
Open Access - Preliminary

4-1ARM810 Data Sheet
ARM DDI 0081E

This chapter details the ARM810 instruction set.

4.1 Summary 4-2
4.2 Reserved Instructions and Usage Restrictions 4-2
4.3 The Condition Field 4-3
4.4 Branch and Branch with Link (B, BL) 4-5
4.5 Data Processing Instructions 4-7
4.6 PSR Transfer (MRS, MSR) 4-17
4.7 Multiply and Multiply-Accumulate (MUL, MLA) 4-23
4.8 Multiply Long and Multiply-Accumulate Long (MULL, MLAL) 4-25
4.9 Single Data Transfer (LDR, STR) 4-27
4.10 Halfword and Signed Data Transfer 4-34
4.11 Block Data Transfer (LDM, STM) 4-40
4.12 Single Data Swap (SWP) 4-49
4.13 Software Interrupt (SWI) 4-52
4.14 Coprocessor Data Operations (CDP) 4-55
4.15 Coprocessor Data Transfers (LDC, STC) 4-57
4.16 Coprocessor Register Transfers (MRC, MCR) 4-61
4.17 The Instruction Memory Barrier (IMB) Instruction 4-64
4.18 Undefined Instructions 4-67
4.19 Instruction Set Examples 4-68

Instruction Set4

Open Access - Preliminary

Instruction Set

4-2 ARM810 Data Sheet
ARM DDI 0081E

4.1 Summary
The ARM810 instruction set is summarized below.

 Figure 4-1: ARM8 instruction set

Note The instruction cycle times given in this section assume that there is no register
interlocking.

4.2 Reserved Instructions and Usage Restrictions
ARM810 enters an Undefined Instruction trap if it encounters an instruction bit pattern
that it does not recognize. However, there are some bit patterns which are not defined,
but which do not cause the Undefined Instruction trap to be taken. These reserved
instructions must not be used, as their action may change in future ARM
implementations, and may differ from previous ARM implementations.

In addition, this datasheet states that some plausible instruction usages must not be
used - particular register combinations for example. In all cases where this is so,
should the rules be broken, the processor will not halt or become damaged in any way,
though its internal state may well be changed.

Please refer to 4.18 Undefined Instructions on page 4-67 for details of which
instruction bit patterns fall into the Undefined Instruction trap.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing / PSR Transfer

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm Multiply Long

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Transfer:
register offset

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer:
immediate offset

Cond 0 1 I P U B W L Rn Rd Offset Single Data Transfer

Cond 0 1 1 1 Undefined

Cond 1 0 0 P U S W L Rn Register List Block Data Transfer

Cond 1 0 1 L Offset Branch

Cond 1 1 0 P U N W L Rn CRd CP# Offset Coprocessor Data Transfer

Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm Coprocessor Data Operation

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm Coprocessor Register Transfer

Cond 1 1 1 1 Ignored by processor Software Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Open Access - Preliminary

Instruction Set

4-3ARM810 Data Sheet
ARM DDI 0081E

4.3 The Condition Field
All ARM810 instructions are conditionally executed. This means that their execution
may or may not take place depending on the values of the N, Z, C and V flags in the
CPSR. Figure 4-2: Condition codes shows the condition encoding.

 Figure 4-2: Condition codes

If the always (AL) condition is specified in an instruction, the instruction will be
executed regardless of the CPSR flags.

Note: A condition field of 1111 is reserved and should not be used. Instructions with such a
condition field may be redefined in future variants of the ARM architecture.

Cond

272831

Condition field
0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - Always

0

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 0 0 Opcode

21

S Rn Rd Operand 2
Data Processing
PSR Transfer

Multiply

Single Data Swap

Single Data Transfer

Undefined

Block Data Transfer

Coproc Data Transfer

Branch

Coproc Data Operation

Coproc Register Transfer

Software Interrupt

26 25 22

I

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 0 0 SA Rd Rn Rs 1 0 0 1 Rm

1 0 0 1 Rm0 0 0 0RdRn0 0 0 1 0 B 0 0

offsetRdRnB W LI P U0 1

0 1 1 XXXXXXXXXXXXXXXXXXXX 1 XXXX

1 0 0 S W LP U Rn Register List

1 0 1 L

1 1 0

offset

1 1 1 0 0 CRm

1 1 1 0 LCP Opc

N W LP U Rn offset CRd CP#

1 1 1 1

CP Opc CRn CRd

 CRn Rd

 CP#

 CP#

 CP

 CP 1 CRm

ignored by processor

Open Access - Preliminary

Instruction Set

4-4 ARM810 Data Sheet
ARM DDI 0081E

The assembler treats the absence of a condition code qualifier as though AL had been
specified. If you require a NOP, use MOV R0,R0 .

The other condition codes have meanings as detailed in Figure 4-2: Condition
codes . For example, code 0000 (EQual) causes an instruction to be executed only if
the Z flag is set. This corresponds to the case in which a compare (CMP) instruction
has found its two operands to be equal. If the two operands are different, the compare
will have cleared the Z flag, and the instruction will not be executed.

Open Access - Preliminary

Instruction Set

4-5ARM810 Data Sheet
ARM DDI 0081E

4.4 Branch and Branch with Link (B, BL)
A Branch instruction is only executed if the specified condition is true: the various
conditions are defined at the beginning of this chapter. Figure 4-3: Branch
instructions shows the instruction encoding.

 Figure 4-3: Branch instructions

Branch instructions contain a signed two’s complement 24-bit offset. This is shifted left
two bits, sign extended to 32 bits, and added to the PC. An instruction can therefore
specify a branch of +/- 32MB. The branch offset must take account of the fact that the
PC is 2 words (8 bytes) ahead of the current instruction.

Branches beyond +/- 32MB must use an offset or an absolute destination that has
been previously loaded into a register. For Branch with Link operations that exceed
32MB, the PC must be saved manually into R14 and the offset added to the PC, or the
absolute destination moved to the PC.

4.4.1 The link bit
Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.
In the process, 4 is subtracted from the PC value, so that R14 will contain the address
of the instruction immediately following the BL instruction. The CPSR is not saved with
the PC.

To return from a routine called by Branch with Link, use:

MOV PC,R14 if the link register is still valid.

or

LDM Rn!,{..PC} if the link register has been saved onto a stack pointed to by
Rn.

4.4.2 Branch prediction and removal
The ARM8 Prefetch Unit will attempt to remove a Branch instruction before it reaches
the Core. If a Branch is predictable and predicted taken, the Prefetch Unit will start
prefetching from the target address, so removing the Branch altogether if predicted
correctly. For more information, refer to Chapter 6, The Prefetch Unit .

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch
1 = Branch with Link

Condition field

Open Access - Preliminary

Instruction Set

4-6 ARM810 Data Sheet
ARM DDI 0081E

4.4.3 Instruction cycle times
Note that the cycle times given here are given for the ARM8 processor core, and do
not give any information about the additional cycles that may be taken as a result of
Cache Misses, MMU Page table walks etc. Future versions of the ARM810 Datasheet
will provide such information.Please refer to Chapter 12, Bus Interface for timing
details of off-chip accesses.

A Branch (B) or Branch with Link (BL) instruction takes 3 cycles. If optimised by the
Prefetch Unit, a Branch will take fewer cycles—possibly 0—and a Branch with Link will
take a minimum of 1 cycle if taken, and 0 cycles if not taken.

4.4.4 Assembler syntax
Branch instructions have the following syntax:

B{L}{cond} <expression>

where

{L} requests a Branch with Link.

{cond} is one of the two-character mnemonics, shown in
Figure 4-2: Condition codes on page 4-3. The assembler
assumes AL (ALways) if no condition is specified.

<expression> is the destination address. The assembler calculates the
offset, taking into account that the PC is 8 ahead of the
current instruction.

4.4.5 Examples
hereBAL here ; assembles to 0xEAFFFFFE

; (note effect of PC offset)

B there ; ALways condition used as default

CMP R1,#0 ; compare R1 with zero and branch to fred

BEQ fred ; if R1 was zero, otherwise continue to next

; instruction

BL sub+ROM ; call subroutine at address computed by

; Assembler

ADDS R1,R1,#1 ; add 1 to register 1, setting CPSR flags

BLCC sub ; on the result, then call subroutine if the

; C flag is clear, which will be

; the case unless R1 held 0xFFFFFFFF

Open Access - Preliminary

Instruction Set

4-7ARM810 Data Sheet
ARM DDI 0081E

4.5 Data Processing Instructions
A data processing instruction is only executed if the specified condition is true: the
various conditions are defined at the beginning of this chapter. Figure 4-4: Data
processing instructions shows the instruction encoding.

 Figure 4-4: Data processing instructions

0000 = AND - Rd:= Op1 AND Op2
0001 = EOR - Rd:= Op1 EOR Op2
0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1
0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd:= Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C - 1
0111 = RSC - Rd:= Op2 - Op1 + C - 1
1000 = TST - set condition codes on Op1 AND Op 2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rd:= Op2
1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Cond 0 0 I

011122124272831

Condition Field

OpCode S Rn Rd Operand 2

25 19 16 152026

Immediate operand

 Rmshift

 Rotate Imm

0 = Operand 2 is a register

011 4 3

Unsigned 8-bit immediate valueRotation applied to Imm

011 8 7

1 = Operand 2 is an immediate value

Operation Code

Destination register

1st operand register

Set condition codes
0 = do not set condition codes
1 = set condition codes

Open Access - Preliminary

Instruction Set

4-8 ARM810 Data Sheet
ARM DDI 0081E

The instructions in this class produce a result by performing a specified operation on
one or two operands, where:

• The first operand is always a register (Rn).
• The second operand may be a shifted register (Rm) or a rotated 8-bit

immediate value (Imm) depending on the value of the instruction’s I bit.

The CPSR flags may be preserved or updated as a result of this instruction, depending
on the value of the instruction’s S bit.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used
only to perform tests and to set the CPSR flags on the result, and therefore always
have the S bit set.

The data processing instructions and their effects are listed in Table 4-1: ARM data
processing instructions .

Assembler
mnemonic OpCode Action Note

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written Rd is ignored and should be 0x0000

TEQ 1001 as EOR, but result is not written Rd is ignored and should be 0x0000

CMP 1010 as SUB, but result is not written Rd is ignored and should be 0x0000

CMN 1011 as ADD, but result is not written Rd is ignored and should be 0x0000

ORR 1100 operand1 OR operand2

MOV 1101 operand2 Rn is ignored and should be 0x0000

BIC 1110 operand1 AND NOT operand2 Bit clear

MVN 1111 NOT operand2 Rn is ignored and should be 0x0000

 Table 4-1: ARM data processing instructions

Open Access - Preliminary

Instruction Set

4-9ARM810 Data Sheet
ARM DDI 0081E

4.5.1 Effects on CPSR flags
Data processing operations are classified as logical or arithmetic.

Logical operations

The logical operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the
logical action on all the corresponding bits of the operand or operands to produce the
result.

If the S bit is set (and Rd is not R15 - see below), they affect the CPSR flags as follows:

N is set to the logical value of bit 31 of the result.

Z is set if and only if the result is all zeros.

C is set to the carry out from the shifter (so is unchanged when no shift
operation occurs - see 4.5.2 Shifts and 4.5.3 Immediate operand
rotates for the exact details of this).

V is preserved.

Arithmetic operations

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each
operand as a 32-bit integer (either unsigned or two’s complement signed).

If the S bit is set (and Rd is not R15), they affect the CPSR flags as follows:

N is set to the value of bit 31 of the result. This indicates a negative
result if the operands are being treated as 2’s complement signed.

Z is set if and only if the result is zero.

C is set to the carry out of bit 31 of the ALU.

V is set if a signed overflow occurs into bit 31 of the result. This can be
ignored if the operands are considered as unsigned, but warns of a
possible error if they are being treated as 2’s complement signed.

Open Access - Preliminary

Instruction Set

4-10 ARM810 Data Sheet
ARM DDI 0081E

4.5.2 Shifts
When the second operand is a shifted register, the instruction’s Shift field controls the
operation of the shifter. This indicates the type of shift to be performed (Logical Left
or Right, Arithmetic Right or Rotate Right).

The amount by which the register should be shifted may be contained either in an
immediate field in the instruction, or in the bottom byte of another register (other than
R15). The encoding for the different shift types is shown in Figure 4-5: ARM shift
operations .

 Figure 4-5: ARM shift operations

Instruction-specified shifts

When specified in the instruction, the shift amount is contained in a 5-bit field which
may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm,
and moves each bit to a more significant position by the specified amount. The least
significant bits of the result are filled with zeros, and the high bits of Rm that do not
map into the result are discarded, with the exception of the least significant discarded
bit. This becomes the shifter carry output, which may be latched into the C bit of the
CPSR when the ALU operation is in the logical class (see Logical operations on
page 4-9).

As an example, Figure 4-6: Logical shift left shows the effect of LSL #5.

 Figure 4-6: Logical shift left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the
CPSR C flag. The contents of Rm are used directly as the second operand.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out

Open Access - Preliminary

Instruction Set

4-11ARM810 Data Sheet
ARM DDI 0081E

Logical shift right: A logical shift right (LSR) is similar, but the contents of Rm are
moved to less significant positions in the result. For example, LSR #5 has the effect
shown in Figure 4-7: Logical shift right .

 Figure 4-7: Logical shift right

The form of the shift field which might be expected to correspond to LSR #0 is used to
encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant, as it is the same as logical shift left zero, so the assembler
converts LSR #0 (as well as ASR #0 and ROR #0) into LSL #0, and allows LSR #32
to be specified.

Arithmetic shift right: An arithmetic shift right (ASR) is similar to a logical shift right,
except that the high bits are filled with bit 31 of Rm instead of zeros. This preserves
the sign in two’s complement notation. Figure 4-8: Arithmetic shift right on page 4-
11 shows the effect of ASR #5.

 Figure 4-8: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, depending on
the value of bit 31 of Rm.

Rotate right: Rotate right (ROR) operations re-use the bits which “overshoot” in a
logical shift right operation by reintroducing them at the high end of the result, in place
of the zeros used to fill the high end in logical shift right operations. To illustrate this,
the effect of ROR #5 is shown in Figure 4-9: Rotate right .

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4

contents of Rm

value of operand 2

31 0

carry out

5 430

Open Access - Preliminary

Instruction Set

4-12 ARM810 Data Sheet
ARM DDI 0081E

 Figure 4-9: Rotate right

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the shifter, rotate right extended (RRX). This is a rotate right by
one bit position of the 33-bit quantity formed by appending the CPSR C flag to the most
significant end of the contents of Rm as shown in Figure 4-10: Rotate right
extended .

 Figure 4-10: Rotate right extended

contents of Rm

value of operand 2

31 0

carry out

5 4

contents of Rm

value of operand 2

31 0

carry
out

1

C
in

Open Access - Preliminary

Instruction Set

4-13ARM810 Data Sheet
ARM DDI 0081E

Register-specified shifts

Only the least significant byte of Rs is used to determine the shift amount. Rs can be
any general register other than R15.

Byte value Description

0 the unchanged contents of Rm will be used as the second operand,
and the old value of the CPSR C flag will be passed on as the shifter
carry output

1- 31 the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation

32 the result will be a logical extension of the shift described above:

• LSL by 32 has result zero, carry out equal to bit 0 of Rm.
• LSL by more than 32 has result zero, carry out zero.
• LSR by 32 has result zero, carry out equal to bit 31 of Rm.
• LSR by more than 32 has result zero, carry out zero.
• ASR by 32 or more has result filled with and carry out equal

to bit 31 of Rm.
• ROR by 32 has result equal to Rm, carry out equal to bit 31

of Rm.
• ROR by n where n is greater than 32 will give the same result

and carry out as ROR by n-32; therefore repeatedly subtract
32 from n until the amount is in the range 1 to 32

Note Bit 7 of an instruction with a register-controlled shift must be 0: a 1 in this bit will cause
the instruction to be something other than a data processing instruction.

4.5.3 Immediate operand rotates
An immediate operand is constructed by taking the 8-bit immediate in the Imm field,
zero-extending it to 32 bits, and rotating it by twice the value in the Rotate field. This
enables many common constants to be generated, for example all powers of two.

If the value in the Rotate field is zero, the shifter carry out is set to the old value of the
CPSR C flag. Otherwise, the shifter carry out is set to bit 31 of the shifter result, just
as though an ROR had been performed (see Figure 4-9: Rotate right on page 4-12).

4.5.4 Writing to R15
When Rd is a register other than R15, the condition code flags in the CPSR may be
updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set, the result of the operation
is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set, the result of the operation is placed in R15 and
the SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which automatically restore both PC and CPSR. This form of instruction must
not be used in User mode or System mode.

Note Bits [1:0] of R15 are set to zero when read from, and ignored when written to.

Open Access - Preliminary

Instruction Set

4-14 ARM810 Data Sheet
ARM DDI 0081E

4.5.5 Using R15 as an operand
If R15 (the PC) is used as an operand in a data processing instruction and the shift
amount is instruction-specified, the PC value will be the address of the instruction plus
8 bytes.

For any register-controlled shift instructions, neither Rn nor Rm may be R15.

4.5.6 MOV and MVN opcodes
With MOV and MVN opcodes, the Rn field is ignored and should be set to 0000.

4.5.7 TEQ, TST, CMP and CMN opcodes
These instructions do not write the result of their operation but do set flags in the
CPSR. An assembler will always set the S flag for these instructions, even if you do
not specify this in the mnemonic. The Rd field is ignored and should be set to 0000.

In 32-bit modes, the TEQP form of the instruction used in earlier processors should
not be used: the PSR transfer operations (MRS, MSR) must be used instead. Please
refer to Appendix C, 26-bit Operations on ARM810 for information on 26-bit mode
operation.

Note The S bit (bit 20) of these instructions must be a 1; a 0 in this bit will cause the
instruction to be something other than a data processing instruction.

4.5.8 Instruction cycle times
Note that the cycle times given here are given for the ARM8 processor core, and do
not give any information about the additional cycles that may be taken as a result of
Cache Misses, MMU Page table walks etc. Future versions of the ARM810 Datasheet
will provide such information. Please refer to Chapter 12, Bus Interface for timing
details of off-chip accesses.

Data Processing instructions vary in the number of incremental cycles taken, as
shown in Table 4-2: Instruction cycle times on page 4-14.

Description Cycles

Normal 1

If the opcode is one of ADD, ADC, CMP, CMN, RSB, RSC, SUB, SBC
and there is a complex shift (anything other than LSL #0, LSL #1, LSL #2 or LSL #3)

+1

If a register-specified shift is used +1

With PC written and the S bit is clear +2

With PC written and the S bit is set +3

 Table 4-2: Instruction cycle times

Open Access - Preliminary

Instruction Set

4-15ARM810 Data Sheet
ARM DDI 0081E

4.5.9 Assembler syntax
The data processing instructions have the following syntax:

One operand instructions

MOV, MVN

<opcode>{cond}{S} Rd,<Op2>

Instructions that do not produce a result

CMP, CMN, TEQ, TST

<opcode>{cond} Rn,<Op2>

Two operand instructions

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where:

{cond} is a two-character condition mnemonic. The assembler assumes AL
(ALways) if no condition is specified.

{S} if present, specifies that the CPSR flags will be affected (implied for
CMP, CMN, TEQ, TST).

Rd is an expression evaluating to a valid register number.

Rn is an expression evaluating to a valid register number.

<Op2> is Rm{,<shift>} or #<expression>, where <shift> is one of:

<shiftname> <register>

<shiftname> #<expression> ,
RRX (rotate right one bit with extend).

<shiftname> can be:
• ASL (ASL is a synonym for LSL)
• LSL
• LSR
• ASR
• ROR

If #<expression> is used, the assembler will attempt to generate a
rotated immediate 8-bit field to match the expression. If this proves
impossible, it will give an error.

If there is a choice of forms (for example as in #0, which can be
represented using 0 rotated by 0, 2, 4,...30) the assembler will use a
rotation by 0 wherever possible. This affects whether C will be
changed in a logical operation with the S bit set - see 4.5.3 Immediate
operand rotates on page 4-13. If the rotation is 0, then C won’t be
modified. If the rotation is non-zero, it will be set to the last rotated bit
as shown in Figure 4-9: Rotate right on page 4-12.

It is also possible to specify the 8-bit immediate and the rotation
amount explicitly, by writing <Op2> as:

#<immediate>,<rotate>

Open Access - Preliminary

Instruction Set

4-16 ARM810 Data Sheet
ARM DDI 0081E

where:

<immediate> is a number in the range 0-255

<rotate> is an even number in the range 0-30

4.5.10 Examples
ADDEQR2,R4,R5 ; if the Z flag is set make R2:=R4+R5

TEQSR4,#3 ; test R4 for equality with 3

; (the S is in fact redundant as the

; assembler inserts it automatically)

SUB R4,R5,R7,LSR R2 ; logical right shift R7 by the number in

; the bottom byte of R2, subtract result

; from R5, and put the answer into R4

MOV PC,R14 ; return from subroutine

MOVSPC,R14 ; return from exception and restore CPSR

; from SPSR_mode

MOVS R0,#1 ; R0 becomes 1; N and Z flags cleared;

; C and V flags unchanged

MOVS R0,#4,2 ; R0 becomes 1 (4 rotated right by 2);

; N, Z and C flags cleared, V flag unchanged

Open Access - Preliminary

Instruction Set

4-17ARM810 Data Sheet
ARM DDI 0081E

4.6 PSR Transfer (MRS, MSR)
A PSR Transfer instruction is only executed if the specified condition is true. The
various conditions are defined at the beginning of this chapter.

These instructions allow access to the CPSR and SPSR registers.

Figure 4-11: MSR (transfer register contents or immediate value to PSR) on page
4-18 and Figure 4-12: MRS (transfer PSR contents to a register) on page 4-19
show the encodings.

MRS allows the contents of the CPSR or SPSR_<mode> register to be moved to a
general register. MSR allows the contents of a general register or an immediate value
to be moved to the CPSR or SPSR_<mode> register, with the option of affecting any
subset of bytes in the register, including:

• the flag bits only
• the control bits only
• both the flag and control bits

4.6.1 MSR operands
A register operand is any general-purpose register except R15.

An immediate operand is constructed by taking the 8-bit immediate in the Imm field,
zero-extending it to 32 bits, and rotating it by twice the value in the Rotate field. This
enables many common constants to be generated, for example all powers of two.

4.6.2 Operand restrictions
In User mode, the control bits of the CPSR are protected so that only the condition
code flags can be changed. In other (privileged) modes, it is possible to alter the entire
CPSR.

The mode at the time of execution determines which of the SPSR registers is
accessible: for example, only SPSR_fiq can be accessed when the processor is in FIQ
mode.

R15 cannot be specified as the source or destination register.

Note Do not attempt to access an SPSR in User mode or System mode, since no such
register exists.

Open Access - Preliminary

Instruction Set

4-18 ARM810 Data Sheet
ARM DDI 0081E

4.6.3 Reserved bits
Only eleven bits of the PSR are defined in ARM810 (N, Z, C, V, I, F and M[4:0]).
The remaining bits (PSR[27:8,5]) are reserved for use in future versions of the
processor.

To ensure the maximum compatibility between ARM810 programs and future
processors, you should observe the following rules:

• Reserved bits must be preserved when changing the value in a PSR.
• Programs must not rely on specific values from reserved bits when checking

the PSR status, since in future processors they may read as one or zero.

A read-modify-write strategy should therefore be used when altering the control bits of
any PSR register. This involves using the MRS instruction to transfer the appropriate
PSR register to a general register, changing only the relevant bits, and then
transferring the modified value back to the PSR register using the MSR instruction.

The reserved flag bits (bits 27:24) are an exception to this rule; they may have any
values written to them. Any future use of these bits will be compatible with this.
In particular, there is no need to use the read-modify-write strategy on these bits.

 Figure 4-11: MSR (transfer register contents or immediate value to PSR)

Cond 0 0 I 0

011122124 22272831

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

Condition Field

1 Pd 1 0 Mask 1 1 1 1 Source operand

25 19 16 1523 2026

Immediate operand

 Rm0 0 0 00 0 0 0

 Rotate Imm

0 = Source operand is a register
011 4 3

Unsigned 8-bit immediate valueRotation applied to Imm

011 8 7
1 = Source operand is an immediate value

Destination bits to change
0001 = Control bits only
1000 = Flag bits only
1001 = Control and Flag bits

Other values reserved

Open Access - Preliminary

Instruction Set

4-19ARM810 Data Sheet
ARM DDI 0081E

 Figure 4-12: MRS (transfer PSR contents to a register)

For example, the following sequence performs a mode change:
MRS R0,CPSR ; take a copy of the CPSR

BIC R0,R0,#0x1F ; clear the mode bits

ORR R0,R0,#new_mode ; select new mode

MSR CPSR,R0 ; write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be
written directly to the flag bits without disturbing the control bits. The following example
sets the N, Z, C and V flags:

MSR CPSR_flg,#0xF0000000; set all the flags regardless of

; their previous state (does not

; affect any control bits)

You should not attempt to write an 8-bit immediate value into the whole PSR, since
such an operation cannot preserve the reserved bits.

4.6.4 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface for timing details of off-chip accesses.

The MRS instruction takes 1 cycle.

The MSR instruction takes 1 cycle when the flag variant is used, or the destination is
SPSR_<mode>. In all other cases, MSR takes 3 cycles.

Cond 0 0 0 0

0111215162123 22272831

Destination register

Source PSR
0 = CPSR
1 = SPSR_<current mode>

Condition Field

1 Ps Rd0 0 1 11 1 0 0 0 00 0 0 0 0 00 0

Open Access - Preliminary

Instruction Set

4-20 ARM810 Data Sheet
ARM DDI 0081E

4.6.5 Assembler syntax
The PSR transfer instructions have the following syntax:

Transfer PSR contents to a register

MRS{cond} Rd,<psr>

Transfer register contents to PSR

MSR{cond} <psr>_<fields>,Rm

Transfer immediate value to PSR

MSR{cond} <psr>_f,#<expression>

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

Rd and Rm are expressions evaluating to a register number other than
R15.

<psr> is CPSR or SPSR.

<fields> is one of:

_c to set the control field mask bit (bit 0)

_x to set the extension field mask bit (bit 1)

_s to set the status field mask bit (bit 2)

_f to set the flags field mask bit (bit 3)

#<expression> is used by the assembler to generate a shifted immediate 8-
bit field. If this impossible, the assembler gives an error.

Open Access - Preliminary

Instruction Set

4-21ARM810 Data Sheet
ARM DDI 0081E

4.6.6 Previous, deprecated MSR assembler syntax
This section describes the old assembler syntax for MSR instructions. These will still
work on ARM8, but should be replaced by the new syntax as described in section 4.6.5
Assembler syntax on page 4-20.

Transfer register contents to PSR

MSR{cond} <psrf>,Rm

Transfer immediate value to PSR

MSR{cond} <psrf>,#<expression>

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

Rd and Rm are expressions evaluating to a register number other than
R15.

<psrf> is one of CPSR, CPSR_all, CPSR_flg, CSPR_ctl,
SPSR, SPSR_all, SPSR_flg or SPSR_ctl.

#<expression> is used by the assembler to generate a shifted immediate
8-bit field. If this is impossible, the assembler gives an error.

4.6.7 Examples

User mode

In User mode, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA
; (i.e. set N,C; clear Z,V)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

Open Access - Preliminary

Instruction Set

4-22 ARM810 Data Sheet
ARM DDI 0081E

System mode

In system mode, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_ctl,Rm ; CPSR[7:0] <- Rm[7:0]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

Other privileged modes

In other privileged modes, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_ctl,Rm ; CPSR[7:0] <- Rm[7:0]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_ctl,Rm ; SPSR_<mode>[7:0] <- Rm[7:0]

MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC
; (i.e. set N,Z; clear C,V)

MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

Open Access - Preliminary

Instruction Set

4-23ARM810 Data Sheet
ARM DDI 0081E

4.7 Multiply and Multiply-Accumulate (MUL, MLA)
A multiply instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. Figure 4-13: Multiply
instructions shows the instruction encoding.

 Figure 4-13: Multiply instructions

The multiply and multiply-accumulate instructions perform integer multiplication,
optionally accumulating another integer to the product.

Multiply instruction

The multiply instruction (MUL) gives Rd:=Rm*Rs. Operand Rn is ignored, and the Rn
field should be set to zero for compatibility with possible future upgrades to the
instruction set.

Multiply-accumulate

Multiply-accumulate (MLA) gives Rd:=Rm*Rs+Rn. In some circumstances this can
save an explicit ADD instruction.

The result of a signed multiply of 32-bit operands differs from that of an unsigned
multiply of 32-bit operands only in the upper 32 bits - the low 32 bits of signed and
unsigned results are identical. Since MUL and MLA only produce the low 32 bits of a
multiply, they can be used for both signed and unsigned multiplies. Consider the
following:

Operand A Operand B Result

0xFFFFFFF6 0x00000014 0xFFFFFF38

Signed operands: When the operands are interpreted as signed, A has the value -10
and B has the value 20. The result is -200, which is correctly represented as
0xFFFFFF38.

Unsigned operands: When the operands are interpreted as unsigned, A has the
value 4294967286, B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, the least significant 32 bits of which are 0xFFFFFF38.
Again, the representation of the result is correct.

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

034781112151619202122272831

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field

Open Access - Preliminary

Instruction Set

4-24 ARM810 Data Sheet
ARM DDI 0081E

4.7.1 Operand restrictions
• The destination register (Rd) must not be the same as Rm.
• R15 must not be used as Rd, Rm, Rn or Rs.

4.7.2 CPSR flags
Setting the CPSR flags is optional, and is controlled by the S bit. If this is set:

N is made equal to bit 31 of the result.

Z is set if and only if the result is zero.

C is set to a meaningless value.

V is unaffected.

4.7.3 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface for timing details of off-chip accesses.

MUL and MLA take from 3 to 6 cycles to execute, depending upon the early
termination, as follows:

Basic cycle count 6 (including any accumulate)

Early termination -(0 to 3)

4.7.4 Assembler syntax
The multiply instructions have the following syntax:

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

{S} if present, specifies that the CPSR flags will be affected.

Rd,Rm,Rs,Rn are expressions evaluating to a register number other than
R15.

4.7.5 Examples
MUL R1,R2,R3 ; R1:=R2*R3

MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,

; setting condition codes

Open Access - Preliminary

Instruction Set

4-25ARM810 Data Sheet
ARM DDI 0081E

4.8 Multiply Long and Multiply-Accumulate Long (MULL, MLAL)
A multiply long instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. The instruction encoding is
shown in Figure 4-14: Multiply Long instructions .

 Figure 4-14: Multiply Long instructions

The multiply long instructions perform integer multiplication on two 32-bit operands
and produce 64-bit results. Signed and unsigned multiplication each with optional
accumulate give rise to four variations.

Multiply (UMULL and SMULL)

UMULL and SMULL take two 32-bit numbers and multiply them to produce a 64-bit
result of the form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64-bit result are
written to RdLo, the upper 32 bits of the result are written to RdHi.

Multiply-accumulate (UMLAL and SMLAL)

UMLAL and SMLAL take two 32-bit numbers, multiply them, and add a 64-bit number
to produce a 64-bit result of the form RdHi,RdLo := Rm * Rs + RdHi,RdLo. The lower
32 bits of the 64-bit number to add are read from RdLo. The upper 32 bits of the 64-bit
number to add are read from RdHi. The lower 32 bits of the 64-bit result are written to
RdLo, and the upper 32 bits of the 64-bit result are written to RdHi.

UMULL and UMLAL treat all of their operands as unsigned binary numbers, and write
an unsigned 64-bit result. The SMULL and SMLAL instructions treat all of their
operands as two’s-complement signed numbers and write a two’s-complement signed
64-bit result.

4.8.1 Operand restrictions
• R15 must not be used as an operand or as a destination register.
• RdHi, RdLo and Rm must all specify different registers.

Cond 0 0 0 0 1 U A S RdHi RdLo Rs 1 0 0 1 Rm

03478111215161920212223272831

Operand registers
Destination registers
Set condition code

Accumulate

Unsigned

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

0 = unsigned
1 = signed

Condition Field

Open Access - Preliminary

Instruction Set

4-26 ARM810 Data Sheet
ARM DDI 0081E

4.8.2 CPSR Flags
Setting the CPSR flags is optional, and is controlled by the S bit. If this is set:

N is made equal to bit 63 of the result

Z is set if and only if all 64 bits of the result are zero

C is set to a meaningless value

V is set to a meaningless value

4.8.3 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface for timing details of off-chip accesses.

MULL and MLAL take from 4 to 7 cycles to execute, depending upon the early
termination, as follows:

Basic cycle count 7 (including any accumulate)

Early termination -(0 to 3)

4.8.4 Assembler syntax
The multiply long instructions have the following syntax:

Unsigned Multiply Long (32 x 32 = 64)

UMULL{cond}{S} RdLo,RdHi,Rm,Rs

Unsigned Multiply and Accumulate Long (32 x 32 + 64 = 64)

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs

Signed Multiply Long (32x 32 = 64)

SMULL{cond}{S} RdLo,RdHi,Rm,Rs

Signed Multiply and Accumulate Long (32 x 32 + 64 = 64)

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs

where

{cond} is a two-character condition mnemonic. The
assembler assumes AL (ALways) if no condition is
specified.

{S} if present, specifies that the CPSR flags will be
affected.

RdLo,RdHi,Rm,Rs are expressions evaluating to a register number
other than R15.

Examples

UMULL R1,R4,R2,R3;; R4,R1:=R2*R3

UMLALS R1,R5,R2,R3;; R5,R1:=R2*R3+R5,R1, also ; ;
; setting condition codes

Open Access - Preliminary

Instruction Set

4-27ARM810 Data Sheet
ARM DDI 0081E

4.9 Single Data Transfer (LDR, STR)
A single data transfer instruction is only executed if the specified condition is true. The
various conditions are defined at the beginning of this chapter. Figure 4-15: Single
data transfer instructions shows the instruction encoding.

 Figure 4-15: Single data transfer instructions

Single data transfer instructions are used to load or store single bytes or words of data.
The memory address used in the transfer is calculated by adding or subtracting an
offset from a base register. If auto-indexing is required, the result may be written back
into the base register.

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value
Immediate offset

Immediate offset

Unsigned 12 bit immediate offset
1 = offset is a register

11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm

Open Access - Preliminary

Instruction Set

4-28 ARM810 Data Sheet
ARM DDI 0081E

4.9.1 Offsets and auto-indexing
The offset from the base may be either a 12-bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way).

The offset may be added to (U=1) or subtracted from (U=0) the base register Rn. The
offset modification may be performed either before (pre-indexed, P=1) or after (post-
indexed, P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
may be kept (W=0).

In the case of post-indexed addressing, the write-back bit is redundant, since the old
base value can be retained by setting the offset to zero. Therefore post-indexed data
transfers always write back the modified base. The only use of the W bit in a post-
indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user
address in a system where the memory management hardware makes suitable use of
this facility.

4.9.2 Shifted register offset
The 8 shift control bits are described in 4.5.2 Shifts on page 4-10. However,
register-specified shift amounts are not available in this instruction class.

4.9.3 Bytes and words
This instruction class may be used to transfer a byte (B=1) or a word (B=0) between
an ARM810 register and memory.

The action of LDR(B) and STRB instructions is influenced by the BIGEND control
signal. The two possible configurations are:

• Little-endian
• Big-endian

Little-endian configuration

Byte load (LDRB) expects the data on data bus inputs 7 through 0 if the
supplied address is on a word boundary, on data bus inputs
15 through 8 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. Please see Figure 3-1: Little-endian
addresses of bytes within words on page 3-3.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

Word load (LDR) Any non-word-aligned address will cause the data read to be
rotated into the register so that the addressed byte occupies
bits 0 to 7. This means that halfwords accessed at offsets 0
and 2 from the word boundary will be correctly loaded into
bits 0 through 15 of the register. Two shift operations are then
required to clear or to sign extend the upper 16 bits. This is
illustrated in Figure 4-16: Little-endian offset addressing
on page 4-29.

Open Access - Preliminary

Instruction Set

4-29ARM810 Data Sheet
ARM DDI 0081E

Note The LDRH and LDRSH insrtuctions provide a more efficient
way to load half-words on ARM810. This method of loading
half-words should therefore only be used if compatibility with
previous ARM processors is required. See 4.10 Halfword
and Signed Data Transfer on page 4-34 for further details.

Word store (STR) will normally generate a word-aligned address. The word
presented to the data bus is not affected if the address is non-
word-aligned, so bit 31 of the register being stored always
appears on data bus output 31.

 Figure 4-16: Little-endian offset addressing

Big-endian configuration

Byte load (LDRB) expects the data on data bus inputs 31 through 24 if the
supplied address is on a word boundary, on data bus inputs
23 through 16 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. Please see Figure 3-2: Big-endian
addresses of bytes within words on page 3-3.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

Word load (LDR) will normally generate a word-aligned address. An address
offset of 0 or 2 from a word boundary will cause the data to
be rotated into the register so that the addressed byte
occupies bits 31 through 24. This means that halfwords
accessed at these offsets will be correctly loaded into bits 16

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0
LDR from word-aligned address

A

B

C

D

24

16

8

0

C

D

A

B

24

16

8

0
LDR from address offset by 2

A+3

A+2

A+1

A

Open Access - Preliminary

Instruction Set

4-30 ARM810 Data Sheet
ARM DDI 0081E

through 31 of the register. A shift operation is then required to
move (and optionally sign extend) the data into the bottom 16
bits. An address offset of 1 or 3 from a word boundary will
cause the data to be rotated into the register so that the
addressed byte occupies bits 15 through 8.

Note The LDRH and LDRSH instructions provide a more efficient
way to load half-words on ARM810. This method of loading
half-words should therefore only be used if compatibility with
previous ARM processors is required. See 4.10 Halfword
and Signed Data Transfer on page 4-34 for details.

Word store (STR) will normally generate a word-aligned address. The word
presented to the data bus is not affected if the address is not
word-aligned, so that bit 31 of the register being stored
always appears on data bus output 31.

 Figure 4-17: Big-endian offset addressing

A

B

C

D

memory

A+3

A+2

A+1

A 24

16

8

0

A

B

C

D

register

24

16

8

0
LDR from word-aligned address

A

B

C

D

24

16

8

0

C

D

A

B

24

16

8

0
LDR from address offset by 2

A+3

A+2

A+1

A

Open Access - Preliminary

Instruction Set

4-31ARM810 Data Sheet
ARM DDI 0081E

4.9.4 Use of R15
Do not specify write-back if R15 is the base register (Rn). When using R15 as the base
register, it must be remembered that it contains an address 8 bytes on from the
address of the current instruction.

Do not specify post-indexing (forcing writeback) to Rn when Rn is R15.

Do not specify R15 as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored
value will be the address of the instruction plus 8. Note that this is different from
previous ARM processors, which stored the address of the register plus 12.

When R15 is the source register (Rd) of a register store (STR) instruction, or the
destination register (Rd) of a register load (LDR) instruction, the byte form of the
instruction (LDRB or STRB) must not be used, and the address must be word-aligned.

Note Bits [1:0] of R15 are set to zero when read from, and are ignored when written to.

4.9.5 Restrictions on the use of the base register
In the following example, it may sometimes be impossible to calculate the initial value
of R0 after an abort in order to restart the instruction:

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should
not be used.

When an LDR instruction specifies (or implies) base writeback, register positions Rd
and Rn should not be the same register.

4.9.6 Data aborts
Please refer to 3.6.3 Aborts on page 3-9 for details of aborts in general.

In some situations a transfer to or from an address may cause a memory management
system to generate an abort.

For example, in a system which uses virtual memory, the required data may be absent
from main memory. The memory manager can signal a problem by signalling a Data
Abort to the processor, whereupon the Data Abort trap will be taken. It is up to the
system software to resolve the cause of the problem, after which the instruction can
be restarted and the original program continued.

In all cases, the base register is restored to its original value before the Abort trap is
taken. In the case of an LDR or LDRB, the destination register (Rd) will not have been
altered.

Open Access - Preliminary

Instruction Set

4-32 ARM810 Data Sheet
ARM DDI 0081E

4.9.7 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface for timing details of off-chip accesses.

LDR instructions take 1 cycle:

• +1 cycle if there is a register offset with a shift other than LSL #0, LSL #1, LSL
#2 or LSL #3

• +4 cycles for loading the PC

STR instructions take 1 cycle:

• +1 cycle if there is a register offset (regardless of shift type)

4.9.8 Assembler syntax
The single data transfer instructions have the following syntax:

<LDR|STR>{cond}{B}{T} Rd,<Addr>

where:

LDR loads from memory into a register.

STR stores from a register into memory.

{cond} is a two-character condition mnemonic. If omitted, the assembler
assumes ALways.

{B} if present, specifies byte transfer. If omitted, word transfer is used.

{T} if present, sets the W bit in a post-indexed instruction, forcing non-
privileged mode for the transfer cycle. T is not allowed when a pre-
indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Addr> is one of:

An <expression> specifying an address:

The assembler will attempt to address this location by generating an
instruction that uses the PC as a base, along with a corrected
immediate offset. This will be a PC relative, pre-indexed address.
If the address is out of range, an error is generated.

Open Access - Preliminary

Instruction Set

4-33ARM810 Data Sheet
ARM DDI 0081E

A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,#<expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index

register, shifted by <shift>

A post-indexed addressing specification:
[Rn],#<expression> offset of <expression> bytes
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index

register, shifted by <shift> .

Rn and Rm are expressions evaluating to a register number. If Rn is R15, neither
post-indexed addressing nor {!} should be specified.

<shift> is one of:

<shiftname> #expression

RRX (rotate right one bit with extend)
<shiftname> is ASL, LSL, LSR, ASR or ROR

(ASL is a synonym for LSL)

{!} if present, sets the W bit so that the base register is written back.

4.9.9 Examples
STR R1,[R2,R4]! ; store R1 at R2+R4 (both are registers)

; and write back address to R2

STR R1,[R2],R4 ; store R1 at R2. Write back R2+R4 to R2

LDR R1,[R2,#16] ; load R1 from contents of R2+16.
; Don't write back

LDR R1,[R2,R3,LSL#2]; load R1 from contents of R2+R3*4

LDREQB R1,[R6,#5] ; conditionally load byte at R6+5 into R1
; bits 0 - 7, filling bits 8 - 31 with 0s

STR R1,PLACE ; assembler generates PC relative
; offset to address PLACE

•
•

PLACE

Open Access - Preliminary

Instruction Set

4-34 ARM810 Data Sheet
ARM DDI 0081E

4.10 Halfword and Signed Data Transfer

(LDRH/STRH/LDRSB/LDRSH)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in
Figure 4-18: Halfword and signed data transfer with register offset and
Figure 4-19: Halfword and signed data transfer with immediate offset .

These instructions are used to load or store halfwords of data and also load
sign-extended bytes or halfwords of data. The memory address used in the transfer is
calculated by adding an offset to or subtracting an offset from a base register. The
result of this calculation may be written back into the base register if auto-indexing is
required.

 Figure 4-18: Halfword and signed data transfer with register offset

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 Rm

034781112151619202122272831

Offset register

Base register

S H

Source/Destination register

00 = SWP or mutiply instruction
01 = Unsigned halfword

0 = store to memory
1 = load from memory

Load/Store

1 S H 1

10 = Signed byte
11 = Signed halfword

0 = no write-back
1 = write address into base

Write-back

0 = down: subtract offset from
base

Up/Down

1 = up: add offset to base

0 = post: add/subtract offset
Pre/Post indexing

after transfer
1 = pre: add/subtract offset

before transfer

Condition field

232425 56

Open Access - Preliminary

Instruction Set

4-35ARM810 Data Sheet
ARM DDI 0081E

 Figure 4-19: Halfword and signed data transfer with immediate offset

4.10.1 Offsets and auto-indexing
The offset from the base may be either an 8-bit unsigned binary immediate value in
the instruction, or a second register. In the case of an immediate value, bits 11:8 (xxxx)
and bits 3:0 (yyyy) combine to form the offset (xxxxyyyy). The offset may be added to
(U=1) or subtracted from (U=0) the base register Rn. The offset modification may be
performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the base
register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base may be
kept (W=0). In the case of post-indexed addressing, the write back bit is redundant and
is always set to zero, since the old base value can be retained if necessary by setting
the offset to zero. Therefore post-indexed data transfers always write back the
modified base.

The Write-back bit must not be set high (W=1) when post-indexed addressing is
selected.

Cond 0 0 0 P U 1 W L Rn Rd Offset

034781112151619202122272831

Base register

S H

Source/Destination

00 = SWP or multiply instruction
01 = Unsigned halfword

0 = store to memory
1 = load from memory

Load/Store

1 S H 1

10 = Signed byte
11 = Signed halfword

register

0 = no write-back
1 = write address into base

Write-back

0 = down: subtract offset from
base

Up/Down

1 = up: add offset to base

0 = post: add/subtract offset
Pre/Post indexing

after transfer
1 = pre: add/subtract offset

before transfer

Condition field

232425 56

 Offset

Immediate Offset

Open Access - Preliminary

Instruction Set

4-36 ARM810 Data Sheet
ARM DDI 0081E

4.10.2 Halfword load and stores
Setting S=0 and H=1 may be used to transfer unsigned halfwords between a register
and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the section below.

4.10.3 Signed byte and halfword loads
The S bit controls the loading of sign-extended data. When S=1 the H bit selects
between bytes (H=0) and halfwords (H=1). The L bit should not be set LOW (Store)
when signed (S=1) operations have been selected.

The LDRSB instruction loads the selected byte into bits 7 to 0 of the destination
register and bits 31 to 8 of the destination register are set to the value of bit 7, the sign
bit.

The LDRSH instruction loads the selected halfword into bits 15 to 0 of the destination
register and bits 31 to 16 of the destination register are set to the value of bit 15, the
sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the following section.

4.10.4 Endianness and byte/halfword selection

Little-endian configuration

Signed byte load (LDRSB): This load expects data on data bus inputs 7 through to 0 if
the supplied address is on a word boundary, on data bus inputs 15 through to 8 if it is
a word address plus one byte, and so on. The selected byte is placed in the bottom
8 bits of the destination register, and the remaining bits of the register are filled with
the sign bit, the most significant bit of the byte. Please see Figure 3-1: Little-endian
addresses of bytes within words on page 3-3.

Halfword load (LDRSH or LDRH): This load expects data on data bus inputs 15 through
to 0 if the supplied address is on a word boundary and on data bus inputs 31 through
to 16 if it is on an odd halfword boundary, (A[1]=1).The supplied address should always
be on a halfword boundary. If bit 0 of the supplied address is HIGH, an unpredictable
value will be loaded. The selected halfword is placed in the bottom 16 bits of the
destination register. For unsigned halfwords (LDRH), the top 16 bits of the register are
filled with zeros and for signed halfwords (LDRSH) the top 16 bits are filled with the
sign bit, the most significant bit of the halfword.

Halfword store (STRH): This store repeats the bottom 16 bits of the source register
twice across the data bus outputs 31 through to 0. The external memory system
should activate the appropriate halfword subsystem to store the data.

Note The address must be halfword aligned; if bit 0 of the address is HIGH this causes
unpredictable behaviour.

Big-endian configuration

Signed byte load (LDRSB): This load (LDRSB) expects data on data bus inputs 31
through to 24 if the supplied address is on a word boundary, on data bus inputs 23
through to 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the
register are filled with the sign bit, the most significant bit of the byte. Please see
Figure 3-2: Big-endian addresses of bytes within words on page 3-3.

Open Access - Preliminary

Instruction Set

4-37ARM810 Data Sheet
ARM DDI 0081E

Halfword load (LDRSH or LDRH): This load expects data on data bus inputs 31 through
to 16 if the supplied address is on a word boundary and on data bus inputs 15 through
to 0 if it is on an odd halfword boundary, (A[1]=1). The supplied address should always
be on a halfword boundary. If bit 0 of the supplied address is HIGH, an unpredictable
value is loaded. The selected halfword is placed in the bottom 16 bits of the destination
register. For unsigned halfwords (LDRH), the top 16 bits of the register are filled with
zeros and for signed halfwords (LDRSH) the top 16 bits are filled with the sign bit, the
most significant bit of the halfword.

Halfword store (STRH): This store repeats the bottom 16 bits of the source register
twice across the data bus outputs 31 through to 0. The external memory system
should activate the appropriate halfword subsystem to store the data. Note that the
address must be halfword aligned, if bit 0 of the address is HIGH this will cause
unpredictable behaviour.

4.10.5 Use of R15
Do not specify R15 as:

• the register offset (Rm)
• the destination register (Rd) of a load instruction (LDRH, LDRSH, LDRSB)
• the source register (Rd) of a store instruction (STRH, STRSH, STRSB)

Base register

Do not specify either write-back or post-indexing (which forces write-back) if R15 is
specified as the base register (Rn). When using R15 as the base register you must
remember that it contains an address 8 bytes on from the address of the current
instruction.

4.10.6 Restrictions on the use of the base register
Do not specify post-indexed loads and stores where Rm and Rn are the same register,
as they can be impossible to unwind after an abort.

Do not set register positions Rd and Rn to be the same register when a load instruction
specifies (or implies) base write-back.

Open Access - Preliminary

Instruction Set

4-38 ARM810 Data Sheet
ARM DDI 0081E

4.10.7 Data aborts
Please refer to 3.6.3 Aborts on page 3-9 for details of aborts in general.

In some situations a transfer to or from an address may cause a memory management
system to generate an abort.

For example, in a system which uses virtual memory, the required data may be absent
from main memory. The memory manager can signal a problem by signalling a Data
Abort to the processor, whereupon the Data Abort trap will be taken. It is up to the
system software to resolve the cause of the problem, after which the instruction can
be restarted and the original program continued.

In all cases, the base register is restored to its original value before the Abort trap is
taken. In the case of an LDRH, LDRSB or LDRSH, the destination register (Rd) will
not have been altered.

4.10.8 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface for timing details of off-chip accesses.

The cycle times are the same as LDR/STR for all cases of (H, SH, SB).

Load instructions take 1 cycle.

Store instructions take 1 cycle.

4.10.9 Assembler syntax
<LDR|STR>{cond}<H|SH|SB> Rd,<Addr>

LDR load from memory into a register

STR Store from a register into memory

{cond} two-character condition mnemonic. See 4.3 The Condition Field on
page 4-3

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd is an expression evaluating to a valid register number.

<Addr> is one of:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using
the PC as a base and an immediate offset to address the
location given by evaluating the expression. This will be a
PC-relative, pre-indexed address. If the address is out of
range, this generates an error.

2 A pre-indexed addressing specification:

[Rn] offset of zero

Open Access - Preliminary

Instruction Set

4-39ARM810 Data Sheet
ARM DDI 0081E

[Rn,<#expression>]{!} offset of <expression>
bytes

[Rn,{+/-}Rm]{!} offset of +/- contents of
index register

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression>
bytes

[Rn],{+/-}Rm offset of +/- contents of
index register.

Rn and Rm are expressions evaluating to a register number. If Rn is R15, neither
post-indexed addressing nor {!} should be specified.

{!} writes back the base register (sets the W bit) if ! is present.

4.10.10 Examples
LDRH R1,[R2,-R3]! ; Load R1 from the contents of the

; halfword address contained in

; R2-R3 (both of which are registers)

; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14

; Don't write back

LDRSB R8,[R2],#-223 ; Load R8 with the sign extended

; contents of the byte address

; contained in R2 and write back R2-223

; to R2

LDRNESH R11,[R0] ; Conditionally load R11 with the sign

; extended contents of the halfword

; address contained in R0.

HERESTRH R5,[(PC, # (FRED-HERE-8)]

. ; Generate PC relative offset to

. ; address FRED. Store the halfword

. ; in R5 at address FRED

.

.

FRED

Open Access - Preliminary

Instruction Set

4-40 ARM810 Data Sheet
ARM DDI 0081E

4.11 Block Data Transfer (LDM, STM)
A block data transfer instruction is only executed if the specified condition is true. The
various conditions are defined at the beginning of this chapter. Figure 4-20: Block
data transfer instructions shows the instruction encoding.

 Figure 4-20: Block data transfer instructions

Block data transfer instructions are used to load (LDM) or store (STM) any subset of
the currently visible registers. They support all possible stacking modes, maintaining
full or empty stacks which can grow up or down memory, and are very efficient
instructions for saving or restoring context, or for moving large blocks of data around
main memory.

4.11.1 The register list
The instruction can cause the transfer of any registers in the current bank (and non-
user mode programs can also transfer to and from the user bank, see below). The
register list is a 16-bit field in the instruction, with each bit corresponding to a register.
A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction
is that the register list must not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 8. Note that this is different from previous ARMs which stored the
address of the instruction plus 12 (or 8 if R15 is the only register in the list.)

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode
1 = load PSR or force user mode

Condition field

Open Access - Preliminary

Instruction Set

4-41ARM810 Data Sheet
ARM DDI 0081E

4.11.2 Addressing modes
The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are stored such that the lowest
register is always at the lowermost address in memory, the highest numbered register
is always at the uppermost address, and the others are stored in numerical order
between them.

The register transfers will occur in ascending order. By way of illustration, consider the
transfer of R1, R5 and R7 in the case where Rn=0x1000 and write-back of the modified
base is required (W=1). The figures beginning on page 4-42 show the sequence of
register transfers, the addresses used, and the value of Rn after the instruction has
completed.

In all cases, if write-back of the modified base was not required (W=0), Rn would have
retained its initial value of 0x1000 unless it was also in the transfer list of a load multiple
register instruction, when it would have been overwritten with the loaded value.

4.11.3 Address alignment
The address should normally be a word-aligned quantity. Non-word-aligned addresses
do not affect the instruction: no data rotation occurs (as would happen in LDR.)
However, the bottom 2 bits of the address will appear on A[1:0] and might be
interpreted by the memory system.

4.11.4 Use of the S bit
When the S bit is set in a LDM/STM instruction, its meaning depends on whether R15
is in the transfer list and also on the type of instruction. The S bit should only be set if
the instruction is to execute in a privileged mode other than System mode.

LDM with R15 in transfer list and S bit set (Mode changes)

If the instruction is an LDM, then SPSR_<mode> is transferred to CPSR at the same
time as R15 is loaded.

STM with S bit set (User bank transfer)

The registers to be transferred are taken from the User bank rather than the bank
corresponding to the current mode. This is useful for saving the user state on process
switches. Base write-back must not be used when this mechanism is employed.

LDM with R15 not in transfer list and S bit set (User bank transfer)

The user bank registers are loaded, rather than those in the bank corresponding to the
current mode. This is useful for restoring the user state on process switches. Do not
use base write-back when this mechanism is employed. Also, take care not to read
from a banked register during the following cycle. (Inserting a NOP after the LDM will
ensure safety.)

4.11.5 Use of R15
R15 must not be used as the base register in any LDM or STM instruction.

Note Bits [1:0] of R15 are set to zero when read from, and are ignored when written to.

Open Access - Preliminary

Instruction Set

4-42 ARM810 Data Sheet
ARM DDI 0081E

4.11.6 Inclusion of the base in the register list
When write-back is specified during an STM, if the base register is the lowest
numbered register in the list, then the original base value is stored. Otherwise the
value stored is not specified and should not be used.

4.11.7 Data aborts
Please refer to 3.6.3 Aborts on page 3-9 for details of Aborts in general.

When a Data Abort occurs during LDM or STM instructions, further register transfers
are stopped. The base register is always restored to its original value (before the
instruction had executed) regardless of whether writeback was specified or not. As
such, the instruction can always be restarted without any need to adjust the value of
the base register in the Data Abort service routine code.

 Figure 4-21: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Open Access - Preliminary

Instruction Set

4-43ARM810 Data Sheet
ARM DDI 0081E

 Figure 4-22: Pre-increment addressing

 Figure 4-23: Post-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Open Access - Preliminary

Instruction Set

4-44 ARM810 Data Sheet
ARM DDI 0081E

 Figure 4-24: Pre-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Open Access - Preliminary

Instruction Set

4-45ARM810 Data Sheet
ARM DDI 0081E

4.11.8 Instruction cycle times
Note that the cycle times given here are given for the ARM8 processor core, and do
not give any information about the additional cycles that may be taken as a result of
Cache Misses, MMU Page table walks etc.

Please refer to Chapter 12, Bus Interface for timing details of off-chip accesses.

The cycle count for LDM instructions depends on the number of ordinary registers
being loaded (excluding R15), and whether R15 is being loaded.

 The following table shows the basic cycle count for LDM.

The above assumes that the memory system supports double-bandwidth transfer.
If this is not so, then count N cycles for the number of registers being transferred, plus
5 cycles if R15 is loaded, with a minimum of two cycles overall.

A common example of where this might happen in a cached memory system would be
when uncacheable memory is being accessed.

Additional cycles may be incurred if the memory system indicates that it is only able to
transfer one item of data where two were requested. For example, when accessing the
last word in a cache line in a cached memory system.

Number of Ordinary
Registers transferred

Cycles when PC (R15)
is not in register list

Cycles when PC (R15)
is in register list

0 - 5

1 2 6

2 2 6

3 3 7

4 3 7

5 4 8

6 4 8

7 5 9

8 5 9

9 6 10

10 6 10

11 7 11

12 7 11

13 8 12

14 8 12

15 9 13

 Table 4-3: Basic cycle count for LDM

Open Access - Preliminary

Instruction Set

4-46 ARM810 Data Sheet
ARM DDI 0081E

The following table shows the cycle counts for STM instructions.

Note PC is stored as the address of the current instruction plus 8.

Number of Ordinary
Registers transferred

Cycles when PC (R15)
is not in register list

Cycles when PC (R15)
is in register list

0 - 2

1 2 2

2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 8

8 8 9

9 9 10

10 10 11

11 11 12

12 12 13

13 13 14

14 14 15

15 15 16

 Table 4-4: Basic cycle count for STM

Open Access - Preliminary

Instruction Set

4-47ARM810 Data Sheet
ARM DDI 0081E

4.11.9 Assembler syntax
The block data transfer instructions have the following syntax:

<LDM|STM>{cond}<addressmode> Rn{!},<Rlist>{^}

where:

LDM loads from memory to registers.

STM stores from registers to memory.

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

<addressmode > is one of <FD|ED|FA|EA|IA|IB|DA|DB>.
Note that <addressmode > is not optional.
(See Table 4-5: Addressing Mode names on page 4-47)

Rn is an expression evaluating to a register number.

<Rlist> is a list of registers and register ranges enclosed in {} (eg
{R0,R2-R7,R10}).

{!} if present, requests write-back (W=1), otherwise W=0.

{^} if present, sets the S bit. See 4.11.4 Use of the S bit on page
4-41.

Addressing mode names

There are different assembler mnemonics for each of the addressing modes,
depending on whether the instruction is being used to support stacks or for other
purposes. These are shown in Table 4-5: Addressing Mode names on page 4-47.
Key to table:

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form
of stack required.

F Full stack (a pre-index has to be done before storing to the stack)

E Empty stack

A Ascending stack (a STM will go up and LDM down)

D Descending stack (a STM will go down and LDM up)

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks:

IA Increment After

IB Increment Before

DA Decrement After

DB Decrement Before

Name Stack Other L bit P bit U bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

 Table 4-5: Addressing Mode names

Open Access - Preliminary

Instruction Set

4-48 ARM810 Data Sheet
ARM DDI 0081E

4.11.10 Examples
LDMFDSP!,{R0,R1,R2} ; unstack 3 registers

STMIAR0,{R0-R15} ; save all registers

LDMFDSP!,{R15} ; unstack R15,CPSR unchanged

LDMFDSP!,{R15}^ ; unstack R15, CPSR <- SPSR_mode

; (allowed only in privileged modes)

STMFDR13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMEDSP!,{R0-R3,R14}; save R0 to R3 to use as workspace

; and R14 for returning

BL somewhere ; this nested call will overwrite R14

LDMEDSP!,{R0-R3,R15}; restore workspace and return

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

Name Stack Other L bit P bit U bit

 Table 4-5: Addressing Mode names

Open Access - Preliminary

Instruction Set

4-49ARM810 Data Sheet
ARM DDI 0081E

4.12 Single Data Swap (SWP)
A data swap instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. Figure 4-25: Swap instruction
shows the instruction encoding.

 Figure 4-25: Swap instruction

The data swap instruction is used to swap a byte or word quantity between a register
and external memory. It is implemented as a memory read followed by a memory write
which are “locked” together. The processor cannot be interrupted until both operations
have completed, and the memory manager is warned to treat them as inseparable.

This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. It then writes the contents of
the source register (Rm) to the swap address, and stores the old memory contents in
the destination register (Rd). The same register may be specified as both the source
and destination.

Both the read and the write operations result in external accesses to main memory
regardless of whether the cache hits or misses. In the case of a cache hit during the
write operation, the cache line is updated with the new value and is not marked as dirty.

Swap Read operation:

This performs a single word or byte read that always goes to the external bus, leaving
the bus locked for the subsequent write.

Swap Write operation:

This performs a single word or byte write that always goes to the external bus as an
unbuffered write. If the write is a cache hit, the cache data is updated and the dirty bit
is left unchanged.

The LOCK signal on the external interface is used to signal to the external memory
manager that the read and write operations of the swap are locked together and should
be allowed to complete without interruption; see Chapter 12, Bus Interface for further

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register
Source register

Base register
Byte/Word bit

0 = swap word quantity
1 = swap byte quantity

Open Access - Preliminary

Instruction Set

4-50 ARM810 Data Sheet
ARM DDI 0081E

details. This operation is important in multi-processor systems, where the swap
instruction is the only indivisible operation which may be used to implement
semaphores.

4.12.1 Bytes and words
This instruction class may be used to swap a byte (B=1) or a word (B=0) between an
ARM810 register and memory. The SWP instruction is implemented as a LDR followed
by a STR and the action of these is as described in 4.9 Single Data Transfer (LDR,
STR) on page 4-27. In particular, the description of big and little-endian configuration
applies to the SWP instruction. Note that there is no halfword SWP.

4.12.2 Use of R15
R15 must not be used as an operand (Rd, Rn or Rm) in a SWP instruction.

4.12.3 Data aborts
Please refer to 3.6.3 Aborts on page 3-9 for details of Aborts in general.

In some situations, a transfer to or from an address may cause the memory
management system to generate an Abort.

If the read operation is aborted, the abort will be returned to ARM8, the write will not
take place and the locked indication will be removed from the external bus.

If the read operation succeeds and the write operation is aborted, the abort will be
returned to ARM8 and the cache entry will be left with the updated (written) data value.
The line will not be invalidated in the cache—this could be done by the abort handler
if necessary.

4.12.4 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface for timing details of off-chip accesses.

SWP instructions take 2 cycles.

Open Access - Preliminary

Instruction Set

4-51ARM810 Data Sheet
ARM DDI 0081E

4.12.5 Assembler syntax
The SWP instruction has the following syntax:

<SWP>{cond}{B} Rd,Rm,[Rn]

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

{B} specifies byte transfer. If omitted, word transfer is used.

Rd,Rm,Rn are expressions evaluating to valid register numbers.

4.12.6 Examples
SWP R0,R1,[R2] ; load R0 with the word addressed by R2,

; and store R1 at R2

SWPBR2,R3,[R4] ; load R2 with the byte addressed by R4,

; and store bits 0 to 7 of R3 at R4

SWPEQR0,R0,[R1] ; conditionally swap the contents of the

; word addressed by R1 with R0

Open Access - Preliminary

Instruction Set

4-52 ARM810 Data Sheet
ARM DDI 0081E

4.13 Software Interrupt (SWI)
A SWI instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. Figure 4-26: Software
interrupt instruction shows the instruction encoding.

 Figure 4-26: Software interrupt instruction

The software interrupt is used to enter Supervisor mode in a controlled manner. It
causes the software interrupt trap to be taken, which effects the mode change. The PC
is then forced to the SWI vector and the CPSR is saved in SPSR_svc. See 3.6.4
Software interrupt on page 3-10 for more details.

If the SWI vector address is suitably protected (by external memory management
hardware) from modification by the user, a fully protected operating system may be
constructed.

4.13.1 Return from the supervisor
The PC is saved in R14_svc and the CPSR in SPSR_svc upon entering the software
interrupt trap, with the PC adjusted to point to the word after the SWI instruction. MOVS
PC,R14_svc will return to the calling program and restore the CPSR.

The link mechanism is not re-entrant, so if the supervisor code wishes to use software
interrupts within itself, it must first save a copy of the return address and SPSR.

4.13.2 Comment field
The bottom 24 bits of the instruction are ignored by the processor, and may be used
to communicate information to the supervisor code. For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions. This is commonly referred to as the “SWI
number”.

Cond

272831

Condition field

1 1 1 1

2324 0

The “SWI number” comment field (ignored by processor)

Open Access - Preliminary

Instruction Set

4-53ARM810 Data Sheet
ARM DDI 0081E

4.13.3 Architecturally defined SWIs
The ARM Architecture V4 reserves SWI numbers 0xF00000 to 0xFFFFFF inclusive for
current and future Architecturally Defined SWI functions. These SWI numbers should
not be used for functions other than those defined by ARM. Please see 4.17 The
Instruction Memory Barrier (IMB) Instruction on page 4-64 for examples of two
such definitions.

Architecturally defined SWI functions are used to provide a well-defined interface
between code which is:

• independent of the ARM processor implementation on which it is running, and
• specific to the ARM processor implementation on which it is running.

The implementation-independent code is provided with a function that is available on
all processor implementations via the SWI interface, and which may be accessed by
privileged and, where appropriate, non-priviledged (User mode) code.

The Architecturally defined SWI instructions must be implemented in the SWI handler
using processor specific code sequences supplied by ARM. Please refer to Appendix
E, Implementing the Instruction Memory Barrier Instruction for details.

4.13.4 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface for timing details of off-chip accesses

SWI instructions take 4 cycles to execute.

4.13.5 Assembler syntax
The SWI instruction has the following syntax:

SWI{cond} <expression>

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

<expression> is evaluated and placed in the comment field (which is
ignored by ARM810).

4.13.6 Examples
SWI ReadC ; get next character from read stream

SWI WriteI+”k” ; output a ”k” to the write stream

SWINE0 ; conditionally call supervisor

; with 0 in comment field

The above examples assume that suitable supervisor code exists at the SWI vector
address, for instance:

B Supervisor ; SWI entry point

.

.

EntryTable ; addresses of supervisor routines

Open Access - Preliminary

Instruction Set

4-54 ARM810 Data Sheet
ARM DDI 0081E

DCD ZeroRtn

DCD ReadCRtn

DCD WriteIRtn

.

.

Zero EQU 0

ReadC EQU 256

WriteI EQU 512

Supervisor

; SWI has routine required in bits 8-23 and data (if any)
; in bits 0-7.

; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; save work registers and
; return address

LDR R0,[R14,#-4] ; get SWI instruction

BIC R0,R0,#0xFF000000; clear top 8 bits

MOV R1,R0,LSR#8 ; get routine offset

ADR R2,EntryTable ; get entry table start address

LDR R15,[R2,R1,LSL#2]; branch to appropriate routine

WriteIRtn ; enter with character in
; R0 bits 0-7

.

.

LDMFD R13,{R0-R2,R15}^; restore workspace and return

; restoring processor mode
; and flags

Note ADR is a directive that instructs the assembler to use an ADD or SUB instruction to
create the address of a label, so in the above instance

ADR R2,EntryTable

is equivalent to
SUB R2,R15,#{PC}+8-EntryTable

Open Access - Preliminary

Instruction Set

4-55ARM810 Data Sheet
ARM DDI 0081E

4.14 Coprocessor Data Operations (CDP)
ARM810 will bounce all CDP instructions , forcing them to take the Undefined
Instruction trap. The coprocessor instruction may then be emulated.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in
Figure 4-27: Coprocessor data operation instruction .

This class of instruction is used to tell a coprocessor to perform some internal
operation. No result is communicated back to the ARM810, and it may not wait for the
operation to complete. The coprocessor could contain a queue of such instructions
awaiting execution, and their execution can overlap other activity, allowing the
coprocessor and the ARM810 to perform independent tasks in parallel.

 Figure 4-27: Coprocessor data operation instruction

4.14.1 The coprocessor fields
Only bit 4 and bits 24 to 31 are significant to the processor. The remaining bits are
used by coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor must ignore any instruction which does not contain
its number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Opc field (and possibly in the CP field) on the
contents of CRn and CRm, and place the result in CRd.

4.14.2 Instruction cycle times
All CDP instructions must be emulated in software: the number of cycles taken will
depend on the coprocessor support software.

4.14.3 Assembler syntax
CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number

Condition field

Coprocessor information
Coprocessor operand register

Coprocessor destination register
Coprocessor operand register
Coprocessor operation code

Open Access - Preliminary

Instruction Set

4-56 ARM810 Data Sheet
ARM DDI 0081E

where:

{cond} two character condition mnemonic, see Figure 4-2:
Condition codes on page 4-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd, CRn
and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

4.14.4 Examples
CDP p1,10,c1,c2,c3; request coproc 1 to do operation 10

; on CR2 and CR3, and put the result in

; CR1

CDPEQp2,5,c1,c2,c3,2; if Z flag is set request coproc 2 to

; do operation 5 (type 2) on CR2 and

; CR3, and put the result in CR1

Open Access - Preliminary

Instruction Set

4-57ARM810 Data Sheet
ARM DDI 0081E

4.15 Coprocessor Data Transfers (LDC, STC)
ARM810 will bounce all LDC and STC instructions, forcing them to take the Undefined
Instruction trap. The coprocessor instruction may then be emulated.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
4-29: Coprocessor register transfer instructions .

This class of instruction is used to load (LDC) or store (STC) a subset of a
coprocessors’s registers directly to memory. The processor is responsible for
supplying the memory address, and the coprocessor supplies or accepts the data and
controls the number of words transferred.

 Figure 4-28: Coprocessor data transfer instructions

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number
Unsigned 8 bit immediate offset

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Coprocessor source/destination register

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field
1 = pre; add offset before transfer

Open Access - Preliminary

Instruction Set

4-58 ARM810 Data Sheet
ARM DDI 0081E

4.15.1 The coprocessor fields
The CP# field is used to identify the coprocessor which is required to supply or accept
the data, and a coprocessor will only respond if its number matches the contents of
this field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is the
register to be transferred (or the first register where more than one is to be transferred),
and the N bit is used to choose one of two transfer length options. For instance N=0
could select the transfer of a single register, and N=1 could select the transfer of all the
registers for context switching.

4.15.2 Addressing modes
The processor is responsible for providing the address used by the memory system
for the transfer, and the addressing modes available are a subset of those used in
single data transfer instructions. Note, however, that for coprocessor data transfers the
immediate offsets are 8 bits wide and specify word offsets, whereas for single data
transfers they are 12 bits wide and specify byte offsets.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or
subtracted from (U=0) the base register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer address. The modified
base value may be overwritten back into the base register (if W=1), or the old value of
the base may be preserved (W=0). Note that post-indexed addressing modes require
explicit setting of the W bit, unlike LDR and STR which always write-back when post-
indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is
used as the address for the transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one word (4 bytes) higher than
the first transfer, and the address will be incremented by one word for each subsequent
transfer. Instructions where P=0 and W=0 are reserved, and must not be used.

4.15.3 Address alignment
The base address should normally be a word aligned quantity. The bottom 2 bits of the
address will appear on A[1:0] and might be interpreted by the memory system.

4.15.4 Use of R15
If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base
write-back to R15 shall not be specified.

4.15.5 Data aborts
If the address is legal but the memory manager generates an abort, the data abort trap
is taken. The base register is restored to its original value, and all other processor state
are preserved. Any coprocessor emulation is partly responsible for ensuring that the
data transfer can restart after the cause of the abort is resolved, and must ensure that
any subsequent actions it undertakes can be repeated when the instruction is retried.

4.15.6 Instruction cycle times
All LDC and STC instructions must be emulated in software: the number of cycles
taken will depend on the coprocessor support software.

Open Access - Preliminary

Instruction Set

4-59ARM810 Data Sheet
ARM DDI 0081E

4.15.7 Assembler syntax
<LDC|STC>{cond}{L} p#,cd,<Addr>

where:

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present, perform long transfer (N=1), otherwise perform short
transfer (N=0)

{cond} two character condition mnemonic. See Figure 4-2: Condition
codes on page 4-3.

p# the unique number of the required coprocessor

cd expression evaluating to a valid coprocessor register number that is
placed in the CRd field

<Addr> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the
PC as a base and a corrected immediate offset to address the
location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an
error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

Open Access - Preliminary

Instruction Set

4-60 ARM810 Data Sheet
ARM DDI 0081E

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

{!} write back the base register (set
the W bit) if ! is present

Rn expression evaluating to a valid
ARM810 register number

4.15.8 Examples
LDC p1,c2,table ; load c2 of coproc 1 from address

; table, using a PC relative address.
STCEQL p2,c3,[R5,#24]! ; conditionally store c3 of coproc 2

; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to
; store multiple words)

Note Though the address offset is expressed in bytes, the instruction offset field is in words.
The assembler will adjust the offset appropriately.

Open Access - Preliminary

Instruction Set

4-61ARM810 Data Sheet
ARM DDI 0081E

4.16 Coprocessor Register Transfers (MRC, MCR)
ARM810 has only one internal coprocessor; CP15, the system control coprocessor.
The MRC and MCR instructions are used to transfer register contents between the
core and the coprocessor. Please refer to Chapter 5, Configuration for details of the
register arrangement and operations.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
4-29: Coprocessor register transfer instructions .

This class of instruction is used to communicate information directly between ARM810
and a coprocessor. An example of a coprocessor to processor register transfer (MRC)
instruction would be a FIX of a floating point value held in a coprocessor, where the
floating point number is converted into a 32 bit integer within the coprocessor, and the
result is then transferred to a processor register. A FLOAT of a 32-bit value in a
processor register into a floating point value within the coprocessor illustrates the use
of a processor register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from
the coprocessor into the processor CPSR flags. As an example, the result of a
comparison of two floating point values within a coprocessor can be moved to the
CPSR to control the subsequent flow of execution.

 Figure 4-29: Coprocessor register transfer instructions

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number
Coprocessor information
Coprocessor operand register

Coprocessor operation mode
Condition field

Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

ARM source/destination register
Coprocessor source/destination register

Open Access - Preliminary

Instruction Set

4-62 ARM810 Data Sheet
ARM DDI 0081E

4.16.1 The coprocessor fields
The CP# field is used, as for all coprocessor instructions, to specify which coprocessor
is being called upon. The CP Opc, CRn, CP and CRm fields are used only by the
coprocessor, and the interpretation presented here is derived from convention only.
Other interpretations are allowed where the coprocessor functionality is incompatible
with this one. The conventional interpretation is that the CP Opc and CP fields specify
the operation the coprocessor is required to perform, CRn is the coprocessor register
which is the source or destination of the transferred information, and CRm is a second
coprocessor register which may be involved in some way which depends on the
particular operation specified.

4.16.2 Transfers from R15
Do not specify a coprocessor register transfer from ARM810 with R15 as the source
register.

4.16.3 Transfers to R15
When a coprocessor register transfer to ARM810 has R15 as the destination, bits 31,
30, 29 and 28 of the transferred word are copied into the N, Z, C and V flags
respectively. The other bits of the transferred word are ignored, and the PC and other
CPSR bits are unaffected by the transfer.

4.16.4 Instruction cycle times
Both the MRC and MCR instructions take 1 cycle to execute, provided that the
coprocessor does not “busy-wait” them.

4.16.5 Assembler syntax
<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

where:

MRC move from coprocessor to ARM810 register (L=1)

MCR move from ARM810 register to coprocessor (L=0)

{cond} two-character condition mnemonic, see Figure 4-2:
Condition codes on page 4-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM810 register
number

cn and cm are expressions evaluating to the valid coprocessor register
numbers CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

4.16.6 Examples
MRC p2,5,R3,c5,c6 ; request coproc 2 to perform operation 5

; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3

MCR p6,0,R4,c6,c7 ; request coproc 6 to perform operation 0

Open Access - Preliminary

Instruction Set

4-63ARM810 Data Sheet
ARM DDI 0081E

; on R4 and place the result in c6, in a
; way that may be influenced by c7

MRCEQ p3,9,R3,c5,c6,2 ; conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3

Open Access - Preliminary

Instruction Set

4-64 ARM810 Data Sheet
ARM DDI 0081E

4.17 The Instruction Memory Barrier (IMB) Instruction
An Instruction Memory Barrier (IMB) Instruction is used to ensure that correct
instruction flow occurs after instruction memory locations are altered in any way - by
self-modifying code for example. The recommended implementation of the IMB
instructions is via an architecturally defined SWI function (see 4.13 Software
Interrupt (SWI) on page 4-52). The instruction encoding for the recommended IMB
instruction implementations is shown below:

 Figure 4-30: IMB instruction

 Figure 4-31: IMBRange instruction

IMBRange : Registers R0 and R1 contain the Range of addresses on entry to the SWI.
R0 is the lower (inclusive) address and R1 is the upper address (not included in the
range).

4.17.1 Use
During the normal operation of ARM8, the Prefetch Unit (PU) reads instructions ahead
of the core in order to attempt to remove branches. It does this by predicting whether
or not the branches are taken and then prefetching from the predicted address.

If a program changes the contents of memory with the intention of executing the new
contents as new instructions, then any prefetched instructions and/or other stored
information about instructions in the PU may be out of date because the instructions
concerned have been overwritten. Thus the PU holds the wrong instructions; if passed
to the execution unit they would cause unintentional behaviour.

In order to prevent such problems, an IMB instruction must be used between changing
the contents of memory and executing the new contents to ensure that any stored
instructions are flushed from the PU. The choice of IMB Instruction (IMB or IMBRange)
depends upon the amount of code changed.

The IMB Instruction flushes all stored information about the instruction stream.

The IMBRange Instruction flushed all stored information about instructions at
addresses in the range specified.

Please refer to Appendix E, Implementing the Instruction Memory Barrier
Instruction for further details of the IMB implementation and use.

Cond

272831

Condition field

1 1 1 1

2324 0

0xF00000

Cond

272831

Condition field

1 1 1 1

2324 0

0xF00001

Open Access - Preliminary

Instruction Set

4-65ARM810 Data Sheet
ARM DDI 0081E

4.17.2 Assember syntax
SWI{cond} IMB ; Where IMB = 0xF00000

; code that loads R0 and R1 with Range addresses

SWI{cond} IMBRange ; Where IMBRange = 0xF00001

4.17.3 Examples

Loading code from disc

Code that loads a program from a disc, and then branches to the entry point of that
program, should execute an IMB instruction between loading the program and trying
to execute it.

IMB EQU 0xF00000

.

.

; code that loads program from disc

.

.

SWI IMB

.

.

MOV PC, entry_point_of_loaded_program

.

.

Running BitBlt code

“Compiled BitBlt” routines optimise large copy operations by constructing and
executing a copying loop which has been optimised for the exact operation wanted.

When writing such a routine an IMB is needed between the code that constructs the
loop and the actual execution of the constructed loop.

IMBRange EQU 0xF00001
.
.
; code that constructs loop code
; load R0 with start address of the constructed loop
; load R1 with the end address of the constructed loop
SWI IMBRange
; start of constructed loop code
.
.

Open Access - Preliminary

Instruction Set

4-66 ARM810 Data Sheet
ARM DDI 0081E

Self-decompressing code

When writing a self-decompressing program, an IMB should be issued after the
routine which decompresses the bulk of the code and before the decompressed code
starts to be executed.

IMB EQU 0xF00000

.

.

; copy and decompress bulk of code

SWI IMB

; start of decompressed code

Open Access - Preliminary

Instruction Set

4-67ARM810 Data Sheet
ARM DDI 0081E

4.18 Undefined Instructions
This section shows the instruction bit patterns that will cause the Undefined Instruction
trap to be taken if ARM810 attempts to execute them. This vector location is defined
in 3.6.6 Exception vector summary on page 3-11. There are a number of such bit
pattern classes, and these can be used to cause unimplemented instructions (for
example LDC) to be emulated through the Undefined Instruction trap service routine
code:

Class A Undefined instructions in previous ARM processor implementations

Class B Unallocated MSR/MRS-like instructions

Class C Unallocated Multiply-like instructions

Class D Unallocated SWP-like instructions

Class E Unallocated STRH/LDRH/LDRSH/LDRSB-like instructions

Note Some or all of Classes B through E may not fall into the Undefined Instruction trap if
further implementation restrictions dictate this. ARM reserves the right to make these
decisions as necessary.

The Undefined Instruction trap is taken:

• if the condition specified by Cond is met and the instruction bit pattern is in
Table 4-6: Bit patterns for the undefined instruction trap

or

• by all coprocessor instructions whose condition is met and which are bounced
by any coprocessor. For ARM810, the coprocessor interface must bounce all
CDP, LDC and STC instructions

4.18.1 Assembler syntax
At present the assembler has no mnemonics for generating Undefined Instruction
classes A through to E.

Class Instruction Bit Pattern Notes

A Cond 011x xxxx xxxx xxxx xxxx xxx1 xxxx

B Cond
Cond
Cond

0001
0001
0011

0xx0
0xx0
0x00

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

yyy0
0xx1
xxxx

xxxx
xxxx
xxxx

yyy != 000

C Cond 0000 01xx xxxx xxxx xxxx 1001 xxxx

D Cond 0001 yyyy xxxx xxxx xxxx 1001 xxxx yyyy !=0000 or 0100

E Cond
Cond

0000
000x

xx1x
xxx0

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

1yy1
11x1

xxxx
xxxx

yy !=00

 Table 4-6: Bit patterns for the undefined instruction trap

Open Access - Preliminary

Instruction Set

4-68 ARM810 Data Sheet
ARM DDI 0081E

4.19 Instruction Set Examples
The following examples show ways in which the basic ARM810 instructions can
combine to give efficient code. None of these methods saves a great deal of execution
time (although they may save some): mostly they just save code.

4.19.1 Using the conditional instructions

Using conditionals for logical OR
CMP Rn,#p ; if Rn=p OR Rm=q THEN
BEQ Label ; GOTO Label
CMP Rm,#q
BEQ Label

can be replaced by :
CMP Rn,#p
CMPNE Rm,#q ; if condition not satisfied
BEQ Label ; try other test

Absolute value
TEQ Rn,#0 ; test sign
RSBMI Rn,Rn,#0 ; and 2's complement if

; necessary

Multiplication by 4, 5 or 6 (run time)
MOV Rc,Ra,LSL#2 ; multiply by 4
CMP Rb,#5 ; test value
ADDCS Rc,Rc,Ra ; complete multiply by 5
ADDHI Rc,Rc,Ra ; complete multiply by 6

Combining discrete and range tests
TEQ Rc,#127 ; discrete test
CMPNE Rc,#" "-1 ; range test
MOVLS Rc,#"." ; IF Rc<=" " OR Rc=ASCII(127)

; THEN Rc:="."

Division and remainder

A number of divide routines for specific applications are provided in source form as
part of the ANSI C library provided with the ARM Cross Development Toolkit, available
from your supplier.

A short general purpose divide routine follows.

; Unsigned divide of r1 by r0
; Returns quotient in r0, remainder in r1
; Destroys r2, r3

MOV r3, #0
MOVS r2, r0
BEQ |__rt_div0| ; jump to divide-by-zero

; error handler

Open Access - Preliminary

Instruction Set

4-69ARM810 Data Sheet
ARM DDI 0081E

; justification stage shifts r2 left 1 bit at a time
; until r2 > (r1/2)
u_loop

CMP r2, r1, LSR #1
MOVLS r2, r2, LSL #1
BCC u_loop

; now division proper can start
u_loop2

CMP r1, r2 ; perform divide step
ADC r3, r3, r3
SUBCS r1, r1, r2
TEQ r2, r0 ; all done yet?
MOVNE r2, r2, LSR #1
BNE u_loop2
MOV r0, r3

4.19.2 Multiply overflow detection in the ARM810

Overflow in unsigned multiply with a 32 bit result
UMULL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

Overflow in signed multiply with a 32 bit result
SMULL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,Rd ASR#31 ;+1 cycle and a register
BNE overflow

Overflow in unsigned multiply accumulate with a 32 bit result
UMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

Overflow in signed multiply accumulate with a 32 bit result
SMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,Rd, ASR#31 ;+1 cycle and a register
BNE overflow

Overflow in unsigned multiply accumulate with a 64 bit result
SMULL R1,Rh,Rm,Rn ;4 to 7 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADCS Rh,Rh,Ra2 ;upper accumulate
BCS overflow ;2 cycles and 2 registers

Overflow in signed multiply accumulate with a 64 bit result
UMULL R1,Rh,Rm,Rn ;4 to 7 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADCS Rh,Rh,Ra2 ;upper accumulate
BVS overflow ;2 cycles and 2 registers

Open Access - Preliminary

Instruction Set

4-70 ARM810 Data Sheet
ARM DDI 0081E

Note Overflow cannot occur in signed and unsigned multiply with a 64-bit result, so overflow
checking is not applicable.

4.19.3 Pseudo random binary sequence generator
It is often necessary to generate (pseudo-) random numbers and the most efficient
algorithms are based on shift generators with exclusive-OR feedback rather like a
cyclic redundancy check generator. Unfortunately the sequence of a 32-bit generator
needs more than one feedback tap to be of maximal length (ie. 2^32-1 cycles before
repetition), so this example uses a 33-bit register with taps at bits 33 and 20. The basic
algorithm is newbit:=bit 33 EOR bit 20, shift left the 33 bit number and put in newbit at
the bottom; this operation is performed for all the newbits needed (ie. 32 bits).

; enter with seed in Ra (32 bits),

; Rb (1 bit in Rb lsb), uses Rc

TST Rb,Rb,LSR#1 ; top bit into carry

MOVSRc,Ra,RRX ; 33 bit rotate right

ADC Rb,Rb,Rb ; carry into lsb of Rb

EOR Rc,Rc,Ra,LSL#12 ; (involved!)

EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

;

; new seed in Ra, Rb as before

4.19.4 Multiplication by constant using shifts
1 Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

2 Multiplication by 2^n+1 (3,5,9,17..)
ADD Ra,Ra,Ra,LSL #n

3 Multiplication by 2^n-1 (3,7,15..)
RSB Ra,Ra,Ra,LSL #n

4 Multiplication by 6
ADD Ra,Ra,Ra,LSL #1; multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

5 Multiply by 10 and add in extra number
ADD Ra,Ra,Ra,LSL#2 ; multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; multiply by 2 and add in next

; digit

Open Access - Preliminary

Instruction Set

4-71ARM810 Data Sheet
ARM DDI 0081E

6 General recursive method for Rb := Ra*C, C a constant:
a) If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:
D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:
D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply
by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2; multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; multiply by 5*9 = 45

4.19.5 Loading a word from an unknown alignment
; enter with address in Ra (32 bits)

; uses Rb, Rc; result in Rd.

; Note d must be less than c e.g. 0,1

;

BIC Rb,Ra,#3 ; get word-aligned address

LDMIARb,{Rd,Rc} ; get 64 bits containing answer

AND Rb,Ra,#3 ; correction factor in bytes

MOVSRb,Rb,LSL#3 ; ...now in bits and test if aligned

MOVNERd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned) for little-endian

; operations (see note below)

RSBNERb,Rb,#32 ; get other shift amount

ORRNERd,Rd,Rc,LSL Rb; combine two halves to get result

; for little-endian operation (see note

; below)

Note: for Big-endian operation replace the first “LSR” with “LSL” and the final “LSL” by
“LSR”.

Open Access - Preliminary

Instruction Set

4-72 ARM810 Data Sheet
ARM DDI 0081E

Open Access - Preliminary

5-1ARM810 Data Sheet
ARM DDI 0081E

This chapter describes the configuration.

5.1 ARM810 System Control Coprocessor (CP15) Register Map 5-3

Configuration5

Open Access - Preliminary

Configuration

5-2 ARM810 Data Sheet
ARM DDI 0081E

The operation and configuration of ARM810 is controlled both directly via coprocessor
instructions and indirectly via the Memory Management Page tables. The coprocessor
instructions manipulate a number of on-chip registers which control the configuration
of the Cache, write buffer, MMU and a number of other configuration options.

Open Access - Preliminary

Configuration

5-3ARM810 Data Sheet
ARM DDI 0081E

5.1 ARM810 System Control Coprocessor (CP15) Register Map

5.1.1 CP15 registers
CP15 defines 16 registers. Table 5-1: CP15 register summary on page 5-4 shows
which registers are defined for reading and which for writing. All CP15 register bits
which are defined and contain state are set to zero by Reset.

CP15 registers can only be accessed with MRC and MCR instructions in a Privileged
mode. The instruction bit pattern of the MCR and MRC instructions is shown below:

 Figure 5-1: MRC, MCR bit pattern

CDP, LDC and STC instructions, along with unprivileged MRC and MCR instructions
to CP15 will cause the undefined instruction trap to be taken. The CRn field of MRC
and MCR instructions specify the coprocessor register to access. The CRm field and
opcode_2 field are used to specify a particular action when addressing some registers.

Attempting to read from a register which is not defined for reading, or writing to a
register which is not defined for writing will cause the instruction to take the undefined
instruction trap. See 5.1.2 Architectural Compliance of ARM810 CP15 on page 5-
12. In all instructions which access CP15:

• the opcode_1 field SHOULD BE ZERO
• the opcode_2 and CRm fields SHOULD BE ZERO except when accessing

registers 7 and 8, when the values specified below should be used to select
the desired Cache and TLB operations. Using a value other than those
specified below for opcode_2 and CRm when accessing registers 7 and 8, or
other than zero when accessing other registers, will cause ARM810 to take
the undefined instruction trap. See 5.1.2 Architectural Compliance of
ARM810 CP15 on page 5-12.

Throughout this section the following terms and abbreviations are used:

UNPREDICTABLE UNP If specified for reads: the data returned when
reading from this location is unpredictable - it
could have any value.
If specified for writes: writing to this location
will cause unpredictable behaviour or an
unpredictable change in device configuration.

UNDEFINED UND An instruction that accesses CP15 in the
manner indicated will take the undefined
instruction trap.

SHOULD BE ZERO SBZ When writing to this location, all bits of this field
should be 0.

Cond

272831

1 1 1 0

2324 0

opcode_1 L CRn Rd 1 1 1 1 opcode_2 1 Crm

21 20 19 16 15 12 11 8 7 5 4 3

Open Access - Preliminary

Configuration

5-4 ARM810 Data Sheet
ARM DDI 0081E

In all cases, reading from, or writing any data values to any CP15 registers, including
those fields specified as UNPREDICTABLE or SHOULD BE ZERO will not cause any
permanent damage to the ARM810.

Register 0: ID register

Reading from CP15 register 0 returns the value 0x4101810x. The CRm and opcode_2
fields SHOULD BE ZERO when reading CP15 register 0.

 Figure 5-2: ID register read

Writing to CP15 register 0 is UNPREDICTABLE.

 Figure 5-3: ID register write

Register Reads Writes

0 ID Register UNDEFINED

1 Control Control

2 Translation Table Base Translation Table Base

3 Domain Access Control Domain Access Control

4 UNDEFINED UNDEFINED

5 Fault Status Fault Status

6 Fault Address Fault Address

7 UNDEFINED Cache operations

8 UNDEFINED TLB operations

9 Cache Lock-Down Cache Lock-Down

10 TLB Lock-Down TLB Lock-Down

11 to 14 UNDEFINED UNDEFINED

15 Clock and Test Configuration Clock and Test Configuration

 Table 5-1: CP15 register summary

0 1 0 0

272831

0 0 0 1

2324 0

0 0 0 0

20 19 16 15 12 11 8 7 4 3

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 Revision

31 0

UNP

Open Access - Preliminary

Configuration

5-5ARM810 Data Sheet
ARM DDI 0081E

Register 1: Control register

Reading from CP15 register 1 reads the control bits. The CRm and opcode_2 fields
SHOULD BE ZERO when reading CP15 register 1.

 Figure 5-4: Register 1 read

Writing to CP15 register 1 sets the control bits. The CRm and opcode_2 fields
SHOULD BE ZERO when writing CP15 register 1.

 Figure 5-5: Register 1 write

All defined control bits are set to zero on reset. The control bits have the following
functions:

M Bit 0 MMU Enable/Disable
0 = Memory Management Unit (MMU) disabled
1 = Memory Management Unit (MMU) enabled

A Bit 1 Alignment Fault Enable/Disable
0 = Address Alignment Fault Checking disabled
1 = Address Alignment Fault Checking enabled

C Bit 2 Cache Enable/Disable
0 = Instruction and/or Data Cache (IDC) disabled
1 = Instruction and/or Data Cache (IDC) enabled

W Bit 3 Write buffer Enable/Disable
0 = Write Buffer disabled
1 = Write Buffer enabled

P Bit 4 When read returns one, and when written is ignored.

D Bit 5 When read returns one, and when written is ignored.

L Bit 6 When read returns one, and when written is ignored.

B Bit 7 Big-endian/Little-endian
0 = Little-endian operation
1 = Big-endian operation

S Bit 8 System protection
This bit modifies the MMU protection system.

R Bit 9 ROM protection
This bit modifies the MMU protection system.

F Bit 10 When read returns zero. When written SHOULD BE ZERO.

 UNP

012 11 10 9 8 7 6 5 4 3 2 1

Z F R S B L D P W C A M

 13

 I

 UNP/SBZ

012 11 10 9 8 7 6 5 4 3 2 1

Z F R S B L D P W C A M

13

I

Open Access - Preliminary

Configuration

5-6 ARM810 Data Sheet
ARM DDI 0081E

Z Bit 11 Branch Prediction Enable/Disable
0 = Branch Prediction Disabled
1 = Branch Prediction Enabled.

I Bit 12 When read returns zero. When written SHOULD BE ZERO.

Bits 31:13 When read returns an UNPREDICTABLE value, and when
written SHOULD BE ZERO, or a value read from these bits
on the same processor. Note that using a read-write-modify
sequence when modifying this register provides the greatest
future compatibility.

Enabling the MMU

Care must be taken if the translated address differs from the untranslated address as
the instructions following the enabling of the MMU will have been fetched using no
address translation and enabling the MMU may be considered as a branch with
delayed execution. A similar situation occurs when the MMU is disabled. The correct
code sequence for enabling and disabling the MMU is implementation defined

If the cache and write buffer are enabled when the MMU is not enabled, the results are
UNPREDICTABLE.

Register 2: Translation table base register

Reading from CP15 register 2 returns the pointer to the currently active first level
translation table in bits[31:14] and an UNPREDICTABLE value in bits[13:0].The CRm
and opcode_2 fields SHOULD BE ZERO when reading CP15 register 2.

Writing to CP15 register 2 updates the pointer to the currently active first level transla-
tion table from the value in bits[31:14] of the written value. Bits[13:0] SHOULD BE ZE-
RO. The CRm and opcode_2 fields SHOULD BE ZERO when writing CP15 register 2.

 Figure 5-6: Register 2

Register 3: Domain access control register

Reading from CP15 register 3 returns the value of the Domain Access Control
Register.

Writing to CP15 register 3 writes the value of Domain Access Control Register.

The Domain Access Control Register consists of sixteen 2-bit fields, each of which
defines the access permissions for one of the sixteen Domains (D15-D0).

The CRm and opcode_2 fields SHOULD BE ZERO when reading or writing CP15
register 3.

 Figure 5-7: Register 3

31 0

UNP/SBZTranslation Table Base

14 13

031 30 29 28 27

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Open Access - Preliminary

Configuration

5-7ARM810 Data Sheet
ARM DDI 0081E

Register 4: Reserved

Register 4 is reserved. Reading CP15 register 4 is UNDEFINED. Writing CP15
register 4 is UNDEFINED.

 Figure 5-8: Register 4

Register 5: Fault Status Register

Reading CP15 register 5 returns the value of the Fault Status Register (FSR). The
FSR contains the source of the last data fault. Note that only the bottom 9 bits are
returned. The upper 23 bits are UNPREDICTABLE. The FSR indicates the domain and
type of access being attempted when an abort occurred. Bit 8 is always read as zero.
Bits 7:4 specify which of the sixteen domains (D15-D0) was being accessed when a
fault occurred. Bits 3:1 indicate the type of access being attempted. The encoding of
these bits is shown in 8.13 Fault Address and Fault Status Registers (FAR and
FSR) on page 8-17. The FSR is only updated for data faults, not for prefetch faults.

Writing CP15 register 5 sets the Fault Status Register to the value of the data written.
This is useful for a debugger to restore the value of the FSR. The upper 24 bits written
SHOULD BE ZERO. Bit 8 is ignored on writes.

The CRm and opcode_2 fields SHOULD BE ZERO when reading or writing CP15
register 5.

 Figure 5-9: Register 5

Register 6: Fault Address Register

Reading CP15 register 6 returns the value of the Fault Address Register (FAR). The
FAR holds the virtual address of the access which was attempted when a fault
occurred. The FAR is only updated for data faults, not for prefetch faults.

Writing CP15 register 6 sets the Fault Address Register to the value of the data written.
This is useful for a debugger to restore the value of the FAR.

The CRm and opcode_2 fields SHOULD BE ZERO when reading or writing CP15
register 6.

 Figure 5-10: Register 6

31 0

UNP

UNP/SBZ

09 8 7 4 3

0 Domain Status

31

31 0

Fault Address

Open Access - Preliminary

Configuration

5-8 ARM810 Data Sheet
ARM DDI 0081E

Register 7: Cache Operations

Writing to CP15 register 7 is used to manage the ARM810 unified instruction and data
cache. Four cache operations are defined, and the function to be performed selected
by the opcode_2 and CRm fields in the MCR instruction used to write CP15 register 7.

Reading from CP15 register 7 is UNDEFINED.

The “Invalidate ID cache” function invalidates all cache data, including any dirty data
(data which has been modified in the cache but not yet written to main memory). Use
with caution.

The “Invalidate ID single entry” function invalidates a single cache line, discarding any
dirty data (data which has been modified in the cache but not yet written to main
memory). Use with caution.

The “Clean ID single entry” function writes the specified cache line to main memory if
the line is marked Valid and Dirty, and marks the line as not-Dirty . The Valid bit is
unchanged.

The “Clean and Invalidate ID entry” function writes the specified cache line to main
memory if the line is marked Valid and Dirty. It always invalidates the line.

The operations which operate upon a single cache line accept the entry's Index and
Segment number as the data passed in the MCR instruction in the following format:

 Figure 5-11: Register 7

See Chapter 7, Instruction and Data Cache (IDC) for discussion of the use of these
operations.

Function opcode_2
value

CRm
value

Data Instruction

Invalidate ID cache 0b000 0b0111 SBZ MCR p15, 0, Rd, c7, c7, 0

Invalidate ID single entry 0b001 0b0111 Index, Seg Format MCR p15, 0, Rd, c7, c7, 1

Clean ID single entry 0b001 0b1011 Index, Seg Format MCR p15, 0, Rd, c7, c11, 1

Clean and Invalidate ID entry 0b001 0b1111 Index, Seg Format MCR p15, 0, Rd, c7, c15, 1

 Table 5-2: Cache operations

SBZ

09 8 7 4 3

SEGMENT SBZINDEX

31 26 25

Open Access - Preliminary

Configuration

5-9ARM810 Data Sheet
ARM DDI 0081E

Register 8: TLB Operations

Writing to CP15 register 8 is used to control Translation Lookaside Buffers (TLBs). The
ARM810 implements a unified instruction and data TLB.

Two TLB operations are defined, and the function to be performed selected by the
opcode_2 and CRm fields in the MCR instruction used to write CP15 register 8.

Reading from CP15 register 8 is UNDEFINED.

The “Invalidate TLB” function invalidates all of the unlocked entries in the TLB

The “Invalidate TLB single entry” function invalidates any TLB entry corresponding to
the Virtual Address given in Rd, regardless of it’s lock-down state.

Register 9: Cache Lock-Down

Writing CP15 register 9 updates the Cache Lock-Down control register. Bits 30:6
SHOULD BE ZERO when written.

Reading CP15 register 9 returns the value of the Cache Lock-Down control register.
Note that only bit 31 and bits 5:0 are returned. Bits 30:6 are UNPREDICTABLE when
read.

The Cache Lock-Down control register allows software to load entries into the Cache
and lock them in. See 7.7 Lock-down Features on page 7-3.

The CRm and opcode_2 fields SHOULD BE ZERO when reading or writing CP15
register 9.

 Figure 5-12: Register 9

L Bit 31 Cache Load Entry Mode
0 = Normal operation - Index Field specifies number of lock-down
Indexes
1 = Load Entry Mode - Index Field specifies Index number to load into.

Function opcode_2
value

CRm
value

Data Instruction

Invalidate TLB 0b000 0b0111 SBZ MCR p15, 0, Rd, c8, c7, 0

Invalidate TLB single
entry

0b001 0b0111 Virtual
Address

MCR p15, 0, Rd, c8, c7, 1

 Table 5-3: TLB operations

UNP/SBZ

06 5

Index

31 30

L

Open Access - Preliminary

Configuration

5-10 ARM810 Data Sheet
ARM DDI 0081E

Register 10: TLB Lock-Down

Writing CP15 register 10 updates the TLB Lock-Down control register. Bits 30:6
SHOULD BE ZERO when written.

Reading CP15 register 10 returns the value of the TLB Lock-Down control register.
Note that only bit 31 and bits 5:0 are returned. Bits 30:6 are UNPREDICTABLE when
read.

The TLB Lock-Down control register allows software to load entries into the TLB and
lock them in. See Appendix F, Cache and TLB Lock-Down Features .

 Figure 5-13: Register 10

L Bit 31TLB Load Entry Mode
0 = Normal operation - Index Field specifies number of lock-down
 Indexes.The number of lock-down Indexes must be 0 or 4.
1 = Load Entry Mode - Index Field specifies Index number to load into.

Registers 11 -14: Reserved

Accessing (reading or writing) any of these registers will cause ARM810 to take the
undefined instruction trap.

Register 15: Clock and Test Configuration

Register 15 contains clocking configuration bits, test configuration bits, and the PLL
Locked status bit. Writing to CP15 register 15 writes to the configuration bits. Writing
a 1 to the PLL Locked status bit resets the PLL status bit for subsequent reads - see
below for details.

 Figure 5-14: Register 15

All defined bits are set to zero on reset. The register bits have the following functions:

D Bit 0 Enable Dynamic Clock Switching

0 Dynamic clock switching is disabled, clock synchroniser will
permanently select the bus clock as the source of the
processor clock.

1 Dynamic clock switching is enabled, clock synchroniser will
dynamically switch between the fast clock and the bus clock
as the source of the processor clock as processor access to
the Bus Interface is required.

UNP/SBZ

06 5

Index

31 30

L

 UNP/SBZ

0

D

31

SF0F1LTRTPTO

9 8 6 45 3 2 17

Open Access - Preliminary

Configuration

5-11ARM810 Data Sheet
ARM DDI 0081E

S Bit 1 Synchronous Clock Switching

0 Clock synchroniser operates in asychronous mode. Use this
setting if the fast clock and the bus clock do not obey the
requirements specified in the AC parameters section for
synchronous mode operation.

1 Clock synchroniser operates in synchronous mode.
Use this setting if the fast clock and the bus clock do obey the
requirements specified in the AC parameters section for
synchronous mode operation.

F1, F0 Bits 3, 2 Fast clock source configuration

F1 = 0 F0 = 0 bus clock (MCLK or PCLK) is the fast clock source.
F1 = 0 F0 = 1 REFCLK pin is the fast clock source.
F1 = 1 F0 = 0 Reserved. Do not use.
F1 = 1 F0 = 1 PLL output clock is fast clock source.

L Bit 4 PLL Locked indication

When Reading:
L = 1 indicates that the PLL output clock is within a small range of

the target frequency.
When Writing:
Writing L = 0 is ignored.
Writing L = 1 resets the PLL Lock Detect circuitry. Following such a

reset, reading the register will return L = 0 until the Lock
Detect circuit again detects that the PLL output clock is within
a small range of the target frequency. This is useful in
systems which stop REFCLK , or change the frequency
applied to the REFCLK pin, or change the PLL configuration
pins under program control

Note Logic external to ARM810 would be required to implement such
features.

TR, TP, and TO (Bits 5, 6, 7 and 8) are configuration bits for test features used in device
production test. These bits must all be written as zero for normal device operation.

Open Access - Preliminary

Configuration

5-12 ARM810 Data Sheet
ARM DDI 0081E

5.1.2 Architectural Compliance of ARM810 CP15
The ARM810 Coprocessor 15 complies with the definition of the ARMv4 System
Control Coprocessor given in the ARM Architecture Reference (ARM DDI 0100) with
the following exceptions and clarifications:

• Registers 9, 10, and 15 are not defined in the ARM Architecture Manual and
should be considered implementation specific extensions to the CP15
definition.

• The ARM Architecture Reference defines read accesses to registers not
defined for reading, and write accesses to registers not defined for writing, as
UNPREDICTABLE. ARM810 implements these as UNDEFINED - ie,
executing coprocessor instructions which attempt such accesses will cause
ARM810 to take the Undefined Instruction Trap.

• The ARM Architecture Reference defines that instructions which access
register 7 and 8 and which specify values of opcode_2 or CRm which do not
specify an implemented operation should be IGNORED. ARM810 implements
these as UNDEFINED.

• The ARM Architecture Reference defines that instructions which access
register other than 7 and 8 and which specify values of opcode_2 or CRm
other than zero are UNPREDICTABLE. ARM810 implements these as
UNDEFINED.

Open Access - Preliminary

6-1ARM810 Data Sheet
ARM DDI 0081E

This chapter describes the functions of the prefetch unit.

6.1 Overview 6-2
6.2 The Prefetch Buffer 6-2
6.3 Branch Prediction 6-3

The Prefetch Unit6

Open Access - Preliminary

The Prefetch Unit

6-2 ARM810 Data Sheet
ARM DDI 0081E

6.1 Overview
The ARM8 Prefetch Unit (PU) supplies the ARM8 Core with instructions from the
memory system. The bus from the memory system to the PU is 32 bits wide but can
supply two words every clock cycle. The memory system bandwidth is therefore
greater than the bandwidth requirement of the Core. The Prefetch Unit makes use of
this fact by buffering instructions in its FIFO and then predicting some of the branches
and removing them from the instruction stream to the Core. This reduces the CPI of
the Branch instruction, so increasing the processor’s performance.

The Prefetch Unit is responsible for fetching and supplying instructions to the Core,
and has its own PC and incrementer to provide the memory system address.

6.2 The Prefetch Buffer
Each 32-bit instruction is buffered together with its (offset) address in a FIFO. The
depth of this buffer is 8 instructions. At the far end of the FIFO, the instructions are
removed one at a time and presented to the Core.

Open Access - Preliminary

The Prefetch Unit

6-3ARM810 Data Sheet
ARM DDI 0081E

6.3 Branch Prediction
ARM810 employs static branch prediction. This is based solely on the characteristics
of a Branch instruction, and uses no history information. Branch prediction is
performed only when the Z bit in CP15 register 1 is set to 1 (see Chapter 5,
Configuration).

In ARM processors that have no Prefetch Unit, the target of a Branch is not known until
the end of the Execute stage; at which time it is known whether or not the Branch will
be taken. The best performance is therefore obtained by predicting all Branches as not
taken, and filling the pipeline with the instructions that follow the Branch. In this type of
Core, an untaken Branch requires 1 cycle and a taken Branch requires 3 cycles.

By adding a Prefetch Buffer, it is possible to detect a Branch before it enters the Core.
This allows the use of a different prediction scheme - for instance, one which predicts
that all forward Branches are not taken and all backward Branches are taken. This
scheme is the one implemented in ARM810 and because it models actual conditional
branch behaviour more accurately, it reduces the average branch CPI, thus improving
the processor’s performance.

Using ARM8’s Prefetch Unit, around 65% of all Branches are preceded by enough
non-Branch cycles to be completely predicted. The Core itself deals with the Branches
that the Prefetch Unit does not have time to predict.

6.3.1 Incorrect predictions and correction
Whenever a potentially incorrect prediction is made, information necessary for
recovering from the error is stored. This is the fall-through address in the case of a
predicted taken Branch, and the Branch’s target address in the case of a predicted not
taken Branch.

The Prefetch Unit uses the Core’s condition codes to establish the accuracy of a
prediction. If the prediction is found to be in error, the Prefetch Unit begins fetching
from the saved alternate address, and cancels any instructions that have been
incorrectly passed to the core.

6.3.2 Prediction details
This section describes the conditions under which prediction is made, and the result
of the prediction based upon the direction of the branch.

BL is only predicted if it is an unconditional instruction. When predicted, the instruction
is effectively changed into a link instruction and a branch instruction. The link part of
the instruction is passed to the core as a special MOV instruction, and the branch part
is predicted with the same rules as for the prediction of normal B instructions.

The following summarises the prediction scheme:

If any instruction is not predicted, then it is passed straight through to the core without
change.

Instructions will not be predicted if any of the following conditions apply:

• Z bit in CP15 register 1 is 0

• Instruction[27:24]=“1011” AND Instruction[31:28]!=“1110” (Conditional
BL)

• A prefetch abort occurs when fetching the instruction

Open Access - Preliminary

The Prefetch Unit

6-4 ARM810 Data Sheet
ARM DDI 0081E

• Instruction[31:28]==“1111” (Invalid condition code)

• Instruction[27:25]!=“101” (Non-branch instruction)

otherwise the instruction will be predicted as taken if:

• Instruction[31:28]==“1110” (Always condition code)

• Instruction[24]==“0” AND Instruction[23]==“1” (Backwards branch)

otherwise the instruction will be predicted as not-taken if:

• Instruction[24]==“0” AND Instruction[23]==“0” (Forwards branch)

Consequences of branch prediction and the prefetch buffer

Due to the speculative prefetching of instructions that the Prefetch Unit performs, it is possible
for the prefetch buffer to contain incorrect instructions. In such circumstances the prefetch buffer
must be flushed, and ARM8 provides a means to do this with the IMB instruction. Please refer
to 4.17 The Instruction Memory Barrier (IMB) Instruction on page 4-64 for details of when
and how to use the IMB instruction.

6.3.3 Turning off Branch Prediction
Branch prediction is disabled when the Z bit in the control register is 0 (CP15 register 1, bit 11).
Clearing the Z bit does not stop speculative prefetching for a branch that has already been
predicted. Branch prediction must be disabled and speculative prefetching must have
completed before you disable the cache. The following code sequence disables branch
prediction, and makes sure that speculative prefetching has completed:

Branch_Predict_Off

 MRC p15,0,R0,c0,c0 ;Clear Control Reg Z bit.

 BIC R0,R0,#&00000800

 MCR p15,0,R0,c0,c0

 MSR CPSR_f, #0xF0000000 ;set carry flag

 BCC Branch_Predict_Off ;branch never taken

Code to disable the cache should follow this code.

Open Access - Preliminary

7-1ARM810 Data Sheet
ARM DDI 0081E

This chapter describes Instruction and Data Cache.

7.1 Introduction 7-2
7.2 Cacheable Bit and Bufferable Bit 7-2
7.3 IDC Operation 7-2
7.4 IDC Validity 7-2
7.5 Read-Lock-Write 7-3
7.6 IDC Enable/Disable and Reset 7-3

Instruction and Data Cache (IDC)7

Open Access - Preliminary

Instruction and Data Cache (IDC)

7-2 ARM810 Data Sheet
ARM DDI 0081E

7.1 Introduction
ARM810 contains an 8 Kb mixed instruction and data cache which supports both
write-through and write-back (also known as copy-back) operation. The IDC has 512
lines of 16 bytes (4 words), arranged as a 64-way associative, virtually addressed
cache. The IDC is always reloaded a line at a time (four words). It may be enabled or
disabled via the ARM810 Control Register and is disabled on nRESET. The operation
of the cache is further controlled by the Cacheable (C) and Bufferable (B) bits stored
in the Memory Management Page Table (see Chapter 8, Memory Management
Unit). For this reason, in order to use the IDC, the MMU must be enabled. The two
functions may however be enabled simultaneously, with a single write to the Control
Register.

7.2 Cacheable Bit and Bufferable Bit
The Cacheable bit determines whether data being read may be placed in the IDC and
used for subsequent read operations. Typically main memory will be marked as
Cacheable to improve system performance, and I/O space as Non-cacheable to stop
the data being stored in ARM810’s cache. For example if the processor is polling a
hardware flag in I/O space, it is important that the processor is forced to read data from
the external peripheral, and not a copy of initial data held in the cache. The Cacheable
bit can be configured for both pages and sections.

When the cacheable bit associated with a memory region is 1, all write acesses to that
region are bufferable and the B bit determines whether the region is cached with write-
through (B=0) or write-back (B=1) cache operation.

See 8.11 Cacheable and Bufferable Status of Memory Regions on page 8-14.

7.3 IDC Operation
In the ARM810 the cache will be searched regardless of the state of the C bit, only
reads that miss the cache will be affected. The only effect of setting the cacheable bit
to 0 is to inhibit cache replacement from occuring. If the cache is disabled by clearing
bit 2 of the CP15 Control Register, no searching of the cache occurs and all regions
are treated as non-cacheable.

7.3.1 Cacheable reads C = 1
A linefetch of 4 words will be performed when a cache miss occurs in a cacheable area
of memory and it will be randomly placed in a cache bank.

7.3.2 Uncacheable reads C = 0
An external memory access will be performed and the cache will not be written.

7.4 IDC Validity
The IDC operates with virtual addresses, so care must be taken to ensure that its
contents remain consistent with the virtual to physical mappings performed by the
Memory Management Unit. If the Memory Mappings are changed, the IDC validity
must be ensured.

Open Access - Preliminary

Instruction and Data Cache (IDC)

7-3ARM810 Data Sheet
ARM DDI 0081E

7.4.1 Doubly mapped space
Since the cache works with virtual addresses, it is assumed that every virtual address
maps to a different physical address. If the same physical location is accessed by more
than one virtual address, the cache cannot maintain consistency, since each virtual
address will have a separate entry in the cache, and only one entry will be updated on
a processor write operation. To avoid any cache inconsistencies, both doubly-mapped
virtual addresses should be marked as uncacheable.

7.5 Read-Lock-Write
The IDC treats the Read-Locked-Write instruction as a special case. The read phase
always forces a read of external memory, regardless of whether the data is contained
in the cache. The write phase is treated as a normal write operation (and if the data is
already in the cache, the cache will be updated). Externally the two phases are flagged
as indivisible by asserting the LOCK signal.

7.6 IDC Enable/Disable and Reset
The IDC is automatically disabled and flushed on nRESET. Once enabled, cacheable
read accesses will cause lines to be placed in the cache.

7.6.1 To enable the IDC
To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in Control
Register, then enable the IDC by setting bit 2 in Control Register. The MMU and IDC
may be enabled simultaneously with a single control register write.

7.6.2 To disable the IDC
To disable the IDC clear bit 2 in the Control Register and perform a flush by writing to
the flush register.

7.7 Lock-down Features
See Appendix F, Cache and TLB Lock-Down Features .

Open Access - Preliminary

Instruction and Data Cache (IDC)

7-4 ARM810 Data Sheet
ARM DDI 0081E

