the receive FIFO associated with the current endpoint as specified by
the EPINDEX register.

7.3.1 Receive FIFO Overview
The receive FIFOs are circulating data buffers with the following features:
* support for up to two separate data sets of variable sizes’
* abyte count register that accesses the number of bytesin the data sets
¢ flagsto signal afull FIFO and an empty FIFO
¢ capability to re-receive the last data set

Figure 7-14 illustrates areceive FIFO. A receive FIFO and its associated |ogic can manage up to
two data sets, data set 0 (dsO) and data set 1 (dsl). The ability to have two data sets in the FIFO
supports back-to-back receptions.

In many ways the receive FIFO is symmetrical to the transmit FIFO. The FIU writesto the FIFO
location specified by the write pointer, which increments by one automatically following awrite.
The write marker points to the first byte of data written to a data set, and the read pointer points
to the next FIFO location to be read by the 8X930Ax. The read pointer increments by one auto-
meatically following aread.

When agood reception iscompleted, the write marker can be advanced to the position of thewrite
pointer to set up for writing the next data set. When abad reception is completed, the write pointer
can be reversed to the position of the write marker to enable the FIU to rewrite the last data set
after receiving the data again. The write marker advance and write pointer reversal can be accom-
plished two ways: explicitly by software or automatically by hardware, as specified by bitsin the
receive FIFO control register.

It is not practical for the 8X930Ax to begin scooping the receive FIFO before all bytes are re-
ceived and successfully acknowledged because the reception may be bad. Once it begins scoop-
ing the FIFO, the 8X930Ax can use the FIFO empty flag to signal an end to reading data.

The FIU can monitor the FIFO full flag (RXFULL bit in RXFLG) to avoid overwriting data in
the receive FIFO. The 8X930Ax can monitor the FIFO empty flag (RXEMP bit in RXFLG) to
avoid reading a byte when the FIFO is empty.

t When operating in dual packet mode, the maximum packet size should be at most half the
FIFO size to ensure that both packets will simultaneously fit in the FIFO (see the endpoint
descriptor in the Universal Serial Bus Specification).

7-24 I



|nte|® UNIVERSAL SERIAL BUS

FIU Writes to FIFO
<—| Write Pointer I From USB Interface

Data Set 1

<To CPU | I Read Pointer |—> <—| Write Marker I

8X930 CPU
Reads FIFO
Data Set 0 Byte Count
Registers
RXCNTH

RXCNTL

A4259-02

Figure 7-14. Receive FIFO

7.3.2 Receive FIFO Registers

There are five registers directly involved in the operation of the receive FIFOs:
* RXDAT, the receive FIFO data register

¢ RXCNTH and RXCNTL, the receive FIFO byte count registers referred to jointly as
RXCNT

¢ RXCON, thereceive FIFO control register
* RXFLG, thereceive FIFO flag register

These registers are endpoint indexed, i.e., they are used as set to control the operation of the re-
ceive FIFO associated with the current endpoint specified by the EPINDEX register. Figures 7-15
through 7-13 beginning on page 7-27 describe the receive FIFO registers and provide bit defini-
tions.

7321 Receive Data Register (RXDAT)
Bytes read from the receive FIFO viathe receive FIFO data register (RXDAT).

7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNTH)

The format of the receive byte count register depends on the endpoint. For endpoint 1, registers
RXCNTH and RXCNTL form a ten-bit ring buffer which accommodates packet sizes of 0 to
1023 bytes. For endpoints 0, 2, and 3, RXCNTL isused alone as five-bit ring buffer to accommo-
date packet sizes of 0to 16 bytes. These formats are shown in Table 7-16 on page 7-28. Theterm
RXCNT refersto either of these arrangements.

I 7-25



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

The receive FIFO byte count register (RXCNT) stores the number of bytes in either of the two
data sets, data set 0 (dsO) and data set 1 (dsl). The FIFO logic for maintaining the data sets as-
sumes that data is written to the FIFO in the following sequence:

1. TheUSB interface first writes the received data packet into the receive FIFO.

2. The USB interface then writes the number of bytesthat were written into the receive FIFO
to the byte count register RXCNT. RXCNTL must be written after the data packet has
been received into the receive FIFO to guarantee data integrity.

NOTE
For all endpoints except function endpoint 1, RXCNTH is not available and

RXCNTL only contains BC4:0. Bits 7:5 are reserved in this case and will
always be read as ‘0.
The CPU reads the byte count register to determine the number of bytes in the set.

The receive byte count register hasad/writeindex to allow it to access the byte count for either

of the two data sets. This is similar to the methodology used for the transmit byte count register
— see Figure 7-9 on page 7-16. After reset, the read/write index points to data set 0. Thereafter,
the following logic determines the position of the read/write index:

¢ After aread of RXCNT, the read/write index (RXFIF) is unchanged
¢ After awrite of RXCNT, the read/write index (RXFIF) istoggled

The position of the read/write index can also be determined from the data set index bits, FIF1:0
(see “Receive FIFO Data Set Management” on page 7-26).

NOTE
RXCNT should only be read if FIF1:600.

7.3.3 Receive FIFO Data Set Management

As in the transmit FIFO, the receive FIFO uses a pair of bits (FIF1:0 in the RXFLG register) to
indicate which data sets are present in the receive FIFO (see Table 7-6).

Table 7-6. Status of the Receive FIFO Data Sets

Data Sets Written
FIF1:0

dsl ds0
0 0 No No  (Empty)
0 1 No Yes (1 set)
1 0 Yes No (1 set)
1 1 Yes Yes (2 sets)

Table 7-7 summarizes how the actions following a reception depend on the RXISO bit, the ARM
bit, and the handshake issued by the 8X930A

7-26 I



|nte|® UNIVERSAL SERIAL BUS

Table 7-7. Truth Table for Receive FIFO Management

RXISO ARM RXERR RXACK Action at End of Transfer Cycle
(RXCON.3) | (RXCON.2) | (RXSTAT.1) | (RXSTAT.0) y

X X 0 0 No operation.

X 0 0 1 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by software.

X 0 1 0 Write marker, write pointer, and RXFIF bits
remain unchanged. Managed by software.

0 1 0 1 Write marker advanced automatically. The
RXFIF bit for the corresponding data set is
set.

0 1 1 0 Write pointer reversed automatically.The
RXFIF bit for the corresponding data set is
cleared.

1 1 X X Write marker advanced automatically. If data

was written to the receive FIFO, the RXFIF bit
for the corresponding data set is set.

NOTE

For normal operation, set the ARM hit in RXCON: hardware will
automatically control the write pointer and write marker and track the RXFIF

bits.

RXDAT Address: S:E3H
Reset: XXXX XXXXB

7 0

RXDAT.7:0
Bit Bit .
Number Mnemonic Function
7.0 RXDAT.7:0 | To write data to the receive FIFO, the FIU writes to this register. To read

data from the receive FIFO, the 8X930Ax reads from this register. The
write pointer and read pointer are incremented automatically after a write
and read, respectively.

Figure 7-15. RXDAT: Receive FIFO Data Register

7-27




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

RXCNTH, S:E7H
RXCNTL S:E6H
Endpoint 1 RXCNTH XXXX XX00B
RXCNTL 0000 0000B
Endpoints 0, 2, 3 RXCNTL XXX0 0000B
15 (RXCNT) Endpoint 1 8

| — | — — — | — | BC9 | BC8 |
7 (RXCNTL) 0

\ BC7 \ BC6 BC5 BC3 \ BC2 \ BC1 \ BCO \
7 (RXCNTL) Endpoints 0, 2, 3 0

| — | — — BC3 | BC2 | BC1 | BCO |

Bit Bit .
Number Mnemonic Function

Endpoint 1 (x = 1)t

15:10 —

Reserved. Write zeros to these bits.

9:0 BC9:0

Receive Byte Count.
Ten-bit, ring buffer byte count register stores receive byte count (RXCNT)

of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x=0, 2, 3)T

7:0 —

Reserved. Write zeros to these bits.

4:0 BC4:0

Receive Byte Count.
Five-bit, ring buffer byte count register stores receive byte count (RXCNT)

of 0 to 16 bytes for endpoints 0, 2, and 3.

T x = endpoint index. See the EPINDEX register.

Figure 7-16. RXCNTH/RXCNTL: Receive FIFO Byte Count Registers

Do not read RXCNT to determine if datais present in the receive FIFO.
Always read the FIF bitsin the RXFLG register. RXCNT contains random
data during areceive operation. A read attempt to RXCNT during the time the
receive FIFO is empty causes the RXURF flag in RXFLG to be set. Always
read the FIF bitsto determine if datais present in the receive FIFO. The
RXFLG FIF bits are updated after RXCNT iswritten (at the end of the receive
operation).

7-28




intel.

UNIVERSAL SERIAL BUS

RXCON

7

Address: S:E4H
Reset State:  0X00 0100B

0

RXCLR

RXWS RXFFRCH RXISO ARM ADVWM | REVWP

Bit
Number

Bit
Mnemonic

Function

7

RXCLR

Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and
RXWS bits in this register and the RXSEQ bit in the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation
is completed.

Reserved:
Values read from this bit are indeterminate. Write zero to this bit.

RXWS

Receive FIFO Wait-state Read:

At the 8X930Ax core frequency of 12 MHz, not all instructions that access
the receive FIFO are guaranteed to work due to critical paths inherent in the
8X930AX architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state — this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

RXFFRC

FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

RXISO

Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by software.

T The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.

7-29




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

RXCON Address: S:E4H

Reset State:  0X00 0100B

7 0

RXCLR — RXWS RXFFRC ‘ ‘ RXISO ARM ADVWM REVWP
Bit Bit Function

Number | Mnemonic

2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker
X ACK Unchanged Advanced
0 NAK Reversed Unchanged
1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

Note: This bit should always be set, except for testing.

1 ADVWM Advance Write Marker: t

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.

0 REVWP Reverse Write Pointer: T

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.

REVWP is used when a data packet is bad. When the function interface
receives the data packet again, the write starts at the origin of the previous
(bad) data set.

T The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.

Figure 7-17. RXCON: Receive FIFO Control Register

7-30




|nte|® UNIVERSAL SERIAL BUS

RXFLG Address: S:E5H
Reset State: 00XX 1000B
7 0
RXFIF1 RXFIFO — — | | RXEMP RXFULL RXURF RXOVF
Nu?nltber Mne?r:tonic Function
7:6 RXFIF[1:0] | Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-6 on page 7-26). The RXFIF bits are updated after each

write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF[1:0] Operation Flag Next RXFIF[1:0] Next Flag

00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged
00 Set RXFFRC X 00 Unchanged
01 Set RXFFRC X 00 Unchanged
11 Set RXFFRC X 10/01 Unchanged
10 Set RXFFRC X 00 Unchanged
XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements”
RXFIF immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.

NOTE: To simplify firmware development, it is recommended that you utilize
control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
3 RXEMP Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer AND the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-ISO mode.

T When set, all transmissions are NAKed.

7-31




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

RXFLG (Continued)

7

Address: S:E5H
Reset State:  00XX 1000B

0

RXFIF1

RXFIFO

_ — H RXEMP | RXFULL | RXURF | RXOVF

Bit
Number

Bit
Mnemonic

Function

2

RXFULL

Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

RXURF

Receive FIFO Underrun Flag:

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear this bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.t

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bit is set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register.

RXOVF

Receive FIFO Overrun Flag.

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through software, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.t

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.t

T When set, all transmissions are NAKed.

7-32

Figure 7-18. RXFLG: Receive FIFO Flag Register




|nte|® UNIVERSAL SERIAL BUS

7.4 SIE DETAILS

The USB employs differential data signaling; refer to the signaling levels table in the “Electrical”
chapter otUniversal Serial Bus Specification. The specification defines: differential’l’, differen-
tial’0’, idle ('J’ state), non-idle ('K’ state), start of packet, end of packet, disconnect, connect,
reset, and resume. The USB employs NRZI data encoding when transmitting packets. Refer to
“Data Encoding/Decoding” in theniversal Serial Bus Specification for a description of NRZI

data encoding and decoding. To ensure adequate signal transitions, bit stuffing is employed by
the SIE when transmitting data. The SIE also does bit unstuffing when receiving data. Consult
the “Flow Diagram for Bit Stuffing” figure in the “Bit Stuffing” section of the “Electrical” chap-

ter for more information on bit stuffing.

Bits are sent out onto the bus, least significant bit (LSb) first, followed by the next LSb, and so
on. Bytes are sent out onto the bus least significant byte (LSB) first, followed by the next LSB
and so on. The SIE ensures that the LSb is first, but the 8X9g8@grammer must order the
bytes.

The SIE decodes and takes care of all packet types and packet fields mentioned in “Protocol Lay-
er” chapter oUniversal Serial Bus Specification. The FIU communicates data information and
handshaking instructions to the SIE. Programmers should consult the “Interconnect Description,”
“USB Devices,” and “USB Host” chapters Ohiversal Serial Bus Specification for detailed in-
formation on how the host and function communicate.

7.5 SETUP TOKEN RECEIVE FIFO HANDLING

SETUP tokens received by a control endpoint must be ACKed even though the receive FIFO is
not empty. When a SETUP token is detected by the FIU, the FIU sets the STOVW bit of RXSTAT
and then flushes the receive FIFO by hardware, setting the RXCLR bit of RXCON. The STOVW
indicates a SETUP initiated over-write (flush) is in progress. After the SETUP transaction is com-
pleted (i.e., ACK handshake), the FIU clears STOVW and sets EDOVW, indicating the receive
FIFO over-write is complete and FIFO contents are stable. Reception of any SETUP packet, re-
gardless of whether the receive FIFO is full or empty always sequences through the STOVW,
EDOVW sequence described above.

Note that if the receive FIFO flush occurs in the middle of an 8X230RU data read cycle

(from a previous USB transaction), the receive FIFO may underrun, thus setting the RXURF bit
of RXFLG and positioning the read pointer in an unknown state. To prevent this, STOVW resets
and locks the read pointer. Firmware can monitor the STOVW and EDOVW flags to determine
whether the underrun was due to a SETUP token received. If so, firmware needs to clear the
EDOVW bit. Clearing the EDOVW bit will also clear the RXURF bit and revert the read pointer

to the reset position. At this point, firmware is ready to read the SETUP data packet.

CAUTION

For SETUP packets, firmware must clear EDOVW prior to reading data from
the FIFO. If this is not done, data read from the FIFO will be invalid.

After processing a data packet, firmware should always check the STOVW and EDOVW flags
before setting the RXFFRC bit. When a SETUP packet either has been or is being received, set-
ting of RXFFRC does not occur if either STOVW or EDOVW is set. It is up to the user to clear

I 7-33



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

EDOVW which disables the RXFFRC blocking mechanism. Also note that the RXSETUP=1
conditionwill cause IN tokensto automatically be NAKed until RXSETUPiscleared. Thisistrue
even if the transmit and/or receive endpoint is stalled (TXSTL=1, RXSTL=1), and is doneto al-
low the clearing of a stall condition on a control endpoint.

NOTE

To simplify firmware development, it is recommended that you utilize control
endpointsin single-packet mode only.

7.6 1SO DATA MANAGEMENT

SO data management must always be performed in dual-packet mode. Interrupts are not gener-
ated when an 1SO transmit or receive cycle is completed; 1SO protocols should always be syn-
chronized to the SOF interrupt. When transmitting, data written into the transmit FIFO at frame
n is pre-buffered to be transmitted in frame n+1. This guarantees that datais aways available to
the host when requested anytime in aframe. When receiving, data written into the receive FIFO
at frame n is pre-buffered to be read-out in frame n+1. This guarantees that data from the host is
always available to the function every frame.

Isochronous data transfer is always guaranteed if the OUT or IN tokens from the host are not cor-
rupted. When IN or OUT tokens to a function are corrupted, the host does not re-send the token.
The function will need to recognize this error condition and reconfigure the endpoints according-

ly.

7.6.1 Transmit FIFO ISO Data Management

When an IN token is corrupted, the data to be transmitted from the transmit FIFO for an isochro-
nous endpoint in the current frame will be flushed. Due to latency concerns, this is handled by

hardware. This error condition can be detected by checking TXFIF =“11" at SOF. When this oc-

curs, the first data packet will be flushed and the transmit FIFO read-pointers and read-markers
will be advanced to the start “address” of the second data packet. The TXFIF will also be updated.
Therefore, the second packet will be ready to be transmitted for the next frame. The first data

packet is lost.

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOF. TXOVF, TXURF and TXFIF are handled using the following rule: firm-
ware events cause status change immediately while USB events only cause status change at SOF

For example:
* TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.
* TXURF: Since underrun can only be caused by SIE, TXURF is updated at SOF.

e TXFIF: TXFIF is “incremented” by firmware and “decremented” by hardware. Therefore,

writes to TXCNT will “increment” TXFIF immediately. However, a successful USB
transaction anytime in a frame will only “decrement” TXFIF at SOF.

7-34 I



|nte|® UNIVERSAL SERIAL BUS

The following bits do not follow the above rule:

¢ TXEMP/TXFULL: These always reflect the current status of the FIFO.
¢ TXFLUSH: Firmware can detect a flush by monitoring this bit.

7.6.2 Receive FIFO ISO Data Management

When an OUT token is corrupted, the data to be received by the receive FIFO for an isochronous
endpoint in the current framewill be lost. There is no hardware implementation to track this error
condition and should be managed by firmware. This condition can be detected by checking
RXFIF = “00” at SOF. “Reconstruction” of the lost data is application specific and should be
managed by firmware.

For firmware traceability of FIFO status flags, some flags are updated immediately while others
are updated only at SOF. RXOVF, RXURF and RXFIF are handled using the following rule: firm-
ware events cause status change immediately while USB events only cause status change at SOF

¢ RXUREF: Since underrun can only be caused by firmware, RXURF is updated immediately.
* RXOVF: Since overrun can only be caused by SIE, RXOVF is updated at SOF.

¢ RXFIF: RXFIF is “incremented” by hardware and “decremented” by firmware. Therefore,
setting RXFFRC will “decrement” RXFIF immediately. However, a successful USB
transaction anytime in a frame will only “increment” RXFIF at SOF.

¢ RXEMP/RXFULL: Therule does not apply to the RXEMP and RXFULL flags, which
always reflect the current status of the FIFO.

I 7-35






intel.

USB Programming
Models






intel.

CHAPTER 8
USB PROGRAMMING MODELS

This chapter describes the programming models of the USB function interface. It provides flow

charts of suggested firmware routines for using the transmit and receive FIFOs to perform data

transfers between the host PC and the embedded function. It also describes briefly how the firm-

ware interacts with the USB module hardware during these operations. For a description of the

USB function interface aswell asits FIFOs and special functionsregisters (SFRs), refer to Chap-

ter 7, “Universal Serial Bus.” Data operations refer to data transfers over the USB, whereas event
operations are hardware operations such as attach and detach. For details on data flow in USB
transactions refer to Appendix D.

8.1 OVERVIEW OF PROGRAMMING MODELS

The USB function interface employs four types of routines: receive, transmit, setup, and receive

SOF. Program flow is depicted in Figure 8-1 along with the type of token associated with each

routine. Following device reset, the USB function enters the unenumerated state and after enu-
meration by the host, the idle state. From the idle state, it can enter any of the four routines.

| Unenumerated |

\

;I Idle/Application Code |

IN
token

Receive

) /

Figure 8-1. Program Flow

I 8-1

A4260-02




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

8.1.1 Unenumerated State

Following device reset, the USB function enters the unenumerated state. Initially the function ad-
dress register FADDR contains the default value OOH. The host PC performs bus enumeration in
which it identifies and addresses devices attached to the bus. During enumeration, a unique ad-
dress assigned by the host is written to FADDR. The bus enumeration process has four steps:

1. Get descriptor. The host requests and reads the device descriptor to determine such
information as device class, USB specification compliance level, maximum packet size
for endpoint 0, vendor id, product id, etc. For detailed information on device descriptors,
see the “Device Framework” chapterUniversal Serial Bus Specification.

2. Set address. The host sends the 8X$30#unction address in a data packet using
endpoint 0. Device firmware interprets the data and instructs the CPU to write the function
address to FADDR.

3. Get configuration. The host requests and reads the device configuration descriptor to
determine such information as the number of interfaces and endpoints; endpoint transfer
type, packet size, and direction; power source; maximum power; etc. For detailed
information on configuration descriptors, see the “Device Framework” chapter in
Universal Serial Bus Specification. When the host requests the configuration descriptor,
all related interface and endpoint descriptors are returned.

4. Set configuration. The host assigns a configuration value to the device to establish the
current configuration. Devices can have multiple configurations.

8.1.2 Idle State

Following bus enumeration, the USB function enters the idle state. In this state, the 8€830A
ecutes application code associated with the embedded function. Upon receipt of a token with the
assigned address, the module enters the designated routine.

8.1.3 Transmit and Receive Routines

When the 8X930Ais sending and receiving packets in the transmit and receive modes, its oper-
ation depends on the type of data that is transferred—isochronous or non-isochronous—and the
adjustment of the FIFO markers and pointers—automatic or manual. These differences affect
both the 8X9304 firmware and the operation of the 8X930Wardware. For isochronous data,

a failed transfer is not retried (lossy data). For non-isochronous data, a failed transfer can be re-
peated. Data that can be repeated is considered lossless data. Automatic adjustment of the FIFO
markers and pointers is accomplished by the function interface hardware. Manual adjustment is
accomplished by the 8X930&irmware.

8.1.4 USB Interrupts

For an explanation of the USB global suspend/resume, function, and SOF interrupts, see Chapter
6, “Interrupt System.”

8-2 I



Inu@; USB PROGRAMMING MODELS

8.2 TRANSMIT OPERATIONS

8.2.1 Overview

A transmit operation occurs in three major steps:
1. Pre-transmit data preparation by firmware
2. Datapacket transmission by function interface hardware
3. Post-transmit management by firmware

These steps are depicted in ahigh-level view of transmit operations (Figure 8-2). The pre-trans-
mit and post-transmit operations are executed by the two firmware routines shown on the | eft side

of the figure. Function interface hardware (right side of the figure) transmits the data packet over
the USB line. Details of these operations are described in “Pre-transmit Operations” on page 8-5
and “Post-transmit Operations” on page 8-6.

Transmit operations for non-isochronous data begin with an interrupt request from the embedded
function (e.g., a keyboard entry). The pre-transmit routine (ISR) for the function writes the data
from the function to the transmit FIFO where it is held until the next IN token. Upon receipt of
the next valid IN token, the function interface shifts the data out of the FIFO and transmits it over
the USB. If the data packet is not ready for transmission, 8X@8@fdware responds to the IN
token with a NAK. The post-transmit routine checks the transmission status and performs data
management tasks.

Completion of data transmission is indicated by a handshake returned by the host. This is then

used to generate a transmit done interrupt to signal the end of data transmission to the CPU. The
interrupt can also be used for activity tracking and fail-safe management. Fail-safe management

permits recovery from lockups that can only be cleared by software.

For ISO data transmission, the cycle is similar. The significant differences are: the cycle is initi-
ated by a start of frame (SOF) interrupt, there is no handshake associated with ISO transfer, and
a transmit done interrupt is not generated. For ISO data transfers, the transaction status is updated
at the end of the USB frame. The 8X930gupports one 1SO packet per frame per endpoint.

Two bits in the transmit FIFO control register (TXCON, Figure 7-12 on page 7-21) have a major
influence on transmit operation:

¢ The TXISO hit (TXCON.3) determines whether the transmission is for isochronous data
(TXI1SO = 1) or non-isochronous data (TX1SO = 0). For non-isochronous data only, the
function interface receives a handshake from the host, toggles or does not toggle the
seguence bit, and generates a transmission done interrupt (Figure 8-2). Also, for non-
isochronous data, the post-transmit routineis an I SR; for isochronous data the post-transmit
routineis an ISR initiated by an SOF token.

* The ATM hit (TXCON.2) determines whether the FIFO read marker and read pointer are
managed automatically by the FIFO hardware (ATM = 1) or manually by the second
firmware routine (ATM = 0). Use of the ATM mode is recommended. The ADVRM and
REV RP bits, which control the read marker and read pointer when ATM = 0, are used
primarily for test purposes. See bit definitionsin TXCON (Figure 7-12).

I 8-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Firmware

Interrupt
(keyboard, joystick, modem)

Hardware
(SIE, FIU, FIFOs)

ISR
Pre-transmit
Routine « Write data to transmit FIFO
o Write TXCNT

IN Token

TN

RETI — Adjust FIFO read marker and
read pointer
*If TXISO = 0:
TXISO = 0: Transmit done interrupt — Receive host handshake

TXISO = 1: SOF interrupt

!

* Send data over USB
o If ATM = 1:

— Manage TXSEQ bit
» Generate transmit done interrupt
or SOF interrupt

ISR
Post-
Transmit | Icf:k/]\(i'cnlz S;tecl)t.us
Routine =0:

— Adjust FIFO read
marker and read pointer

Y\/

v

RETI

A4262-02

Figure 8-2. High-level View of Transmit Operations




Inu@; USB PROGRAMMING MODELS

8.2.2 Pre-transmit Operations

Transmitted data originates in the embedded function, which might be a keyboard, mouse, joy-
stick, scanner, etc. In event-control applications, the end function signals the availability of data
with an interrupt request for the pre-transmit interrupt service routine (ISR). The ISR should pre-
pare the data for transmission and initiate the transmission process. The flow chart in Figure 8-3
illustrates atypical pre-transmit ISR.

For the case of isochronous data, the interrupt is triggered by the USB function in response to a
start of frame (SOF) packet.

Start: Non-ISO

Vacancy No

in Transmit
FIFV
TXFIF1:0 # 11 in Dual-packet Mode

Yes  TXFIF1:0 = 00 in Single-packet Mode

Transfer Packet to
Transmit FIFO through
TXDAT

Error in Yes

Transmit FIFO? 7“5 ovF = 1 (overflow)

No

Error
Recovery

Write Packet Size to
TXCNT

RETI

A5071-01

Figure 8-3. Pre-transmit ISR (Non-Isochronous)

8-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

8.2.3 Post-transmit Operations

Transmission status is updated at the end of data transmission based on the handshake received

from the host (non-isochronous data) or based on the transmission process itself (isochronous

data). For a non-isochronous transfer, the function interface generates a transmit done interrupt.

The purpose of the post-transmit service routines is to manage the transmitter’s state and to ensure
data integrity for the next transmission. For isochronous data, the post-transmit routine should be
embedded within the transfer request routine because both are triggered by an SOF. The flow of

operations of typical post-transmit ISRs is illustrated in Figure 8-4 (non-isochronous data) and
Figure 8-5 (isochronous data).

Start: Transmit Done ISR

l

Identify Interrupt and Endpoint
(check FTXDx bits in FIFLG register)

Clear Interrupt Flag
(FTXDx Bit)

Read Transaction Status
(TXSTAT Register)

(TXACK = 1) No Anh Yes (TXERR = 1)
Error?
Failed CRC,

Bit-stuffing, or
Timeout from Host  No

(Underrun Flag

=17
Errorin TXURF =17)

Transmit
FIFO?

Data Error recovery

Advance Transmit FIFO to Reverse Transmit FIFO to
Next Packet Transmit Current Packet Retry

{ Y

RETI

t Buffer Segmentation Management. Executed automatically by hardware, based on transaction
status, if ATM bit in TXCON is set.

A5072-01

Figure 8-4. Post-transmit ISR (Non-isochronous)

8-6



Inu@; USB PROGRAMMING MODELS

Start: SOF ISR

For
Each Endpoint,

TXACK =1 No
( ) Read Transaction Status

Yes (TXERR = 1)

(TXSTAT)
Transmit Error?,
t (Failed CRC, Bit
Advance Transmit Stuffing, or Timeout )
FIFO to next packet from Host) No f Errqtr IIZTFO’?
ransmi ?
Write Next Packet Yes (TXURF = 1)
to Transmit FIFO
Transmit FIFO
Error Recovery
+
O_verflow ) Yes (TXOVF=1) Advance Transmit
Error in Transmit FIFO to Next Packet
FIFO?
No Write Next Packet
to Transmit FIFO

Write Packet Size
to TXCNT

Overflow
Error in Transmit
FIFO?

Yes
(TXOVF = 1)

| Error Recovery I

Write Packet Size
to TXCNT

!

/

RETI

T Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction if ATM bit

in TXCON is set. For isochronous transactions, there is no retry of current packet regardless of transaction status.

A5073-01

Figure 8-5. Post-transmit ISR (Isochronous)

8-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

8.3 RECEIVE OPERATIONS

8.3.1 Overview

A receive operation is always initiated by the host, which sends an OUT token to the 8X930Ax.
The operation occurs in two major steps:

1. Datapacket reception by the function interface (hardware)
2. Post-receive management by firmware

These steps are depicted in a high-level view of the receive operations in Figure 8-6. The post-
receive operations are executed by the firmware routine shown on the left side of the figure. For
details see “Post-receive Operations” on page 8-9. Function interface hardware (right side of fig-
ure) receives the data packet over the USB line.

Receive operations for non-isochronous data begin when the 8X980dives a valid OUT to-
ken from the host. The received data is written to a data buffer FIFO. The 8X#8fi¢ates
completion of data received by returning a handshake to the host.

At the end of the receive cycle, the 8X930#enerates a receive done interrupt to notify the CPU

that a receive operation has occurred. Program execution branches to the interrupt service routine
and transfers the data packet from the receive FIFO to its destination. The interrupt can also be
used for fail-safe management and activity tracking.

For isochronous data, receive cycles are somewhat different. Data transactions are initiated by an
OUT token. At the end of the OUT transaction, the 8x930Ax does not return handshake to the
host and the receive done interrupt is not generated. Instead, the SOF interrupt is used for post
receive management. The data reception status is updated at the next SOF. The 8X|930s

one ISO packet per frame per endpoint.

Two bits in the receive FIFO control register (RXCON, Figure 7-17 on page 7-30) have a major
influence on receive operation:

* ThelSO hit (RXCON.3) determines whether the reception isfor isochronous data (1SO = 1)
or non-isochronous data (1SO = 0). For non-isochronous data only, the function interface
sends a handshake to the host, checks the sequence bit, and generates areceive-done
(FRXDx) interrupt. Also, for non-isochronous data, the post-receive routineis an ISR; for
isochronous data the post-receive routine can be a normal subroutine or ISR initiated by an
SOF token.

* The ARM bit (RXCON.2) determines whether the FIFO write marker and write pointer are
managed automatically by the FIFO hardware (ARM = 1) or manually by the firmware
routine (ARM = 0). Use of the ARM mode is recommended. The ADVWM and REVWP
bits, which control the write marker and write pointer when ARM = 0, are used primarily
for test purposes. See bit definitionsin RXCON (Figure 7-17).

8-8 I



Inu@; USB PROGRAMMING MODELS

Hardware
(SIE, FIU, FIFOs)

OUT Token

'

* Send data over USB
*If ARM =1:
Firmware — Adjust FIFO write marker and
write pointer
RXISO = 0: Receive done interrupt *If ISO=0:
RXISO = 1: SOF interrupt — Send host handshake
¢ — Adjust RXSEQ bit
* Generate receive done interrupt
or SOF interrupt
ISR
Resgi\slt(; » Check status and read data

Routine *If ARM =0:
— Adjust FIFO write marker
and write pointer

Y

RETI

A4265-02

Figure 8-6. High-level View of Receive Operations

8.3.2 Post-receive Operations

Reception statusis updated at the end of data reception based on the handshake received from the

host (non-isochronous data) or based on the transmission processitself (isochronous data). For a
non-isochronous transfer, the function interface generates areceive done interrupt (FRXDX). The

purpose of the post-receive service routine is to manage the receiver’s state to ensure data integ-
rity and latency for the next reception. The post-receive routine also transfers the data in the re-
ceive FIFO to the end function. For isochronous data, the post-receive routine should be called
by the SOF ISR.

Flow diagrams for typical post-receive routines are presented in Figure 8-7 (non-isochronous da-
ta) and Figure 8-8 (isochronous data).

8-9



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Start: Receive Done ISR

|

Identify Function Interrupt and Endpoint
(Check FRXDx Bits in FIFLG Register)

| Clear Interrupt Flag |

Check

(RXACK=1) No RXSTAT for Yes (RXERR=1)
Receive
Error
+ (RXOVF=1)

Advance Receive FIFO
to next packet

(Failed CRC or Bit Stuffing)

Y ;
Reverse Receive FIFO
to current packet retry

No Error in

Receive FIFO?

Check for
‘Another Packet in
Receive FIFO
(RXFIF1:0 7 00 in Dual
Port Mode)

Yes (RXOVF=1)

Read Data Packet(s) |

Receive FIFO
Error Recovery

Error in
Receive
FIFO?

Yes (RXURF = 1)

Receive FIFO
Error Recovery

Unlock Current Packet from
Receive FIFO (set RXFFRC
Bit in RXCON)

!

/

RETI

Buffer Segmentation Management. Executed automatically by hardware at the end of a data transaction
if ARM bit in RXCON is set.

A5070-01

Figure 8-7. Post-receive ISR (Non-isochronous)

8-10




USB PROGRAMMING MODELS

Start: SOF ISR

For

Error in
Receive FIFO?

Yes (RXOVF = 1)

Receive FIFO
Error Recovery

Data Reconstruction
by Application for
Data

RXACK=1) No Each Endpoint, Yes RXERR = 1
( ) Read Transaction Status ( )
(RXSTAT)
Transmit Error?,
t .
Advance Receive (Fallled CRC
FIFO to Next Packet or Bit Stuffing) No
+
Advance Receive FIFO
@t@ to Next Packet Receive
Error
in Receive No
FIFO?
Yes
(RXURF =1) Lost
Receive FIFO
Error Recovery

Data Reconstruction
by Application for
Lost Data

Unlock FIFO
(set RXFFRC)

Unlock Current Packet
from Receive FIFO
(set RXFFRC bit in RXCON)

/

RETI

T Buffer Segmentation Management. Executed automatically by hardware at the end of a data

transaction if ARM bit in TXCON is set. For isochronous transactions, there is no retry of current

packet regardless of transaction status.

A5074-01

Figure 8-8. Receive SOF ISR (Isochronous)

8-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

8.4 SETUP TOKEN

An endpoint must be configured as acontrol endpoint in order to respond to SETUP tokens. (This

will only be endpoint 0, since it must serve as a control endpoint.) Refer to the “Protocol Layer”
section of théJniversal Serial Bus Specification for details of SETUP token transactions and pro-
tocol.

A control data transfer is initiated by a valid SETUP token (i.e., the token PID received is good).
Receive data transfer operations for a control endpoint are very similar to data transfers on non-
control endpoints for non-setup tokens. However, the response of a control endpoint is different
when it receives a setup token.

USB protocol specifies that setup tokens must be received and ACKed. Following receipt of a
setup token, a control endpoint flushes the contents of the receive FIFO before writing it with re-
ceived setup data. This may create an error condition in the FIFO due to the asynchronous nature
of FIFO reads by the CPU and simultaneous writes by the function interface. Figure 8-9 illustrates
the operations of a typical post-receive routine for a control endpoint.



intel.

USB PROGRAMMING MODELS

Start: Receive Done ISR

Identify Interrupt Endpoint
(check FRXDx bits in the FIFLG register)

Clear Interrupt Flag

Check

(RXACK =1) No RXSTAT for Yes (RXERR = 1)
Receive
Error
Setup No
Token?
Normal
Yes (RXSETUP = 1) Error
Handling
Setup Token Received OUT Token
Clear EDOVW Received
T
Read Data Packet
(STOVW =0 and
Receive FIFO~NO EDOVW =0)
Qverwrite?,
Yes
(STOVW =1 or .
EDOVW = 1) Error in Yes  (RXURF = 1)
Receive FIFO?
Overwrite No
Completed +
Unlock Current Packet Error
Yes from Receive FIFO Recovery
(STOVW =0 and (set RXFFRC bit in RXCON)
EDOVW = 1) |
Clear Overwrite Bit (STOVW =0 and
(EDOVW) Receive EIFO No EDOVW = 0)
| Overwrite?,
(STOVW =1 or
EDOVW = 1)
Overwrite Clear Firmware
Completed? Setup Flag
(STOVW =0 and Yes
EDOVW = 1)
Clear Overwrite Bit
(EDOVW)

+

Inhibited in hardware if STOVW or EDOVW are asserted.

RETI

A5075-01

Figure 8-9. Post-receive ISR (Control)

8-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

8.5 START OF FRAME (SOF) TOKEN

intel.

Figure 8-10 illustrates the hardware operations performed by the function interface for a start of
frame (SOF) token. The host issues an SOF token at anominal rate of once every 1.0 ms. An SOF
token isvalid if the PID is good. The SOF token is not endpoint-specific; it should be received

by every node on the bus.

Valid SOF Token

(SOFH.6) |

Set ASOF Bit

End of
Transfer

Clear
SOFACK
Bit

(SOFH.7)

Set SOFACK.
(SOF token received
without error)

(SOFH, SOFL)

Write SOF Registers

[

\

Generate SOF Pulse
by Asserting SOF# Pin

i

Done

(SOFH.7)

A4267-02

Figure 8-10. Hardware Operations for SOF Token




intel.

| nput/Output Ports






intel.

CHAPTER 9
INPUT/OUTPUT PORTS

The 8X930Ax has four 8-bit input/output (1/0) ports for general-purpose 1/0, external memory
operations, and specific aternate functions (see Table 9-1). This chapter describes the ports and
provides information on port loading, read-modify-write instructions, and external memory ac-
cesses.

9.1 INPUT/OUTPUT PORT OVERVIEW

All four 8X930AXx I/O ports are bidirectional. Each port contains alatch, an output driver, and an
input buffer. Port 0 and port 2 output drivers and input buffers facilitate external memory opera-
tions. Port O drives the lower address byte onto the parallel address bus, and port 2 drives the up-
per address byte onto the bus. In nonpage mode, the data is multiplexed with the lower address
byte on port 0. In page mode, the data is multiplexed with the upper address byte on port 2. Port
1 and port 3 provide both general -purpose I/O and special alternate functions.

Table 9-1. Input/Output Port Pin Descriptions

Nzirge Type élﬁe&gﬁi Alternate Description AItTeyrgste
P0.7:0 | 1/O |AD7:0 Address/Data (Nonpage Mode), Address (Page Mode) 1/0
P1.0 110 | T2 Timer 2 Clock Input/Output 110
P1.1 110 | T2EX Timer 2 External Input |
P1.2 1/10 | ECI PCA External Clock Input |
P1.3 110 | CEXO0 PCA Module 0 I/0 I/0
P1.4 /10 | CEX1 PCA Module 1 1/0 1/0
P1.5 110 | CEX2 PCA Module 2 1/0 1/0
P1.6 110 | CEX3/WAIT# PCA Module 3 1/0 1/0
P1.7 /0 | CEX4/A17/WCLK | PCA Module 4 1/O or 18th Address Bit 1/0(0)
pP2.7:0 | 1/0 |A15:8 Address (Nonpage Mode), Address/Data (Page Mode) 110
P3.0 1/10 | RXD Serial Port Receive Data Input I (1/0)
P3.1 110 | TXD Serial Port Transmit Data Output 0O (0O)
P3.2 /0 | INTO# External Interrupt O |
P3.3 1/10 | INT1# External Interrupt 1 |
P3.4 /10 | TO Timer 0 Input |
P3.5 110 |T1 Timer 1 Input |
P3.6 110 | WR# Write Signal to External Memory (0]
P3.7 /0 | RD#/A16 Read Signal to External Memory or 17th Address Bit (0]

9-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

9.2 |/O CONFIGURATIONS

Each port SFR operates viatype-D latches, asillustrated in Figure 9-1 for ports 1 and 3. A CPU

“write to latch” signal initiates transfer of internal bus data into the type-D latch. A CPU “read
latch” signal transfers the latched Q output onto the internal bus. Similarly, a “read pin” signal
transfers the logical level of the port pin. Some port data instructions activate the “read latch” sig-
nal while others activate the “read pin” signal. Latch instructions are referred to as read-modify-
write instructions (see “Read-Modify-Write Instructions” on page 9-4). Each I/O line may be in-
dependently programmed as input or output.

9.3 PORT 1 AND PORT 3

Figure 9-1 shows the structure of ports 1 and 3, which have internal pullups. An external source
can pull the pin low. Each port pin can be configured either for general-purpose I/O or for its al-
ternate input or output function (Table 9-1).

To use a pin for general-purpose output, set or clear the corresponding bit xrélgéster X =
1, 3). To use a pin for general-purpose input, set the bit inxtregiter. This turns off the output
driver FET.

To configure a pin for its alternate function, set the bit in thee§ister. When the latch is set, the
“alternate output function” signal controls the output level (Figure 9-1). The operation of ports 1
and 3 is discussed further in “Quasi-bidirectional Port Operation” on page 9-5.

9.4 PORT 0 AND PORT 2

Ports 0 and 2 are used for general-purpose 1/O or as the external address/data bus. Port 0, showt
in Figure 9-2, differs from the other ports in not having internal pullups. Figure 9-3 on page 9-4
shows the structure of port 2. An external source can pull a port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit xréigéster x =
0, 2). To use a pin for general-purpose input set the bit inxhedster to turn off the output
driver FET.

9-2 I



INPUT/OUTPUT PORTS

Vee
Alternate
Read Output Inteﬁnal
Latch I/I Function Pullup
N | P3.x
Internal 0
Bus P3.x
: Latch
Write to
Latch CL Q#
1 . 1
) loo
Re;d Alternate
in
Input
Function
A2239-01
Figure 9-1. Port 1 and Port 3 Structure
Address/
Read Data  Control Vee
Latch LI
;; PO.x
Internal Q _D
Bus PO.x N\
_ Latch 1
Write to 0
Latch CL Q#
1
Read l\l
Pin

A2238-01

Figure 9-2. Port O Structure



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Address Vee
lControI
Read Internal
Latch LI PU"Up
~N Cl
N\ P2.x
—>—
Internal 0
Bus D Q /
P2.x
Latch
Write to
Latch CL Q#
1
Read rl
Pin
A2240-01

Figure 9-3. Port 2 Structure

When port 0 and port 2 are used for an external memory cycle, aninternal control signal switches
the output-driver input from the latch output to the internal address/data line. “External Memory
Access” on page 9-6 discusses the operation of port 0 and port 2 as the external address/data bus

NOTE

Port 0 and port 2 are precluded from use as general purpose 1/O ports when

used as address/data bus drivers.

Port 0 internal pullups assist the logic-one output for memory bus cycles only.
Except for these bus cycles, the pullup FET is off. All other port O outputs are

open drain.

9.5 READ-MODIFY-WRITE INSTRUCTIONS

Some instructions read the latch data rather than the pin data. The latch based instructions read
the data, modify the data, and then rewrite the latch. These are called “read-modify-write” in-
structions. Below is a complete list of these special instructions. When the destination operand is

a port, or a port bit, these instructions read the latch rather than the pin:

ANL (logical AND, e.g., ANL P1, A

ORL (logical OR e.g., ORL P2, A

XRL (logical EX-OR, e.g., XRL P3, A

JBC (junp if bit =1 and clear bit, e.g., JBC P1.1, LABEL)
CPL (conpl emrent bit, e.g., CPL P3.0)

I NC (increment, e.g., INC P2)

9-4



Int9|® INPUT/OUTPUT PORTS

DEC (decrenment, e.g., DEC P2)

DINZ (decrement and junp if not zero, e.g., DINZ P3, LABEL)
MOV PX. Y, C (nove carry bit to bit Y of port X)

CLR PX. Y (clear bit Y of port X)

SETB PX. Y (set bit Y of port x)

It is not obvious that the last three instructions in this list are read-modify-write instructions.

These instructions read the port (al 8 bits), modify the specifically addressed bit, and write the

new byte back to the latch. These read-modify-write instructions are directed to the latch rather

than the pin in order to avoid possible misinterpretation of voltage (and therefore, logic) levels at

the pin. For example, a port bit used to drive the base of an external bipolar transistor cannot rise

above the transistor's base-emitter junction voltage (a value lower {hanNith a logic one

written to the bit, attempts by the CPU to read the port at the pin are misinterpreted as logic zero.
A read of the latch rather than the pin returns the correct logic-one value.

9.6 QUASI-BIDIRECTIONAL PORT OPERATION

Port 1, port 2, and port 3 have fixed internal pullups and are referred to as “quasi-bidirectional”
ports. When configured as an input, the pin impedance appears as logic one and sources current
(see the 8X930Rdatasheet) in response to an external logic-zero condition. Port 0 is a “true bi-
directional” pin. The pin floats when configured as input. Resets write logical one to all port
latches. If logical zero is subsequently written to a port latch, it can be returned to input conditions
by a logical one written to the latch. For additional electrical information, refer to the current
8X930Ax datasheet.

NOTE

Port latch values change near the end of read-modify-write instruction cycles.
Output buffers (and therefore the pin state) update early in the instruction after
the read-modify-write instruction cycle.

Logical zero-to-one transitions in port 1, port 2, and port 3 utilize an additional pullup to aid this
logic transition (see Figure 9-4). This increases switch speed. The extra pullup briefly sources 100
times the normal internal circuit current. The internal pullups are field-effect transistors rather
than linear resistors. Pullups consist of three p-channel FET (pFET) devices. A pFET is on when
the gate senses logical zero and off when the gate senses logical one. pFET #1 is turned on for
two oscillator periods immediately after a zero-to-one transition in the port latch. A logic one at
the port pin turns on pFET #3 (a weak pullup) through the inverter. This inverter and pFET pair
form a latch to drive logic one. pFET #2 is a very weak pullup switched on whenever the associ-
ated nFET is switched off. This is a traditional CMOS switch convention. Current strengths are
1/10 that of pFET #3.

I 9-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

2 Osc. Periods Vee Vee Vee

n e L

Port

Q#
From
. | [n

Port !

Latch
Input Data ] oﬂ o<}
Read Port Pin | >

A2242-01

Figure 9-4. Internal Pullup Configurations

9.7 PORT LOADING

Output buffers of port 1, port 2, and port 3 can each sink 1.6 mA at logic zero (see Vo, specifica-
tionsin the 8X930Ax data sheet). These port pins can be driven by open-collector and open-drain
devices. Logic zero-to-one transitions occur slowly as limited current pulls the pin to alogic-one
condition (Figure 9-4 on page 9-6). A logic-zero input turns off pFET #3. Thisleaves only pFET
#2 weakly in support of the transition. In external bus mode, port 0 output buffers each sink 3.2
mA at logic zero (see V, 1 in the 8X930Ax data sheet). However, the port O pins require external
pullups to drive external gate inputs. See the latest revision of the 8X930Ax datasheet for com-
plete electrical design information. External circuits must be designed to limit current require-
ments to these conditions.

9.8 EXTERNAL MEMORY ACCESS

The external bus structure is different for page mode and nonpage mode. In nonpage mode (used
by MCS 51 microcontrollers), port 2 outputs the upper address byte; the lower address byte and
the data are multiplexed on port 0. In page mode, the upper address byte and the data are multi-
plexed on port 2, while port O outputs the lower address byte.

The 8X930Ax CPU writes FFH to the PO register for all external memory bus cycles. This over-
writes previous information in PO. In contrast, the P2 register is unmodified for external bus cy-
cles. When address bits or data bits are not on the port 2 pins, the bit values in P2 appear on the
port 2 pins.

9-6 I



Int9|® INPUT/OUTPUT PORTS

In nonpage mode, port O usesastrong internal pullup FET to output ones or astrong internal pull-
down FET to output zeros for the lower address byte and the data. Port 0 isin a high-impedance
state for data input.

In page mode, port O uses a strong internal pullup FET to output ones or a strong internal pull-
down FET to output zeros for the lower address byte or astrong internal pulldown FET to output
zeros for the upper address byte.

In nonpage mode, port 2 usesastrong internal pullup FET to output ones or astrong internal pull-
down FET to output zeros for the upper address byte. In page mode, port 2 uses a strong internal
pullup FET to output ones or astrong internal pulldown FET to output zerosfor the upper address
byte and data. Port 2 isin a high-impedance state for data input.

NOTE
In external bus mode port O outputs do not require external pullups.

There are two types of external memory accesses. external program memory and external data
memory (see Chapter 15, “External Memory Interface”). External program memories utilize sig-
nal PSEN# as a read strobe. MCS 51 microcontrollers use RD# (read) or WR# (write) to strobe
memory for data accesses. Depending on its RD1:0 configuration bits, the 8X8385AP SEN#

or RD# for data reads (See “Configuration Bits RD1:0” on page 4-8).

During instruction fetches, external program memory can transfer instructions with 16-bit ad-
dresses for binary-compatible code or with the external bus configured for extended memory ad-
dressing (17-bit or 18-bit).

External data memory transfers use an 8-, 16-, 17-, or 18-bit address bus, depending on the in-
struction and the configuration of the external bus. Table 9-2 lists the instructions that can be used
for these bus widths.

Table 9-2. Instructions for External Data Moves

Bus Width Instructions
8 MOVX @Ri; MOV @Rm; MOV dir8
16 MOVX @DPTR; MOV @WRj; MOV @WRj+dis; MOV dirl6
17 MOV @DRk; MOV @DRk+dis
18 MOV @DRk; MOV @DRk+dis
NOTE

Avoid MOV PO instructions for external memory accesses. These instructions
can corrupt input code bytes at port 0.

External signal ALE (address latch enable) facilitates external address latch capture. The address
byte is valid after the ALE pin drivesyy. For write cycles, valid data is written to port O just prior

to the write (WR#) pin asserting,V. Data remains valid until WR# is undriven. For read cycles,
data returned from external memory must appear at port 0 before the read (RD#) pin is undriven
(refer to the 8X930A datasheet for specifications). Wait states, by definition, affect bus-timing.

I 9-7






intel.

10

Timer/Counters and
WatchDog Timer






intel.

CHAPTER 10
TIMER/COUNTERS AND WATCHDOG TIMER

This chapter describes the timer/counters and the watchdog timer (WDT) included as peripherals
on the 8X930Ax. When operating as a timer, a timer/counter runs for a programmed length of
time, then issues an interrupt request. When operating as a counter, atimer/counter counts nega-
tivetransitions on an external pin. After a preset number of counts, the counter issues an interrupt
request.

Thewatchdog timer provides away to monitor system operation. It causes asystem reset if a soft-
ware malfunction allows it to expire. The watchdog timer is covered in “Watchdog Timer” on
page 10-17.

10.1 TIMER/COUNTER OVERVIEW

The 8X930A contains three general-purpose, 16-bit timer/counters. Although they are identified

as timer 0, timer 1, and timer 2, you can independently configure each to operate in a variety of
modes as a timer or as an event counter. Each timer employs two 8-bit timer registers, used sep-
arately or in cascade, to maintain the count. The timer registers and associated control and capture
registers are implemented as addressable special function registers (SFRs). Four of the SFRs pro-
vide programmable control of the timers as follows:

¢ Timer/counter mode control register (TMOD) and timer/counter control register (TCON)
control timer O and timer 1

¢ Timer/counter 2 mode control register (T2MOD) and timer/counter 2 control register
(T2CON) control timer 2

Table 10-1 describes the external signals referred to in this chapter. Table 10-2 briefly describes
the SFRs referred to in this chapter. For amap of the SFR address space, see Table 3-5 on page
3-16. Timer/Counter Operation

10.2 TIMER/COUNTER OPERATION

The block diagram in Figure 10-1 depicts the basic logic of the timers. Here timer registers THx
and TLx (x =0, 1, and 2) connect in cascade to form a 16-bit timer. Setting the run control bit
(TRX) turns the timer on by allowing the selected input to increment TLx. When TLx overflows
it increments THx; when THx overflows it sets the timer overflow flag (TFx) in the TCON or
T2CON register. Setting the run control bit does not clear the THx and TLx timer registers. The
timer registers can be accessed to obtain the current count or to enter preset values. Timer 0 and
timer 1 can aso be controlled by external pin INTx# to facilitate pulse width measurements.

The C\Tx# control bit selects timer operation or counter operation by selecting the divided-down
system clock or external pin Tx as the source for the counted signal.

For timer operation (C/Tx# = 0), the timer register counts the divided-down system clock. The
timer register is incremented once every peripheral cycle, i.e., once every six states (see “Clock
and Reset Unit” on page 2-7). Since six states equals 12 clock cycles, the timer clock rate is

I 10-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Fosc/12. Exceptions are the timer 2 baud rate and clock-out modes, where the timer register is
incremented by the system clock divided by two.

NOTE
For the case of PLL on (PLLSEL 2:0 =110), a peripheral cycle equals six T g
so the timer clock rateis Fog /6. For the timer 2 baud rate and clock-out
modes, the timer register isincremented at the PLL rate (12 MHZz). See “Clock
and Reset Unit” on page 2-7.

For counter operation (CX# = 1), the timer register counts the negative transitions onxtag-T

ternal input pin. The external input is sampled during every S5P2 state. “Clock and Reset Unit”
on page 2-7 describes the notation for the states in a peripheral cycle. When the sample is high in
one cycle and low in the next, the counter is incremented. The new count value appears in the
register during the next S3P1 state after the transition was detected. Since it takes 12 states (24
oscillator periods) to recognize a negative transition, the maximum count rate is 1/24 of the os-
cillator frequency. There are no restrictions on the duty cycle of the external input signal, but to
ensure that a given level is sampled at least once before it changes, it should be held for at least
one full peripheral cycle.

Table 10-1. External Signals

Signal N Alternate
Name Type Description Function
T2 I/O | Timer 2 Clock Input/Output. This signal is the external clock input P1.0

for the timer 2 capture mode; and it is the timer 2 clock-output for the
clock-out mode.

T2EX | Timer 2 External Input. In timer 2 capture mode, a falling edge P1.1
initiates a capture of the timer 2 registers. In auto-reload mode, a
falling edge causes the timer 2 registers to be reloaded. In the up-
down counter mode, this signal determines the count direction:
high = up, low = down.

INT1:0# | External Interrupts 1:0. These inputs set the IE1:0 interrupt flags in | P3.3:2
the TCON register. TCON bits IT1:0 select the triggering method:
IT1:0 = 1 selects edge-triggered (high-to-low);IT1:0 = 0 selects level-
triggered (active low). INT1:0# also serves as external run control for
timer 1:0 when selected by TCON bits GATE1:0#.

T1:0 | Timer 1:0 External Clock Inputs. When timer 1:0 operates as a P3.5:4
counter, a falling edge on the T1:0 pin increments the count.

10-2



Inu@; TIMER/COUNTERS AND WATCHDOG TIMER

XTALL [}—>= =12
Interrupt
! Request
THx |, TLx |Overflow a
> (8 Bits) | (8 Blits) TFx >
l
Tx D
ClTx#
x=0,1,0r2 TRx

A4121-02

Figure 10-1. Basic Logic of the Timer/Counters 1

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input O of the C/Tx# selector istwicethat for PLLSEL 2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 10-2. Timer/Counter and Watchdog Timer SFRs

intel.

Mnemonic Description Address

TLO Timer O Timer Registers. Used separately as 8-bit counters or in cascade S:8AH

THO as a 16-bit counter. Counts an internal clock signal with frequency Fogc/12 S:8CH
(timer operation) or an external input (event counter operation).

TL1 Timer 1 Timer Registers. Used separately as 8-bit counters or in cascade S:8BH

TH1 as a 16-bit counter. Counts an internal clock signal with frequency Fyg/12 S:8DH
(timer operation) or an external input (event counter operation).

TL2 Timer 2 Timer Registers. TL2 and TH2 connect in cascade to provide a S:CCH

TH2 16-bit counter. Counts an internal clock signal with frequency Fyg./12 S:CDH
(timer operation) or an external input (event counter operation).

TCON Timer 0/1 Control Register. Contains the run control bits, overflow flags, S:88H
interrupt flags, and interrupt-type control bits for timer O and timer 1.

TMOD Timer 0/1 Mode Control Register. Contains the mode select bits, S:89H
counter/timer select bits, and external control gate bits for timer 0 and
timer 1.

T2CON Timer 2 Control Register. Contains the receive clock, transmit clock, and S:C8H
capture/reload bits used to configure timer 2. Also contains the run control
bit, counter/timer select bit, overflow flag, external flag, and external enable
for timer 2.

T2MOD Timer 2 Mode Control Register. Contains the timer 2 output enable and S:C9H
down count enable bits.

RCAP2L Timer 2 Reload/Capture Registers (RCAP2L, RCAP2H). Provide values S:CAH

RCAP2H to and receive values from the timer registers (TL2,TH2). S:CBH

WDTRST | Watchdog Timer Reset Register (WDTRST). Used to reset and enable S:A6H
the WDT.

10.3 TIMER O

Timer O functions as either a timer or event counter in four modes of operation. Figures 10-2,
10-3, and 10-4 show the logical configuration of each mode.

Timer O iscontrolled by the four low-order bits of the TMOD register (Figure 10-5) and bits 5, 4,
1, and 0 of the TCON register (Figure 10-6). The TMOD register selects the method of timer gat-
ing (GATEQ), timer or counter operation (T/C0#), and mode of operation (M10 and MQ0). The
TCON register providestimer 0 control functions: overflow flag (TFO), run control (TRO), inter-
rupt flag (1EO), and interrupt type control (1TO).

For normal timer operation (GATEOQ = 0), setting TRO allows TLO to be incremented by the se-
lected input. Setting GATEO and TRO allows external pin INTO# to control timer operation. This

setup can be used to make pulse width measurements. See “Pulse Width Measurements” on page

10-11.

Timer 0 overflow (count rolls over from all 1s to all 0s) sets the TFO flag generating an interrupt

request.

10-4



Inu@; TIMER/COUNTERS AND WATCHDOG TIMER

10.3.1 Mode 0 (13-bit Timer)

Mode 0 configurestimer 0 as a 13-bit timer which is set up as an 8-bit timer (THO register) with
amodulo 32 prescalar implemented with the lower five bits of the TLO register (Figure 10-2). The
upper three bits of the TLO register are indeterminate and should be ignored. Prescalar overflow
increments the THO register.

10.3.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 0 as a 16-bit timer with THO and TLO connected in cascade (Figure
10-2). The selected input increments TLO.

10.3.3 Mode 2 (8-bit Timer With Auto-reload)

Mode 2 configures timer 0 as an 8-bit timer (TLO register) that automatically reloads from the
THOregister (Figure 10-3). TLO overflow setsthetimer overflow flag (TFO) inthe TCON register
and reloads TLO with the contents of THO, which is preset by software. When the interrupt re-
quest is serviced, hardware clears TFO. Thereload leaves THO unchanged. See “Auto-load Setup
Example” on page 10-10.

XTALL [}—>= =12
Interrupt
! Request
THx |, TLx |Overflow q
> (8 Bits) | (8 Bits) TFx >
l
Tx D
CITx#
TR
X Mode 0: 13-bit Timer/Counter
Mode 1: 16-bit Timer/Counter
GATEX x=0orl
INTX#
A4110-02

Figure 10-2. Timer 0/1 in Mode 0 and Mode 1 T

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input O of the C/Tx# selector istwicethat for PLLSEL 2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

I 10-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

10.3.4 Mode 3 (Two 8-bit Timers)

Mode 3 configurestimer O such that registers TLO and THO operate as separate 8-bit timers (Fig-

ure 10-4). Thismode is provided for applications requiring an additional 8-bit timer or counter.

TLO usesthetimer O control bits C/T0# and GATEOin TMOD, and TROand TFOin TCON inthe

normal manner. THO islocked into atimer function (counting Fog /12) and takes over use of the

timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of timer 1 is restricted when

timer 0 isin mode 3. See “When timer 0 is in mode 3, it uses timer 1's overflow flag (TF1) and

run control bit (TR1). For this situation, use timer 1 only for applications that do not require an
interrupt (such as a baud rate generator for the serial interface port) and switch timer 1 in and out
of mode 3 to turn it off and on.” on page 10-7 and “Mode 3 (Halt)” on page 10-10.

104 TIMER 1

Timer 1 functions as either a timer or event counter in three modes of operation. Figures 10-2 and
10-3 show the logical configuration for modes 0, 1, and 2. Timer 1's mode 3 is a hold-count mode.

Timer 1 is controlled by the four high-order bits of the TMOD register (Figure 10-5) and bits 7,
6, 3, and 2 of the TCON register (Figure 10-6). The TMOD register selects the method of timer
gating (GATEZ1), timer or counter operation (T/C1#), and mode of operation (M11 and M01). The
TCON register provides timer 1 control functions: overflow flag (TF1), run control (TR1), inter-
rupt flag (IE1), and interrupt type control (IT1).

Timer 1 operation in modes 0, 1, and 2 is identical to timer 0. Timer 1 can serve as the baud rate
generator for the serial port. Mode 2 is best suited for this purpose.

XTALL [} =12
Interrupt
TLx Overflow Request
> (8 Bits) TFx >
™3 Z\
C/Tx# /\
Reload
TRx
THx
GATEXx (@ Bit)
INTX# Xx=0ori

A4111-02

Figure 10-3. Timer 0/1 in Mode 2, Auto-Reload T

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input O of the C/Tx# selector istwicethat for PLLSEL 2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-6 I



Inu@; TIMER/COUNTERS AND WATCHDOG TIMER

For normal timer operation (GATEL = 0), setting TR1 allowstimer register TL 1 to beincrement-
ed by the selected input. Setting GATEL and TR1 allows external pin INT1# to control timer op-
eration. This setup can be used to make pulse width measurements. See “Pulse Width
Measurements” on page 10-11.

Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag, generating an interrupt
request.

When timer 0 is in mode 3, it uses timer 1's overflow flag (TF1) and run control bit (TR1). For
this situation, use timer 1 only for applications that do not require an interrupt (such as a baud rate
generator for the serial interface port) and switch timer 1 in and out of mode 3 to turn it off and on.

10.4.1 Mode 0 (13-bit Timer)

Mode 0 configures timer 0 as a 13-bit timer, which is set up as an 8-bit timer (TH1 register) with
a modulo-32 prescalar implemented with the lower 5 bits of the TL1 register (Figure 10-2). The
upper 3 bits of the TL1 register are ignored. Prescalar overflow increments the TH1 register.

10.4.2 Mode 1 (16-bit Timer)

Mode 1 configures timer 1 as a 16-bit timer with TH1 and TL1 connected in cascade (Figure
10-2). The selected input increments TL1.

XTALL [} =12 112 Foge
Interrupt
0 N TLO Overflow Request
1o (3 !1) (8 Bits) TFO [——
CITO#
TRO
GATEO
Overfl Interrupt
verflow Request
1/12 F THO
osc >
INTO# : IT 65 1
TR1
A4112-02

Figure 10-4. Timer 0 in Mode 3, Two 8-bit Timers T

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input O of the C/Tx# selector istwicethat for PLLSEL 2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TMOD Address: S:89H
Reset State: 0000 0000B
7 0
GATE1 CIT1# M11 MO1 ‘ ‘ GATEO CITO# M10 MO0
Bit Bit Function

Number Mnemonic

7 GATE1 Timer 1 Gate:

When GATEL = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 CIT1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

54 M11, MO1 Timer 1 Mode Select:

M11 MO1
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer 0 Gate:

When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO = 1 and TRO = 1, external signal INTO gates the
timer input.

2 CITO# Timer 0 Counter/Timer Select:

C/TO# = 0 selects timer operation: timer O counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.

1,0 M10, MOO Timer 0 Mode Select:

M10 MOO
0 0 Mode 0: 8-bit timer/counter (TO) with 5-bit prescalar (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit
timer using timer 1's TR1 and TF1 bits.

Figure 10-5. TMOD: Timer/Counter Mode Control Register

10-8



TIMER/COUNTERS AND WATCHDOG TIMER

TCON Address: S:88H
Reset State: 0000 0000B
7 0
TF1 TR1 TFO TRO || IEI IT1 IEO ITO
Bit Bit Function
Number Mnemonic

7 TF1 Timer 1 Overflow Flag:
Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.

5 TFO Timer 0 Overflow Flag:
Set by hardware when the timer 0 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO Timer 0 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:
Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:
Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IEO Interrupt 1 Flag:
Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see ITO). Cleared when interrupt is processed
if edge-triggered.

0 Interrupt 0 Type Control Bit:
Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).

Figure 10-6. TCON: Timer/Counter Control Register

10-9




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

10.4.3 Mode 2 (8-bit Timer with Auto-reload)

Mode 2 configures timer 1 as an 8-bit timer (TL 1 register) with automatic reload from the TH1
register on overflow (Figure 10-3). Overflow from TL 1 sets overflow flag TF1 in the TCON reg-
ister and reloads TL 1 with the contents of TH1, which is preset by software. The reload leaves
TH21 unchanged. See “Auto-load Setup Example” on page 10-10.

10.4.4 Mode 3 (Halt)

Placing timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt timer 1
when the TR1 run control bit is not available (i.e., when timer 0 is in mode 3). See the final para-
graph of “Timer 1” on page 10-6.

10.5 TIMER 0/1 APPLICATIONS

Timer 0 and timer 1 are general purpose timers that can be used in a variety of ways. The timer
applications presented in this section are intended to demonstrate timer setup, and do not repre-
sent the only arrangement nor necessarily the best arrangement for a given task. These examples
employ timer O, but timer 1 can be set up in the same manner using the appropriate registers.

10.5.1 Auto-load Setup Example
Timer 0 can be configured as an eight-bit timer (TLO) with automatic reload as follows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode 2
for timer O, C/TO# = 0 to select,E/12 (with PLL on, PLLSEL2:0 = 110, this becomes
Fosc/6) as the timer input, and GATEO = 0 to select TRO as the timer run control.

2. Enter an eight-bit initial value ghin timer register TLO, so that the timer overflows after
the desired number of peripheral cycles.

3. Enter an eight-bit reload valueynn register THO. This can be the same gem
different, depending on the application.

4. Setthe TRO bit in the TCON register (Figure 10-6) to start the timer. Timer overflow
occurs after FFH + 1 -grperipheral cycles, setting the TFO flag and loadipito TLO
from THO. When the interrupt is serviced, hardware clears TFO.

5. The timer continues to overflow and generate interrupt requests every FFH+ 1 -n
peripheral cycles.

6. To halt the timer, clear the TRO bit.

10-10 I



Inu@; TIMER/COUNTERS AND WATCHDOG TIMER

10.5.2 Pulse Width Measurements

For timer 0 and timer 1, setting GATEx and TRx allows an external waveform at pin INTx# to
turn the timer on and off. This setup can be used to measure the width of a positive-going pulse
present at pin INTx#. Pulse width measurements using timer 0 in mode 1 can be made asfollows:

1. Program the four low-order bits of the TMOD register (Figure 10-5) to specify: mode 1
for timer O, C/TO# = 0 to select Fog/12 as the timer input (with PLL on, PLLSEL2:0 =
110, this becomes F4./6), and GATEO = 1 to select INTO as timer run control.

2. Enter aninitia value of al zerosin the 16-bit timer register THO/TLO, or read and store
the current contents of the register.

Set the TRO bit in the TCON register (Figure 10-6) to enable INTO.

Apply the pulse to be measured to pin INTO. The timer runs when the waveform is high.
Clear the TRO bit to disable INTO.

Read timer register THO/TLO to obtain the new value.

N o g b~ w

Calculate pulse width as follows:
a For PLL off, pulsewidth = 12 T, x (new value - initial value)
b. For PLL on (PLLSEL2:0 = 110), pulse width = 24, (new value - initial value)

8. Example (with PLL off, PLLSEL2:0 = 100)xk. = 12 MHz and 12§, = 1 ps. If the new
value = 10,00¢, and the initial value = 0, the pulse width =1 ps x 10,000 = 10 ms.

10.6 TIMER 2

Timer 2 is a 16-bit timer/counter. The count is maintained by two 8-bit timer registers, TH2 and
TL2, connected in cascade. The timer/counter 2 mode control register (T2MOD) as shown in Fig-
ure 10-11 on page 10-17) and the timer/counter 2 control register (T2CON) as shown in Figure
10-12 on page 10-18) control the operation of timer 2.

Timer 2 provides the following operating modes: capture mode, auto-reload mode, baud rate gen-
erator mode, and programmable clock-out mode. Select the operating mode with T2MOD and
TCON register bits as shown in Table 10-3 on page 10-16. Auto-reload is the default mode. Set-
ting RCLK and/or TCLK selects the baud rate generator mode.

Timer 2 operation is similar to timer 0 and timer 1. C/T2# selects the divided-down system clock
(timer operation) or external pin T2 (counter operation) as the timer register input. Setting TF2
allows TL2 to be incremented by the selected input.

The operating modes are described in the following paragraphs. Block diagrams in Figures 10-7
through 10-10 show the timer 2 configuration for each mode.

I 10-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

10.6.1 Capture Mode

In the capture mode, timer 2 functions as a 16-bit timer or counter (Figure 10-7). An overflow
condition sets bit TF2, which you can use to request an interrupt. Setting the external enable bit
EXEN2 allowsthe RCAP2H and RCAP2L registersto capture the current valuein timer registers
TH2 and TL2 in response to a 1-to-0 transition at external input T2EX. The transition at T2EX
also setshit EXF2 in T2CON. The EXF2 hit, like TF2, can generate an interrupt.

Overflow
TH2 ! TL2
(8 Bits) | (8 Bits) > TR2
l
M M
Capture Interrupt
N/ / Request
RCAP2H|RCAP2L
T2EX D—)\
> EXF2 [~
EXEN2

A4113-02

Figure 10-7. Timer 2: Capture Mode T

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the

clock frequency at input O of the C/Tx# selector istwicethat for PLLSEL 2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-12



Inu@; TIMER/COUNTERS AND WATCHDOG TIMER

10.6.2 Auto-reload Mode

The auto-rel oad mode configurestimer 2 as a 16-bit timer or event counter with automatic rel oad.
The timer operates an as an up counter or as an up/down counter, as determined by the down
counter enable bit (DCEN). At device reset, DCEN is cleared, so in the auto-reload mode, timer
2 defaults to operation as an up counter.

10.6.2.1  Up Counter Operation

When DCEN = 0, timer 2 operates as an up counter (Figure 10-8). The external enablebit EXEN2
in the T2CON register provides two options (Figure 10-12). If EXENZ2 = 0, timer 2 counts up to
FFFFH and sets the TF2 overflow flag. The overflow condition loads the 16-bit value in the re-
load/capture registers (RCAP2H, RCAP2L) into the timer registers (TH2, TL2). The values in
RCAP2H and RCAP2L are preset by software.

If EXEN2 = 1, the timer registers are reloaded by either atimer overflow or a high-to-low tran-
sition at external input T2EX. Thistransition also setsthe EXF2 bit in the T2CON register. Either
TF2 or EXF2 bit can generate atimer 2 interrupt request.

XTALL (> +12 0 N TH2 | TL2 | Overflow

(8 Bits)

1 I/I (8 Bits)
T2 D TR2
CiT2#
Reload

|
RCAP2H : RCAP2L

L TF2

EXF2

Interrupt
Request

T2EX []—)\

EXEN2
A4115-02

Figure 10-8. Timer 2: Auto Reload Mode (DCEN =0) T

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input O of the C/T2# selector istwice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

I 10-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

10.6.3 Up/Down Counter Operation

When DCEN = 1, timer 2 operates as an up/down counter (Figure 10-9). External pin T2EX con-
trolsthe direction of the count (Table 10-1 on page 10-2). When T2EX ishigh, timer 2 counts up.
Thetimer overflow occurs at FFFFH which setsthe timer 2 overflow flag (TF2) and generates an
interrupt request. The overflow also causes the 16-bit valuein RCAP2H and RCAP2L to beload-
ed into the timer registers TH2 and TL 2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer
registers (TH2, TL2) equals the value stored in RCAP2H and RCAP2L. The underflow sets the
TF2 bit and reloads FFFFH into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows, changing the direction of the count.
When timer 2 operates as an up/down counter, EXF2 does not generate an interrupt. Thisbit can
be used to provide 17-bit resolution.

(Down Counting Reload Value)
T
|
FFH | FFH
l
Toggle
XTALL | +12 vav ><— EXF2
\/ ; N/ Interrupt
—0 TH2 : TL2 |Overflow TE> Request
; : —>
_ 11 (8 Bits) 1 (8 Bits)
l
T2 D TR2 /\
CIT2# /\ Count
A Direction
1=Up
0 = Down
T
|
RCAP2H!IRCAP2L D
I T2EX
(Up Counting Reload Value)
A4114-01

Figure 10-9. Timer 2: Auto Reload Mode (DCEN =1) T

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input O of the C/T2# selector istwice that for PLLSEL2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-14 I



Inu@; TIMER/COUNTERS AND WATCHDOG TIMER

10.6.4 Baud Rate Generator Mode

Thismode configurestimer 2 asabaud rate generator for use with the serial port. Select thismode
by setting the RCLK and/or TCLK bits in T2CON. See Table 10-3. For details regarding this
mode of operation, refer to “Baud Rates” on page 12-10.

10.6.5 Clock-out Mode

In the clock-out mode, timer 2 functions as a 50%-duty-cycle, variable-frequency clock (Figure
10-10). The input clock increments TLO ajF2 for PLL off or Ryg for PLL on. The timer re-
peatedly counts to overflow from a preloaded value. At overflow, the contents of the RCAP2H
and RCAP2L registers are loaded into TH2/TL2. In this mode, timer 2 overflows do not generate
interrupts. The formula gives the clock-out frequency as a function of the system oscillator fre-
quency and the value in the RCAP2H and RCAP2L registers:

FOSC

For PLL off, Clock-out Frequency = Z% (65535 - RCAP2H, RCAP2L)

FOSC

For PLL on, Clock-out Frequency = 7% (65535 - RCAP2H, RCAPZL)

For a 12 MHz system clock with PLL off, timer 2 has a programmable frequency range of 47.8
Hz to 3 MHz. The generated clock signal is brought out to the T2 pin.

Timer 2 is programmed for the clock-out mode as follows:
1. Setthe T20E bit in T2MOD. This gates the timer register overflow to the +2 counter.

2. Clear the C/T2# bitin T2CON to selegiFH2 (PLL off) or Ry (PLL 0n) as the timer
input signal. This also gates the output of the +2 counter to pin T2.

3. Determine the 16-bit reload value from the formula and enter in the RCAP2H/RCAP2L
registers.

4. Enter a 16-bit initial value in timer register TH2/TL2. This can be the same as the reload
value, or different, depending on the application.

5. To start the timer, set the TR2 run control bit in T2CON.

Operation is similar to timer 2 operation as a baud rate generator. It is possible to use timer 2 as
a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates
and clock frequencies are not independent since both functions use the values in the RCAP2H
and RCAP2L registers.

I 10-15



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TL2
(8 Bits)

XTALL[ 3> + 2 0 N TH?

1) (8 Bits)

|
RCAP2H : RCAP2L

CiT2# |
+2 <}
~N ‘I\I
T20E
Interrupt
Request
T2ex [} \ I/II\ EXF2 f———
EXEN2
A4116-02
Figure 10-10. Timer 2: Clock Out Mode t
Table 10-3. Timer 2 Modes of Operation
Mode RCLK OR TCLK CP/RL2# T20E
(in T2CON) (in T2CON) | (in T2MOD)
Auto-reload Mode 0 0 0
Capture Mode 0 1 0
Baud Rate Generator Mode 1 X X
Programmable Clock-Out X 0 1

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequency at input O of the C/T 2# selector istwice that for PLLSEL 2:0 = 100 (PLL off). See Table 2-2 on page
2-8.

10-16



Inu@; TIMER/COUNTERS AND WATCHDOG TIMER

T2MOD Address: S:C9H
Reset State: XXXX XX00B
7 0
— — — - || - — T20E DCEN
Bit Bit . Function
Number Mnemonic
7:2 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
1 T20E Timer 2 Output Enable Bit:
In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.
0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

Figure 10-11. T2MOD: Timer 2 Mode Control Register

10.7 WATCHDOG TIMER

The peripheral section of the 8X930Ax contains a dedicated, hardware watchdog timer (WDT)
that automatically resets the chip if it is allowed to time out. The WDT provides a means of re-
covering from routinesthat do not complete successfully dueto software malfunctions. TheWDT
described in this section is not associated with the PCA watchdog timer, which is implemented
in software.

10.7.1 Description

The WDT is a 14-bit counter that counts peripheral cycles, i.e., (Foso/12 with PLL off; Fg-/6
with PLL on). The WDTRST specia function register at address S:A6H provides control access
to the WDT. Two operations control the WDT:

* Devicereset clears and disablesthe WDT (see “Reset” on page 13-4).
¢ \Writing a specific two-byte sequence to the WD TRST register clears and enablesthe WDT.

If it isnot cleared, the WDT overflows on count 3FFFH + 1. With PLL off and Fog. = 12 MHz,
a peripheral cycle is 1 pus and the WDT overflows in 1 us x 16384 = 16.384 ms. With PLL on and
Fosc = 12 MHz, a peripheral cycle is 0.5 ps and the WDT overflows in 0.5 pus x 16384 = 8.192 ms.

The WDTRST is a write-only register. Attempts to read it return FFH. The WDT itself is not read
or write accessible. The WDT doest drive the external RESET pin.

I 10-17



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

T2CON Address: S:C8H

Reset State: 0000 0000B

7 0

TF2 EXF2 RCLK TCLK ‘ ‘ EXEN2 TR2 CIT2# CP/RL2#
Bit Bit Function

Number Mnemonic

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK =1or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN =1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:
Setting this bit starts the timer.
1 CIT2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

Figure 10-12. T2CON: Timer 2 Control Register

10-18



Inu@; TIMER/COUNTERS AND WATCHDOG TIMER

10.7.2 Using the WDT

To use the WDT to recover from software malfunctions, the user program should control the
WDT asfollows:

1. Following device reset, write the two-byte sequence 1EH-E1H to the WDTRST register to
enablethe WDT. The WDT begins counting from 0.

2. Repeatedly for the duration of program execution, write the two-byte sequence 1EH-E1H
to the WDTRST register to clear and enable the WDT before it overflows. The WDT
starts over at 0.

If the WDT overflows, it initiates a device reset (see “Reset” on page 13-4). Device reset clears
the WDT and disables it.

10.7.3 WDT During Idle Mode

Operation of the WDT during the power reduction modes deserves special attention. The WDT
continues to count while the microcontroller is in idle mode. This means the user must service the
WDT during idle. One approach is to use a peripheral timer to generate an interrupt request when
the timer overflows. The interrupt service routine then clears the WDT, reloads the peripheral
timer for the next service period, and puts the microcontroller back into idle.

10.7.4 WDT During PowerDown

The powerdown mode stops all phase clocks. This causes the WDT to stop counting and to hold
its count. The WDT resumes counting from where it left off if the powerdown mode is terminated
by INTO/INT1. To ensure that the WDT does not overflow shortly after exiting the powerdown
mode, clear the WDT just before entering powerdown. The WDT is cleared and disabled if the
powerdown mode is terminated by a reset.

I 10-19






intel.

11

Programmable
Counter Array






intel.

CHAPTER 11
PROGRAMMABLE COUNTER ARRAY

This chapter describes the programmable counter array (PCA), an on-chip peripheral of the
8X930Ax that performs avariety of timing and counting operations, including pul se width mod-
ulation (PWM). The PCA provides the capability for a software watchdog timer (WDT).

11.1 PCA DESCRIPTION

The programmable counter array (PCA) consists of a 16-bit timer/counter and five 16-bit com-
pare/capture modules. The timer/counter serves as acommon time base and event counter for the
compare/capture modul es, distributing the current count to the modules by means of a 16-bit bus.
A specid function register (SFR) pair, CH/CL, maintains the count in the timer/counter, while
five SFR pairs, CCAPXH/CCAPXL, store values for the modules (see Figure 11-1). Additional
SFRs provide control and mode select functions as follows:

* The PCA timer/counter mode register (CMOD) and the PCA timer/counter control register
(CCON) control the operation of the timer/counter. See Figure 11-7 on page 11-13 and
Figure 11-8 on page 11-14.

¢ Five PCA module mode registers (CCAPMX) specify the operating modes of the
compare/capture modules. See Figure 11-9 on page 11-15.

For alist of SFRs associated with the PCA, see Table 11-1. For an SFR address map, see Table
3-5on page 3-16. Port 1 provides external 1/0 for the PCA on a shared basiswith other functions.
Table 11-2 identifies the port pins associated with the timer/counter and compare/capture mod-
ules. When not used for PCA 1/0O, these pins can be used for standard 1/0 functions.

The operating modes of the five compare/capture modules determine the functions performed by
the PCA. Each module can be independently programmed to provide input capture, output com-
pare, or pulse width modulation. Module 4 only also has a watchdog-timer mode.

The PCA timer/counter and the five compare/capture modul es share asingle interrupt vector. The
EC bit in the IENO specia function register is a global interrupt enable for the PCA. Capture
events, compare events in some modes, and PCA timer/counter overflows set flagsin the CCON
register. Setting the overflow flag (CF) generates a PCA interrupt request if the PCA tim-
er/counter interrupt enable bit (ECF) in the CMOD register is set (Figure 11-1). Setting a com-
pare/capture flag (CCFx) generates a PCA interrupt request if the ECCFx interrupt enable bit in
the corresponding CCAPMX register is set (Figures 11-2 and 11-3). For a description of the
8X930AX interrupt system see Chapter 6, “Interrupt System.”

I 11-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

11.1.1 Alternate Port Usage

PCA modules 3 and 4 share port pins with the real-time wait state and address functions as fol-
lows:

e PCA module 3 — P1.6/CEX3/WAIT#
e PCA module 4 — P1.7/CEX4/A17/WCLK

When the real-time wait state functions are enabled (using the WCON register), the correspond-
ing PCA modules are automatically disabled. Configuring the 8X230Aise address line A17
(specified by UCONFIGO, bits RD1:0) overrides the PCA module 3 and WCLK functions. When

a real-time wait state function is enabled, do not use the corresponding PCA module.

NOTE
It is not advisable to alternate between PCA operations and real-time wait state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK). See
“External Bus Cycles with Real-time Wait States” on page 15-11.

11.2 PCA TIMER/COUNTER

Figure 11-1 depicts the basic logic of the timer/counter portion of the PCA. The CH/CL special
function register pair operates as a 16-bit timer/counter. The selected input increments the CL
(low byte) register. When CL overflows, the CH (high byte) register increments after two oscil-
lator periods; when CH overflows it sets the PCA overflow flag (CF in the CCON register) gen-
erating a PCA interrupt request if the ECF bit in the CMOD register is set.

The CPS1 and CPSO bits in the CMOD register select one of four signals as the input to the
timer/counter (Figure 11-7 on page 11-13):

* Fosc/12. Providesaclock pulse at S5P2 of every peripheral cycle. With PLLSEL2:0 = 100
and Fog = 12 MHz, the timer/counter increments every 1000 nanoseconds. With
PLLSEL2:0 = 110 and Fg. = 12 MHz, the timer/counter increments every 500
nanoseconds.

* Fog/4. Provides clock pulses at S1P2, S3P2, and S5P2 of every peripheral cycle. With
PLLSEL2:0 = 100 and Fg. = 12 MHz, the timer/counter increments every 333 1/3
nanoseconds. With PLLSEL 2:0 = 110 and Fog. = 12 MHz, the timer/counter increments
every 166 2/3 nanoseconds.

¢ Timer O overflow. The CL register isincremented at S5P2 of the peripheral cycle when
timer O overflows. This selection provides the PCA with a programmable frequency input.

¢ External signa on P1.2/ECI. The CPU samplesthe ECI pin at S1P2, S3P2, and S5P2 of
every peripheral cycle. Thefirst clock pulse (S1P2, S3P2, or S5P2) that occurs following a
high-to-low transition at the ECI pin increments the CL register. The maximum input
frequency for thisinput selection is Foo/8.

For a description of peripheral cycletiming, see “Clock and Reset Unit” on page 2-7.

11-2 I



Inu@; PROGRAMMABLE COUNTER ARRAY

Setting the run control bit (CR in the CCON register) turns the PCA timer/counter on, if the out-
put of the NAND gate (Figure 11-1) equalslogic 1. The PCA timer/counter continues to operate
during idle mode unlessthe CIDL bit of the CMOD register is set. The CPU can read the contents
of the CH and CL registers at any time. However, writing to them is inhibited while they are
counting (i.e., when the CR bit is set).

Compare/Capture
Modules

Module 0 [] P1.3/ICEXO
Module 1 [) P1.4/CEXL
R | Module 2|
Bus Module 2 ] P1.5/CEX2
Module 3 [ ] P1.6/CEX3/WAIT#
P1.7/CEX4/
M(f::'f;‘ Cd AT7mweLk
Its,
Fosc /12 ¢\
Interrupt
01 ,
Fosc /14— CH , cCL oF Request
Timer 0 Overflow ——10 (8 Bits) | (8 Bits) _|>—>
p1r.2/ECI [} PCA CCON.7
Timer/Counter Overflow

CMOD.2 CMOD.1 CMOD.7 CMOD.0

= Enable

PCON.0 CCON.6
Idle Mode Run Control

[ cpsi | cpso | cioL | ECF
CR

A4162-04

Figure 11-1. Programmable Counter Array

T This figure depicts the case of PLL off (PLLSEL2:0 = 001 or 100). For the case of PLL on (PLLSEL2:0 = 110), the
clock frequencies at inputs 00 and O1 of the CPSx selector are twice that for PLLSEL 2:0 = 100 (PLL off). See Table
2-2 on page 2-8.

11-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 11-1. PCA Special Function Registers (SFRs)

intel.

Mnemonic Description Address
CL PCA Timer/Counter. These registers serve as a common 16-bit timer or S:E9H
CH event counter for the five compare/capture modules. Counts Fog-/12, S:F9H
Fosc/4, timer O overflow, or the external signal on P1.2/ECI, as selected by
CMOD. In PWM mode CL operates as an 8-bit timer.

CCON PCA Timer/Counter Control Register. Contains the run control bit and S:D8H
the overflow flag for the PCA timer/counter, and interrupt flags for the five
compare/capture modules.

CMOD PCA Timer/Counter Mode Register. Contains bits for disabling the PCA S:D9H
timer/counter during idle mode, enabling the PCA watchdog timer (module
4), selecting the timer/counter input, and enabling the PCA timer/counter
overflow interrupt.

CCAPOH PCA Module 0 Compare/Capture Registers. This register pair stores the S:FAH

CCAPOL comparison value or the captured value. In the PWM mode, the low-byte S:EAH
register controls the duty cycle of the output waveform.

CCAP1H PCA Module 1 Compare/Capture Registers. This register pair stores the S:FBH

CCAP1L comparison value or the captured value. In the PWM mode, the low-byte S:EBH
register controls the duty cycle of the output waveform.

CCAP2H PCA Module 2 Compare/Capture Registers. This register pair stores the S:FCH

CCAP2L comparison value or the captured value. In the PWM mode, the low-byte S:ECH
register controls the duty cycle of the output waveform.

CCAP3H PCA Module 3 Compare/Capture Registers. This register pair stores the S:FDH

CCAP3L comparison value or the captured value. In the PWM mode, the low-byte S:EDH
register controls the duty cycle of the output waveform.

CCAP4H PCA Module 4 Compare/Capture Registers. This register pair stores the S:FEH

CCAP4L comparison value or the captured value. In the PWM mode, the low-byte S:EEH
register controls the duty cycle of the output waveform.

CCAPMO PCA Compare/Capture Module Mode Registers. Contain bits for S:DAH

CCAPM1 | selecting the operating mode of the compare/capture modules and S:DBH

CCAPM2 | enabling the compare/capture flag. See Table 11-3 on page 11-14 for mode S:DCH

CCAPM3 select bit combinations. S:DDH

CCAPM4 S:DEH

Table 11-2. External Signals

Signal - Alternate

Name Type Description Function
ECI | PCA Timer/counter External Input. This signal is the external P1.2

clock input for the PCA timer/counter.

CEXO0 I/O | Compare/Capture Module External I/O. Each compare/capture P1.3
CEX1 module connects to a Port 1 pin for external I/0O. When not used by P1.4
CEX2 the PCA, these pins can handle standard 1/O. P15
CEX3 P1.6/WAIT#
CEX4 P1.7/A17/WCLK

11-4



Inu@; PROGRAMMABLE COUNTER ARRAY

11.3 PCA COMPARE/CAPTURE MODULES

Each compare/capture module is made up of a compare/capture register pair
(CCAPXH/CCAPXL), a16-bit comparator, and variouslogic gates and signal transition selectors.
The registers store the time or count at which an external event occurred (capture) or at which an
action should occur (comparison). In the PWM mode, the low-byte register controls the duty cy-
cle of the output waveform.

The logical configuration of a compare/capture modul e depends on its mode of operation (Fig-
ures 11-2 through 11-5). Each module can be independently programmed for operation in any of
the following modes:

¢ 16-bit capture mode with triggering on the positive edge, negative edge, or either edge.

¢ Compare modes: 16-bit software timer, 16-bit high-speed output, 16-bit WDT (module 4
only), or 8-bit pulse width modulation.

* No operation.

Bit combinations programmed into a compare/capture module’s mode register (G AEtdt-

mine the operating mode. Figure 11-9 on page 11-15 provides bit definitions and Table 11-3 lists
the bit combinations of the available modes. Other bit combinations are invalid and produce un-
defined results.

The compare/capture modules perform their programmed functions when their common time
base, the PCA timer/counter, runs. The timer/counter is turned on and off with the CR bit in the
CCON register. To disable any given module, program it for the no operation mode. The occur-
rence of a capture, software timer, or high-speed output event in a compare/capture module sets
the module’s compare/capture flag (G the CCON register and generates a PCA interrupt
request if the corresponding enable bit in the CCAPagister is set.

The CPU can read or write the CO&Pand CCARL registers at any time.

11.3.1 16-bit Capture Mode

The capture mode (Figure 11-2) provides the PCA with the ability to measure periods, pulse

widths, duty cycles, and phase differences at up to five separate inputs. External I/O pins CEX0
through CEX4 are sampled for signal transitions (positive and/or negative as specified). When a
compare/capture module programmed for the capture mode detects the specified transition, it
captures the PCA timer/counter value. This records the time at which an external event is detect-
ed, with a resolution equal to the timer/counter clock period.

To program a compare/capture module for the 16-bit capture mode, program thg &#PP
CAPNX bits in the module’s CCAPKregister as follows:

¢ Totrigger the capture on a positive transition, set CAPPx and clear CAPNX.
¢ Totrigger the capture on a negative transition, set CAPNx and clear CAPPX.
* Totrigger the capture on a positive or negative transition, set both CAPPx and CAPNX.

I 11-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 11-3 on page 11-14 lists the bit combinations for sel ecting module modes. For modulesin

the capture mode, detection of avalid signal transition at the 1/0 pin (CEXX) causes hardware to

load the current PCA timer/counter val ue into the compare/capture registers (CCAPxH/CCAPXL)

and to set the module’s compare/capture flag (¢@Fthe CCON register. If the corresponding
interrupt enable bit (ECCG§in the CCAPM register is set (Figure 11-9 on page 11-15), the PCA
sends an interrupt request to the interrupt handler.

Since hardware does not clear the event flag when the interrupt is processed, the user must clear
the flag in software. A subsequent capture by the same module overwrites the existing captured
value. To preserve a captured value, save it in RAM with the interrupt service routine before the
next capture event occurs.

PCA Timer/Counter
1
Count CH : CL
Input (8 Bits) | (8 Bits)
1

Capture
CEXx D >\ L3\

/
External I/O \ \/ \/

N
g N /

I
CCAPxH : CCAPxL

x=0,1,230r4

X = Don't Care Y g‘é‘i‘r&zg:
CCFx DS >
CCON Register VI Enable
X O CAPPx | CAPNXx O O (0] ECCFx
CCAPMx Mode Register 0

A4163-02

Figure 11-2. PCA 16-bit Capture Mode

11.3.2 Compare Modes

The compare function provides the capability for operating the five modules as timers, event
counters, or pulse width modulators. Four modes employ the compare function: 16-bit software
timer mode, high-speed output mode, WDT mode, and PWM mode. In the first three of these, the
compare/capture module continuously compares the 16-bit PCA timer/counter value with the 16-
bit value pre-loaded into the module’s CCAPxH/CCAPXL register pair. In the PWM mode, the

module continuously compares the value in the low-byte PCA timer/counter register (CL) with

an 8-bit value in the CCAPxL module register. Comparisons are made three times per peripheral

11-6



Il1t€J® PROGRAMMABLE COUNTER ARRAY

cycle to match the fastest PCA timer/counter clocking rate (Fos-/4). For a description of periph-
eral cycletiming, see “Clock and Reset Unit” on page 2-7.

Setting the ECOMDbit in a module’s mode register (CCAPMx) selects the compare function for
that module (Figure 11-9 on page 11-15). To use the modules in the compare modes, observe the
following general procedure:

1. Select the module’s mode of operation.
Select the input signal for the PCA timer/counter.
Load the comparison value into the module’s compare/capture register pair.

Set the PCA timer/counter run control bit.

o > DN

After a match causes an interrupt, clear the module’s compare/capture flag.

11.3.3 16-bit Software Timer Mode

To program a compare/capture module for the 16-bit software timer mode (Figure 11-3), set the
ECOMx and MATx bits in the module’s CCAPKIregister. Table 11-3 lists the bit combinations
for selecting module modes.

A match between the PCA timer/counter and the compare/capture registerst@CBRPxL)

sets the module’s compare/capture flag (€ DRhe CCON register). This generates an interrupt
request if the corresponding interrupt enable bit (EC@Rhe CCAPM register) is set. Since
hardware does not clear the compare/capture flag when the interrupt is processed, the user must
clear the flag in software. During the interrupt routine, a new 16-bit compare value can be written
to the compare/capture registers (CQARCCAPXL).

NOTE

To prevent an invalid match while updating these registers, user software
should write to CCAPXL first, then CCAPxH. A write to COAFclears the
ECOMx bit disabling the compare function, while a write to CQARets the
ECOMx bit re-enabling the compare function.

I 11-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Compare/Capture
PCA Timer/Counter Module
Count ; ;
Input
npu 3 CH ! CL CCAPXH:CCAPXL

(8 Bits) | (8 Bits) | | (8 Bits) | (8 Bits)

{} Toggle
16-Bit Match N
ﬂ Comparator [ —(JcExx

Interrupt
Enable Request
CCFx

CCON

Enable

X ECOMx 0 0 MATx | TOGx 0 ECCFx

CCAPMx Mode Register 0

Reset

Write to
CCAPxL X = Don't Care
x=0,1,2,3,4

np
Write to CCAPxH

For software timer mode, set ECOMx and MATX.
For high speed output mode, set ECOMx, MATX, and TOGx.

A4164-01

Figure 11-3. PCA Software Timer and High-speed Output Modes

11.3.4 High-speed Output Mode

The high-speed output mode (Figure 11-3) generates an output signal by toggling the module’s
I/0 pin (CEXX) when a match occurs. This provides greater accuracy than toggling pins in soft-
ware because the toggle occhefore the interrupt request is serviced. Thus, interrupt response
time does not affect the accuracy of the output.

To program a compare/capture module for the high-speed output mode, set the, BGM,

TOGx bits in the module’s CCAPKIregister. Table 11-3 on page 11-14 lists the bit combinations

for selecting module modes. A match between the PCA timer/counter and the compare/capture
registers (CCARH/CCAPXL) toggles the CEX pin and sets the module’s compare/capture flag
(CCFxin the CCON register). By setting or clearing the Qi in software, the user selects
whether the match toggles the pin from low to high or vice versa.

The user also has the option of generating an interrupt request when the match occurs by setting
the corresponding interrupt enable bit (EG@Fthe CCAPM register). Since hardware does not

clear the compare/capture flag when the interrupt is processed, the user must clear the flag in soft-
ware.

11-8



Il1t€J® PROGRAMMABLE COUNTER ARRAY

If the user does not change the compare/capture registers in the interrupt routine, the next toggle
occurs after the PCA timer/counter rolls over and the count again matches the comparison value.
During the interrupt routine, a new 16-bit compare value can be written to the compare/capture
registers (CCAPXH/CCAPXL).

NOTE
To prevent an invalid match while updating these registers, user software
should writeto CCAPXL first, then CCAPxH. A writeto CCAPXL clearsthe
ECOMX bit disabling the compare function, while awrite to CCAPXH setsthe
ECOMXx bit re-enabling the compare function.

11.3.5 PCA Watchdog Timer Mode

A watchdog timer (WDT) provides the meansto recover from routines that do not complete suc-
cessfully. A WDT automatically invokes a device reset if it does not regularly receive hold-off
signals. WDTs are used in applications that are subject to electrical noise, power glitches, elec-
trostatic discharges, etc., or where high reliability is required.

In addition to the 8X930AX’s 14-bit hardware WDT, the PCA provides a programmable-frequen-

cy 16-bit WDT as a mode option on compare/capture module 4. This mode generates a device
reset when the count in the PCA timer/counter matches the value stored in the module 4 com-

pare/capture registers. A PCA WDT reset has the same effect as an external reset. Module 4 is
the only PCA module that has the WDT mode. When not programmed as a WDT, it can be used

in the other modes.

To program module 4 for the PCA WDT mode (Figure 11-4), set the ECOM4 and MATA4 bits in
the CCAPMA4 register and the WDTE bit in the CMOD register. Table 11-3 lists the bit combina-
tions for selecting module modes. Also select the desired input for the PCA timer/counter by pro-
gramming the CPS0 and CPS1 bits in the CMOD register (see Figure 11-7 on page 11-13). Enter
a 16-bit comparison value in the compare/capture registers (CCAP4H/CCAPA4L). Enter a 16-bit
initial value in the PCA timer/counter (CH/CL) or use the reset value (0O000H). The difference
between these values multiplied by the PCA input pulse rate determines the running time to “ex-
piration.” Set the timer/counter run control bit (CR in the CCON register) to start the PCA WDT.

The PCA WDT generates a reset signal each time a match occurs. To hold off a PCA WDT reset,
the user has three options:

¢ periodicaly change the comparison valuein CCAP4H/CCAPAL so a match never occurs
¢ periodically change the PCA timer/counter value so a match never occurs

¢ disablethe module 4 reset output signal by clearing the WDTE bit before a match occurs,
then later re-enable it

The first two options are more reliable because the WDT is not disabled as in the third option.
The second option is not recommended if other PCA modules are in use, since the five modules
share a common time base. Thus, in most applications the first option is the best one.

I 11-9



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Compare/Capture
PCA Timer/Counter Module
Count T .
Input CH ! cCL CCAP4H! CCAPAL
— > @8Bits) | (8Bits) | | (8Bits) | (8 Bits)
l l
:> 16-Bit Match N
Comparator I/I > PCA WDT Reset
Enable WDTE
CMOD.6
X ECOM4 0 0 1 X 0 X
CCAPM4 Mode Register
Reset
Write to
CCAPAL wgn E X =Don't Care
Write to CCAP4H
A4165-01

Figure 11-4. PCA Watchdog Timer Mode

11.3.6 Pulse Width Modulation Mode

The five PCA comparator/capture modules can be independently programmed to function as
pulse width modulators (Figure 11-5). The modulated output, which has a pul se width resolution
of eight bits, isavailable at the CEXx pin. The PWM output can be used to convert digital datato
an analog signal with simple external circuitry.

In this mode the value in the low byte of the PCA timer/counter (CL) is continuously compared
with the value in the low byte of the compare/capture register (CCAPXL). When CL < CCAPXL,
the output waveform (Figure 11-6) is low. When a match occurs (CL = CCAPxL), the output
waveform goes high and remains high until CL rolls over from FFH to 00H, ending the period.
At rollover the output returnsto alow, the value in CCAPxH isloaded into CCAPXL, and a new
period begins.

11-10 I



Inu@; PROGRAMMABLE COUNTER ARRAY

CCAPxH
CL rollover from FFH to O0H loads
CCAPxH contents into CCAPxL
X = Don't Care CCAPxL
x=0,1,2,3,4.
s
nge
8 <
CI.‘ 8-Bit CL < CCAPxL cex
(8 Bits) Comparator X
CL = CCAPxL
Enable "
[ [
X ECOMx 0 0 0 0 PWMx 0
CCAPMx Mode Register 0
A4166-01

Figure 11-5. PCA 8-bit PWM Mode

Thevauein CCAPXL determinesthe duty cycle of the current period. The valuein CCAPxH de-
termines the duty cycle of the following period. Changing the value in CCAPXL over time mod-
ulates the pulse width. As depicted in Figure 11-6, the 8-bit value in CCAPxL can vary from O
(100% duty cycle) to 255 (0.4% duty cycle).

NOTE

To change the value in CCAPXL without glitches, write the new value to the
high byte register (CCAPxH). Thisvalue is shifted by hardware into CCAPxL
when CL rolls over from FFH to 00H.

The frequency of the PWM output equals the frequency of the PCA timer/counter input signal
divided by 256. The highest frequency occurs when the Foo/4 input is selected for the PCA tim-
er/counter. For PLLSEL2:0 = 100 and Fog. = 12 MHz, thisis 11.7 KHz. For PLLSEL 2:0 = 110
and Fog. = 12 MHz, thisis 23.4 KHz.

I 11-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

To program a compare/capture module for the PWM mode, set the ECOMx and PWMX hitsin

the module’s CCAPMregister. Table 11-3 on page 11-14 lists the bit combinations for selecting
module modes. Also select the desired input for the PCA timer/counter by programming the
CPS0 and CPSL1 bits in the CMOD register (see Figure 11-7). Enter an 8-bit value in CCAPXL to
specify the duty cycle of the first period of the PWM output waveform. Enter an 8-bit value in
CCAPxH to specify the duty cycle of the second period. Set the timer/counter run control bit (CR
in the CCON register) to start the PCA timer/counter.

Duty
CCAPxL Cycle Output Waveform
255 0.4% ;| | | |
1
230 10% ] I I I
1
2 s ML L1
1
25 90% 0]_| ] ] §
0 100%
0
A4161-01

Figure 11-6. PWM Variable Duty Cycle

11-12 I



Inu@; PROGRAMMABLE COUNTER ARRAY

CMOD Address: S:D9H
Reset State:  00XX X000B
7 0
cipL WDTE — — ‘ ‘ — CPS1 CPS0 ECF
Bit Bit Function

Number Mnemonic

7 CIDL PCA Timer/Counter Idle Control:

CIDL = 1 disables the PCA timer/counter during idle mode. CIDL =0
allows the PCA timer/counter to run during idle mode.

6 WDTE Watchdog Timer Enable:

WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.

5:3 — Reserved:

Values read from these bits are indeterminate. Write zeros to these bits.
2:1 CPS1:0 PCA Timer/Counter Input Select:

CPS1 CPSO

0 0 Fosc /12

0 1 Fosc 14

1 0 Timer 0 overflow

1 1 External clock at ECI pin (maximum rate = Fog /8)

0 ECF PCA Timer/Counter Interrupt Enable:

ECF =1 enables the CF bit in the CCON register to generate an interrupt
request.

Figure 11-7. CMOD: PCA Timer/Counter Mode Register

11-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

CCON Address: S:D8H
Reset State: 00X0 0000B
7 0
CF CR — CCF4 ‘ ‘ CCF3 CCF2 CCF1 CCFo
Bit Bit Function

Number Mnemonic

7 CF PCA Timer/Counter Overflow Flag:

Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.

6 CR PCA Timer/Counter Run Control Bit:
Set and cleared by software to turn the PCA timer/counter on and off.

5 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.
4:0 CCF4:0 PCA Module Compare/Capture Flags:

Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMx register is set. Must be cleared by software.

Figure 11-8. CCON: PCA Timer/Counter Control Register

Table 11-3. PCA Module Modes

ECOMx | CAPPx | CAPNx | MATx | TOGx | PWMx | ECCFx Module Mode
0 0 0 0 0 0 0 No operation
X 1 0 0 0 0 X 16-bit capture on positive-edge
trigger at CEXX
X 0 1 0 0 0 X 16-bit capture on negative-edge
trigger at CEXX
X 1 1 0 0 0 X 16-bit capture on positive- or

negative-edge trigger at CEXx

1 0 0 1 0 0 X Compare: software timer
1 0 0 1 1 0 X Compare: high-speed output
1 0 0 0 0 1 0 Compare: 8-bit PWM
1 0 0 1 X 0 X Compare: PCA WDT
(CCAPM4 only) (Note 3)
NOTES:

1. This table shows the CCAPMXx register bit combinations for selecting the operating modes of the PCA
compare/capture modules. Other bit combinations are invalid. See Figure 11-9 for bit definitions.

2. X=0-4, X=Don't care.

3. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

11-14




intel.

PROGRAMMABLE COUNTER ARRAY

CCAPMx (x = 0-4)

Address: CCAPMO S:DAH
CCAPM1 S:DBH
CCAPM2 S:DCH
CCAPM3 S:DDH
CCAPM4 S:DEH

Reset State: X000 0000B

7 0
— ECOMx | CAPPx | CAPNx |[ MATx TOGx PWMx | ECCFx
Bit Bit Function
Number Mnemonic

7 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

6 ECOMx Compare Modes:
ECOMXx = 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPXx Capture Mode (Positive):
CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNXx Capture Mode (Negative):
CAPNXx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATXx Match:
Set ECOMx and MATx to implement the software timer mode. When
MATX = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.

2 TOGXx Toggle:
Set ECOMx, MATx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:
PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:
Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

Figure 11-9. CCAPMx: PCA Compare/Capture Module Mode Registers

11-15






intel. 12

Serial 1/0O Port






intel.

CHAPTER 12
SERIAL I/O PORT

The serial input/output port supports communication with modems and other external peripheral
devices. This chapter providesinstructions for programming the serial port and generating the se-
rial 1/0 baud rates with timer 1 and timer 2.

12.1 OVERVIEW

The serial 1/0 port provides both synchronous and asynchronous communication modes. It oper-
ates as a universal asynchronous receiver and transmitter (UART) in three full-duplex modes
(modes 1, 2, and 3). Asynchronous transmission and reception can occur simultaneously and at
different baud rates. The UART supports framing-bit error detection, multiprocessor communi-
cation, and automatic address recognition. The serial port also operates in a single synchronous
mode (mode 0).

The synchronous mode (mode 0) operates at a single baud rate. Mode 2 operates at two baud
rates. Modes 1 and 3 operate over awide range of baud rates, which are generated by timer 1 and
timer 2. Baud rates are detailed in “Baud Rates” on page 12-10.

NOTE
The baud rate calculations in this chapter are for PLL off. For the case of PLL
on (PLLSELZ2:0 = 110), the internal clock distributed to the CPU and the
peripherals is twice as fast, so all baud rates are two times greater than shown
(PLLSELZ2:0 =100). See Table 2-2 on page 2-8.

The serial port signals are defined in Table 12-1, and the serial port special function registers are
described in Table 12-2. Figure 12-1 is a block diagram of the serial port.

For the three asynchronous modes, the UART transmits on the TXD pin and receives on the RXD
pin. For the synchronous mode (mode 0), the UART outputs a clock signal on the TXD pin and
sends and receives messages on the RXD pin (Figure 12-1). The SBUF register, which holds re-
ceived bytes and bytes to be transmitted, actually consists of two physically different registers.
To send, software writes a byte to SBUF; to receive, software reads SBUF. The receive shift reg-
ister allows reception of a second byte before the first byte has been read from SBUF. However,
if software has not read the first byte by the time the second byte is received, the second byte will
overwrite the first. The UART sets interrupt bits Tl and RI on transmission and reception, respec-
tively. These two bits share a single interrupt request and interrupt vector.

The serial port control (SCON) register (Figure 12-2) configures and controls the serial port.

I 12-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table 12-1. Serial Port Signals

Function s Multiplexed
Name Type Description With
TXD O Transmit Data. In mode 0, TXD transmits the clock signal. In P3.1
modes 1, 2, and 3, TXD transmits serial data.
RXD 110 Receive Data. In mode 0, RXD transmits and receives serial P3.0
data. In modes 1, 2, and 3, RXD receives serial data.
Table 12-2. Serial Port Special Function Registers
Mnemonic Description Address
SBUF Serial Buffer. Two separate registers, accessed with same address S:99H
comprise the SBUF register. Writing to SBUF loads the transmit buffer;
reading SBUF accesses the receive buffer.
SCON Serial Port Control. Selects the serial port operating mode. SCON enables S:98H
and disables the receiver, framing bit error detection, multiprocessor
communication, automatic address recognition, and the serial port interrupt
bits.
SADDR Serial Address. Defines the individual address for a slave device. S:A8H
SADEN Serial Address Enable. Specifies the mask byte that is used to define the S:B8H
given address for a slave device.

12.2 MODES OF OPERATION

The serial 1/O port can operate in one synchronous and three asynchronous modes.

12.2.1 Synchronous Mode (Mode 0)

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/O capabil-
ities of adevicewith shift registers. Thetransmit data (TXD) pin outputs aset of eight clock puls-
es while the receive data (RXD) pin transmits or receives a byte of data. The eight data bits are
transmitted and received least-significant bit (LSB) first. Shifts occur in the last phase (S6P2) of
every peripheral cycle, which corresponds to a baud rate of Foo/12. Figure 12-3 on page 12-6
shows the timing for transmission and reception in mode 0.

12.2.1.1 Transmission (Mode 0)
Follow these steps to begin a transmission:
1. Writeto the SCON register, clearing bits SMO, SM 1, and REN.
2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

Hardware executes the write to SBUF in the last phase (S6P2) of a peripheral cycle. At S6P2 of
the following cycle, hardware shiftsthe LSB (D0) onto the RXD pin. At S3P1 of the next cycle,
the TXD pin goes low for the first clock-signal pulse. Shifts continue every peripheral cycle. In
the ninth cycle after the writeto SBUF, the MSB (D7) ison the RXD pin. At the beginning of the

12-2



Int9|® SERIAL I/O PORT

tenth cycle, hardware drives the RXD pin high and asserts Tl (S1P1) to indicate the end of the
transmission.

12.2.1.2  Reception (Mode 0)

To start areception in mode O, write to the SCON register. Clear bits SM0, SM1, and Rl and set
the REN hit.

Hardware executesthewriteto SCON inthelast phase (S6P2) of aperipheral cycle (Figure 12-3).
In the second periphera cycle following the write to SCON, TXD goes low at S3P1 for the first
clock-signal pulse, and the L SB (DO0) is sampled onthe RXD pin at S5P2. The DO hit isthen shift-
ed into the shift register. After eight shiftsat S6P2 of every peripheral cycle, the LSB (D7) isshift-
ed into the shift register, and hardware asserts Rl (S1P1) to indicate a completed reception.
Software can then read the received byte from SBUF.

IB Bus
Write SBUF Read SBUF l: :I
™0 (I SBUF SBUF
(Transmit) (Receive)
Mode 0
Y Transmit Load SBUF
Receive
RxD G | Shift Register
AN -« Interrupt
“ Request
RI TI
Serial I/0 SCON
Control
A4123-01

Figure 12-1. Serial Port Block Diagram

I 12-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

SCON Address: S:98H
Reset State: 0000 0000B
7 0
FE/SMO SM1 sMm2 REN ‘ ‘ TBS RB8 TI RI
Bit Bit Function

Number Mnemonic

7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software, not by valid
frames.

SMO Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Software writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate'

0 0 0 Shift register Fosc/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART Fosc/321T or Fog /641t
1 1 3 9-bit UART Variable

tFor the case of PLL on, see note on page page 12-1.

ttSelect by programming the SMOD bit in the PCON register (see
section “Baud Rates” on page 12-10).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To enable transmission, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:
Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

12-4



intel.

SERIAL I/O PORT

SCON (Continued) Address: S:98H
Reset State: 0000 0000B
7 0
FE/SMO SM1 SM2 REN || TB8 RB8 T RI
Bit Bit Function
Number Mnemonic
1 TI Transmit Interrupt Flag Bit:
Set by the transmitter after the last data bit is transmitted. Cleared by
software.
0 RI Receive Interrupt Flag Bit:
Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

Figure 12-2. SCON: Serial Port Control Register

12-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

TXD

Write to
SBUF

Shift

RXD

Tl

TXD

Write to
SCON

Shift

RXD

Transmit
L1 1 LI LI L
S3P1 S6P1
| 3
S6P2 " " " "
S6P2 S6P2 S6P2 S6P2
| |\ po X D1 Xp2 "peX D7 /
S6P2 S6P2 ?
|
Receive S1P1
L1 1 LI LI L
S3P1 S6P1
I | Set REN, Clear RI e
SGIPZ " " I.l "
S6P2 S6P2 *—S6p2 S6P2
DO D1 D6 D7
g g ﬂ g
| | M| L ’
S6P2 S6P2 |
S5P2 [

S1P1
A4124-02

Figure 12-3. Mode 0 Timing

Yoo 0000000

E Start Bit

Data Byte

Ninth Data Bit (Modes 2 and 3 only)

Stop Bit

A2261-01

12-6

Figure 12-4. Data Frame (Modes 1, 2, and 3)




Int9|® SERIAL I/O PORT

12.2.2 Asynchronous Modes (Modes 1, 2, and 3)

The serial port has three asynchronous modes of operation:

* Mode 1. Mode 1 isafull-duplex, asynchronous mode. The data frame (Figure 12-4)
consists of 10 bits: one start bit, eight data bits, and one stop bit. Seria datais transmitted
on the TXD pin and received on the RXD pin. When amessage is received, the stop bit is
read in the RB8 bit in the SCON register. The baud rate is generated by overflow of timer 1
or timer 2 (see “Baud Rates” on page 12-10).

* Modes?2 and 3. Modes 2 and 3 are full-duplex, asynchronous modes. The data frame
(Figure 12-4) consists of 11 bits: one start bit, eight data bits (transmitted and received L SB
first), one programmable ninth data bit, and one stop bit. Serial datais transmitted on the
TXD pin and received on the RXD pin. On receive, the ninth bit isread from the RB8 bit in
the SCON register. On transmit, the ninth data bit is written to the TB8 bit in the SCON
register. Alternatively, you can use the ninth bit as a command/data flag.

— In mode 2, the baud rate is programmable to 1/32 or 1/64 of the oscillator frequency.

— In mode 3, the baud rate is generated by overflow of timer 1 or timer 2.

12.2.2.1 Transmission (Modes 1, 2, 3)
Follow these steps to initiate a transmission:

1. Write to the SCON register. Select the mode with the SMO and SM1 bits, and clear the
REN bit. For modes 2 and 3, also write the ninth bit to the TB8 bit.

2. Write the byte to be transmitted to the SBUF register. This write starts the transmission.

12.2.2.2  Reception (Modes 1, 2, 3)

To prepare for a reception, set the REN bit in the SCON register. The actual reception is then ini-
tiated by a detected high-to-low transition on the RXD pin.

12.3 FRAMING BIT ERROR DETECTION (MODES 1, 2, AND 3)

Framing bit error detection is provided for the three asynchronous modes. To enable the framing
bit error detection feature, set the SMODO bit in the PCON register (see Figure 14-1 on page
14-2). When this feature is enabled, the receiver checks each incoming data frame for a valid stop
bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission
by two CPUs. If a valid stop bit is not found, the software sets the FE bit in the SCON register
(see Figure 12-2).

Software may examine the FE bit after each reception to check for data errors. Once set, only soft-
ware or a reset can clear the FE bit. Subsequently received frames with valid stop bits cannot clear
the FE bit.

I 12-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

12.4 MULTIPROCESSOR COMMUNICATION (MODES 2 AND 3)

Modes 2 and 3 provide a ninth-bit mode to facilitate multiprocessor communication. To enable
this feature, set the SM2 bit in the SCON register (see Figure 12-2). When the multiprocessor
communication feature is enabled, the serial port can differentiate between data frames (ninth bit
clear) and address frames (ninth bit set). This alows the microcontroller to function as a lave
processor in an environment where multiple slave processors share asingle seria line.

When the multiprocessor communication featureis enabled, the receiver ignores frames with the

ninth bit clear. The receiver examines frames with the ninth bit set for an address match. If the

received address matches the slave’s address, the receiver hardware sets the RB8 bit and the R
bit in the SCON register, generating an interrupt.

NOTE
The ES bit must be set in the IENO register to allow the RI bit to generate an
interrupt. The IENO register is described in Chapter 8, Interrupts.

The addressed slave’s software then clears the SM2 bit in the SCON register and prepares to re-
ceive the data bytes. The other slaves are unaffected by these data bytes because they are waitin
to respond to their own addresses.

12.5 AUTOMATIC ADDRESS RECOGNITION

The automatic address recognition feature is enabled when the multiprocessor communication
feature is enabled (i.e., the SM2 bit is set in the SCON register).

Implemented in hardware, automatic address recognition enhances the multiprocessor communi-
cation feature by allowing the serial port to examine the address of each incoming command
frame. Only when the serial port recognizes its own address does the receiver set the RI bit in the
SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command
frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configu-
ration, the stop bit takes the place of the ninth data bit. The RI bit is set only when the received
command frame address matches the device’s address and is terminated by a valid stop bit.

NOTE
The multiprocessor communication and automatic address recognition features
cannot be enabled in mode O (i.e., setting the SM2 bit in the SCON register in
mode 0 has no effect).

To support automatic address recognition, a device is identifiedjilvgraaddress and laroad-
cast address.

12.5.1 Given Address

Each device has andividual address that is specified in the SADDR register; the SADEN reg-
ister is a mask byte that contains don't-care bits (defined by zeros) to form the dgveress-

12-8 I



Int9|® SERIAL I/O PORT

dress. These don't-care bits provide the flexibility to address one or more slaves at atime. To
addressadevice by itsindividual address, the SADEN mask byte must be 1111 1111 Thefollow-
ing exampleillustrates how a given addressis formed:

SADDR = 01010110
SADEN = 11111100
Given = 0101 01XX

The following is an example of how to use given addresses to address different slaves:

Slave A: SADDR = 1111 0001 Slave C: SADDR = 1111 0010
SADEN = 11111010 SADEN = 11111101
Given = 1111 0XOX Given = 1111 00X1
Slave B: SADDR = 11110011
SADEN = 11111001
Given = 1111 OXX1

The SADEN byte is selected so that each slave may be addressed separately. For Slave A, bit 0
(the LSB) isadon't-care bit; for Slaves B and C, bit O isa 1. To communicate with Slave A only,
the master must send an address where bit O is clear (e.g., 1111 0000).

For Slave A, bit 1 is a 0; for Slaves B and C, bit 1 is a don’t-care bit. To communicate with Slaves
B and C, but not Slave A, the master must send an address with bits 0 and 1 both set (e.g.,
1111 0011).

For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is a 0. To communicate with Slaves
A and B, but not Slave C, the master must send an address with bit O set, bit 1 clear, and bit 2 set
(e.g., 1111 0101).

To communicate with Slaves A, B, and C, the master must send an address with bit O set, bit 1
clear, and bit 2 clear (e.g., 1111 0001).
12.5.2 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with
zeros defined as don't-care bits, e.g.:

SADDR = 01010110
SADEN 1111 1100
(SADDR) OR (SADEN) = 1111 111X

The use of don't-care bits provides flexibility in defining the broadcast address, however, in most
applications, a broadcast address is OFFH.

I 12-9



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

The following is an example of using broadcast addresses:

Slave A: SADDR = 1111 0001 Slave C: SADDR = 11110010
SADEN = 11111010 SADEN = 11111101
Broadcast = 1111 1X11 Broadcast = 1111 1111
Slave B: SADDR = 11110011
SADEN = 11111001

Broadcast = 1111 1X11
For Slaves A and B, bit 2 is a don’t-care bit; for Slave C, bit 2 is set. To communicate with all of
the slaves, the master must send an address FFH.

To communicate with Slaves A and B, but not Slave C, the master can send an address FBH.

12.5.3 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00H, i.e., the given and broadcast
addresses are XXXX XXXX (all don't-care bhits). This ensures that the serial port is backwards-
compatible with MC® 51 microcontrollers that do not support automatic address recognition.

12.6 BAUD RATES 1

Y ou must select the baud rate for the serial port transmitter and receiver when operating in modes
1, 2, and 3. (The baud rate is preset for mode 0.) In its asynchronous modes, the serial port can
transmit and receive simultaneously. Depending on the mode, the transmission and reception
rates can be the same or different. Table 12-3 summarizes the baud rates that can be used for the
four serial 1/0 modes.

12.6.1 Baud Rate for Mode O T

WiththePLL on, the baud rate for mode Oisfixed at F/12. For the case of PLL on (PLLSEL2:0
=110), the baud rate for mode O is fixed at Fog /6.

T See note on page 12-1

12-10 I



Int9|® SERIAL I/O PORT

Table 12-3. Summary of Baud Rates

Mode No. of Send and Receive Sen(_j and Receive
Baud Rates | at the Same Rate | at Different Rates

0 1 N/A N/A

1 Many tt Yes Yes

2 2 Yes No

3 Many tt Yes Yes

Tt Baud rates are determined by overflow of timer 1 and/or timer 2.

12.6.2 Baud Rates for Mode 2 T

Mode 2 has two baud rates, which are selected by the SMOD1 hit in the PCON register (Figure
14-1 on page 14-2). The following expression defines the baud rate:

SMOD1 x FOSC

Serial /0 Mode 2 Baud Rate = 2 7

12.6.3 Baud Rates for Modes 1 and 3 T

In modes 1 and 3, the baud rate is generated by overflow of timer 1 (default) and/or timer 2. You
may select either or both timer(s) to generate the baud rate(s) for the transmitter and/or the receiv-
er.

12.6.3.1  Timer 1 Generated Baud Rates (Modes 1 and 3) T

Timer 1 is the default baud rate generator for the transmitter and the receiver in modes 1 and 3.
The baud rateis determined by the timer 1 overflow rate and the value of SMOD, as shown in the
following formula:

SMoD1 Timer 1 Overflow Rate

Serial I/0 Modes 1 and 3 Baud Rate = 2 35

12.6.3.2  Selecting Timer 1 as the Baud Rate Generator T
To select timer 1 as the baud rate generator:

¢ Disablethetimer interrupt by clearing the ET1 bit in the IENO register (Figure 6-4 on page
6-11).

¢ Configuretimer 1 asatimer or an event counter (set or clear the C/T# bit in the TMOD
register, Figure 10-5 on page 10-8).

¢ Select timer mode 0-3 by programming the M1 and MO bits in the TMOD register.

1 See note on page 12-1.

12-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

In most applications, timer 1is configured as atimer in auto-reload mode (high nibble of TMOD
= 0010B). The resulting baud rate is defined by the following expression:

SMOD1 FOSC

Serial I/0 Modes 1 and 3 Baud Rate = 2 x 3 X12X[256 —(TH1)]

Timer 1 can generate very low baud rates with the following setup:
¢ Enable thetimer 1 interrupt by setting the ET1 bit in the IENO register.
¢ Configuretimer 1 to run as a 16-hit timer (high nibble of TMOD = 0001B).
¢ Usethetimer 1 interrupt to initiate a 16-bit software reload.
Table 12-4 lists commonly used baud rates and shows how they are generated by timer 1.

Table 12-4. Timer 1 Generated Baud Rates for Serial /O Modes 1 and 3

. Timer 1
Baud Oscillator
Rate Fr?guen)cy SMOD1 oo | Mode Reload
osc Value
62.5 Kbaud (Max) T 12.0 MHz 1 0 2 FFH
110.0 Baud 6.0 MHz 0 0 2 72H
110.0 Baud * 12.0 MHz 0 0 1 FEEBH

12.6.3.3  Timer 2 Generated Baud Rates (Modes 1 and 3) T

Timer 2 may be selected as the baud rate generator for the transmitter and/or receiver (Figure
12-5). The timer 2 baud rate generator mode is similar to the auto-reload mode. A rollover in the
TH2 register reloads registers TH2 and TL2 with the 16-bit value in registers RCAP2H and
RCAP2L, which are preset by software.

Thetimer 2 baud rate is expressed by the following formula:

Timer 2 Overflow Rate

Serial I/0 Modes 1 and 3 Baud Rate = 6

12.6.3.4  Selecting Timer 2 as the Baud Rate Generator t

To select timer 2 as the baud rate generator for the transmitter and/or receiver, program the
RCLCK and TCLCK bitsin the T2CON register as shown in Table 12-5. (Y ou may select differ-
ent baud rates for the transmitter and receiver.) Setting RCLK and/or TCLK putstimer 2 into its
baud rate generator mode (Figure 12-5). In this mode, arollover in the TH2 register does not set
the TF2 bit in the T2CON register. Also, a high-to-low transition at the T2EX pin sets the EXF2

T See note on page 12-1.

12-12 I



Int9|® SERIAL I/O PORT

bit in the T2CON register but does not cause areload from (RCAP2H, RCAP2L) to (TH2, TL2).
Y ou can usethe T2EX pin asan additional external interrupt by setting the EXEN2 bitin T2CON.

NOTE
Turn the timer off (clear the TR2 bit in the T2CON register) before accessing
registers TH2, TL2, RCAP2H, and RCAP2L.

Y ou may configuretimer 2 asatimer or acounter. In most applications, it is configured for timer
operation (i.e., the C/T2# bit is clear in the T2CON register).

Table 12-5. Selecting the Baud Rate Generator(s)

RCLCK | TCLCK Receiver Transmitter
Bit Bit Baud Rate Generator | Baud Rate Generator
0 0 Timer 1 Timer 1
0 1 Timer 1 Timer 2
1 0 Timer 2 Timer 1
1 1 Timer 2 Timer 2

Notethat timer 2 increments every state time (2T ) When it isin the baud rate generator mode.
In the baud rate formula that follows, “RCAP2H, RCAP2L" denotes the contents of RCAP2H
and RCAP2L taken as a 16-bit unsigned integer:

FOSC
32 x[65536 — (RCAP2H, RCAP2L)]

NOTE
When timer 2 is configured as a timer and is in baud rate generator mode, do
not read or write the TH2 or TL2 registers. The timer is being incremented
every state time, and the results of a read or write may not be accurate. In
addition, you may read, but not write to, the RCAP2 registers; a write may
overlap a reload and cause write and/or reload errors.

Serial I/0 Modes 1 and 3 Baud Rate =

Table 12-6 lists commonly used baud rates and shows how they are generated by timer 2.

I 12-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Note:
Oscillator frequency Ti 1
is divided by 2, not 12. Overtlow
SMOD1
XTALL = =2
TH2 | TL2 \
(8 Bits) | (8 Bits) <16 | RX
. e—10 Clock
T2
RCLCK
CiT2#
1
. TX
+16 >
| 0 Clock
RCAP2H!RCAP2L
| TCLCK
N Interrupt
T2EX [ ]—)\ l/], ExF2 [— geuel
EXEN2

Note availability of additional external interrupt.

A4120-01

Figure 12-5. Timer 2 in Baud Rate Generator Mode t

Table 12-6. Timer 2 Generated Baud Rates

Oscillator
Baud Rate Frequency RCAP2H | RCAP2L
(Fosc)

375.0 Kbaud 11 12 MHz FFH FFH
9.6 Kbaud Tt 12 MHz FFH D9H
4.8 Kbaud 11 12 MHz FFH B2H
2.4 Kbaud Tt 12 MHz FFH 64H
1.2 Kbaud ff 12 MHz FEH C8H

300.0 baud t* 12 MHz FBH 1EH

110.0 baud ft 12 MHz F2H AFH

300.0 baud 6 MHz FDH 8FH

110.0 baud 6 MHz FOH 57H

1 See note on page page 12-1.

T For the case of PLL on, the clock frequency at the 0 input of the C/T2# selector is Foq.. See note on page 12-1.

12-14



intel.

13

Minimum Hardware
Setup






intel.

CHAPTER 13
MINIMUM HARDWARE SETUP

This chapter discusses the basic operating requirements of the 8X930Ax and describes a mini-
mum hardware setup. Topics covered include power, ground, clock source, and device reset. For
parameter values, refer to the device data sheet.

13.1 MINIMUM HARDWARE SETUP

Figure 13-1 shows a minimum hardware setup that employs the on-chip oscillator for the system

clock and provides power-on reset. Control signals; Ports 0, 1, 2, and 3; and the USB port are not
shown. See section “Clock Sources” on page 13-2 and section “Power-on Reset” on page 13-6.
PLLSEL.2:0 select the USB operating rate. Refer to Table 2-2 on page 2-8.

V,
8X930 —_
Microcontroller
VCC
AV
i
—— 1uF
XTAL1 RST _—I_
C1
 —| £— PLLSELO }—
| T c2 PLLSEL1 p— USB Rate Select
A XTAL2 PLLSEL2 }—
VSS
EA# 1

A4291-03

Figure 13-1. Minimum Setup

13.2 ELECTRICAL ENVIRONMENT

The 8X930A s a high-speed CHMOS device. To achieve satisfactory performance, its operating
environment should accommodate the device signal waveforms without introducing distortion or
noise. Design considerations relating to device performance are discussed in this section. See the
device data sheet for voltage and current requirements, operating frequency, and waveform tim-

ing.

I 13-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

13.2.1 Power and Ground Pins

Power the 8X930Ax from a well-regulated power supply designed for high-speed digital loads.
Use short, low impedance connections to the power (V) and ground (V &) pins.

13.2.2 Unused Pins

To provide stable, predictable performance, connect unused input pinsto Vg or V.. Untermi-
nated input pins can float to amid-voltage level and draw excessive current. Unterminated inter-
rupt inputs may generate spurious interrupts.

13.2.3 Noise Considerations

The fast rise and fall times of high-speed CHMOS logic may produce noise spikes on the power
supply lines and signal outputs. To minimize noise and waveform distortion follow good board
layout techniques. Use sufficient decoupling capacitors and transient absorbers to keep noise
within acceptable limits. Connect 0.01 pF bypass capacitors betwgem® each Y pin. Place
the capacitors close to the device to minimize path lengths.

Multi-layer printed circuit boards with separatg\and ground planes help minimize noise. For
additional information on noise reduction, see Application Note AP-125, “Designing Microcon-
troller Systems for Electrically Noisy Environments.”

13.3 CLOCK SOURCES

The 8X930A can use an external clock (Figure 13-3), an on-chip oscillator with crystal or ce-
ramic resonator (Figure 13-2), or an on-chip phase-locked oscillator (locked to the external clock
or the on-chip oscillator) as its clock source. For USB operating rates, see Table 2-2 on page 2-8.

13.3.1 On-chip Oscillator (Crystal)

This clock source uses an external quartz crystal connected from XTALL to XTAL2 as the fre-
quency-determining element (Figure 13-2). The crystal operates in its fundamental mode as an
inductive reactance in parallel resonance with capacitance external to the crystal. Oscillator de-
sign considerations include crystal specifications, operating temperature range, and parasitic
board capacitance. Consult the crystal manufacturer’s data sheet for parameter values. With high
quality components, C1 = C2 = 30 pF is adequate for this application.

Pins XTAL1 and XTAL?Z2 are protected by on-chip electrostatic discharge (ESD) devices, D1 and
D2, which are diodes parasitic to the RETs. They serve as clamps tg-\and V. Feedback
resistor R in the inverter circuit, formed from paralleled n- and p- channel FETSs, permits the PD
bit in the PCON register (Figure 14-1 on page 14-2) to disable the clock during powerdown.

Noise spikes at XTAL1 and XTAL2 can disrupt microcontroller timing. To minimize coupling
between other digital circuits and the oscillator, locate the crystal and the capacitors near the chip
and connect to XTAL1, XTAL2, and ) with short, direct traces. To further reduce the effects of
noise, place guard rings around the oscillator circuitry and ground the metal crystal case.

13-2 I



|nte|® MINIMUM HARDWARE SETUP

For amore in-depth discussion of crystal specifications, ceramic resonators, and the selection of
C1 and C2 see Applications Note AP-155, “Oscillators for Microcontrollers,” in the Embedded
Applications handbook.

13.3.2 On-chip Oscillator (Ceramic Resonator)

In cost-sensitive applications, you may choose a ceramic resonator instead of a crystal. Ceramic
resonator applications may require slightly different capacitor values and circuit configuration.
Consult the manufacturer’'s data sheet for specific information.

To Internal
Timing Circuit

External
Internal

Quartz Crystal

; ' PD# —
or Ceramic Resonator 'XTALL D1 DO_
o r .

C1

—
T c2 | XTAL2
T —
w4

A4143-03

Figure 13-2. CHMOS On-chip Oscillator

13.3.3 External Clock

To operate the 8X9304from an external clock, connect the clock source to the XTAL1L pin as
shown in Figure 13-3. Leave the XTALZ2 pin floating. The external clock driver can be a CMOS
gate. If the clock driver is a TTL device, its output must be connectegd.tthkbugh a 4.7 ®

pullup resistor.

For external clock drive requirements, see the device data sheet. Figure 13-4 shows the clock
drive waveform. The external clock source must meet the minimum high and low tigmgs (T

and T cy) and the maximum rise and fall times-(J,, and Ty, ) to minimize the effect of ex-

ternal noise on the clock generator circuit. Long rise and fall times increase the chance that ex-
ternal noise will affect the clock circuitry and cause unreliable operation.

The external clock driver may encounter increased capacitance loading at XTAL1 when power is
applied, due to the interaction between the internal amplifier and its feedback capacitance (i.e.,
the Miller effect). Once the input waveform requirements are met, the input capacitance remains
under 20 pF.

13-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

External
—I >0——] XTAL1
Clock
CMOS
Clock Driver

N/C —— XTAL2

| VSS

Note: If TTL clock driver is used, connect a 4.7kQ pullup resistor from driver output to Vcc.

A4142-03

Figure 13-3. External Clock Connection for the 8X930Ax

TereH —> Terex

Voo —05-———
ce 0.7 Ve
<<— Tgoicx —>
0.45V 0.2Vee—0.1 K
Teho ™ <

-

o~ TCLCL >

A4119-01

Figure 13-4. External Clock Drive Waveforms

13.4 RESET

A device reset initializes the 8X930Ax and vectors the CPU to address FF:0000H. A reset isre-
quired after applying power. A reset is ameans of exiting the idle and powerdown modes or re-
covering from software malfunctions.

To achieve avalid reset, V. must be within its normal operating range (see device data sheet)
and the reset signal must be maintained for 64 clock cycles (64T ) after the oscillator has sta-
bilized.

13-4



|nte|® MINIMUM HARDWARE SETUP

Devicereset isinitiated in three ways:
¢ externaly, by asserting the RST pin
¢ internaly, if the hardware WDT or the PCA WDT expires
¢ over the bus, by aUSB-initiated reset
These three reset mechanisms are ORed to create a single reset signal for the 8X930Ax.

The power off flag (POF) inthe PCON register indicates whether areset isawarm start or acold

start. A cold start reset (POF = 1) is areset that occurs after power has been off or V. hasfallen

below 3V, so the contents of volatile memory are indeterminate. POF is set by hardware when

V c risesfromlessthan 3V to its normal operating level. See “Power Off Flag” on page 14-1. A

warm start reset (POF = 0) is a reset that occurs while the chip is at operating voltage, for exam-
ple, a reset initiated by a WDT overflow or an external reset used to terminate the idle or power-
down modes.

13.4.1 Externally Initiated Resets

To reset the 8X930A4 hold the RST pin at a logic high for at least 64 clock cyclesdgfWwhile

the oscillator is running. Reset can be accomplished automatically at the time power is applied
by capacitively coupling RST to X (see Figure 13-1 and “Power-on Reset” on page 13-6). The
RST pin has a Schmitt trigger input and a pulldown resistor.

13.4.2 WODT Initiated Resets

Expiration of the hardware WDT (overflow) or the PCA WDT (comparison match) generates a
reset signal. WDT initiated resets have the same effect as an external reset. See “Watchdog Tim-
er” on page 10-17 and section “PCA Watchdog Timer Mode” on page 11-9.

13.4.3 USB Initiated Resets

The 8X930A can be reset by the host or upstream hub if a reset signal is detected by the SIE.
This reset signal is defined as an SEO held longer than 2.5 ps. A USB-initiated reset will reset all
of the 8X930A hardware, even if the device is suspended (in which case it would first wake-up,
then reset. See “USB Power Control” on page 14-6 for additional information about USB-related
suspend and resume.

In the USB system, an 8X93@4&hip reset must be communicated to the host to ensure that the
host is aware of the state of the 8X93@4 avoid being disabled. This requires board-level em-
ulation of a detach and attach signalling upstream whenever there is a chip reset.

NOTE
You must ensure that the time from connection of this USB device to the bus
until the entire reset process is complete (including firmware initialization of
the 8X930A) is less than 10 ms. After 10 ms, the host may attempt to
communicate with the 8X930&to set its device address. If the 8X930A
firmware cannot respond to the host at this time, the host may disable the
device after three attempts to communicate.

I 13-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

13.4.4 Reset Operation

When areset isinitiated, whether externally, over the bus, or by aWDT, the port pins are imme-
diately forcedtotheir reset condition asafail-saf e precaution, whether the clock isrunning or not.

The external reset signal and the WDT- and USB-initiated reset signals are combined internally.
For an external reset the voltage on the RST pin must be held high for 32 internal clock cycles
(T &fter the oscillator and on-chip PLL stabilize (approximately 5 ms). For WDT- and USB-
initiated resets, a 5-hit counter in the reset logic maintains the signal for the required 32 clock cy-
cles (T «)- Refer to Table 2-2 on page 2-8.

The CPU checks for the presence of the combined reset signal every 2T,4.. When areset is de-
tected, the CPU responds by triggering theinternal reset routine. Thereset routine loadsthe SFRs,
including the ACC, B, stack pointer, and data pointer registers, with their reset values (see Table
3-5 on page 3-16). Reset does not affect on-chip data RAM or the register file. (However, follow-
ing acold start reset, these are indeterminate because V . hasfallen too low or has been off.) Fol-
lowing a synchronizing operation and the configuration fetch, the CPU vectors to address
FF:0000. Figure 13-5 shows the reset timing sequence.

Whilethe RST pinishigh ALE, PSEN#, and the port pins are weakly pulled high. Thefirst ALE
occurs 16 internal clock cycles (T ) after thereset signal goeslow. For thisreason, other devices
can not be synchronized to the internal timings of the 8X930Ax.

NOTE

Externally driving the ALE and/or PSEN# pins to 0 during the reset routine
may cause the device to go into an indeterminate state.

Powering up the 8X930AX without a reset may improperly initialize the
program counter and SFRs and cause the CPU to execute instructions from an
undetermined memory location.

13.4.5 Power-on Reset

To automatically generate a reset when power is applied, connect the RST pin to the V . pin
through a 1-pF capacitor as shown in Figure 13-1 on page 13-1.

When V. is applied, the RST pin rises t@ Y then decays exponentially as the capacitor charg-

es. The time constant must be such that RST remains high (above the turn-off threshold of the
Schmitt trigger) long enough for the oscillator to start and stabilize, plusg 648t power up,

V. should rise within approximately 10 ms. Oscillator start-up time is a function of the crystal
frequency.

During power up, the port pins are in a random state until forced to their reset state by the asyn-
chronous logic.

Reducing . quickly to 0 causes the RST pin voltage to momentarily fall below 0 V. This volt-
age is internally limited and does not harm the device.

13-6 I



MINIMUM HARDWARE SETUP

RST

XTAL

Internal Reset
Routine

PSEN#

ALE

First ALE j

A4103-01

Figure 13-5. Reset Timing Sequence

13-7






intel.

14

Special Operating
Modes






intel.

CHAPTER 14
SPECIAL OPERATING MODES

This chapter describesthe idle, powerdown, low clock, and on-circuit emulation (ONCE) device
operating modes and the USB function suspend and resume operations. The SFRs associated with
these operations (PCON and PCONL1) are also described.

14.1 GENERAL

Theidle and powerdown modes are power reduction modes for use in applications where power
consumption isaconcern. User instructions activate these modes by setting bitsin the PCON reg-
ister. Program execution halts, but resumes when the modeis exited by an interrupt. Whileinidle
or powerdown modes, the V . pinisthe input for backup power.

ONCE isatest modethat electrically isolates the 8X930Ax from the system in which it operates.

14.2 POWER CONTROL REGISTERS

The PCON special function register (Figure 14-1) provides two control bits for the serial 1/0
function, bitsfor selecting theidle, low clock, and powerdown modes, the power off flag, and two
general purpose flags.

The PCON1 SFR (Figure 14-2) provides USB power control, including the USB global sus-
pend/resume and USB function suspend. The PCON1 SFR is discussed further in “USB Power
Control” on page 14-6.

14.2.1 Serial I/0O Control Bits

The SMOD1 bit in the PCON register is a factor in determining the serial I/O baud rate. See Fig-
ure 14-1 and “Baud Rates” on page 12-10.

The SMODO bit in the PCON register determines whether bit 7 of the SCON register provides
read/write access to the framing error (FE) bit (SMODO = 1) or to SMO, a serial I/O mode select
bit (SMODO = 0). See Figure 14-1 and Figure 12-2 on page 12-5 (SCON).

14.2.2 Power Off Flag

Hardware sets the Power Off Flag (POF) in PCON whgiriges from <3 V to > 3 V to indicate

that on-chip volatile memory is indeterminate (e.g., at power-on). The POF can be set or cleared
by software. After a reset, check the status of this bit to determine whether a cold start reset or a
warm start reset occurred (see “Reset” on page 13-4). After a cold start, user software should clear
the POF. If POF = 1 is detected at other times, do a reset to re-initialize the chip, singefor V

3 V data may have been lost or some logic may have malfunctioned.

I 14-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

PCON

7

Address: S:87H
Reset State:  00XX 0000B

0

SMOD1

SMODO

LC POF H GF1 GFO PD IDL

Bit
Number

Bit
Mnemonic

Function

7

SMOD1

Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 12-10.

SMODO

SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.
See the SCON register (Figure 12-2 on page 12-5).

LC

Low Clock Enable:

When this bit is set, the CPU and peripherals (except the USB module)
operate at 3 MHz. This bit is automatically set after a reset. Clearing this
bit through firmware causes the operating clock to return to the hardware
selection speed.

POF

Power Off Flag:

Set by hardware as V. rises above 3 V to indicate that power has been
off or V¢ had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

GF1

General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

GFO

General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

PD

Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

IDL

Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

14-2

Figure 14-1. Power Control (PCON) Register




|nte|® SPECIAL OPERATING MODES

PCON1 Address: S:DFH
Reset State:  XXXX X000B
7 0
— — — - || - RWU GRSM GSUS
Bit Bit Function
Number Mnemonic
7:3 — Reserved:
The value read from these bits are indeterminate. Write zeroes to these
bits.
2 RWU Remote Wake-up Bit: (Cleared by hardware)

1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware. Note: do not set this bit
unless the USB function is suspended (GSUS = 1). See Figure 14-4 on
page 14-10.

1 GRSM Global Resume Bit: (Set by hardware)

1 = resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt.t
Cleared by software when servicing the GRSM interrupt. (This bit can
also be set/cleared by software for testability.) This bit is not set if remote
wakeup is used (see RWU). See Figure 14-4 on page 14-10.

0 GSUs Global Suspend Bit: (Set and cleared by hardware)

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.t During this ISR, software should set the PD bit
to enter the suspend mode. Cleared by firmware when a resume occurs.
See Figure 14-4 on page 14-10.

T Software should prioritize GRSM over GSUS if both bits are set simultaneously.

Figure 14-2. USB Power Control (PCON1) Register

14-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 14-1. Pin Conditions in Various Modes

intel.

Mode | Program | ALE PSEN# | Port 0 | Port 1 | Port 2 | Port 3 | SOF# D D
Memory | Pin Pin Pins | Pins | Pins | Pins | Pin PO MO
Reset | Don't Weak | Weak Float | Weak | Weak | Weak | Weak | Float | Float
Care High | High High High High High
Idle Internal 1 1 Data Data Data Data Data | Data | Data
Idle External, | 1 1 Float | Data Float | Data Data | Data | Data
page
mode
Idle External, | 1 1 Float | Data Weak | Data Data | Data | Data
nonpage High
mode
Power | Internal 0 0 Data Data Data Data Data | Float | Float
down
Power | External, | O 0 Float | Data Float | Data | Data | Float | Float
down | page
mode
Power | External |0 0 Float | Data Weak | Data | Data | Float | Float
down | nonpage High
mode
ONCE | Don't Float | Float Float | Weak | Weak | Weak | Weak | Weak | Float
Care High High High High | High
r:‘XTALl Interrupt,
- Serial Port
u il
| ‘LCl : :Do— %'Oe‘;k Timer Block,
= I__L : . USB Module
C2 = |XTAL2
| T r~ A CPU
B i
Z PD# IDL#

A5088-01

14-4

Figure 14-3. Idle and Powerdown Clock Control



|nte|® SPECIAL OPERATING MODES

14.3 IDLE MODE

Idle mode is a power reduction mode that reduces power consumption to about 40% of normal.
In this mode, program execution halts. Idle mode freezes the clocks to the CPU at known states
while the peripherals continue to be clocked (Figure 14-3). The CPU status before entering idle
modeis preserved; i.e., the program counter, program status word register, and register file retain
their datafor the duration of idle mode. The contents of the SFRsand RAM are also retained. The
status of the port pins depends upon the location of the program memory:

* Internal program memory: the ALE and PSEN# pins are pulled high and the ports 0, 1, 2,
and 3 pins are driving the port SFR value (Table 14-1).

¢ External program memory: the ALE and PSEN# pins are pulled high; the port O pins are
floating; and the pins of ports 1, 2, and 3 are driving the port SFR value (Table 14-1).

NOTE

If desired, the PCA may be instructed to pause during idle mode by setting the
CIDL bitin the CMOD register (Figure 11-7 on page 11-13).

14.3.1 Entering Idle Mode

Toenter idlemode, set the PCON register IDL bit. The 8X930Ax entersidle mode upon execution
of theinstruction that setsthe IDL bit. The instruction that setsthe IDL bit is the last instruction
executed.

CAUTION

If the IDL bit and the PD hit are set simultaneously, the 8X930Ax enters
powerdown mode.

14.3.2 Exiting Idle Mode

There are two ways to exit idle mode;

* Generate an enabled interrupt. Hardware clears the PCON register IDL bit which restores
the clocks to the CPU. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the instruction
immediately following the instruction that activated idle mode. The general purpose flags
(GF1 and GF0 in the PCON register) may be used to indicate whether an interrupt occurred
during normal operation or during idle mode. When idle mode is exited by an interrupt, the
interrupt service routine may examine GF1 and GFO.

* Reset the chip. See “Reset” on page 13-4. A logic high on the RST pin clears the IDL bit in

the PCON register directly and asynchronously. This restores the clocks to the CPU.
Program execution momentarily resumes with the instruction immediately following the
instruction that activated the idle mode and may continue for a number of clock cycles
before the internal reset algorithm takes control. Reset initializes the 8X@3@Avectors
the CPU to address FF:0000H.

I 14-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

NOTE
During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction
that activated idle mode should not write to a port pin or to the external RAM.

14.4 USB POWER CONTROL

The 8X930Ax supports USB power control through firmware, including global suspend/resume
and remote wake-up. For flow charts of these operations, see Figure 14-4 on page 14-10.

14.4.1 Global Suspend Mode

When aglobal suspend is detected by the 8X930AX, the global suspend bit (GSUSin PCONL1) is
set and the GS/Resume interrupt is generated. Global suspend is defined as bus inactivity for
more than 3 mson the USB lines. A devicethat is already in suspend mode will not change state.
Hardware does not invoke any particular power-saving mode on detection of a global suspend.
Y ou must implement power control through firmware within the global suspend/resume I SR.

NOTE
Firmware must set the PD bit (PCON.1 in Figure 14-1 on page 14-2).

For global suspend on a bus powered device, firmware must put the 8X930AXx into powerdown
mode to meet the USB limit of 500 pA. For consistency, it is recommended that you put self-pow-
ered devices into powerdown mode as well.

14.4.1.1 Powerdown Mode

The powerdown mode places the 8X930A a very low power state. Powerdown mode stops

the oscillator and freezes all clocks at known states (Figure 14-3). The CPU status prior to enter-
ing powerdown mode is preserved, i.e., the program counter, program status word register, and
register file retain their data for the duration of powerdown mode. In addition, the SFRs and RAM
contents are preserved. The status of the port pins depends on the location of the program mem-
ory:

* Internal program memory: the ALE and PSEN# pins are pulled low and the ports 0, 1, 2,
and 3 pins are reading data (Table 14-1 on page 14-4).

¢ External program memory: the ALE and PSEN# pins are pulled low; the port O pins are
floating; and the pins of ports 1, 2, and 3 are reading data (Table 14-1).

NOTE

Vo may be reduced to aslow as 2 V during powerdown to further reduce
power dissipation. Take care, however, that V . is not reduced until power-
down isinvoked.

14-6 I



|nte|® SPECIAL OPERATING MODES

14.4.1.2 Entering Powerdown Mode

To enter powerdown mode, set the PCON register PD bit. The 8X930Ax enters powerdown mode
upon execution of the instruction that sets the PD bit. The instruction that sets the PD bit is the
last instruction executed.

CAUTION
Do not put the 8X930Ax into powerdown mode unless the USB suspend signal
is detected on the USB lines (GSUS = 1). Otherwise, the device will not be
able to wake up from powerdown mode by a resume signal sent through the
USB lines. See “USB Power Control” on page 14-6.

14.4.1.3 Exiting Powerdown Mode

CAUTION

If V o was reduced during the powerdown mode, do not exit powerdown until
V. is restored to the normal operating level.

There are two ways to exit the powerdown mode:

1.

Generate an enabled external interrupt. The interrupt signal must be held active long
enough of the oscillator to restart and stabilize (normally less than 10 ms). Hardware
clears the PD bit in the PCON register which starts the oscillator and restores the clocks to
the CPU and peripherals. Execution resumes with the interrupt service routine. Upon
completion of the interrupt service routine, program execution resumes with the
instruction immediately following the instruction that activated powerdown mode.

NOTE
To enable an external interrupt, set the IENO register EX0 and/or EX1 bit[s].
The external interrupt used to exit powerdown mode must be configured as
level sensitive and must be assigned the highest priority. Holding the interrupt
pin (INTO# or INT1#) low restarts the oscillator and bringing the pin high
completes the exit. The duration of the interrupt signal must be long to allow
the oscillator to stabilize (normally less than 10 ms).

Generate a reset. See “Reset” on page 13-4. A logic high on the RST pin clears the PD bit
in the PCON register directly and asynchronously. This starts the oscillator and restores
the clocks to the CPU and peripherals. Program execution momentarily resumes with the
instruction immediately following the instruction that activated powerdown and may
continue for a number of clock cycles before the internal reset algorithm takes control.
Reset initializes the 8X9304and vectors the CPU to address FF:0000H.

NOTE

During the time that execution resumes, the internal RAM cannot be accessed;
however, it is possible for the port pins to be accessed. To avoid unexpected
outputs at the port pins, the instruction immediately following the instruction

14-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

that activated the powerdown mode should not write to a port pin or to the
externa RAM.

14.4.2 Global Resume Mode

When aglobal resume is detected by the 8X930AX, the global resume bit (GRSM of PCONL1) is

set and the GS/Resumeinterrupt isgenerated. Assoon asresumesignaling isdetected on the USB

lines, the oscillator is restarted. A resume condition is defined as a “J to anything” transition (K
transition or reset signaling on the USB lines).

Upon detection of a resume condition, the 8X98@Aplies power to the USB transceivers, the
crystal oscillator, and the PLL. After the clocks are restarted, the CPU program continues execu-
tion from where it was when the device was put into powerdown mode. The device then services
the Resume interrupt service routine. After executing the Resume ISR, the 8x4830/es op-
eration from where it was when it was interrupted by the suspend interrupt.

14.4.3 USB Remote Wake-up

The 8X930A can initiate resume signaling to the USB lines through remote wake-up of the USB
function while it is in powerdown/idle mode. While in powerdown mode, remote wake-up has to
be initiated through assertion of an enabled external interrupt. The external interrupt has to be en-
abled and it must be configured with level trigger and with higher priority than a Suspend/Resume
interrupt. A function resume restarts the clocks to the 8X930 program execution branches

to an external interrupt service routine.

Within this external ISR, you must set the remote wake-up bit (RWU in PCONL1) to drive resume
signaling on the USB lines to the host or upstream hub. After executing the external ISR, the pro-
gram continues execution from where it was put into powerdown mode and the 8X@30A
sumes normal operation.

145 LOW CLOCK MODE

Low clock mode is the default operation mode for the 8X98@gon reset. After reset, the CPU

and peripherals (excluding the USB module) default to a 3 MHz clock rate while the USB module
always operates at the hardware-selected clock rate. Low clock mode ensures thatrévenl

by the 8X930A upon reset and in the unconfigured state is less than one unit load (100 mA) for
the whole USB device.

After configuration (and given that the request for more than one unit loggdisfgranted), you

may switch the clock of the CPU and the peripherals back to the hardware-selected clock rate for
performance reasons.

14.5.1 Entering Low Clock Mode

Low clock mode can be invoked through firmware anytime the device is unconfigured by the
host. To invoke low clock Mode, set the LC bit in the PCON Register (Figure 14-1).

14-8 I



|nte|® SPECIAL OPERATING MODES

NOTE

After reset, the 8X930Ax automatically switches to low clock mode,
regardless of whether the L C bit has been set.

14.5.2 Exiting Low Clock Mode

To switch the clock of the CPU and the peripherals to the hardware-selected clock rate, clear the
LC bit in the PCON SFR (Figure 14-1). The hardware clock rate selection determines the highest
operating clock rate for the 8X930AXx.

14.6 ON-CIRCUIT EMULATION (ONCE) MODE

The on-circuit emulation (ONCE) mode permits external testers to test and debug 8X930Ax-
based systems without removing the chip from the circuit board. A clamp-on emulator or test
CPU is used in place of the 8X930Ax which is electrically isolated from the system.

14.6.1 Entering ONCE Mode
To enter the ONCE mode:

1. Assert RST toinitiate a device reset. See “Externally Initiated Resets” on page 13-5 and
the reset waveforms in Figure 13-5 on page 13-7.

2. While holding RST asserted, apply and hold logic levels to I/O pins as follows: PSEN# =
low, P0.7:5 = low, P0.4 = high, P0.3:0 = low (i.e., port 0 = 10H).

3. Deassert RST, then remove the logic levels from PSEN# and port O.

These actions cause the 8X930#y enter the ONCE mode. Port 1, 2, and 3 pins are weakly
pulled high and port 0, ALE, and PSEN# pins are floating (Table 14-1 on page 14-4). Thus the
device is electrically isolated from the remainder of the system which can then be tested by an
emulator or test CPU. Note that in the ONCE mode the device oscillator remains active.

14.6.2 Exiting ONCE Mode

To exit ONCE mode, reset the device.

I 14-9



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Suspend Command

Y

Host sends Suspend
down USB

Y

Suspend is detected by
8X930 setting GSUS
and causes interrupt

Y

Suspend ISR should
shut down all
external peripherals

Y

Suspend ISR sets PD bit
T (GSUS must not
be cleared)

Setting PD bits causes
8X930 to enter
powerdown mode.
Entire function must draw
less than 500 pA from USB.

Suspend Mode Entered

Remote Wake-up using
an external interrupt

Hold external interrupt pin
(INTO# or INT1#) low until
oscillator stabilizes.
Normally 10ms or less

!

| External ISR entered |

Y

| External ISR serviced |

!

| RET1 (from external ISR) |

!

Program returns to
command immediately
following the 'setb PD'
command in the original

Suspend ISR

!

Resume Command
from Host

Host sends Resume
down bus

Y

8X930 detects resume,
hardware sets GRSM,
clears GSUS and
starts oscillator

Y

When oscillator stabilizes,
program begins execution
at location immediately
following the
'setb PD' command.

TIf GSUS is cleared, the 8X930 will not be able to detect resume signaling from the host.

A5089-01

Figure 14-4. Suspend/Resume Program with/without Remote Wake-up

14-10




intel.

SPECIAL OPERATING MODES

(continued)

GRSM =1

GRSM bit = 0?
t

GRSM =0

| Software sets RWU bit |

Y

| Software clears GSUS bit |

Y

RWU will clear

Y

(continued)

Resume already applied by
host. GSUS cleared by
hardware. No need to send
Remote Wake-up to host.

Y

—)l Software clears GRSM

Y

- Software enables

automatically when
RESUME signaling is done

external peripherals

!

RETI
(from suspend ISR)

T Check to see if host has driven a resume onto the bus before function drives resume onto bus.

A5090-01

Figure 14-4. Suspend/Resume Program with/without Remote Wake-up (Continued)

14-11






intel.

15

External Memory
|nterface






intel.

CHAPTER 15
EXTERNAL MEMORY INTERFACE

This chapter covers various aspects of the external memory interface. It describes the signals as-
sociated with external memory operations, page mode/nonpage mode operation, and external bus
cycletiming (for normal accesses, accesses with configurable wait states, accesses with real -time
wait states, and configuration byte accesses). This chapter also describes the real-time wait state
register (WCON), givesthe status of the pinsfor ports PO and P2 during bus cycles and busidle,
and includes several external memory design examples.

15.1 OVERVIEW

The 8X930Ax interfaces with avariety of external memory devices. It can be configured to have
a 16-bit, 17-bit, or 18-bit external address bus. Data transfer operations (8 bits) are multiplexed
on the address bus.

The external memory interface comprisesthe external bus (ports 0 and 2, and when so configured,
addressbits A17 and A 16) and the bus control signalsdescribed in Table 15-1. Chip configuration

bytes (see Chapter 4, “Device Configuration”) provide several interface options: page mode or
nonpage mode for external code fetches; the number of external address bits (16, 17, or 18); the
address ranges for RD#, WR#, and PSEN#; and the number of preprogrammed external wait
states to extend RD#, WR#, PSEN#, or ALE. Real-time wait states can be enabled with special
function register WCON.1:0. You can use these options to tailor the interface to your application.
For additional information refer to “Configuring the External Memory Interface” on page 4-7.

The external memory interface operates in either page mode or nonpage mode. Figure 15-1 shows
the structure of the external address bus for page mode and nonpage mode operation. Page mod:
provides increased performance by reducing the time for external code fetches. Page mode does
not apply to code fetches from on-chip memory.

8X930 RAM/ 8X930 RAM/
Micro- EPROM/ Micro- EPROM/
controller Flash controller Flash
AL5:8 . p7:0
P2 M A15:8
L4
ADT:0 A7:0 P2 Latch [ >| A15:8
PO - AT:0 A15:8/D7:0 A15.8
N
D70 PO V) AT7:0
AT:0
Nonpage Mode Page Mode
A4273-02

Figure 15-1. Bus Structure in Nonpage Mode and Page Mode

I 15-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 15-1. External Memory Interface Signals

intel.

Signal
Name

Type

Description

Alternate
Function

Al7

Address Line 17.

P1.7/ICEX4/WCLK

Al6

Address Line 16. See RD#.

P3.7/RD#

A15:8t

Address Lines. Upper address for external bus (non-page mode).

P2.7:0

AD7:0t

Address/Data Lines. Multiplexed lower address and data for the
external bus (non-page mode).

P0.7:0

ALE

Address Latch Enable. ALE signals the start of an external bus
cycle and indicates that valid address information is available on
lines A15:8 and AD7:0.

PROG#

EA#

External Access. Directs program memory accesses to on-chip
or off-chip code memory. For EA# strapped to ground, all program
memory accesses are off-chip. For EA# = strapped to V¢, an
access is to on-chip ROM if the address is within the range of the
on-chip ROM; otherwise the access is off-chip. The value of EA# is
latched at reset. For devices without on-chip ROM, EA# must be
strapped to ground.

Vep

PSEN#

Program Store Enable. Read signal output. This output is
asserted for a memory address range that depends on bits RDO
and RD1 in the configuration byte (see also RD#):

RD1 RDO

0 0
0 1

Address Range for Assertion
All addresses

All addresses

1 0 All addresses

1 1 All addresses S 80:0000H

RD#

Read or 17th Address Bit (A16). Read signal output to external
data memory or 17th external address bit (A16), depending on the
values of bits RDO and RD1 in configuration byte. (See PSEN#):

RD1 RDO  Function
The pin functions as A16 only.
The pin functions as A16 only.

The pin functions as P3.7 only.

PP, OO
R OFr O

RD# asserted for reads at all addresses <7F:FFFFH.

P3.7/A16

WAIT#

Real-time Wait State Input. The real-time WAIT# input is enabled
by writing a logical ‘1’ to the WCON.0 (RTWE) bit at S:A7H. During
bus cycles, the external memory system can signal ‘system ready’
to the microcontroller in real time by controlling the WAIT# input
signal on the port 1.6 input.

P1.6/CEX3

WCLK

Wait Clock Output. The real-time WCLK output is driven at port
1.7 (WCLK) by writing a logical ‘1’ to the WCON.1 (RTWCE) bit at
S:A7H. When enabled, the WCLK output produces a square wave
signal with a period of one-half the oscillator frequency.

A17/P1.7/CEX4

WR#

O

Write. Write signal output to external memory. WR# is asserted for
writes to all valid memory locations.

P3.6

T If thechip is configured for page-mode operation, port O carries the lower address bits (A7:0), and port 2 carriesthe

upper address bits (A15:8) and the data (D7:0).

15-2




Inu@; EXTERNAL MEMORY INTERFACE

The reset routine configures the 8X930Ax for operation in page mode or nonpage mode accord-
ing to bit 1 of configuration byte UCONFIGO. PO carries address A7:0 while P2 carries address
A15:8. DataD7:0ismultiplexed with A7:0 on PO in nonpage mode and with A15:8 on P2 in page
mode.

Table 15-1 describes the external memory interface signals. The address and data signals (AD7:0
on port 0 and A15:8 on port 2) are defined for nonpage mode.

15.2 EXTERNAL BUS CYCLES

This section describes the bus cycles the 8X930Ax executes to fetch code, read data, and write

data in externa memory. Both page mode and nonpage mode are described and illustrated. For
simplicity, the accompanying figures depict the bus cycle waveformsin idealized form and do not

provide precise timing information. This section does not cover wait states (see “External Bus
Cycles With Configurable Wait States” on page 15-8) or configuration byte bus cycles (see “Con-
figuration Byte Bus Cycles” on page 15-15). For bus cycle timing parameters refer to the
8X930Ax datasheet.

An “inactive external bus” exists when the 8X930i& not executing external bus cycles. This
occurs under any of the three following conditions:

* Busldle (Thechipisin normal operating mode but no external bus cycles are executing.)
* Thechipisinidie mode

* Thechipisin powerdown mode

15.2.1 Bus Cycle Definitions

Table 15-2 lists the types of external bus cycles. It also shows the activity on the bus for nonpage
mode and page mode bus cycles with no wait states. There are three types of nonpage mode bus
cycles: code fetch, dataread, and data write. There are four types of page mode bus cycles: code
fetch (page miss), code fetch (page hit), data read, and data write. The data read and data write
cycles are the same for page mode and nonpage mode (except the multiplexing of D7:0 on ports
0and 2).

15.2.2 Nonpage Mode Bus Cycles

In nonpage mode, the external bus structureisthe same asfor MCS 51 microcontrollers. The up-
per address hits (A15:8) are on port 2, and the lower address bits (A7:0) are multiplexed with the
data (D7:0) on port 0. External code read bus cycles execute in approximately two state times.
See Table 15-2 and Figure 15-2. External data read bus cycles (Figure 15-3) and external write
bus cycles (Figure 15-4) execute in approximately three state times. For the write cycle (Figure
15-4), athird state is appended to provide recovery time for the bus. Note that the write signal
WR# isasserted for all memory regions, except for the case of RD1:0 = 11, where WR# i s assert-
ed for regions 00:-01: buabt for regions FE:—FF:.

I 15-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table 15-2. Bus Cycle Definitions (No Wait States)

intel.

Bus Activity
Mode Bus Cycle
State 1 State 2 State 3
Code Read ALE RD#/PSEN#, code in
Nm’;ge Data Read (2) ALE RD#/PSEN# data in
Data Write (2) ALE WR# WR# high, data out
Code Read, Page Miss ALE RD#/PSEN#, code in
Page Code Read, Page Hit (3) | PSEN#, code in
Mode Data Read (2) ALE RD#/PSEN# data in
Data Write (2) ALE WR# WR# high, data out
NOTES:

1. Signal timing implied by this table is approximate (idealized).

2. Dataread (page mode) = data read (nonpage mode) and write (page mode) = write (honpage mode)
except that in page mode data appears on P2 (multiplexed with A15:0), whereas in honpage mode
data appears on PO (multiplexed with A7:0).

3. The initial code read page hit bus cycle can execute only following a code read page miss cycle.

15-4

State 1 State 2
ALE /! \ !
. ‘ —_
RD#/PSEN# ‘ ‘
Ppo ——{ A70 D70 J—
AL7IAL6P2 AL7/A16/A15:8 =
I I
A4282-02
Figure 15-2. External Code Fetch (Nonpage Mode)




EXTERNAL MEMORY INTERFACE

ALE

RD#/PSEN#

PO

AL7/A16/P2

State 1 State 2 State 3
— 1 1
(" aro D70 ))
—( ‘ A1‘7/A16/A15:8 ‘ x

A4283-02
Figure 15-3. External Data Read (Nonpage Mode)
Sta‘te 1 State 2 State 3
we | T\ | /-
WR#
po —— IA7:0 — ‘D7:O ) -
AL7IAL6P2 — I A1‘7/A16/A15]; | X
I I
A4284-02

Figure 15-4. External Data Write (Nonpage Mode)

15-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

15.2.3 Page Mode Bus Cycles

Page mode increases performance by reducing the time for external code fetches. Under certain
conditions the controller fetches an instruction from external memory in one state time instead of
two (Table 15-2). Page mode does not affect internal code fetches.

The first code fetch to a 256-byte “page” of memory always uses a two-state bus cycle. Subse-
guent successive code fetches to the same page fits) require only a one-state bus cycle.
When a subsequent fetch is to a different pagadamiss), it again requires a two-state bus cy-

cle. The following external code fetches are always page-miss cycles:

* thefirst external code fetch after a page rollovert

¢ thefirst externa code fetch after an external data bus cycle

¢ thefirst external code fetch after powerdown or idle mode

¢ thefirst external code fetch after a branch, return, interrupt, etc.

In page mode, the 8X930AX bus structure differs from the bus structure in MCS 51 controllers
(Figure 15-1). The upper address bits A15:8 are multiplexed with the dataD7:0 on port 2, and the
lower address bits (A7:0) are on port O.

Figure 15-5 shows the two types of external bus cyclesfor code fetches in page mode. The page-
miss cycle is the same as a code fetch cycle in nonpage mode (except D7:0 is multiplexed with
A15:8 on P2.). For the page-hit cycle, the upper eight address bits are the same as for the preced-
ing cycle. Therefore, ALE is not asserted, and the values of A15:8 are retained in the address
latches. In asingle state, the new values of A7:0 are placed on port 0, and memory placesthe in-
struction byte on port 2. Notice that a page hit reduces the available address access time by one
state. Therefore, faster memories may be required to support page mode.

Figure 15-6 and Figure 15-7 show the bus cycles for data reads and data writes in page mode.
These cycles are identical to those for nonpage mode, except for the different signals on ports 0
and 2.

T A pagerollover occurs when the addressincrements from the top of one 256-byte page to the bottom of the next (e.g.,
from FF:FAFFH to FF:FBOOH).

15-6 I



EXTERNAL MEMORY INTERFACE

ALE

PSEN#

A17/A16/PO

P2

T During a sequence of page hits, PSEN# remains low until the end of the last page-hit cycle.

Cycle 1, Page-Miss

Cycle 2, Page-Hit

State 1

State 2

State 1

=

[+

—{

Al17/A16/AT:0

A

AL7/A16/AT:0

X
|

] |
—{ _AL5® )l)—( D70 )l)—( D70

)l)—

A4274-02
Figure 15-5. External Code Fetch (Page Mode)
|l«—— State 1 Sta‘te 2 Sta‘te 3
ALE /. \ /[
PSEN# : 1
AL7IAL6/PO  —( A17/A16/AT:0 ‘ X
P2 —— “ALss )|)—( 570 |)) (
T T ‘
A4275-02

Figure 15-6. External Data Read (Page Mode)

15-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

State 1 State 2 State 3
WR# ‘
ALTIAL6PO  —{ AL7/AL6/A7:0 X
P2 —k : Al5:8 )!)—( :D7:O !)) (

A4276-02

Figure 15-7. External Data Write (Page Mode)

15.3 WAIT STATES

The 8X930Ax provides three types of wait state solutions to external memory problems: real-
time, RD#WR#/PSEN#, and ALE wait states. The 8X930Ax supports traditional real-time wait
state operations for dynamic bus control. Real-time wait state operations are controlled by means

of the WCON special function register. See “External Bus Cycles with Real-time Wait States” on
page 15-11.

In addition, the 8X930A device can be configured at reset to add wait states to external bus cy-
cles by extending the ALE or RD#/WR#/PSEN# pulses. See “Wait State Configuration Bits” on
page 4-11.

You can configure the chip to use multiple types of wait states. Accesses to on-chip code and data
memory always use zero wait states. The following sections demonstrate wait state usage.

15.4 EXTERNAL BUS CYCLES WITH CONFIGURABLE WAIT STATES

This section describes the code fetch, read data, and write data external bus cycles with config-
urable wait states. Both page mode and nonpage mode operation are described and illustrated. Fol
simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and do not
provide precise timing information.

15.4.1 Extending RD#/WR#/PSEN#

You can use bits WSAL1:0# in configuration byte UCONFIGO (Figure 4-3 on page 4-5) and
WSBL1:0# in UCONFIG1 (Figure 4-4 on page 4-6) to add 0, 1, 2, or 3 wait states to the
RD#/WR#/PSEN pulses. Figure 15-8 shows the nonpage mode code fetch bus cycle with one
RD#/PSEN# wait state. The wait state extends the bus cycle to three states. Figure 15-9 shows
the nonpage mode data write bus cycle with one WR# wait state. The wait state extends the bus
cycle to four states. The waveforms in Figure 15-9 also apply to the nonpage mode data read ex-
ternal bus cycle if RD#/PSEN# is substituted for WR#.

15-8 I



EXTERNAL MEMORY INTERFACE

State 1 State 2 State 3
RD#/PSEN# _—
Po —— ‘A7:0 W D7:0
A17/A16/P2  —{ ! A17/A16/A15!:8 : X

A4277-02

Figure 15-8. External Code Fetch (Nonpage Mode, One RD#/PSEN# Wait State)

ALE

WR#

PO

A17/A16/P2

State 1

State 2

State 3

State 4

VAR

—

—

D7:0

AT:0 )|)—(

—_

—

A17/A16/A15:8

X

A4278-02

Figure 15-9. External Data Write (Nonpage Mode, One WR# Wait State)

15-9



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

15.4.2 Extending ALE

Use the XALE# bit of configuration byte UCONFIGO to extend the ALE pulse 1 wait state. Fig-
ure 15-10 shows the nonpage mode code fetch external bus cycle with ALE extended. The wait
state extends the bus cycle from two states to three. For read and write external bus cycles, the
extended ALE extends the bus cycle from three states to four.

intel.

State 1 State 2 State 3

ALE /. /
RD#/PSEN#

PO { | AT:0 |))—( _b70 | —
AL7IAL6P2  — A17/A18/A15:8 X

I I
A4279-02
Figure 15-10. External Code Fetch (Nonpage Mode, One ALE Wait State)

15-10




Inu@; EXTERNAL MEMORY INTERFACE

15.5 EXTERNAL BUS CYCLES WITH REAL-TIME WAIT STATES

Therearetwo ways of using real-timewait states: the WAIT# pin used as an input bus control and
the WAIT# signal used in conjunction with the WCLK output signal. These two signals are en-
abled with the WCON special function register in the SFR space at S:0A7H. Refer to Figure
15-11.

NOTE

The WAIT# and WCLK signals are alternate functions for the port 1.6:7 input
and output buffers. Use of the alternate functions may conflict with wait state
operation.

When WAIT# is enabled, PCA module 3 isdisabled on port 1.6 (CEX3) and
resumes operation only when the WAIT# function is disabled. The same
relationship exists between WCLK on port 1.7 (CEX4) and PCA module 4. It
is not advisable to aternate between PCA operations and real-time wait-state
operations at port 1.6 (CEX3/WAIT#) or port 1.7 (CEX4/WCLK).

Port 1.7 can also be enabled to drive address signal A17 in some memory
designs. The A17 address signal always takes priority over the aternate
functions (CEX4 and WCLK). Even if RTWCE is enabled in WCON.1, the
WCLK output does not appear during bus cycles enabled to drive address A17.
The use of WAIT# as an input on port 1.6 is unaffected by address signals.

WCON Address: S:A7H
Reset:  XXXX XX00B
7 0

_ _ _ _ || — — RTWCE RTWE

Bit Bit Function
Number | Mnemonic
7:2 — Reserved:
The values read from these bits are indeterminate. Write “0” to these
bits.
1 RTWCE Real-time WAIT CLOCK enable. Write a ‘1’ to this bit to enable the WAIT

CLOCK on port 1.7 (WCLK). The square wave output signal is one-half
the oscillator frequency.

0 RTWE Real-time WAIT# enable. Write a ‘1’ to this bit to enable real-time wait
state input on port 1.6 (WAIT#).

Figure 15-11. Real-time Wait State Control Register (WCON)

I 15-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

15.5.1 Real-time WAIT# Enable (RTWE)

The real-time WAIT# input is enabled by writing a logical ‘1’ to the WCON.0 (RTWE) bit at
S:A7H. During bus cycles, the external memory system can signal “system ready” to the micro-
controller in real time by controlling the WAIT# input signal on the port 1.6 input. Sampling of
WAIT# is coincident with the activation of RD#/PSEN# or WR# signals driven low during a bus
cycle. A “not-ready” condition is recognized by the WAIT# signal held atby the external
memory system. Use of PCA module 3 may conflict with your design. Do not use the PCA mod-
ule 3 I/0 (CEX3) interchangeably with the WAIT# signal on the port 1.3 input. Setup and hold
times are illustrated in the current datasheet.

15.5.2 Real-time WAIT CLOCK Enable (RTWCE)

The real-time WAIT CLOCK output is driven at port 1.7 (WCLK) by writing a logical ‘1’ to the
WCON.1 (RTWCE) bit at S:A7H. When enabled, the WCLK output produces a square wave sig-
nal with a period of one-half the oscillator frequency. Use of PCA module 4 may conflict with
your design. Do not use the PCA module 4 /O (CEX4) interchangeably with the WCLK output.
Use of address signal A17 inhibits both WCLK and PCA module 4 usage of port 1.7.

15.5.3 Real-time Wait State Bus Cycle Diagrams

Figure 15-12 shows the code fetch/data read bus cycle in nonpage mode. Figure 15-14 depicts the
data read cycle in page mode.
CAUTION

The real-time wait function has critical external timing for code fetch. For this
reason, it is not advisable to use the real-time wait feature for code fetch in
page mode.

The data write bus cycle in nonpage mode is shown in Figure 15-13. Figure 15-15 shows the data
write bus cycle in page mode.

15-12 I



EXTERNAL MEMORY INTERFACE

RD#/PSEN#

WAIT#

PO

P2

State 1 State 2 State 3 State 1 (next cycle)

\ |/  RD#PSEN# [istretched
\ \ / / !
+—{A0-A7 )—( D0-D7 )' stretched AO-A7 }—

P

AB-A15 )  stretched )y  AB8-AL5

A5007-01

Figure 15-12. External Code Fetch/Data Read (Nonpage Mode, Real-time Wait State)

WR# \ / WR# stretched /

State 1 State 2 State 3 State 4

WAIT# \ \ / / \
PO E AO-A7 H DOlD7 5 stretched )—
P2 A8-A15 ) stretched )

A5009-01

Figure 15-13. External Data Write (Nonpage Mode, Real-time Wait State)

15-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

State 1 State 2 State 3 State 1 (next cycle)
ALE . [ \ l l ./ \
RD#/PSEN# \ |/  RD#IPSEN# [stretched
WAIT# \ \ / 7 Z
P2 +—{A8-AL5 )—— DO-D7 stretched ; A8-A15)—(
PO o AO-A7 stretched  yo  AO-A7
A5008-01
Figure 15-14. External Data Read (Page Mode, Real-time Wait State)
State 1 State 2 State 3 State 4
ALE |/ \ l l l
WR# \ / WR# stretched /
WAIT# T \ \ / 7 Z
P2 +{A8-A15 —— DO-D7 ) stretched  »
PO -:( AO-A7 ) stretched )-
A5010-01

Figure 15-15. External Data Write (Page Mode, Real-time Wait State)

15-14




Inu@; EXTERNAL MEMORY INTERFACE

15.6 CONFIGURATION BYTE BUS CYCLES

If EA# = 0, devices obtain configuration information from aconfiguration array in external mem-
ory. This section describes the bus cycles executed by the reset routine to fetch user configuration
bytes from external memory. Configuration bytes are discussed in Chapter 4, “Device Configu-
ration.”

To determine whether the external memory is set up for page mode or nonpage mode operation,
the 8X930A« accesses external memory using internal address FF:FFF8H (UCONFIGO). See
states 1-4 in Figure 15-16. If the external memory is set up for page mode, it places UCONFIGO
on P2 as D7:0, overwriting A15:8 (FFH). If external memory is set up for nonpage mode, A15:8
is not overwritten. The 8X930Aexamines P2 bit 1. Subsequent configuration byte fetches are

in page mode if P2.1 = 0 and in nonpage mode if P2.1 = 1. The 8x98tbhes UCONFIGO

again (states 5-8 in Figure 15-16) and then UCONFIGL1 via internal address FF:FFF9H.

The configuration byte bus cycles always execute with ALE extended and one PSEN# wait state.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8

Y AYAYANAVAVAVANAVAVAVAVAVAWAVAWA
ae o\ : L/ - :
PSEN# ' \

PO —< AT:0 - F8H >—< A7:0 . FeH X I A70 = Fon

N
-

s
>
P2 —< A15:8:: FFH >—< D%:O )—( A15:8:: FFH >—< D7:0 )—
>_
>_

Page Mode

PO —< A7:0I= F8H >—< D7:0

P2 Al5:8 = FFH

Nonpage Mode

A4228-01

Figure 15-16. Configuration Byte Bus Cycles

15.7 PORT 0 AND PORT 2 STATUS

This section summarizes the status of the port 0 and port 2 pins when these ports are used as the
external bus. A more comprehensive description of the ports and their use is given in Chapter 9,
“Input/Output Ports.”

I 15-15



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

When port 0 and port 2 are used as the external memory bus, the signals on the port pins can orig-
inate from three sources:

¢ the 8X930Ax CPU (address bits, data bits)
¢ the port SFRs: PO and P2 (logic levels)
¢ anexternal device (data bits)

The port 0 pins (but not the port 2 pins) can also be held in a high-impedance state. Table 15-3
liststhe status of the port 0 and port 2 pins when the chip in isthe normal operating mode and the
external busisidle or executing a bus cycle.

Table 15-3. Port 0 and Port 2 Pin Status In Normal Operating Mode

8-bit/16-bit Nonpage Mode Page Mode
Port Addressing
Bus Cycle Bus Idle Bus Cycle Bus Idle

Port 0 8orl6 AD7:0 (1) High Impedance A7:0 (1) High Impedance
bort 2 8 P2 (2) P2 P2/D7:0 (2) High Impedance
ort

16 A15:8 P2 A15:8/D7:0 High Impedance

NOTES:

1. During external memory accesses, the CPU writes FFH to the PO register and the register
contents are lost.
2. The P2 register can be used to select 256-byte pages in external memory.

15.7.1 Port 0 and Port 2 Pin Status in Nonpage Mode

In nonpage mode, the port pins have the same signals as those on the 8X C51FX. For an external
memory instruction using a 16-bit address, the port pins carry address and data bits during the bus
cycle. However, if theinstruction uses an 8-bit address (e.g., MOV X @Ri), the contents of P2 are
driven onto the pins. These pin signals can be used to select 256-hit pages in external memory.

During a bus cycle, the CPU always writes FFH to PO, and the former contents of PO are lost. A
bus cycle does not change the contents of P2. When the busisidle, the port 0 pinsare held at high
impedance, and the contents of P2 are driven onto the port 2 pins.

15.7.2 Port 0 and Port 2 Pin Status in Page Mode

In apage-mode bus cycle, the datais multiplexed with the upper address byte on port 2. However,

if the instruction uses an 8-bit address (e.g., MOV X @Ri), the contents of P2 are driven onto the
pinswhen datais not on the pins. Theselogic levels can be used to sel ect 256-bit pagesin external
memory. During busidle, the port 0 and port 2 pinsare held at high impedance. For port pin status
when the chip in is idle mode, powerdown mode, or reset, see Chapter 14, “Special Operating
Modes.”

15-16 I



Inu@; EXTERNAL MEMORY INTERFACE

15.8 EXTERNAL MEMORY DESIGN EXAMPLES

This section presents several external memory designs for 8X 930Ax systems. These examplesil-

lustrate the design flexibility provided by the configuration options, especially for the PSEN# and

RD# signals. Many designs are possible. The examples employ the 80930AD and 83930AE but

also apply to the other 8X930Ax devices if the differences in on-chip memory are allowed for.

For a general discussion on external memory see “Configuring the External Memory Interface”

on page 4-7. Figure 4-5 on page 4-8 and Figure 4-6 on page 4-9 depict the mapping of internal
memory space into external memory.

I 15-17



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

15.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External Flash and RAM

In this example, an 80930AD operates in page mode with an 18-bit external address bus inter-
faced to 128 Kbytes of external flash memory and 128 Kbytes of external RAM (Figure 15-17).
Figure 15-18 shows how the external flash and RAM are addressed in the internal memory space.
On-chip data RAM (1056 bytes) occupies the lowest addresses in region 00:.

1
]
]
Microcontroller CE# CE#
(without on-chip RAM Flash
code memory) (128 Kbytes) (128 Kbytes)
Al7 > D7:0 D7:0
) Latch :I|> A15:8 :> A15:8
PO Dlaro p— (S
Al6 Al6 Al6
L
WR# PSEN#]| = OE# WE# OE# WE#

A4285-02

Figure 15-17. Bus Diagram for Example 1: 80930AD in Page Mode

15-18 I



EXTERNAL MEMORY INTERFACE

FF:

FE:

01:

00:

00:0000H

Address Space
(256 Kbytes)

FFFFH

0000H

FFFFH

0420H

128 Kbytes External Flash

128 Kbytes —1056 Bytes
External RAM

1056 Bytes On-chip RAM

A4220-02

Figure 15-18. Address Space for Example 1

15-19




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

15.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External Flash and RAM

In this example, an 80930AD operatesin page mode with a 17-hit external address businterfaced

to 64 Kbytes of flash memory for code storage and 32 Kbytes of external RAM (Figure 15-19).

The 80930AD is configured so that PSEN# is asserted for al reads, and RD# functions as A16

(RD21:0 =01). Figure 15-20 shows how the external flash and RAM are addressed in the internal

memory space. Addresses 0420H—7FFFH in external RAM are addressed in region 00:. On-chip
data RAM (1056 bytes) occupies the lowest addresses in region 00:.

T Y

Microcontroller CE# CE#
(without on-chip RAM FLASH
code memory) (32 Kbytes) (64 Kbytes)
A16 |— D7:0 :) D7:0
P2 <:> Latch :} A15:8 :} A15:8
A15:8/D7:0 Al15:8 Data Code
N
PO M A7:0 :> AT7:0
| 4
A7:0
L
WR# PSEN# OE#  WE# OE# WEH#
[

—

A4286-02

Figure 15-19. Bus Diagram for Example 2: 80930AD in Page Mode

15-20 I



EXTERNAL MEMORY INTERFACE

Address Space
(256 Kbytes)

FFFFH

FF: 64 Kbytes External Flash

0000H
FE:
01:
00:

04201 7FFFH | 32 Kbytes —1056 Bytes External RAM

00:0000H 1056 Bytes On-chip RAM

A4168-03

Figure 15-20. Address Space for Example 2

15-21




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

15.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External RAM

In this example, an 83930AE operates in nonpage mode with a 17-bit external address businter-
faced to 128 Kbytes of external RAM (Figure 15-21). The 83930AE is configured so that RD#
functionsas A 16, and PSEN# is asserted for all reads. Figure 15-22 shows how the external RAM
is addressed in the internal memory space.

Microcontroller RAM
(with on-chip (128 Kbytes)
code memory) Vee
EA# J— _E CE#
Al6
Al6 Al6
Data
A15:8 N
P2 M A58
L4
AD7:0 A7:0
PO Latch > A7:0
N
>l p7o
L4
WR# PSEN# OE# WE#

A5004-01

Figure 15-21. Bus Diagram for Example 3: 83930AE in Nonpage Mode

15-22 I



EXTERNAL MEMORY INTERFACE

FF:

FE:

01:

00:

00:0000H

Address Space
(256 Kbytes)

FFFFH

0000H 3FFFH

16 Kbytes On-chip Code Memory

128 Kbytes —1056 Bytes External RAM

FFFFH

0420H

1056 Bytes On-chip RAM

A4169-03

Figure 15-22. Memory Space for Example 3

15-23




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

15.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External RAM

In this example, an 83930AE operates in nonpage mode with a 16-bit external address businter-
faced to 64 Kbytes of RAM (Figure 15-23). This configuration leaves P3.7/RD#/A 16 available
for general 1/0 (RD1:0 = 10). A maximum of 64 Kbytes of external memory can be used and all
regions of internal memory map into the single 64-Kbyte region in external memory (see Figure
4-6 on page 4-9). Figure 15-24 shows how the external RAM isaddressed in theinternal memory
space. User code is stored in on-chip ROM.

Mi(croﬁontroﬂer RAM
with on-chip
code memory) Vee (64 Kbytes)
EA J_ CE# j
P2 > A15:8

PO Latch A A7:0
> D7:0

WR# PSEN# OE# WE#

A5005-01

Figure 15-23. Bus Diagram for Example 4: 83930AE in Nonpage Mode

15-24 I



EXTERNAL MEMORY INTERFACE

FF:

FE:

01:

00:

00:0000H

Address Space
(256 Kbytes)

16 Kbytes On-chip Code Memory

FFFFH
0000H 3FFFH

FFFFH
0420H

External RAM 64 Kbytes — 1056 Bytes

1056 Bytes On-chip RAM

A4224-02

Figure 15-24. Address Space for Example 4

15-25




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

15.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, an 80930AD operates in nonpage mode with a 16-bit external address businter-
faced to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 15-25). The 80930AD is config-
ured so that RD# is asserted for addresses < 7F:FFFFH and PSEN# is asserted for addresses >
80:0000H. Figure 15-26 shows two ways to address the external memory in the internal memory
space.

Addressing external RAM locationsin either region 00: or region 01: produces the same address
at the external bus pins. However, if the external EPROM and the external RAM require different
numbers of wait states, the external RAM must be addressed entirely in region 01:. Recall that
the number of wait states for region O1: isindependent of the remaining regions and always have
the same number of wait states (see Table 4-3 on page 4-11) unless the real-time wait states are
selected (see Figure 15-11 on page 15-11).

The examples that follow illustrate two possibilities for addressing the external RAM.

15.8.5.1  An Application Requiring Fast Access to the Stack

If an application requires fast access to the stack, the stack can reside in the fast on-chip data

RAM (00:0020H-00:041FH) and, when necessary, roll out into the slower external RAM. See
the left side of Figure 15-26. In this case, the external RAM can have wait states only if the
EPROM has wait states. Otherwise, if the stack rolls out above location 00:041FH, the external
RAM would be accessed with no wait state.

15.8.5.2  An Application Requiring Fast Access to Data

If fast access to a block of data is more important than fast access to the stack, the data can be
stored in the on-chip data RAM, and the stack can be located entirely in external memory. If the
external RAM requires a different number of wait states than the EPROM, address the external
RAM entirely in region 01:. See the right side of Figure 15-26. Addresses above 00:041FH roll
out to external memory beginning at 0420H.

15-26 I



Inu@; EXTERNAL MEMORY INTERFACE

Microcontroller EPROM RAM
(without on-chip (64 Kbytes) (64 Kbytes)
code memory)
EA# 1 _E CE# _E CE#
A15:8 .
P2 V| A58 A A158
Code Data
AID7:0 A7:0
PO K ) Latch [ __ A A7:0 A A7:0
D7:0 D7:0
WR# RD# PSEN# OE# OE# WE#
I

A4287-02

Figure 15-25. Bus Diagram for Example 5: 80930AD in Nonpage Mode

15-27



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

FF:

FE:

01:

00:

Address Space
(256 Kbytes)

FFFFH

0000H

FFFFH

0420H

64 Kbytes

External EPROM

External RAM
64 Kbytes —
1056 Bytes

1056 Bytes
On-chip RAM

FF:

FE:

01:

00:

00:0000H

Address Space
(256 Kbytes)

FFFFH
0000H
FFFFH
0000H
0420H

64 Kbytes
External
EPROM

64 Kbytes
External
RAM

1056 Bytes
On-chip RAM

4175-03

15-28

Figure 15-26. Address Space for Examples 5 and 6




Inu@; EXTERNAL MEMORY INTERFACE

15.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External EPROM and RAM

In this example, an 80930AD operatesin page mode with a 16-hit external address businterfaced
to 64 Kbytes of EPROM and 64 Kbytes of RAM (Figure 15-27). The 80930AD is configured so
that RD# is asserted for addresses < 7F:FFFFH, and PSEN# is asserted for addresses > 80:0000.

This system is the same as Example 5 (Figure 15-25) except that it operates in page mode. Ac-
cordingly, the two systems have the same memory map (Figure 15-26), and the comments on ad-
dressing external RAM apply here also.

. EPROM
Microcontroller RAM
(without on-chip (64 Kbytes) (64 Kbytes)
code memory)
D7:0 | D7:0
P2 K M Latch [ A A15:8 ‘ N Als8
A15:8/D7:0 A15:8 Code Data
N
PO M a7:0 j} A7;0
A7:0 4
EA# 1 _E CE# _E CE#
WR# RD# pseng| = OE# | oEx we

A4288-02

Figure 15-27. Bus Diagram for Example 6: 80930AD in Page Mode

I 15-29



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

15.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External Flash

In this example, an 80930AD operatesin page mode with a 17-hit external address businterfaced
to 128 Kbytes of flash memory (Figure 15-28). Port 2 carries both the upper address bits (A 15:0)
and the data (D7:0), while port O carries only the lower address bits (A7:0). The 80930AD is con-
figured for asingle read signal (PSEN#). The 128 Kbytes of external flash are accessed viainter-
nal memory regions FE: and FF: in the internal memory space.

Microcontroller FLASH
(without on-chip (128 Kbytes)
code memory)
e N
Al16
Al16 Al16
Code
D7:0
P2 Latch :} A15:8
A15:8/D7:0 A15:8
N
PO N AT:0
L4
A7:0
WR# PSEN# OE#  WE#
A4289-02

Figure 15-28. Bus Diagram for Example 7: 80930AD in Page Mode

15-30 I



intel.

16

Verifying Nonvolatile
Memory






intel.

CHAPTER 16
VERIFYING NONVOLATILE MEMORY

This chapter provides instructions for verifying on-chip nonvolatile memory on the 8X930Ax.
The verify instructions permit reading memory locations to verify their contents. Features cov-
ered in this chapter are:

* verifying the on-chip program code memory (8 Kbytes, 16 Kbytes)
¢ verifying the on-chip configuration bytes (8 bytes)

¢ verifying thelock bits (3 hits)

* using the encryption array (128 bytes)

¢ verifying the signature bytes (3 bytes)

16.1 GENERAL

The 8X930AXx is verified in the same manner as the 87C51FX and 87C251Sx microcontrollers.
Verify operations differ from normal operation. Memory accesses are made one byte at atime,
input/output port assignments are different, and ALE, EA#, and PSEN# are held high or low ex-
ternally. See Tables 16-1 and 16-2 for lead usage during verify operations. For acomplete list of
device signal descriptions, see Appendix B.

In some applications, it is desirable that program code be secure from unauthorized access. The
8X930Ax offers two types of protection for program code stored in the on-chip array:

* Program code in the on-chip code memory areais encrypted when read out for verification
if the encryption array is programmed.

¢ A three-level lock hit system restricts external access to the on-chip program code memory.

16.1.1 Considerations for On-chip Program Code Memory

On-chip, nonvolatile code memory is located at the lower end of the FF: region. (Example: for
devices with 16 Kbytes of ROM, code memory islocated at FF:0000H-FF:3FFFH.) Thefirst in-
struction following device reset is fetched from FF:0000H. It is recommended that user program
code start at address FF:0100H. Use a jump instruction to FF:0100H to begin execution of the
program. For information on address spaces, see Chapter 3, “Memory Partitions.”

Addresses outside the range of on-chip code memory access external memory. With EA# =1 and
both on-chip and external code memory implemented, you can place program code at the highest
on-chip memory addresses. When the highest on-chip address is exceeded during execution, pro-
gram code fetches automatically rollover from on-chip memory to external memory. See the dual
note on page 3-8.

The top eight bytes of the memory address space (FF:FFF8H-FF:FFFFH) are reserved for device
configuration. Do not read or write program code at these locations. For EA# = 1, the reset rou-
tine obtains configuration information from a configuration array located these addresses. (For

I 16-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

EA# = 0, the reset routine obtains configuration information from a configuration array in exter-
nal memory using these internal addresses.) For a detailed discussion of device configuration, see
Chapter 4.

With EA# = 1 and only on-chip program code memory, multi-byte instructions and instructions
that result in call returns or prefetches should be located afew bytes below the maximum address
to avoid inadvertently exceeding the top address. Use an EJIMP instruction, five or more address-
es below the top of memory, to continue execution in other areas of memory. See the dual note
on page 3-8

CAUTION
Execution of program code located in the top few bytes of the on-chip memory
may cause prefetches from the next higher addresses (i.e. external memory).
External memory fetches make use of port 0 and port 3 and may disrupt
program execution if the program uses port 0 or port 3 for a different purpose.

Table 16-1. Signal Descriptions

Signal - Alternate
Name Type Description Function
P0.7:0 /O | Port 0. Eight-bit, open-drain, bidirectional I/O port. For verify AD7:0
operations, use to specify the verify mode. See Table 16-2 and
Figures 16-1 and 16-2.
P1.0 /0 | Port 1. Eight-bit, bidirectional 1/O port with internal pullups. For T2
P11 verify operations, use for high byte of address. See Table 16-2 and | T2EX
P1.2 Figures 16-1 and 16-2. ECI
P1.5:3 CEX2:0
P1.6 CEX3/WAIT#
P1.7 CEX4/A17\WCLK
P2.7:0 1/0 | Port 2. Eight-hit, bidirectional 1/0 port with internal pullups. For A15:8
verify operations, use as the data port. See Table 16-2 and Figures
16-1 and 16-2.
P3.0 /O | Port 3. Eight-bit, bidirectional 1/0 port with internal pullups. For RXD
P3.1 verify operations, use for low byte of address. See Table 16-2 and | TXD
P3.3:2 Figures 16-1 and 16-2. INT1:0#
P3.5:4 T1:.0
P3.6 WR#
P3.7 RD#/A16
ALE — | Address Latch Enable. For verify operations, connect this pin to —
VCC
EA# — External Enable. For verify operations, connect this pin to V¢ —
PSEN# — | Program Store Enable. For verify operations, connect this pinto | —
Vss

16-2



Int9|® VERIFYING NONVOLATILE MEMORY

16.2 VERIFY MODES

Table 16-2 lists the verify modes and provides details about the setup. The value applied to port
0 determines the mode. The upper digit specifies verify and the lower digit selects the memory
function to verify (e.g., on-chip program code memory, configuration bytes, etc.). The addresses
applied to port 1 and port 3 address locations in the selected memory function. The encryption
array, lock bits, and signature bytes reside in nonvolatile memory outside the memory address
space. Configuration bytes, UCONFIGO0 and UCONFIGL, reside in nonvolatile memory at top of
the memory address space (Figure 4-1 on page 4-2) for devices with on-chip ROM, and in exter-
nal memory as shown in (Figure 4-2 on page 4-3) for devices without on-chip ROM.

16.3 GENERAL SETUP

Figure 16-1 showsthe general setup for verifying nonvolatile memory on the 8X 930Ax. The con-
troller must be running with an oscillator frequency of 4 MHz to 6 MHz. Set up the controller as
shown in Table 16-2 with the mode of operation specified on port 0O and the address with respect
to the starting address of the memory area applied to ports 1 and 3. Data appears on port 2. Con-
nect RST, ALE, and EA# to V . and PSEN# to ground.

Figure 16-2 showsthe bus cycle waveformsfor the verify operations. Timing symbolsare defined
in Table 16-5 on page 16-6.

Table 16-2. Verify Modes

Mode RST | PSEN# | EA# ALE Port | Port Address Notes
0 2 Port 1 (high)
Port 3 (low)
Verify Mode. On-chip High Low 5V High 28H | data | 0000H-3FFFH 1
program code Memory
Verify Mode. Configuration | High Low 5V High 29H | data | FFF8H-FFFFH 1
Bytes (UCONFIGO,
UCONFIG1)
Verify Mode. Lock bits High Low 5V High 2BH | data 0000H 2
Verify Mode. Signature High Low 5V High 29H | data
Bytes 0030H, 0031H,
0060H, 0061H

NOTES:

1. For these modes, the internal address is FF:xxxxH.

2. The three lock bits are verified in a single operation. The states of the lock bits appear simultaneously
at port 2 as follows: LB3 - P2.3, LB2 - P2.2. LB1 - P2.1. High = programmed.

I 16-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Yee
VCC
A0 - A7 qP3 RST
Address —
(16 Bits) N EA#
A8-A15 APl ALE
P2 < >
_L—h XTALL
4 MHz
to =3 P P11V
6 MHz T N—————
1_ XTAL2
PSEN# __I
VSS

Data
(8 Bits)

Verify Modes
(8 Bits)

A4376-01

Figure 16-1. Setup for Verifying Nonvolatile Memory

Verification Cycle

P1, P3 ﬂ Address >—

}<—>‘ Tavov

TeLov —>| - —>| }‘*TEHQV
PO X Mode X

A4377-01

Figure 16-2. Verify Bus Cycles

16.4 VERIFY ALGORITHM

Use this procedure to verify program code, signature bytes, configuration bytes, and lock bits
stored in nonvolatile memory on the 8X930AX. To preservethe secrecy of the encryption key byte
sequence, the encryption array cannot be verified. Verification can be performed on a block of

bytes. The procedure for verifying the 8X930Ax is as follows:

1. Set up the microcontroller for operation in the appropriate mode according to Table 16-2.

2. Input the 16-bit address on ports P1 and P3.

16-4



Int9|® VERIFYING NONVOLATILE MEMORY

3. Wait for the data on port P2 to become valid (T avqy = 48 clock cycles, Figure 16-5), then
compare the data with the expected value.

4. Repeat steps 1 through 3 until all memory locations are verified.

16.5 LOCK BIT SYSTEM

The 8X930Ax provides a three-level lock system for protecting program code stored in the on-
chip program code memory from unauthorized access. To verify that the lock bits are correctly
programmed, perform the procedure described in “Verify Algorithm” on page 16-4 using the ver-
ify lock bits mode (Table 16-2).

Table 16-3. Lock Bit Function

Lock Bits Programmed Protection Type

LB3 LB2 LB1

Level 1 U U U No program lock features are enabled. On-chip program code
is encrypted when verified, if encryption array is programmed.

Level 2 U U P External program code is prevented from fetching program
code bytes from on-chip code memory.

Level 3 U P P Same as level 2, plus on-chip program code memory verify is
disabled.

Level 4 P P P Same as level 3, plus external memory execution is disabled.

NOTE: Other combinations of the lock bits are not defined.

16.5.1 Encryption Array

The 8X930A includes a 128-byte encryption array located in nonvolatile memory outside the
memory address space. During verification of the on-chip program code memory, the seven low-
order address bits also address the encryption array. As the byte of the program code memory is
read, it is exclusive-NORed (XNOR) with the key byte from the encryption array. If the encryp-
tion array is not programmed (still all 1s), the program code is placed on the data bus in its orig-
inal, unencrypted form. If the encryption array is programmed with key bytes, the program code
is encrypted and can not be used without knowledge of the key byte sequence.

CAUTION
If the encryption feature is implemented, the portion of the on-chip program
code memory that does not contain program code should be filled with
“random” byte values other than FFH to prevent the encryption key sequence
from being revealed.

To preserve the secrecy of the encryption key byte sequence, the encryption array can not be ver-
ified.

16-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

16.6 SIGNATURE BYTES

The 8X930AXx contains factory-programmed signature bytes. These bytes are located in nonvol-
atile memory outside the memory address space at 30H, 31H, 60H, and 61H. To read the signature
bytes, perform the procedure described in “Verify Algorithm” on page 16-4 using the verify sig-
nature mode (Table 16-2). Signature byte values are listed in Table 16-4.

Table 16-4. Contents of the Signature Bytes

ADDRESS | CONTENTS DEVICE TYPE
30H 89H Indicates Intel Devices
31H 41H Indicates USB core product
60H 7BH Indicates 8X930Ax device

Table 16-5. Timing Definitions

Symbol Definition
UTea Oscillator Frequency
Tavav Address to Data Valid
Tenoz Data Float after ENABLE
Terov ENABLE Low to Data Valid

NOTE: A = Address, E = Enable, H = High, L = Low,
Q = Data out, V = Valid, Z = Floating

16-6



intel.
A

| nstruction Set
Reference






APPENDIX A
INSTRUCTION SET REFERENCE

This appendix contains reference material for the 8X930AXx instruction set, which isidentical to
instruction set for the MCS® 251 architecture. The appendix includes an opcode map, a detailed
description of each instruction, and the following tables that summarize notation, addressing, in-
structions types, instruction lengths and execution times:

¢ Tables A-1 through A-4 describe the notation used for the instruction operands. Table A-5
describes the notation used for control instruction destinations.

¢ Table A-6 and Table A-7 on page A-5 comprise the opcode map for the instruction set.

¢ Table A-8 on page A-6 through Table A-17 on page A-10 contain supporting material for
the opcode map.

¢ Table A-18 on page A-12 lists execution times for a group of instructions that access the
port SFRs.

* Thefollowing tableslist the instructions giving length (in bytes) and execution time:
Add and Subtract Instructions, Table A-19 on page A-14
Compare Instructions, Table A-20 on page A-15
Increment and Decrement Instructions, Table A-21 on page A-15
Multiply, Divide, and Decimal-adjust Instructions, Table A-22 on page A-16
Logical Instructions, Table A-23 on page A-17
Move Instructions, Table A-24 on page A-19
Exchange, Push, and Pop Instructions, Table A-25 on page A-22
Bit Instructions, Table A-26 on page A-23
Control Instructions, Table A-27 on page A-24

“Instruction Descriptions” on page A-26 contains a detailed description of each instruction.

NOTE

The instruction execution times given in this appendix are for an internal
BASE_TIME using data that is read from and written to on-chip RAM. These
times do not include your application’s system bus performance time
necessary to fetch and execute code from external memory, accessing
peripheral SFRs, using wait states, or extending the ALE pulse.

For some instructions, accessing the port SFRsx £ 0-3, increases the
execution time beyond that of the BASE_TIME. These cases are listed in
Table A-18 and are noted in the instruction summary tables and the instruction
descriptions.

I A-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

A.1 NOTATION FOR INSTRUCTION OPERANDS

Table A-1. Notation for Register Operands

intel.

Register Notation 8X930Ax | MCS 51
Arch.
@Ri A memory location (OOH-FFH) addressed indirectly via byte register 0
RO or R1
Rn Byte register RO—R7 of the currently selected register bank
n Byte register index: n = 0-7 O
rrr Binary representation of n
Rm Byte register RO—R15 of the currently selected register file
Rmd Destination register
Rms Source register 0
m, md, ms Byte register index: m, md, ms = 0-15
SSsss Binary representation of m or md
SSSS Binary representation of ms
WRj Word register WR0, WR2, ..., WR30 of the currently selected register
file
WRjd Destination register
WRjs Source register
@WR]j A memory location (00:0000H-00:FFFFH) addressed indirectly
through word register WR0-WR30 .
@WR]j Data RAM location (00:0000H—-00:FFFFH) addressed indirectly
+dis16 through a word register (WR0-WR30) + displacement value, where
the displacement value is from O to 64 Kbytes.
j, jd, js Word register index: j, jd, js = 0-30
tttt Binary representation of j or jd
TTTT Binary representation of js
DRk Dword register DRO, DR4, ..., DR28, DR56, DR60 of the currently
selected register file
DRkd Destination Register
DRks Source Register
@DRk A memory location (00:0000H-FF:FFFFH) addressed Indirectly
through dword register DRO-DR28, DR56, DR60 0
@DRKk Data RAM location (00:0000H—FF:FFFFH) addressed indirectly
+dis24 through a dword register (DR0-DR28, DR56, DR60) + displacement
value, where the displacement value is from 0 to 64 Kbytes
k, kd, ks Dword register index: k, kd, ks =0, 4, 8, ..., 28, 56, 60
uuuu Binary representation of k or kd
vuuuu Binary representation of ks




intel.

INSTRUCTION SET REFERENCE

Table A-2. Notation for Direct Addresses

Direct Descrintion 8X930Ax | MCS 51
Address. P Arch. Arch.
dir8 An 8-bit direct address. This can be a memory address O O

(00:0000H-00:007FH) or an SFR address (S:00H - S:FFH).
dirl6 A 16-bit memory address (00:0000H-00:FFFFH) used in direct 0
addressing.
Table A-3. Notation for Immediate Addressing
Immediate o 8X930Ax | MCS 51
Data Description Arch. Arch.
#data An 8-bit constant that is immediately addressed in an instruction. ad ad
#datal6 A 16-bit constant that is immediately addressed in an instruction. O
#0datal6 A 32-bit constant that is immediately addressed in an instruction. The 0
#1ldatal6 upper word is filled with zeros (#0datal6) or ones (#1datal6).
#short A constant, equal to 1, 2, or 4, that is immediately addressed in an
instruction. 0
AY; Binary representation of #short.
Table A-4. Notation for Bit Addressing
Bit Description 8X930Ax | MCS 51
Address P Arch. Arch.
bit A directly addressed bit in memory locations 00:0020H-00:007FH or in
any defined SFR. d
yyy A binary representation of the bit number (0-7) within a byte.
bit51 A directly addressed bit (bit number = 00H-FFH) in memory or an SFR.
Bits 00H-7FH are the 128 bits in byte locations 20H-2FH in the on-chip 0
RAM. Bits 80H-FFH are the 128 bits in the 16 SFR’s with addresses
that end in OH or 8H: S:80H, S:88H, S:90H, . . ., S:FOH, S:F8H.
Table A-5. Notation for Destinations in Control Instructions
Destination Lo 8X930Ax | MCS 51

Address Description Arch. Arch.

rel A signed (two's complement) 8-bit relative address. The destination is 0 0
-128 to +127 bytes relative to first byte of the next instruction.

addrll An 11-bit destination address. The destination is in the same 2-Kbyte 0 0
block of memory as the first byte of the next instruction.

addrl6 A 16-bit destination address. A destination can be anywhere within 0 0
the same 64-Kbyte region as the first byte of the next instruction.

addr24 A 24-bit destination address. A destination can be anywhere within 0
the 16-Mbyte address space.

A-3




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

A.2 OPCODE MAP AND SUPPORTING TABLES

Table A-6. Instructions for MCS® 51 Microcontrollers

intel.

Bin. 0 1 2 3 4 5 6-7 8-F
Src. 0 1 2 3 4 5 A5x6—-A5x7 | A5x8-A5xF
0 NOP AIJMP LIMP RR INC INC INC INC
addrll | addr16 A A dir8 @RI Rn

1 |JBC ACALL | LCALL RRC DEC DEC DEC DEC
bit,rel addrll | addrl6 A A dir8 @Ri Rn

2 JB AIMP RET RLA ADD ADD ADD ADD
bit,rel addrll A #data A,dir8 A @RI A RN

3 | JNB ACALL | RETI RLCA ADDC ADDC ADDC ADDC
bit,rel addrll A #data A,dir8 A @RI A,Rn

4 JC AIJMP ORL ORL ORL ORL ORL ORL
rel addrll | dir8,A dir8,#data A #data A,dir8 A @RI A RN

5 | JNC ACALL | ANL ANL ANL ANL ANL ANL
rel addrll | dir8,A dir8,#data A #data A,dir8 A @RI A,Rn

6 Jz AIJMP XRL XRL XRL XRL XRL XRL
rel addrll | dir8,A dir8,#data A #data A,dir8 A @RI A RN

7 JINZ ACALL | ORL JMP MOV MOV MOV MOV
rel addrll | CV,bit @A+DPTR A #data dir8,#data | @Ri#data Rn #data

8 SIMP AIJMP ANL MOVC DIV MOV MOV MOV
rel addrll | CVY,bit A @A+PC AB dir8,dir8 dir8, @Ri dir8,Rn

9 MOV ACALL | MOV MOvC SUBB SUBB SUBB SUBB
DPTR#datal6 | addrll | bit,CY A ,@A+DPTR A#data A,dir8 A,@Ri A RN

A ORL AIJMP MOV INC MUL ESC MOV MOV
CY,bit addrll | CY,bit DPTR AB @Ri,dir8 Rn,dir8

B ANL ACALL | CPL CPL CINE CINE CINE CJINE
CY,bit addrll | bit CcY A #data,rel A.dir8,rel @Ri#data,rel | Rn,#data,rel

C PUSH AIJMP CLR CLR SWAP XCH XCH XCH
dir8 addrll | bit CY A A,dir8 A @RI A RN

D POP ACALL | SETB SETB DA DJINZ XCHD DJINZ
dir8 addrll | bit CcY A dir8,rel A,@Ri Rn,rel

E MOVX AIJMP MOVX CLR MOV MOV MOV
A,@DPTR addrll A,@Ri A A,dir8 A,@Ri ARN

F MOV ACALL MOVX CPL MOV MOV MOV
@DPTR,A addrll @Ri,A A dir8,A @Ri,A Rn,A

A-4




|nte|® INSTRUCTION SET REFERENCE

Table A-7. Instructions for the 8X930Ax Architecture

Bin. | A5x8 A5x9 A5xA A5xB A5xC A5xD ASXE A5xF
Src. X8 X9 XA xB xC xD XE xF
0 JSLE | MOV MOvz INC R #short (1) SRA
rel Rm,@WRj+dis | WRj,Rm MOV reg,ind reg
1 JSG MoV MOVS DEC R,#short (1) SRL
rel @WRj+dis,Rm | WRj,Rm MOV ind,reg reg
2 JLE MOV ADD ADD ADD ADD
rel Rm,@DRk+dis Rm,Rm WRj,WR]j reg,op2 (2) | DRk,DRk
3 JG MoV SLL
rel @DRk+dis,Rm reg
4 JSL MOV ORL ORL ORL
rel WRj,@WRj+dis Rm,Rm WRj,WR]j reg,op2 (2)
5 JSGE | MOV ANL ANL ANL
rel @WRj+dis,WRj Rm,Rm WRJj,WRj reg,op2 (2)
6 JE MOV XRL XRL XRL
rel WRj,@DRk+dis Rm,Rm WRj,WR]j | reg,op2 (2)
7 JINE MOV MOV MOV MOV MOV MOV
rel @DRk+dis,WRj | opl,reg (2) Rm,Rm WRj,WR]j reg,op2 (2) | DRk,DRk
8 LIMP @WRj EJMP DIV DIV
EJMP @DRk addr24 Rm,Rm WRj,WR]j
9 LCALL@WR]j ECALL SuUB SuUB SuUB SUB
ECALL @DRk addr24 Rm,Rm WRj,WRj reg,op2 (2) | DRk,DRk
A Bit ERET MUL MUL
Instructions (3) Rm,Rm WRJj,WRj
B TRAP CMP CMP CMP CMP
RmM,Rm WRj,WRj reg,op2 (2) | DRk,DRk
c PUSH op1 (4)
MOV DRk,PC
D POP
opl(4)
E
F
NOTES:

1. R=Rm/WRj/DRk.

2. opl, op2 are defined in Table A-8.
3. See Tables A-10 and A-11.

4. See Table A-12.

A-5




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table A-8. Data Instructions

Instruction Byte 0 Byte 1 Byte 2 Byte 3
Oper Rmd,Rms x | C md ms

Oper WRjd,WRjs x | D jdi2 jsl2

Oper DRkd,DRks x | F kd/4 ks/4

Oper Rm,#data x | E m 0000 #data

Oper WRj,#datal6 x | E j2 0100 #data (high) #data (low)
Oper DRk, #datal6 x | E k/4 1000 #data (high) #data (low)
MOV DRk(h),#datal6 7 A k/4 1100 #data (high) #data (low)
MOV DRk,#1datal6 7| E

CMP DRk, #1datal6 B | E

Oper Rm,dir8 x | E m 0001 dir8 addr

Oper WR;,dir8 x | E j2 0101 dir8 addr

Oper DRK,dir8 X | E ki4 1101 dir8 addr

Oper Rm,dirl6 x | E m 0011 dirl6 addr (high) dirl6 addr (low)
Oper WR;j,dirl6 x | E 2 0111 dirl6 addr (high) dirl6 addr (low)
Oper DRK,dir16 (1) X | E ki4 1111 dirl6 addr (high) dirl6 addr (low)
Oper Rm,@WR}j x | E 2 1001 m 00

Oper Rm,@DRk X | E ki4 1011 m 00

NOTE:
1. For this instruction, the only valid operation is MOV.

Table A-9. High Nibble, Byte 0 of Data Instructions

X Operation Notes

2 ADD reg,op2

9 SUB reg,op2

B CMP reg,op2 (1)

4 | ORLreg,0p2 (2) Q{'J'p":)%‘:{:;sing modes are

5 ANL reg,op2 (2)

6 XRL reg,op2 (2)

7 MOV reg,op2

8 | DIVreg,op2 Two modes only:

A MUL reg,0p2 ;Zg:ggg z \?/T;dvsj?s
NOTES:

1. The CMP operation does not support DRK, direct16.
2. Forthe ORL, ANL, and XRL operations, neither reg nor op2
can be DRK.



|nte|® INSTRUCTION SET REFERENCE

All of the bit instructionsin the 8X 930Ax architecture (Table A-7) have opcode A9, which serves
as an escape byte (similar to A5). The high nibble of byte 1 specifies the bit instruction, as given
in Table A-10.

Table A-10. Bit Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3

1 | Bit Instr (dir8) A \9 XX ‘O‘bit dir8 addr rel addr

Table A-11. Byte 1 (High Nibble) for Bit Instructions

XXXX Bit Instruction
0001 JBC bit
0010 JB bit

0011 JNB bit
0111 ORL CY,bit
1000 ANL CY,bit
1001 MOV bit,CY
1010 MOV CY,bit
1011 CPL bit
1100 CLR bit
1101 SETB bit
1110 ORL CY, /bit
1111 ANL CY, /bit

A-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table A-12. PUSH/POP Instructions

Instruction Byte 0(x) Byte 1 Byte 2 Byte 3
PUSH #data C A 0000 0010 #data
PUSH #datal6 C A 0000 0110 #datal6 (high) #datal6 (low)
PUSH Rm C A m 1000
PUSH WR;j C A 2 1001
PUSH DRk C A k/4 1011
MOV DRk,PC C A k/4 0001
POP Rm D A m 1000
POP WRj D A jl2 1001
POP DRk D A k/4 1011
Table A-13. Control Instructions
Instruction Byte 0(x) Byte 1 Byte 2 Byte 3
EJMP addr24 8 A addr[23:16] addr[15:8] addr[7:0]
ECALL addr24 9 A addr[23:16] addr[15:8] addr[7:0]
LIMP @WRj 8 9 2 0100
LCALL @WRj 9 9 ir2 0100
EJMP @DRk 8 9 ki4 1000
ECALL @DRk 9 9 k/4 1000
ERET A A
JE rel 8 8 rel
JNE rel 7 8 rel
JLE rel 2 8 rel
JG rel 3 8 rel
JSL rel 4 8 rel
JSGE rel 5 8 rel
JSLE rel 0 8 rel
JSG rel 1 8 rel
TRAP B 9




intel.

INSTRUCTION SET REFERENCE

Table A-14. Displacement/Extended MOVs

Instruction Byte 0 Byte 1 Byte 2 Byte 3
MOV Rm,@WRj+dis 0|9 m 2 dis[15:8] dis[7:0]
MOV WRk,@WRj+dis 419 iz | k2 dis[15:8] dis[7:0]
MOV Rm,@DRk+dis 2109 m | ki4 dis[15:8] dis[7:0]
MOV WRj,@DRk+dis 6 |9 iz | ki4 dis[15:8] dis[7:0]
MOV @WRj+dis,Rm 119 m jl2 dis[15:8] dis[7:0]
MOV @WRj+dis, WRk 519 iz | k2 dis[15:8] dis[7:0]
MOV @DRKk+dis,Rm 3|9 m | ki4 dis[15:8] dis[7:0]
MOV @DRk+dis,WRj 7109 iz | ki4 dis[15:8] dis[7:0]
MOVS WR;j,Rm 1]A 2] m
MOVZ WRj,Rm 0| A 2] m
MOV WRj,@WR]j 0o|B jl2 | 1000 il2 0000
MOV WRj,@DRk 0| B k/4 | 1010 2 0000
MOV @WRj,WR] 1|B jl2 | 1000 jl2 0000
MOV @DRK,WR]j 1| B k/4 | 1010 2 0000
MOV dir8,Rm 7| A m | 0001 dir8 addr
MOV dir8,WRj 71 A 2 | 0101 dir8 addr
MOV dir8,DRk 7 1A k/4 | 1101 dir8 addr
MOV dirl16,Rm 7| A m | 0011 dirl6 addr (high) dirl6 addr (low)
MOV dirl6,WRj 71 A 2 | 0111 dirl6 addr (high) dirl6 addr (low)
MOV dir16,DRk 7| A k/4 | 1111 dirl6 addr (high) dirl6 addr (low)
MOV @WRj,Rm 7| A ji/2 | 1001 m 0000
MOV @DRk,Rm 7 1A k/4 | 1011 m 0000




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table A-15. INC/DEC

Instruction Byte O Byte 1
1 | INC Rm#short 0| B m | 00 | ss
2 | INC WRj#short 0| B 2101 |ss
3 | INC DRK,#short 0| B k/id| 11 | ss
4 | DEC Rm,#short 1| B m | 00 | ss
5 | DEC WRj,#short 1| B 2 {01 ]ss
6 | DEC DRKk,#short 1| B ki4 | 11 | ss

Table A-16. Encoding for INC/DEC

Ss #short
00 1
01 2
10 4

Table A-17. Shifts

Instruction Byte 0 Byte 1
1| SRARmM 0| E m | 0000
2 | SRA WRj 0| E j/2 | 0100
3 | SRLRm 1| E m | 0000
4 | SRL WRj 1| E j/2 | 0100
5 | SLLRm 3|E m | 0000
6 | SLL WRj 3| E j/2 | 0100

A-10



|nte|® INSTRUCTION SET REFERENCE

A.3 INSTRUCTION SET SUMMARY
This section contains tables that summarize the instruction set. For each instruction there is a
short description, itslength in bytes, and its execution time in states.

NOTE

Execution times are increased by executing code from external memory,
accessing peripheral SFRs, accessing data in external memory, using await
state, or extending the ALE pulse.

For some instructions, accessing the port SFRs, Px, x = 0-3, increases the
execution time. These cases are noted individually in the tables.

A.3.1 Execution Times for Instructions Accessing the Port SFRs
Table A-18 lists these instructions and the execution times.

* Case 1. Code executes from external memory with no wait state and a short ALE (not
extended) and accesses a port SFR.

* Case 2. Code executes from external memory with one wait state and a short ALE (not
extended) and accesses a port SFR.

¢ Case 3. Code executes from external memory with one wait state and an extended ALE, and
accesses aport SFR.

Times for each case are expressed as the number of state times to be added to the BASE_TIME.

I A-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

A-12

Table A-18. State Times to Access the Port SFRs

intel.

Instruction

BASE_TIME

Additional State Times
(Add to the BASE_TIME column)

Binary

Source

Case 1

Case 2

Case 3

ADD A,dir8

[N

[N

N

w

N

ADD Rm,dir8

ADDC A,dir8

ANL A,dir8

ANL CY,bit

ANL CY,bit51

ANL CY,/bit

ANL CY,/bit51

ANL dir8,#data

ANL dir8,A

ANL Rm,dir8

CLR bit

CLR bit51

CMP Rm,dir8

CPL bit

CPL bit51

DEC dir8

INC dir8

MOV A,dir8

MOV bit,CY

MOV bit51,CY

MOV CY,bit

MOV CY,bit51

MOV dir8 #data

MOV dir8,A

MOV dir8,Rm

MOV dir8,Rn

MOV Rm,dir8

MOV Rn,dir8

ORL A,dir8

ORL CY,bit

ORL CY,bit51

ORL CY,/bit

WIRP|IWIRP[P[WIN|AINW[IRP|W[N[DR[P|INININ|[DO[NMN|DP|W|INW[RP|W[RP|W|FRP|FP|®W

NIFRPINIFP[I[NINIWOWIWINW[FRL|INI[NWO[RP|INININIWQINI[N|W|IN|INW[RL[N|[FP|DN|FRP]FP|DN

NIN|IN[ININININ|INININININ[BAIBAIN|B]D|BDID(N[B]BAIN]B]BIDNIDN[DNDINININIDN

WIW|lwWw|wWwW(w(fw|wW|wwlw|lw|lw(lojlofw|o|lo|lo|lOoO(lwW(OoO|OO|W|O|lO|W|IWlW|lW|lW|W|W

||| |O|[0|0|O(A~|O[O|D[O|O| D[]




|nte|® INSTRUCTION SET REFERENCE

Table A-18. State Times to Access the Port SFRs (Continued)

struction BASE_TIME (Add/?g| ?tlwtéogzls?zﬁ?n;én::i?umn)

Binary Source Case 1 Case 2 Case 3
ORL CY,/hit51 1 1 2 3 4
ORL dir8,#data 3 3 2 3 4
ORL dir8,A 2 2 4 6 8
ORL Rm,dir8 3 2 2 3 4
SETB bit 4 3 4 6 8
SETB bhit51 2 2 4 6 8
SUB Rm,dir8 3 2 2 3 4
SUBB A,dir8 1 1 2 3 4
XCH A,dir8 3 3 4 6 8
XRL A,dir8 1 1 2 3 4
XRL dir8,#data 3 3 4 6 8
XRL dir8,A 2 2 4 6 8
XRL Rm,dir8 3 2 2 3 4

A-13



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

A.3.2 Instruction Summaries

Table A-19. Summary of Add and Subtract Instructions
Add ADD <dest>,<src> dest opnd — dest opnd + src opnd
Subtract SUB <dest>,<src> dest opnd ~ dest opnd - src opnd

Add with Carry
Subtract with Borrow

ADDC <dest>,<src>
SUBB <dest>,<src>

(A) < (A) +src opnd + carry bit
(A) < (A) - src opnd - carry bit

Binary Mode | Source Mode
Mnemonic | <dest><src> Notes
Bytes | States | Bytes | States
A,Rn Reg to acc 1 1 2 2
ADD A.dir8 Dir byte to acc 2 1(2) 2 1(2)
A @RI Indir addr to acc 1 2 2 3
A #data Immediate data to acc 2 1 2 1
Rmd,Rms Byte reg to/from byte reg 3 2 2 1
WRjd,WRjs Word reg to/from word reg 3 3 2 2
DRkd,DRks Dword reg to/from dword reg 3 5 2 4
Rm, #data Immediate 8-bit data to/from byte reg 4 3 3 2
WRj,#datal6 Immediate 16-bit data to/from word reg 5 4 4 3
ADD: DRk, #0datal6 16-bit unsigned immediate data to/from 5 6 4 5
’ dword reg
SuB Rm,dir8 Dir addr to/from byte reg 4 3(2) 3 2(2)
WRj,dir8 Dir addr to/from word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to/from byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) to/from word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to/from byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) to/from byte reg 4 4 3 3
A,Rn Reg to/from acc with carry 1 1 2 2
ADDC; A,dir8 Dir byte to/from acc with carry 2 1(2) 2 1(2)
SUBB A, @Ri Indir RAM to/from acc with carry 1 2 2 3
A #data Immediate data to/from acc with carry 2 1 2 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 3:0), add 1 to the number of states.

A-14




intel.

Table A-20. Summary of Compare Instructions

INSTRUCTION SET REFERENCE

Compare CMP <dest>,<src> dest opnd — src opnd
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |Bytes pBtates
Rmd,Rms Reg with reg 3 2 2 1
WRjd,WRjs Word reg with word reg 3 3 2 2
DRkd,DRks Dword reg with dword reg 3 5 2 4
Rm #data Reg with immediate data 4 3 3 2
WRj,#datal6 Word reg with immediate 16-bit data 5 4 4 3
DRk,#0datal6 Dword reg with zero-extended 16-bit 5 6 4 5
immediate data
CMP DRk,#1datal6 Dword reg with one-extended 16-bit 5 6 4 5
immediate data
Rm,dir8 Dir addr from byte reg 4 3t 3 2t
WRj,dir8 Dir addr from word reg 4 4 3 3
Rm,dir16 Dir addr (64K) from byte reg 5 3 4 2
WR;j,dirl6 Dir addr (64K) from word reg 5 4 4 3
Rm,@WR]j Indir addr (64K) from byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) from byte reg 4 4 3 3

T If thisinstruction addresses an /0 port (Px, x = 3:0), add 1 to the number of states.

Table A-21. Summary of Increment and Decrement Instructions

Increment INC DPTR (DPTR) ~ (DPTR) +1
Increment INC byte byte — byte+ 1
Increment INC <dest>,<src> dest opnd ~ dest opnd + src opnd
Decrement DEC byte byte — byte—-1
Decrement DEC <dest>,<src> destopnd ~ dest opnd - src opnd
Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes
Bytes |States |Bytes Ptates
A acc 1 1 1 1
Rn Reg 1 1 2 2
dir8 Dir byte 2 2(2) 2 2(2)
INC; - -
@Ri Indir RAM 1 3 2 4
DEC
Rm,#short Byteregby 1, 2,0r 4 3 2 2 1
WRj,#short Word reg by 1, 2, or 4 3 2 2 1
DRKk,#short Double word reg by 1, 2, or 4 3 4 2 3
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.

A-15



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Table A-21. Summary of Increment and Decrement Instructions

Increment INC DPTR (DPTR) «~ (DPTR) +1
Increment INC byte byte — byte+1
Increment INC <dest>,<src> dest opnd —~ dest opnd + src opnd
Decrement DEC byte byte « byte—1
Decrement DEC <dest>,<src> destopnd ~ dest opnd - src opnd

Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes

Bytes |States |Bytes pBtates
INC DPTR Data pointer 1 1 1 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.

Table A-22. Summary of Multiply, Divide, and Decimal-adjust Instructions

Multiply

Divide

Decimal-adjust ACC
for Addition (BCD)

MUL <reg1l,reg2>
MUL AB

DIV <regl>,<reg2>
DIV AB

DA A

(2)
(B:A)=AxB
(2

(A) = Quotient; (B) =Remainder
2

Binary Mode | Source Mode
Mnemonic | <dest>,<src> Notes
Bytes | States | Bytes | States
AB Multiply A and B 1 5 1 5
MUL Rmd,Rms Multiply byte reg and byte reg 3 6 2 5
WRjd,WRjs Multiply word reg and word reg 3 12 2 11
AB Divide A by B 1 10 1 10
DIV Rmd,Rms Divide byte reg by byte reg 3 11 2 10
WRjd,WRjs Divide word reg by word reg 3 21 2 20
DA A Decimal adjust acc 1 1 1 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. see “Instruction Descriptions” on page A-26

A-16




intel.

INSTRUCTION SET REFERENCE

Table A-23. Summary of Logical Instructions

Logical AND
Logical OR
Logical Exclusive OR

ANL <dest>,<src>
ORL <dest>,<src>
XRL <dest>,<src>

dest opnd —dest opnd A src opnd
dest opnd ~ dest opnd V src opnd
dest opnd —~ dest opnd O src opnd

Clear CLRA (A) -0

Complement CPL A (Ai) « B(A)

Rotate RXX A (1)

Shift SXX Rm or Wj Q)

SWAP A A3:0 - A7:4

Binary Mode | Source Mode
Mnemonic |<dest><src> Notes
Bytes |States |Bytes States

A,Rn Reg to acc 1 1 2 2
A.dir8 Dir byte to acc 2 1(3) 2 1(3)
A @RI Indir addr to acc 1 2 2 3
A #data Immediate data to acc 2 1 2 1
dir8,A Acc to dir byte 2 24 2 24
dir8,#data Immediate data to dir byte 3 3(4) 3 3(4)
Rmd,Rms Byte reg to byte reg 3 2 2 1

ANL;_ WRjd,WRjs Word reg to word reg 3 3 2 2

iFFle_ Rm #data 8-bit data to byte reg 4 3 3 2
WRj,#datal6 | 16-bit data to word reg 5 4 4 3
Rm,dir8 Dir addr to byte reg 4 3(3) 3 2(3)
WRj,dir8 Dir addr to word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to byte reg 5 3 4 2
WRj,dirl6 Dir addr (64K) to word reg 5 4 4 3
Rm,@WR]j Indir addr (64K) to byte reg 4 3 3 2
Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3

CLR A Clear acc 1 1 1 1

CPL A Complement acc 1 1 1 1

RL A Rotate acc left 1 1 1 1

RLC A Rotate acc left through the carry 1 1 1 1

RR A Rotate acc right 1 1 1 1

RRC A Rotate acc right through the carry 1 1 1 1
Rm Shift byte reg left 3 2 2 1

St WRj Shift word reg left 3 2 2 1

NOTES:

1. See “Instruction Descriptions” on page A-26
2. A shaded cell denotes an instruction in the MCS® 51 architecture.

3. If this instruction addresses an /O port (Px, x = 0-3), add 1 to the number of states.
4. If this instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.

A-17




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table A-23. Summary of Logical Instructions (Continued)

Logical AND ANL <dest>,<src> dest opnd —dest opnd A src opnd
Logical OR ORL <dest>,<src> dest opnd ~ dest opnd V src opnd
Logical Exclusive OR XRL <dest>,<src> dest opnd —~ dest opnd O src opnd
Clear CLRA (A) -0
Complement CPLA (Ai) « D(A)
Rotate RXX A (1)
Shift SXX Rm or Wj (1)
SWAP A A3:0 - A7:4

Binary Mode | Source Mode
Mnemonic |<dest>,<src> Notes

Bytes |States |Bytes pPtates
SRA Rm Shift byte reg right through the MSB 3 2 2 1

WRj Shift word reg right through the MSB 3 2 2 1
SRL Rm Shift byte reg right 3 2 2 1
WR]j Shift word reg right 3 2 2 1

SWAP A Swap nibbles within the acc 1 2 1 2
NOTES: ) o
1. See “Instruction Descriptions” on page A-26
2. A shaded cell denotes an instruction in the MCS® 51 architecture.
3. If this instruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.
4. |If this instruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.

A-18



intel.

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions

Move (2)

Move with Sign Extension
Move with Zero Extension

Move Code Byte
Move to External Mem

MOV <dest>,<src>

MOVS <dest>,<src>
MOVZ <dest>,<src>
MOVC <dest>,<src>
MOVX <dest>,<src>

destination ~ src opnd

destination — src opnd with sign extend
destination — src opnd with zero extend
A — code byte

external mem ~ (A)

Move from External Mem

MOVX <dest>,<src>

A — source opnd in external mem

Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes | States | Bytes | States

A,Rn Reg to acc 1 1 2 2
A,dir8 Dir byte to acc 2 1(3) 2 1(3)
A @RI Indir RAM to acc 1 2 2 3
A #data Immediate data to acc 2 1 2 1
Rn,A Acc to reg 1 1 2 2
Rn,dir8 Dir byte to reg 2 1(3) 3 2(3)
Rn #data Immediate data to reg 2 1 3 2
dir8,A Acc to dir byte 2 2(3) 2 2(3)
dir8,Rn Reg to dir byte 2 2(3) 3 3(3)
dir8,dir8 Dir byte to dir byte 3 3 3 3
dir8,@Ri Indir RAM to dir byte 2 3 3 4
dir8,#data Immediate data to dir byte 3 3(3) 3 3(3)

MOV @Ri,A Acc to indir RAM 1 3 2 4
@Ri,dir8 Dir byte to indir RAM 2 3 3 4
@Ri,#data Immediate data to indir RAM 2 3 3 4
DPTR, #datal6 Load Data Pointer with a 16-bit const 3 2 3 2
Rmd,Rms Byte reg to byte reg 3 2 2 1
WRjd,WRjs Word reg to word reg 3 2 2 1
DRkd,DRks Dword reg to dword reg 3 3 2 2
Rm, #data 8-bit immediate data to byte reg 4 3 3 2
WRj,#datal6 16-bit immediate data to word reg 5 3 4 2
DRk,#0datal6 zero-extended 16-bit immediate data 5 5 4 4

to dword reg
DRk, #1datal6 one-extended 16-bit immediate data 5 5 4 4
to dword reg

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.

2. Instructions that move bits are in Table A-26.

3. If this instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.

4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.

A-19




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table A-24. Summary of Move Instructions (Continued)

intel.

Move (2)

Move with Sign Extension
Move with Zero Extension
Move Code Byte

Move to External Mem
Move from External Mem

MOV <dest>,<src>

MOVS <dest>,<src>
MOVZ <dest>,<src>
MOVC <dest>,<src>
MOVX <dest>,<src>
MOVX <dest>,<src>

destination ~ src opnd
destination — src opnd with sign extend
destination — src opnd with zero extend
A — code byte

external mem ~ (A)
A — source opnd in external mem

Rm,@WRj+dis16

Indir addr with disp (64K) to byte reg

WR]j, @WRj+dis16

Indir addr with disp (64K) to word reg

Rm,@DRk+dis16

Indir addr with disp (16M) to byte reg

WRj,@DRk+dis16

Indir addr with disp (16M) to word reg

Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes | States | Bytes | States
DRKk,dir8 Dir addr to dword reg 4 6 3 5
DRK,dir16 Dir addr (64K) to dword reg 5 6 4 5
Rm,dir8 Dir addr to byte reg 4 3(3) 3 2(3)
WRj,dir8 Dir addr to word reg 4 4 3 3
Rm,dirl6 Dir addr (64K) to byte reg 5 3 4 2
WRj,dir16 Dir addr (64K) to word reg 5 4 4 3
Rm,@WRj Indir addr (64K) to byte reg 4 2 3 2
Rm,@DRk Indir addr (16M) to byte reg 4 4 3 3
WRjd,@WRjs Indir addr(64K) to word reg 4 4 3 3
WRj,@DRk Indir addr(16M) to word reg 4 5 3 4
dir8,Rm Byte reg to dir addr 4 4 (3) 3 3(3)
dir8, WRj Word reg to dir addr 4 5 3 4
MOV dirl6,Rm Byte reg to dir addr (64K) 5 4 4 3
dirl6,WRj Word reg to dir addr (64K) 5 5 4 4
@WRj,Rm Byte reg to indir addr (64K) 4 4 3 3
@DRk,Rm Byte reg to indir addr (16M) 4 5 3 4
@WRjd,WRjs Word reg to indir addr (64K) 4 5 3 4
@DRK,WRj Word reg to indir addr (16M) 4 6 3 5
dir8,DRk Dword reg to dir addr 4 7 3 6
dirl6,DRk Dword reg to dir addr (64K) 5 7 4 6
5 6 4 5
5 7 4 6
5 7 4 6
5 8 4 7
5 6 4 5

@WRj+dis16,Rm

Byte reg to Indir addr with disp (64K)

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.

2. Instructions that move bits are in Table A-26.

3. If this instruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.

4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by
DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.

A-20




intel.

INSTRUCTION SET REFERENCE

Table A-24. Summary of Move Instructions (Continued)

Move (2)

Move with Sign Extension
Move with Zero Extension
Move Code Byte

Move to External Mem
Move from External Mem

MOV <dest>,<src>

MOVS <dest>,<src>
MOVZ <dest>,<src>
MOVC <dest>,<src>
MOVX <dest>,<src>
MOVX <dest>,<src>

destination ~ src opnd

destination — src opnd with sign extend
destination — src opnd with zero extend

A — code byte
external mem ~ (A)
A — source opnd in external mem

Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes | States | Bytes | States
@WRj+dis16,WRj | Word reg to Indir addr with disp (64K) 5 7 4 6
MOV @DRk+dis16,Rm | Byte reg to Indir addr with disp (16M) 5 7 4 6
@DRk+dis16,WRj | Word reg to Indir addr with disp 5 8 4 7
(16M)
DRk(hi), #datal6 16-bit immediate data into upper 5 3 4 2
MOVH
word of dword reg
MOVS WRj,Rm Byte reg to word reg with sign 3 2 2 1
extension
MOVZ WRj,Rm Byte reg to word reg with zeros 3 2 2 1
extension
MOVC A, @A+DPTR Code byte relative to DPTR to acc 1 6 1 6
A @A+PC Code byte relative to PC to acc 1 6 1 6
A @RI External mem (8-bit addr) to acc (4) 1 4 2 5
MOVX A,@DPTR External mem (16-bit addr) to acc (4) 1 5 1 5
@RIi,A Acc to external mem (8-bit addr) (4) 1 4 1 4
@DPTR,A Acc to external mem (16-bit addr) (4) 1 5 1 5
NOTES:
1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Instructions that move bits are in Table A-26.
3. If this instruction addresses an I/O port (Px, x = 0-3), add 1 to the number of states.
4. External memory addressed by instructions in the MCS 51 architecture is in the region specified by

DPXL (reset value = 01H). See “Compatibility with the MCS® 51 Architecture” on page 3-2.

A-21




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Table A-25. Summary of Exchange, Push, and Pop Instructions

Exchange Contents
Exchange Digit

XCH <dest>,<src>
XCHD <dest>,<src>

A o srcopnd
A3:0 -~ on-chip RAM bits 3:0

Push PUSH <src> SP - SP +1; (SP) < src
Pop POP <dest> dest « (SP); SP - SP-1
Binary Mode | Source Mode
Mnemonic <dest>,<src> Notes
Bytes |States |[Bytes [States
A,Rn Acc and reg 1 3 2 4
XCH A.dir8 Acc and dir addr 2 3(2) 2 3(2)
A @RI Acc and on-chip RAM (8-bit addr) 1 4 2 5
XCHD A @RI ,(Bé(:(t:)l?gg(;(r))w nibble in on-chip RAM 1 4 2 5
dir8 Push dir byte onto stack 2 2
#data Push immediate data onto stack 4 4
#datal6 Push 16-bit immediate data onto 5 4
PUSH stack
Rm Push byte reg onto stack 3 4 2 3
WRj Push word reg onto stack 3 2 5
DRk Push double word reg onto stack 3 10 2 9
Dir Pop dir byte from stack 2 3/3 2 3/3
POP Rm Pop byte reg from stack 3 2
WRj Pop word reg from stack 3 2 4
DRk Pop double word reg from stack 3 9 2
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. If this instruction addresses an I/O port (Px, x = 0-3), add 2 to the number of states.

A-22




|nte|® INSTRUCTION SET REFERENCE

Table A-26. Summary of Bit Instructions

Clear Bit CLR bit bit -« 0

Set Bit SETB bit bit « 1

Complement Bit CPL bit bit — @bit

AND Carry with Bit ANL CY,bit CY < CYAhbit

AND Carry with Complement of Bit ~ ANL CY,/bit CY ~ CY A @bit

OR Carry with Bit ORL CY,bit CY < CYVbhit

ORL Carry with Complement of Bit ~ ORL CY,/bit CY ~ CYV@bit

Move Bit to Carry MOV CY,bit CY « bit

Move Bit from Carry MOV bit,CY bit ~ CY

Binary Mode | Source Mode
Mnemonic |<src>,<dest> Notes
Bytes |States |Bytes [tates

CY Clear carry 1 1 1 1

CLR bit51 Clear dir bit 2 2(2) 2 2(2)
bit Clear dir bit 4 4 3 3
CcY Set carry 1 1 1 1

SETB bit51 Set dir bit 2 2(2) 2 2(2)
bit Set dir bit 4 4(2) 3 3(2)
CcY Complement carry 1 1 1 1

CPL bit51 Complement dir bit 2 2(2) 2 2(2)
bit Complement dir bit 4 4(2) 3 3(2)

ANL CY,bit51 AND dir bit to carry 2 1(3) 2 1(3)
CY,bit AND dir bit to carry 4 33 3 23)

ANL/ CY,/bit51 AND complemented dir bit to carry 2 1(3) 2 1(3)
CY,/bit AND complemented dir bit to carry 4 33 3 2(3)

ORL CY,bit51 OR dir bit to carry 2 1(3) 2 1(3)
CY,bit OR dir bit to carry 4 3(3) 3 2(3)

ORL/ CY,/bit51 OR complemented dir bit to carry 2 1(3) 2 1(3)
CY,/bit OR complemented dir bit to carry 4 313 3 2(3)
CY,bit51 Move dir bit to carry 2 1(3) 2 1(3)

MOV CY,bit Move dir bit to carry 4 313 3 2(3)
bit51,CY Move carry to dir bit 2 2(2) 2 2(2)
bit,CY Move carry to dir bit 4 4(2) 3 3(2)

NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. Ifthis instruction addresses an 1/O port (Px, x = 0-3), add 2 to the number of states.
3. [If this instruction addresses an 1/O port (Px, x = 0-3), add 1 to the number of states.

A-23



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table A-27. Summary of Control Instructions

intel.

Binary Mode Source Mode
Mnemonic | <dest>,<src> Notes
Bytes | States (2) | Bytes | States (2)
ACALL addrll Absolute subroutine call 2 9 2 9
@DRKk Extended subroutine call, indirect 3 12 2 11
ECALL
addr24 Extended subroutine call 5 14 4 13
@WR]j Long subroutine call, indirect 3 9 2 8
LCALL -
addrl6 Long subroutine call 3 3 9
RET Return from subroutine 1 6 1 6
ERET Extended subroutine return 3 10 2 9
RETI Return from interrupt 1 6 1 6
AIMP addrll Absolute jump 2 3 2 3
addr24 Extended jump 5 6 4 5
EJMP - —
@DRk Extended jump, indirect 3 7 2 6
@WR]j Long jump, indirect 3 6 2 5
LIMP -
addrl6 Long jump 3 4 3 4
SIMP rel Short jump (relative addr) 2 3 2 3
JMP @A+DPTR Jump indir relative to the DPTR 1 5 1 5
JC rel Jump if carry is set 2 1/4 2 1/4
JNC rel Jump if carry not set 2 1/4 2 1/4
bit51,rel Jump if dir bit is set 3 2/5 3 2/5
JB bit,rel Jump if dir bit of 8-bit addr location | 5 417 4 3/6
is set
bit51,rel Jump if dir bit is not set 3 2/5 3 2/5
JNB bit,rel Jump if dir bit of 8-bit addr location a7 4 3/6
is not set
bit51,rel Jump if dir bit is set & clear bit a/7 a/7
JBC bit,rel Jump if dir bit of 8-bit addr location 5 7/10 4 6/9
is set and clear bit
Jz rel Jump if acc is zero 2 2/5 2 2/5
JINZ rel Jump if acc is not zero 2 2/5 2 2/5
JE rel Jump if equal 3 2/5 2 1/4
INE rel Jump if not equal 3 2/5 2 1/4
JG rel Jump if greater than 3 2/5 2 1/4
JLE rel Jump if less than or equal 3 2/5 2 1/4
JSL rel Jump if less than (signed) 3 2/5 2 1/4
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-24




intel.

Table A-27. Summary of Control Instructions (Continued)

INSTRUCTION SET REFERENCE

Binary Mode Source Mode
Mnemonic | <dest>,<src> Notes
Bytes | States (2) | Bytes | States (2)
JSLE rel Jump if less than or equal (signed) 3 2/5 2 1/4
JSG rel Jump if greater than (signed) 3 2/5 2 1/4
JSGE rel Jump if greater than or equal 3 2/5 2 1/4
(signed)
A,dir8,rel Compare dir byte to acc and jump 3 2/5 3 2/5
if not equal
A #data,rel Compare immediate to acc and 3 2/5 3 2/5
jump if not equal
CJINE - -
Rn,#data,rel Compare immediate to reg and 3 2/5 4 3/6
jump if not equal
@Ri,#data,rel | Compare immediate to indir and 3 3/6 4 a/7
jump if not equal
Rn,rel Decrement reg and jump if not 2 2/5 3 3/6
zero
DJINZ
dir8,rel Decrement dir byte and jump if not 3 3/6 3 3/6
zero
TRAP — Jump to the trap interrupt vector 2 10 1 9
NOP — No operation 1 1 1
NOTES:

1. A shaded cell denotes an instruction in the MCS® 51 architecture.
2. For conditional jumps, times are given as not-taken/taken.

A-25




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

A.4 INSTRUCTION DESCRIPTIONS

This section describes each instruction in the 8X930Ax architecture. See the note on page A-11
regarding execution times.

Table A-28 defines the symbols (—, 0, 1, 0,?) used to indicate the effect of the instruction on the
flags in the PSW and PSW1 registers. For a conditional jump instruction, “!” indicates that a flag
influences the decision to jump.

Table A-28. Flag Symbols

Symbol Description

— The instruction does not modify the flag.

The instruction sets or clears the flag, as appropriate.

The instruction sets the flag.

The instruction clears the flag.

N[O+~ | O

The instruction leaves the flag in an indeterminate state.

! For a conditional jump instruction: The state of the flag before the
instruction executes influences the decision to jump or not jump.

ACALL <addr11>
Function: Absolute call

Description: Unconditionally calls a subroutine at the specified address. The instruction increments the 3-
byte PC twice to obtain the address of the following instruction, then pushes bytes 0 and 1 of
the result onto the stack (byte 0 first) and increments the stack pointer twice. The destination
address is obtained by successively concatenating bits 15-11 of the incremented PC,
opcode bits 7-5, and the second byte of the instruction. The subroutine called must
therefore start within the same 2-Kbyte “page” of the program memory as the first byte of the
instruction following ACALL.

Flags:
CY AC ov N 4
Example: The stack pointer (SP) contains 07H and the label "SUBRTN" is at program memory location
0345H. After executing the instruction
ACALL SUBRTN
at location 0123H, SP contains 09H; on-chip RAM locations 08H and 09H contain 01H
and 25H, respectively; and the PC contains 0345H.
Binary Mode  Source Mode
Bytes: 2 2
States: 9 9

A-26



|nte|® INSTRUCTION SET REFERENCE

[Encoding] | al0a9a8 1 0001 | |a7a6a5a4 |a3a2ala0

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ACALL
(PC) « (PC)+2
(SP) -« (SP) +1
((SP)) « (PC.7:0)
(SP) -« (SP) +1
((SP)) « (PC.15:8)
(PC.10:0) ~ page address

ADD <dest>,<src>
Function: Add

Description: Adds the source operand to the destination operand, which can be a register or the accumu-
lator, leaving the result in the register or accumulator. If there is a carry out of bit 7 (CY), the
CY flag is set. If byte variables are added, and if there is a carry out of bit 3 (AC), the AC flag
is set. For addition of unsigned integers, the CY flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32

bit).
Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.
Flags:
CY AC ov
0 0 0 0 0
Example: Register 1 contains 0C3H (11000011B) and register 0 contains 0AAH (10101010B). After
executing the instruction
ADD R1,R0
register 1 contains 6DH (01101101B), the AC flag is clear, and the CY and OV flags are set.
Variations
ADD A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0010 0100 | | immed. data

A-27



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADD
(A) < (A) + #data
ADD A dir8
Binary Mode  Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0010 0101 | | directaddr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ADD
(A) < (A) + (dir8)
ADD A,@Ri
Binary Mode  Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0010 011i
Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]
Operation: ADD
(A) « (A) + ((RD)
ADD A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0010 lrrr
Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]
Operation: ADD

(A) — (A) + (Rn)

ADD Rmd,Rms

Bytes:
States:

A-28

Binary Mode Source Mode
3 2
2 1



|nte|® INSTRUCTION SET REFERENCE

[Encoding] | 0010 1100 | | ssss SSsSsS

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rmd) « (Rmd) + (Rms)

ADD WRjd WRijs

Binary Mode  Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0010 1101 ‘ ‘ tttt TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRjd) ~ (WRjd) + (WRjs)

ADD DRkd,DRks

Binary Mode  Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 0010 1111 ‘ ‘ uuuu Uuuu

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(DRkd) — (DRkd) + (DRks)

ADD Rm #data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0010 1110 | | ssss 0000 | | #dat

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) « (Rm) + #data

A-29



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

ADD WRj #datal6

Binary Mode Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
0010 1110 ‘ ‘ tttt 0100 ‘ ‘ #data hi ‘ ‘ #data low

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WRj) « (WRj) + #datal6

ADD DRk, #0datal6

Binary Mode Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
0010 1110 ‘ ‘ uuuu 1000 ‘ ‘ #data hi ‘ ‘ #data low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(DRK) ~ (DRK) + #datal6

ADD Rm,dir8

Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0010 1110 \ \ ssss 0001 \ \ direct addr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) « (Rm) + (dir8)
ADD WR;,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0010 1110 | |ttt 0101 | | directaddr

A-30



|nte|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding

Operation: ADD
(WRj) « (WRj) + (dir8)
ADD Rm,dir16
Binary Mode  Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0010 1110 ‘ ‘ SSSS 0011 ‘ ‘ direct addr ‘ ‘ direct add

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) — (Rm) + (dir16)
ADD WRj,dir16
Binary Mode  Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0010 1110 ‘ ‘ tttt 0111 ‘ ‘ direct addr ‘ ‘ direct addr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(WR)) « (WR]j) + (dir16)
ADD Rm,@WR]j
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0010 1110 | |ttt 1001 | | ssss 0000

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ADD
(Rm) — (Rm) + ((WRj))

A-31



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

ADD Rm,@DRk

Binary Mode Source Mode

Bytes: 4 3

States: 4 3

[Encoding]

0010 1110 | | uuuu 1011 | | ssss 0000
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ADD

(Rm) — (Rm) + ((DRk))

ADDC A,<src>
Function:

Description:

Flags:

Example:

Variations

Add with carry

Simultaneously adds the specified byte variable, the CY flag, and the accumulator contents,
leaving the result in the accumulator. If there is a carry out of bit 7 (CY), the CY flag is set; if
there is a carry out of bit 3 (AC), the AC flag is set. When adding unsigned integers, the CY
flag indicates that an overflow occurred.

If there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not bit 6, the OV
flag is set. When adding signed integers, the OV flag indicates a negative number produced
as the sum of two positive operands, or a positive sum from two negative operands.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit)

Four source operand addressing modes are allowed: register, direct, register-indirect, and
immediate.

CY AC oV
O O O

The accumulator contains 0C3H (11000011B), register O contains 0AAH (10101010B), and
the CY flag is set. After executing the instruction

ADDC A,RO

the accumulator contains 6EH (01101110B), the AC flag is clear, and the CY and OV flags
are set.

ADDC A #data

Bytes:
States:

A-32

Binary Mode  Source Mode
2 2
1 1



|nte|® INSTRUCTION SET REFERENCE

[Encoding] | 0011 0100 | |immed.data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) < (A) +(CY) + #data

ADDC A dir8

Binary Mode  Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0011 0101 | | directaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ADDC
(A) « (A) + (CY) + (dir8)
ADDC A,@Ri
Binary Mode  Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0011 011i

Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: ADDC
(A) — (A) +(CY) + ((RD))
ADDC A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0011 lrrr

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: ADDC
(A) - (A) +(CY) + (Rn)

A-33



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

AJMP addr11

Function:

Description:

Flags:

Example:

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Absolute jump

Transfers program execution to the specified address, which is formed at run time by
concatenating the upper five bits of the PC (after incrementing the PC twice), opcode bits 7—
5, and the second byte of the instruction. The destination must therefore be within the same
2-Kbyte “page” of program memory as the first byte of the instruction following AJMP.

CY AC oV N z

The label "JIMPADR" is at program memory location 0123H. After executing the instruction
AIMP JMPADR

at location 0345H, the PC contains 0123H.

Binary Mode  Source Mode
2 2
3 3
al0 a9 a8 0 0001 ‘ ‘a7a6a5a4 a3 a2 al a0

Binary Mode = [Encoding]
Source Mode = [Encoding]

AIMP
(PC) « (PC) +2
(PC.10:0) ~ page address

ANL <dest><src>

Function:

Description:

Flags:

A-34

Logical-AND

Performs the bitwise logical-AND (A) operation between the specified variables and stores
the results in the destination variable.

The two operands allow 10 addressing mode combinations. When the destination is the
register or accumulator, the source can use register, direct, register-indirect, or inmediate
addressing; when the destination is a direct address, the source can be the accumulator or
immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CY

AC

ov




|nte|® INSTRUCTION SET REFERENCE

Example: Register 1 contains 0C3H (11000011B) and register 0 contains 55H (01010101B). After
executing the instruction

ANL R1,RO

register 1 contains 41H (01000001B).

When the destination is a directly addressed byte, this instruction clears combinations of bits
in any RAM location or hardware register. The mask byte determining the pattern of bits to
be cleared would either be an immediate constant contained in the instruction or a value
computed in the register or accumulator at run time. The instruction

ANL P1,#01110011B

clears bits 7, 3, and 2 of output port 1.

Variations
ANL dir8,A
Binary Mode Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0101 0010 | | directaddr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) « (dir8) A (A)

ANL dir8,#data

Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0101 0011 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(dir8) ~ (dir8) A #data
ANL A #data
Binary Mode  Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0101 0100 \ \ immed. data

A-35



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ANL
(A) < (A) A\ #data
ANL A,dir8
Binary Mode  Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0101 0101 | | directaddr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ANL
(A) < (A) A (dir8)
ANL A,@Ri
Binary Mode  Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0101 011i
Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]
Operation: ANL
(A) « (A) A ((Ri))
ANL A,Rn
Binary Mode  Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0101 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]
Operation: ANL

(A) - (A)A(Rn)

ANL Rmd,Rms

Bytes:
States:

[Encoding]

A-36

Binary Mode Source Mode
3 2
2 1

0101 1100 H ssss SSssS




|nte|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rmd) « (Rmd) A (Rms)

ANL WRjd, WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0101 1101 ‘ ‘ tttt TTTT

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WRjd) ~ (WRjd) A (WRjs)

ANL Rm #data

Binary Mode  Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0101 1110 | | ssss 0000 #data

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) — (Rm) A #data

ANL WRj #datal6

Binary Mode  Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
0101 1110 | [ et 0100 | | #datahi | | #datalow

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WR)) « (WRj) A\ #datal6

ANL Rm,dir8

Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0101 1110 ‘ ‘ SSSS 0001 direct addr

A-37



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(Rm) — (Rm) A (dir8)
ANL WRj,dir8
Binary Mode  Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0101 1110 | | et 0101 direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(WRj) « (WRj) A (dir8)
ANL Rm,dir16
Binary Mode  Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0101 1110 ‘ ‘ Ssss 0011 ‘ ‘ direct ‘ ‘ direct
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(Rm) — (Rm) A (dir16)
ANL WRj,dir16
Binary Mode  Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0101 1110 | [t o111 | | direct | | direct

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(WR)) « (WRj) A (dir16)

A-38



intel.

INSTRUCTION SET REFERENCE

ANL Rm,@WR]j
Binary Mode  Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0101 1110 | [t 1001 | [ ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL
(Rm) « (Rm) A (WRY)))
ANL Rm,@DRk
Binary Mode  Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0101 1110 ‘ ‘ uuuu 1011 ‘ ‘ SSSsS 0000
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL

(Rm) — (Rm) A ((DRK))

ANL CY,<src—bit>

Function:

Description:

Flags:

Example:

Logical-AND for bit variables

If the Boolean value of the source bit is a logical O, clear the CY flag; otherwise leave the CY
flag in its current state. A slash ("/") preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but
the source bit itself is not affected.

Only direct addressing is allowed for the source operand.

CY
O

AC oV

Set the CY flag if, and only if, P1.0=1, ACC. 7 =1, and OV = 0:
MOV CY,P1.0 ;Load carry with input pin state

ANL CY,ACC.7 ;AND carry with accumulator bit 7
ANL CY,/OV  ;AND with inverse of overflow flag

A-39



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

ANL CY,bit51
Binary Mode  Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1000 0010 | | bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) < (CY) A (bit51)

ANL CY,/bit51

Binary Mode  Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 1011 0000 | | bitaddr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A @ (bit51)
ANL CY bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 | | 1000 0 yyy | | diraddr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ANL
(CY) « (CY) A (bit)
ANL CY,/bit
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

A-40



intel.

INSTRUCTION SET REFERENCE

[Encoding]
‘ 1010 ‘ 1001 ‘ ‘ 1111 0 Vyy ‘ ‘ dir addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ANL

(CY) < (CY) A @ (bit)

CJINE <dest>,<src>,rel

Function:

Description:

Flags:

Example:

Variations

Compare and jump if not equal.

Compares the magnitudes of the first two operands and branches if their values are not
equal. The branch destination is computed by adding the signed relative displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. If
the unsigned integer value of <dest-byte> is less than the unsigned integer value of <src-
byte>, the CY flag is set. Neither operand is affected.

The first two operands allow four addressing mode combinations: the accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

CYy AC oV
O — — O O

The accumulator contains 34H and R7 contains 56H. After executing the first instruction in
the sequence

CINE R7#60H,NOT_EQ
; L. L ;R7 = 60H
NOT_EQ: JC REQ_LOW . IF R7 < 60H
; :R7 > 60H

the CY flag is set and program execution continues at label NOT_EQ. By testing the CY flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then executing the instruction,
WAIT: CINE A,P1,WAIT

clears the CY flag and continues with the next instruction in the sequence, since the
accumulator does equal the data read from P1. (If some other value was being input on P1,
the program loops at this point until the P1 data changes to 34H.)

A-41



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

CJINE A #data,rel

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
3 3 3 3
2 5 2 5
1011 0100 ‘ ‘ immed. data rel. addr

Binary Mode = [Encoding]
Source Mode = [Encoding]

(PC) « (PC) +3
IF (A) # #data
THEN

(PC) ~ (PC) + relative offset

IF (A) < #data

THEN
(CY) « 1
ELSE
(CY) « 0
CJINE A,dir8,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 3 6 3 6
[Encoding] 1011 0101 ‘ ‘ direct addr rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: (PC) -« (PC)+3

A-42

IF (A) # dir8
THEN

(PC) — (PC) + relative offset

IF (A) < dir8
THEN

(CY) -1
ELSE

(CY) -0



|nte|® INSTRUCTION SET REFERENCE

CJINE @Ri,#data,rel

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 4 4
States: 3 6 4 7
[Encoding] 1011 011i ‘ ‘ immed. data rel. addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: (PC) — (PC)+3
IF ((Ri)) # #data
THEN
(PC) — (PC) + relative offset
IF ((Ri)) < #data

THEN
(CY) -1
ELSE
(CY) -0
CJINE Rn #data,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 4 4
States: 2 5 3 6
[Encoding] 1011 Irrr ‘ ‘ immed. data rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: (PC) -« (PC)+3
IF (Rn) # #data
THEN
(PC) ~ (PC) + relative offset
IF (Rn) < #data

THEN
(CY) « 1
ELSE
(CY) « 0
CLRA
Function: Clear accumulator

Description: Clears the accumulator (i.e., resets all bits to zero).
Flags:

cy AC ov N z
— — — O O

A-43



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Example: The accumulator contains 5CH (01011100B). The instruction
CLR A
clears the accumulator to 00OH (00000000B).
Binary Mode  Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1110 0100
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CLR
(A) -0
CLR bit
Function: Clear bit
Description: Clears the specified bit. CLR can operate on the CY flag or any directly addressable bit.
Flags: Only for instructions with CY as the operand.
CcY AC ov N Z
O — — — —
Example: Port 1 contains 5DH (01011101B). After executing the instruction
CLR P1.2
port 1 contains 59H (01011001B).
Variations
CLR bit51
Binary Mode Source Mode
Bytes: 4 3
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1100 0010 | | Bitaddr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CLR
(bit51) —~ O

A-44



intel.

INSTRUCTION SET REFERENCE

CLRCY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1100 0011
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CLR
(CY) -0
CLR bit
Binary Mode Source Mode
Bytes: 4 4
States: 41 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 | | 1100 0 yyy | | diraddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CLR
(bit) —~ O

CMP <dest>,<src>

Function:

Description:

Flags:

Compare

Subtracts the source operand from the destination operand. The result is not stored in the
destination operand. If a borrow is needed for bit 7, the CY (borrow) flag is set; otherwise itis
clear.

When subtracting signed integers, the OV flag indicates a negative result when a negative
value is subtracted from a positive value, or a positive result when a positive value is
subtracted from a negative value.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit)

The source operand allows four addressing modes: register, direct, immediate and indirect.

CY AC oV

A-45



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). The
instruction

CMP R1,R0

clears the CY and AC flags and sets the OV flag.
Variations

CMP Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 1011 1100 ‘ ‘ ssss SSsSsS

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rmd) — (Rms)

CMP WRjd,WRjs

Binary Mode  Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 1011 1110 ‘ ‘ tttt TTTT

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRjd) — (WRjs)

CMP DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 1011 1111 | | wuuu UuUUU

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRkd) — (DRks)

A-46



intel.

INSTRUCTION SET REFERENCE

CMP Rm . #data

Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding] 1011 1110 ‘ ‘ ssss 0000 ‘ ‘ # data
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — #data
CMP WRj,#datal6
Binary Mode  Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1011 1110 | [t 0100 | | #datahi | | #datalow
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WR)j) — #datal6
CMP DRk,#0datal6
Binary Mode  Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
1011 1110 | | wuuuu 1000 | | #datahi | | #datalow
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(DRK) — #0datal6
CMP DRk, #1datal6
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
1011 1110 | | wuuuu 1100 | | #datahi | | #datahi

A-47



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(DRK) — #1datal6

CMP Rm,dir8

Binary Mode  Source Mode
Bytes: 4 3
States: 3t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1011 1110 | | ssss 0001 | | diraddr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) — (dir8)
CMP WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1011 1110 | | tee 0101 | | diraddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(WRj) — (dir8)
CMP Rm,dirl16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
1011 1110 | | ssss 0011 | | diraddr | | diraddr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: CMP
(Rm) — (dir16)

A-48



intel.

INSTRUCTION SET REFERENCE

CMP WR;j,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1011 1110 | [t 0111 | | diraddr | | diraddr
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(WRj) — (dir16)
CMP Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
1011 1110 | [ttt 1001 | [ ssss | [ o000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — (WRY))
CMP Rm,@DRk
Binary Mode  Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
1011 1110 | | uuuu 1011 | | ssss | | o000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CMP
(Rm) — ((DRK))
CPL A
Function: Complement accumulator
Description: Logically complements (@) each bit of the accumulator (one's complement). Clear bits are

set and set bits are cleared.

A-49



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Flags:
CY AC ov
— — — 0 0
Example: The accumulator contains 5CH (01011100B). After executing the instruction
CPLA
the accumulator contains 0OA3H (10100011B).
Binary Mode  Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1111 0100
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CPL
(A) - B(A)
CPL bit
Function: Complement bit
Description:  Complements (@) the specified bit variable. A clear bit is set, and a set bit is cleared. CPL
can operate on the CY or any directly addressable bit.
Note: When this instruction is used to modify an output pin, the value used as the original
data is read from the output data latch, not the input pin.
Flags: Only for instructions with CY as the operand.
CY AC ov N z
O — — — —
Example: Port 1 contains 5BH (01011101B). After executing the instruction sequence
CPLP1.1
CPL P1.2
port 1 contains 5BH (01011011B).
Variations
CPL bit51
Binary Mode  Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1011 0010 \ \ bit addr

A-50




intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CPL
(bit51) ~ D(bit51)
CPL CY
Binary Mode  Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1011 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: CPL
(CY) « @(CY)
CPL bit
Binary Mode  Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 | | 1011 0 yyy | | diraddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: CPL
(bit) — G(bit)
DA A
Function: Decimal-adjust accumulator for addition
Description:  Adjusts the 8-bit value in the accumulator that resulted from the earlier addition of two

variables (each in packed-BCD format), producing two 4-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If accumulator bits 3:0 are greater than nine (XXXX1010-XXXX1111), or if the AC flag is set,
six is added to the accumulator, producing the proper BCD digit in the low nibble. This
internal addition sets the CY flag if a carry out of the lowest 4 bits propagated through all
higher bits, but it does not clear the CY flag otherwise.

If the CY flag is now set, or if the upper four bits now exceed nine (L010XXXX-1111XXXX),
these four bits are incremented by six, producing the proper BCD digit in the high nibble.

A-51



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Flags:

Example:

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

A-52

Again, this sets the CY flag if there was a carry out of the upper four bits, but does not clear
the carry. The CY flag thus indicates if the sum of the original two BCD variables is greater
than 100, allowing multiple-precision decimal addition. The OV flag is not affected.

All of this occurs during one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the accumulator, depending on
initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

CY AC oV
O — — O O

The accumulator contains 56H (01010110B), which represents the packed BCD digits of the
decimal number 56. Register 3 contains 67H (01100111B), which represents the packed
BCD digits of the decimal number 67. The CY flag is set. After executing the instruction
sequence

ADDC A,R3
DA A

the accumulator contains OBEH (10111110) and the CY and AC flags are clear. The
Decimal Adjust instruction then alters the accumulator to the value 24H (00100100B),
indicating the packed BCD digits of the decimal number 24, the lower two digits of the
decimal sum of 56, 67, and the carry-in. The CY flag is set by the Decimal Adjust instruction,
indicating that a decimal overflow occurred. The true sum of 56, 67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the
accumulator contains 30H (representing the digits of 30 decimal), then the instruction
sequence,

ADD A #99H
DA A

leaves the CY flag set and 29H in the accumulator, since 30 + 99 = 129. The low byte of the
sum can be interpreted to mean 30 — 1 = 29.

Binary Mode  Source Mode
1 1
1 1

1101 0100

Binary Mode = [Encoding]
Source Mode = [Encoding]

DA
(Contents of accumulator are BCD)
IF [[(A.3:0) > 9] V [(AC) = 1]]
THEN (A.3:0) ~ (A.3:0)+6
AND
IF [[(A.7:4) > 9] V [(CY) = 1]]

THEN (A.7:4) — (A7:4)+6



intel.

INSTRUCTION SET REFERENCE

DEC byte
Function: Decrement
Description: Decrements the specified byte variable by 1. An original value of 00H underflows to OFFH.
Four operands addressing modes are allowed: accumulator, register, direct, or register-
indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.
Flags:
CY AC ov
Example: Register 0 contains 7FH (01111111B). On-chip RAM locations 7EH and 7FH contain 00H
and 40H, respectively. After executing the instruction sequence
DEC @RO
DEC RO
DEC @RO
register 0 contains 7EH and on-chip RAM locations 7EH and 7FH are set to OFFH and 3FH,
respectively.
Variations
DEC A
Binary Mode  Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0001 0100
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: DEC
A) - A)-1
DEC dir8
Binary Mode  Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0001 0101 \ \ dir addr

A-53



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: DEC

(dir8) ~ (dir8) —1
DEC @Ri

Binary Mode  Source Mode

Bytes: 1 2
States: 3 4
[Encoding] 0001 011i
Hex Code in:  Binary Mode = [Encoding]

Source Mode =[A5][Encoding]
Operation: DEC

(Ri)) — (R))-1
DEC Rn

Binary Mode Source Mode

Bytes: 1 2
States: 1 2
[Encoding] 0001 lrrr
Hex Code in: Binary Mode = [Encoding]

Source Mode = [A5][Encoding]
Operation: DEC

(Rn) « (RN)—1

DEC <dest>,<src>

Function:

Description:

Flags:

Example:

Variations

A-54

Decrement

Decrements the specified variable at the destination operand by 1, 2, or 4. An original value
of 00H underflows to OFFH.

CY AC ov N z

Register 0 contains 7FH (01111111B). After executing the instruction sequence
DEC RO,#1

register O contains 7EH.



intel.

INSTRUCTION SET REFERENCE

DEC Rm #short

Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0001 1011 ‘ ‘ SSSS 01 A%
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: DEC
(Rm) « (Rm) — #short
DEC WRj,#short
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0001 1011 \ \ tttt 01 Vv
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: DEC
(WR)) « (WRj) — #short
DEC DRk, #short
Binary Mode  Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 0001 1011 ‘ ‘ uuuu 11 vV
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: DEC

(DRK) ~ (DRK) — #short

DIV <dest>,<src>
Function: Divide

Description:

Divides the unsigned integer in the register by the unsigned integer operand in register
addressing mode and clears the CY and OV flags.

A-55



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

For byte operands (<dest>,<src> = Rmd,Rms) the result is 16 bits. The 8-bit quotient is

stored in the higher byte of the word where Rmd resides; the 8-bit remainder is stored in the
lower byte of the word where Rmd resides. For example: Register 1 contains 251 (OFBH or
11111011B) and register 5 contains 18 (12H or 00010010B). After executing the instruction

DIV R1,R5

register 1 contains 13 (ODH or 00001101B); register 0 contains 17 (11H or 00010001B),
since 251 = (13 X 18) + 17; and the CY and OV bits are clear (see Flags).

Flags: The CY flag is cleared. The N flag is set if the MSB of the quotient is set. The Z flag is set if
the quotient is zero.
CY AC ov
0 — 0

Exception: if <src> contains 00H, the values returned in both operands are undefined; the
CY flag is cleared, OV flag is set, and the rest of the flags are undefined.

CcY AC oV N z
0 — 1 ? ?
Variations
DIV Rmd Rms
Binary Mode  Source Mode
Bytes: 3 2
States: 11 10
[Encoding] 1000 1100 | | ssss SSSS

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: DIV (8-bit operands)
(Rmd) < remainder (Rmd) / (Rms) if <dest>md =0,2,4,..,14
(Rmd+1) — quotient (Rmd) / (Rms)

(Rmd-1) — remainder (Rmd) / (Rms) if <dest>md = 1,3,5,..,15
(Rmd) < quotient (Rmd) / (Rms)

DIV WRjd,WRjs
Binary Mode  Source Mode
Bytes: 3 2
States: 22 21
[Encoding] 1000 1101 \ \ tttt TTTT

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-56



intel.

INSTRUCTION SET REFERENCE

Operation: DIV (16-bit operands)
(WRjd) ~ remainder (WRjd) / (WRjs) if <dest>jd =0, 4, 8,... 28
(WRjd+2) ~ quotient (WRjd) / (WRjs)
(WRjd-2) ~ remainder (WRjd) / (WRjs) if <dest> jd = 2, 6, 10,... 30
(WRjd) ~ quotient (WRjd) / (WRjs)
For word operands (<dest>,<src> = WRjd,WRjs) the 16-bit quotient is in WR(jd+2), and the
16-bit remainder is in WRjd. For example, for a destination register WR4, assume the
quotient is 1122H and the remainder is 3344H. Then, the results are stored in these register
file locations:
Location 4 5 6 7
Contents | 33H | 44H | 11H | 22H
DIV AB
Function: Divide
Description: Divides the unsigned 8-bit integer in the accumulator by the unsigned 8-bit integer in register
B. The accumulator receives the integer part of the quotient; register B receives the integer
remainder. The CY and OV flags are cleared.
Exception: if register B contains 00H, the values returned in the accumulator and register B
are undefined; the CY flag is cleared and the OV flag is set.
Flags:
CY AC ov
0 — 0 0
For division by zero:
CY AC ov N z
0 — 1 ? ?
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Example: The accumulator contains 251 (OFBH or 11111011B) and register B contains 18 (12H or
00010010B). After executing the instruction
DIV AB
the accumulator contains 13 (ODH or 00001101B); register B contains 17 (11H or
00010001B), since 251 = (13 X 18) + 17; and the CY and OV flags are clear.
Binary Mode  Source Mode
Bytes: 1 1
States: 10 10
[Encoding] 1000 0100

A-57



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Hex Code in:

Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

DIV
(A) < quotient (A)/(B)
(B) ~ remainder (A)/(B)

DJINZ <byte>,<rel-addr>

Function:

Description:

Flags:

Example:

Variations

A-58

Decrement and jump if not zero

Decrements the specified location by 1 and branches to the address specified by the second
operand if the resulting value is not zero. An original value of 00H underflows to OFFH. The
branch destination is computed by adding the signed relative-displacement value in the last
instruction byte to the PC, after incrementing the PC to the first byte of the following
instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

CYy AC ov

The on-chip RAM locations 40H, 50H, and 60H contain 01H, 70H, and 15H, respectively.
After executing the following instruction sequence

DJNZ 40H,LABEL1
DJNZ 50H,LABEL2
DJNZ 60H,LABEL

on-chip RAM locations 40H, 50H, and 60H contain 00H, 6FH, and 14H, respectively, and
program execution continues at label LABEL2. (The first jump was not taken because the
result was zero.)

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.

The instruction sequence,

MOV R2,#8
TOGGLE: CPLP1.7
DJINZ R2,TOGGLE

toggles P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each
pulse lasts three states: two for DJNZ and one to alter the pin.



intel.

INSTRUCTION SET REFERENCE

DJINZ dir8,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3
States: 3 6 3 6
[Encoding] 1101 0101 ‘ ‘ direct addr ‘ ‘ rel. addr
Hex Code in:  Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: DJINZ

(PC) - (PC)+2

(dir8) ~ (dir8) —1

IF (dir8) > 0 or (dir8) < 0

THEN
(PC) « (PC) +rel
DJINZ Rn,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 2 2 3 3
States: 2 5 3 6
[Encoding] 1101 Irrr ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]

Source Mode =[A5][Encoding]
Operation: DJINZ

(PC) « (PC) +2
(Rn) « (Rn)—1
IF(Rn)>0o0r(Rn)<0
THEN
(PC) « (PC) +rel

ECALL <dest>
Function:

Description:

Flags:

Extended call

Calls a subroutine located at the specified address. The instruction adds four to the program
counter to generate the address of the next instruction and then pushes the 24-bit result
onto the stack (high byte first), incrementing the stack pointer by three. The 8 bits of the high
word and the 16 bits of the low word of the PC are then loaded, respectively, with the
second, third and fourth bytes of the ECALL instruction. Program execution continues with
the instruction at this address. The subroutine may therefore begin anywhere in the full 16-
Mbyte memory space.

CY AC oV N z

A-59



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Example: The stack pointer contains 07H and the label “SUBRTN” is assigned to program memory
location 123456H. After executing the instruction

ECALL SUBRTN

at location 012345H, SP contains 0AH; on-chip RAM locations 08H, 09H and 0AH contain
01H, 23H and 45H, respectively; and the PC contains 123456H.
Variations

ECALL addr24

Binary Mode Source Mode

Bytes: 5 4
States: 14 13
[Encoding] 1001 1010 addr23— addrl5-addr8 addr7—addrO
addrl6
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: ECALL
(PC) « (PC) +4
(SP) - (SP) +1
((SP)) ~ (PC.23:16)
(SP) - (SP) +1
((SP)) ~ (PC.15:8)
(SP) - (SP) +1
((SP)) ~ (PC.7:0)
(PC) ~ (addr.23:0)
ECALL @DRKk
Binary Mode Source Mode
Bytes: 3 2
States: 12 11
[Encoding] 1001 1001 ‘ ‘ uuuu

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ECALL

(PC) - (PC) +4
(SP) - (SP) +1
((SP)) ~ (PC.23:16)
(SP) — (SP) +1
((SP)) ~ (PC.15:8)
(SP) — (SP) +1
((SP)) « (PC.7:0)
(PC) ~ ((DRK))

EJMP <dest>

Function: Extended jump

A-60



L]
intel.
Description:

Flags:

Example:

Variations

INSTRUCTION SET REFERENCE

Causes an unconditional branch to the specified address by loading the 8 bits of the high
order and 16 bits of the low order words of the PC with the second, third, and fourth
instruction bytes. The destination may be therefore be anywhere in the full 16-Mbyte
memory space.

CYy AC oV N z

The label "JIMPADR" is assigned to the instruction at program memory location 123456H.
The instruction is

EJMP JMPADR

EJMP addr24

Binary Mode  Source Mode
Bytes: 5 4
States: 6 5
[Encoding] 1000 1010 addr23— addrl5-addr8 addr7—addrO
addrl6
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: EJMP
(PC) ~ (addr.23:0)
EJMP @DRk
Binary Mode  Source Mode
Bytes: 3 2
States: 7 6
[Encoding] 1000 1001 ‘ ‘ uuuu
Hex Code in:  Binary Mode =[A5][Encoding]
Source Mode = [Encoding]
Operation: EJMP
(PC) ~ ((DRK))
ERET
Function: Extended return
Description: Pops byte 2, byte 1, and byte 0 of the 3-byte PC successively from the stack and
decrements the stack pointer by 3. Program execution continues at the resulting address,
which normally is the instruction immediately following ECALL.
Flags: No flags are affected.

A-61



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Example: The stack pointer contains 0BH. On-chip RAM locations 08H, 09H and OAH contain 01H,
23H and 49H, respectively. After executing the instruction

ERET

the stack pointer contains 08H and program execution continues at location 012349H.
Binary Mode  Source Mode

Bytes: 3 2
States: 10 9
[Encoding] 1010 1010

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ERET
(PC.23:16) — ((SP))
(SP) - (SP) -1
(PC.15:8) — ((SP))
(SP) « (SP) -1
(PC.7:0) « ((SP))
(SP) « (SP) -1

INC <Byte>
Function: Increment
Description: Increments the specified byte variable by 1. An original value of FFH overflows to O0H.
Three addressing modes are allowed for 8-bit operands: register, direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.
Flags:
CY AC oV
— — — O O
Example: Register 0 contains 7EH (011111110B) and on-chip RAM locations 7EH and 7FH contain
OFFH and 40H, respectively. After executing the instruction sequence
INC @RO
INC RO
INC @RO
register 0 contains 7FH and on-chip RAM locations 7EH and 7FH contain OOH and 41H,
respectively.
Variations
INC A
Binary Mode  Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0000 0100

A-62



|nte|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
A -AW+1

INC dir8

Binary Mode  Source Mode
Bytes: 2 2
States: 2t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0000 0101 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(dir8) ~ (dir8) +1
INC @Ri
Binary Mode  Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 0000 011i

Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: INC
((Ri) - ((Ri)) +1
INC Rn
Binary Mode  Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0000 lrrr

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: INC
(Rn) « (RN)+1

INC <dest>,<src>

Function: Increment

Description: Increments the specified variable by 1, 2, or 4. An original value of OFFH overflows to 00H.

A-63



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Flags:
CY AC ov
— — — 0
Example: Register 0 contains 7EH (011111110B). After executing the instruction
INC RO,#1
register O contains 7FH.
Variations
INC Rm,#short
Binary Mode  Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1011 ‘ ‘ SSSS 00 AY;
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: INC
(Rm) < (Rm) + #short
INC WRj,#short
Binary Mode  Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1011 ‘ ‘ tttt 01 vV
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: INC
(WRj) « (WRj) + #short
INC DRk, #short
Binary Mode Source Mode
Bytes: 3 2
States: 4 3
[Encoding] 0000 1011 | | wuuuu 11 Vv

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: INC
(DRK) ~ (DRK) + #shortdata pointer

A-64



intel.

INSTRUCTION SET REFERENCE

INC DPTR

Function: Increment data pointer

Description: Increments the 16-bit data pointer by one. A 16-bit increment (modulo 216) is performed; an
overflow of the low byte of the data pointer (DPL) from OFFH to O0OH increments the high
byte of the data pointer (DPH) by one. An overflow of the high byte (DPH) does not
increment the high word of the extended data pointer (DPX = DR56).

Flags:

CcY AC oV

Example: Registers DPH and DPL contain 12H and OFEH, respectively. After the instruction
sequence
INC DPTR
INC DPTR
INC DPTR
DPH and DPL contain 13H and 01H, respectively.

Binary Mode  Source Mode

Bytes: 1 1

States: 1 1

[Encoding] 1010 0011

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: INC
(DPTR) ~ (DPTR) +1

JB bit51,rel

JB bit,rel

Function: Jump if bit set

Description: If the specified bit is a one, jump to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

Flags:

CY AC ov N Y4

A-65



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Example: Input port 1 contains 11001010B and the accumulator contains 56 (01010110B). After the
instruction sequence

JB P1.2,LABEL1
JB ACC.2,LABEL2

program execution continues at label LABEL?2.

Variations
JB bit51,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 0010 0000 ‘ ‘ bit addr ‘ ‘ rel. addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JB

(PC) « (PC) +3

IF (bit51) =1

THEN
(PC) « (PC) +rel
JB bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6
[Encoding]
1010 1001 ‘ ‘ 0010 0 vy ‘ ‘directaddr ‘ ‘ rel. addr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: JB
(PC) « (PC) +3
IF (bit) =1
THEN
(PC) « (PC) +rel

A-66



intel.

INSTRUCTION SET REFERENCE

JBC bit51,rel
JBC bit,rel
Function: Jump if bit is set and clear bit
Description: If the specified bit is one, branch to the specified address; otherwise proceed with the next
instruction. The bit is not cleared if it is already a zero. The branch destination is computed
by adding the signed relative displacement in the third instruction byte to the PC, after incre-
menting the PC to the first byte of the next instruction.
Note: When this instruction is used to test an output pin, the value used as the original data
is read from the output data latch, not the input pin.
Flags:
CcY AC oV N 4
Example: The accumulator contains 56H (01010110B). After the instruction sequence
JBC ACC.3,LABEL1
JBC ACC.2,LABEL2
the accumulator contains 52H (01010010B) and program execution continues at label
LABEL2.
Variations
JBC bit51,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 3 3
States: 4 7 4 7
[Encoding] 0001 0000 ‘ ‘ bit addr ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: JBC
(PC) « (PC) +3
IF (bit51) =1
THEN
(bit51) ~ O
(PC) « (PC) +rel
JBC bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6

A-67



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

[Encoding]
1010 1001 ‘ ‘ 0001 0 yyy ‘ ‘directaddr ‘ ‘ rel. addr ‘

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: JBC

(PC) « (PC) +3

IF (bit51) =1

THEN

(bit51) ~ O

(PC) « (PC) +rel
JCrel
Function: Jump if carry is set
Description: If the CY flag is set, branch to the address specified; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement

in the second instruction byte to the PC, after incrementing the PC twice.
Flags:

CcY AC oV N z
| — P J— —

Example: The CY flag is clear. After the instruction sequence

JC LABEL1

CPL CY

JC LABEL 2

the CY flag is set and program execution continues at label LABEL2.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2
States: 1 4 1 4
[Encoding] 0100 0000 ‘ ‘ rel. addr
Hex Code in:  Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: JC

(PC) - (PC)+2

IF(CY)=1

A-68

THEN
(PC) < (PC) + rel



intel.

INSTRUCTION SET REFERENCE

JE rel
Function: Jump if equal
Description: If the Z flag is set, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CY AC ov N z
— — R R ]
Example: The Z flag is set. After executing the instruction
JE LABEL1
program execution continues at label LABEL1.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0110 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JE
(PC) « (PC) +2
IF(Z)=1
THEN (PC) ~ (PC) +rel
JGrel
Function: Jump if greater than
Description: If the Z flag and the CY flag are both clear, branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice.
Flags:
CY AC ov N z
J— J— J— | J—
Example: The instruction

JG LABEL1

causes program execution to continue at label LABEL1 if the Z flag and the CY flag are both
clear.

A-69



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0011 1000 | [ rel adar
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JG
(PC) « (PC) +2
IF(Z)=0AND (CY) =0
THEN (PC) ~ (PC) +rel
JLE rel
Function: Jump if less than or equal
Description: If the Z flag or the CY flag is set, branch to the address specified; otherwise proceed with the
next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CY AC ov N z
_ — — 1 1
Example: The instruction
JLE LABEL1
causes program execution to continue at LABELL1 if the Z flag or the CY flag is set.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0010 1000 | | rel addr
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: JLE

A-70

(PC) —~ (PC) +2

IF(Z)=10R(CY)=1

THEN (PC) « (PC) + rel



|nte|® INSTRUCTION SET REFERENCE

JMP @A+DPTR
Function: Jump indirect

Description: Add the 8-bit unsigned contents of the accumulator with the 16-bit data pointer and load the
resulting sum into the lower 16 bits of the program counter. This is the address for
subsequent instruction fetches. The contents of the accumulator and the data pointer are
not affected.

Flags:
cY AC ov N Zz
Example: The accumulator contains an even number from 0 to 6. The following sequence of instruc-
tions branch to one of four AJMP instructions in a jump table starting at IMP_TBL:
MOV DPTR,#IMP_TBL
JMP @A+DPTR
. AIJMP LABELO
IMP_TBL: — aamp LABELL
AIJMP LABEL2
AIMP LABEL3
If the accumulator contains 04H at the start this sequence, execution jumps to LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other
address.
Binary Mode  Source Mode
Bytes: 1 1
States: 5 5
[Encoding] 0111 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: JMP
(PC.15:0) ~ (A) + (DPTR)

JNB bit51,rel

JNB bit,rel

Function: Jump if bit not set

Description: If the specified bit is clear, branch to the specified address; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified.

A-71



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Flags:
CcY AC ov N Zz

Example: Input port 1 contains 11001010B and the accumulator contains 56H (01010110B). After

executing the instruction sequence

JNB P1.3,LABEL1

JNB ACC.3,LABEL2

program execution continues at label LABEL?2.
Variations
JNB bit51,rel

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 3 3
States: 2 5 2 5
[Encoding] 0011 0000 ‘ ‘ bit addr ‘ ‘ rel. addr
Hex Code in:  Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: JNB

(PC) « (PC) +3

IF (bit51) =0

THEN (PC) ~ (PC) +rel
JNB bit,rel
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 5 5 4 4
States: 4 7 3 6
[Encoding]
1010 1001 | | o011 0 yy | |directaddr | | rel addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: JNB

(PC) « (PC) +3

IF (bit) =0

THEN

A-72

(PC) ~ (PC) +rel



intel.

INSTRUCTION SET REFERENCE

JNC rel
Function: Jump if carry not set
Description: If the CY flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The CY flag is not modified.
Flags:
CY AC oV N z
| R — J— —
Example: The CY flag is set. The instruction sequence
JNC LABEL1
CPLCY
JNC LABEL2
clears the CY flag and causes program execution to continue at label LABEL2.
Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 1 4 1 4
[Encoding] 0101 0000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: JNC
(PC) « (PC) +2
IF(CY)=0
THEN (PC) ~ (PC) +rel
JNE rel
Function: Jump if not equal
Description: If the Z flag is clear, branch to the address specified; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative displacement
in the second instruction byte to the PC, after incrementing the PC twice.
Flags:
CY AC oV N z
— J— J— J— ]
Example: The instruction

JNE LABEL1

causes program execution to continue at LABELL1 if the Z flag is clear.

A-73



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2
States: 2 5 1 4
[Encoding] 0111 1000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: JNE

(PC) « (PC) +2

IF(Z)=0

THEN (PC) «~ (PC) +rel

JINZ rel
Function: Jump if accumulator not zero
Description: If any bit of the accumulator is set, branch to the specified address; otherwise proceed with

the next instruction. The branch destination is computed by adding the signed relative

displacement in the second instruction byte to the PC, after incrementing the PC twice. The

accumulator is not modified.
Flags:

CcY AC ov N z
— — — — 1

Example: The accumulator contains O0H. After executing the instruction sequence

JNZ LABEL1

INC A

JNZ LABEL2

the accumulator contains 01H and program execution continues at label LABEL2.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 2 2 2 2
States: 2 5 2 5
[Encoding] 0111 0000 ‘ ‘ rel. addr
Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: JINZ

A-74

(PC) - (PC) +2

IF(A)£0

THEN (PC) — (PC) +rel



intel.

INSTRUCTION SET REFERENCE

JSG rel

Function: Jump if greater than (signed)

Description: If the Z flag is clear AND the N flag and the OV flag have the same value, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CY AC ov N z
— — | 1 |

Example: The instruction
JSG LABEL1
causes program execution to continue at LABELL1 if the Z flag is clear AND the N flag and
the OV flag have the same value.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0001 1000 ‘ ‘ rel. addr

Hex Code in:  Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: JSG
(PC) « (PC) +2
IF [(N) =0 AND (N) = (OV)]

THEN (PC) ~ (PC) +rel

JSGE rel

Function: Jump if greater than or equal (signed)

Description: If the N flag and the OV flag have the same value, branch to the address specified,;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

CY AC oV N z

A-75



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Example: The instruction
JSGE LABEL1
causes program execution to continue at LABELL1 if the N flag and the OV flag have the
same value.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0101 1000 | [ rel adar

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: JSGE
(PC) « (PC)+2
IF[(N) = (QV)]

THEN (PC) ~ (PC) +rel

JSL rel

Function: Jump if less than (signed)

Description: If the N flag and the OV flag have different values, branch to the address specified,;
otherwise proceed with the next instruction. The branch destination is computed by adding
the signed relative displacement in the second instruction byte to the PC, after incrementing
the PC twice.

Flags:

CY AC oV N z
— — | 1 1

Example: The instruction
JSL LABEL1
causes program execution to continue at LABELL1 if the N flag and the OV flag have different
values.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0100 1000 \ \ rel. addr

Hex Code in:  Binary Mode = [A5][Encoding]

A-76

Source Mode = [Encoding]



intel.

INSTRUCTION SET REFERENCE

Operation: JSL
(PC) - (PC)+2
IF (N) # (OV)

THEN (PC) ~ (PC) +rel

JSLE rel

Function: Jump if less than or equal (signed)

Description: If the Z flag is set OR if the the N flag and the OV flag have different values, branch to the
address specified; otherwise proceed with the next instruction. The branch destination is
computed by adding the signed relative displacement in the second instruction byte to the
PC, after incrementing the PC twice.

Flags:

CY AC oV N z
— — | 1 |

Example: The instruction
JSLE LABEL1
causes program execution to continue at LABELL1 if the Z flag is set OR if the the N flag and
the OV flag have different values.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken

Bytes: 3 3 2 2

States: 2 5 1 4

[Encoding] 0000 1000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]

Operation: JSLE
(PC) « (PC) +2
IF{(Z) =1 OR [(N) # (OV)]}

THEN (PC) ~ (PC) + rel

JZ rel

Function: Jump if accumulator zero

Description: If all bits of the accumulator are clear (zero), branch to the address specified; otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative displacement in the second instruction byte to the PC, after incrementing the PC
twice. The accumulator is not modified.

Flags:

CY AC ov N z

A-T7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Example: The accumulator contains 01H. After executing the instruction sequence
JZ LABEL1
DEC A
JZ LABEL2

the accumulator contains 00H and program execution continues at label LABEL2.

Binary Mode Source Mode
Not Taken Taken Not Taken Taken
Bytes: 2 2 2 2
States: 2 5 2 5
[Encoding] 0110 0000 ‘ ‘ rel. addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: Jz
(PC) « (PC) +2
IF(A)=0

THEN (PC) — (PC) + rel

LCALL <dest>
Function: Long call

Description: Calls a subroutine located at the specified address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first). The stack pointer is incremented by two. The high and
low bytes of the PC are then loaded, respectively, with the second and third bytes of the
LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the 64-Kbyte region of memory where the next
instruction is located.

Flags:

CY AC ov N z

Example: The stack pointer contains 07H and the label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction

LCALL SUBRTN

at location 0123H, the stack pointer contains 09H, on-chip RAM locations 08H and 09H
contain 01H and 26H, and the PC contains 1234H.

LCALL addr16
Binary Mode Source Mode

Bytes: 3 3
States: 9 9
[Encoding] 0001 0010 | |addri5-addr8 | | addr7-addr0

A-78



intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]

Source Mode = [Encoding]
Operation: LCALL

(PC) « (PC) +3

(SP) -~ (SP) +1

((SP)) ~ (PC.7:0)

(SP) — (SP) +1

((SP)) ~ (PC.15:8)

(PC) ~ (addr.15:0)
LCALL @QWR]

Binary Mode Source Mode

Bytes: 3 2
States: 9 8
[Encoding] 1001 1001 ‘ ‘ tttt ‘ ‘ 0100
Hex Code in:  Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: LCALL

(PC) « (PC) +3
(SP) — (SP) +1
((SP)) — (PC.7:0)
(SP) — (SP) +1
((SP))  (PC.15:8)
(PC) ~ ((WRY))

LIJMP <dest>
Function:

Description:

Flags:

Example:

Long Jump

Causes an unconditional branch to the specified address, by loading the high and low bytes
of the PC (respectively) with the second and third instruction bytes. The destination may
therefore be anywhere in the 64-Kbyte memory region where the next instruction is located.

CY AC ()%

The label "JMPADR" is assigned to the instruction at program memory location 1234H. After

executing the instruction

LIMP JMPADR

at location 0123H, the program counter contains 1234H.

A-79



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

LIJMP addr16

Binary Mode Source Mode

Bytes: 3 3
States: 5 5
[Encoding] 0000 0010 \ ‘addrlS—addrB \ \ addr7—addr0

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: LIMP
(PC) ~ (addr.15:0)
LIMP @WR]j
Binary Mode Source Mode
Bytes: 3 2
States: 6 5
[Encoding] 1000 1001 | [ttt | [ o100

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: LIMP
(PC) - ((WRj))

MOV <dest>,<src>

Function: Move byte variable

Description:  Copies the byte variable specified by the second operand into the location specified by the

first operand. The source byte is not affected.

This is by far the most flexible operation. Twenty-four combinations of source and

destination addressing modes are allowed.

Flags:

CY AC ov N

A-80



|nte|® INSTRUCTION SET REFERENCE

Example: On-chip RAM location 30H contains 40H, on-chip RAM location 40H contains 10H, and
input port 1 contains 11001010B (OCAH). After executing the instruction sequence
MOV RO,#30H ;RO < =30H
MOV A,@RO ;A < =40H
MOV R1,A ;R1<=40H
MOV B,@R1 ;B<=10H
MOV @R1,P1 ;RAM (40H) < = OCAH
MOV P2,P1 ;P2 #0CAH

register 0 contains 30H, the accumulator and register 1 contain 40H, register B contains
10H, and on-chip RAM location 40H and output port 2 contain OCAH (11001010B).

Variations
MOV A #data
Binary Mode  Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0111 0100 ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) — #data

MOV dir8 #data

Binary Mode Source Mode
Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0111 0101 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ~ #data

MOV @Ri #data

Binary Mode  Source Mode

Bytes: 2 3
States: 3 4
[Encoding] 0111 011i | |immed.data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

A-81



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Operation: MOV
((Ri)) ~ #data

MOV Rn #data

Binary Mode Source Mode

Bytes: 2 3
States: 1 2
[Encoding] 0111 Irrrr ‘ ‘ immed. data

Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: MOV
(Rn) ~ #data
MOV dir8,dir8
Binary Mode Source Mode
Bytes: 3 3
States: 3 3
[Encoding] 1000 0101 ‘ ‘ direct addr ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(dir8) ~ (dir8)
MOV dir8,@Ri
Binary Mode  Source Mode
Bytes: 2 3
States: 3 4
[Encoding] 1000 011i \ \ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: MOV
(dir8) « ((Ri))

MOV dir8,Rn

Binary Mode  Source Mode
Bytes: 2 3
States: 2t 3t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1000 lrrr ‘ ‘ direct addr

A-82



|nte|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: MOV
(dir8) « (Rn)
MOV @Ri,dir8
Binary Mode Source Mode
Bytes: 2 3
States: 3 4
[Encoding] 1010 011i ‘ ‘ direct addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: MOV
((Ri)) ~ (dir8)

MOV Rn,dir8

Binary Mode  Source Mode
Bytes: 2 3
States: 1t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1010 Irrr ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: MOV
(Rn) ~ (dir8)

MOV A,dir8

Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1110 0101 | | direct addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(A) ~ (dir8)

A-83



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

MOV A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 1110 011i
Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]
Operation: MOV
(A) ~ ((R)
MOV A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1110 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [A5][Encoding]
Operation: MOV
(A) - (Rn)
MOV dir8,A
Binary Mode  Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1111 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (A)
MOV @Ri,A
Binary Mode  Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 1111 011i

A-84




|nte|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: MOV
((Ri)) — (A)
MOV Rn,A
Binary Mode  Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1111 111r

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: MOV
(Rn) — (A)

MOV Rmd,Rms

Binary Mode  Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0111 1100 ‘ ‘ Ssss SSSS

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rmd) « (Rms)

MOV WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0111 1101 | |ttt TTTT

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRjd) ~ (WRjs)

A-85



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

MOV DRkd,DRks

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0111 1111 ‘ ‘ uuuu UuuU

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRkd) —~ (DRks)

MOV Rm, #data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0111 1110 | | ssss 0000 | | #data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) ~ #data

MOV WRj,#datal6

Binary Mode  Source Mode

Bytes: 5 4
States: 3 2
[Encoding]
0111 1110 | | teet 0100 | | #datahi | [ #datalow

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) ~ #datal6

MOV DRk, #0datal6

Binary Mode  Source Mode

Bytes: 5 4
States: 5 4
[Encoding]
0111 1110 ‘ ‘ uuuu 1000 ‘ ‘ #data hi ‘ ‘ #data low

A-86



|nte|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode =[A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRK) « #0datal6

MOV DRk, #ldatal6

Binary Mode  Source Mode

Bytes: 5 4
States: 5 4
[Encoding]
0111 1110 | | wuuu 1100 | | #datahi | | #datalow

Hex Code in: Binary Mode =[A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRK) ~ #ldatal6

MOV Rm,dir8

Binary Mode  Source Mode
Bytes: 4 3
States: 3t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) — (dir8)
MOV WRj,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0111 1110 | |ttt 0101 | | directaddr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) « (dir8)

A-87



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

MOV DRKk,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 6 5
[Encoding] 0111 1110 ‘ ‘ uuuu 1101 ‘ ‘ direct addr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(DRK) ~ (dir8)
MOV Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0111 1110 ‘ ‘ SSSS 0011 ‘ ‘ direct addr ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(Rm) « (dir16)

MOV WRj,dir16

Binary Mode  Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
0111 1110 | | teet 0111 | | directaddr | [ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) < (dir16)

MOV DRk, dir16

Binary Mode  Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
0111 1110 ‘ ‘ uuuu 1111 ‘ ‘ direct addr ‘ ‘ direct addr

A-88



intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(DRK) « (dir16)
MOV Rm,@WRj
Binary Mode Source Mode
Bytes: 4 3
States: 2 2
[Encoding]
0111 1110 | |t 1001 | | ssss 0000
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) — ((WRj))
MOV Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0111 1110 | | wuuu 1011 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) ~ ((DRK))
MOV WRjd,@WRjs
Binary Mode  Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0000 1011 | [ TTTT 1000 | | teet 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

(WRjd) ~ ((WRjs))

A-89



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

MOV WRj, @DRk

Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding]
0000 1011 | | wuuu 1010 | | ottt 0000
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) ~ ((DRK))
MOV dir8,Rm
Binary Mode  Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0111 1010 ‘ ‘ SSsSs 0011 ‘ ‘ direct addr
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) « (Rm)
MOV dir8,WRj
Binary Mode Source Mode
Bytes: 4 3
States: 5 4
[Encoding] 0111 1010 | | ottt 0101 | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (WR))
MOV dir8,DRk
Binary Mode Source Mode
Bytes: 4 3
States: 7 6
[Encoding] 0111 1010 ‘ ‘ uuuu 1101 ‘ ‘ direct addr

A-90




intel.

INSTRUCTION SET REFERENCE

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir8) ~ (DRK)
MOV dirl6,Rm
Binary Mode  Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0111 1010 ‘ ‘ SSSS 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dirl6) —~ (Rm)
MOV dirl6,WR;j
Binary Mode  Source Mode
Bytes: 5 4
States: 5 4
[Encoding]
0111 1010 ‘ ‘ tttt 0111 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(dir16) ~ (WRj)
MOV dir16,DRk
Binary Mode  Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0111 1010 ‘ ‘ uuuu 1111 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV

(dir16) — (DRK)

A-91



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

MOV @WR]j,Rm
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0111 1010 H tttt 1001 H ssss 0000

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WR)) ~ (Rm)

MOV @DRK,Rm

Binary Mode Source Mode

Bytes: 4 3
States: 5 4
[Encoding]
0111 1010 H uuuu 1011 H ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRK)) ~ (Rm)

MOV @WRjd WRjs

Binary Mode  Source Mode

Bytes: 4 3
States: 5 4
[Encoding]
0001 1011 | | et 1000 | [ TTTT 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRjd)) — (WRjs)

MOV @DRK,WRj

Binary Mode  Source Mode
Bytes: 4 3
States: 6 5

A-92



|nte|® INSTRUCTION SET REFERENCE

[Encoding]
| ooor [ 1011 | | wuuu 1010 | [ et 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
((DRK)) ~ (WRY)
MOV Rm,@WR;j + dis16
Binary Mode Source Mode
Bytes: 5 4
States: 6 5
[Encoding]
0000 1001 ‘ ‘ SSSS tttt ‘ ‘ dis hi ‘ ‘ dis low
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) — ((WRj)) + (dis)
MOV WRj,@WRj + dis16
Binary Mode Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0100 1001 | | ottt TTTT | | dishi | | dislow
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(WRj) ~ ((WRj)) + (dis)
MOV Rm,@DRk + dis16
Binary Mode  Source Mode
Bytes: 5 4
States: 7 6
[Encoding]
0010 1001 ‘ ‘ SSSS uuuu ‘ ‘ dis hi ‘ ‘ dis low

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: MOV
(Rm) « ((DRK)) + (dis)

A-93



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

MOV WRj,@DRKk + dis16

Binary Mode Source Mode

Bytes: 5 4
States: 8 7
[Encoding]
0110 1001 ‘ ‘ tttt uuuu ‘ ‘ dis hi ‘ ‘ dis low

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(WRj) « ((DRK)) + (dis)

MOV @WR;j + dis16,Rm

Binary Mode Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
0001 1001 ‘ ‘ tttt SSsSs ‘ ‘ dis hi ‘ ‘ dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) + (dis) — (Rm)

MOV @WR;j + dis16,WRj
Binary Mode Source Mode

Bytes: 5 4
States: 7 6
[Encoding]
0101 1001 | | ottt TTTT | | dishi | | dislow

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((WRj)) + (dis) — (WR])
MOV @DRk + dis16,Rm
Binary Mode  Source Mode

Bytes: 5 4
States: 7 6
[Encoding]
0011 1001 ‘ ‘ uuuu SSSsS ‘ ‘ dis hi ‘ ‘ dis low

A-94



|nte|® INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRK)) + (dis) « (Rm)

MOV @DRk + dis16,WRj

Binary Mode  Source Mode

Bytes: 5 4
States: 8 7
[Encoding]
0111 1001 ‘ ‘ uuuu tttt ‘ ‘ dis hi ‘ ‘ dis low

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
((DRK)) + (dis) « (WRj)

MOV <dest-hit>,<src—bit>

Function: Move bit data

Description: Copies the Boolean variable specified by the second operand into the location specified by
the first operand. One of the operands must be the CY flag; the other may be any directly
addressable bit. Does not affect any other register.

Flags:
CY AC ov N z
O — — — —
Example: The CY flag is set, input Port 3 contains 11000101B, and output Port 1 contains 35H
(00110101B). After executing the instruction sequence
MOV P1.3,CY
MOV CY,P3.3
MOV P1.2,CY
the CY flag is clear and Port 1 contains 39H (00111001B).
Variations
MOV bit51,CY
Binary Mode  Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1001 0010 \ \ bit addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

A-95



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Operation: MOV
(bit51) ~ (CY)

MOV CY,bit51
Binary Mode  Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1010 0010 | | bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) < (bits1)
MOV bit,CY
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 | [ 1001 0 yyy | | directaddr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(bit) ~ (CY)
MOV CY,bit
Binary Mode  Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1010 0 yyy ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOV
(CY) < (bit)

A-96



intel.

INSTRUCTION SET REFERENCE

MOV DPTR, #datal6

Function:

Description:

Flags:

Example:

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Load data pointer with a 16-bit constant

Loads the 16-bit data pointer (DPTR) with the specified 16-bit constant. The high byte of the
constant is loaded into the high byte of the data pointer (DPH). The low byte of the constant
is loaded into the low byte of the data pointer (DPL).

CYy AC oV N Zz

After executing the instruction
MOV DPTR,#1234H

DPTR contains 1234H (DPH contains 12H and DPL contains 34H).
Binary Mode  Source Mode
3 3
2 2

1001 0000 \ \ data hi \ \ data low

Binary Mode = [Encoding]
Source Mode = [Encoding]

MOV
(DPTR) - #datal6

MOVC A,@A+<base-reg>

Function:

Description:

Flags:

Move code byte

Loads the accumulator with a code byte or constant from program memory. The address of
the byte fetched is the sum of the original unsigned 8-bit accumulator contents and the
contents of a 16-bit base register, which may be the 16 LSBs of the data pointer or PC. In
the latter case, the PC is incremented to the address of the following instruction before being
added with the accumulator; otherwise the base register is not altered. Sixteen-bit addition is
performed.

CYy AC ov N z

A-97



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Example: The accumulator contains a number between 0 and 3. The following instruction sequence
translates the value in the accumulator to one of four values defined by the DB (define byte)
directive.

RELPC: INC A
MOVvC A ,@A+PC
RET
DB 66H
DB 77H
DB 88H
DB 99H

If the subroutine is called with the accumulator equal to 01H, it returns with 77H in the
accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the accumulator instead.

Variations

MOVC A,@A+PC

Binary Mode  Source Mode

Bytes: 1 1
States: 6 6
[Encoding] 1000 0011

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(PC) « (PC) +1
(A) < ((A) + (PC))

MOVC A,@A+DPTR

Binary Mode  Source Mode

Bytes: 1 1
States: 6 6
[Encoding] 1001 0011

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVC
(A) ~ ((A) + (DPTR))

MOVH DRk, #datal6

Function: Move immediate 16-bit data to the high word of a dword (double-word) register

Description: Moves 16-bit immediate data to the high word of a dword (32-bit) register. The low word of
the dword register is unchanged.

A-98



|nte|® INSTRUCTION SET REFERENCE

Flags:
cY AC ov N Zz
Example: The dword register DRk contains 5566 7788H. After the instruction
MOVH DRK,#1122H
executes, DRk contains 1122 7788H.
Variations

MOVH DRk, #datal6

Binary Mode Source Mode

Bytes: 5 4
States: 3 2
[Encoding]
0111 1010 ‘ ‘ uuuu 1100 ‘ ‘ #data hi ‘ ‘ #data low

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOVH
(DRK).31:16 ~ #datal6
MOVS WRj,Rm
Function: Move 8-bit register to 16-bit register with sign extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The high byte of
the 16-bit register is filled with the sign extension, which is obtained from the MSB of the 8-
bit source register.

Flags:
CY AC ov N 4
Example: Eight-bit register Rm contains 055H (01010101B) and the 16-bit register WRj contains
OFFFFH (11111111 11111111B). The instruction
MOVS WRj,Rm
moves the contents of register Rm (01010101B) to register WR;j (i.e., WR]j contains
00000000 01010101B).
Variations

A-99



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

MOVS WRj,Rm

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

Binary Mode  Source Mode
3 2
2 1

0001 1010 \\ tttt ssss

Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
MOVS

(WR)j).7-0 ~ (Rm).7-0
(WR)j).15-8 — MSB

MOVX <dest>,<src>

Function:

Description:

Flags:

Example:

Variations

A-100

Move external

Transfers data between the accumulator and a byte in external data RAM. There are two
types of instructions. One provides an 8-bit indirect address to external data RAM; the
second provides a 16-bit indirect address to external data RAM.

In the first type of MOVX instruction, the contents of RO or R1 in the current register bank
provides an 8-bit address on port 0. Eight bits are sufficient for external 1/0 expansion
decoding or for a relatively small RAM array. For larger arrays, any port pins can be used to
output higher address bits. These pins would be controlled by an output instruction
preceding the MOVX.

In the second type of MOV X instruction, the data pointer generates a 16-bit address. Port 2
outputs the upper eight address bits (from DPH) while port 0 outputs the lower eight address
bits (from DPL).

For both types of moves in nonpage mode, the data is multiplexed with the lower address
bits on port 0. In page mode, the data is multiplexed with the contents of P2 on port 2 (8-bit
address) or with the upper address bits on port 2 (16-bit address).

It is possible in some situations to mix the two MOVX types. A large RAM array with its
upper address lines driven by P2 can be addressed via the data pointer, or with code to
output upper address bits to P2 followed by a MOVX instruction using RO or R1.

CY AC oV N z

The 8X930Ax controller is operating in nonpage mode. An external 256-byte RAM using
multiplexed address/data lines (e.g., an Intel 8155 RAM/I/O/Timer) is connected to port 0.
Port 3 provides control lines for the external RAM. ports 1 and 2 are used for normal I/O. RO
and R1 contain 12H and 34H. Location 34H of the external RAM contains 56H. After
executing the instruction sequence

MOVX A,@R1
MOVX @RO,A

the accumulator and external RAM location 12H contain 56H.



intel.

INSTRUCTION SET REFERENCE

MOVX A,@DPTR

Binary Mode Source Mode

Bytes: 1 1
States: 5 5
[Encoding] 1110 0000

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVX
(A) ~ ((DPTRY))
MOVX A,@Ri
Binary Mode Source Mode
Bytes: 1 1
States: 3 3
[Encoding] 1110 001i

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: MOVX
(A) — ((Ri)

MOVX @DPTR,A

Binary Mode  Source Mode

Bytes: 1 1
States: 5 5
[Encoding] 1111 0000

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: MOVX
((DPTR)) « (A)
MOVX @Ri,A
Binary Mode  Source Mode
Bytes: 1 1
States: 4 4
[Encoding] 1111 001i

Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

A-101



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Operation: MOVX
((Ri)) — (A)
MOVZ WRj,Rm
Function: Move 8-bit register to 16-bit register with zero extension

Description: Moves the contents of an 8-bit register to the low byte of a 16-bit register. The upper byte of
the 16-bit register is filled with zeros.

Flags:
CcY AC oV N 4
Example: Eight-bit register Rm contains 055H (01010101B) and 16-bit register WRj contains OFFFFH
(11111111 11111121B). The instruction
MOVZ WRj,Rm
moves the contents of register Rm (01010101B) to register WR]. At the end of the operation,
WRj contains 00000000 01010101B.
Variations
MOVZ WRj,Rm
Binary Mode  Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1010 ‘ ‘ tttt SSSs

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MOVvz
(WRj)7-0 — (Rm)7-0
(WRj)15-8 ~ 0

MUL <dest>,<src>
Function: Multiply

Description: Multiplies the unsigned integer in the source register with the unsigned integer in the
destination register. Only register addressing is allowed.

For 8-bit operands, the result is 16 bits. The most significant byte of the result is stored in the
low byte of the word where the destination register resides. The least significant byte is
stored in the following byte register. The OV flag is set if the product is greater than 255
(OFFH); otherwise it is cleared.

For 16-bit operands, the result is 32 bits. The most significant word is stored in the low word
of the dword where the destination register resides. The least significant word is stored in
the following word register. In this operation, the OV flag is set if the product is greater than
OFFFFH, otherwise it is cleared. The CY flag is always cleared. The N flag is set when the
MSB of the result is set. The Z flag is set when the result is zero.

A-102



|nte|® INSTRUCTION SET REFERENCE

Flags:
CY AC oV
0 — O
Example: Register R1 contains 80 (50H or 10010000B) and register RO contains 160 (OAOH or

10010000B). After executing the instruction
MUL R1,RO

which gives the product 12,800 (3200H), register RO contains 32H (00110010B), register R1
contains 00H, the QV flag is set, and the CY flag is clear.

MUL Rmd,Rms

Binary Mode  Source Mode

Bytes: 3 2
States: 6 5
[Encoding] 1010 1100 | | ssss Ssss

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (8-bit operands)
if <dest>md =0, 2, 4, .., 14
Rmd ~ high byte of the Rmd X Rms
Rmd+1 — low byte of the Rmd X Rms
if <dest>md =1, 3,5, .., 15
Rmd-1 « high byte of the Rmd X Rms
Rmd — low byte of the Rmd X Rms

MUL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 12 11
[Encoding] 1010 1101 | [ teet tttt

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: MUL (16-bit operands)
if <dest>jd =0, 4,8, .., 28
WRjd ~ high word of the WRjd X WRjs
WRjd+2 — low word of the WRjd X WRjs
if <dest>jd = 2, 6, 10, .., 30
WRjd-2 ~ high word of the WRjd X WRjs
WRjd ~ low word of the WRjd X WRjs

A-103



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

MUL AB
Function: Multiply
Description: Multiplies the unsigned 8-bit integers in the accumulator and register B. The low byte of the
16-bit product is left in the accumulator, and the high byte is left in register B. If the product is
greater than 255 (OFFH) the OV flag is set; otherwise it is clear. The CY flag is always clear.
Flags:
CY AC ov
0 — O O O
Example: The accumulator contains 80 (50H) and register B contains 160 (OAOH). After executing the
instruction
MUL AB
which gives the product 12,800 (3200H), register B contains 32H (00110010B), the
accumulator contains 00H, the OV flag is set, and the CY flag is clear.
Binary Mode  Source Mode
Bytes: 1 1
States: 5 5
[Encoding] 1010 0100
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: MUL
(A) ~ low byte of (A) X (B)
(B) ~ high byte of (A) X (B)
NOP
Function: No operation
Description: Execution continues at the following instruction. Affects the PC register only.
Flags:

A-104

CY AC oV N Z




intel.

Example:

Bytes:
States:

[Encoding]

Hex Code in:

Operation:

INSTRUCTION SET REFERENCE

You want to produce a low-going output pulse on bit 7 of Port 2 that lasts exactly 11 states. A
simple CLR-SETB sequence generates an eight-state pulse. (Each instruction requires four
states to write to a port SFR.) You can insert three additional states (if no interrupts are
enabled) with the following instruction sequence:

CLR P27
NOP
NOP
NOP
SETB P2.7

Binary Mode  Source Mode
1 1
1 1

0000 0000

Binary Mode = [Encoding]
Source Mode = [Encoding]

NOP
(PC) - (PC) +1

ORL <dest> <src>

Function:

Description:

Flags:

Example:

Logical-OR for byte variables

Performs the bitwise logical-OR operation (V) between the specified variables, storing the
results in the destination operand.

The destination operand can be a register, an accumulator or direct address.

The two operands allow twelve addressing mode combinations. When the destination is the
accumulator, the source can be register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the accumulator or immediate
data. When the destination is register the source can be register, immediate, direct and
indirect addressing.

Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.

cy AC oV N z
— — — O O

The accumulator contains 0C3H (11000011B) and RO contains 55H (01010101B). After
executing the instruction

ORL ARO

the accumulator contains OD7H (11010111B).

A-105



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

When the destination is a directly addressed byte, the instruction can set combinations of
bits in any RAM location or hardware register. The pattern of bits to be set is determined by
a mask byte, which may be a constant data value in the instruction or a variable computed in
the accumulator at run time. After executing the instruction

ORL P1,#00110010B

sets bits 5, 4, and 1 of output Port 1.

ORL dir8,A
Binary Mode  Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0100 0010 ‘ ‘ direct addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) « (dir8) V (A)

ORL dir8,#data

Binary Mode  Source Mode
Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0100 0011 ‘ ‘ direct addr ‘ ‘ immed. data

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(dir8) ~ (dir8) V #data

ORL A #data
Binary Mode  Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0100 0100 \ \ immed. data

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(A) <« (A) V #data

A-106



intel.

INSTRUCTION SET REFERENCE

ORL A,dir8
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0100 0101 | | directaddr
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: ORL
(A) < (A)V (dir8)
ORL A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 0100 011i
Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]
Operation: ORL
(A) « (A)V((Ri)
ORL A,Rn
Binary Mode  Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0100 lrrr
Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]
Operation: ORL

(A) « (A)V (Rn)

ORL Rmd,Rms

Bytes:
States:

[Encoding]

Binary Mode  Source Mode
3 2
2 1

0100 1100 \ \

SSSS

A-107



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rmd) <« (Rmd) V (Rms)

ORL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0100 1101 ‘ ‘ tttt TTTT

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WRjd) — (WRjd) V (WRjs)

ORL Rm #data

Binary Mode Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 0100 1110 | | ssss 0000 | | #data

Hex Code in Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) < (Rm) V #data

ORL WRj,#datal6

Binary Mode  Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
0100 1110 | [ et 0100 | | #datahi | | #datalow

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WR)) « (WR)j) V #datal6

A-108



|nte|® INSTRUCTION SET REFERENCE

ORL Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0100 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) « (Rm) V (dir8)
ORL WR;j,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0100 1111 | |ttt 0101 | | direct adar

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WR)) « (WRj) V (dir8)
ORL Rm,dir16
Binary Mode  Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0100 1110 ‘ ‘ SSSs 0011 ‘ ‘ direct addr ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) « (Rm) V (dirl6)

ORL WRj,dir16

Binary Mode  Source Mode
Bytes: 5 4
States: 4 3

A-109



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

[Encoding]

0100 1110 ‘ ‘ tttt 0111 ‘ ‘ direct addr ‘ ‘ direct addr ‘

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(WR)) < (WR)j) V (dirl6)
ORL Rm,@WR]j
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0100 1110 | [ttt 1001 | [ ssss 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) « (Rm) V ((WRj}))
ORL Rm,@DRk
Binary Mode  Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0100 1110 ‘ ‘ uuuu 1011 ‘ ‘ SSSs 0000

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(Rm) ~ (Rm) V ((DRK))

ORL CY,<src—bit>

Function: Logical-OR for bit variables

Description: Sets the CY flag if the Boolean value is a logical 1; leaves the CY flag in its current state
otherwise . A slash (“/") preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself
is not affected.

Flags:

CY AC ov N z

A-110



Inu@; INSTRUCTIO

N SET REFERENCE

Example: Set the CY flag if and only if P1.0=1, ACC.7 =1, 0r OV =0:
MOV CY,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL CY,ACC.7 ;OR CARRY WITH THE ACC. BIT 7
ORL CY,/OV ;OR CARRY WITH THE INVERSE OF OV.
Variations
ORL CY,bit51
Binary Mode Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 0111 0010 \ \ bit addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) « (CY) V (bit51)

ORL CY,/bit51

Binary Mode  Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.

[Encoding] 1010 0000 \ \ bit addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) « (CY) V- (bit51)
ORL CY,bit
Binary Mode  Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 \ \ 0111 0 yyy \ \ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL
(CY) < (CY) V (bit)

A-111



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

ORL CY,/bit
Binary Mode  Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding]
1010 1001 ‘ ‘ 1110 0 yyy ‘ ‘ direct addr

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: ORL

(CY) < (CY) V = (bit)
POP <src>
Function: Pop from stack

Description: Reads the contents of the on-chip RAM location addressed by the stack pointer, then
decrements the stack pointer by one. The value read at the original RAM location is
transferred to the newly addressed location, which can be 8-bit or 16-bit.

Flags:
CY AC ov N 4
Example: The stack pointer contains 32H and on-chip RAM locations 30H through 32H contain 01H,
23H, and 20H, respectively. After executing the instruction sequence
POP DPH
POP DPL
the stack pointer contains 30H and the data pointer contains 0123H. After executing the
instruction
POP SP
the stack pointer contains 20H. Note that in this special case the stack pointer was
decremented to 2FH before it was loaded with the value popped (20H).
Variations
POP dir8
Binary Mode  Source Mode
Bytes: 2 2
States: 3 3
[Encoding] 1101 0000 \ \ direct addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

A-112



intel.

INSTRUCTION SET REFERENCE

Operation: POP

(dir8)  ((SP))

(SP) - (SP)-1
POP Rm
Bytes: 3 2
States: 3 2
[Encoding] 1101 1010 ‘ ‘ ssss 1000
Hex Code in:  Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: POP

(Rm) — ((SP))

(SP) — (SP)-1
POP WRj

Binary Mode  Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 1101 1010 | | et 1001
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: POP

(SP) - (SP)-1

(WRj) ~ ((SP))

(SP) - (SP)-1
POP DRk

Binary Mode Source Mode

Bytes: 3 2
States: 10 9
[Encoding] 1101 1010 | | wuuuu 1011
Hex Code in:  Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: POP

(SP) — (SP)-3
(DRK)  ((SP))
(SP) — (SP) -1

PUSH <dest>
Function:

Description:

Push onto stack

Increments the stack pointer by one. The contents of the specified variable are then copied
into the on-chip RAM location addressed by the stack pointer.

A-113



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Flags:
CcY AC ov N Zz
Example: On entering an interrupt routine, the stack pointer contains 09H and the data pointer
contains 0123H. After executing the instruction sequence
PUSH DPL
PUSH DPH
the stack pointer contains 0BH and on-chip RAM locations 0AH and OBH contain 01H and
23H, respectively.
Variations
PUSH dir8
Binary Mode Source Mode
Bytes: 2 2
States: 4 4
[Encoding] 1100 0000 | | directaddr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) - (SP)+1
((SP)) ~ (dir8)

PUSH #data
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1100 1010 | [ o000 0010 | | #daa

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: PUSH
(SP) - (SP)+1
((SP)) ~ #data

PUSH #datal6

Binary Mode  Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
1100 1010 \\ 0000 0110 \\ #data hi \\ #data lo

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-114



intel.

INSTRUCTION SET REFERENCE

Operation: PUSH
(SP) ~ (SP) +2
((SP)) —~ MSB of #datal6
((SP)) ~ LSB of #datal6
PUSH Rm
Binary Mode  Source Mode
Bytes: 3 2
States: 4 3
[Encoding] 1100 1010 | | ssss 1000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: PUSH
(SP) « (SP) +1
((SP)) ~ (Rm)
PUSH WRj
Binary Mode  Source Mode
Bytes: 3 2
States: 5 4
[Encoding] 1100 1010 | | et 1001
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: PUSH
(SP) -« (SP)+1
((SP)) ~ (WRj)
(SP) « (SP)+1
PUSH DRk
Binary Mode  Source Mode
Bytes: 3 2
States: 9 8
[Encoding] 1100 1010 \ \ uuuu 1011
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: PUSH
(SP) « (SP) +1
((SP)) ~ (DRK)
(SP) « (SP) +3
RET
Function: Return from subroutine
Description: Pops the high and low bytes of the PC successively from the stack, decrementing the stack

pointer by two. Program execution continues at the resulting address, which normally is the
instruction immediately following ACALL or LCALL.

A-115



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Flags:
CY AC ov N z

Example: The stack pointer contains 0BH and on-chip RAM locations OAH and OBH contain 01H and
23H, respectively. After executing the instruction,
RET
the stack pointer contains 09H and program execution continues at location 0123H.

Binary Mode  Source Mode

Bytes: 1 1

States: 7 7

[Encoding] 0010 0010

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: RET
(PC).15:8 — ((SP))
(SP) - (SP)-1
(PC).7:0 — ((SP))
(SP) - (SP)-1

RETI

Function: Return from interrupt

Description:  This instruction pops two or four bytes from the stack, depending on the INTR bit in the
CONFIG1 register.
If INTR = 0, RETI pops the high and low bytes of the PC successively from the stack and
uses them as the 16-bit return address in region FF:. The stack pointer is decremented by
two. No other registers are affected, and neither PSW nor PSW1 is automatically restored to
its pre-interrupt status.
If INTR = 1, RETI pops four bytes from the stack: PSW1 and the three bytes of the PC. The
three bytes of the PC are the return address, which can be anywhere in the 16-Mbyte
memory space. The stack pointer is decremented by four. PSW1 is restored to its pre-
interrupt status, but PSW is not restored to its pre-interrupt status. No other registers are
affected.
For either value of INTR, hardware restores the interrupt logic to accept additional interrupts
at the same priority level as the one just processed. Program execution continues at the
return address, which normally is the instruction immediately after the point at which the
interrupt request was detected. If an interrupt of the same or lower priority is pending when
the RETI instruction is executed, that one instruction is executed before the pending
interrupt is processed.

Flags:

A-116

CYy AC oV N z




|nte|® INSTRUCTION SET REFERENCE

Example: INTR = 0. The stack pointer contains OBH. An interrupt was detected during the instruction
ending at location 0122H. On-chip RAM locations 0AH and 0BH contain 01H and 23H,
respectively. After executing the instruction

RETI

the stack pointer contains 09H and program execution continues at location 0123H.
Binary Mode  Source Mode

Bytes: 1 1
States (INTR = 0): 9 9
States (INTR = 1): 12 12
[Encoding] 0011 0010

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation for INTR = 0:
RETI
(PC).15:8 —((SP))
(SP) - (SP) -1
(PC).7:0 " ((SP))
(SP) —~(SP)-1

Operation for INTR = 1:
RETI
(PC).15:8 ~ ((SP))
(SP) < (SP) -1
PC).7:0 — ((SP))
(SP) — (SP) -1
(PC).23:16 — ((SP))
(SP) — (SP) -1
PSW1 ~ ((SP))
(SP) — (SP) -1

RL A
Function: Rotate accumulator left

Description: Rotates the eight bits in the accumulator one bit to the left. Bit 7 is rotated into the bit 0

position.
Flags:
CcY AC oV
— — — O O
Example: The accumulator contains OC5H (11000101B). After executing the instruction,
RL A

the accumulator contains 8BH (10001011B); the CY flag is unaffected.

A-117



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Binary Mode  Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0010 0011
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RL
(A).a+1l ~ (A).a
(A).0 « (A).7
RLC A
Function: Rotate accumulator left through the carry flag
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the left. Bit 7 moves into
the CY flag position and the original state of the CY flag moves into bit O position.
Flags:
CY AC oV
O — —
Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction
RLC A
the accumulator contains 8AH (10001010B) and the CY flag is set.
Binary Mode  Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0011 0011
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RLC
(A).a+1l ~ (A).a
(A).0 < (CY)
(CY) -« (A).7
RR A
Function: Rotate accumulator right
Description: Rotates the 8 or 16 bits in the accumulator one bit to the right. Bit 0 is moved into the bit 7 or
15 position.
Flags:

A-118

CY AC oV




intel.

INSTRUCTION SET REFERENCE

Example: The accumulator contains 0C5H (11000101B). After executing the instruction
RR A
the accumulator contains OE2H (11100010B) and the CY flag is unaffected.
Binary Mode  Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0000 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RR
(A).a « (A).a+1
(A).7 « (A).0
RRC A
Function: Rotate accumulator right through carry flag
Description: Rotates the eight bits in the accumulator and the CY flag one bit to the right. Bit 0 moves into
the CY flag position; the original value of the CY flag moves into the bit 7 position.
Flags:
CY AC oV
0 — — 0 0
Example: The accumulator contains 0C5H (11000101B) and the CY flag is clear. After executing the
instruction
RRC A
the accumulator contains 62 (01100010B) and the CY flag is set.
Binary Mode  Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 0001 0011
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: RRC
(A).a « (A).a+1
(A).7 < (CY)
(CY) «~ (A).0
SETB <bit>
Function: Set bit

A-119



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Description: Sets the specified bit to one. SETB can operate on the CY flag or any directly addressable

bit.
Flags: No flags are affected except the CY flag for instruction with CY as the operand.
CcY AC oV N z
0 — — — —
Example: The CY flag is clear and output Port 1 contains 34H (00110100B). After executing the
instruction sequence
SETB CY
SETB P1.0

the CY flag is set and output Port 1 contains 35H (00110101B).

SETB bit51
Binary Mode  Source Mode
Bytes: 2 2
States: 2t 2t
Tif this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1101 0010 | | bitaddr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETB
(bit51) ~ 1
SETB CY
Binary Mode Source Mode
Bytes: 1 1
States: 1 1
[Encoding] 1101 0011

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SETB
(CY) -1
SETB bit
Binary Mode Source Mode
Bytes: 4 3
States: 4t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding]
1010 1001 | | 1101 0 yyy | | directaddr

A-120



intel.

INSTRUCTION SET REFERENCE

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SETB
(bit) « 1

SIMP rel

Function: Short jump

Description: Program control branches unconditionally to the specified address. The branch destination
is computed by adding the signed displacement in the second instruction byte to the PC,
after incrementing the PC twice. Therefore, the range of destinations allowed is from 128
bytes preceding this instruction to 127 bytes following it.

Flags:

CcY AC ov N Zz

Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The
instruction
SJMP RELADR
assembles into location 0100H. After executing the instruction, the PC contains 0123H.
(Note: In the above example, the instruction following SIJMP is located at 102H. Therefore,
the displacement byte of the instruction is the relative offset (0123H-0102H) = 21H. Put
another way, an SJIMP with a displacement of OFEH would be a one-instruction infinite loop.)

Binary Mode  Source Mode

Bytes: 2 2

States: 4 4

[Encoding] 1000 0000 ‘ ‘ rel. addr

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SIMP
(PC) « (PC) +2
(PC) ~ (PC) +rel

SLL <src>

Function: Shift logical left by 1 bit

Description: Shifts the specified variable to the left by 1 bit, replacing the LSB with zero. The bit shifted
out (MSB) is stored in the CY bit.

Flags:

CYy AC ov

A-121



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Example: Register 1 contains 0C5H (11000101B). After executing the instruction
SLL register 1

Register 1 contains 8AH (10001010B) and CY = 1.

Variations
SLL Rm
Binary Mode  Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0011 1110 ‘ ‘ ssss 0000

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SLL

(Rm).a+1 —~ (Rm).a

(Rm).0 - 0

CY « (Rm).7
SLL WRj

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0011 1110 | | et 0100

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SLL
WRj).b+1 « (WRj).b
(WRj).0 - 0
CY « (WR)).15

SRA <src>

Function: Shift arithmetic right by 1 bit

Description: Shifts the specified variable to the arithmetic right by 1 bit. The MSB is unchanged. The bit
shifted out (LSB) is stored in the CY bit.

Flags:

CY AC ov N z
O — — O O

A-122



intel.

INSTRUCTION SET REFERENCE

Example: Register 1 contains 0C5H (11000101B). After executing the instruction
SRA register 1
Register 1 contains OE2H (11100010B) and CY = 1.
Variations
SRA Rm
Binary Mode  Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1110 ‘ ‘ SSsSS 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SRA
(Rm).7 « (Rm).7
(Rm).a « (Rm).a+1
CY ~ (Rm).0
SRA WRj
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0000 1110 | [ teet 0100
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SRA
(WR)).15 ~ (WR)j).15
(WRj).b « (WRj).b+1
CY « (WRj).0
SRL <src>
Function: Shift logical right by 1 bit
Description: SRL shifts the specified variable to the right by 1 bit, replacing the MSB with a zero. The bit
shifted out (LSB) is stored in the CY bit.
Flags:
CY AC ov N 4
0 — — 0 0
Example: Register 1 contains 0C5H (11000101B). After executing the instruction

SRL register 1

Register 1 contains 62H (01100010B) and CY = 1.

A-123



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

SRL Rm
Binary Mode  Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0001 1110 | | ssss 0000
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: SRL

(Rm).7 - 0

(Rm).a « (Rm).a+1

CY ~ (Rm).0
SRL WRj

Binary Mode  Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 0001 1110 | [ reet 0100
Hex Code in: Binary Mode = [A5][Encoding]

Source Mode = [Encoding]
Operation: SRL

(WRj).15 -~ 0

(WRj).b « (WRj).b+1

CY « (WR)).0

SUB <dest>,<src>

Function:

Description:

Flags:

A-124

Subtract

Subtracts the specified variable from the destination operand, leaving the result in the
destination operand. SUB sets the CY (borrow) flag if a borrow is needed for bit 7.

Otherwise, CY is clear.

When subtracting signed integers, the OV flag indicates a negative number produced when
a negative value is subtracted from a positive value, or a positive result when a positive

number is subtracted from a negative number.

Bit 7 in this description refers to the most significant byte of the operand (8, 16, or 32 bit).

The source operand allows four addressing modes: immediate, indirect, register and direct.

CY AC oV

0 ot 0

tFor word and dword subtractions, AC is not affected.



|nte|® INSTRUCTION SET REFERENCE

Example: Register 1 contains 0C9H (11001001B) and register 0 contains 54H (01010100B). After
executing the instruction

SUB R1,R0

register 1 contains 75H (01110101B), the CY and AC flags are clear, and the OV flag is set.
Variations

SUB Rmd,Rms

Binary Mode Source Mode

Bytes: 3 2
States: 2 1
[Encoding] 1001 1100 ‘ ‘ ssss SSsSsS

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(Rmd) « (Rmd) — (Rms)

SUB WRjd,WRjs

Binary Mode  Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 1001 1101 | [ reet TTTT

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SuUB
(WRjd) ~ (WRjd) — (WRjs)

SUB DRkd,DRks

Binary Mode  Source Mode

Bytes: 3 2
States: 5 4
[Encoding] 1001 1111 | | wuuu uuuu

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRkd) — (DRkd) — (DRks)

A-125



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

SUB Rm #data
Binary Mode  Source Mode

Bytes: 4 3
States: 3 2
[Encoding] 1001 1110 | | ssss 0000 | | #data

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SuUB
(Rm) < (Rm) — #data

SUB WRj #datal6

Binary Mode  Source Mode

Bytes: 5 4
States: 4 3
[Encoding]
1001 1110 ‘ ‘ tttt 0100 ‘ ‘ #data hi #data low

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SuUB
(WR)j) « (WRj) —#datal6

SUB DRk, #datal6

Binary Mode Source Mode

Bytes: 5 4
States: 6 5
[Encoding]
1001 1110 | | uuuu 1000 | | #data hi #data low

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: SUB
(DRK) ~ (DRK) — #datal6

SUB Rm,dir8

Binary Mode  Source Mode
Bytes: 4 3
States: 3t 2t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1001 1110 ‘ ‘ SSSs 0001 ‘ ‘ direct addr

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

A-126



intel.

Operation: SUB
(Rm) — (Rm) — (dir8)

INSTRUCTION SET REFERENCE

SUB WR;,dir8
Binary Mode  Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 1001 1110 | |ttt 0101 | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(WR)) « (WRj) — (dir8)
SUB Rm,dir16
Binary Mode Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
1001 1110 ‘ ‘ SSSS 0011 ‘ ‘ direct addr ‘ ‘ direct addr
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(Rm) — (Rm) — (dir16)
SUB WR;,dir16
Binary Mode  Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
1001 1110 | [ teet 0111 | | directaddr | [ direct addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB
(WR)) < (WR)j) — (dir16)
SUB Rm,@WR]j
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
1001 1110 | |ttt 1001 | | ssss 0000

A-127



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SuUB
(Rm) ~ (Rm) — (WRY}))
SUB Rm,@DRk
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
1001 1110 | | wuuu 1011 | | ssss | | 0000
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: SUB

(Rm) — (Rm) — ((DRK))

SUBB A,<src-byte>

Function:

Description:

Flags:

Example:

A-128

Subtract with borrow

SUBB subtracts the specified variable and the CY flag together from the accumulator,
leaving the result in the accumulator. SUBB sets the CY (borrow) flag if a borrow is needed
for bit 7, and clears CY otherwise. (If CY was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the CY flag is subtracted from the accumulator along with the source operand.) AC is set
if a borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit
6, but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers the OV flag indicates a negative number produced when a
negative value is subtracted from a positive value, or a positive result when a positive
number is subtracted from a negative number.

Bit 6 and bit 7 in this description refer to the most significant byte of the operand (8, 16, or 32
bit).

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

CY AC oV
O O O O O

The accumulator contains 0C9H (11001001B), register 2 contains 54H (01010100B), and
the CY flag is set. After executing the instruction

SUBB AR2

the accumulator contains 74H (01110100B), the CY and AC flags are clear, and the OV flag
is set.



|nte|® INSTRUCTION SET REFERENCE

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the CY (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR CY instruction.

Variations

SUBB A #data
Binary Mode  Source Mode

Bytes: 2 2
States: 1 1
[Encoding] 1001 0100 | |immed.data

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SUBB
(A) < (A) — (CY) — #data

SUBB A,dir8

Binary Mode  Source Mode
Bytes: 2 2
States: 1t 1t

TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 1001 0101 | | directaddr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: SUBB
(A) — (A) —(CY) — (dirg)
SUBB A,@Ri
Binary Mode  Source Mode
Bytes: 1 2
States: 2 3
[Encoding] 1001 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: SUBB
(A) - (A)—(CY) - ((R)
SUBB A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 1001 lrrr

A-129



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]
Operation: SUBB
(A) = (A)—(CY)-(Rn)
SWAP A
Function: Swap nibbles within the accumulator
Description: Interchanges the low and high nibbles (4-bit fields) of the accumulator (bits 3—-0 and bits 7—
4). This operation can also be thought of as a 4-bit rotate instruction.
Flags:
CcY AC ov N Zz
Example: The accumulator contains 0C5H (11000101B). After executing the instruction
SWAP A
the accumulator contains 5CH (01011100B).
Binary Mode  Source Mode
Bytes: 1 1
States: 2 2
[Encoding] 1100 0100
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: SWAP
(A).3:0 - « (A).7:4
TRAP
Function: Causes interrupt call
Description: Causes an interrupt call that is vectored through location OFFO07BH. The operation of this
instruction is not affected by the state of the interrupt enable flag in PSWO0 and PSW1.
Interrupt calls can not occur immediately following this instruction. This instruction is
intended for use by Intel-provided development tools. These tools do not support user
application of this instruction.
Flags:
CY AC ov N z
Example: The instruction

A-130

TRAP

causes an interrupt call to location OFFO07BH during normal operation.



|nte|® INSTRUCTION SET REFERENCE

Binary Mode  Source Mode

Bytes: 2 1
States (2 bytes): 11 10
States (4 bytes): 16 15
[Encoding] 1011 1001

Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: TRAP
SP - SP-2
(SP) - PC
PC — (OFFO07BH)

XCH A,<byte>
Function: Exchange accumulator with byte variable
Description: Loads the accumulator with the contents of the specified variable, at the same time writing

the original accumulator contents to the specified variable. The source/destination operand
can use register, direct, or register-indirect addressing.

Flags:
CY AC ov N 4
Example: RO contains the address 20H, the accumulator contains 3FH (00111111B) and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction
XCH A,@RO
RAM location 20H contains 3FH (00111111B) and the accumulator contains 75H
(01110101B).
Variations
XCH A dir8
Binary Mode  Source Mode
Bytes: 2 2
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 1100 0101 \ \ direct addr

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCH
(A) » « (dir8)

A-131



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

XCH A,@Ri

Binary Mode  Source Mode
Bytes: 1 2
States: 4 5
[Encoding] 1100 011i

Hex Code in:  Binary Mode = [Encoding]
Source Mode = [A5][Encoding]

Operation: XCH
(A) - « (Ri)
XCH A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 3 4
[Encoding] 1100 Irrr

Hex Code in:  Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: XCH
- (A) - < (Rn)
Variations
XCHD A,@Ri
Function: Exchange digit

Description: Exchanges the low nibble of the accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the on-chip RAM location indirectly addressed by the
specified register. Does not affect the high nibble (bits 7-4) of either register.

Flags:
CY AC ov N z
Example: RO contains the address 20H, the accumulator contains 36H (00110110B), and on-chip RAM
location 20H contains 75H (01110101B). After executing the instruction
XCHD A,@RO
on-chip RAM location 20H contains 76H (01110110B) and 35H (00110101B) in the accumu-
lator.
Binary Mode  Source Mode
Bytes: 1 2
States: 4 5

A-132



|nte|® INSTRUCTION SET REFERENCE

[Encoding] | 1101 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]

Operation: XCHD
(A).3:0 - « ((Ri)).3:0

XRL <dest>,<src>

Function: Logical Exclusive-OR for byte variables

Description: Performs the bitwise logical Exclusive-OR operation ({J) between the specified variables,
storing the results in the destination. The destination operand can be the accumulator, a
register, or a direct address.

The two operands allow 12 addressing mode combinations. When the destination is the
accumulator or a register, the source addressing can be register, direct, register-indirect, or
immediate; when the destination is a direct address, the source can be the accumulator or
immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data is read from the output data latch, not the input pins.)

Flags:
CY AC ov
— — — 0
Example: The accumulator contains 0C3H (11000011B) and RO contains OAAH (10101010B). After
executing the instruction
XRL A,RO
the accumulator contains 69H (01101001B).
When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be comple-
mented is then determined by a mask byte, either a constant contained in the instruction or
a variable computed in the accumulator at run time. The instruction
XRL P1,#00110001B
complements bits 5, 4, and 0 of output Port 1.
Variations
XRL dir8,A
Binary Mode  Source Mode
Bytes: 2 2
States: 2t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 2 states.
[Encoding] 0110 0010 \ \ direct addr

A-133



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Hex Code in:

Operation:

Binary Mode = [Encoding]
Source Mode = [Encoding]

XRL
(dir8) < (dir8) O (A)

XRL dir8,#data

Binary Mode Source Mode

Bytes: 3 3
States: 3t 3t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0110 0011 ‘ ‘ direct addr ‘ ‘ immed. data
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: XRL
(dir8) ~ (dir8) [ #data
XRL A #data
Binary Mode Source Mode
Bytes: 2 2
States: 1 1
[Encoding] 0110 0100 | |immed.data
Hex Code in:  Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: XRL
(A) < (A) O #data
XRL A,dir8
Binary Mode  Source Mode
Bytes: 2 2
States: 1t 1t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0110 0101 ‘ ‘ direct addr
Hex Code in: Binary Mode = [Encoding]
Source Mode = [Encoding]
Operation: XRL
(A) < (A) O (dir8)
XRL A,@Ri
Binary Mode Source Mode
Bytes: 1 2
States: 2 3

A-134



|nte|® INSTRUCTION SET REFERENCE

[Encoding] | 0110 011i

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: XRL
(A) — (A TO(RD))
XRL A,Rn
Binary Mode Source Mode
Bytes: 1 2
States: 1 2
[Encoding] 0110 Irrr

Hex Code in: Binary Mode = [Encoding]
Source Mode =[A5][Encoding]

Operation: XRL
(A) - (A) O (Rn)
XRL Rmd,Rms
Binary Mode Source Mode
Bytes: 3 2
States: 2 1
[Encoding] 0110 1100 | | ssss SSSsS

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rmd) « (Rmd) O (Rms)

XRL WRjd,WRjs

Binary Mode Source Mode

Bytes: 3 2
States: 3 2
[Encoding] 0110 1101 ‘ ‘ tttt TTTT

Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(WRds) « (WRjd) O (WRjs)

XRL Rm #data

Binary Mode Source Mode
Bytes: 4 3
States: 3 2

A-135



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

[Encoding] 0110 1110 | | ssss 0000 | | #daa
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(Rm) « (Rm) O #data
XRL WRj #datal6
Binary Mode Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0110 1110 | |ttt 0100 | | #datahi | | #datalow
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(WR)) « (WR)j) O #datal6
XRL Rm,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 3t 2t
TIf this instruction addresses a port (Px, x = 0-3), add 1 state.
[Encoding] 0110 1110 ‘ ‘ SSSS 0001 ‘ ‘ direct addr
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(Rm) — (Rm) O (dir8)
XRL WRj,dir8
Binary Mode Source Mode
Bytes: 4 3
States: 4 3
[Encoding] 0110 1110 ‘ ‘ tttt 0101 ‘ ‘ direct addr
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL

A-136

(WR)) < (WRj) O (dir8)



intel.

INSTRUCTION SET REFERENCE

XRL Rm,dir16
Binary Mode  Source Mode
Bytes: 5 4
States: 3 2
[Encoding]
0110 1110 ‘ ‘ SSsSs 0011 ‘ ‘ direct addr ‘ ‘ dir8 addr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(Rm) — (Rm) O (dirl6)
\XRL WR;j,dir16
Binary Mode  Source Mode
Bytes: 5 4
States: 4 3
[Encoding]
0110 1110 | [ teet 0111 | | directaddr | | directaddr
Hex Code in: Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(WRj) < (WRj) O (dir16)
XRL Rm,@Wrj
Binary Mode Source Mode
Bytes: 4 3
States: 3 2
[Encoding]
0110 1110 | |ttt 1001 | | ssss 0000
Hex Code in:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]
Operation: XRL
(Rm) — (Rm) O ((WRj))
XRL Rm,@Drk
Binary Mode  Source Mode
Bytes: 4 3
States: 4 3
[Encoding]
0110 1110 ‘ ‘ uuuu 1011 ‘ ‘ SSSS ‘ ‘ 0000

A-137



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Hex Code In:  Binary Mode = [A5][Encoding]
Source Mode = [Encoding]

Operation: XRL
(Rm) ~ (Rm) O ((DRK))

A-138



intel.

B

Signal Descriptions






APPENDIX B
SIGNAL DESCRIPTIONS

This appendix provides reference information for the external signals of the 8X930Ax. Pin as-
signments for the 68-pin 8X930Ax are shown in Figure B-1 and listed by functional category in
Table B-1.

Table B-2 describes each of the signals. It lists the signal type (input, output, power, or ground)
and the alternative functions of multi-function pins. Table B-3 shows how configuration bits
RD1:0 (referred to in Table B-2) configurethe A17, A16, RD#, WR# and PSEN# pins for exter-
nal memory accesses. Table B-4 gives the USB rates and the 8X930AXx operating frequencies as
afunction of PLLSEL 2:0.

NMT N O~
O H o T T T T
NN RS #2288
S SSSeInggruii883
VA AdAdAddd N OIL IV DLVODLD
CACCCCCC>> U reroeon
OON~NOOTMONAON O T MN A
@ © © © OO WOV
AD7/P0.7H 10 60 3 Reserved
AD6/P0.6 O 11 59 3 Reserved
AD5/P0.5H 12 58 A Reserved
AD4/P0.4H 13 57 A Reserved
AD3/P0.3 14 56 [ Reserved
AD2/P0.2 ] 15 55 [ Dpg
AD1/P0.1 16 54 B Dyo
ADO/P0O.0E 17 53 A ECAP
Vssp ] 18 52 A Vssp
Veep H 19 View of component as 51 A Veep
P3.0/RXD H 20 50 B SOF#
P3.1/TXD H 21 mounted on PC board 49 B Reserved
P3.2 / INTO# § 22 48 3 Reserved
P3.3/INT1# 4 23 47 B Reserved
P3.4/T0H 24 46 [ Reserved
P35/T1H 25 45 3 Reserved
P3.6 / WR# ] 26 44 B PLLSELO
NOODOAANMITULONODO ANM
NANNOONOMOOHOMOMOHONHOHOOMOS T I
ggguuoguuooguuogouog
uNxGD‘—aN#! QOVHN OF - N
R s S A
;3\N888§§ X X -3
woLadgdmsn oy oo
o E o X
py aaa
g 029
< o~
T
N
—
<
A4392-01

Figure B-1. 8X930Ax 68-pin PLCC Package

B-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table B-1. 8X930Ax Pin Assignments Arranged by Functional Categories

Address & Data Input/Output USB Signals

Name Pin Name Pin Name Pin
ADO/P0.0 17 P1.0/T2 28 ECAP 53
AD1/P0.1 16 P1.1/T2EX 29 Depo 54
AD2/P0.2 15 P1.2/ECI 30 Duo 55
AD3/P0.3 14 P1.3/CEXO 31 PLLSELO 44
AD4/P0.4 13 P1.4/CEX1 32 PLLSEL1 42
AD5/P0.5 12 P1.5/CEX2 33 PLLSEL2 43
ADG6/P0.6 11 P1.6/CEX3/WAIT# 34 SOF# 50
AD7/P0.7 10 P1.7/CEX4/A17/WCLK 35
A8/P2.0 9 P3.0/RXD 20
A9/P2.1 8 P3.1/TXD 21
A10/P2.2 7 P3.2/INTO# 22
A11/P2.3 6 P3.3/INT1# 23
Al12/P2.4 5 P3.4/TO 24
A13/P2.5 4 P3.5/T1 25
A14/P2.6 3 P3.6/WR# 26
A15/P2.7 2 P3.7/RD#/A16 27
A16/P3.7/RD# 27
A17/P1.7/CEX4/WCLK 35

Processor Control Power & Ground Bus Control & Status

Name Pin Name Pin Name Pin
P3.2/INTO# 22 Vee 36, 68 P3.6/WR# 26
P3.3/INT1# 23 Veep 19,51 A16/P3.7/RD# 27
EA# 67 Ves 1,37 ALE 66
RST 41 Vesp 18,52 | | PSEN# 65
XTALL 38 AVce 40
XTAL2 39




SIGNAL DESCRIPTIONS

Table B-2. Signal Descriptions

Signal
Name

Type

Description

Alternate
Function

Al7

Address Line 17. Eighteenth external address bit (A17) in
extended bus applications. Selected by configuration bits
RD1:0 (UCONFIGO0.3:2). See Table B-3.

P1.7/CEX4/WCLK

Al6

Address Line 16. Seventeenth external address bit (A16) in
extended bus applications. Selected by configuration bits
RD1:0 (UCONFIGO0.3:2). See Table B-3.

RD#

A15:87

Address Lines. Upper address lines of the external bus.

P2.7:0

AD7:0%

110

Address/Data Lines. Multiplexed lower address lines and data
lines of the external bus.

P0.7:0

ALE

Address Latch Enable. ALE signals the start of an external
bus cycle and indicates that valid address information is
available on lines A15:8 and AD7:0. An external latch can use
ALE to demultiplex the address from the address/data bus.

AV

PWR

Analog V.. A separate V. input for the USB phase-locked
loop circuitry.

CEX2:0
CEX3
CEX4

110

Programmable Counter Array (PCA) Input/Output Pins.
These are input signals for the PCA capture mode and output
signals for the PCA compare and PWM modes.

P1.5:3
P1.6/WAIT#

P1.7/A17/WCLK

DPO, DMO

110

USB Port 0. Root USB port. Dpg and Dy, are the data plus and
data minus lines of differential USB port 0. These lines do not
have internal pullup resistors. For low-speed devices, provide
an external 1.5 KQ pullup resistor at Dy,q. For full-speed
devices, provide external 1.5 KQ pullup resistor at Dgg.

NOTE: Either Dpq or Dy,g must be pulled high. Otherwise a
continuous SEO (USB reset) will be applied to these inputs
causing the 8X930Ax to stay in reset.

EA#

External Access. Directs program memory accesses to on-
chip or off-chip code memory. EA# = 1 directs program memory
accesses to on-chip code memory if the address is within the
range of the on-chip code memory; otherwise the access is to
external memory. EA# = 0 directs program memory accesses to
external memory. Devices without on-chip program memory
should have EA# strapped to V¢4 The value of EA# is latched
at reset.

ECAP

External Capacitor. Must be connected to a 0.1pF capacitor
(or larger) to ensure proper operation of the differential line
driver. The other lead of the capacitor must be connected to
Vss-

ECI

PCA External Clock Input. External clock input to the 16-bit
PCA timer.

P1.2

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration. If the
chip is configured for page mode operation, port O carries the lower address bits (A7:0), and port 2 carries
the upper address bits (A15:8) and the data (D7:0).

B-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table B-2. Signal Descriptions (Continued)

Signal I Alternate
Name Type Description Function

INTL1:0# | External Interrupts 0 and 1. These inputs set bits IE1:0 in the | P3.3:2
TCON register. If bits IT1:0 in the TCON register are set, bits
IE1:0 are set by a falling edge on INT1#/INTO#. If bits INT1:0
are clear, bits IE1:0 are set by a low level on INT1:0#.

P0.7:0 I/O | Port 0. This is an 8-hit, open-drain, bidirectional 1/O port. AD7:0

P1.0 /O | Port 1. This is an 8-bit, bidirectional 1/O port with internal T2

P1.1 pullups. T2EX

P1.2 ECI

P1.5:3 CEX2:0

P1.6 CEX3/WAIT#

P1.7 CEX4/A17/WCLK

P2.7:0 I/O | Port 2. This is an 8-bit, bidirectional 1/O port with internal Al15:8
pullups.

P3.0 I/0 | Port 3. This is an 8-bit, bidirectional I/0 port with internal RXD

P3.1 pullups. TXD

P3.3:2 INT1:0#

P3.5:4 T1:0

P3.6 WR#

P3.7 RD#/A16

PLLSEL.2:0 | Phase Locked Loop Select. Three-bit code selects USB data | —
rate (see Table B-4).

PSEN# (@] Program Store Enable. Read signal output to external —
memory. Asserted for the memory address range specified by
configuration bits RD1:0 (UCONFIGO0.3:2) See Table B-3. Also
see RD#.

RD# O Read. Read signal output to external data memory. Asserted P3.7/A16
for the memory address range specified by configuration bits
RD1:0 (UCONFIGO0.3:2). See Table B-3. Also see PSEN#.

RST | Reset. Reset input to the chip. Holding this pin high for 64 —
oscillator periods while the oscillator is running resets the
device. The port pins are driven to their reset conditions when a
voltage greater than V|, is applied, whether or not the
oscillator is running. This pin has an internal pulldown resistor,
which allows the device to be reset by connecting a capacitor
between this pin and V.

Asserting RST when the chip is in idle mode or powerdown
mode returns the chip to normal operation.

RXD I/O | Receive Serial Data. RXD sends and receives data in serial P3.0
1/0 mode 0 and receives data in serial I/O modes 1, 2, and 3.

SOF# (0] Start of Frame. This pin is asserted for eight states when an —

SOF token is received.

T1:0 | Timer 1:0 External Clock Inputs. When timer 1:0 operates as | P3.5:4

a counter, a falling edge on the T1:0 pin increments the count.

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration. If the
chip is configured for page mode operation, port O carries the lower address bits (A7:0), and port 2 carries
the upper address bits (A15:8) and the data (D7:0).

B-4




SIGNAL DESCRIPTIONS

Table B-2. Signal Descriptions (Continued)

Signal
Name

Type

Description

Alternate
Function

T2

110

Timer 2 Clock Input/Output. For the timer 2 capture mode,
this signal is the external clock input. For the clock-out mode, it
is the timer 2 clock output.

P1.0

T2EX

Timer 2 External Input. In timer 2 capture mode, a falling edge
initiates a capture of the timer 2 registers. In auto-reload mode,
a falling edge causes the timer 2 registers to be reloaded. In the
up-down counter mode, this signal determines the count
direction: 1 = up, 0 = down.

P11

TXD

Transmit Serial Data. TXD outputs the shift clock in serial I/0
mode 0 and transmits serial data in serial I/O modes 1, 2, and
3.

P3.1

PWR

Supply Voltage. Connect this pin to the +5V supply voltage.

PWR

Supply Voltage. Connect this pin to the +5V supply voltage.

GND

Circuit Ground. Connect this pin to ground.

GND

Circuit Ground. Connect this pin to ground.

Real-time Wait State Input. The real-time WAIT# input is enabled
by writing a logical ‘1’ to the WCON.0 (RTWE) bit at S:A7H.
During bus cycles, the external memory system can signal
‘system ready’ to the microcontroller in real time by controlling
the WAIT# input signal on the port 1.6 input.

P1.6/CEX3

WCLK

Wait Clock Output. The real-time WCLK output is driven at port
1.7 (WCLK) by writing a logical ‘1’ to the WCON.1 (RTWCE) bit
at S:A7H. When enabled, the WCLK output produces a square
wave signal with a period of one-half the oscillator frequency.

P1.7/CEX4/A17

WR#

Write. Write signal output to external memory. Asserted for the
memory address range specified by configuration bits RD1:0
(UCONFIGO0.3:2) See RD# and Table B-3.

P3.6

XTAL1

Input to the On-chip, Inverting, Oscillator Amplifier. To use
the internal oscillator, a crystal/resonator circuit is connected to
this pin. If an external oscillator is used, its output is connected
to this pin. XTALL is the clock source for internal timing.

XTAL2

Output of the On-chip, Inverting, Oscillator Amplifier. To
use the internal oscillator, a crystal/resonator circuit is
connected to this pin. If an external oscillator is used, leave
XTAL2 unconnected.

T The descriptions of A15:8/P2.7:0 and AD7:0/P0.7:0 are for the nonpage mode chip configuration. If the
chip is configured for page mode operation, port O carries the lower address bits (A7:0), and port 2 carries
the upper address bits (A15:8) and the data (D7:0).

B-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table B-3. Memory Signal Selections (RD1:0)

intel.

. A17/P1.7/
RD1:0 CEXAMWCLK A16/P3.7/RD# PSEN# P3.6/WR# Features
0 0 [Al7 Al6 Asserted for | Asserted for writes to | 256-Kbyte external
all addresses | all memory locations | memory
0 1 |[P1.7/CEX4/ Al16 Asserted for | Asserted for writes to | 128-Kbyte external
WCLK all addresses | all memory locations | memory
1 0 |P1.7/CEX4/ P3.7 only Asserted for | Asserted for writes to | 64-Kbyte external
WCLK all addresses | all memory locations | memory. One
additional port pin.
1 1 |P1.7/CEX4/ RD# asserted | Asserted for | Asserted only for 64-Kbyte external
WCLK for addresses | addresses writes to MCS® 51 memory. Compatible
< 7F:FFFFH > 80:0000H microcontroller data | with MCS 51
memory locations. microcontrollers.
NOTE: RDZ1:0 are bits 3:2 of configuration byte UCONFIGO (Figure 4-3 on page 4-5).

Table B-4. 8X930A x Operating Frequency

Internal XTAL1L XTAL1
PLLSEL2 | PLLSEL1 | PLLSELO | USB Rate F}[g? “Ce;ljy Frequency C'°§rks
Pin 43 Pin 42 Pin 44 ) Fosc P Comments
@) @) @) _and State
Peripherals Tosc/State
(UTek) (3) (5)
0 0 1 1.5 Mbps 3 Mhz 6 Mhz 2 PLL Off
(Low Speed)
1 0 0 1.5 Mbps 6 Mhz (4) 12 Mhz 2 PLL Off
(Low Speed)
1 1 0 12 Mbps 12 Mhz (4) 12 Mhz 1 PLL On
(Full Speed)
NOTES:

1. Other PLLSELx combinations are not valid.

2. The sampling rate is 4X the USB rate.

3. The 8X930Ax datasheet AC timing specification defines the following symbols: CPU frequency = F¢ «
= UTgk.

4. The 8X930Ax CPU and peripherals frequency is 3 Mhz (low clock mode) until the LC bit in PCON is
cleared.

5. The number of XTALL1 clocks per state (Tygc/state) depends on the PLLSEL2:0 selection. When the
CPU is operating in low clock mode (3 MHz), there are four Tyg/state for PLLSEL2:0 = 100 or 110.



intel.

Registers






APPENDIX C
REGISTERS

This appendix is a reference source of information on the 8X930Ax special function registers

(SFRs). The SFR map in Table C-1 provides the address and reset value for each SFR. SFRswith

double borders are endpoint-indexed. For additional information, see “Special Function Registers
(SFRs)” on page 3-15. Tables C-2 through C-7 list the SFRs by functional category. The remain-
der of the appendix contains descriptive tables of the SFRs arranged in alphabetical order. Use
the prefix “S:” with SFR addresses to distinguish them from other addresses.

Table C-1. 8X930Ax SFR Map

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF
F8 CH CCAPOH CCAP1H CCAP2H CCAP3H CCAP4H FF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
FO | B EPINDEX TXSTAT TXDAT TXCON TXFLG TXCNTL TXCNTH F7
00000000 Ixxxxx00 0xxx0000 XXXXXXXX 000x0100 00xx1000 XXXXXXXX XXXXXXXX
E8 CL CCAPOL CCAP1L CCAP2L CCAP3L CCAPA4L EF
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
EO | ACC EPCON RXSTAT RXDAT RXCON RXFLG RXCNTL RXCNTH E7
00000000 00XLXXXX 00000000 XXXXXXXX 0x000100 00xx1000 XXXXXXXX XXXXXXXX
D8 | CCON CMOD CCAPMO CCAPM1 CCAPM2 CCAPM3 CCAPM4 PCON1 DF
00x00000 00xxx000 x0000000 x0000000 x0000000 x0000000 x0000000 xxxx0000
DO | PSW PSW1 SOFL SOFH D7
00000000 00000000 00000000 00000000
C8 | T2CON T2MOD RCAP2L RCAP2H TL2 TH2 CF
00000000 XXxXxx00 00000000 00000000 00000000 00000000
CO | FIFLG C7
00000000
B8 | IPLO SADEN SPH BF
x0000000 00000000 0000000
BO | P3 IEN1 IPL1 IPH1 IPHO B7
11111111 00000000 00000000 00000000 x0000000
A8 | IENO SADDR AF
00000000 00000000
A0 | P2 FIE WDTRST WCON A7
11111111 00000000 XXXXXXXX XXXXXX00
98 | SCON SBUF 9F
00000000 XXXXXXXX
90 | P1 97
11111111
88 | TCON TMOD TLO TL1 THO TH1 FADDR 8F
00000000 00000000 00000000 00000000 00000000 00000000 00000000
80 | PO SP DPL DPH DPXL PCON 87
11111111 00000111 00000000 00000000 00000001 00XX0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7IF

I:’ MCS 251 microcontroller SFRs @ Endpoint-indexed SFRs

C-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

C.1 SFRS BY FUNCTIONAL CATEGORY

Table C-2. Core SFRs

Mnemonic Name Address
Acct Accumulator S:EOH
Bf B register S:FOH
PSW Program Status Word S:DOH
PSwi Program Status Word 1 S:D1H
SPTt Stack Pointer — LSB of SPX S:81H
SPHT Stack Pointer High — MSB of SPX S:BEH
DPTR' Data Pointer (2 bytes) —
DPLT Low Byte of DPTR S:82H
DPHT High Byte of DPTR S:83H
DPXLT Data Pointer Extended, Low S:84H
PCON Power Control S:87H
PCON1 USB Power Control. S:DFH
IENO Interrupt Enable Control Register 0 S:A8H
IEN1 Interrupt Enable Control Register 1 S:B1H
IPHO Interrupt Priority Control High 0 S:B7H
IPLO Interrupt Priority Control Low 0 S:B8H
IPH1 Interrupt Priority High Control Register 1. S:B3H
IPL1 Interrupt Priority Low Control Register 1. S:B2H

These SFRs can also be accessed by their corresponding registers in the

register file.

Table C-3. I/O Port SFRs

Mnemonic Name Address
PO Port 0 S:80H
P1 Port 1 S:90H
P2 Port 2 S:AOH
P3 Port 3 S:BOH

intel.



intel.

REGISTERS
Table C-4. Serial I/O SFRs
Mnemonic Name Address
SCON Serial Control S:98H
SBUF Serial Data Buffer S:99H
SADEN Slave Address Mask S:B9H
SADDR Slave Address S:A9H
Table C-5. USB Function SFRs
Mnemonic Name Address
EPCON Endpoint Control Register. S:E1H
EPINDEX Endpoint Index Register. S:F1H
FADDR Function Address Register. S:8FH
FIE Function Interrupt Enable Register. S:A2H
FIFLG Function Interrupt Flag Register. S:COH
RXCNTH Receive FIFO Byte-Count High Register. S:E7H
RXCNTL Receive FIFO Byte-Count Low Register. S:E6H
RXCON Receive FIFO Control Register. S:E4H
RXDAT Receive FIFO Data Register. S:E3H
RXFLG Receive FIFO Flag Register. S:E5H
RXSTAT Endpoint Receive Status Register. S:E2H
SOFH Start of Frame High Register. S:D3H
SOFL Start of Frame Low Register. S:D2H
TXCNTH Transmit Count High Register. S:F7H
TXCNTL Transmit Count Low Register. S:F6H
TXCON Transmit FIFO Control Register. S:F4H
TXDAT Transmit FIFO Data Register. S:F3H
TXFLG Transmit Flag Register. S:F5H
TXSTAT Endpoint Transmit Status Register. S:FAH

C-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

c-4

Table C-6. Timer/Counter and Watchdog Timer SFRs

intel.

Mnemonic Name Address
TLO Timer/Counter O Low Byte S:8AH
THO Timer/Counter 0 High Byte S:8CH
TL1 Timer/Counter 1 Low Byte S:8BH
TH1 Timer/Counter 1 High Byte S:8DH
TL2 Timer/Counter 2 Low Byte S:CCH
TH2 Timer/Counter 2 High Byte S:CDH
TCON Timer/Counter 0 and 1 Control S:88H
TMOD Timer/Counter 0 and 1 Mode Control S:89H
T2CON Timer/Counter 2 Control S:C8H
T2MOD Timer/Counter 2 Mode Control S:C9H
RCAP2L Timer 2 Reload/Capture Low Byte S:CAH
RCAP2H Timer 2 Reload/Capture High Byte S:CBH
WDTRST WatchDog Timer Reset S:A6H




Int9|® REGISTERS

Table C-7. Programmable Counter Array (PCA) SFRs

Mnemonic Name Address
CCON PCA Timer/Counter Control S:D8H
CMOD PCA Timer/Counter Mode S:D9H
CCAPMO PCA Timer/Counter Mode 0 S:DAH
CCAPM1 PCA Timer/Counter Mode 1 S:DBH
CCAPM2 PCA Timer/Counter Mode 2 S:DCH
CCAPM3 PCA Timer/Counter Mode 3 S:DDH
CCAPM4 PCA Timer/Counter Mode 4 S:DEH
CL PCA Timer/Counter Low Byte S:E9H
CH PCA Timer/Counter High Byte S:F9H
CCAPOL PCA Compare/Capture Module 0 Low Byte S:EAH
CCAPI1L PCA Compare/Capture Module 1 Low Byte S:EBH
CCAP2L PCA Compare/Capture Module 2 Low Byte S:ECH
CCAP3L PCA Compare/Capture Module 3 Low Byte S:EDH
CCAPA4L PCA Compare/Capture Module 4 Low Byte S:EEH
CCAPOH PCA Compare/Capture Module 0 High Byte S:FAH
CCAP1H PCA Compare/Capture Module 1 High Byte S:FBH
CCAP2H PCA Compare/Capture Module 2 High Byte S:FCH
CCAP3H PCA Compare/Capture Module 3 High Byte S:FDH
CCAP4H PCA Compare/Capture Module 4 High Byte S:FEH

C-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

C.2 SFR DESCRIPTIONS
This section contains a complete description of all 8X930Ax SFRsin alphabetical order.

NOTE
All SFR bits are software read/write unless otherwise noted in the bit
definition.
ACC Address: S:EOH
Reset State: 0000 0000B

Accumulator. ACC provides SFR access to the accumulator, which resides in the register file as byte
register R11 (also named ACC). Instructions in the MCS® 51 architecture use the accumulator as both
source and destination for calculations and moves. Instructions in the MCS 251 architecture assign no
special significance to R11. These instructions can use byte registers Rm (m = 0-15) interchangeably.

7 0
Accumulator Contents
Bit Bit )
Number Mnemonic Function
7:0 ACC.7:0 Accumulator.
B Address: S:FOH

Reset State: 0000 0000B

B Register. The B register provides SFR access to byte register R10 (also named B) in the register
file. The B register is used as both a source and destination in multiply and divide operations. For all
other operations, the B register is available for use as one of the byte registers Rm, m = 0-15.

7

B Register Contents

Bit Bit Function
Number Mnemonic

7:0 B.7:0 B Register.




intel.

REGISTERS

CCAPxH, CCAPxL (x = 0-4) Address: CCAPOH,L
CCAP1H,L
CCAP2H,L
CCAP3H,L
CCAP4H,L

Reset State:

S:FAH, S:EAH
S:FBH, S:EBH
S:FCH, S:ECH
S:FDH, S:EDH
S:FEH, S:EEH
XXXX XXXXB

PCA Module Compare/Capture Registers. These five register pairs store the 16-bit comparison value
or captured value for the corresponding compare/capture modules. In the PWM mode, the low-byte
register controls the duty cycle of the output waveform.

7 0
High/Low Byte of Compare/Capture Values
Bit Bit Function
Number Mnemonic
7:0 CCAPXxH.7:0 | High byte of PCA comparison or capture values.
CCAPXL.7:0 | Low byte of PCA comparison or capture values.

C-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

CCAPMXx (x = 0-4) Address: CCAPMO S:DAH
CCAPM1 S:DBH

CCAPM2 S:DCH

CCAPM3 S:DDH

CCAPM4 S:DEH

Reset State: X000 0000B

PCA Compare/Capture Module Mode Registers. These five registers select the operating mode of the
corresponding compare/capture module. Each register also contains an enable interrupt bit (ECCFx)
for generating an interrupt request when the module’s compare/capture flag (CCFx in the CCON
register) is set. See Table 11-3 on page 11-14 for mode select bit combinations.

7 0
— ECOMx | CAPPx | CAPNx H MATX TOGx PWMx | ECCFx

Bit Bit

. Function
Number Mnemonic

7 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit

6 ECOMx Compare Modes:

ECOMXx = 1 enables the module comparator function. The comparator is
used to implement the software timer, high-speed output, pulse width
modulation, and watchdog timer modes.

5 CAPPXx Capture Mode (Positive):

CAPPx = 1 enables the capture function with capture triggered by a
positive edge on pin CEXx.

4 CAPNXx Capture Mode (Negative):

CAPNXx = 1 enables the capture function with capture triggered by a
negative edge on pin CEXx.

3 MATx Match:

Set ECOMx and MATx to implement the software timer mode. When
MATx = 1, a match of the PCA timer/counter with the compare/capture
register sets the CCFx bit in the CCON register, flagging an interrupt.
2 TOGXx Toggle:

Set ECOMx, MATx, and TOGx to implement the high-speed output
mode. When TOGx = 1, a match of the PCA timer/counter with the
compare/capture register toggles the CEXx pin.

1 PWMx Pulse Width Modulation Mode:

PWMx = 1 configures the module for operation as an 8-bit pulse width
modulator with output waveform on the CEXx pin.

0 ECCFx Enable CCFx Interrupt:

Enables compare/capture flag CCFx in the CCON register to generate
an interrupt request.

C-8




intel.

REGISTERS

CCON

Address: S:D8H
Reset State: 00X0 0000B

PCA Timer/Counter Control Register. Contains the run control bit and overflow flag for the PCA
timer/counter, and the compare/capture flags for the five PCA compare/capture modules.

7 0
CF CR — ccr4 || ccF3 CCF2 CCF1 CCFO
Bit Bit .
Number Mnemonic Function
7 CF PCA Timer/Counter Overflow Flag:
Set by hardware when the PCA timer/counter rolls over. This generates
an interrupt request if the ECF interrupt enable bit in CMOD is set. CF
can be set by hardware or software but can be cleared only by software.
6 CR PCA Timer/Counter Run Control Bit:
Set and cleared by software to turn the PCA timer/counter on and off.
5 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.
4.0 CCF4.0 PCA Module Compare/Capture Flags:
Set by hardware when a match or capture occurs. This generates a PCA
interrupt request if the ECCFx interrupt enable bit in the corresponding
CCAPMXx register is set. Must be cleared by software.
CH, CL Address: S:F9H
S:E9H

Reset State: 0000 0000B

CH, CL Registers. These registers operate in cascade to form the 16-bit PCA timer/counter.

7 0
High/Low Byte PCA Timer/Counter
Bit Bit Function
Number Mnemonic
7:0 CH.7:0 High byte of the PCA timer/counter
CL.7:0 Low byte of the PCA timer/counter

C-9



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

CMOD

Address: S:D9H
Reset State:  00XX X000B

PCA Timer/Counter Mode Register. Contains bits for selecting the PCA timer/counter input, disabling
the PCA timer/counter during idle mode, enabling the PCA WDT reset output (module 4 only), and
enabling the PCA timer/counter overflow interrupt.

7 0
cIDL WDTE — - || - CPS1 CPSO ECF
Bit Bit Function
Number Mnemonic
7 CIDL PCA Timer/Counter Idle Control:
CIDL = 1 disables the PCA timer/counter during idle mode. CIDL =0
allows the PCA timer/counter to run during idle mode.
6 WDTE Watchdog Timer Enable:
WDTE = 1 enables the watchdog timer output on PCA module 4.
WDTE = 0 disables the PCA watchdog timer output.
5:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2:1 CPS1:0 PCA Timer/Counter Input Select:
CPS1 CPSO
0 0 Fosc /12
0 1 Fosc /4
1 0 Timer O overflow
1 1 External clock at ECI pin (maximum rate = Fog /8)
0 ECF PCA Timer/Counter Interrupt Enable:
ECF =1 enables the CF bit in the CCON register to generate an interrupt
request.

C-10




L]
|nte|® REGISTERS
DPH Address: S:83H
Reset State: 0000 0000B
Data Pointer High. DPH provides SFR access to register file location 58 (also named DPH). DPH is
the upper byte of the 16-bit data pointer, DPTR. Instructions in the MCS? 51 architecture use DPTR
for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPL and DPXL.
7 0
DPH Contents
Bit Bit Function
Number Mnemonic
7:0 DPH.7:0 Data Pointer High:
Bits 8—-15 of the extended data pointer, DPX (DR56).
DPL Address: S:82H
Reset State: 0000 0000B

Data Pointer Low. DPL provides SFR access to register file location 59 (also named DPL). DPL is the
low byte of the 16-bit data pointer, DPTR. Instructions in the MCS® 51 architecture use the 16-bit data
pointer for data moves, code moves, and for a jump instruction (JMP @A+DPTR). See also DPH and

DPXL.
7 0
DPL Contents
Bit Bit Function
Number Mnemonic
7:0 DPL.7:0 Data Pointer Low:
Bits 0-7 of the extended data pointer, DPX (DR56).

C-11



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

DPXL

Address: S:84H
Reset State: 0000 0001B

Data Pointer Extended Low. DPXL provides SFR access to register file location 57 (also nhamed
DPXL). Location 57 is the lower byte of the upper word of the extended data pointer, DPX = DR56,
whose lower word is the 16-bit data pointer, DPTR. See also DPH and DPL.

7

7 0
DPXL Contents
Bit Bit Function
Number Mnemonic
7:0 DPXL.7:0 Data Pointer Extended Low:
Bits 16—23 of the extended data pointer, DPX (DR56).

EPCON Address S:E1H

Reset State x=0" 0011 0101B

x=1,2,3" 000100008

Endpoint Control Register. This SFR configures the operation of the endpoint referenced by EPINDEX.
The reset value is 00110101B for endpoint 1 and 00010000B for endpoints 1, 2, and 3.

0

RXSTL

TXSTL

CTLEP RXSPM ‘ ‘ RXIE RXEPEN TXOE TXEPEN

Bit
Number

Bit
Mnemonic

Function

7

RXSTL

Stall Receive Endpoint:

Set this bit to stall the receive endpoint. Clear this bit only when the host has
intervened through commands sent down endpoint 0. When this bit is set
and RXSETUP is clear, the receive endpoint will respond with a STALL
handshake to a valid OUT token. This bit does not affect the reception of
SETUP tokens by a control endpoint. The state of this bit is sampled on a
valid OUT token.

TXSTL

Stall Transmit Endpoint:

Set this bit to stall the transmit endpoint. This bit should only be cleared
when the host has intervened through commands sent down endpoint 0.
When this bit is set and RXSETUP is clear, the receive endpoint will respond
with a STALL handshake to a valid IN token.The state of this bit is sampled
on a valid IN token.

Tx= endpoint index. See EPINDEX.

C-12




Int9|® REGISTERS

EPCON (Continued) Address S:E1H
Reset State x=0" 0011 0101B
x=1,2, 3" 000100008

Endpoint Control Register. This SFR configures the operation of the endpoint referenced by EPINDEX.
The reset value is 00110101B for endpoint 1 and 00010000B for endpoints 1, 2, and 3.

7 0
RXSTL TXSTL CTLEP RXSPM ‘ ‘ RXIE RXEPEN TXOE TXEPEN

Bit Bit

. Function
Number | Mnemonic

5 CTLEP Control Endpoint:

Set this bit to configure the endpoint as a control endpoint. Only control
endpoints are capable of receiving SETUP tokens. The state of this bit is
sampled on a valid SETUP token.

4 RXSPM Receive Single Packet Mode:

Set this bit to configure the receive endpoint for single data packet
operation. When enabled, only a single data packet is allowed to reside in
the receive FIFO. The state of this bit is sampled on a valid OUT token.
Note: For control endpoints (CTLEP=1), this bit should be set for single
packet mode operation as the recommended firmware model. However, it is
acceptable to have a control endpoint with dual packet mode configuration
as long as the firmware handles the endpoint correctly.

3 RXIE Receive Input Enable:

Set this bit to enable data from the USB to be written into the receive FIFO.
If cleared, the endpoint will not write the received data into the receive FIFO
and at the end of reception, it returns a NAK handshake on a valid OUT
token if the RXSTL bit is not set.This bit does not affect a valid SETUP
token.

2 RXEPEN Receive Endpoint Enable:

Set this bit to enable the receive endpoint. When disabled, the endpoint
does not respond to a valid OUT or SETUP token. The state of this bit is
sampled on a valid OUT or SETUP token. This bit is hardware read-only and
has the highest priority among RXIE and RXSTL. Note that endpoint 0 is
enabled for reception upon reset.

1 TXOE Transmit Output Enable.

This bit is used to enable the data in the transmit FIFO to be transmitted. If
cleared, the endpoint returns a NAK handshake to a valid IN token if the
TXSTL bit is not set. The state of this bit is sampled on a valid IN token.

0 TXEPEN Transmit Endpoint Enable:

This bit is used to enable the transmit endpoint. When disabled, the
endpoint does not respond to a valid IN token. The state of this bit is
sampled on a valid IN token. This bit is hardware read only. Note that
endpoint 0 is enabled for transmission upon reset.

Tx= endpoint index. See EPINDEX.

C-13




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

EPINDEX Address S:F1H
Reset State 1XXX XX00B

Endpoint Index Register. This SFR selects the endpoint to use as an index to endpoint-specific SFRs.
7 0
— — — - || - — EPINXL | EPINXO

Bit Bit

. Function
Number | Mnemonic

7:2 — Reserved:
Write zeros to these bits.

Note: Although the reset state for bit 7 is ‘1’, always write zeros to bits 7:2 of
this register.

1:0 EPINX1:0 Endpoint Index Select:

Used to select the function endpoint number to be indexed. The 8X930Ax is
set up accordingly: the USB SFR definitions for TXDAT, TXCON, TXFLG,
TXCNTH/L, RXDAT, RXCON, RXFLG, RXCNTH/L, EPCON, TXSTAT, and
RXSTAT are adjusted for the selected endpoint. The SFRs are connected to
the appropriate transmit/receive FIFO pair. This register is hardware read-

only.
EPINX1 EPINXO
0 0 Endpoint 0. Control Transfer
0 1 Endpoint 1.
1 0 Endpoint 2.
1 1 Endpoint 3.
FADDR Address: S:8FH

Reset State: 0000 0000B

Function Address Register. This SFR holds the address for the USB device. During bus enumeration it
is written with a unique value assigned by the host.

7 0
_ A6:0

Bit Bit

; Function
Number | Mnemonic

7 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

6:0 A6:0 7-bit Programmable Function Address:

This register is programmed through the commands received via endpoint O
on configuration, which should be the only time the firmware should change
the value of this register. This register is read-only by hardware.

C-14



intel.

Function Interrupt Enable Register. Enables and disables the receive and transmit done interrupts for
the four function endpoints.

REGISTERS
EIE Address: S:A2H
Reset State: 0000 0000B

7 0
FRXIE3 FTXIE3 FRXIE2 FTXIE2 ‘ ‘ FRXIE1 FTXIE1 FRXIEO FTXIEO
Bit Bit . Function
Number Mnemonic
7 FRXIE3 Function Receive Interrupt Enable 3:
Enables receive done interrupt for endpoint 3 (FRXD3).
6 FTXIE3 Function Transmit Interrupt Enable 3:
Enables transmit done interrupt for endpoint 3 (FTXD3).
5 FRXIE2 Function Receive Interrupt Enable 2:
Enables the receive done interrupt for endpoint 2 (FRXD2).
4 FTXIE2 Function Transmit Interrupt Enable 2:
Enables the transmit done interrupt for endpoint 2 (FTXD2).
3 FRXIE1 Function Receive Interrupt Enable 1:
Enables the receive done interrupt for endpoint 1 (FRXD1).
2 FTXIEL Function Transmit Interrupt Enable 1:
Enables the transmit done interrupt for endpoint 1 (FTXD1).
1 FRXIEO Function Receive Interrupt Enable 0:
Enables the receive done interrupt for endpoint 0 (FRXDO).
0 FTXIEO Function Transmit Interrupt Enable O:
Enables the transmit done interrupt for endpoint0 (FTXDO).
NOTE: For all bits, a ‘1’ means the interrupt is enabled and will cause an interrupt to be signaled to

the microcontroller. A ‘0’ means the associated interrupt source is disabled and cannot
cause an interrupt, even though the interrupt bit's value will still be reflected in the FIFLG

register.

C-15



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

EIELG Address: S:COH
Reset State: 0000 0000B

Function Interrupt Flag Register. Contains the USB Function’s Transmit and Receive Done interrupt
flags for non-isochronous endpoints.

7 0
FRXD3 FTXD3 FRXD2 FTXD2 ‘ ‘ FRXD1 FTXD1 FRXDO FTXDO
Bit Bit Function
Number Mnemonic
7 FRXD3 Function Receive Done Flag, Endpoint 3:

This bit is set by hardware to indicate that there is either:

1. Valid data waiting to be serviced in the receive FIFO for function
endpoint 3 and that the data was received without error and has been
acknowledged; or

2. Data was received with a Receive Data Error requiring firmware
intervention to be cleared.

6 FTXD3 Function Transmit Done Flag, Endpoint 3:

Hardware sets this bit to indicate that one of two conditions exists in the
transmit FIFO for function endpoint 3:

1. The transmit data has been transmitted and the Host has sent an
acknowledgment which was successfully received; or

2. A transmit data-related error occurred during transmission of the data
packet, which requires servicing by firmware to be cleared.

5 FRXD2 Function Receive Done Flag, Endpoint 2:
This bit is similar to FRXD3, above, except that it applies to function
endpoint 2.
4 FTXD2 Function Transmit Done Flag, Endpoint 2:
This bit is similar to FTXD3, above, except that it applies to function
endpoint 2.
3 FRXD1 Function Receive Done Flag, Endpoint 1:
This bit is similar to FRXD3, above, except that it applies to endpoint 1.
2 FTXD1 Function Transmit Done Flag, Endpoint 1:
This bit is similar to FTXD3, above, except that it applies to endpoint 1.
1 FRXDO Function Receive Done Flag, Endpoint O:

This bit is similar to FRXD3, above, except that it applies to endpoint 0.

0 FTXDO Function Transmit Done Flag, Endpoint O:
This bit is similar to FTXD3, above, except that it applies to endpoint 0.

NOTE: For all bits in the Interrupt Flag Register, a ‘1’ indicates that an interrupt is actively pending; a
‘0’ indicates that the interrupt is not active. The interrupt status is shown regardless of the
state of the corresponding interrupt enable bit in the FIE. Bits are set-only by hardware and
clearable in software. Software can also set the bits for text purposes, allowing the interrupt
to be generated in software.

C-16



Int9|® REGISTERS

Interrupt Enable Register 0. IENO contains two types of interrupt enable bits. The global enable bit

is always enabled. The remaining bits enable/disable the other individual interrupts.
7

IENO Address: S:A8H
Reset State: 0000 0000B

(EA) enables/disables all of the interrupts (including those in IEN1), except the TRAP interrupt, which

EA EC ET2 ES H ETL EX1 ETO EXO0

Bit Bit

. Function
Number Mnemonic

7 EA Global Interrupt Enable:

0-6. Clearing this bit disables all interrupts, except the TRAP interrupt,
which is always enabled.

Setting this bit enables all interrupts that are individually enabled by bits

6 EC PCA Interrupt Enable:
Setting this bit enables the PCA interrupt.

5 ET2 Timer 2 Overflow Interrupt Enable:
Setting this bit enables the timer 2 overflow interrupt.
4 ES Serial I/0 Port Interrupt Enable:

Setting this bit enables the serial I/0 port interrupt.

3 ET1 Timer 1 Overflow Interrupt Enable:
Setting this bit enables the timer 1 overflow interrupt.

2 EX1 External Interrupt 1 Enable:
Setting this bit enables external interrupt 1.

1 ETO Timer 0 Overflow Interrupt Enable:
Setting this bit enables the timer 0 overflow interrupt.

0 EXO External Interrupt O Enable:
Setting this bit enables external interrupt 0.

C-17



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

IEN1 Address: S:B1H
Reset State:  XXXX X000H
Interrupt Enable Register 1. Contains the enable bits for the USB interrupts.
7 0
— — — - || - ESR EF ESOF
Bit Bit : Function
Number Mnemonic
7:3 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 ESR Enable Suspend/Resume:
USB Global Suspend/Resume Interrupt Enable bit.
1 EF Enable Function:
Transmit/Receive Done interrupt enable bit for non-isochronous USB
function endpoints.
0 ESOF Enable Start-of-Frame:
Any Start-of-Frame interrupt enable bit for isochronous endpoints.

C-18




intel.

REGISTERS

IPHO

Address: S:B7H
Reset State: X000 0000B

Interrupt Priority High Control Register 0. IPHO, together with IPLO, assigns each interrupt in IENO a
priority level from O (lowest) to 3 (highest):

IPHO.x  IPLO.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— IPHO.6 | IPHO.5 | IPHO4 || IPHO.3 | IPHO.2 | IPHO1 [ IPHOO
Bit Bit : Function
Number Mnemonic
7 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.
6 IPHO.6 PCA Interrupt Priority Bit High
5 IPHO.5 Timer 2 Overflow Interrupt Priority Bit High
4 IPHO.4 Serial /0 Port Interrupt Priority Bit High
3 IPHO.3 Timer 1 Overflow Interrupt Priority Bit High
2 IPHO.2 External Interrupt 1 Priority Bit High
1 IPHO.1 Timer 0 Overflow Interrupt Priority Bit High
0 IPHO.0 External Interrupt O Priority Bit High

C-19



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

IPLO Address: S:B8H
Reset State: X000 0000B

Interrupt Priority Low Control Register 0. IPLO, together with IPHO, assigns each interrupt in IENO a
priority level from O (lowest) to 3 (highest):

IPHO.x  IPLO.x Priority Level

0 0 0 (lowest priority)

0 1 1

1 0 2

1 1 3 (highest priority)

7 0

— IPLO.6 IPLO.5 IPLO.4 || IPLO3 IPLO.2 IPLO.1 IPLO.0
Bit Bit Function

Number Mnemonic

7 — Reserved:
The value read from this bit is indeterminate.
Write a zero to this bit.

6 IPLO.6 PCA Interrupt Priority Bit Low

5 IPLO.5 Timer 2 Overflow Interrupt Priority Bit Low
4 IPLO.4 Serial /0 Port Interrupt Priority Bit Low

3 IPLO.3 Timer 1 Overflow Interrupt Priority Bit Low
2 IPLO.2 External Interrupt 1 Priority Bit Low

1 IPLO.1 Timer 0 Overflow Interrupt Priority Bit Low
0 IPLO.O External Interrupt O Priority Bit Low

C-20




L]
|nte|® REGISTERS
IPH1 Address: S:B3H
Reset State: X000 0000B

Interrupt Priority High Control Register 1. IPH1, together with IPL1, assigns each interrupt in IEN1 a
priority level from O (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level
0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— — — — | - IPHL.2 | IPHL1 | IPH1.0
Bit Bit . Function
Number Mnemonic
73 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPH1.2 Global Suspend/Resume Interrupt Priority Bit High
IPH1.1 USB Function Interrupt Priority Bit High
0 IPH1.0 USB Any SOF Interrupt Priority Bit High

C-21



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

IPL1 Address: S:B2H
Reset State: X000 0000B

Interrupt Priority Low Control Register 1. IPL1, together with IPH1, assigns each interrupt in IEN1 a
priority level from O (lowest) to 3 (highest):

IPH1.x IPL1.x Priority Level

0 0 0 (lowest priority)
0 1 1
1 0 2
1 1 3 (highest priority)
7 0
— — — — | - IPL1.2 IPL1.1 IPL1.0
Bit Bit . Function
Number Mnemonic
73 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
2 IPL1.2 Global Suspend/Resume Interrupt Priority Bit Low
IPL1.1 USB Function Interrupt Priority Bit Low
0 IPL1.0 USB Any SOF Interrupt Priority Bit Low
PO Address: S:80H

Reset State: 1111 1111B

Port 0. PO is the SFR that contains data to be driven out from the port 0 pins. Read-modify-write
instructions that read port O read this register. The other instructions that read port O read the port 0
pins. When port 0 is used for an external bus cycle, the CPU always writes FFH to PO, and the former
contents of PO are lost.

7 0
PO Contents

Bit Bit

. Function
Number Mnemonic

7:0 P0.7:0 Port 0 Register:
Write data to be driven onto the port O pins to these bits.

C-22



intel.

REGISTERS
P1 Address: S:90H
Reset State: 1111 1111B

Port 1. P1 is the SFR that contains data to be driven out from the port 1 pins. Read-modify-write
instructions that read port 1 read this register. Other instructions that read port 1 read the port 1 pins.

7 0
P1 Contents
Bit Bit Function
Number Mnemonic
7:0 P1.7:0 Port 1 Register:
Write data to be driven onto the port 1 pins to these bits.

p2 Address: S:AOH

Reset State: 1111 1111B

Port 2. P2 is the SFR that contains data to be driven out from the port 2 pins. Read-modify-write
instructions that read port 2 read this register. Other instructions that read port 2 read the port 2 pins.

7 0
P2 Contents
Bit Bit Function
Number Mnemonic
7:0 pP2.7:0 Port 2 Register:
Write data to be driven onto the port 2 pins to these bits.

C-23



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

P3

Address: S:BOH
Reset State: 1111 1111B

Port 3. P3 is the SFR that contains data to be driven out from the port 3 pins. Read-modify-write
instructions that read port 3 read this register. Other instructions that read port 3 read the port 3 pins.

7 0
P3 Contents
Bit Bit Function
Number Mnemonic
7:0 P3.7:0 Port 3 Register:
Write data to be driven onto the port 3 pins to these bits.

C-24




Int9|® REGISTERS

PCON Address: S:87H
Reset State:  00XX 0000B

Power Control Register. Contains the power off flag (POF) and bits for enabling the idle and
powerdown modes. Also contains two general-purpose flags and two bits that control serial I/0
functions—the double baud rate bit and a bit that selects whether accesses to SCON.7 are to the FE
bit or the SMO bit.

7 0
SMOD1 | SMoDO LC POF H GF1 GFO PD IDL

Bit Bit

. Function
Number Mnemonic

7 SMOD1 Double Baud Rate Bit:

When set, doubles the baud rate when timer 1 is used and mode 1, 2, or
3 is selected in the SCON register. See “Baud Rates” on page 12-10.

6 SMODO0 SCON.7 Select:

When set, read/write accesses to SCON.7 are to the FE bit.
When clear, read/write accesses to SCON.7 are to the SMO bit.
See Figure 12-2 on page 12-5.

5 LC Low Clock Enable:

When this bit is set, the CPU and peripherals (except the USB module)
operate at 3 MHz. This bit is automatically set after a reset. Clearing this
bit through firmware causes the operating clock to return to the hardware
selection speed.

4 POF Power Off Flag:

Set by hardware as V¢ rises above 3 V to indicate that power has been
off or V¢ had fallen below 3 V and that on-chip volatile memory is
indeterminate. Set or cleared by software.

3 GF1 General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

2 GFO General Purpose Flag:

Set or cleared by software. One use is to indicate whether an interrupt
occurred during normal operation or during idle mode.

1 PD Powerdown Mode Bit:

When set, activates powerdown mode.
Cleared by hardware when an interrupt or reset occurs.

0 IDL Idle Mode Bit:

When set, activates idle mode.
Cleared by hardware when an interrupt or reset occurs.
If IDL and PD are both set, PD takes precedence.

C-25



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

PCON1 Address: S:DFH
Reset State:  XXXX X000B

USB Power Control Register. Facilitates USB power control of the 8X930Ax, including global
suspend/resume and USB function resume.

7 0
— — — — || - RWU GRSM GSUS
Bit Bit Function
Number Mnemonic
7:3 — Reserved:
The value read from these bits are indeterminate. Write zeroes to these
bits.
2 RWU Remote Wake-up Bit: (Cleared by hardware)

1 = wake-up. This bit is used by the USB function to initiate a remote
wake-up. Set by firmware to drive resume signaling on the USB lines to
the host or upstream hub. Cleared by hardware. Note: do not set this bit
unless the USB function is suspended (GSUS = 1). See Figure 14-4 on
page 14-10.

1 GRSM Global Resume Bit: (Set by hardware)

1 =resume. Set by hardware when a global resume is detected on the
USB lines. This bit is ORed with GSUS to generate the interrupt.t
Cleared by software when servicing the GRSM interrupt. (This bit can
also be set/cleared by software for testability.) This bit is not set if remote
wakeup is used (see RWU). See Figure 14-4 on page 14-10.

0 GSUS Global Suspend Bit: (Set and cleared by hardware)

1 = suspend. This bit is set by hardware when global suspend is
detected on the USB lines. This bit is ORed with the GRSM bit to
generate the interrupt.t During this ISR, software should set the PD bit
to enter the suspend mode. Cleared by firmware when a resume occurs.
See Figure 14-4 on page 14-10.

T Software should prioritize GRSM over GSUS if both bits are set simultaneously.

C-26



Int9|® REGISTERS

PSW Address: S:DOH
Reset State: 0000 0000B

Program Status Word. PSW contains bits that reflect the results of operations, bits that select the
register bank for registers RO-R7, and two general-purpose flags that are available to the user.

! 0
cy AC FO RS1 || Rso ov uD P
Bit Bit _
Number Mnemonic Function
7 cY Carry Flag:

The carry flag is set by an addition instruction (ADD, ADDC) if there is a
carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare
(CMP) if a borrow is needed for the MSB. The carry flag is also affected
by logical bit, bit move, multiply, decimal adjust, and some rotate and
shift instructions (see Table 5-10 on page 5-16).

6 AC Auxiliary Carry Flag:

The auxiliary carry flag is affected only by instructions that address 8-bit
operands. The AC flag is set if an arithmetic instruction with an 8-bit
operand produces a carry out of bit 3 (from addition) or a borrow into bit
3 (from subtraction). Otherwise it is cleared. This flag is useful for BCD
arithmetic (see Table 5-10 on page 5-16).

5 FO Flag O:
This general-purpose flag is available to the user.
4:3 RS1:0 Register Bank Select Bits 1 and 0:

These bits select the memory locations that comprise the active bank of
the register file (registers RO-R7).

RS1 RSO Bank Address

0 0 0 00H-07H

0 1 1 08H-OFH

1 0 2 10H-17H

1 1 3 18H-1FH
2 oV Overflow Flag:

This bit is set if an addition or subtraction of signed variables results in
an overflow error (i.e., if the magnitude of the sum or difference is too
great for the seven LSBs in 2's-complement representation). The
overflow flag is also set if a multiplication product overflows one byte or if
a division by zero is attempted.

1 ub User-definable Flag:
This general-purpose flag is available to the user.
0 P Parity Bit:

This bit indicates the parity of the accumulator. It is set if an odd number
of bits in the accumulator are set. Otherwise, it is cleared. Not all
instructions update the parity bit. The parity bit is set or cleared by
instructions that change the contents of the accumulator (ACC, Register
R11).

Cc-27



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

PSwi1

Address: S:D1H
Reset State: 0000 0000B

Program Status Word 1. PSW1 contains bits that reflect the results of operations and bits that select
the register bank for registers RO-R7.

7 0
cy AC N RSL || RsO ov z —
Nu?nltber Mne?r:tonic Function
7 CY Carry Flag:
Identical to the CY bit in the PSW register.
6 AC Auxiliary Carry Flag:
Identical to the AC bit in the PSW register.
5 N Negative Flag:
This bit is set if the result of the last logical or arithmetic operation was
negative. Otherwise it is cleared.
4:3 RS1:0 Register Bank Select Bits 0 and 1:
Identical to the RS1:0 bits in the PSW register.
2 oV Overflow Flag:
Identical to the OV bit in the PSW register.
1 z Zero Flag:
This flag is set if the result of the last logical or arithmetic operation is
zero. Otherwise it is cleared.
0 — Reserved:
The value read from this bit is indeterminate. Write a zero to this bit.

C-28




intel.

REGISTERS
RCAP2H, RCAP2L Address: RCAP2H S:CBH
RCAP2L S:CAH
Reset State: 0000 0000B

Timer 2 Reload/Capture Registers. This register pair stores 16-bit values to be loaded into or captured
from the timer register (TH2/TL2) in timer 2.

7 0
High/Low Byte of Timer 2 Reload/Capture Value
Bit Bit Function
Number Mnemonic
7:0 RCAP2H.7:0 | High byte of the timer 2 reload/recapture register
RCAP2L.7:0 | Low byte of the timer 2 reload/recapture register

C-29



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

RXCNTH, Address: S:E7H

RXCNTL S:E6H
Reset States:

Endpoint 1 RXCNTH XXXX XX00B

RXCNTL 0000 0000B

Endpoints 0, 2, 3 RXCNTL XXX0 0000B

Receive FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets received in the receive FIFO specified by EPINDEX.

15 (RXCNT) Endpoint 1 8
. - - I - [ - J0 = 1 = | s | Bcs |
7 (RXCNTL) 0
\ BC7 \ BC6 \ BC5 \ BC4 \ \ BC3 \ BC2 \ BC1 \ BCO \
7 (RXCNTL) Endpoints 0, 2, 3 0
‘ — ‘ — ‘ — ‘ BC4 ‘ ‘ BC3 ‘ BC2 ‘ BC1 ‘ BCO ‘
Bit Bit Function

Number Mnemonic

Endpoint 1 (x = 1)Jr
15:10 — Reserved. Write zeros to these bits.

9:0 BC9:0 Receive Byte Count.
Ten-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x=0, 2, 3)"
7:0 — Reserved. Write zeros to these bits.

4:0 BC4:0 Receive Byte Count.
Five-bit, ring buffer byte count register stores receive byte count (RXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

Tx= endpoint index. See the EPINDEX register.

C-30




intel.

REGISTERS

RXCON

Address: S:E4H
Reset State:  0X00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.

7

0

RXCLR

RXWS RXFFRC ‘ ‘ RXISO ARM ADVWM REVWP

Bit
Number

Bit
Mnemonic

Function

7

RXCLR

Clear the Receive FIFO:

Set this bit to flush the entire receive FIFO. All flags in RXFLG revert to their
reset states (RXEMP is set; all other flags clear). The ARM, RXISO and
RXWS bits in this register and the RXSEQ bitin the RXSTAT register are not
affected by this operation. Hardware clears this bit when the flush operation
is completed.

Reserved:
Values read from this bit are indeterminate. Write zero to this bit.

RXWS

Receive FIFO Wait-state Read:

At the 8X930Ax core frequency of 12 MHz, not all instructions that access
the receive FIFO are guaranteed to work due to critical paths inherent in the
8X930Ax architecture.While all MOV instructions from the receive FIFO are
guaranteed to work at 12 MHz, arithmetic instructions (e.g., ADD, SUB, etc.)
where the receive FIFO is the source and the register file the destination
may not work at this speed. For applications using arithmetic instructions,
set the RXWS bit to read the receive FIFO with one wait state — this will
eliminate the critical path. This bit is not reset when the RXCLR bit is set.

RXFFRC

FIFO Read Complete:

Set this bit to release the receive FIFO when a data set read is complete.
Setting this bit “clears” the RXFIF “bit” (in the RXFLG register)
corresponding to the data set that was just read. Hardware clears this bit
after the RXFIF bit is cleared. All data from this data set must have been
read. Note that FIFO Read Complete only works if STOVW and EDOVW are
cleared.

RXISO

Isochronous Data Type:

Set this bit to indicate that the receive FIFO is programmed to receive
isochronous data and to set up the USB Interface to handle an isochronous
data transfer. This bit is not reset when the RXCLR bit is set; it must be
cleared by software.

T The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.

C-31




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

RXCON Address: S:E4H
Reset State:  0X00 0100B

Receive FIFO Control Register. Controls the receive FIFO specified by EPINDEX.
7 0
RXCLR — RXWS RXFFRC ‘ ‘ RXISO ARM ADVWM REVWP

Bit Bit

. Function
Number | Mnemonic unctio

2 ARM Auto Receive Management:

When set, the write pointer and write marker are adjusted automatically
based on the following conditions:

RXISO RX Status Write Pointer Write Marker
X ACK Unchanged Advanced
0 NAK Reversed Unchanged
1 NAK Unchanged Advanced

When this bit is set, setting REVWP or ADVWM has no effect. Hardware
neither clears nor sets this bit. This is a sticky bit that is not reset when
RXCLR is set.

Note: This bit should always be set, except for testing.

1 ADVWM Advance Write Marker:

(For non-ARM mode only) Set this bit to advance the write marker to the
origin of the next data set. Advancing the write marker is used for back-to-
back receptions. Hardware clears this bit after the write marker is advanced.
Setting this bit is effective only when the REVWP, ARM and RXCLR bits are
clear.

0 REVWP Reverse Write Pointer: T

(For non-ARM mode only) Set this bit to return the write pointer to the origin
of the last data set received, as identified by the write marker. The FIU can
then re-receive the last data packet and write to the receive FIFO starting
from the same origin when the host re-sends the same data packet.
Hardware clears this bit after the write pointer is reversed. Setting this bit is
effective only when the ADVWM, ARM, and RXCLR bits are all clear.
REVWP is used when a data packet is bad. When the function interface

receives the data packet again, the write starts at the origin of the previous
(bad) data set.

T The write marker and write pointer should only be controlled manually for testing (when the ARM bit is
clear). At all other times the ARM bit should be set and the ADVWM and REVWP bits should be left alone.

C-32




Int9|® REGISTERS

RXDAT Address: S:E3H
Reset: XXXX XXXXB

Receive FIFO Data Register. Receive FIFO data specified by EPINDEX is stored and read from this
register.

7 0
RXDAT.7:0

Bit Bit

. Function
Number Mnemonic

7:0 RXDAT.7:0 | To write data to the receive FIFO, the FIU writes to this register. To read
data from the receive FIFO, the 8X930Ax reads from this register. The
write pointer and read pointer are incremented automatically after a write
and read, respectively.

C-33




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

RXFLG Address: S:E5H
Reset State:  00XX 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0
RXFIF1 RXFIFO — — ‘ ‘ RXEMP RXFULL RXURF RXOVF

Bit Bit

. Function
Number | Mnemonic

7:6 RXFIF[1:0] | Receive FIFO Index Flags: (read-only)

These read-only flags indicate which data packets are present in the receive
FIFO (see Table 7-6 on page 7-26). The RXFIF bits are updated after each
write to RXCNT to reflect the addition of a data packet. Likewise, the RXFIF
bits are cleared in sequence after each setting of the RXFFRC bit. The next-
state table for RXFIF bits is shown below for operation in dual packet mode.

RXFIF[1:0] Operation Flag Next RXFIF[1:0] Next Flag
00 Adv WM X 01 Unchanged
01 Adv WM X 01 Unchanged
10 Adv WM X 11 Unchanged
00 Set RXFFRC X 00 Unchanged
01 Set RXFFRC X 00 Unchanged
11 Set RXFFRC X 10/01 Unchanged
10 Set RXFFRC X 00 Unchanged
XX Rev WP X Unchanged Unchanged

When the receive FIFO is programmed to operate in single packet mode
(RXSPM set in EPCON), valid RXFIF states are 00 and 01 only.

In ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. RXFIF is “incremented” by the USB and
“decremented” by firmware.Therefore, setting RXFFRC “decrements”
RXFIF immediately. However, a successful USB transaction within a frame
“increments” RXFIF only at SOF. For traceability, you must check the RXFIF
flags before and after reads from the receive FIFO and the setting of
RXFFRC in RXCON.

NOTE: To simplify firmware development, it is recommended that you utilize
control endpoints in single-packet mode only.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
3 RXEMP Receive FIFO Empty Flag (read-only):

Hardware sets this flag when the write pointer is at the same location as the
read pointer AND the write pointer equals the write marker and neither
pointer has rolled over. Hardware clears the bit when the empty condition no
longer exists. This is not a sticky bit and always tracks the current status of
the receive FIFO, regardless of ISO or non-1ISO mode.

C-34




Int9|® REGISTERS

RXFLG (Continued) Address: S:E5H
Reset State:  00XX 1000B

Receive FIFO Flag Register. These flags indicate the status of data packets in the receive FIFO
specified by EPINDEX.

7 0
RXFIF1 RXFIFO — — | | RXEMP RXFULL RXURF RXOVF
Bit Bit Function
Number | Mnemonic
2 RXFULL Receive FIFO Full Flag (read-only):

Hardware sets this flag when the write pointer has rolled over and equals
the read pointer. Hardware clears the bit when the full condition no longer
exists. This is not a sticky bit and always tracks the current status of the
receive FIFO, regardless of ISO or non-ISO mode.

1 RXURF Receive FIFO Underrun Flag.

Hardware sets this bit when an additional byte is read from an empty receive
FIFO or RXCNT. Hardware does not clear the bit, so you must clear it in
firmware. When the receive FIFO underruns, the read pointer will not
advance — it remains locked in the empty position.

n ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
firmware, RXURF is updated immediately. You must check the RXURF flag
after reads from the receive FIFO before setting the RXFFRC bit in RXCON.

NOTE: When this bit is set, the FIFO is in an unknown state. It is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register.

0 RXOVF Receive FIFO Overrun Flag.

This bit is set when the FIU writes an additional byte to a full receive FIFO or
writes a byte count to RXCNT with FIF1:0 = 11. This is a sticky bit that must
be cleared through software, although it can be cleared by hardware if a
SETUP packet is received after an RXOVF error had already occurred.

When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in the error management routine
using the RXCLR bit in the RXCON register. When the receive FIFO
overruns, the write pointer will not advance — it remains locked in the full
position.

n ISO mode, RXOVF, RXURF, and RXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by the
USB, RXOVF is updated only at the next SOF regardless of where the
overrun occurred during the current frame.

C-35




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

RXSTAT Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0
RXSEQ | RXSETUP | STOVW EDOVW ‘ ‘ RXSOVW | RXVOID RXERR RXACK

Bit Bit

. Function
Number | Mnemonic

7 RXSEQ Receiver Endpoint Sequence Bit (read, conditional write):

This bit will be toggled on completion of an ACK handshake in response to
an OUT token. This bit will be set (or cleared) by hardware after reception of
a SETUP token.

This bit can be written by firmware if the RXSOVW bit is set when written
together with the new RXSEQ value. T

Note: Always verify this bit after writing to ensure that there is no conflict with
hardware, which could occur if a new SETUP token is received.

6 RXSETUP | Received Setup Token:

This bit is set by hardware when a valid SETUP token has been received.
When set, this bit causes received IN or OUT tokens to be NAKed until the
bit is cleared to allow proper data management for the transmit and receive
FIFOs from the previous transaction.

IN or OUT tokens are NAKed even if the endpoint is stalled (RXSTL or
TXSTL) to allow a control transaction to clear a stalled endpoint.

Clear this bit upon detection of a SETUP token after the firmware is ready to
complete the status stage of a control transaction.

5 STOVW Start Overwrite Flag (read-only):

Set by hardware upon receipt of a SETUP token for any control endpoint to
indicate that the receive FIFO is being overwritten with new SETUP data.
When set, the FIFO state (FIF and read pointer) resets and is locked for this
endpoint until EDOVW is set. This prevents a prior, ongoing firmware read
from corrupting the read pointer as the receive FIFO is being cleared and
new data is being written into it. This bit is cleared by hardware during the
handshake phase of the setup stage.

This bit is only used for control endpoints.

4 EDOVW End Overwrite Flag:

This flag is set by hardware during the handshake phase of a SETUP stage.
Itis set after every SETUP packet is received and must be cleared prior to
reading the contents of the FIFO. When set, the FIFO state (FIF and read
pointer) remains locked for this endpoint until this bit is cleared. This
prevents a prior, ongoing firmware read from corrupting the read pointer
after the new data has been written into the receive FIFO.

This bit is only used for control endpoints.

T Under normal operation, this bit should not be modified by the user.

™ The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new
configuration or interface.

C-36




Int9|® REGISTERS

RXSTAT (Continued) Address: S:E2H
Reset State: 0000 0000B

Endpoint Receive Status Register. Contains the current endpoint status of the receive FIFO specified
by EPINDEX.

7 0
RXSEQ | RXSETUP | STOVW EDOVW | | RXSOVW | RXVOID RXERR RXACK

Bit Bit

) Function
Number | Mnemonic

3 RXSOVW | Receive Data Sequence Overwrite Bit:

Write a ‘1’ to this bit to allow the value of the RXSEQ bit to be overwritten.
This is needed to clear a STALL on a control endpoint. Writing a ‘0’ to this bit
has no effect on RXSEQ. This bit always returns ‘0’ when read. t, t1

2 RXVOID Receive Void Condition (read-only):

This bit is set when no valid data is received in response to a SETUP or
OUT token due to one of the following conditions:

1. The receive FIFO is still locked.
2. The EPCON register's RXSTL bit is set for a non-control endpoint.

This bit is set and cleared by hardware. For non-isochronous transactions,
this bit is updated by hardware at the end of the transaction in respond to a
valid OUT token. For isochronous transactions, it is not updated until the
next SOF.

1 RXERR Receive Error (read-only):

Set when an error condition has occurred with the reception. Complete or
partial data has been written into the receive FIFO. No handshake is
returned. The error can be one of the following conditions:

1. Data failed CRC check.

2. Bit stuffing error.

3. Areceive FIFO goes into overrun or underrun condition while receiving.
This bit is updated by hardware at the end of a valid SETUP or OUT token

transaction (non-isochronous) or at the next SOF on each valid OUT token
transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXACK bit at the end of data reception and is mutually
exclusive with RXACK.

0 RXACK Receive Acknowledged (read-only):

This bit is set when data is received completely into a receive FIFO and an
ACK handshake is sent. This read-only bit is updated by hardware at the
end of a valid SETUP or OUT token transaction (non-isochronous) or at the
next SOF on each valid OUT token transaction (isochronous).

The corresponding FRXDx bit of FIFLG is set when active. This bit is
updated with the RXERR bit at the end of data reception and is mutually
exclusive with RXERR.

T Under normal operation, this bit should not be modified by the user.

™ The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new
configuration or interface.

C-37



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

SADDR Address: S:A9H
Reset State: 0000 0000B

Slave Individual Address Register. SADDR contains the device’s individual address for multiprocessor
communication.

7 0

Slave Individual Address

Bit Bit Function
Number Mnemonic
7:0 SADDR.7:0
SADEN Address: S:B9H

Reset State: 0000 0000B

Mask Byte Register. This register masks bits in the SADDR register to form the device’s given address
for multiprocessor communication.

7 0
Mask for SADDR

Bit Bit ]
Number Mnemonic Function
7:0 SADEN.7:0
SBUF Address: S:99H

Reset State: XXXX XXXXB

Serial Data Buffer. Writing to SBUF loads the transmit buffer of the serial I/O port. Reading SBUF
reads the receive buffer of the serial I/O port.

7 0
Data Sent/Received by Serial I/O Port

Bit Bit

. Function
Number Mnemonic

7:0 SBUF.7:0

C-38



Int9|® REGISTERS

SCON Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial 1/0 control and status bits, including the mode
select bits and the interrupt flag bits.

7 0
FE/SMO SM1 SMm2 REN H TBS RB8 TI RI

Bit Bit

. Function
Number Mnemonic

7 FE Framing Error Bit:

To select this function, set the SMODO bit in the PCON register. Set by
hardware to indicate an invalid stop bit. Cleared by software, not by valid
frames.

SMO Serial Port Mode Bit 0:

To select this function, clear the SMODO bit in the PCON register.
Software writes to bits SMO and SM1 to select the serial port operating
mode. Refer to the SM1 bit for the mode selections.

6 SM1 Serial Port Mode Bit 1:

Software writes to bits SM1 and SMO (above) to select the serial port
operating mode.

SMO SM1 Mode Description Baud Rate

0 0 0 Shift register  Fggc/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART Fosc/32" or Fogc /64T
1 1 3 9-bit UART Variable

TSelect by programming the SMOD bit in the PCON register (see section
“Baud Rates” on page 12-10).

5 SM2 Serial Port Mode Bit 2:

Software writes to bit SM2 to enable and disable the multiprocessor
communication and automatic address recognition features. This allows
the serial port to differentiate between data and command frames and to
recognize slave and broadcast addresses.

4 REN Receiver Enable Bit:
To enable reception, set this bit. To enable transmission, clear this bit.
3 TB8 Transmit Bit 8:

In modes 2 and 3, software writes the ninth data bit to be transmitted to
TB8. Not used in modes 0 and 1.

2 RB8 Receiver Bit 8:

Mode 0: Not used.

Mode 1 (SM2 clear): Set or cleared by hardware to reflect the stop bit
received.

Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth
data bit received.

C-39



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

7

SCON (Continued)

Address: S:98H
Reset State: 0000 0000B

Serial Port Control Register. SCON contains serial I/O control and status bits, including the mode
select bits and the interrupt flag bits.

FE/SMO

SM1

SMm2 REN H TBS RB8 TI RI

Bit
Number

Mnemonic

Bit

Function

1

TI

Transmit Interrupt Flag Bit:

Set by the transmitter after the last data bit is transmitted. Cleared by
software.

RI

Receive Interrupt Flag Bit:

Set by the receiver after the last data bit of a frame has been received.
Cleared by software.

C-40



Int9|® REGISTERS

SOFH Address: S:D3H
Reset State: 0000 0000B

Start of Frame High Register. Contains isochronous data transfer enable and interrupt bits and the
upper three bits of the 11-bit time stamp received from the host.

7 0

SOFACK | ASOF SOFIE | FTLOCK | | SOFODIS | Ts10 TS9 TS8
Bit Bit Function

Number | Mnemonic

7 SOFACK SOF Token Received without Error (read-only):

When set, this bit indicates that the 11-bit time stamp stored in SOFL and
SOFH is valid. This bit is updated every time a SOF token is received from
the USB bus, and it is cleared when an artificial SOF is generated by the
frame timer. This bit is set and cleared by hardware.

6 ASOF Any Start-of-Frame:

This bit is set by hardware to indicate that a new frame has started. The
interrupt can result either from reception of an actual SOF packet or from an
artificially-generated SOF from the frame timer. This interrupt is asserted in
hardware even if the frame timer is not locked to the USB bus frame timing.
When set, this bit is an indication that either an actual SOF packet was
received or an artificial SOF was generated by the frame timer. This bit must
be cleared by software or inverted and driven to the SOF# pin. The effect of
setting this bit by software is the same as hardware: the external pin will be
driven with an inverted ASOF value for eight T s.

This bit also serves as the SOF interrupt flag. This interrupt is only asserted
in hardware if the SOF interrupt is enabled (SOFIE set) and the interrupt
channel is enabled.

5 SOFIE SOF Interrupt Enable:

When this bit is set, setting the ASOF bit causes an interrupt request to be
generated if the interrupt channel is enabled. Hardware reads but does not
write this bit.

4 FTLOCK Frame Timer Locked (read-only):

When set, this bit indicates that the frame timer is presently locked to the
USB bus’ frame time. When cleared, this bit indicates that the frame timer is
attempting to synchronize to the frame time.

3 SOFODIS | SOF# Pin Output Disable:

When set, no low pulse will be driven to the SOF# pin in response to setting
the ASOF bit. The SOF# pin will be driven to ‘1’ when SOFODIS is set.
When this bit is clear, setting the ASOF bit causes the SOF# pin to be
toggled with a low pulse for eight T s.

2:0 TS10:8 Time stamp received from host:

TS10:8 are the upper three bits of the 11-bit frame number issued with an
SOF token. This time stamp is valid only if the SOFACK bit is set.

C-41




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

SOFL Address: S:D2H
Reset State: 0000 0000B

Start-of-Frame Low Register. Contains the lower eight bits of the 11-bit time stamp received from the
host.

7 0
TS7:0

Bit Bit

. Function
Number | Mnemonic

7:0 TS7:0 Time stamp received from host:

This time stamp is valid only if the SOFACK bit in the SOFH register is set.
TS7:0 are the lower eight bits of the 11-bit frame number issued with a SOF
token. IF an artificial SOF is generated, the time stamp remains at its
previous value and it is up to firmware to update it. These bits are set and
cleared by hardware.

sp Address: S:81H
Reset State: 0000 0111B

Stack Pointer. SP provides SFR access to location 63 in the register file (also named SP). SP is the
lowest byte of the extended stack pointer (SPX = DR60). The extended stack pointer points to the
current top of stack. When a byte is saved (PUSHed) on the stack, SPX is incremented, and then the
byte is written to the top of stack. When a byte is retrieved (POPped) from the stack, it is copied from
the top of stack, and then SPX is decremented.

7 0
SP Contents

Bit Bit Function
Number Mnemonic
7:0 SP.7:0 Stack Pointer:

Bits 0—7 of the extended stack pointer, SPX (DR60).

C-42



L]
|nte|® REGISTERS
SPH Address: S:BEH
Reset State: 0000 0000B

Stack Pointer High. SPH provides SFR access to location 62 in the register file (also named SPH).
SPH is the upper byte of the lower word of DR60, the extended stack pointer (SPX). The extended
stack pointer points to the current top of stack. When a byte is saved (PUSHed) on the stack, SPX is
incremented, and then the byte is written to the top of stack. When a byte is retrieved (POPped) from
the stack, it is copied from the top of stack, and then SPX is decremented.

7 0
SPH Contents
Bit Bit Function
Number Mnemonic
7:0 SPH.7:0 Stack Pointer High:
Bits 8-15 of the extended stack pointer, SPX (DR(60)).

C-43



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

T2CON Address: S:C8H
Reset State: 0000 0000B

Timer 2 Control Register. Contains the receive clock, transmit clock, and capture/reload bits used to
configure timer 2. Also contains the run control bit, counter/timer select bit, overflow flag, external flag,
and external enable for timer 2.

7 0
TF2 EXF2 RCLK TCLK H EXEN2 TR2 CIT2# CP/RL2#

Bit Bit

. Function
Number Mnemonic

7 TF2 Timer 2 Overflow Flag:

Set by timer 2 overflow. Must be cleared by software. TF2 is not set if
RCLK =1or TCLK = 1.

6 EXF2 Timer 2 External Flag:

If EXEN2 = 1, capture or reload caused by a negative transition on T2EX
sets EFX2. EXF2 does not cause an interrupt in up/down counter mode
(DCEN = 1).

5 RCLK Receive Clock Bit:

Selects timer 2 overflow pulses (RCLK = 1) or timer 1 overflow pulses
(RCLK = 0) as the baud rate generator for serial port modes 1 and 3.

4 TCLK Transmit Clock Bit:

Selects timer 2 overflow pulses (TCLK = 1) or timer 1 overflow pulses
(TCLK = 0) as the baud rate generator for serial port modes 1 and 3.

3 EXEN2 Timer 2 External Enable Bit:

Setting EXEN2 causes a capture or reload to occur as a result of a
negative transition on T2EX unless timer 2 is being used as the baud
rate generator for the serial port. Clearing EXEN2 causes timer 2 to
ignore events at T2EX.

2 TR2 Timer 2 Run Control Bit:
Setting this bit starts the timer.
1 CIT2# Timer 2 Counter/Timer Select:

C/T2# = 0 selects timer operation: timer 2 counts the divided-down
system clock. C/T2# = 1 selects counter operation: timer 2 counts
negative transitions on external pin T2.

0 CP/RL2# Capture/Reload Bit:

When set, captures occur on negative transitions at T2EX if EXEN2 = 1.
When cleared, auto-reloads occur on timer 2 overflows or negative
transitions at T2EX if EXEN2 = 1. The CP/RL2# bit is ignored and timer 2
forced to auto-reload on timer 2 overflow, if RCLK = 1 or TCLK = 1.

C-44



Int9|® REGISTERS

T2MOD Address: S:C9H
Reset State: XXXX XX00B

Timer 2 Mode Control Register. Contains the timer 2 down count enable and clock-out enable bits for
timer 2.

7 0
— — — — || - — T20E DCEN
Bit Bit Function
Number Mnemonic
7:2 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
1 T20E Timer 2 Output Enable Bit:

In the timer 2 clock-out mode, connects the programmable clock output
to external pin T2.

0 DCEN Down Count Enable Bit:
Configures timer 2 as an up/down counter.

C-45



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TCON Address: S:88H
Reset State: 0000 0000B

Timer/Counter Control Register. Contains the overflow and external interrupt flags and the run control
and interrupt transition select bits for timer 0 and timer 1.

7 0
TF1 TR1 TFO TRO H IE1 IT1 IEO ITO

Bit Bit

. Function
Number Mnemonic

7 TF1 Timer 1 Overflow Flag:

Set by hardware when the timer 1 register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

6 TR1 Timer 1 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.
5 TFO Timer 0 Overflow Flag:

Set by hardware when the timer O register overflows. Cleared by
hardware when the processor vectors to the interrupt routine.

4 TRO Timer 0 Run Control Bit:
Set/cleared by software to turn timer 1 on/off.

3 IE1 Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INT1# pin.
Edge- or level- triggered (see IT1). Cleared when interrupt is processed
if edge-triggered.

2 IT1 Interrupt 1 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 1.
Clear this bit to select level-triggered (active low).

1 IEO Interrupt 1 Flag:

Set by hardware when an external interrupt is detected on the INTO# pin.
Edge- or level- triggered (see ITO). Cleared when interrupt is processed
if edge-triggered.

0 ITO Interrupt 0 Type Control Bit:

Set this bit to select edge-triggered (high-to-low) for external interrupt 0.
Clear this bit to select level-triggered (active low).

C-46



Int9|® REGISTERS

TMOD Address: S:89H
Reset State: 0000 0000B

Timer/Counter Mode Control Register. Contains mode select, run control select, and counter/timer
select bits for controlling timer 0 and timer 1.

7 0
GATEL CIT1# M11 MO1 H GATEO CITo# M10 MO0

Bit Bit

. Function
Number Mnemonic

7 GATE1 Timer 1 Gate:

When GATEL = 0, run control bit TR1 gates the input signal to the timer
register. When GATE1 = 1 and TR1 = 1, external signal INT1 gates the
timer input.

6 CIT1# Timer 1 Counter/Timer Select:

C/T1# = 0 selects timer operation: timer 1 counts the divided-down
system clock. C/T1# = 1 selects counter operation: timer 1 counts
negative transitions on external pin T1.

54 M11, MO1 Timer 1 Mode Select:

M11 MO1
0 0 Mode 0: 8-bit timer/counter (TH1) with 5-bit prescalar (TL1)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TL1). Reloaded
from TH1 at overflow.
1 1 Mode 3: Timer 1 halted. Retains count.

3 GATEO Timer 0 Gate:

When GATEO = 0, run control bit TRO gates the input signal to the timer
register. When GATEO = 1 and TRO = 1, external signal INTO gates the
timer input.

2 CITO# Timer 0 Counter/Timer Select:

C/TO# = 0 selects timer operation: timer O counts the divided-down
system clock. C/TO# = 1 selects counter operation: timer O counts
negative transitions on external pin TO.

1,0 M10, MOO Timer 0 Mode Select:

M10 MOO
0 0 Mode 0: 8-bit timer/counter (T0) with 5-bit prescalar (TLO)
0 1 Mode 1: 16-bit timer/counter
1 0 Mode 2: 8-bit auto-reload timer/counter (TLO). Reloaded
from THO at overflow.
1 1 Mode 3: TLO is an 8-bit timer/counter. THO is an 8-bit
timer using timer 1's TR1 and TF1 bits.

Cc-47



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

THO, TLO Address: THO S:8CH
TLO S:8AH
Reset State: 0000 0000B

THO, TLO Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
0 or separately as 8-bit timer/counters.

7 0
High/Low Byte of Timer 0 Register

Bit Bit Function
Number Mnemonic
7:0 THO.7:0 High byte of the timer 0O timer register.
TLO.7:0 Low byte of the timer O timer register.
TH1, TL1 Address: TH1 S:8DH
TL1 S:8BH
Reset State: 0000 0000B

TH1, TL1 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer
1 or separately as 8-bit timer/counters.

7 0
High/Low Byte of Timer 1 Register

Bit Bit Function
Number Mnemonic
7:0 TH1.7:0 High byte of the timer 1 timer register.
TL1.7:0 Low byte of the timer 1 timer register.

C-48



intel.

REGISTERS
TH2, TL2 Address: TH2 S:CDH
TL2 S:CCH
Reset State: 0000 0000B

TH2, TL2 Timer Registers. These registers operate in cascade to form the 16-bit timer register in timer

2.
7 0
High/Low Byte of Timer 2 Register
Bit Bit Function
Number Mnemonic
7:0 TH2.7:0 High byte of the timer 2 timer register.
TL2.7:0 Low byte of the timer 2 timer register.

C-49



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TXCNTH,
TXCNTL

Address: S:F7H
S:F6H
Reset States: Endpoint 1 TXCNTH XXXX XX00B

TXCNTL 0000 0000B

Endpoints 0, 2, 3 TXCNTL XXX0 0000B

Transmit FIFO Byte-count High and Low Registers. High and low register in a two-register ring buffer
used to store the byte count for the data packets in the transmit FIFO specified by EPINDEX. Note that
TXCNTH exists only for function endpoint 1 and is unavailable for all other endpoints. During normal
operations, these registers should only be written by the 8X930Ax CPU.

15 (TXCNTH) Endpoint 1 8
L - [ - - | — [ = [ — ] sco | Bscs |
7 (TXCNTL) 0
\ BC7 \ BC6 BC5 \ BC4 \ \ BC3 \ BC2 \ BC1 \ BCO \
7 (TXCNTL) Endpoints 0, 2, 3 0
‘ — ‘ — — ‘ BC4 ‘ ‘ BC3 ‘ BC2 ‘ BC1 ‘ BCO ‘
Bit Bit Function

Number Mnemonic

Endpoint 1 (x= 1)Jr

15:10 —

Reserved.
Write zeros to these bits.

9:0 BC9:0

Transmit Byte Count.
Ten-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 1023 bytes for endpoint 1 only.

Endpoints 0, 2, 3. (x=0, 2, 3)"

7:0 — Reserved.
Write zeros to these bits.
4:0 BC4:0 Transmit Byte Count.

Five-bit, ring buffer byte count register stores transmit byte count (TXCNT)
of 0 to 16 bytes for endpoints 0, 2, and 3.

+

X = endpoint index. See the EPINDEX register.

NOTE: To send a status stage after a CNTL write or no data control command or a null packet, write 0 to

TXCNT.

C-50




Int9|® REGISTERS

TXCON Address: S:F4H
Reset State: x=1" 000X 0100B
x=0,2, 3" 0xxx 01008

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.
7 0
TXCLR FFSZ.1 FFSZ.0 — ‘ ‘ TXISO ATM ADVRM REVRP

Bit Bit

. Function
Number | Mnemonic

7 TXCLR Transmit Clear:

Setting this bit flushes the transmit FIFO, sets the EMPTY bit in TXFLG, and
clears all other bits in TXFLG. After the flush, hardware clears this bit.
Setting this bit does not affect the ATM, TXISO, and FFSZ bits.

6:5 FFSZ[1:0] | FIFO Size:

These two bits are used for FIFO size configuration by function endpoint 1
only. The endpoint 1 FIFO size configurations (in bytes) are:

FFSZ[1:0] Transmit Size Receive Size

00 256 256
01 512 512
10 1024 0
11 0 1024

These bits are not reset when the TXCLR bit is set in the TXCON register.

NOTE: The receive FIFO size is also set by the TXCON FFSZ bits.
Therefore, there are no corresponding FFSZ bits in RXCON.

4 — Reserved:
Values read from this bit are indeterminate. Write zero to this bit.

3 TXISO Transmit Isochronous Data:

Software sets this bit to indicate that the transmit FIFO contains isochronous
data. The FIU uses this bit to set up the handshake protocol at the end of a
transmission. This bit is not reset when TXCLR is set and must be cleared
by software.

T ox= endpoint index. See EPINDEX.

™ The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.

C-51




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TXCON (Continued) Address: S:F4H
Reset State: x=1" 000X 0100B
x=0,2, 3" 0Xxxx 01008

USB Transmit FIFO Control Register. Controls the transmit FIFO specified by EPINDEX.

7 0
TXCLR FFSz.1 FFSZ.0 — | | TXISO ATM ADVRM REVRP
Bit Bit .
Number | Mnemonic Function
2 ATM Automatic Transmit Management:

Setting this bit (the default value) causes the read pointer and read marker
to be adjusted automatically as indicated:

ISO TX Status Read Pointer Read Marker

X ACK Unchanged Advanced*
0 NAK Reversed** Unchanged
1 NAK Unchanged Advanced*
* to origin of next data set ** to origin of the data set last read

When this bit is set, setting REVRP or ADVRM has no effect. This is a sticky
bit that is not reset when TXCLR is set, but can be set and cleared by
software. Hardware neither clears nor sets this bit.

Note: This bit should always be set, except for testing.

1 ADVRM Advance Read Marker Control (non-ATM mode only) T1:

Setting this bit advances the read marker to point to the origin of the next
data packet (the position of the read pointer) to prepare for the next packet
transmission. Hardware clears this bit after the read marker is advanced.
Setting this bit is effective only when the REVRP, ATM, and TXCLR bits are
all clear.

0 REVRP Reverse Read Pointer Control (non-ATM mode only) t7:

In the case of bad transmission, the same data stack may need to be
available for retransmit. Setting this bit reverses the read pointer to point to
the origin of the last data set (the position of the read marker) so that the FIU
can reread the last set for retransmission. Hardware clears this bit after the
read pointer is reversed. Setting this bit is effective only when the ADVRM,
ATM, and TXCLR bits are all clear.

T ox= endpoint index. See EPINDEX.

™ The read marker and read pointer should only be controlled manually for testing (when the ATM bit is
clear). At all other times the ATM bit should be set and the ADVRM and REVRP bits should be left alone.

C-52




Int9|® REGISTERS

TXDAT Address: S:F3H

Reset State: XXXX XXXXB

USB Transmit FIFO Data Register. Data from the transmit FIFO specified by EPINDEX is written to and
stored in this register.

7 0
Transmit Data Byte
Bit Bit Function
Number | Mnemonic
7:0 TXDAT[7:0] | Transmit Data Byte (write-only)t:

To write data to the transmit FIFO, write to this register. The write pointer

and read pointer are incremented automatically after a write and read
respectively.

T This register can be read by firmware, but it should only be read if FIF1:0 # 00.

C-53



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TXFLG Address: S:F5H
Reset State:  00XX 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — ‘ ‘ TXEMP TXFULL TXURF TXOVF

Bit Bit

. Function
Number | Mnemonic

7:6 TXFIF[1:0] | FIFO Index Flags (read-only):

These flags indicate which data sets are present in the transmit FIFO. The
FIF bits are set in sequence after each write to TXCNT to reflect the addition
of a data set. Likewise, TXFIF1 and TXFIFO are cleared in sequence after
each advance of the read marker to indicate that the set is effectively
discarded. The bit is cleared whether the read marker is advanced by
software (setting ADVRM) or automatically by hardware (ATM = 1). The
next-state table for the TXFIF bits is shown below:

TXFIF[1:0] Operation Flag Next TXFIF[1:0] Next Flag

00 Wr TXCNT X 01 Unchanged
01 Wr TXCNT X 11 Unchanged
10 Wr TXCNT X 11 Unchanged
11 Wr TXCNT X 11 TXOVF =1
00 Adv RM X 00 Unchanged
01 Adv RM X 00 Unchanged
11 Adv RM X 10/01 Unchanged
10 Adv RM X 00 Unchanged
XX Rev RP X Unchanged Unchanged

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. TXFIF is “incremented” by firmware and
“decremented” by the USB.Therefore, writes to TXCNT “increment” TXFIF
immediately. However, a successful USB transaction any time within a
frame “decrements” TXFIF only at SOF.

You must check the TXFIF flags before and after writes to the transmit FIFO
and TXCNT for traceability.

NOTE: To simplify firmware development, configure control endpoints in
single-packet mode.

5:4 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
3 TXEMP Transmit FIFO Empty Flag (read-only):

Hardware sets this bit when the write pointer has not rolled over and is at the
same location as the read pointer. Hardware clears this bit when the
pointers are at different locations.

Regardless of ISO or non-ISO mode, this bit always tracks the current
transmit FIFO status.

T When set, all transmissions are NAKed.

C-54




Int9|® REGISTERS

TXFLG (Continued) Address: S:F5H
Reset State:  00XX 1000B

Transmit FIFO Flag Register. These flags indicate the status of data packets in the transmit FIFO
specified by EPINDEX.

7 0
TXFIF1 TXFIFO — — | | TXEMP TXFULL TXURF TXOVF
Bit Bit Function
Number | Mnemonic
2 TXFULL Transmit FIFO Full Flag (read-only):

Hardware sets this bit when the write pointer has rolled over and equals the
read marker. Hardware clears this bit when the full condition no longer
exists.

Regardless of ISO or non-1ISO mode, this bit always tracks the current
transmit FIFO status. Check this bit to avoid causing a TXOVF condition.

1 TXURF Transmit FIFO Underrun Flag:

Hardware sets this flag when an additional byte is read from an empty
transmit FIFO or TXCNT [This is caused when the value written to TXCNT is
greater than the number of bytes written to TXDAT.]. This is a sticky bit that
must be cleared through software. When this flag is set, the FIFO is in an
unknown state, thus it is recommended that you reset the FIFO in your error
management routine using the TXCLR bit in TXCON.

When the transmit FIFO underruns, the read pointer will not advance — it
remains locked in the empty position.t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since underrun can only be caused by
USB, TXURF is updated at the next SOF regardless of where the underrun
occurs in the frame.

0 TXOVF Transmit FIFO Overrun Flag:

This bit is set when an additional byte is written to a full FIFO or full TXCNT
with TXFIF1:0 = 11. This is a sticky bit that must be cleared through
software. When this bit is set, the FIFO is in an unknown state, thus it is
recommended that you reset the FIFO in your error management routine
using the TXCLR bit in TXCON.

When the receive FIFO overruns, the write pointer will not advance — it
remains locked in the full position. Check this bit after loading the FIFO prior
to writing the byte count register.t

In ISO mode, TXOVF, TXURF, and TXFIF are handled using the following
rule: Firmware events cause status change immediately, while USB events
cause status change only at SOF. Since overrun can only be caused by
firmware, TXOVF is updated immediately. Check the TXOVF flag after
writing to the transmit FIFO before writing to TXCNT.

T When set, all transmissions are NAKed.

C-55




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

TXSTAT Address: S:F2H
Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0
TXSEQ — — TXFLUSH ‘ ‘ TXSOVW | TXVOID TXERR TXACK
Bit Bit Function
Number | Mnemonic
7 TXSEQ Transmitter’'s Current Sequence Bit (read, conditional write):

This bit will be transmitted in the next PID and toggled on a valid ACK
handshake. This bit is toggled by hardware on a valid SETUP token. This bit
can be written by firmware if the TXSOVW bit is set when written together
with the new TXSEQ value.t

6:5 — Reserved:
Values read from these bits are indeterminate. Write zeros to these bits.
4 TXFLUSH | Transmit FIFO Packet Flushed:

When set, this bit indicates that hardware flushed a stale ISO data packet
from the transmit FIFO due to a TXFIF = ‘11’ at SOF. This bit is set by
hardware, but can also be set by software with the same effect.t

3 TXSOVW | Transmit Data Sequence Overwrite Bit:

Write a ‘1’ to this bit to allow the value of the TXSEQ bit to be overwritten.
Writing a ‘0’ to this bit has no effect on TXSEQ. This bit always returns ‘0’
when read.t, t1

2 TXVOID Transmit Void (read-only):

A void condition has occurred in response to a valid IN token. Transmit void
is closely associated with the NAK/STALL handshake returned by function

after a valid IN token, due to the conditions that cause the transmit FIFO to
be unenabled or not ready to transmit.

Use this bit to check any NAK/STALL handshake ever returned by function.
This bit does not affect the FTXDx, TXERR or TXACK bits. This bit is
updated by hardware at the end of a non-isochronous transaction in

response to a valid IN token. For isochronous transactions, this bit is not
updated until the next SOF.

T Under normal operation, this bit should not be modified by the user.

™ The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new
configuration or interface.

C-56




Int9|® REGISTERS

TXSTAT (Continued) Address: S:F2H
Reset State: 0000 0000B

Endpoint Transmit Status Register. Contains the current endpoint status of the transmit FIFO specified
by EPINDEX.

7 0
TXSEQ — — TXFLUSH | | TXSOVW | TXVOID TXERR TXACK

Bit Bit

. Function
Number | Mnemonic

1 TXERR Transmit Error (read-only):

An error condition has occurred with the transmission. Complete or partial
data has been transmitted. The error can be one of the following:

1. Data transmitted successfully but no handshake received.
2. Transmit FIFO goes into underrun condition while transmitting.

The corresponding transmit done bit (FTXDx in FIFLG) is set when active.
For non-isochronous transactions, this bit is updated by hardware together
with the TXACK bit at the end of the data transmission (this bit is mutually
exclusive with TXACK). For isochronous transactions, this bit is not updated
until the next SOF.

0 TXACK Transmit Acknowledge (read-only):

Data transmission completed and acknowledged successfully. The
corresponding transmit done bit (FTXDx in FIFLG) is set when active. For
non-isochronous transactions, this bit is updated by hardware together with
the TXERR bit at the end of data transmission (this bit is mutually exclusive
with TXERR). For isochronous transactions, this bit is not updated until the
next SOF.

T Under normal operation, this bit should not be modified by the user.

™ The SIE will handle all sequential bit tracking. This bit should only be used when initializing a new
configuration or interface.

WDTRST Address: S:A6H
Reset State: XXXX XXXXB

Watchdog Timer Reset Register. Writing the two-byte sequence 1EH-E1H to the WDTRST register
clears and enables the hardware WDT. The WDTRST register is a write-only register. Attempts to
read it return FFH. The WDT itself is not read or write accessible. See Chapter 10, “Timer/Counters
and WatchDog Timer.”

7 0
WDTRST Contents (Write-only)

Bit Bit Function
Number Mnemonic
7:0 WDTRST.7:0 | Provides user control of the hardware WDT.

C-57






intel.
D

Data Flow M odel






APPENDIX D
DATA FLOW MODEL

This appendix describes the data flow model for the 8X930Ax USB transactions. This data flow
model, presented in truth table form, is intended to bridge the hardware and firmware layers of
the 8X930Ax. It describes the behavior of the 8X930AX in response to a particular USB event,

given aknown state/configuration.

The types of datatransfer supported by the 8X930AX are:
¢ Non-isochronous transfer (interrupt, bulk)
* |sochronous transfer

¢ Control Transfer

Table D-1. Non-isochronous Transmit Data Flow

New TX TX TX
TXFIF TX TX TX USB
. Event TXFIF . OVF | URF Inter- Comments
(2:0) (1:0) ERR | ACK | Void 1) 1) rupt Response
00 Received IN | 00 no no 1 no no None NAK No data was
token, but no chg | chg chg | chg loaded, so
data or NAK
TXOE =0
Received IN | 00 no no 1 no no None NAK Control
token, chg | chg chg | chg endpoint only.
RXSETUP = Endpoint will
1 NAK when
RXSETUP =
1 even if
TXSTL=1
Data loaded | 01 no no no no no None N/A Software
into FIFO chg | chg chg | chg |chg should always
from CPU, check TXFIF
CNT written bits before
loading and
TXOVF after
loading.
Data loaded | 00 no no no 1 no None NAKs Only overrun
into FIFO, chg | chg chg chg future trans- | FIFO error can
FIFO error actions occur here.
occurs Software
should always
check TXOVF
before write
CNT.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are

enabled.
2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-1




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

intel.

New X X ™
T(>1<FO')F Event | TXFIF | 20 | 72 | 7% | OVF | URF | Inter- Re'éjp;Sanse Comments
’ (2:0) (2) (2) rupt
01/10 | Received IN | 00 0 1 0 no no Set Send data ACK
token, data chg | chg transmit received, so
transmitted, interrupt no errors.
host ACKs Read marker
advanced
Received IN | 01/10 |1 0 0 no no Set Send data SIE times-out.
token, data chg | chg transmit Read ptr
transmitted, interrupt reversed.
no ACK
(time-out)
Received IN | 01/10 | no no 1 no no None NAK, NAKs | Received
token, but chg | chg chg | chg future trans- | Setup token
RXSETUP = actions (or transmit
1 (or TXOE = except disabled), so
0) SETUP. IN tokens are
NAKed. (2)
Received IN | 01/10 |1 0 0 no 1 Set Send data Only
token, data chg transmit | with bit- underrun FIFO
transmitted, Inter- stuff error. error can
FIFO error rupt NAKs occur here.
occurs future trans- | Read ptr
actions. reversed.
Received IN | 01/10 |1 O(mo |1 no 1 (no | None NAK Treated like a
token with (no | chg) chg | chg) “void”
existing chg) condition.
FIFO error
and TXERR
set.
Received IN | 00 0 1 0 no no Set Send data Data is
token chg | chg transmit retransmitted.
without interrupt TXACK is set
existing and TXERR is
FIFO error cleared. The
but TXERR TXERR was
set, data set by
retrans- previous
mitted, host transaction
ACKs when host
time-out.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are
enabled.

2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-2




intel.

DATA FLOW MODEL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

New

X

X

TX

TXFIF X TX X UsB
Event TXFIF : OVF | URF Inter- Comments
(2:0) (1:0) ERR | ACK | Void ) ) rupt Response
Data loaded | 11 no no no no no None N/A Software
into FIFO chg | chg chg | chg |chg should always
from CPU, check TXFIF
CNT written bits before
loading and
TXOVF after
loading.
Data loaded | 01/10 | no no no 1 no None NAKs Only overrun
into FIFO, chg | chg chg chg future trans- | FIFO error can
FIFO error actions occur here.
occurs. CNT Software
not written should always
yet. check TXOVF
before write
CNT
Note: no
TXERR, but
TXOVF set.
11 Received IN | 10or |0 1 0 no no Set Send data ACK
token, data 01 chg | chg transmit received, so
transmitted, interrupt no errors.
host ACKs Read marker
advanced.
Received IN | 11 1 0 0 no no Set Send data SIE times-out.
token, data chg | chg transmit Read ptr
transmitted, interrupt reversed.
no ACK
(time-out)
Received IN | 11 0 0 1 no no None NAK, NAKs | Received
token, but chg | chg future trans- | Setup token
RXSETUP = actions (or transmit
1 (or TXOE = disabled), so
0) IN tokens are
NAKed. (2)
Received IN | 11 1 0 0 no 1 Set Send data | Only FIFO
token, data chg transmit | with bit- underrun
transmitted, interrupt | stuff error, error can
FIFO error NAK future | occur here.
occurs transactions | Read ptr
reversed.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are
enabled.

2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-3




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

Table D-1. Non-isochronous Transmit Data Flow (Continued)

intel.

New

X

X

TX

TXFIF TX TX TX USB
Event TXFIF . OVF | URF Inter- Comments
(2:0) (1:0) ERR | ACK | Void ) ) rupt Response
Received IN | 11 1 0 1 no 1 None NAK Treated like a
token with (no | (no chg | (no “void”
existing chg) | chg) chg) condition.
FIFO error
and TXERR
set.
Received IN | 10 or 0 1 0 no no Set Send data Data is
token 01 chg | chg transmit retransmitted.
without interrupt TXACK is set
existing and TXERR is
FIFO error cleared. The
but TXERR TXERR was
set, data set by
retrans- previous
mitted, host transaction
ACKs when host
time-out.
Data loaded | 11 no no no 1 no None N/A Writing into
into FIFO chg | chg chg chg CNT when
from CPU, TXFIF =11
CNT written sets TXOVF
bit. Software
should always
check TXFIF
bits before
loading.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes TXEPEN and ATM are
enabled.

2. Future transactions are NAKed even if the transmit endpoint is stalled when RXSETUP = 1.

D-4




|nte|® DATA FLOW MODEL

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode

New (at next SOF)

X X X X
TX,FIF Event FIF OVF | URF | Inter- usB Comments
(1:0) (1:0) TX TX T)_( 12 | 1,2 rupt Response

('2) ERR | ACK | Void ! ’

00 Received IN 00 no no 1 no no None Send null No data was
token, but no data chg chg chg | chg data packet | loaded, so send
or TXOE=0 null data

packet. This
event should
never happen.
Data loaded into | 01 no no no no no None N/A Software
FIFO from CPU, chg chg chg chg | chg should always
CNT written check TXFIF
bits before
loading and
TXOVF after
loading.
Data loaded into | 00 no no no 1 no None N/A Only overrun
FIFO, FIFO error chg chg chg chg FIFO error can
occur here.
Software
should always
check TXOVF
before write
CNT

01/10 | Received IN 00 0 1 0 no no None Send data No ACK (time-
token, data chg | chg out) for ISO.
transmitted with Read marker
or without trans- advanced.
mission error
Received IN 00 1 0 0 no 1 None Send CRC | Only underrun
token, data trans- chg with bit-stuff | FIFO error can
mitted, FIFO error occur here.
error occurs Read marker

advanced.

NOTES:

1. These are sticky bits, which must be cleared by firmware.

2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.

TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.

TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.

TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.

TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.

3. Note: This table assumes TXEPEN and ATM are enabled.

D-5




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

New (at next SOF)
TX TX TX TX
TX_FIF Event FIF OVF | URF Inter- uSB Comments
(1:0) (1:0) X X X 12 | (1,2 rupt Response
('2) ERR | ACK | Void ’ '
Received IN 01/10 |1 0 1 no 1 None Send null Treated like a
token with (no (no chg | (no data packet | “void” condition.
existing FIFO chg) | chg) chg)
error
Received IN 01/10 | O 0 1 no no None Send null Endpoint not
token, but TXOE chg | chg data packet | enabled for
=0 transmit, but
no NAK for
1SO.
Data loaded into | 11 no no no no no None N/A Software
FIFO from CPU, chg chg chg chg | chg should always
CNT written check TXFIF
bits before
loading and
TXOVF after
loading.
Data loaded into | 01/10 | no no no 1 no None N/A Only overrun
FIFO, FIFO error chg chg chg chg FIFO error can
occurs occur here.
Software
should always
check TXOVF
before write
CNT
Note: no
TXERR, but
TXOVF set.
11 Received IN 10or | O 1 0 no no None Send data No ACK (time-
token, data 01 chg | chg out) for ISO.
transmitted with Read marker
or without trans- advanced.
mission error
NOTES:

1. These are sticky bits, which must be cleared by firmware.
2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.

TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.

TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.
3. Note: This table assumes TXEPEN and ATM are enabled.

D-6




intel.

Table D-2. Isochronous Transmit Data Flow in Dual-packet Mode (Continued)

DATA FLOW MODEL

New (at next SOF)
TX TX TX TX
TX_FIF Event FIF OVF | URF Inter- uSB Comments
(1:0) (1:0) X X X 12 | (1,2 rupt Response
('2) ERR | ACK | Void ’ '
Received IN 10or |1 0 0 no 1 None Send data Only a FIFO
token, data trans- | 01 chg with bit-stuff | underrun error
mitted, FIFO error can occur
error occurs here. Read
marker
advanced.
Received IN 11 1 0 1 no 1 None Send null Treated like a
token with (no (no chg | (no data packet | “void” condition.
existing FIFO chg) | chg) chg)
error
Received IN 11 0 0 1 no no None Send null Endpoint not
token, but TXOE chg | chg data packet | enabled for
=0 transmit, but
no NAK for
I1SO.
Receive SOF 10or | no no no no no None None Host never read
indication 01 chg chg chg chg |chg | (SOF last frame’s
interrupt ISO. packet.
set) Read marker
ASOF and ptr
set. advanced,
oldest packet
is flushed from
FIFO.
Data loaded into | 11 no no no 1 no None N/A CNT written
FIFO from CPU, chg chg chg chg whenTXFIF=11
CNT written will set TXOVF
bit.
Software
should always
check TXFIF
bits before
loading.
NOTES:

1. These are sticky bits, which must be cleared by firmware.
2. TXFIF, TXOVF and TXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
TXOVF: Since overrun can only be caused by firmware, TXOVF is updated immediately.

TXURF: Since underrun can only be caused by USB, TXURF is updated at SOF.

TXFIF: TXFIF is “incremented” by firmware and “decremented” by USB. Therefore, writes to TXCNT will
“increment” TXFIF immediately. However, a successful USB transaction anytime in a frame will only “decrement”
TXFIF at SOF.
TXERR, TXACK, and TXVOID can only be caused by USB; thus they are updated at the end of every valid
transaction.
3. Note: This table assumes TXEPEN and ATM are enabled.

D-7




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1)

New RX RX RX
(';_Ig) Event FIF EF:?XR ARCXK VRc,J)i(d SeRt)L(Jp OVF | URF | Inter- Regpsoise Comments
' (2:0) (1) Q) rupt
00 Received 00 no no 1 no no no None NAK FIFO not ready.
OUT token, chg | chg chg chg | chg
but RXIE=0
Received 00 no no no no no no None None FIFO not
OUT token, chg |chg |chg |chg chg | chg loaded. Write
but timed-out ptr reversed.
waiting for
data
Received 01 0 1 0 0 no no Set ACK Received, no
OUT token, chg | chg | receive errors, advance
no errors interrupt write marker.
Received 00 1 0 0 0 no no Set Time-out | Write ptr
OUT token, chg | chg |[receive reversed.
data CRC or interrupt (Possible to
bit-stuff error have RXERR
cleared by
hardware
before seen by
software.)
Received 00 1 0 0 0 1 no Set Time-out, | Only RXOVF
OUT token, chg | receive | NAK FIFO error can
FIFO error interrupt | future occur, requires
occurs transac- firmware inter-
tions vention.
Received 00 1 0 1 0 1 no None NAK Considered to
OUT token (no | (no (no | chg be a “void”
with FIFO chg) | chg) chg) condition. Will
error already NAK until
existing software clears
condition.
Received 00 no no 1 no no no None ACK Last ACK
OUT token, chg | chg chg chg | chg corrupted, so
but data send again but
sequence ignore the data.
mismatch
Received 01 0 1 0 1 0 0 Set ACK RXIE or RXSTL
SETUP receive has no effect.
token, no interrupt 2)
errors RXSETUP will
be set (control
endpoints only).
NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.

2. STOVW s set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

D-8




intel.

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

DATA FLOW MODEL

New

RX

RX

RX

FIF RX RX RX RX usB
(1:0) Event (';Ig) ERR | ACK | Void | Setup (z\l/)F U(?)F I:Egrt Response Comments
Received 00 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically
token, but interrupt and FIFO data
timed-out is invalid. (2)
waiting for
data
Received 00 1 0 0 1 0 0 Set Time-out | Write ptr
SETUP receive reversed, (2)
token, data interrupt
CRC or bit-
stuff error
Received 00 1 0 0 1 1 0 Set Time-out, | (2)
SETUP receive | NAK
token, FIFO interrupt | future
error occurs transac-
tions
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing received.RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only).
CPU reads 00 no no no no no 1 None NAK FIFO was
FIFO, chg |chg |chg |chg chg future empty when
causes FIFO transac- read. Should
error tions, always check
except RXFIF bits
SETUP before reading.
01 Received 01 no no 1 no no no None NAK FIFO not ready,
OUT token chg | chg chg chg | chg so data is
ignored (CRC or
FIFO error not
possible)
NOTE:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.
2. STOVW: is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

D-9




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

New

RX

RX

RX

FIF RX RX RX RX usB
(1:0) Event (';Ig) ERR | ACK | Void | Setup (2\1/)': U(?)F I:Egrt Response Comments
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token, no interrupt automatically,
errors forcing new
SETUP to be
received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only).
Received 01 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically
token, but interrupt and FIFO data
timed-out is invalid. (2)
waiting for
data
Received 00 1 0 0 1 0 0 Set Time-out | Write ptr
SETUP receive reversed. RXIE
token, data interrupt or RXSTL has
CRC or bit- no effect. (2)
stuff error RXSETUP will
be set (control
endpoints only).
Received 00 1 0 0 1 1 0 Set Time-out, | (2) (control
SETUP receive | NAK endpoints only).
token, FIFO interrupt | future
error occurs transac-
tions
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO
SETUP receive to reset
token with interrupt automatically,
FIFO error forcing new
already SETUP to be
existing received. RXIE
or RXSTL has
no effect. (2)
RXSETUP will
be set (control
endpoints only).
CPU reads 00 no no no no no no None None
FIFO, sets chg |chg |chg |[chg chg | chg
RXFFRC
NOTE:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.
2. STOVW: is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

D-10




|nte|® DATA FLOW MODEL

Table D-3. Non-isochronous Receive Data Flow in Single-packet Mode (RXSPM = 1) (Continued)

New RX RX RX
(';Ig) Event FIF EF;XR ARCXK VF(?i(d S;ﬁp OVF | URF Inter- Regpsoase Comments
’ (2:0) (2) Q) rupt
CPU reads 01 no no no no no 1 None Time-out, | Software
FIFO, chg |chg |chg |chg chg NAK should check
causes FIFO future RXURF bit
error. transac- before writing
RXFFRC not tions RXFFRC.
set yet.
CPU reads 00 no no no no no 1 None Time-out, | Software
FIFO, chg |chg |chg |chg chg NAK should check
causes FIFO future RXURF bit
error. Set transac- before writing
RXFFRC. tions RXFFRC.
NOTE:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are
enabled.

2. STOVW: is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

New RX | RX RX
FIF RX RX RX RX UsSB
. Event FIF ! OVF | URF | Inter- Comments

(1:0) (1:0) ERR | ACK | Void | Setup 1) ) rupt Response

00 Received 00 no no 1 no no no None NAK FIFO not ready.
OUT token, chg | chg chg chg | chg
but RXIE=0
Received 00 no no 1 no no no None None FIFO not loaded.
OUT token, chg | chg chg chg | chg Write ptr
but timed-out reversed.
waiting for
data
Received 01 0 1 0 0 no no Set ACK Received, no
OUT token, chg | chg | receive errors, advance
no errors interrupt write marker.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

3. Note: Dual-packet mode is NOT recommended for Control endpoints.

D-11




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(';Ig) Event FIF ERRXR ARCXK VF(?i(d Sstﬁp OVF | URF Inter- Re;JpSanse Comments
’ (2:0) (2) (2) rupt
Received 00 1 0 0 0 no no Set Time-out Write ptr
OUT token, chg | chg | receive reversed.
data CRC or interrupt (Possible to have
bit-stuff error RXERR cleared
by hardware
before seen by
software.)
Received 00 1 0 0 0 1 no Set Time-out, Only RXOVF
OUT token, chg | receive | NAK FIFO error can
FIFO error interrupt | future occur, requires
occurs transac- firmware inter-
tions vention.
Received 00 1 O(no |1 0 1 no None NAK Considered to be
OUT token (no | chg) (no | chg a “void”
with FIFO chg) chg) condition. Will
error already NAK until
existing software clears
condition.
Received 00 no no no no no no None ACK Last ACK
OUT token, chg |chg |[chg |chg chg | chg corrupted, so
but data send again but
sequence ignore the data.
mismatch
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token, no interrupt cally, forcing new
errors (dual SETUP to be
packet mode received. RXIE
not recom- or RXSTL has no
mended!) effect. (2)
RXSETUP will be
set (control
endpoints only).
Received 00 1 0 0 0 0 0 Set Time-out FIFO is reset
SETUP receive automatically and
token, but interrupt FIFO data is
timed-out invalid. (2)
waiting for
data
NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
3. Note: Dual-packet mode is NOT recommended for Control endpoints.

D-12




intel.

DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(';Ig) Event FIF ERRXR ARCXK VF(?i(d Sstﬁp OVF | URF Inter- Re;JpSanse Comments
’ (2:0) (2) (2) rupt
Received 00 1 0 0 1 0 0 Set Time-out Write ptr
SETUP receive reversed, RXIE
token, data interrupt or RXSTL has no
CRC or hit- effect. (2)
stuff error RXSETUP will be
(dual packet set (control
mode not endpoints only).
recom-
mended)
Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL
SETUP receive | NAK has no effect. (2)
token, FIFO interrupt | future RXSETUP will be
error occurs transac- set (control
tions endpoints only).
Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token with interrupt cally, forcing new
FIFO error SETUP to be
already received. RXIE
existing or RXSTL has no
effect. (2)
RXSETUP will be
set (control
endpoints only).
CPU reads 00 no no no no no 1 None NAK FIFO was empty
FIFO, chg |chg |chg |chg chg future when read.
causes FIFO transac- Should always
error tions check RXFIF bits
before reading.
01/10 | Received 01/10 | no no 1 no no no None NAK FIFO not ready.
OUT token, chg | chg chg chg | chg
but RXIE=0
Received 01/10 | no no 1 no no no None None FIFO not loaded.
OUT token, chg | chg chg chg | chg Write ptr
but timed-out reversed.
waiting for
data
Received 11 0 1 0 0 no no Set ACK Received, no
OUT token, chg | chg | receive errors, advance
no errors interrupt write marker.
NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.
3. Note: Dual-packet mode is NOT recommended for Control endpoints.

D-13




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(';Ig) Event FIF ERRXR ARCXK VF(?i(d Sstﬁp OVF | URF Inter- Re;JpSanse Comments
’ (2:0) (2) (2) rupt

Received 01/10 | 1 0 0 0 no no Set Time-out Write ptr

OUT token, chg | chg | receive reversed.

data CRC or interrupt (Possible to have

bit-stuff error RXERR cleared
by hardware
before seen by
software.)

Received 01/10 | 1 0 0 0 1 no Set Time-out, Only RXOVF

OUT token, chg | receive | NAK FIFO error can

FIFO error interrupt | future occur, requires

occurs transac- firmware inter-

tions vention.

Received 01/10 | 1 O(no |1 0 1 no None NAK Considered to be

OUT token (no | chg) (no | chg a “void”

with FIFO chg) chg) condition. Will

error already NAK until

existing software clears
condition.

Received 01/10 | no no no no no no None ACK Last ACK

OUT token, chg |chg |[chg |chg chg | chg corrupted, so

but data send again but

sequence ignore the data.

mismatch

Received 01/10 | O 1 0 1 0 0 Set ACK Causes FIFO to

SETUP receive reset automati-

token, no interrupt cally, forcing new

errors (dual- SETUP to be

packet mode received. RXIE

not recom- or RXSTL has no

mended) effect. (2)
RXSETUP will be
set (control
endpoints only).

Received 01/10 | 1 0 0 0 0 0 Set Time-out FIFO is reset

SETUP receive automatically,

token, but interrupt forcing new

timed-out SETUP to be

waiting for received. (2)

data

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

3. Note: Dual-packet mode is NOT recommended for Control endpoints.

D-14




intel.

DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(';Ig) Event FIF ERRXR ARCXK VF(?i(d Sstﬁp OVF | URF Inter- Re;JpSanse Comments
’ (2:0) (2) (2) rupt
Received 00 1 0 0 1 0 0 Set Time-out Write ptr
SETUP receive reversed. RXIE
token, data interrupt or RXSTL has no
CRC or hit- effect. (2)
stuff error
(dual-packet
mode not
recom-
mended)
Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL
SETUP receive | NAK has no effect, (2)
token, FIFO interrupt | future RXSETUP will be
error occurs transac- set (control
tions endpoints only).
Received 01/10 | O 1 0 1 0 0 Set ACK Causes FIFO to
SETUP receive reset automati-
token with interrupt cally, forcing new
FIFO error SETUP to be
already received. (2)
existing RXSETUP will be
set (control
endpoints only).
CPU reads 00 no no no no no no None None
FIFO, sets chg |chg |chg |chg chg | chg
RXFFRC
CPU reads 01/10 | no no no no no 1 None Time-out, Software should
FIFO, chg |chg |chg |chg chg NAK check RXURF bit
causes FIFO future before writing
error. transac- RXFFRC.
RXFFRC not tions
set yet.
CPU reads 00 no no no no no 1 None Time-out, Software should
FIFO, chg |chg |[chg |chg chg NAK check RXURF bit
causes FIFO future before writing
error. Set transac- RXFFRC.
RXFFRC. tions
11 Received 11 no no 1 no no no None NAK FIFO not ready,
OUT token chg | chg chg chg | chg so data is
ignored (CRC or
FIFO error not
possible).
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

3. Note: Dual-packet mode is NOT recommended for Control endpoints.

D-15




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(';Ig) Event FIF ERRXR ARCXK VF(?i(d Sstﬁp OVF | URF Inter- Re;JpSanse Comments
’ (2:0) (2) (2) rupt

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to

SETUP receive reset automati-

token, no interrupt cally, forcing new

errors (dual- SETUP to be

packet mode received. (2)

not recom- RXSETUP will be

mended!) set. (control
endpoints only).

Received 11 1 0 0 0 0 0 Set Time-out FIFO is reset

SETUP receive automatically and

token, but interrupt FIFO data is

timed-out invalid. (2)

waiting for

data

Received 00 1 0 0 1 0 0 Set Time-out Write ptr

SETUP receive reversed. RXIE

token, data interrupt or RXSTL has no

CRC or bit- effect. (2)

stuff error

(dual-packet

mode not

recom-

mended).

Received 00 1 0 0 1 1 0 Set Time-out, RXIE or RXSTL

SETUP receive | NAK has no effect. (2)

token, FIFO interrupt | future RXSETUP will be

error (dual- transac- set (control

packet mode tions endpoints only).

not recom-

mended).

Received 01 0 1 0 1 0 0 Set ACK Causes FIFO to

SETUP receive reset automati-

token with interrupt cally, forcing new

FIFO error SETUP to be

already received. (2)

existing RXSETUP will be
set (control
endpoints only).

CPU reads 10/01 | no no no no no no None None

FIFO, sets chg |chg |chg |chg chg | chg

RXFFRC

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during

handshake phase.

3. Note: Dual-packet mode is NOT recommended for Control endpoints.

D-16




|nte|® DATA FLOW MODEL

Table D-4. Non-isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New RX RX RX
(';Ig) Event FIF ERRXR ARCXK VF(?i(d Sstﬁp OVF | URF Inter- Re;JpSanse Comments

’ (2:0) (2) (2) rupt
CPU reads 11 no no no no no 1 None NAKs Software should
FIFO, chg |chg |chg |chg chg future check RXURF bit
causes FIFO transac- before writing
error. tions FFRC
RXFFRC not
written yet.
CPU reads 10/01 | no no no no no 1 None NAKs Software should
FIFO, chg |chg |chg |chg chg future check RXURF bit
causes FIFO transac- before writing
error. Set tions FFRC
RXFFRC.

NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.

2. STOVW is set after a valid SETUP token is received and cleared during handshake phase. EDOVW is set during
handshake phase.

3. Note: Dual-packet mode is NOT recommended for Control endpoints.

D-17




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0)

New (at next SOF) RX RX RX
FIF Event RXFIF OVF | URF Inter- USB Comments
(1:0) (1:0) RX RX RX a2 | @2 rubt Response
@ | ERR | ACK | void | ’ P
00 Received OUT | 00 no no 1 no no None None/ FIFO not ready,
token, but RXIE chg chg chg chg Time-out or timed-out
=0 waiting for data
packet, but no
NAK sent
Received OUT | 00 no no no no no None None/ FIFO not loaded.
token, but chg chg chg chg chg Time-out
timed-out
waiting for data
Received OUT |01 0 1 0 no no None None/ Received, no
token, no errors chg chg Time-out errors, advance
write marker
Received OUT | 01 1 0 0 no no None None/ Bad data still
token, data chg chg Time-out loaded into
CRC or bit-stuff FIFO.
error
Received OUT | 01 1 0 0 1 no None None/ Only RXOVF
token, FIFO chg Time-out FIFO error can
error occurs occur, requires
firmware inter-
vention.
Received OUT | 00 1(mo [O(ho |1 1(mo |no None None/ Treated like a
token with chg) | chg) chg) chg Time-out “void” condition.
FIFO error
already existing
CPU reads 00 no no no no 1 None None/ FIFO was
FIFO, causes chg chg chg chg Time-out empty when
FIFO error read. Should
always check
RXFIF bits
before reading.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

D-18




|nte|® DATA FLOW MODEL

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New (at next SOF)

RX RX RX
FIF RXFIF usB
(1:0) Event (1:0) RX RX RX ?VZF U1R2F Intert— Response Comments
@ | ERR | ACK | void | 2 | @2 | rup
Receive SOF no up- up- up- up- no None None/ Flags are
indication chg/up | dated | dated | dated | dated | chg (SOF Time-out updated at SOF.
dated interrupt) Software must
check for RXFIF
= 00 condition
to detect no ISO
packet received
this frame.
01/10 | Received OUT | 01/10 | no no 1 no no None None/ FIFO not ready.
token, but RXIE chg chg chg chg Time-out
=0
Received OUT | 01/10 | no no no no no None None/ FIFO not loaded.
token, but chg chg chg chg chg Time-out
timed-out
waiting for data
Received OUT |11 0 1 0 no no None None/ Received, no
token, no errors chg chg Time-out errors, advance
write marker.
Received OUT | 11 1 0 0 no no None None/ Possible to
token, data chg chg Time-out have RXERR
CRC or bit-stuff cleared by
error hardware
before seen by
software.
Reverse write
pointer.
Received OUT | 11 1 0 0 1 no None None/ Only OVF FIFO
token, FIFO chg Time-out error can occur,
error occurs requires
firmware inter-
vention.
Received OUT | 01/10 | no no 1 no no None None/ Treated like a
token with chg chg chg chg Time-out “void” condition.
FIFO error

already existing

NOTES:
1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change
immediately while USB events only cause status change at SOF.
RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will
“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

D-19




8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

intel.

Table D-5. Isochronous Receive Data Flow in Dual-packet Mode (RXSPM = 0) (Continued)

New (at next SOF) RX RX RX
FIF Event RXFIF OVF | URF Inter- usB Comments
(2:0) (2:0) RX RX RX 12 | 12 rupt Response
2) ERR | ACK | Void ' ’
CPU reads 00 no no no no no None None/
FIFO, sets chg chg chg chg chg Time-out
RXFFRC
CPU reads 00 no no no no 1 None None/ Software should
FIFO, causes chg chg chg chg Time-out check RXURF
FIFO error bit before
writing RXFFRC.
11 Received OUT |11 no no 1 no no None None/ FIFO not ready,
token chg chg chg chg Time-out but data must be
taken. This
situation should
never happen.
Received SOF | no up- up- up- up- no None None/ Error condition
indication chg/ dated | dated | dated | dated | chg (SOF Time-out (not handled by
up- interrupt) hardware).
dated Software should
not allow this
condition.
CPU reads 10 or no no no no no None None/
FIFO, sets 01 chg chg chg chg chg Time-out
RXFFRC
CPU reads 11 no no no no 1 None None/ Software should
FIFO, causes chg chg chg chg Time-out check RXURF
FIFO error. bit before
RXFFRC not writing RXFFRC.
set yet.
CPU reads 10 or no no no no 1 None None/ Software should
FIFO, causes 01 chg chg chg chg Time-out check RXURF
FIFO error. Set bit before
RXFFRC. writing RXFFRC.
NOTES:

1. These are sticky bits, which must be cleared by firmware. Also, this table assumes RXEPEN and ARM are enabled.
2. RXFIF, RXOVF and RXURF are handled with the following golden rule: Firmware events cause status change

immediately while USB events only cause status change at SOF.

RXURF: Since underrun can only be caused by firmware, RXURF is updated immediately.
RXOVF: Since overrun can only be caused by USB, RXOVF is updated at SOF.
RXFIF: RXFIF is “incremented” by USB and “decremented” by firmware. Therefore, setting RXFFRC will

“decrement” RXFIF immediately. However, a successful USB transaction anytime in a frame will only “increment”
RXFIF at SOF.
RXERR, RXACK, and RXVOID can only be caused by USB, thus they are updated at the end of transaction.

D-20




intel.

Glossary






intel.

GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ua. (Chapter 1, “Guide to this Manual,” discusses notational conventions and general terminol-

ogy.)
#0datal6

#1datal6

#data

#datal6

#short

ACK

accumulator

addr11

addr 16

addr24

ALU

assert

A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with zeros.

A 32-bit constant that is immediately addressed in an
instruction. The upper word is filled with ones.

An 8-bit constant that is immediately addressed in an
instruction.

A 16-bit constant that is immediately addressed in an
instruction.

A constant, equal to 1, 2, or 4, that is immediately
addressed in an instruction.

Acknowledgment. Handshake packet indicating a
positive acknowledgment.

A register or storage location that forms the result of
an arithmetic or logical operation.

An 11-bit destination address. The destination can be
anywhere in the same 2 Kbyte block of memory as the
first byte of the next instruction.

A 16-bit destination address. The destination can be
anywhere within the same 64 Kbyte region as the first
byte of the next instruction.

A 24-bit destination address. The destination can be
anywhere within the 16 Mbyte address space.

Arithmetic-logic unit. The part of the CPU that
processes arithmetic and logical operations.

The termassert refers to the act of making a signal
active (enabled). The polarity (high/low) is defined by
the signal name. Active-low signals are designated by
a pound symbol (#) suffix; active-high signals have no
suffix. Toassert RD# is to drive it low; tassert ALE

is to drive it high.

Glossary-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

big endien form

binary-code compatibility

binary mode

bit

bit (operand)
bit51

bit stuffing

bulk transfer

bus enumeration
byte

clear

code memory

configuration bytes

dir8

dir16

DPTR

Glossary-2

Method of storing datathat placesthe most significant
byte at lower storage addresses.

The ability of an 8X930Ax to execute, without
modification, binary code written for an MCS 51
microcontroller.

An operating mode, selected by a configuration bit,
that enables an 8X930AX to execute, without
modification, binary code written for an MCS 51
microcontroller.

A binary digit.
An addressable bit in the 8X 930AXx architecture.
An addressable bit in the MCS 51 architecture.

Insertion of a ‘0’ bit into a data stream to cause an
electrical transition on the data wires allowing a PLL
to remain locked.

Non-periodic, large, “bursty” communication

typically used for a transfer that can use any available
bandwidth and can also be delayed until bandwidth is
available.

Detecting and identifying USB devices.
Any 8-bit unit of data.

The termclear refers to the value of a bit or the act of
giving it a value. If a bit iglear, its value is “0”;
clearing a bit gives it a “0” value.

Seeprogram memory.

Bytes, residing in on-chip non-volatile memory, that
determine a set of operating parameters for the
8X930AxX.

An 8-bit direct address. This can be a memory address
or an SFR address.

A 16-bit memory address (00:0000H-00:FFFFH)
used in direct addressing.

The 16-bit data pointer. In 8X93®Anicrocontrollers,
DPTR is the lower 16 bits of the 24-bit extended data
pointer, DPX.



DPX

deassert

doping

doubleword

dword

edge-triggered

encryption array

endpoint

EPROM

external address

FET
FIFO

GLOSSARY

The 24-bit extended data pointer in 8X930AX
microcontrollers. See dso DPTR.

The term deassert refers to the act of making a signal
inactive (disabled). The polarity (high/low) is defined
by the signal name. Active-low signals are designated
by apound symbol (#) suffix; active-high signalshave
no suffix. To deassert RD# isto driveit high; to
deassert ALE isto driveit low.

The process of introducing a periodic table Group |11
or Group V element into a Group |V element (e.g.,
silicon). A Group Il impurity (e.g., indium or
galium) results in a p-type material. A Group V
impurity (e.g., arsenic or antimony) results in an n-
type material.

A 32-hit unit of data. In memory, a double word
comprises four contiguous bytes.

See double word.

The mode in which adevice or component recognizes
afalling edge (high-to-low transition), arising edge
(low-to-high transition), or arising or falling edge of
an input signal as the assertion of that signal. See also
level-triggered.

An array of key bytes used to encrypt user code in the
on-chip code memory as that code is read; protects
against unauthorized access to user’s code.

A uniquely identifiable portion of a USB device that
is the source or sink of information in a
communication flow between the host and the device.

Erasable, programmable read-only memory

A 16-bit or 17-bit address presented on the device
pins. The address decoded by an external device
depends on how many of these address bits the
external system uses. See al#ernal address.

Field-effect transistor.

Circular data buffer associated with an endpoint. Each
endpoint has a transmit FIFO and a receive FIFO.
Transmit FIFOs are written by the 8X9308PU

then read by the FIU for transmission. Receive FIFOs

Glossary-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL

FlU

function

idle mode

input leakage

integer

internal address

interrupt handler

interrupt latency

interrupt responsetime

interrupt service routine (ISR)

isochronous data

isochronous transfer

level-triggered

low clock mode

LSB

Glossary-4

intel.

are written by the FIU following reception then read
by the CPU.

Function Interface Unit. Manages data received and
transmitted by the USB module.

A USB device that provides a capahility to the host.

The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

Current leakage from an input pin to power or ground.

Any member of the set consisting of the positive and
negative whole numbers and zero.

The 24-bit address that the device generates. See also
external address.

The module responsible for handling interrupts that
are to be serviced by user-written interrupt service
routines.

The delay between an interrupt request and the time
when the first instruction in the interrupt service
routine begins execution.

The time delay between an interrupt request and the
resulting break in the current instruction stream.

The software routine that services an interrupt.

A stream of datawhose timing isimplied by its
delivery rate.

One of four USB transfer types, isochronous transfers
provide periodic, continuous communication between
host and device.

The mode in which adevice or component recognizes
ahigh level (logic one) or alow level (logic zero) of
an input signal as the assertion of that signal. See also
edge-triggered.

The default mode upon reset, low clock mode ensures
that the | . drawn by the 8X930AX is less than one
unit load.

Least-significant bit of abyte or least-significant byte
of aword.



intel.

maskableinterrupt

MSB
multiplexed bus
n-channel FET

n-type material
nonmaskable interrupt

npn transistor

NRZI

OTPROM
p-channel FET
p-type material
PC

phase-locked loop

PLL

program memory

GLOSSARY

An interrupt that can be disabled (masked) by its
individual mask bit in an interrupt enable register. All
8X930AX interrupts, except the software trap
(TRAP), are maskable.

Most-significant bit of a byte or most-significant byte
of aword.

A bus on which the data is time-multiplexed with
(some of) the address hits.

A field-effect transistor with an n-type conducting
path (channel).

Semiconductor material with introduced impurities
(doping) causing it to have an excess of negatively
charged carriers.

An interrupt that cannot be disabled (masked). The
software trap (TRAP) isthe 8X930AX's only
nonmaskable interrupt.

A transistor consisting of one pgrtype material and
two partsn-type material.

Non Return to Zero Invert. A method of encoding
serial data in which ones and zeroes are represented
by opposite and alternating high and low voltages
where there is no return to zero (reference) voltage
between encoded bits. Eliminates the need for clock
pulses.

One-time-programmable read-only memory, a version
of EPROM.

A field-effect transistor with @-type conducting
path.

Semiconductor material with introduced impurities
(doping) causing it to have an excess of positively
charged carriers.

Program counter.

A circuit that acts as a phase detector to keep an
oscillator in phase with an incoming frequency.

Seephase-locked loop.

A part of memory where instructions can be stored for
fetching and execution.

Glossary-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

powerdown mode

PWM
rel

reserved bits

resume

RT
SIE

SFR

sign extension

sink current

SOF

sour ce-code compatibility

sour ce current

Glossary-6

The power conservation mode that freezes both the
core clocks and the peripheral clocks.

Pulse-width modulated (outputs).

A signed (two's complement) 8-hit, relative
destination address. The destination is -128 to +127
bytesrelative to the first byte of the next instruction.

Register bits that are not used in this device but may
be used in future implementations. Avoid any
software dependence on these hits. In the 8X930AX,
the value read from areserved bit isindeterminate; do
not write a “1” to a reserved bit.

Once a device is in the suspend state, its operation can
be resumed by receiving non-idle signaling on the
bus. See alssuspend.

Real-time

Serial Bus Interface Engine. Handles the
communications protocol of the USB.

The termset refers to the value of a bit or the act of
giving it a value. If a bit iset, its value is “1";setting
a bit gives it a “1” value.

A special function register that resides in its
associated on-chip peripheral or in the 8X938@Are.

A method for converting data to a larger format by
filling the extra bit positions with the value of the
sign. This conversion preserves the positive or
negative value of signed integers.

Current flowinginto a device to ground. Always a
positive value.

Start of Frame. The SOF is the first transaction in
each frame. SOF allows endpoints to identify the start
of frame and synchronize internal endpoint clocks to
the host.

The ability of an 8X9304&to execute re-compiled
source code written for an MCS 51 microcontroller.

Current flowingout of a device from ¥.. Always a
negative value.



intel.

sour ce mode

SP
SPX

statetime (or state)

suspend

UART

uSB

WDT
word

wraparound

GLOSSARY

An operating mode that is selected by a configuration
bit. In source mode, an 8X930AX can execute re-
compiled source code written for an MCS 51
microcontroller. In source mode, the 8X930Ax cannot
execute unmodified binary code written for an MCS
51 microcontroller. See binary mode.

Stack pointer.
Extended stack pointer.

The basic time unit of the device; the combined
period of the two internal timing signals, PH1 and
PH2. (Theinternal clock generator produces PH1 and
PH2 by halving the frequency of the signal on
XTALL1) With a1l6 MHz crystal, one state time
equals 125 ns. Because the device can operate at
many frequencies, this manual definestime
requirements in terms of state times rather than in
specific units of time.

A low current mode used when the USB busisidle.
The 8X930AX enters suspend when there is a constant
idle state on the bus lines for more than 3.0 msec.
When adeviceisin suspend state, it draws less than
500 pA from the bus. See alsssume.

Universal asynchronous receiver and transmitter. A
part of the serial 1/0 port.

Universal Serial Bus. An industry-standard extension
to the PC architecture with a focus on Computer
Telephony Integration (CTI), consumer, and
productivity applications.

Watchdog timer, an internal timer that resets the
device if the software fails to operate properly.

A 16-bit unit of data. In memory, a word comprises
two contiguous bytes.

The result of interpreting an address whose
hexadecimal expression uses more bits than the
number of available address lines. Wraparound
ignores the upper address bits and directs access to the
value expressed by the lower bits.

Glossary-7






intel.

| ndex






intel.

#0datal6, A-3
#1datal6, A-3
#data

definition, A-3
#datal6, A-3
#short, A-3
8X930Ax, 1-1

block diagram, 2-2

A
A15:8, 9-1
description, 15-2
Al6
description, 15-2
ACflag, 5-17,5-18
ACALL instruction, 5-14, A-24, A-26
ACC, 3-12, 3-17,C-2,C-6
Accumulator, 3-14
inregister file, 3-12
AD7:0, 9-1
description, 15-2
ADD instruction, 5-8, A-14
ADDC instruction, 5-8, A-14
addrll, 5-12, A-3
addr16, 5-12, A-3
addr24, 5-12, A-3

Address spaces, See Memory space, SFRs, Register

file, External memory, Compatibility
Addresses
internal vs external, 4-10
Addressing modes, 3-5, 5-4
See also Data instructions, Bit instructions,
Control instructions
AIMP instruction, 5-14, A-24
ALE
caution, 13-6
description, 15-2
extended, 4-11
following reset, 13-6
idle mode, 14-5
ANL instruction, 5-9, 5-10
for bits, A-23
ANL/ instruction, 5-10
for bits, A-23

INDEX

Arithmetic instructions, 5-8, 5-9
table of, A-14, A-15, A-16

B
B register, 3-14, C-6
asSFR, 3-17,C-2
inregister file, 3-12
Base address, 5-4
Baud rate, See Serial 1/0 port, Timer 1, Timer 2
Big endien form, 5-2
Binary and source modes, 2-4, 4-12—-4-13, 5-1
opcode maps, 4-12
selection guidelines, 4-12
Bit address
addressing modes, 5-11
definition, A-3
examples, 5-10
Bit instructions, 5-10-5-11
addressing modes, 5-4, 5-10
bit51, 5-10, A-3
Broadcast addresSege Serial 1/O port
Bulletin board service (BBS), 1-7, 1-9
Bus cycles
See External bus cycles

C
Call instructions, 5-14
Capacitors

bypass, 13-2

CCAP1H-CCAP4H, CCAP1L-CCAP4L, 3-20,

C-5, C-7
CCAPM1-4, 3-20, 11-15, C-5,C-8
interrupts, 6-6
CCON, 3-20, 11-14, C-5,C-9
CEX4:0, 9-1
CH, CL, 3-20, C-5, C-9
CJNE instruction, A-25
Clock, 2-7
external, 2-7,13-3
idle and powerdown modes, 14-5
idle mode, 14-5
on-chip crystal, 2-7
on-chip PLL, 2-7
PLLSEL2:0, 2-8,13-1

Index-1



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

powerdown mode, 14-6, 14-7 Crystal
sources, 13-2 on-chip oscillator, 13-2
USB rates (table), 2-8, B-6 CY flag, 5-17,5-18
CLRinstruction, 5-9, 5-10, A-17, A-23
CMOD, 3-20, 11-13, C-5, C-10 D
interrupts, 6-6 DA instruction, A-16
CMPinstruction, 5-8, 5-13, A-15 Data instructions, 5-4-5-10
Code constants, 4-14 addressing modes, 5-4
Code fetches Data Pointer, C-2
external, 15-1,15-6 Data pointerSee DPH, DPL, DPTR, DPX, DPXL
internal, 15-6 Data transfer instructions, 5-9-5-10
page hit and page miss, 15-6 table of, A-22
page mode, 15-6 See also Move instructions
Code memory Data types, 5-2
MCS 51 architecture, 3-3 Datasheets
See also On-chip code memory, External code on WWW, 1-7
memory DEC instruction, 5-8, A-15
Compatibility (MCS 251 and MCS 51 Destination register, 5-3
architectures), 3-2—-3-5 dirl6é, A-3
address spaces, 3-2, 3-4 dir8, A-3
gxterna_l memory, 3-5 Direct addressing, 5-4
instruction set, 5-1 in control instructions, 5-12
SFR space, 3-5 Displacement addressing, 5-4, 5-7
See also Binary and source modes DIV instruction, 5-8, A-16
CompusServe, 1-7 Division, 5-8
Configuration DJNZ instruction, A-25
array, 4-1 Documents
external, 4-3 ordering, 1-7
. on-chip, 4-2 related, 1-5
bits, 4-4 DPH, DPL, 3-14, C-11
external memory, 4-7 as SFRs, 3-17,C-2
overview, 4-1 DPTR, 3-14
wait state, 4-11 in jump instruction, 5-12
Configuration bytes DPX, 3-5, 3-12, 3-14, 5-4
bus cycles, 15-15 DPXL, 3-14, C-12
UCONFIGO, 4-1 as SFR, 3-17,C-2
UCONFIGO (table), 4-5 external data memory mapping, 3-5, 5-4, 5-9
UCONFIG1, 4-1 reset value, 3-5
UCONFIGL1 (table), 4-6
verifying, 16-1 E

Control instructions, 5-11-5-15
addressing modes, 5-11, 5-13
table of, A-24

Core, 2-6
SFRs, 3-17,C-2

CPL instruction, 5-9, 5-10, A-17, A-23

CPU, 2-6
block diagram, 2-6

EA#, 3-8

description, 15-2
ECALL instruction, 5-14, A-24
ECI, 9-1
EJMP instruction, 5-14, A-24
EMAP# bit, 3-9, 4-14
Encryption, 16-1

Index-2



intel.

Encryption array, 16-1
key bytes, 16-5
EPCON, 7-6, C-12
EPINDEX, 7-5,C-14
ERET instruction, 5-14, A-24
Escape prefix (A5H), 4-12
Extended ALE, A-1, A-11
Extended stack pointer, See SPX
External address lines
number of, 4-8
See also External bus
External bus
inactive, 15-3
pin status, 15-15, 15-16
structure in page mode, nonpage mode, 15-6
External bus cycles, 15-3-15-16
definitions, 15-3
extended ALE wait state, 15-10

extended RD#/WR#/PSEN# wait state, 15-8

nonpage mode, 15-3, 15-5

page mode, 15-6-15-8

page-hit vs page-miss, 15-6

Real-time wait states, 15-8
External code memory

example, 15-20, 15-30

idle mode, 14-5

powerdown mode, 14-6
External memory, 3-9

design examples, 15-17-15-30

MCS 51 architecture, 3-2, 3-4, 3-5
External memory interface

configuring, 4-7—4-14

signals, 15-3
External RAM

example, 15-26

exiting idle mode, 14-6

F
FO flag, 5-17
FADDR, 7-13, C-14
FaxBack service, 1-7, 1-8
FIE, 6-3, 6-7, C-15
FIFLG, 6-3, 6-9, C-16
Flash memory
example, 15-18, 15-20, 15-30
Frame Timer, 6-9

INDEX

G

Given addressSee Serial 1/0O port
Global resume interrupt, 6-10
Global suspend interrupt, 6-10

H

Hardware
application notes, 1-6
Help desk, 1-7

|
I/O ports, 9-1-9-7
external memory access, 9-6, 9-7
latches, 9-2
loading, 9-6
pullups, 9-5
quasi-bidirectional, 9-5
SFRs, 3-15
See also Ports 0-3
Idlemode, 2-6, 14-1, 14-5
entering, 14-5
exiting, 13-5, 14-5
external bus, 15-3
IENO, 3-17, 6-3, 6-6, 6-11, 6-21, 12-11, 14-7, C-2,
C-17
IEN1, 3-17, 6-3, 6-12, 6-21, C-2, C-18
Immediate addressing, 5-4
INC instruction, 5-8, A-15
Indirect addressing, 5-4
in control instructions, 5-12
in datainstructions, 5-6
Instruction set
MCS 251 architecture, A-1-A-138
MCS 51 architecture, 5-1
Instructions
arithmetic, 5-8
bit, 5-10
data, 5-4
data transfer, 5-9
logical, 5-9
INT1:0#, 6-1, 9-1, 10-1, 10-2
pulse width measurements, 10-11
Intel Architecture Labs, 1-8
Interrupt request, 6-1
cleared by hardware, 6-4, 6-5
Interrupt service routine
exiting idle mode, 14-5

Index-3



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

exiting powerdown mode, 14-7 J
Interrupts, 6-1-6-22 JB instruction, 5-13, A-24
blocking conditions, 6-21 JBC instruction, 5-13, A-24
detection, 6-4 JC instruction, A-24
edge-triggered, 6-4, 6-5 JE instruction, A-24
enable/disable, 6-11 JG instruction, A-24
exiting idle mode, 14-5 JLE instruction, A-24
exiting powerdown mode, 14-7 JMP instruction, A-24
external (|NT1:O#), 6-1, 6-3, 6-18, 14-7 INB instruction, 5-13, A-24
global enable, 6-11 JNC instruction, A-24
global resume (GRSM), 14-3, 14-6 JNE instruction, A-24
global suspend (GSUS), 14-3, 14-6 JNZ instruction, A-24
instruction completion time, 6-17 JSG instruction, A-25
latency, 6-16-6-20 JSGE instruction, A-25
level-triggered, 6-4, 6-5 JSL instruction, A-24
PCA, 6-5 JSLE instruction, A-25
pqlllpg, 6-16, 6-17 Jump instructions
priority, 6-1, 6-3, 6-4, 6-5, 6-13—6-15 bit-conditional, 5-13
priority within level, 6-13 compare-conditional, 5-13, 5-14
processing, 6-16-6-22 unconditional, 5-14
requestSee Interrupt request JZ instruction, A-24
response time, 6-16, 6-17
sampling, 6-4, 6-17 K
serial port, 6-6 .
service routine (ISR), 6-4, 6-5, 6-16, 6-21, 6- Key bytes,See Encryption array
22
sources, 6-3 L
timer/counters, 6-5 Latency, 6-16
vector Cyc|e’ 6-21 LCALL instruction, 5-14, A-24
vectors, 3-3, 6-4, 6-5 LIMP instruction, 5-14, A-24
INTR bit Lock bits
and RETI instruction, 4-14, 5-15 protection types, 16-5
IPHO, 3-17, 6-3, 6-14, 6-21, C-2, C-19 verifying, 16-1
bit definitions, 6-13 Logical instructions, 5-9
IPH1, 3-17, 6-3, 6-15, 6-21, C-2, C-21 table of, A-17
bit definitions, 6-13 Low clock mode, 14-1, 14-8
IPLO, 3-17, 6-3, 6-14, 6-21, C-2, C-20 entering, 14-8
bit definitions, 6-13 exiting, 14-9
IPL1, 3-17, 6-3, 6-15, C-2, C-22
bit definitions, 6-13 M
Isochronous RX dataflow MCS 251 microcontroller
Dual-packet mode, D-18 core, 2-6
Isochronous TX dataflow Memory space, 2-5, 3-1, 3-5-3-9
Dual-packet mode, D-5 compatibility, See Compatibility (MCS 251
ISR, See Interrupts, service routine and MCS51 architectures)

regions, 3-2, 3-5
reserved locations, 3-5

Index-4



intel.

Miller effect, 13-3
MOQV instruction, A-19, A-20, A-21
for bits, 5-10, A-23
MOVC instruction, 3-2, 5-9, A-21
Move instructions
table of, A-19
MOVH instruction, 5-9, A-21
MQOVSinstruction, 5-9, A-21
MOVX instruction, 3-2, 5-9, A-21
MOVZ instruction, 5-9, A-21
MUL instruction, 5-8
Multiplication, 5-8

N
N flag, 5-9, 5-18
Noise reduction, 13-2, 13-3
Non-isochronous RX dataflow
Dual-packet mode, D-11
Single-packet mode, D-8
Non-isochronous TX dataflow, D-1
Nonpage mode
bus cycles, See External bus cycles, Nonpage
mode
bus structure, 15-3
configuration, 4-7
design example, 15-22, 15-26
port pin status, 15-16
Nonvolatile memory
verifying, 16-1-16-6
NOP instruction, 5-14, A-25

O

On-chip code memory, 15-8
accessing in data memory, 4-14
accessing in region 00:, 3-9
idle mode, 14-5
setup for verifying, 16-3-16-4
starting address, 3-8, 16-1
top eight bytes, 3-8, 4-1, 16-2
verifying, 16-1

On-chip oscillator
hardware setup, 13-1

On-chip RAM, 3-8
bit addressable, 3-8, 5-11

bit addressable in MCS 51 architecture, 5-11

idle mode, 14-5
MCS 51 architecture, 3-2, 3-4

INDEX

reset, 13-6
ONCE mode, 14-1
entering, 14-9
exiting, 14-9
Opcodes
for binary and source modes, 4-12, 5-1
map, A-4
binary mode, 4-13
source mode, 4-13
See also Binary and source modes
ORL instruction, 5-9, 5-10
for bits, A-23
ORL/ instruction, 5-10
for bits, A-23
Oscillator
at startup, 13-6
ceramic resonator, 13-3
during reset, 13-4
on-chip crystal, 2-7, 13-2
on-chip PLL, 2-7
ONCE mode, 14-9
powerdown mode, 14-6, 14-7
verifying nonvolatile memory, 16-3
QV bit, 5-17, 5-18
Overflow See QV hit

P
P bit, 5-17
PO, 3-19, 9-2, C-2, C-22
P1, 3-19, 9-2, C-2, C-23
P2, 3-19, 9-2, C-2, C-23
P3, 3-19, 9-2, C-2, C-24
Page mode, 2-6
address access time, 15-6
bus cyclesSee External bus cycles, page
mode
configuration, 4-7
design example, 15-20, 15-29
port pin status, 15-16
PAGE# bit, 4-7
Parity See P bit
PCA
compare/capture modules, 11-1
idle mode, 14-5
pulse width modulation, 11-10
SFRs, 3-20, C-5
timer/counter, 11-1

Index-5



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

watchdog timer, 11-1, 11-9 effects of instructions on flags, 5-16
PCON, 3-17, 12-7, 14-2, 14-5, 14-6, C-2, C-25 PSW1, 5-18, A-26, C-2
idle mode, 14-5 Pullups, 9-7
powerdown mode, 14-7 ports 1, 2, 3, 9-5
reset, 13-5 Pulse width measurements, 10-11
PCON1, 3-17, 14-3, 14-6, C-2, C-26 PUSH instruction, 3-14, 5-10, A-22
Peripheral cycle, 2-7
Phase 1 and phase 2, 2-7 R
Phone numbers, customer support, 1-7 RCAP2H, RCAP2L, 3-19, 10-4, 12-12, C-4, C-29
Pin conditions, 14-4 RD#, 9-1
Pins described, 15-2
unused inputs, 13-2 regions for asserting, 4-8
Pipeline, 2-7 RD1:0 configuration bits, 4-8
POP ingtruction, 3-14, 5-10, A-22 Read-modify-write instructions, 9-2, 9-4
Port 0, 9-2 Real-time wait states, 15-11
and top of on-chip code memory, 16-2 Register addressing, 5-4, 5-5
pullups, 9-7 Register banks, 3-2, 3-9
structure, 9-3 accessing in memory address space, 5-4
See also External bus implementation, 3-9, 3-12
Port1, 9-2 MCS 51 architecture, 3-2
structure, 9-3 selection bits (RS1:0), 5-17, 5-18
Port 2, 9-2 Register file, 2-7, 3-1, 3-5, 3-9-3-14
and top of on-chip code memory, 16-2 address space, 3-2
structure, 9-4 addressing locations in, 3-12
See also External bus and reset, 13-6
Port 3, 9-2 MCS 51 architecture, 3-4
structure, 9-3 naming registers, 3-12
Ports register types, 3-12
at power on, 13-6 RegistersSee Register addressing, Register banks,
exiting idle mode, 14-6 Register file
exiting powerdown mode, 14-6 rel, A-3
extended execution times, 5-1, A-1, A-11 Relative addressing, 5-4, 5-12
verifying nonvolatile memory, 16-3, 16-4 Reset, 13-4-13-7
Power supply, 13-2 cold start, 13-5, 14-1
Powerdown mode, 2-6, 14-1, 14-6-14-7 entering ONCE mode, 14-9
accidental entry, 14-5 exiting idle mode, 14-5
entering, 14-7 exiting powerdown mode, 14-7
exiting, 13-5, 14-7 externally initiated, 13-5
external bus, 15-3 need for, 13-6
Program status worgee PSW, PSWV1 operation, 13-6
PSEN# power-on reset, 13-1, 13-6
caution, 13-6 timing sequence, 13-6, 13-7
description, 15-2 USB initiated, 13-5
idle mode, 14-5 warm start, 13-5, 14-1
regions for asserting, 4-8 WDT initiated, 13-5
PSW, 5-17, A-26 RET instruction, 5-14, A-24

PSW, PSW1, 3-17, 5-15-5-16, C-2, C-27, C-28  RET] instruction, 5-15, 6-1, 6-21, 6-22, A-24
conditional jumps, 5-13

Index-6



intel.

Returninstructions, 5-14
RL instruction, A-17
RLC instruction, A-17
Rotate instructions, 5-9
RR instruction, A-17
RRC instruction, A-17
RST, 13-5, 13-6, B-4
ONCE mode, 14-9
See Reset
RTWCE (Rea-time WAIT CLOCK Enable) Bit,
15-12
RTWE (Real-time WAIT# Enable) Contral Bit,
15-12
RXCNTH, 7-28, C-30
RXCNTL, 7-28, C-30
RXCON, 7-29, C-31
RXD, 9-1,12-1
mode 0, 12-2
modes 1, 2, 3, 12-7
RXDAT, 7-27,C-33
RXFLG, 7-31,C-34
RXSTAT, 7-10, C-36

S
SADDR, 3-19, 12-2, 12-8, 12-9, 12-10, C-3, C-38
SADEN, 3-19, 12-2, 12-8, 12-9, 12-10, C-3, C-38
SBUF, 3-19, 12-2, 12-3, C-3, C-38
SCON, 3-19, 12-2, 12-3, 12-4, 12-7, C-3, C-39
bit definitions, 12-1
interrupts, 6-6
Security, 16-1
Serial Bus Interface Engine, 7-1
Serial 1/0O port, 12-1-12-13
asynchronous modes, 12-7
automatic address recognition, 12-8-12-10
baud rate generator, 10-7
baud rate, mode 0, 12-2, 12-10

baud rate, modes 1, 2, 3, 12-7, 12-11-12-13

broadcast address, 12-9

data frame, modes 1, 2, 3, 12-7
framing bit error detection, 12-7
full-duplex, 12-7

given address, 12-8
half-duplex, 12-2

interrupts, 12-1, 12-8

mode 0, 12-2-12-3

modes 1, 2, 3, 12-7

INDEX

multiprocessor communication, 12-8
SFRs, 3-19, 12-2, C-3
synchronous mode, 12-2
timer 1 baud rate, 12-11, 12-12
timer 2 baud rate, 12-12-12-13
timing, mode 0, 12-6
SETB instruction, 5-10, A-23
SFRs
accessing, 3-15
address space, 3-1, 3-2
idle mode, 14-5
MCS 51 architecture, 3-4
powerdown mode, 14-6
reset initialization, 13-6
reset values, 3-15
tables of, 3-15
unimplemented, 3-15
Shift instruction, 5-9
Signature bytes
values, 16-6
verifying, 16-1, 16-6
SJMP instruction, 5-14, A-24
SLL instruction, 5-9, A-17
SOF# pin, 6-10
SOFH, 7-12, C-41
SOFL, 7-13, C-42
Software
application notes, 1-6
Solutions OEM, 1-8
Source register, 5-3
SP, 3-14, 3-17, C-2, C-42
Special function registeSee SFRs
SPH, 3-14, 3-17, C-2, C-43
SPX, 3-12,3-14
SRA instruction, 5-9, A-18
SRL instruction, 5-9, A-18
State time, 2-7
SUB instruction, 5-8, A-14
SUBB instruction, 5-8, A-14
SWAP instruction, 5-9, A-18

T
T1:0, 9-1, 10-2
T2, 9-1,10-2

T2CON, 3-19, 10-1, 10-4, 10-11, 10-18, 12-13, C-

4, C-44
baud rate generator, 12-12

Index-7



8X930Ax UNIVERSAL SERIAL BUS MICROCONTROLLER USER’S MANUAL |nte|®

T2EX, 9-1,10-2, 10-12, 12-12 TXCNTH, 7-19, C-50
T2MOD, 3-19,10-1, 10-4, 10-11, 10-17, C-4, C-45 TXCNTL, 7-19, C-50
Target address, 5-4 TXCON, 7-20, C-51
TCON, 3-19, 10-1, 10-4, 10-6, 10-9, C-4, C-46 TXD, 9-1,12-1
interrupts, 6-1 mode 0, 12-2
Tech support, 1-7 modes 1, 2, 3, 12-7
TH2, TL2 TXFLG, 7-22,C-54
baud rate generator, 12-12, 12-13 TXSTAT, 7-8, C-56
THx, TLx (x=0, 1, 2), 3-19, 10-4, C-4, C-48, C-49
Timer 0, 10-4-10-9 U
applications, 10-10 UART, 12-1
auto-reload, 10-5 UCONFIG1:0
interrupt, 10-4 See Configuration bytes
mode 0, 10-4 UD flag, 5-17
mode 1, 10-5 USB
mode 2, 10-5

configuration descriptor, 8-2

mode 3,. 10-6 device descriptor, 8-2
pulse width measurements, 10-11 function
Timer 1

o suspend and resume, 14-1
applications, 10-10 function operations
auto-reload, 10-10 post-receive, 8-9

paud rate generator, 10-6 post-transmit, 8-6
interrupt, 10-6 pre-transmit, 8-5

mode 0, 10-7 receive, 8-8

mode 1, 10-7 transmit, 8-3

mode 2, 10-10 function resume interrupt, 6-10
mode 3, 10-10

function routines

pulse width measurements, 10-11 overview, 8-1

Timer 2, 10-11-10-18

receive, 8-2

auto-reload mode, 10-13 receive SOF, 8-1, 8-14
baud rate generator, 10-15 setup, 8-1, 8-12
capture mode, 10-12 transmit, 8-2

clock out mode, 10-15 global resume, 14-8
interrupt, 10-12 global suspend, 14-6
mode select, 10-16 idle state, 8-1, 8-2

Timer/counters, 10-1-10-18 Interrupts
external input sampling, 10-2 Any SOF, 6-5
internal clock, 10-1 Function, 6-5, 6-6—6-9

interrupts, 10-1 Function resume, 6-10
overview, 10-1-10-2 Global suspend/resume, 6-5, 6-10
registers, 10-4 Start-of-Frame, 6-9—6-10
SFRs, 3-19,C-4 module, 2-3, 2-10
signal descriptions, 10-2 block diagram, 2-3
See also Timer O, Timer 1, Timer 2 power control, 14-6
TMOD, 3-19, 10-1, 10-4, 10-6, 10-8, 12-11, C-4, powerdown, 14-6

C-47 programming models, 8-1

Tosc, 2-9 ‘ remote wake-up, 14-8
TRAP instruction, 5-15, 6-3, 6-11, 6-22, A-25

Index-8



intel.

Transaction dataflow model, 7-1, D-1
unenumerated state, 8-1, 8-2
USB FIFO Information
Receive, 7-24
RXFLG, 7-31,C-34
scooping, 7-24
write marker, 7-24, 8-8
write pointer, 7-24, 8-8
Transmit
Capacities, 7-4
Data Set Management, 7-17
Data/Byte Count Registers, 7-15
read marker, 7-14
read pointer, 7-14, 8-3
Transmit FIFO, 7-14
TXCNTL/TXCNTH, 7-15
write pointer, 8-3

\%
Vce, 13-2
during reset, 13-4
power off flag, 14-1
power-on reset, 13-6
powerdown mode, 14-7
Verifying nonvolatile memory, 16-1
Vss, 13-2

W
Wait state, 5-1, A-1, A-11
configuration bits, 4-11
extended ALE, 4-11
RD#HWRH#/PSEN#, 4-11
WAIT# (Wait State) Input, 15-2
Watchdog timer (hardware), 10-1, 10-17, 10-19
enabling, disabling, 10-17
inidle mode, 10-19
in powerdown mode, 10-19
initiated reset, 13-5
overflow, 10-17
SFR (WDTRST), 3-19, 10-4, C-4
Watchdog Timer (PCA), 11-1, 11-9
WCLK (Wait Clock) Output, 15-2
WCON (Real-time wait state contral), 15-11
WDTRST, 3-19, 10-4, 10-17, C-4, C-57
World Wide Web, 1-7
WR#, 9-1
described, 15-2

X

XALE# bit, 4-11

XCH instruction, 5-9, A-22

XCHD ingtruction, 5-9, A-22

XRL instruction, 5-9

XTAL1, XTAL2, 13-2
capacitance loading, 13-3

Z
Zflag, 59, 5-18

INDEX

Index-9






	Cover
	Title Page
	Copyright Page
	CONTENTS
	CHAPTER 1 Guide to this Manual
	1.1 Manual Contents
	1.2 Notational Conventions and Terminology
	1.3 Related Documents
	1.3.1 Data Sheet
	1.3.2 Application Notes

	1.4 Application Support Services
	1.4.1 World Wide Web
	1.4.2 CompuServe Forums
	1.4.3 FaxBack Service
	1.4.4 Bulletin Board System (BBS)


	CHAPTER 2 Introduction
	2.1 Product overview
	2.1.1 8X930Ax Features

	2.2 MCS 251 Microcontroller Core
	2.2.1 CPU
	2.2.2 Clock and Reset Unit
	2.2.3 Interrupt Handler

	2.3 On-chip Memory
	2.4 Universal Serial Bus Module
	2.5 On-chip Peripherals
	2.5.1 Timer/Counters and Watchdog Timer
	2.5.2 Programmable Counter Array (PCA)
	2.5.3 Serial I/O Port

	2.6 Operating Conditions

	CHAPTER 3 Memory Partitions
	3.1 Address Spaces for 8X930Ax
	3.1.1 Compatibility with the MCS® 51 Architecture

	3.2 8X930Ax Memory Space
	3.2.1 On-chip General-purpose Data RAM
	3.2.2 On-chip Code Memory
	3.2.2.1 Accessing On-chip Code Memory in Region 00...

	3.2.3 External Memory

	3.3 8X930Ax Register File
	3.4 Byte, Word, and Dword Registers
	3.4.1 Dedicated Registers
	3.4.1.1 Accumulator and B Register
	3.4.1.2 Extended Data Pointer, DPX
	3.4.1.3 Extended Stack Pointer, SPX


	3.5 Special Function Registers (SFRs)

	CHAPTER 4 Device Configuration
	4.1 Configuration Overview
	4.2 Device Configuration
	4.3 The Configuration Bits
	4.4 Configuring the External Memory Interface
	4.4.1 Page Mode and Nonpage Mode (PAGE#)
	4.4.2 Configuration Bits RD1:0
	4.4.2.1 RD1:0 = 00 (18 External Address Bits)
	4.4.2.2 RD1:0 = 01 (17 External Address Bits)
	4.4.2.3 RD1:0 = 10 (16 External Address Bits)
	4.4.2.4 RD1:0 = 11 (Compatible with MCS 51 Microco...

	4.4.3 Wait State Configuration Bits
	4.4.3.1 Configuration Bits WSA1:0#, WSB1:0#
	4.4.3.2 Configuration Bit XALE#


	4.5 Opcode Configurations (SRC)
	4.5.1 Selecting Binary Mode or Source Mode

	4.6 Mapping On-chip Code Memory to Data Memory (EM...
	4.7 Interrupt Mode (INTR)

	CHAPTER 5 Instructions and Addressing
	5.1 Source Mode or Binary Mode Opcodes
	5.2 Programming Features of the 8X930Ax Architectu...
	5.2.1 Data Types
	5.2.1.1 Order of Byte Storage for Words and Double...

	5.2.2 Register Notation
	5.2.3 Address Notation
	5.2.4 Addressing Modes

	5.3 Data Instructions
	5.3.1 Data Addressing Modes
	5.3.1.1 Register Addressing
	5.3.1.2 Immediate
	5.3.1.3 Direct
	5.3.1.4 Indirect
	5.3.1.5 Displacement

	5.3.2 Arithmetic Instructions
	5.3.3 Logical Instructions
	5.3.4 Data Transfer Instructions

	5.4 Bit Instructions
	5.4.1 Bit Addressing

	5.5 Control Instructions
	5.5.1 Addressing Modes for Control Instructions
	5.5.2 Conditional Jumps
	5.5.3 Unconditional Jumps
	5.5.4 Calls and Returns

	5.6 Program Status Words

	CHAPTER 6 Interrupt System
	6.1 OVERVIEW
	6.2 8X930Ax Interrupt Sources
	6.2.1 External Interrupts
	6.2.2 Timer Interrupts

	6.3 Programmable Counter Array (PCA) Interrupt
	6.4 SERIAL POrt Interrupt
	6.5 USB Interrupts
	6.5.1 USB Function Interrupt
	6.5.2 USB Start of Frame Interrupt
	6.5.3 USB Global Suspend/Resume Interrupt
	6.5.3.1 Global Suspend
	6.5.3.2 Global Resume
	6.5.3.3 USB Remote Wake-up


	6.6 Interrupt Enable
	6.7 Interrupt Priorities
	6.8 Interrupt Processing
	6.8.1 Minimum Fixed Interrupt Time
	6.8.2 Variable Interrupt Parameters
	6.8.2.1 Response Time Variables
	6.8.2.2 Computation of Worst-case Latency With Var...
	6.8.2.3 Latency Calculations
	6.8.2.4 Blocking Conditions
	6.8.2.5 Interrupt Vector Cycle

	6.8.3 ISRs in Process


	CHAPTER 7 Universal Serial Bus
	7.1 USB Function Interface
	7.1.1 Serial Bus Interface Engine (SIE)
	7.1.2 Function Interface Unit (FIU)
	7.1.3 Special Function Registers (SFRs)
	7.1.4 USB Function FIFO’s
	7.1.5 The FIU SFR Set

	7.2 Transmit FIFOs
	7.2.1 Transmit FIFO Overview
	7.2.2 Transmit FIFO Registers
	7.2.3 Transmit Data Register (TXDAT)
	7.2.4 Transmit Byte Count Registers (TXCNTL/TXCNTH...
	7.2.5 Transmit Data Set Management

	7.3 Receive FIFOs
	7.3.1 Receive FIFO Overview
	7.3.2 Receive FIFO Registers
	7.3.2.1 Receive Data Register (RXDAT)
	7.3.2.2 Receive Byte Count Registers (RXCNTL/RXCNT...

	7.3.3 Receive FIFO Data Set Management

	7.4 SIE Details
	7.5 SETUP Token Receive FIFO Handling
	7.6 ISO Data Management
	7.6.1 Transmit FIFO ISO Data Management
	7.6.2 Receive FIFO ISO Data Management


	CHAPTER 8 USB Programming Models
	8.1 Overview of Programming Models
	8.1.1 Unenumerated State
	8.1.2 Idle State
	8.1.3 Transmit and Receive Routines
	8.1.4 USB Interrupts

	8.2 Transmit Operations
	8.2.1 Overview
	8.2.2 Pre-transmit Operations
	8.2.3 Post-transmit Operations

	8.3 Receive Operations
	8.3.1 Overview
	8.3.2 Post-receive Operations

	8.4 SETUP Token
	8.5 Start Of Frame (SOF) Token

	CHAPTER 9 Input/Output Ports
	9.1 Input/Output port overview
	9.2 I/O Configurations
	9.3 Port 1 and Port 3
	9.4 Port 0 and Port 2
	9.5 Read-Modify-Write Instructions
	9.6 Quasi-bidirectional Port Operation
	9.7 Port Loading
	9.8 External Memory Access

	CHAPTER 10 Timer/Counters and WatchDog Timer
	10.1 Timer/Counter Overview
	10.2 Timer/Counter Operation
	10.3 Timer 0
	10.3.1 Mode 0 (13-bit Timer)
	10.3.2 Mode 1 (16-bit Timer)
	10.3.3 Mode 2 (8-bit Timer With Auto-reload)
	10.3.4 Mode 3 (Two 8-bit Timers)

	10.4 Timer 1
	10.4.1 Mode 0 (13-bit Timer)
	10.4.2 Mode 1 (16-bit Timer)
	10.4.3 Mode 2 (8-bit Timer with Auto-reload)
	10.4.4 Mode 3 (Halt)

	10.5 Timer 0/1 Applications
	10.5.1 Auto-load Setup Example
	10.5.2 Pulse Width Measurements

	10.6 Timer 2
	10.6.1 Capture Mode
	10.6.2 Auto-reload Mode
	10.6.2.1 Up Counter Operation

	10.6.3 Up/Down Counter Operation
	10.6.4 Baud Rate Generator Mode
	10.6.5 Clock-out Mode


	10.7 Watchdog Timer
	10.7.1 Description
	10.7.2 Using the WDT
	10.7.3 WDT During Idle Mode
	10.7.4 WDT During PowerDown


	CHAPTER 11 Programmable Counter Array
	11.1 PCA Description
	11.1.1 Alternate Port Usage

	11.2 PCA Timer/Counter
	11.3 PCA Compare/Capture Modules
	11.3.1 16-bit Capture Mode
	11.3.2 Compare Modes
	11.3.3 16-bit Software Timer Mode
	11.3.4 High-speed Output Mode
	11.3.5 PCA Watchdog Timer Mode
	11.3.6 Pulse Width Modulation Mode


	CHAPTER 12 Serial I/O Port
	12.1 Overview
	12.2 Modes of Operation
	12.2.1 Synchronous Mode (Mode 0)
	12.2.1.1 Transmission (Mode 0)
	12.2.1.2 Reception (Mode 0)

	12.2.2 Asynchronous Modes (Modes 1, 2, and 3)
	12.2.2.1 Transmission (Modes 1, 2, 3)
	12.2.2.2 Reception (Modes 1, 2, 3)


	12.3 Framing Bit Error Detection (Modes 1, 2, and ...
	12.4 Multiprocessor Communication (Modes 2 and 3)
	12.5 Automatic Address Recognition
	12.5.1 Given Address
	12.5.2 Broadcast Address
	12.5.3 Reset Addresses

	12.6 Baud Rates
	12.6.1 Baud Rate for Mode 0 †
	12.6.2 Baud Rates for Mode 2
	12.6.3 Baud Rates for Modes 1 and 3 †
	12.6.3.1 Timer 1 Generated Baud Rates (Modes 1 and...
	12.6.3.2 Selecting Timer 1 as the Baud Rate Genera...
	12.6.3.3 Timer 2 Generated Baud Rates (Modes 1 and...

	12.6.3.4 Selecting Timer 2 as the Baud Rate Genera...


	CHAPTER 13 Minimum Hardware Setup
	13.1 Minimum Hardware Setup
	13.2 Electrical Environment
	13.2.1 Power and Ground Pins
	13.2.2 Unused Pins
	13.2.3 Noise Considerations

	13.3 Clock Sources
	13.3.1 On-chip Oscillator (Crystal)
	13.3.2 On-chip Oscillator (Ceramic Resonator)
	13.3.3 External Clock

	13.4 Reset
	13.4.1 Externally Initiated Resets
	13.4.2 WDT Initiated Resets
	13.4.3 USB Initiated Resets
	13.4.4 Reset Operation
	13.4.5 Power-on Reset


	CHAPTER 14 Special Operating Modes
	14.1 General
	14.2 Power Control Registers
	14.2.1 Serial I/O Control Bits
	14.2.2 Power Off Flag

	14.3 Idle Mode
	14.3.1 Entering Idle Mode
	14.3.2 Exiting Idle Mode

	14.4 USB Power Control
	14.4.1 Global Suspend Mode
	14.4.1.1 Powerdown Mode
	14.4.1.2 Entering Powerdown Mode
	14.4.1.3 Exiting Powerdown Mode

	14.4.2 Global Resume Mode
	14.4.3 USB Remote Wake-up

	14.5 Low Clock Mode
	14.5.1 Entering Low Clock Mode
	14.5.2 Exiting Low Clock Mode

	14.6 ON-Circuit emulation (Once) Mode
	14.6.1 Entering ONCE Mode
	14.6.2 Exiting ONCE Mode


	CHAPTER 15 External Memory Interface
	15.1 Overview
	15.2 External Bus Cycles
	15.2.1 Bus Cycle Definitions
	15.2.2 Nonpage Mode Bus Cycles
	15.2.3 Page Mode Bus Cycles

	15.3 Wait States
	15.4 External Bus Cycles With Configurable Wait St...
	15.4.1 Extending RD#/WR#/PSEN#
	15.4.2 Extending ALE

	15.5 External Bus Cycles with Real-time Wait State...
	15.5.1 Real-time WAIT# Enable (RTWE)
	15.5.2 Real-time WAIT CLOCK Enable (RTWCE)
	15.5.3 Real-time Wait State Bus Cycle Diagrams

	15.6 Configuration Byte Bus Cycles
	15.7 Port 0 and Port 2 Status
	15.7.1 Port 0 and Port 2 Pin Status in Nonpage Mod...
	15.7.2 Port 0 and Port 2 Pin Status in Page Mode

	15.8 External Memory Design Examples
	15.8.1 Example 1: RD1:0 = 00, 18-bit Bus, External...
	15.8.2 Example 2: RD1:0 = 01, 17-bit Bus, External...
	15.8.3 Example 3: RD1:0 = 01, 17-bit Bus, External...
	15.8.4 Example 4: RD1:0 = 10, 16-bit Bus, External...
	15.8.5 Example 5: RD1:0 = 11, 16-bit Bus, External...
	15.8.5.1 An Application Requiring Fast Access to t...
	15.8.5.2 An Application Requiring Fast Access to D...

	15.8.6 Example 6: RD1:0 = 11, 16-bit Bus, External...
	15.8.7 Example 7: RD1:0 = 01, 17-bit Bus, External...


	CHAPTER 16 Verifying Nonvolatile Memory
	16.1 General
	16.1.1 Considerations for On-chip Program Code Mem...

	16.2 Verify Modes
	16.3 General Setup
	16.4 Verify Algorithm
	16.5 Lock Bit System
	16.5.1 Encryption Array

	16.6 Signature Bytes

	APPENDIX A Instruction Set Reference
	A.1 Notation for instruction Operands
	A.2 Opcode Map and Supporting Tables
	A.3 Instruction Set Summary
	A.3.1 Execution Times for Instructions Accessing t...
	A.3.2 Instruction Summaries����������

	A.4 Instruction Descriptions

	APPENDIX B Signal Descriptions
	APPENDIX C Registers
	C.1 SFRs by Functional Category
	C.2 SFR Descriptions

	APPENDIX D Data Flow Model
	Glossary
	Index
	TABLES
	Table 1�1. Intel Application Support Services
	Table 2�1. 8X930Ax Features Summary
	Table 2�2. 8X930Ax Operating Frequency
	Table 3�2. Minimum Times to Fetch Two Bytes of Cod...
	Table 3�3. Register Bank Selection
	Table 3�1. Address Mappings
	Table 3�4. Dedicated Registers in the Register Fil...
	Table 3�5. 8X930Ax SFR Map
	Table 3�6. Core SFRs
	Table 3�7. USB Function SFRs �
	Table 3�8. I/O Port SFRs
	Table 3�9. Serial I/O SFRs
	Table 3�10. Timer/Counter and Watchdog Timer SFRs
	Table 3�11. Programmable Counter Array (PCA) SFRs�...
	Table 4�1. External Addresses for Configuration Ar...
	Table 4�2. Memory Signal Selections (RD1:0)
	Table 4�3. RD#, WR#, PSEN# External Wait States
	Table 4�4. Examples of Opcodes in Binary and Sourc...
	Table 5�1. Data Types
	Table 5�2. Notation for Byte Registers, Word Regis...
	Table 5�3. Addressing Modes for Data Instructions ...
	Table 5�4. Addressing Modes for Data Instructions ...
	Table 5�5. Bit-addressable Locations
	Table 5�6. Addressing Two Sample Bits
	Table 5�7. Addressing Modes for Bit Instructions
	Table 5�8. Addressing Modes for Control Instructio...
	Table 5�9. Compare-conditional Jump Instructions
	Table 5�10. The Effects of Instructions on the PSW...
	Table 6�1. Interrupt System Input Signals
	Table 6�2. Interrupt System Special Function Regis...
	Table 6�3. Interrupt Control Matrix�
	Table 6�4. USB Interrupt Control Matrix�
	Table 6�5. Level of Priority
	Table 6�6. Interrupt Priority Within Level
	Table 6�7. Interrupt Latency Variables
	Table 7�1. Signal Descriptions �
	Table 7�2. USB Function SFRs
	Table 7�3. 8X930Ax FIFO Configurations
	Table 7�4. Writing to the Byte Count Register
	Table 7�5. Truth Table for Transmit FIFO Managemen...
	Table 7�6. Status of the Receive FIFO Data Sets
	Table 7�7. Truth Table for Receive FIFO Management...
	Table 6�8. Actual vs. Predicted Latency Calculatio...
	Table 9�1. Input/Output Port Pin Descriptions �
	Table 9�2. Instructions for External Data Moves
	Table 10�1. External Signals�
	Table 10�2. Timer/Counter and Watchdog Timer SFRs
	Table 10�3. Timer 2 Modes of Operation
	Table 11�1. PCA Special Function Registers (SFRs)�...
	Table 11�2. External Signals
	Table 11�3. PCA Module Modes
	Table 12�1. Serial Port Signals
	Table 12�2. Serial Port Special Function Registers...
	Table 12�3. Summary of Baud Rates
	Table 12�4. Timer 1 Generated Baud Rates for Seria...
	Table 12�5. Selecting the Baud Rate Generator(s)
	Table 12�6. Timer 2 Generated Baud Rates
	Table 14�1. Pin Conditions in Various Modes
	Table 15�1. External Memory Interface Signals
	Table 15�2. Bus Cycle Definitions (No Wait States)...
	Table 15�3. Port 0 and Port 2 Pin Status In Normal...
	Table 16�1. Signal Descriptions
	Table 16�2. Verify Modes
	Table 16�3. Lock Bit Function
	Table 16�4. Contents of the Signature Bytes
	Table 16�5. Timing Definitions
	Table A�1. Notation for Register Operands
	Table A�2. Notation for Direct Addresses
	Table A�3. Notation for Immediate Addressing
	Table A�4. Notation for Bit Addressing
	Table A�5. Notation for Destinations in Control In...
	Table A�6. Instructions for MCS® 51 Microcontrolle...
	Table A�7. Instructions for the 8X930Ax Architectu...
	Table A�8. Data Instructions
	Table A�9. High Nibble, Byte 0 of Data Instruction...
	Table A�10. Bit Instructions
	Table A�11. Byte 1 (High Nibble) for Bit Instructi...
	Table A�12. PUSH/POP Instructions
	Table A�13. Control Instructions
	Table A�14. Displacement/Extended MOVs
	Table A�15. INC/DEC
	Table A�16. Encoding for INC/DEC
	Table A�17. Shifts
	Table A�18. State Times to Access the Port SFRs (C...
	Table A�19. Summary of Add and Subtract Instructio...
	Table A�20. Summary of Compare Instructions
	Table A�21. Summary of Increment and Decrement Ins...
	Table A�22. Summary of Multiply, Divide, and Decim...
	Table A�23. Summary of Logical Instructions (Conti...
	Table A�24. Summary of Move Instructions (Continue...
	Table A�25. Summary of Exchange, Push, and Pop Ins...
	Table A�26. Summary of Bit Instructions �
	Table A�27. Summary of Control Instructions (Conti...
	Table A�28. Flag Symbols
	Table B�1. 8X930Ax Pin Assignments Arranged by Fun...
	Table B�2. Signal Descriptions (Continued)
	Table B�3. Memory Signal Selections (RD1:0)
	Table B�4. 8X930Ax Operating Frequency
	Table C�1. 8X930Ax SFR Map
	Table C�2. Core SFRs
	Table C�3. I/O Port SFRs
	Table C�4. Serial I/O SFRs
	Table C�5. USB Function SFRs �
	Table C�6. Timer/Counter and Watchdog Timer SFRs �...
	Table C�7. Programmable Counter Array (PCA) SFRs��...
	Table D�1. Non-isochronous Transmit Data Flow (Con...
	Table D�2. Isochronous Transmit Data Flow in Dual-...
	Table D�3. Non-isochronous Receive Data Flow in Si...
	Table D�4. Non-isochronous Receive Data Flow in Du...
	Table D�5. Isochronous Receive Data Flow in Dual-p...

	FIGURES
	Figure 2�1. 8X930Ax in a Universal Serial Bus Syst...
	Figure 2�2. Functional Block Diagram of the 8X930A...
	Figure 2�3. 8X930Ax USB Module Block Diagram
	Figure 2�4. The CPU
	Figure 2�5. Clocking Definitions (PLL off)
	Figure 2�6. Clocking Definitions (PLL on)
	Figure 3�1. Address Spaces for the 8X930Ax
	Figure 3�2. Address Spaces for the MCS® 51 Archite...
	Figure 3�3. Address Space Mappings MCS® 51 Archite...
	Figure 3�4. 8X930Ax Address Space
	Figure 3�5. Hardware Implementation of the 8X930Ax...
	Figure 3�6. The Register File
	Figure 3�7. Register File Locations 0–7
	Figure 3�8. Dedicated Registers in the Register Fi...
	Figure 4�1. Configuration Array (On-chip)
	Figure 4�2. Configuration Array (External)
	Figure 4�3. User Configuration Byte 0 (UCONFIG0)
	Figure 4�4. User Configuration Byte 1 (UCONFIG1)
	Figure 4�5. Internal/External Address Mapping (RD1...
	Figure 4�6. Internal/External Address Mapping (RD1...
	Figure 4�7. Binary Mode Opcode Map
	Figure 4�8. Source Mode Opcode Map
	Figure 5�1. Word and Double-word Storage in Big En...
	Figure 5�2. Program Status Word Register
	Figure 5�3. Program Status Word 1 Register
	Figure 6�1. Interrupt Control System
	Figure 6�2. USB Function Interrupt Enable Register...
	Figure 6�3. USB Function Interrupt Flag Register
	Figure 6�4. Interrupt Enable Register 0
	Figure 6�5. USB Interrupt Enable Register
	Figure 6�6. IPH0: Interrupt Priority High Register...
	Figure 6�7. IPL0: Interrupt Priority Low Register ...
	Figure 6�8. IPH1: Interrupt Priority High Register...
	Figure 6�9. IPL1: Interrupt Priority Low Register ...
	Figure 6�10. The Interrupt Process
	Figure 6�11. Response Time Example #1
	Figure 6�12. Response Time Example #2
	Figure 7�1. EPINDEX: Endpoint Index Register
	Figure 7�2. EPCON: Control Endpoint Register
	Figure 7�3. TXSTAT: Transmit FIFO Status Register
	Figure 7�4. RXSTAT: Receive FIFO Status Register
	Figure 7�5. SOFH: Start of Frame High Register
	Figure 7�6. SOFL: Start of Frame Low Register
	Figure 7�7. FADDR: Function Address Register
	Figure 7�8. Transmit FIFO Outline
	Figure 7�9. Transmit Byte Count Registers
	Figure 7�10. TXDAT: Transmit FIFO Data Register
	Figure 7�11. TXCNTH/TXCNTL Transmit FIFO Byte Coun...
	Figure 7�12. TXCON: Transmit FIFO Control Register...
	Figure 7�13. TXFLG: Transmit FIFO Flag Register
	Figure 7�14. Receive FIFO
	Figure 7�15. RXDAT: Receive FIFO Data Register
	Figure 7�16. RXCNTH/RXCNTL: Receive FIFO Byte Coun...
	Figure 7�17. RXCON: Receive FIFO Control Register
	Figure 7�18. RXFLG: Receive FIFO Flag Register
	Figure 8�1. Program Flow
	Figure 8�2. High-level View of Transmit Operations...
	Figure 8�3. Pre-transmit ISR (Non-Isochronous)
	Figure 8�4. Post-transmit ISR (Non-isochronous)
	Figure 8�5. Post-transmit ISR (Isochronous)
	Figure 8�6. High-level View of Receive Operations
	Figure 8�7. Post-receive ISR (Non-isochronous)
	Figure 8�8. Receive SOF ISR (Isochronous)
	Figure 8�9. Post-receive ISR (Control)
	Figure 8�10. Hardware Operations for SOF Token
	Figure 9�1. Port 1 and Port 3 Structure
	Figure 9�2. Port 0 Structure
	Figure 9�3. Port 2 Structure
	Figure 9�4. Internal Pullup Configurations
	Figure 10�1. Basic Logic of the Timer/Counters
	Figure 10�2. Timer 0/1 in Mode 0 and Mode 1
	Figure 10�3. Timer 0/1 in Mode 2, Auto-Reload
	Figure 10�4. Timer 0 in Mode 3, Two 8-bit Timers
	Figure 10�5. TMOD: Timer/Counter Mode Control Regi...
	Figure 10�6. TCON: Timer/Counter Control Register
	Figure 10�7. Timer 2: Capture Mode
	Figure 10�8. Timer 2: Auto Reload Mode (DCEN = 0)
	Figure 10�9. Timer 2: Auto Reload Mode (DCEN = 1)
	Figure 10�10. Timer 2: Clock Out Mode
	Figure 10�11. T2MOD: Timer 2 Mode Control Register...
	Figure 10�12. T2CON: Timer 2 Control Register
	Figure 11�1. Programmable Counter Array
	Figure 11�2. PCA 16-bit Capture Mode
	Figure 11�3. PCA Software Timer and High-speed Out...
	Figure 11�4. PCA Watchdog Timer Mode
	Figure 11�5. PCA 8-bit PWM Mode
	Figure 11�6. PWM Variable Duty Cycle
	Figure 11�7. CMOD: PCA Timer/Counter Mode Register...
	Figure 11�8. CCON: PCA Timer/Counter Control Regis...
	Figure 11�9. CCAPMx: PCA Compare/Capture Module Mo...
	Figure 12�1. Serial Port Block Diagram
	Figure 12�2. SCON: Serial Port Control Register
	Figure 12�3. Mode 0 Timing
	Figure 12�4. Data Frame (Modes 1, 2, and 3)
	Figure 12�5. Timer 2 in Baud Rate Generator Mode
	Figure 13�1. Minimum Setup
	Figure 13�2. CHMOS On-chip Oscillator
	Figure 13�3. External Clock Connection for the 8X9...
	Figure 13�4. External Clock Drive Waveforms
	Figure 13�5. Reset Timing Sequence
	Figure 14�1. Power Control (PCON) Register
	Figure 14�2. USB Power Control (PCON1) Register
	Figure 14�3. Idle and Powerdown Clock Control
	Figure 14�4. Suspend/Resume Program with/without R...
	Figure 15�1. Bus Structure in Nonpage Mode and Pag...
	Figure 15�2. External Code Fetch (Nonpage Mode)
	Figure 15�3. External Data Read (Nonpage Mode)
	Figure 15�4. External Data Write (Nonpage Mode)
	Figure 15�5. External Code Fetch (Page Mode)
	Figure 15�6. External Data Read (Page Mode)
	Figure 15�7. External Data Write (Page Mode)
	Figure 15�8. External Code Fetch (Nonpage Mode, On...
	Figure 15�9. External Data Write (Nonpage Mode, On...
	Figure 15�10. External Code Fetch (Nonpage Mode, O...
	Figure 15�11. Real-time Wait State Control Registe...
	Figure 15�12. External Code Fetch/Data Read (Nonpa...
	Figure 15�13. External Data Write (Nonpage Mode, R...
	Figure 15�14. External Data Read (Page Mode, Real-...
	Figure 15�15. External Data Write (Page Mode, Real...
	Figure 15�16. Configuration Byte Bus Cycles
	Figure 15�17. Bus Diagram for Example 1: 80930AD i...
	Figure 15�18. Address Space for Example 1
	Figure 15�19. Bus Diagram for Example 2: 80930AD i...
	Figure 15�20. Address Space for Example 2
	Figure 15�21. Bus Diagram for Example 3: 83930AE i...
	Figure 15�22. Memory Space for Example 3
	Figure 15�23. Bus Diagram for Example 4: 83930AE i...
	Figure 15�24. Address Space for Example 4
	Figure 15�25. Bus Diagram for Example 5: 80930AD i...
	Figure 15�26. Address Space for Examples 5 and 6
	Figure 15�27. Bus Diagram for Example 6: 80930AD i...
	Figure 15�28. Bus Diagram for Example 7: 80930AD i...
	Figure 16�1. Setup for Verifying Nonvolatile Memor...
	Figure 16�2. Verify Bus Cycles
	Figure B�1. 8X930Ax 68-pin PLCC Package


