Centaur-P

AN983 PCI/mini-PCI 10/100 Fast Ethernet Controller **With Integrated PHY**

All Specifications subject to be changed without notice

Revision 1.1 February 2000

2000/3/23 Rev: 1.1

Revision History

Revision	Revision	Descriptio
Date		
August	0.8	1. Change all AN985P to AN983
1999		2. CR12 [1:31](page 19)
		3. Ratio 1:1 (page 69)
		4. CSR6[22] : reserved (page 28)
Oct.	0.9	1. change csr7[12,10] to reserved (page 27)
1999		2. csr17[29] added (page 35)
		3. csr17[15] description changed (page 35)
		4. csr16[29] added (page 34)
		5. csr15[19:16] removed (page 34)
		6. explanation of pin 95, 96 and 97 modified (page 12)
		7. add the explanation of pin 6,7
		8. chap 12.5 Centaur AD note in page 89
		9. cr48 <24:22> description/value changed (page21)
		10. csr18<7> added (page 37)
Dec.	1.0	1. AC/AD e2prom timing updated(page 86)
1999		2. AD note modified (page 90)
Feb.	1.1	1. CSR18<24> NEC_pmes_sticky added (page 36)
2000		2. CSR18<25> Use_pci_pad_in_cardmode added (page 36
		3. CSR18<18> APM mode added (page 37)

1. General Descriptions

The Centaur-P (AN983A for PCI and AN983A for mini-PCI) is a high performance PCI Fast Ethernet controller with integrated physical layer interface for 10BASE-T and 100BASE-TX application.

The Centaur-P was designed with advanced CMOS technology to provide glueles 32-bit bus master interface for PCI, boot ROM interface, CSMA/CD protocol for Fast Ethernet, as well as the physical media interface for 100BASE-TX of IEEE802.3u and 10BASE-T of IEEE802.3. The auto-negotiation function is also supported for speed and duplex detection.

The Centaur-P can be programmed as MAC-only controller. In this mode, it provides the standard MII interface to link to an external PHY. With this mode, it can be connected to the HomePNA PHY to support the HomePNA networking solution.

The Centaur-P provides both half-duplex and full-duplex operation, as well as support for full-duplex flow control.

It provides long FIFO buffers for transmission and receiving, and early interrupt mechanism to enhance performance.

The Centaur-P also supports ACPI and PCI compliant power management function and Magic Packet wake-up event.

2. System block diagram

Fig.1 System Diagram of the CENTAUR-P

3. Features

Industry standard

- \Rightarrow IEEE802.3u 100BAS -TX and IEEE802.3 10BASE-T compliant
- ⇒ Support for IEEE802.3x flow control
- □ IEEE802.3u Auto-Negotiation support for 10BASE-T and 100BASE-TX
- ⇒ PCI Specification 2.2 compliant
- ⇒ ACPI and PCI power management Ver.1.1 compliant
- ⇒ Support PC99 wake on LAN

FIFO

Provides two independent long FIFOs with 2k bytes each for transmission and

ADMtek Incorporated. 1F, No.9, Industry E.9th Rd., SBIP, HsinChu Tel: 886-3-5788879 Fax: -578887 ADMtek Incorporated. Confidential

- receiving
- ⇒ Pre-fetch up to two transmit packets to minimize inter frame gap(IFG) to 0.96us
- Retransmits collided packet without reload from host memory within 64 bytes
- Automatically retransmits FIFO under-run packet with maximum drain threshold until 3 times retry failure and that will not influence the registers and transmit threshold of next packet

PCI I/

- ⇒ Provides 32-bit PCI bus master data transfer
- ⇒ Supports PCI clock with frequency from 0Hz to 33MH
- ⇒ Supports network operation with PCI system clock from 20MHz to 33MH
- ⇒ Provides performance meter, PCI bus master latency timer, for tuning the threshold to enhance the performance
- ⇒ Provides burst transmit packet interrupt and transmit/receive early interrupt t o reduce host CPU utilization
- Supports memory-read, memory-read-line, memory-read-multiple, memor -write, memory-write-and-invalidate command while being bus maste
- ⇒ Supports big or little endian byte ordering

EEPROM/Boot ROM I/F

- Provides write-able Flash ROM and EPROM as boot ROM with size up to 128kB
- Provides PCI to access boot ROM by byte, word, or double word
- ⇒ Re-writes Flash boot ROM through I/O port by programming register
- ⇒ Provides serial interface for read/write 93C66 EEPROM
- Automatically loads device ID, vendor ID, subsystem ID, subsystem vendor ID, Maximum-Latency, and Minimum-Grand from the 64 byte contents of 93C66 after PCI reset de-asserted in PCI environment

MAC/Physical

- □ Integrates the whole Physical layer functions of 100BAS -TX and 10BASE-T
- ⇒ Provides Full -duplex operation on both 100Mbps and 10Mbps modes
- ⇒ Provides Auto-negotiation(NWAY) function of full/half duplex operation for both 10 and 100 Mbps
- ⇒ Provides transmit wave-shaper, receive filters, and adaptive equalizer
- Provides MLT-3 transceiver with DC restoration for Base-line wander compensation
- Provides MAC and Transceiver(TXCVR) loop-back modes for diagnostic

- ⇒ Builds in Stream Cipher Scrambler/ De-scrambler and 4B/5B encoder/decoder
- ⇒ Supports external transmit transformer with turn ratio 1:1
- ⇒ Supports external receive transformer with turn ratio 1:1

LED Displa

- ⇒ (1) 3 LEDs displays scheme provided:
 - ◆ 100Mbps(on) or Speed 10(off)
 - ◆ Link(keeps on when link ok) or Activity(will be blinking with 10Hz whe receiving or transmitting but not collision)
 - ◆ FD(keeps on when in Full duplex mode) or Collision(will be blinking with 20Hz when colliding
 - (2) 4 LEDs displayed scheme provided:
 - ◆ 100Mbps and Link (keep on when link and 100Mpbs)
 - ◆ 10Mbps and Link (keep on when link and 10Mpbs)
 - ◆ Activity(will be blinking with 10Hz when receiving or transmitting but not collision)
 - ◆ FD(keeps on when in Full duplex mode) or Collision(will be blinking with 20Hz when colliding

Miscellaneous

2000/3/23

- ⇒ Provides 12 -pin QFP/LQFP packages for PCI/mini-PCI interfaces
- ⇒ 3.3V power supply with 5V/3.3V I/O tolerance

4. Block diagram

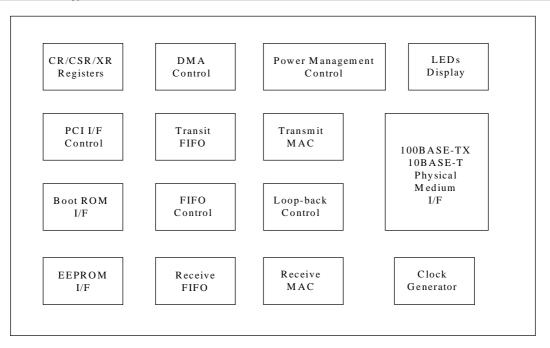


Fig.2 Block Diagram of the Centaur-P

5. Pin Assignment Diagram

									_																					1	
					l E						>	23	2	=	2	¥		m	2		_		_								
				Adc	1txe			K	ᆷ	2	lrxd	E	Z	$ \vec{z} $	ĮŽ.	KX.	Txc	ΑŽ	ΑŽ		ΑŽ	ΑŽ	txer			日					
			12	11	101	#S	S	7/E	9/9/E	2/E	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/1/2	2	1	0	曹	圕	Į,	¥	5	\\	Į¥,	ΙŽ	ψ	4	1/91					
			bra 12	bra 11/Mdc	bra 10/Mtxen	BrCS#	EECS	BrD7/ECK	BrD6/EDI	BrD5/EDO	BrD4/Mrxdv	BrD3/MrxD3	BrD2/MrxD2	BrD1/MrxD1	BrD0/MrxD0	BrWE#/Rxclk	BrOE#/Txclk	bra 9/MtxD3	bra 8/MtxD2	Vdd-3	bra 7/MtxD1	bra 6/MtxD0	bra 5/Mtxerr	Vss-3	bra 4	bra 16/LED]ED	LED			
			İΠ	ΙĒ	İΠ	m	ΙĤ	ΪÀ	m	Ħ	m	Ĥ	m	П	Ħ	Ħ	İΠ	İΠ	İΠ	П	İΠ	İΠ	ΙĒ	İΠ	İΠ	İΠ	Ħ	n			
			 ∞			20	4	<u>س</u>	12	Н		6	00			5	4	<u>س</u>	2	Н		16 11	∞			2	4	8	_		
	_		128	127	126	125	124	123	122	121	120	119	118	117	911	115	114	113	112	Ξ	110	109	108	107	106	105	104	9			
bra 13		1																											102	LED	
bra 14		2	_						-												_								101	bra 3/Mdio	
bra 15		3							-																				100	bra 2/Mcrs	
VAAR		4																											99	bra 1/Mcol	
TST3		5																											98	 bra 0/Mrxerr	
RXIN		6																											97	Vdd_5V_3V	
RXIP		7																			_								96	Vcc_detect	
GNDR		8																											95	Vaux	
TST0		9	_																										94	 AD0	
TST1		10																											93	AD1	
TST2		11																											92	 clk-run	
NC		12																											91	Vss-pci	
NC		13																											90	AD2	
GNDREEF		14																											89	AD3	
RIBB		15																											88	AD4	
VAAREF		16																											87	Vdd-pci	
XTLN		17																											86	AD5	
XTLP		18							1			_	\neg																85	AD6	
GNDT		19							1				ં(en	lta	au	ır	<u>-</u>]	•										84	AD7	
TXOP		20															_												83	CBEB0	
TXON		21											(A	N	98	33)											82	Vs s-pci	
VAAT		22												Ì			П	Ĺ											81	AD8	
Vdd-IR		23																											80	Vs s-IR	
INTA#[24																											79	AD9	
RST#		25																											78	AD10	
Vss-IR		26																											77	 Vdd-pci	
pci_clk[27																											76	AD11	
Vdd-pci[28																											75	AD12	
gnt#[\equiv	29																											74	Vdd-IR	
req#[\exists	30																											73	AD13	
pme#[31																											72	 AD14	
Vss-pci		32																											71	Vss-pci	
AD31	\equiv	33																											70	AD15	
AD30		34																											69	CBEB1	
AD29		35							\vdash																				68	PAR	
AD28		36																											67	Vdd-pci	
Vdd-pci		37																											66	SERR	
AD27		38																											65	PERR	
11227	\exists				L	<u>ر</u>	~	_	10		_	~			L.	~.	~	_	10	<u></u>	_	~			L.	Δ.	~		- 65		
	_		8	8	4	42	43	4	45	4	47	4 8	49	<u>β</u>	5	22	5	54	5	29	27	28	<u>K)</u>	9	19	6	63	2			
			Ш	Щ	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш			
									1			٠.,											-	L.	#			<u>.</u>			
			126	125	25	Vss-pci	CBEB3	IDSEL	Vss-IR	23	22	Vdd-pci	12	20	119	Vss-pci	18	17	Vdd-IR	116	CBEB2	Vdd-pci	FRAME#	IRDY#	TRDY#	Vss-pci	日	OP#			
			AD26	AD25	AD24	\ss	B	Ã	\ss	AD23	AD22	Λď	AD21	AD20	AD19	Vss	AD18	AD17	Vď	AD16	B	Λď	民	R	T.	Vss	DSET#	ST			

ADMtek Incorporated. 1F, No.9, Industry E.9 th Rd., SBIP, HsinChu Tel: 886-3-5788879 Fax: -578887

2000/3/23 Rev: 1.1 *ADMtek Incorporated. Confidential*

6. Pin Description

Pin No.	1		Description
• P	CI Interfac	ce	
24	INTA#	O/D	PCI interrupt request Centaur-P asserts this signal when one of the interrupt events occur.
25	RST#	I	PCI signal to initialize the Centaur-P. The active reset signal should be sustained at least 100µs to guarantee that the CENTAUR-P has completed the initializing activity. During the reset period, all the output pins of CENTAUR-P will be set to tri-state and all the O/D pins are floated.
27	PCI-CLK	I	This PCI clock inputs to CENTAUR-P for PCI relative circuits as the synchronized timing base with PCI bus. The Bus signals are recognized on rising edge of PCI-CLK. In order to let network operating properly, the frequency range of PCI-CLK is limited between 20MHz and 33MHz when network operating.
29	GNT#	I	PCI Bus Granted. This signal indicates that the PCI bus request of CENTAUR-P have been accepted.
30	REQ#	О	PCI Bus Request. Bus master device want to get bus access right
31	РМЕ#	I/O	The Power Management Event signal is an open drain, active low signal. When WOL-bit 18 of CSR 18 be set into "1", means that the CENTAUR-P is set into Wake On LAN mode. In this mode, when the CENTAUR-P receives a Magic Packet frame from network then the CENTAUR-P will active this signal too. In the Wake On LAN mode, when LWS-bit (bit 17) of CSR18 is set into "1" means the LAN-WAKE signal is HP-style signal, otherwise it is IBM-style signal
33,34 35,36 38,39 40,41 46,47 49,50 51,53 54,56 70,72	AD-31,30 AD-29,28 AD-27,26 AD-25,24 AD-23,22 AD-21,20 AD-19,18 AD-17,16 AD-15,14	I/O	Multipl xed address data pin of PCI Bus
73,75	AD-13,12		

	T		,
76,78	AD-11,10		
79,81	AD-9,8		
84,85	AD-7, 6		
86,88	AD-5,4		
89,90	AD-3,2		
93,94	AD-1,0		
43	C-BEB3	I/O	Bus command and byte enable
57	C-BEB2		
69	C-BEB1		
83	C-BEB0		
44	IDSEL	I	Initialization Device Select. This signal is asserted when host issues the configuration cycles to the CENTAUR-P.
59	FRAME#	I/O	Begin and duration of bus access, driven by master device
60	IRDY	I/O	Master device is ready to data transaction
61	TRDY#	I/O	Slave device is ready to data transaction
63	DEVSEL#	I/O	Device select, target is driving to indicate the address is decode
64	STOP#	I/O	Target device request the master device to stop the current transaction
65	PERR	I/O	Data parity error is detected, driven by the agent receiving dat
66	SERR	O/D	Address parity error
68	PAR	I/O	Parity, even parity (AD[31:0] + C/BE[3:0]), master dr ives par for address and write data phase, target drives par for read data phase
92	clk-run	I/O O/D	Clock Run for PCI system. In the normal operation situation, Host should assert this signal to indicate CENTAUR-P about the normal situation. On the other hand, when Host will deassert this signal when the clock is going down to a nonoperating frequency. When CENTAUR-P recognizes the deasserte status of clk-run, then it will assert clk -run to request host to maintain the normal clock operation. When clk-run function is disabled then the CENTAUR-P will set clik-run in tri-state.
• Be	ootROM/E	EPR	OM Interface
98~101,	BrA0 ~16	I/O	ROM data bus
106,108 ~110, 112,			Provides up to 128kB EPROM or Flash-ROM application space.
113,			

PROM						
signal						
• MII Interface (Program Centaur - P as MAC-only mode, set FCh[2:0] = 100b)						
Physical Interface						

ADMtek Incorporated. 1F, No.9, Industry E.9 th Rd., SBIP, HsinChu Tel: 886-3-5788879 Fax: -578887 ADMtek Incorporated. Confidential

18, 17	XTLP, XTLN	I	Crystal inputs. To be connected to a 25MHz crystal.
6,7	RXIN, RXIP	I	The differential receive inputs of 100BASE-TX or 10BASE-T, these pins directly input from Magnetic.
20,21	TXOP, TXON	О	The differential Transmit outputs of 100BASE-TX or 10BASE-T, these pins directly output to Magnetic.
15	RIBB	I	Reference Bias Resistor. To be tied to an external 10.0K (1%) resistor which should be connected to the analog ground at the other end.
9,10,11,	TST0, TST1	I	Test pin
5	TST2, TST3		
12,13	NC	О	
• L	ED display	& M	iscellaneous
102	Led-Act	O	4Leds mode: LED display for Activity status. This pin will be driven on with 10 Hz blinking frequency when either effective receiving or transmitting is detected.
	(Led-lk/act)		(3Led mode): LED display for link and activity status. This pin will be driven on continually when a good Link test is detected. This pin will b driven on with 10 Hz blinking frequency when either effective receiving or transmitting is detected.
103	Led-10Lnk	О	4Leds mode: LED display for 10M b s speed. This pin will be driven on continually when the 10M b/s network operating speed is detected.
	(Led-fd/col)		(3Leds mode): LED display for Full Duplex or Collision status. This pin will be driven on continually when a full duplex configuration is detected. This pin will be driven on with 20 Hz blinking frequency when a collision status is detected in the half duplex configuration.
104	Led-100Lnk (Led-speed)	О	4Leds mode: LED display for 100Mb/s speed. This pin will be driven on continually when the 100Mb/s network operating speed is detected.
	(Lea speed)		(3Leds mode): LED display for 100M b/s or 10M b/s speed. This pin will be driven on continually when the 100M b/s network operating speed is detected.
105	Led-Fd /Col	O	4Leds mode: LED display for Full Duplex or Collision s tatus. This pin will be driven on continually when a full duplex configuration is detected. This pin will be driven on with 20 Hz blinking frequency when a collision status is detected in the half duplex configuration.
			(3Leds mode): None
	l .		l .

			I						
95	Vaux	I	ACPI purpose, for detecting This pin should be or-wired 1) 3.3V when 3.3Vaux supp	When this pin is asserted, it indicates an auxiliary power source is supported ACPI purpose, for detecting the auxiliary power source. This pin should be or-wired connected to 3.3V when 3.3Vaux support, or 5V when 5Vaux support from 3-way switch.					
96	Vcc-detect	I	ACPI purpose, for detecting	When this pin is asserted, it indicates PCI power source is supported. ACPI purpose, for detecting the main power is remained or not, his pin should be connected to PCI bus power source +5V.					
97	Vdd_5V_3	I(A)	Analogue input pin voltage referenced level for 3v/5v tolerance i/o cell. The voltage of this pin depends on what kind of bus(PCI or cardbus.) connected. i.e. PCI (5V) 1) 5V when main power exists or 2) 3.3V when 3.3Vaux support (PCI 2.2, D3cold, no 5V power source), or 3) 5V when 5Vaux support from 3-way switch. (D3cold mode						
	Digital Powe	r Pin							
26,32	2,42,45,52,62,	,71,80	0,82,91,107,	Vss-pci, Vss-IR, Vss-3					
23,28	3,37,48,55,58,	,67,74	4,77,87,111	Vdd-pci Vdd-IR, Vdd-3					
				Connect to 3.3V					
• ,	Analog Powe	er Pir	ıs	,					
4,16,2	22			VAAR, VAAREF, VAAT					
				3.3V					
8,14,	1			GNDR, GNDREF,GNDT					

7. Registers and Descriptors Description

There are three kinds of registers designed for CENTAUR-P. They are CENTAUR-P configuration registers, PCI control/status registers, and Transceiver control/status registers.

The CENTAUR-P configuration registers are used to initialize and configure the CENTAUR-P for identifying and querying th CENTAUR-P.

The PCI control/status registers are used to communicate between host an CENTAUR-P. Host can initialize, control, and read the status of the CENTAUR-P through the mapped I/O or memory address space.

Regarding the registers of transceiver portion of CENTAUR-P, there are 11 registers with 16bits supported for CENTAUR-P. It includes 7 basic registers which are defined according to the clause 22 "Reconciliation Sub-layer and Media Independent Interface" and clause 28 "Physical Layer link signaling for 10 Mb/s and 100 Mb/s Auto-Negotiatio on twisted pair" of IEEE802.3u standard. Besides, there are 4 special registers for advance chip controlling and status reading

The CENTAUR-P also provides receive and transmit descriptors for packet buffering and management. These descriptors are described in the following section

7.1. CENTAUR-P configuration registers

With the configuration registers software driver can initialize and configure AN983. All of the contents of configuration registers are set to default value when there is any hardware reset occurs. On the other hand, there is no effect to their value when the software reset occurs. To access these configuration registers AN983 provides byte, word and double word data access length.

7.1.1. AN983 configuration registers list

Offset	Index	Name	Descriptions
00h	CR0	LID	Loaded device ID and vendor ID
04h	CR1	CSC	Configuration Status and Comman
08h	CR2	CC	Class Code and revision number
0ch	CR3	LT	Latency Timer
10h	CR4	IOBA	IO Base Address
14h	CR5	MBA	Memory Base Address
28h	CR1	CIS	Card Information Structure(for Card bus)
2ch	CR1	SID	Subsystem ID and vendor ID
30h	CR1	BRB	Boot ROM Base Address (ROM size = 256KB
34h	CR1	CP	Capability Pointer
3ch	CR1	CINT	Configuration Interrupt
40h	CR1	DS	driver space for special purpos
80h	CR3	SIG	Signature of AN983
c0h	CR4	PMR0	Power Management Register 0
c4h	CR4	PMR1	Power Management Register 1

7.1.2. AN983 configuration registers table

offset	b31		b1	b15	- b0				
00h		Devi	ce ID*	Vendor ID					
04h		Sta	tus	Command					
08h	Base Class	s Code	Subclass		Revision # Step #				
0ch		-		Latency timer	cache line size				
10h	Base I/O address								
14h	Base memory address								
18h~	Reserved								
24h									
28h	ROM-im* Address space offset Add-indi*								
2ch		Subsys	Subsystem	em vendor ID*					
30h			Boot RON	I base address					
34h			Reserved		Cap_Ptr				
38h			Re	eserved					
3ch	Max_	Lat*	Min_Gnt*	Interrupt pin	Interrupt line				
40h		Res	erved	Driver Space	Reserved				
80h		Signature of AN98							
c0h	PMC Next_Item_Ptr Cap_ID								
c4h		Res	served	PMCSR					

*: automatically recalled om EEPROM when PCI reset is deserted Note:

CIS(28h) is a read-only register

DS(40h), bit1 -8, is read/write able register

SIG(80h) is hard wired register, read only.

7.1.3. AN983 configuration registers descriptions

CR0(offset = 00h), LID - Loaded Identification number of Device and Vendor

Bit	Name	Descriptions	Default Val	RW Type
31~16	LDID	Loaded Device ID, the device ID number loaded from serial EEPROM.	From EEPROM	R/O
15~0	LVID	Loaded Vendor ID, the vendor ID number loaded from seria EEPROM.	From EEPROM	R/O

From EEPROM: Loaded from EEPROM

CR1(offset = 04h), CS - Configuration command and status

Bit	Name	Descriptions	Default Val	RW Type
31	SPE	Status of Parity Error	0	R/W
		1: means that AN983 detected a parity error. This bit will b set in this condition, even if the parity error response(bit 6 of CR1) is disabled.		
30	SES	Status of System Error.	0	R/W
		1: means that AN983 asserted the system error pin.		
29	SMA	Status of Master Abort.	0	R/W
		1: means that AN983 received a master abort and terminated a master transaction.		
28	STA	Status of Target Abort.	0	R/W
		1: means that AN983 received a target abort and terminated a master transaction.		
27		reserved.		
26, 25	SDST	Status of Device Select Timing. The timing of the assertion of device select.	01	R/O
		01: means a medium assertion of DEVSEL		
24	SDPR	Status of Data Parity Report.	0	R/W
		1: when three conditions are met:		
		 a. AN983 asserted parity error - PERR# or it detected parity error asserted by other device. 		
		b. AN983 is operating as a bus master.		
		c. AN983's parity error response bit(bit 6of CR1) is enabled.		
23	SFBB	Status of Fast Back-to-Back	1	R/O
		Always 1, since AN983 has the ability to accept fast back to back transactions.		

22~21		reserved.		
20	NC	New Capabilities. This bit indicates that whether the AN983 provides a list of extended capabilities, such as PCI power management.	Same as bit 19 o CSR18	RO
		1: the AN983 provides the PCI management function		
		0: the AN983 doesn't provides New Capabilities.		
19~ 9		reserved.		
8	CSE	Command of System Error Respons	0	R/W
		1: enable system error response. AN983 will assert SERR When it find a parity error on the address phase.		
7		reserved.		
6	CPE	Command of Parity Error Respons	0	R/W
		0: disable parity error response. AN983 will ignore an detected parity error and keep on its operating. Default value is 0.		
		1: enable parity error response. AN983 will assert system error(bit 13 of CSR5) when a parity error is detected.		
5~ 3		reserved.		
2	СМО	Command of Master Operation Ability	0	R/W
		0: disable the bus master ability.		
		1: enable the PCI bus master ability. Default value is 1 for normal operation.		
1	CMSA	Command of Memory Space Access	0	R/W
		0: disable the memory space access ability.		
		1: enable the memory space access ability.		
0	CIOSA	Command of I/O Space Access	0	R/W
		0: enable the I/O space access ability.		
		1: disable the I/O space access ability.		

R/W: Read and Write able. RO: Read able only.

CR2(offset = 08h), CC - Class Code and Revision Number

Bit	Name	Descriptions	Default Val	R/W Type
31~24	BCC	Base Class Code. It means AN983 is network controller.	02h	RO
23~16	SC	Subclass Code. It means AN983 is a Fast Ethernet Controller.	00h	RO
15~ 8		reserved.		
7 ~ 4	RN	Revision Number, identifies the revision number of AN983.	01h	RO
3 ~ 0	SN	Step Number, identifies the AN983 steps within the current revision.	01h	RO

RO: Read Only

CR3(offset = 0ch), LT - Latency Time

Bit	Name	Descriptions	Default Val	RW Type
31~16		reserved.		
15~ 8	LT	Latency Timer. This value specifies the latency timer of the AN983 in units of PCI bus clock. Once the AN983 asserts FRAME#, the latency timer starts to count. If the latency timer expires and the AN983 still asserted FRAME#, then the AN983 will terminate the data transaction as soon as its GNT# is removed.	0	R/W
7 ~ 0	CLS	Cache Line Size. This value specifies the system cache line size in units of 32-bit double words(DW). The AN983 supports 8, 16, and 32 DW of cache line size. This value i used by the AN983 driver to program the cache alignment bits(bit 14 and 15 of CSR0). The cache alignment bits ar used for cache oriented PCI commands, say memory-read-line, memory-read-multiple, and memory-write-and-invalidate.	0	R/W

CR4(offset = 10h), IOBA - I/O Base Address

Bit	Name	Descriptions	Default Val	RW Type
31~8	IOBA	I/O Base Address. This value indicate the base address of PCI control and status register(CSR0~28	0	R/W
7 ~ 1		reserved.		
0	IOSI	I/O Space Indicator. 1: means that the configuration registers map into the I/O space.	1	RO

CR5(offset = 14h), MBA - Memory Base Address

Bit	Name	Descriptions	Default Val	RW Type
31~ 10	MBA	Memory Base Address. This value indicate the base address of PCI control and status register(CSR0~28)	0	R/W
9 ~ 1		reserved.		
0	IOSI	Memory Space Indicator. 1: means that the configuration registers map into the I/O space.	0	RO

CR11(offset = 2ch), SI - Subsystem ID.

Bit	Name	Descriptions	Default Val	RW Type
31~16		Subsystem ID. This value is loaded from EEPROM after power on or hardware reset.	From EEPROM	RO

15~ 0	SVID	Subsystem Vendor ID. This value is loaded from EEPROM	From	RO
		after power on or hardware reset	EEPROM	

CR12(offset = 30h), BRBA - Boot ROM Base Address. This register should be initialized before accessing the boot ROM space. (write 32'hffffffff return 32'h fffe0001)

Bit	Name	Descriptions	Default Val	RW Type
31~17	BRBA	Boot ROM Base Address. This value indicates the address mapping of boot ROM field. Besides, it also defines the boo ROM size. The value of bit 17~10 is set to 0 for AN98 supports up t 256KB of boot ROM.	X: b31~18 0: b17~10	R/W
16 ~ 1		Reserved	0	
0	BRE	Boot ROM Enable. The AN983 really enables its boot ROM access only if both the memory space access bit(bit 1 of CR1) and this bit are set to 1. 1: enable Boot ROM. (Combines with bit 1 of CR1)	0	R/W

CR13(offset = 34h), **CP-Capabilities Pointer.**

Bit	Name	Descriptions	Default Val	RW Type
31~8		Reserved		
7~0	СР	Capabilities Pointer.	C0h	RO

CR15(offset = 3ch), CI - Configuration Interrupt

Bit	Name	Descriptions	Default Val	RW Type
31~24	ML	Max_Lat register This value indicates "how often" the AN983 needs to access to the PCI bus in the units of 250ns. This value is loaded from serial EEPROM after power on or hardware reset.	From EEPROM	RO
23~16	MG	Min_Gnt register This value indicates how long the AN983 needs to retain the PCI bus ownership whenever it initiate a transaction, in the units of 250ns. This value is loaded from serial EEPROM after power on or hardware reset.	From EEPROM	RO
15~ 8	IP	Interrupt Pin. This value indicates which of the four interrupt request pins that AN983 is connected. Always 01h: means the AN983 connects to INTA#	01h	RO
7 ~ 0	IL	Interrupt Line. This value indicates which of the system interrupt request lines the INTA# of AN983 is routed to. The BIOS will fill this field when it initializes and configures the system. The AN983 driver can use this value to determin priority and vector information.	X	R/W

CR16(offset = 40h), S - Driver Space for special purpose.

Bit	Name	Descriptions	Default Val	RW Type
-----	------	--------------	-------------	---------

31~16	 reserved		
15~8	Driver Space for special purpose. Since this area won't be cleared in the software reset. The AN983 driver can use this R/W area for special purpose.	X	R/W
7 ~ 0	 Reserved		

CR32(offset = 80h), SIG - Signature of AN983

Bit	Name	Descriptions	Default Val	RW Type
31~16	DID	Device ID, the device ID number of AN983	0985h	RO
15~0	VID	Vendor ID, the vendor ID number of ADM Technology Corp.	1317h	RO

CR48(offset = c0h), PMR0, Power Management Register0.

Bit	Name	Descriptions	Default Val	RW Type
31~27	PMES	PME_Support.	11111b	RO
		The AN983 will assert PME# signal while in the D0, D1, D2, D3 power state. The AN983 supports Wake-up from the above states.		
26	D2S	D2_Support. The AN983 supports D2 Power Management State.	1	RO
25	D1S	D1_Support. The AN983 supports D1 Power Management State.	1	RO
24~22	AUXC	Aux Current. Thest three bits report the maximum 3.3 Vaux current requirements for CENTAUR-P. If bit 31 of PMR0 is '1', the default value is 0101b, means CENTAUR-P need 100 mA to support remote wake-up in D3cold power state.	010b	RO
21	DSI	The Device Specific Initialization bit indicates whethe special initialization of this function is required before th generic class device driver is able to use it	0	RO
		0: indicates that the function does not require a devic specific initialization sequence following transition to the D0 un-initialized state.		
20		Reserved.	0	RO
19	PMEC	PME Clock. When "1" indicates that the AN983 relies on the presence of the PCI clock for PME# operation. While "0" indicates the no PCI clock is required for the AN983 t generate PME#.	0	RO
18~16	VER	Version. The value o <u>010b</u> indicates that the AN983 complies with Revision <u>1.1</u> of the PCI Power Management Interface Specification.	<u>010b</u>	RO
15~8	NIP	Next Item Pointer. This value is always 0h, indicates that there is no additional items in the Capabilities List.	00h	RO

7~0	CAPID	Capability Identifier. This v lue is always 01h, indicates the	01h	RO
		link list item as being PCI Power Management Registers.		

CR49(offset = c4h), PMR1, Power Management Register 1.

Bit	Name	Descriptions	Default Val	RW Type
31~16		reserved		
15	PMES	PME_Status, This bit is set when the AN983 would normally assert the PME# signal for wake-up event, this bit is independent of the state of the PME-En bit.	0	R/W*
		Writing a "1" to this bit will clear it and cause the AN983 to stop asserting a PME# (if enabled). Writing a "0" has no effect.		
14,13	DSCAL	Data_Scale, indicates the scaling factor to be used when interpreting the value of the Data register. This field is required for any function that implements the Data register. Otherwise, it's optional	00ь	RO
		The AN983 doesn't support Data register and Data_Scale.		
12~9	DSEL	Data_Select, This four bit field is used to select which data is to be reported through the Data register and Data_Scale field. This field is required for any function that implements the Data register.	0000ь	R/W
		The AN983 doesn't support Data_select.		
<u>8</u>	PME_En	PME_En, "1" enables the AN983 to assert PME#. When "0" disables the PME# assertion.	0	<u>R/W</u>
		Magic packet default enable:		
		When Csr18<18> and csr18<19> are set to 1, than the magic packet wake up event will be default enabled (csr13<9> be set) it doesn't matter the PME_En is set or not.		
7~2		Reserved.	000000	RO
1,0	PWRS	PowerState, This two bit field is used both to determine the current power state of the AN983 and to set the AN983 into a new power sta e. The definition of this field is given below.	00b	R/W
		00b - D0		
		01b - D1		
		10b - D2		
		11b - D3hot		
		This field is auto cleared to D0 when power resumed.		

R/W*: Read and Write clear

7.2. PCI Control/Status registers

7.2.1. PCI Control/Status registers list

	1		
offset from base address of CSR	Index	Name	Descriptions
00h	CSR0	PAR	PCI access register
08h	CSR1	TDR	Transmit demand register
10h	CSR2	RDR	Receive demand register
18h	CSR3	RDB	Receive descriptor base address
20h	CSR4	TDB	Transmit descriptor base address
28h	CSR5	SR	Status register
30h	CSR6	NAR	Network access register
38h	CSR7	IER	Interrupt enable register
40h	CSR8	LPC	Lost packet counter
48h	CSR9	SPR	Serial port register
50h	CSR10		Reserved
58h	CSR11	TMR	Timer
60h	CSR12		Reserved
68h	CSR13		Reserved
70h	CSR14		Reserved
78h	CSR15	WTMR	Watchdog time
80h	CSR16	ACSR5	Status register 2
84h	CSR17	ACSR7	Interrupt enable register 2
88h	CSR18	CR	Command register
8ch	CSR19	PCIC	PCI bus performance counter
90h	CSR20	PMCSR	Power Management Command and Status
94h	CSR21	WTDP	Current transmit descriptor point
98h	CSR22	WRDP	Current receive descriptor point
9ch	CSR23	TXBR	Transmit burst counter/time-out register
a0h	CSR24	FROM	Flash(boot) ROM port
a4h	CSR25	PAR0	Physical address register 0
a8h	CSR26	PAR1	Physical address register
ach	CSR27	MAR0	Multicast address hash table register 0
b0h	CSR28	MAR1	Multicast address hash table register 1

ADMtek Incorporated. 1F, No.9, Industry E.9 th Rd., SBIP, HsinChu Tel: 886-3-5788879 Fax: -578887 2000/3/23 Rev: 1.1 *ADMtek Incorporated. Confidential*

fch	OPR	Operation Mode register
-----	-----	-------------------------

7.2.2. Control/Status register description

CSR0(offset = 00h), PAR - PCI Access Register

Bit	Name	Descriptions	Default Val	RW Type
31~25		Reserved		
24	MWIE	Memory Write and Invalidate Enable. 1: enable AN983 to generate memory write invalidate command. AN983 will generate this command while writing full cache lines.	0	R/W*
		0: disable AN983 to generate memory write invalidat command and use memory write commands instead.		
23	MRLE	Memory Read Line Enable. 1: enable AN983 to generate memory read line command while read access instruction reach the cache line boundary. If the read access instruction doesn't reach the cache lin boundary then AN983 uses the memory read command instead.	0	R/W*
22		Reserved		
21	MRME	Memory Read Multiple Enable. 1: enable AN983 to generate memory read multiple command while reading full cache line. If the memory is not cache aligned, the AN983 uses memory read command instead.	0	R/W*
20~19		Reserved		
18,17	TAP	Transmit auto-polling in transmit suspended state, 00: disable auto-polling (default) 01: polling own-bit very 200 us 10: polling own-bit every 800 us 11: polling own-bit every 1600 us	00	R/W*
16		Reserved		
15, 14	CAL	Cache alignment, address boundary for data burst, set after reset 00: reserved (default) 01: 8 DW boundary alignment 10: 16 DW boundary alignment 11: 32 DW boundary alignment	00	R/W*
13 ~ 8	PBL	Programmable Burst Length. This value defines the maximum number of DW to be transferred in one DMA transaction. value: 0 (unlimited), 1, 2, 4, 8, 16(default), 32	010000	R/W*
7	BLE	Big or Little Endian selection. 0: little endian (e.g. INTEL)	0	R/W*

		1: big endian (only for data buffer)		
6 ~ 2	DSL	Descriptor Skip Length. Defines the gap between two descriptions in the units of DW.	0	R/W*
1	BAR	Bus arbitration 0: receive higher priorit 1: transmit higher priorit	0	R/W*
0	SWR	Software reset 1: reset all internal hardware, except configuration registers. This signal will be cleared by AN983 itself after it completed the reset process.	0	R/W*

 R/W^* = Before writing the transmit and receive operations should be stopped.

CSR1(offset = 08h), TDR - Transmit demand register

Bit	Name	Descriptions	Default Val	RW Type
31~0	TPDM	Transmit poll demand	fffffffh	R/W*
		When written any value in suspended state, trigger read-tx-descriptor process and check the own-bit, i own-bit = 1, then start transmit process		

R/W* = Before writing the transmit process should be in the suspended state.

CSR2(offset = 10h), RDR - Receive demand register

	1		ı	
Bit	Name	Descriptions	Default Val	RW Type
31 ~ 0	RPDM	Receive poll demand	ffffffffh	R/W*
		When written any value in suspended state, trigger the read-rx-descriptor process and check own-bit, if own-bit = 1, then start move data to buffer from FIFO		

 R/W^* = Before writing the receive process should be in the suspended state.

CSR3(offset = 18h), RD - Receive descriptor base address

Bit	Name	Descriptions	Default Val	RW Type
31~2	SAR	Start address of receive descriptor	xxxxxxx	R/W*
1, 0	RBND	must be 00, DW boundary	00	RO

 R/W^* = Before writing the receive process should be topped.

CSR4(offset = 20h), TDB - Transmit descriptor base address

Bit	Name	Descriptions	Default Val	RW Type
31~2	SAT	Start address of transmit descriptor	xxxxxx	R/W*
1, 0	TBND	must be 00, DW boundary	00	RO

R/W* = Before writing the transmit process should be stopped.

CSR5(offset = 28h), SR - Status register

Bit	Name	Descriptions	Default Val	RW Type
31~ 26		reserved		
25~ 23		Bus Error Type. This field is valid only when bit 13 o CSR5(fatal bus error) is set. There is no interrupt generat d by this field.	000	RO

		000: parity error, 001: master abort, 010: target abort		
		011, 1xx: reserve		
22~ 20	TS	Transmit State. Report the current transmission state only, no interrupt will be generated.	000	RO
		000: stop		
		001: read descriptor		
		010: transmitting		
		011: FIFO fill, read the data from memory and put into FIFO		
		100: reserved		
		101: reserved		
		110: suspended, unavailable transmit descriptor or FIFO overflow		
		111: write descriptor		
19~17	RS	Receive State. Report current receive state only, no interru pt will be generated.	000	RO
		000: stop		
		001: read descriptor		
		010: check this packet and pre-fetch next descriptor		
		011: wait for receiving data		
		100: suspended		
		101: write descriptor		
		110: flush the current FIFO		
		111: FIFO drain, move data from receiving FIFO into		
		memory		
16	NISS	Normal Interrupt Status Summary. It's set if any of below bits of CSR5 asserted.(combines with bit 16 of ACSR5)	0	RO/LH*
		bit0, transmit completed interrupt		
		bit2, transmit descriptor unavailabl		
		bit6, receive descriptor interrupt		
15	AISS	Abnormal Interrupt Status Summary. It's set if any of below bits of CSR5 asserted.(combines with bit 15 of ACSR5)	0	RO/LH*
		bit1, transmit process stopped		
		bit3, transmit jabber timer time-out		
		bit5, transmit unde -flow		
		bit7, receive descriptor unavailable		
		bit8, receive processor stopped		
		bit9, receive watchdog time-out		
		bit11, general purpose timer time-out		
		bit13, fatal bus error		
14		reserved		
13	FBE	Fatal Bus Error.	0	RO/LH*
		1: while any of parity error, master abort, or target abort is occurred (see bits 25~23 of CSR5). AN983 will disable all		

		bus access. The way to recover parity error is by setting an software reset.		
12		reserved		
11	GPTT	General Purpose Timer Tim -out, base on CSR11 timer register	0	RO/LH*
10		reserved		
9	RWT	Receive Watchdog Time-out, based on CSR15 watchdog timer register	0	RO/LH*
8	RPS	Receive Process Stopped, receive state = stop	0	RO/LH*
7	RDU	Receive Descriptor Unavailable	0	RO/LH*
		1: while the next receive descriptor can't be applied by AN983. The receive process is suspended in this situation. To restart the receive process, the ownership bit of next receive descriptor should be set to AN983 and a receiv poll demand command should be issued(or a new recognized frame is received, if the receive poll demand is not issued).		
6	RCI	Receive Completed Interrupt	0	RO/LH*
		1: while a frame reception is completed		
5	TUF	Transmit Unde -Flow	0	RO/LH*
		1: while the transmit FIFO had an under-flow condition happened during transmitting. The transmit process wil enter the suspended state and report the unde -flow errror on bit1 of TDES0.		
4		Reserved		
3	TJT	Transmit Jabber Timer Time-out	0	RO/LH*
		1: while the transmit jabber timer expired. The transmit processor will enter the stop state and the transmit jabber time-out flag of bit 14 of TDES0 will be asserted		
2	TDU	Transmit Descriptor Unavailable	0	RO/LH*
		1: while the next transmit descriptor can't be applied b AN983. The transmission process is suspended in this situation. To restart the transmission process, the ownership bit of next transmit descriptor should be set to AN983 and i the transmit automatic polling is not enabled then a transmit poll demand command should be issued.		
1	TPS	Transmit Process Stopped.	0	RO/LH*
		1: while transmit state = stop		
0	TCI	Transmit Completed Interrupt.	0	RO/LH*
		1: means a frame transmission is completed while bit 31 o TDES1 is asserted in the first transmit descriptor of the frame.		
		1		

LH = High Latching and cleared by writing 1.

CSR6(offset = 30h), NAR - Network access register

Bit Name Descriptions Default Val RW Typ	e
--	---

31~22		Reserved		
21	SF	Store and forward for transmit	0	R/W*
		0: disable		
		1: enable, ignore the transmit threshold setting		
20		Reserved		
19	SQE	SQE Disable	1	R/W*
		0: enable SQE function for 10BAS -T operation. The AN983 provides SQE test function for 10BASE-T half duplex operation.		
10.15		1: disable SQE function.		
18~16		Reserved		
15~14	TR	transmit threshold control 00: 128-byte (100Mbps), 7 -byte (10Mbps) 01: 256-byte (100Mbps), 9 -byte (10Mbps) 10: 512-byte (100Mbps), 128-byte (10Mbps) 00: 102 -byte (100Mbps), 160-byte (10Mbps)	00	R/W*
13	ST	Stop transmit 0: stop (default) 1: start	0	R/W
12	FC	Force collision mode 0: disable 1: generate collision when transmit (for test in loop -back mode)	0	R/W**
11, 10	OM	Operating Mode 00: norma 01: MAC loop-back 10,11: reserved	00	R/W**
9, 8		Reserved		
7	MM	Multicast Mod 1: receive all multicast packets	0	R/W***
6	PR	Promiscuous Mode 1: receive any good packet. 0: receive only the right destination address packets	1	R/W***
5	SBC	Stop Back-off Counte 1: back-off counter stop when carrier is active, and resume when carrier drop. 0: back-off counter is not effected by carrier	0	R/W**
4		Reserved		
3	PB	Pass Bad packe 1: receives any packets, if pass address filter, including runt packets, CRC error, truncated packets For receiving all bad packets, the bit 6 of CSR6 should be set to 1	0	R/W***

		0: filters all bad packets		
2		Reserved		
1	SR	Start/Stop Receive 0: receive processor will enter stop state after the current reception frame completed. This value is effective onl when the receive processor is in the running or suspending state. Notice: In "Stop Receive" tate, the PAUSE packet and Remote Wake Up packet won't be effected and can be received if the corresponding function is enabled. 1: receive processor will enter running state.	0	R/W
0		Reserved		

 \mathbf{W}^* = only write when the transmit processor stopped.

 W^{**} = only write when the transmit and receive processor both stopped.

 $W^{***} =$ only write when the receive processor stopped.

CSR7(offset = 38h), IER - Interrupt Enable Register

Bit	Name	Descriptions (Refer to CSR5)	Default Val	RW Type
31~17		Reserved		
16	NIE	Normal Interrupt Enable	0	R/W
		1: enable all the normal interrupt bits(see bit16 of CSR5)		
15	AIE	Abnormal Interrupt Enable	0	R/W
		1: enable all the abnormal interrupt bits(see bit 15 of CSR5)		
14		Reserved		
13	FBEIE	Fatal Bus Error Interrupt Enabl	0	R/W
		1: combine this bit and bit 15 of CSR7 to enable fatal bus error interrupt		
12				
11	GPTIE	General Purpose Timer Interrupt Enabl	0	R/W
		1: combine this bit and bit 15 of CSR7 to enable general purpose timer expired interrupt.		
10				
9	RWTIE	Receive Watchdog Time-out Interrupt Enable	0	R/W
		1: combine this bit and bit 15 of CSR7 to enable receiv watchdog time-out interrupt.		
8	RSIE	Receive Stopped Interrupt Enable	0	R/W
		1: combine this bit and bit 15 of CSR7 to enable receiv stopped interrupt.		
7	RUIE	Receive Descriptor Unavailable Interrupt Enable	0	R/W
		1: combine this bit and bit 15 of CSR7 to enable receiv descriptor unavailable interrupt.		
6	RCIE	Receive Completed Interrupt Enable	0	R/W
		1: combine this bit and bit 16 of CSR7 to enable receive completed interrupt.		
5	TUIE	Transmit Unde -flow Interrupt Enable	0	R/W

		1: combine this bit and bit 15 of CSR7 to enable transmit under-flow interrupt.		
4		Reserved		
3	TJTTIE	Transmit Jabber Timer Time-out Interrupt Enable 1: combine this bit and bit 15 of CSR7 to enable transmit jabber timer tim -out interrupt.	0	R/W
2	TDUIE	Transmit Descriptor Unavailable Interrupt Enable 1: combine this bit and bit 16 of CSR7 to enable transmit descriptor unavailable interrupt.	0	R/W
1	TPSIE	Transmit Processor Stopped Interrupt Enable 1: combine this bit and bit 15 of CSR7 to enable transmit processor stopped interrupt.	0	R/W
0	TCIE	Transmit Completed Interrupt Enabl 1: combine this bit and bit 16 of CSR7 to enable transmit completed interrupt.	0	R/W

CSR8(offset = 40h), LPC - Lost packet counter

Bit	Name	Descriptions	Default Val	RW Type
31~17		Reserved		
16	LPCO	Lost Packet Counter Overflow	0	RO/L
		1: while lost packet counter overflowed. Cleared after read		
15~0	LPC	Lost Packet Counter	0	RO/L
		Increment the counter while packet discarded since there was no host receive descriptors available. Cleared after read		

CSR9(offset = 48h), SPR - Serial port registe

Bit	Name	Descriptions	Default Val	RW Type
31~20		Reserved		
19	MDI	MII Management Data Input	0	R/W
		Specified read data from the external PHY		
18	MMC	MII Management Control	1	R/W
		0: Write operation to the external PHY		
		1: Read operation from the external PHY		
17	MDO	MII Management Data Output	0	R/W
		Specified Write Data to the external PHY		
16	MDC	MII Management Clock	0	R/W
		1: MII Management Clock is a output reference clock to the external PHY		
15		Reserved		
14	SRC	Serial EEPROM Read Control	0	R/W
		Set together with CSR9 bit11 to enable read operation from EEPROM		
13	SWC	Serial EE PROM Write Control	0	R/W

		Set together with CSR9 bit11 to enable write operation to EEPROM		
12		Reserved		
11	SRS	Serial EEPROM Select Set together with CSR9 bit14 or 13 to enable EEPROM access	0	R/W
10~4		Reserved		
3	SDO	Serial EEPROM data out This bit serially shifts data from the EEPROM to th AN983.	1	RO
2	SDI	Serial EEPROM data in This bit serially shifts data from the AN983 to the EEPROM.	1	R/W
1	SCLK	Serial EEPROM clock High/Low this bit to provide the clock signal for EEPROM.	1	R/W
0	SCS	Serial EEPROM chip select 1: selects the serial EEPROM chip.	1	R/W

CSR11(offset = 58h), TMR -General-purpose Timer

Bit	Name	Descriptions	Default Val	RW Type
31~17		Reserved		
16	СОМ	Continuous Operation Mode 1: sets the general-purpose timer in continuous operating mode.	0	R/W
15~0	GTV	General-purpose Timer Value Sets the counter value. This is a count -down counter with the cycle time of 204us.	0	R/W

CSR13(offset = 68h), WCSR-Wake-up Control/Status Register

Bit	Name	Descriptions	Default Val	RW Type
31		Reserved		
30	CRCT	CRC-16 Type	0	R/W
		0: Initial contents = 0000h		
		1: Initial contents = FFFFh		
29	WP1E	Wake-up Pattern One Matched Enable.	0	R/W
28	WP2E	Wake-up Pattern Two Matched Enable.	0	R/W
27	WP3E	Wake-up Pattern Three Matched Enable.	0	R/W
26	WP4E	Wake-up Pattern Four Matched Enable.	0	R/W
25	WP5E	Wake-up Pattern Five Matched Enable.	0	R/W
24-18		Reserved		

17	LinkOFF	Link Off Detect Enable. The AN983 will set the LSC bit o CSR13 after it has detected that link status is from ON to OFF.	0	R/W
16	LinkON	Link On Detect Enable. The AN983 will set the LSC bit o CSR13 after it has detected that link status is from OFF to ON.	0	R/W
15-11		Reserved	00001	
10	WFRE	Wake-up Frame Received Enable. The AN983 will include the "Wak -up Frame Received" event into wake-up events. If this bit is set, AN983 will assert PMES bit of PMR1 after AN983 has received a matched wake-up frame.	0	R/W
9	MPRE	Magic Packet Received Enable. The AN983 will include the "Magic Packet Received" event into wak -up events. I this bit is set, AN983 will assert PMES bit of PMR1 after AN983 has received a Magic packet.	0	R/W
8	LSCE	Link Status Changed Enable. The AN983 will include the "Link Status Changed" event into wake-up events. If this bit is set, AN983 will assert PMES bit of PMR1 after AN983 has detected a link status changed event	0	R/W
7-3		Reserved		
2	WFR	Wake-up Frame Received,	X	R/W1C*
		1: Indicates AN983 has received a wak -up frame. It is cleared by write 1 or upon power-up reset. It is not affected by a hardware or software reset.		
1	MPR	Magic Packet Received,	X	R/W1C*
		1: Indicates AN983 has received a magic packet. It is cleared by write 1 or upon power-up reset. It is not affected by a hardware or software reset.		
0	LSC	Link Status Changed,	X	R/W1C*
		1: Indicates AN983 has detected a link status change event. It is cleared by write 1 or upon power-up reset. It is not affected by a hardware or software reset.		

R/W1C*, Read Only and Write one cleared.

CSR14(offset = 70h), WPDR -Wake-up Pattern Data Register

All six wak -up patterns filtering information are programmed through WPDR register. The filtering information is as follows,

Offset	31	16 15	8	7	0
0000h		Wake-up pattern 1 mask b	oits 31:0		
0004h		Wake-up pattern 1 mask bi	ts 63:32		

W/-1 "	1 l- l-: 0.5 · C 4			
7.7				
Wake-up pattern 1 mask bits 127:96				
CRC16 of pattern 1	Reserved	Wake-up pattern 1 offset		
Wake-up pattern	2 mask bits 31:0			
Wake-up pattern 2	2 mask bits 63:32			
Wake-up pattern 2	2 mask bits 95:64			
Wake-up pattern 2	mask bits 127:96			
CRC16 of pattern 2	Reserved	Wake-up pattern 2 offset		
Wake-up pattern	3 mask bits 31:0			
Wake-up pattern	3 mask bits 63:32			
Wake-up pattern	3 mask bits 95:64			
Wake-up pattern 3	mask bits 127:96			
CRC16 of pattern 3	Reserved	Wake-up pattern 3 offset		
Wake-up pattern	4 mask bits 31:0			
Wake-up pattern	4 mask bits 63:32			
Wake-up pattern	4 mask bits 95:64			
Wake-up patt rn 4	mask bits 127:96			
CRC16 of pattern 4	Reserved	Wake-up pattern 4 offset		
Wake-up pattern	5 mask bits 31:0			
Wake-up pattern	5 mask bits 63:32			
Wake-up pattern	5 mask bits 95:64			
Wake-up pattern 5	mask bits 127:96			
CRC16 of pattern 5	Reserved	Wake-up pattern 5 offset		
	Wake-up pattern 1 CRC16 of pattern 1 Wake-up pattern 2 Wake-up pattern 2 CRC16 of pattern 2 Wake-up pattern 3 Wake-up pattern 3 CRC16 of pattern 3 CRC16 of pattern 3 CRC16 of pattern 4 Wake-up pattern 4 Wake-up pattern 4 Wake-up pattern 4 Wake-up pattern 4 Wake-up pattern 4 Wake-up pattern 4 Wake-up pattern 5 Wake-up pattern 6 Wake-up pattern 7 Wake-up pattern 8 Wake-up pattern 9 Wake-up pattern 9 Wake-up pattern 9 Wake-up pattern 9 Wake-up pattern 9 Wake-up pattern 9 Wake-up pattern 9	Wake-up pattern 2 mask bits 31:0 Wake-up pattern 2 mask bits 63:32 Wake-up pattern 2 mask bits 95:64 Wake-up pattern 2 mask bits 127:96 CRC16 of pattern 2 Reserved Wake-up pattern 3 mask bits 31:0 Wake-up pattern 3 mask bits 63:32 Wake-up pattern 3 mask bits 95:64 Wake-up pattern 3 mask bits 127:96 CRC16 of pattern 3 Reserved Wake-up pattern 4 mask bits 31:0 Wake-up pattern 4 mask bits 63:32 Wake-up pattern 4 mask bits 95:64 Wake-up pattern 4 mask bits 127:96 CRC16 of pattern 4 Reserved Wake-up pattern 5 mask bits 31:0 Wake-up pattern 5 mask bits 63:32 Wake-up pattern 5 mask bits 63:32 Wake-up pattern 5 mask bits 95:64 Wake-up pattern 5 mask bits 95:64 Wake-up pattern 5 mask bits 95:64		

- 1. Offset value is from 0-255 (8-bit width).
- 2. To load the whole wake-up frame filtering information, consecutive 25 long words write operation to CSR14 should be done.

CSR15(offset = 78h), WTMR - Watchdog timer

Bit	Name	Descriptions	Default Val	RW Type
31~6		Reserved		
5	RWR	Receive Watchdog Release, the time of releas watchdog timer from last carrier deserted	0	R/W
		0: 24 bit-time		
		1: 48 bit-time		

4	RWD	Receive Watchdog Disable	0	R/W
		0: If the receiving packet's length is longer than 2560 bytes, the watchdog timer will be expired.		
		1: disable the receive watchdog.		
3		Reserved		
2	JCLK	Jabber clock 0: cut off transmission after 2.6 ms (100Mbps) or 26 ms (10Mbps).	0	R/W
		1: cut off transmission after 25 0 byte-time.		
1	NJ	Non-Jabber 0: if jabber expired, r -enable transmit function after 42 ms (100Mbps) or 420ms (10Mbps)	0	R/W
		1: immediately r -enable the transmit function after jabber expire		
0	JBD	Jabber disable	0	R/W
		1: disable transmit jabber function		

CSR16(offset = 80h), ACSR5 - Assistant CSR5(Status register 2)

Bit	Name	Descriptions	Default Val	RW Type
31	TEIS	Transmit Early Interrupt status	0	RO/LH*
		Transmit early interrupt status is set to 1 when Transmit early interrupt function is enabled(set bit 31 of CSR17 = 1) and th transmitted packet is moved completed from descriptors to TX-FIFO buffer. This bit is cleared by written with 1.		
30	REIS	Receive Early Interrupt Status.	0	RO/LH*
		Receive early interrupt status is set to 1 when Receive e rly interrupt function is enabled(set bit 30 of CSR17 = 1) and the received packet is fill up its first receive descriptor. This bit is cleared by written with 1.		
29	LCS	Status of Link status change	0	RO/LH*
28	TDIS	Transmit Deferred Interrupt Status.	0	RO/LH*
27		Reserved		
26	PFR	PAUSE Frame Received Interrupt Status	0	RO/LH*
		1: indicates a PAUSE frame received when the PAUSE function is enabled.		
25~17		Reserved		
16	ANISS	Added normal interrupt status summary.	0	RO/LH*
		1: any of the added normal interrupt happened.		
15	AAIS	Added Abnormal Interrupt Status Summary.	0	RO/LH*
		1: any of added abnormal interrupt happened.		
14~0		These bits are the same as the status register of CSR5. You can access those status bits through either CSR5 or CSR16.		RO/LH*

LH* = High Latching and cleared by writing 1.

CSR17(offset = 84h), ACSR7- Assistant CSR7(Interrupt enable register 2)

Bit	Name	Descriptions	Default Val	RW Type
31	TEIE	Transmit Early Interrupt Enable	0	R/W
30	REIE	Receive Early Interrupt Enable	0	R/W
29	LCIE	Link Status Change Interrupt Enable	0	R/W
28	TDIE	Transmit Deferred Interrupt Enabl	0	R/W
27		Reserved		
26	PFRIE	PAUSE Frame Received Interrupt Enabl	0	R/W
25~17		Reserved		
16	ANISE	Added Normal Interrupt Summary Enable	0	R/W
		1: adds the interrupts of bit 30 and 31 of ACSR7 to the normal interrupt summary(bit 16 of CSR5).		
15	AAIE	Added Abnormal Interrupt Summary Enable.	0	R/W
		1: adds the interrupt of bit 26, 28 and 29 of ACSR7 to the abnormal interrupt summary.		
14~0		These bits are the same as the interrupt enable register o CSR7. You can access those interrupt enable bits through either CSR7 or CSR16.		R/W

CSR18(offset = 88h), CR - Command Register, bit31 to bit16 automatically recall from EEPRO

Bit	Name	Descriptions	Default Val	RW Type
31	D3CS	D3cold support, mapped to CR48<31>	1 from	R/W
			EEPROM	
30-28	AUXCL	Aux Current. Thest three bits report the maximum 3.3 Vaux	010b	RO
		current requirements for CENTAUR -P. If bit 31 of PMR0 is '1', the default value is 0101b, means CENTAUR -P need 100	from	
		mA to support remote wake-up in D3cold power state.	EEPROM	
27-26		Reserved		
25	Pci_pad	No effect in PCI mode		R/W
24	Pmes_stic ky	1: pmez sticky: While pmez signal is asserted by wake up event, it can not be auto de-asserted. The software should clear CR49<15> PMES bit to d -assert the pmez signal. 0: pmez auto de-asserted: While pmez signal is asserted by wake up event, it will be de-sasserted by power up automati-cally.	0 from EEPROM	R/W
23	4_3LED	If this bit is reset, 3 LED mode is selected, the LEDs definition is: • 100/10 speed • Link/Activit • Full Duplex/Collision If this bit is set, 4 LED mode is selected, the LEDs definitio is: • 100 Link	0 from EEPROM	R/W

		• 10 Link		
		Activity		
		Full Duplex/Collision		
22, 21	RFS	Receive FIFO size control	10	R/W
		11: 1K	from	
		10: 2K	EEPROM	
		01,00: reserved		
20	CRD	Clock Run(clk-run pin) disable	1	R/W
		1: disables the function of clock run supports to PCI.	from EEPROM	
19	PM	Power Management, enables the AN983 whether to act vate the Power Management abilities. When this bit is set into "0" the AN983 will set the Cap_Ptr register to zero, indicating no PCI compliant power management capabilities.	1 from EEPROM	RO
		The value of this bit will be mapped to NC-bit 20 of CR1.		
		In PCI Power Management mode, the Wak -up events include "Wake-up Frame Received", "Magic Packe Received" and "Link Status Changed" depends on the CSR13 settings		
18	APM	APM mode, this bit is effective when PM (csr18[19]) =1	1	R/W
		1: Magic Packet wake-up event default enable	from	
		0: Magic Packet wake -up event default disable	EEPROM	
17	LWS	Should be 0	0	R/W
			from EEPROM	
16~8		reserved		
7	D3_APM	D3_cold APM_mode_en for PC99 certificati	0	R/W
		It doesn't matter the status of PEM_EN, the pmez signal can be asserted by programming this bit		
		1: Assert pmez signal		
		0: de-assert pmez signa		
6	RWP	Reset Wake-up Pattern Data Register Pointer	0	R/W
		0: Normal		
		1: Reset		
5	PAUSE	PAUSE function control to disable or enable the PAUSE function for flow control. The default value of PAUSE is decided by the result of Auto-Negotiation. Driver can force to enable or disable it after the Auto-Negotiation completed.	0	R/W
		0: PAUSE function is disabled.		
		1: PAUSE function is enabled		_
4	RTE	Receive Threshold Enable	0	R/W
		1: the rec ive FIFO threshold is enabled.		
		0: disable the receive FIFO threshold selection in bit 3~2 of this register, the receive threshold is set to 6 -byte.		
		uns register, the receive uneshold is set to 0 -byte.		L

3~2	DRT	Drain Receive Threshol	01	R/W
		00: 32 bytes (8 DW)		
		01: 64 bytes (16 DW)		
		10: store-and -forward		
		11: reserved		
1	SINT	Software interrupt.	0	R/W
0	ATUR	1: enable automatically transmit-underrun recovery.	0	R/W

CSR19(offset = 8ch) - PCIC, PCI bus performance counter

Bit	Name	Descriptions	Default Val	RW Type
31~16	CLKCNT	The number of PCI clock from read request asserted to access completed. This PCI clock number is accumulated all the read command cycles from last CSR19 read to current CSR1 read.	0	RO*
15~8		reserved		
7~0	DWCNT	The number of double word accessed by the last bus master. This double word number is accumulated all the bus master data transactions from last CSR19 read to current CSR19 read.	0	RO*

RO* = Read only and cleared by reading.

CSR20(offset = 90h) - PMCSR, Power Management Command and Status.(The same register value mapping to CR49-PMR1.)

Bit	Name	Descriptions	Default Val	RW Type
31~16		reserved		
15	PMES	PME_Status, This bit is set when the AN983 would normally assert the PME# signal for wakeup event, this bit is independent of the state of the PME-En bit.	0	RO
		Writing a "1" to this bit will clear it and cause the AN983 to stop asserting a PME#(if enabled). Writing a "0" has no effect.		
		Since the AN983 doesn't supports PME# from D3cold, this bit is defaulted to "0"		
14,13	DSCAL	Data_Scale, indicates the sca ing factor to be used when interpreting the value of the Data register. This field is required for any function that implements the Data register. Otherwise, it's optional	00ь	RO
		The AN983 doesn't support Data register and Data_Scale.		
12~9	DSEL	Data_Select, This four bit field is used to select which data i to be reported through the Data register and Data_Scale field. This field is required for any function that implements the Data register.	0000ь	RO

		The AN983 doesn't support Data_select.		
8	PME_En	PME_En, "1" enables the AN983 to assert PME#. When "0" disables the PME# assertion.	0	RO
		This bit defaults to "0" if the function does not support PME# generation from D3cold.		
7~2		reserved.	000000	RO
1,0	PWRS	PowerState, This two bit field is used both to determine the current power state of the AN983 and to set the AN983 into a new power state. The definition of this field is given below.	00b	RO
		00b - D0		
		01b - D1		
		10b - D2		
		11b - D3hot		
		If software attempts to write an unsupported, optional state to this field, the write operation must complete normally on the bus, however the data is discarded a no state change occurs.		

CSR21(offset = 94h) - WTDP, The current working transmit descriptor pointer

Bit	Name	Descriptions	Default Val	RW Type
31~0		The current working transmit descriptor pointer for driver's double checking or other special purpose.	XXXX	RO

CSR22(offset = 98h) - WRDP, The current working receive descriptor pointer

Bit	Name	Descriptions	Default Val	RW Type
31~0		The current working receive descriptor pointer for driver's double checking or other special purpose.	XXXX	RO

CSR23(offset = 9ch) - TXBR, transmit burst count / time-out

CDITIE	25K25(onset = 7en) - 1KBK, transmit burst count / time-out					
Bit	Name	Descriptions	Default Val	RW Type		
31~21		reserved				
20~16	TBCNT	Transmit Burst Count After this number of consecutive successful transmit, transmi completed interrupt will be generated. Continuously do this function if no reset.	0	R/W		
11~0	тто	Transmit Time-Out = (deferred time + back-off time). When the TDIE(bit28 of ACSR7) is set, the timer is decreased in unit of 2.56us(100M) or 25.6us(10M). If th timer expires before another packet transmit begin, then the TDIE interrupt will be generated	0	R/W		

CSR24(offset = a0h) - FROM, Flash ROM(also the boot ROM) port

Bit	Name	Descriptions	Default Val	RW Type
31	Bra16_	This bit is only effective while 4 LED mode selected (bit 2 of CSR18 is set)	1	R/W
		When 4 LED mode selected, and this bit is set, then pin 105 is defined as brA16, else it is defined as LED pin – fd/col.		
30~28		reserved		
27	REN	read enable, clear if read data is ready in DATA, bit7-0 o FROM.	0	R/W
26	WEN	Write enable, cleared if write completed	0	R/W
25~8	ADDR	Flash ROM address	0	R/W
7~0	DATA	Read/Write data of flash ROM	0	R/W

CSR25(offset = a4h) - PAR0, physical address register 0, automatically recall from EEPROM

	continue (chief and physical and essing sour of automatically recall from EEI from					
Bit	Name	Descriptions	Default Val	RW Type		
31~24	PAB3	physical address byte 3	From EEPROM	R/W		
23~16	PAB2	physical address byte 2	From EEPROM	R/W		
15~8	PAB1	physical address byte 1	From EEPROM	R/W		
7~0	PAB0	physical address byte 0	From EEPROM	R/W		

CSR26(offset = a8h) - PAR1, physical address register 1, automatically recall from EEPROM

		, , <u>, , , , , , , , , , , , , , , , , </u>		
Bit	Name	Descriptions	Default Val	RW Type
31~24		reserved		
23~16		reserved		
15~8	PAB5	physical address byte 5	From EEPROM	R/W
7~0	PAB4	physical address byte 4	From EEPROM	R/W

for example, physical address = 0 - 00 - e8 - 11 - 22 - 33

PAR0= 11 e8 00 0 PAR1= xx xx 33 2

PAR0 and PAR1 are readable, but can be written only if the receive state is in st opped(CSR5 bit1 -17=000).

CSR27(offset = ach) - MAR0, multicast address register

Bit Name Descriptions I		RW Type
-------------------------	--	---------

31~24	MAB3	multicast address byte 3 (hash table 31:24)	0	R/W
23~16	MAB2	multicast address byte 2 (hash table 23:16)	0	R/W
15~8	MAB1	multicast address byte 1 (hash table 15:8)	0	R/W
7~0	MAB0	multicast address byte 0 (hash table 7:0)	0	R/W

CSR28(offset = b0h) - MAR1, multicast address register

			1	ı
Bit	Name	Descriptions	Default Val	RW Type
31~24	MAB7	multicast address byte 7 (hash table 63:56)	0	R/W
23~16	MAB6	multicast address byte 6 (hash table 55:48)	0	R/W
15~8	MAB5	multicast address byte 5 (hash table 47:40)	0	R/W
7~0	MAB4	multicast address byte 4 (hash table 39:32)	0	R/W

MAR0 and MAR1 are readable, but can be written only if the receive state is in stopped(CSR5 bit1 -17=000).

Operation Mode Register (Memory base offset 0FCh)

Bit	Name	Descriptions	Default Val	RW Type
31	SPEE	Network Speed Status 1: 100M	0	RO
		0: 10M		
30	FD	Full/Half Duplex Status	0	RO
		1: Full duplex 0: Half duplex		
29	LINK	Network Link Status	0	RO
		1: Link On 2: Link Of		
28~27	Reserved			
26	EERLOD	Write 1 to this bit will cause AN983 to reload data from EEPROM. After reload completed, this bit will be cleared automatically.	0	R/W
25~3	Reserved			
2~0	OpMode	These three bits are used to configure AN983's operation mode:	111b	R/W
		111b: Single Chip mode (Normal operation)		
		At this mode, AN983 is configured as single chip to provide PCI to Ethernet controller.		
		100b: MAC-only mode		
		The AN983 is configured as a MAC only controller, it provide standard MII interface to link to the external PHY. The MII interface pins are multiplexed with BootROM interface.		

	Others: For diagnostic purpose.		
		i .	

7.3. Transceiver(XCVR) Registers (accessed by csr9 MDI/MMC/MDO/MDC)

7.3.1. Transceiver registers lis

Register	Descriptio	Default
0	Control Register	1000
1	Status Register	7849
2	PHY Identifier 1 Register	0022
3	PHY Identifier 2 Register	5513
4	Auto-Negotiation Advertisement Register	01E1
5	Auto-Negotiatio Link Partner Ability Register	0001
6	Auto-Negotiation Expansion Register	0004
7	Next Page Advertisement Registe	2001
8-15	Reserved	XXXX
16	TDK specific Register	0540
17	Interrupt Control/Status Register	0000
18	Diagnostic Register	0000
19	Power Management & Loopback Register	0020
20	Loopback and Power management Register	XXFX
21	Mode Control Registe	0304
22	Reserved	XXXX
23	PLL Lock Register	0000
24	Receive Error Counter Register	0000
25-31	Reserved	XXXX

7.3.2. Transceiver registers Descriptions

Legend:

Type	Type Description		Description
RW	Readable and writable	RO	Read Only
SC	SC Self Cleari		Cleared on the read operation
LL	Latch Low until clear	LH	Latch high until clear

Register 0: Control Register

Reg.bit	Name	Description	Mode	Default
0.15	Reset	1 = PHY reset.	RW/SC	0
		This bit is sel -clearing.		
0.14	Loopbac	Enable loopback mode. This will loopback TXD to RXD, thus it will ignore all the activity on the cable media.	RW	0
		0 = Normal operation.		
0.13	Speed Select	1 = 100Mbps, 0 = 10Mbps. This bit will be ignored if Auto Negotiation is enabled (0.12=1).	RW	1
0.12	Auto-Neg.	1 = Enable auto-negotiate process (overrides 0.13	RW	1
	Enable	and 0.8)		
		0 = Disable aut -negotiate process.		
0.11	Power	1 = Power down. CENTAU -P will shut off all	RW	0
	Down	blocks except for MDIO/MDC interface.		
		0 = Normal operation.		
0.10	Isolate	1 = Electrically isolate the PHY from MII.	RW	0
		However, PHY is still able to response to		
		MDC/MDIO.		
		0 = Normal operation.		
0.9	Restart	1 = Restart Auto-Negotiation process.	RW/SC	0
	Auto-Negot	0 = Normal operation.		
	iation			
0.8	Duplex	1 = Full duplex.	RW	0
	Mode	0 = Half duplex.		

Reg.bit	Name	Description	Mode	Default
		If Auto-Neg. enabled: This bit is writable but will be ignored.		
0.7	Collision Test	1 = Enable collision test, which issues the COL signal in response to the assertion of TX_EN signal 0 = disable COL test.	RW	0
0.[6:0]	Reserved		RW	000000

Register 1: Status Register

Reg.bit	Name	Description	Mode	Default
1.15	100Base-T4	Permanently tied to zero indicates no 100BaseT4	RO	0
		capability.		
1.14	100Base-T	1 = 100BaseTX with full duplex	RO	1
	X Full	0 = No 100BaseTX full duplex ability.		
	Duplex			
1.13	100Base-T	1 = 100BaseTX with half duplex.	RO	1
	X Half	0 = No TX half-duplex ability.		
	Duplex			
1.12	10Base-T	1 = 10BaseT with full duplex.	RO	1
	Full Duplex	$0 = No \ 10BaseT $ full duplex ability.		
1.11	10Base-T	1 = 10BaseT with half duplex.	RO	1
	Half	$0 = No\ 10BaseT$ half duplex ability.		
	Duplex			
1.[10:6]	Reserved		RO	00000
1.5	Auto-Negot	1 = Auto-negotiate process completed. Reg. 4, 5, 6	RO	0
	iate	are valid after this bit is set.		
	Complete	0 = Auto-negotiate process not completed.		
1.4	Remote	1 = Remote fault condition detected.	RO/L	0
	Fault	0 = No remote fault.		
		This bit will remain set until it is cleared by reading		
		register 1 via management interface.		
1.3	Auto-Negot	1 = Able to perform Auto-Negotiation function, its	RO	1
	iate Abilit	value is determined by ANEGA pin.		

		0 = Unable to perform Auto-Negotiation function.		
1.0	T 1 G		DO 7	
1.2	Link Status	1 = Link is established. This is Latched bit.	RO/L	0
		Therefore, if CENTAUR-P link failed, this bit will		
		be cleared and remain "0" until register is rea		
		again via management interface.		
		0 = link is down.		
1.1	Jabber	1 = Jabber condition detect.	RO/L	0
	Detect	0 = No Jabber condition detected.		
1.0	Extende	1 = Extended register capable. This bit is tied permanently to one.	RO	1
	Capabilit	permanently to one.		

Register 2: PHY Identifier 1 Register

Reg.bit	Name	Description	Mode	Default
2.[15:0]	OUI	Composed of the 3rd through 18th bits of the	RO	0382(H)
		Organizationally Unique Identifier (OUI),		
		respectively.		

Register 3: PHY Identifier 2 Register

Reg.bit	Name	Description	Mode	Default
3.[15:10]	OUI	Assigned to the 19th through 24th bits of the OUI.	RO	010010
3.[9:4]	Mode	Six bit manufacturer's model number.	RO	000001
	Number			
3.[3:0]	Revision	Four bit manufacturer's revision number.	RO	0000
	Number			

Register 4: Auto-Negotiation Advertisement Register

Reg.bit	Name	Description	Mode	Default
4.15	Next Page	1 = Next Page enabled.	RW	0
		0 = Next Page disabled.		
4.14	Acknowle	This bit will be set internally after receiving 3	RO	0

				1
	ge	consecutive and consistent FLP bursts.		
4.13	Remote	1 = Advertises that this device has detected	RW	0
	Fault	Remote Fault.		
		0 = No remote fault detected.		
4.[12:10]	Reserved	For future technology	RW	000
4.9	100Base-T	CENTAUR-P doesn't support 100BaseT4 function,	RO	0
	4	i.e., this bit ties to zero.		
4.8	100Base-T	1 = 100BaseTX full duplex supported by Local	RW	1
	X Full	device.		
	Duplex	0 = 100BaseTX full duplex not supported by Loca device.		
		Default is set by Reg. 1.14.		
4.7	100Base-T	1 = 100BaseTX supported by Local device.	RW	1
	X	0 = 100BaseTX not supported by Local device.		
		Default is set by Reg. 1.13.		
4.6	10Base-T	1 = 10Mbps full duplex supported by Local device.	RW	1
	Full	0 = 10Mbps full duplex not supported by Local		
	Duplex	device.		
		Default is set by Reg. 1.12.		
4.5	10Base-T	1 = 10Mbps supported by Local device.	RW	1
		0 = 10Mbps not supported by Local device.		
		Default is set by Reg. 1.11.		
4.[4:0]	Selector	Protocol Selection [00001] = IEEE 802.3.	RW	00001
	Field			

Register 5: Auto-Negotiation Link Partner Ability Register

Reg.bit	Name	Description	Mode	Default
5.15	Next Page	1 = Link partner desires Next Page transfer.	RO	0
		0 = Link partner does not desire Next Page transfer.		
5.14	Acknowle	1 = Link Partner acknowledges reception of FLP	RO	0
	ge	words.		
		0 = No acknowledged by Link Partner.		
5.13	Remote	1 = Remote Fault indicated by Link Partner.	RO	0

	Fault	0 = No remote fault detected by Link Partner.		
5.[12:10]	Reserved	For future technology	RO	000
5.9	100Base-T	1 = 100BaseT4 supported by Link Partner.	RO	0
	4	0 = 100BaseT4 not supported by Link Partner.		
5.8	100Base-T	1 = 100BaseTX full duplex supported by Link	RO	0
	X Full	Partner.		
	Duplex	0 = 100BaseTX full duplex not supported by Link		
		Partner.		
5.7	100Base-T	1 = 100BaseTX supported by Link Partner.	RO	0
	X	0 = 100BaseTX not supported by Link Partner.		
5.6	10Base-T	1 = 10Mbps full duplex supported by Link Partner.	RO	0
	Full	0 = 10Mbps full duplex not supported by Link		
	Duplex	Partner.		
5.5	10Base-T	1 = 10Mbps supported by Link Partner.	RO	0
		0 = 10Mbps not supported by Link Partner.		
5.[4:0]	Selector	Protocol Selection [00001] = IEEE 802.3.	RO	00001
	Field			

Register 6: Auto Negotiation Expansion Registe

Reg.bit	Name	Description	Mode	Default
6.[15:5]	Reserved		RO	0
6.4	Parallel Detection Fault	1 = Fault detected by parallel detection logic, this fault is due to more than one technology detecting concurrent link up condition. This bit can only be cleared by reading this register using the management interface.	RO/L	0
		0 = No fault detected by paralleldetection logic		
6.3	Link	1 = Link partner support next page function	RO	0
	Partne	0 = Link partner does not support next page		
	Next Page	function.		
	Able			
6.2	Next Page	Next page is supported, i.e., this bit is permanently	RO	1
	Able	ties to 1.		

Reg.bit	Name	Description	Mode	Default
6.1	Page	It is set when a new link code word has been	RO	0
	Received	received into the Auto-Negotiation Link Partne		
		Ability Register. This bit is cleared upon a read o		
		this register.		
6.0	Link Partne Auto-Nego	1 = Link partner is Auto-Negotiat on capable0 = Link partner is not Auto-Negotiation capable.	RO	0
	tiation Abl			

Register 7: Auto Negotiation Next Page Transmit Register (ANNPTR)

Reg.bit	Name	Description	Mode	Default
7.15	NP	Next page indication:	RW	0
		1 = Another Next Page desired.		
		0 = No other Next Page Transfer desired.		
7.14	Reserved	-	RO	0
7.13	MP	Message page:	RW	1
		1 = Message page.		
		0 = Un-formatted page.		
7.12	ACK2	Acknowledge 2	RW	0
		1 = Will comply with message		
		0 = Can not comply with message.		
7.11	TOG_T	Toggle:	RW	0
		1 = Previous value of transmitted link code word		
		equals to 0.		
		0 = Previous value of transmitted link code word		
		equals to 1.		
7.[10:0]	CODE	Message/Un-formatted Code Field.	RW	001

Register 16: ADMTEK Specific Register

Reg.bit Name Description	Mode	Default
--------------------------	------	---------

Reg.bit	Name	Description	Mode	Default
16.15	Repeater	1= Repeater mode, ful -duplex will be inactive, and	RW	Set b
		CRS only responses to receive activity. SQE test		RPTR
		function is also dis abled.		
16.14	INTR_LE	INTR pin will be active high if this register bit is set	RW	0
	VL	to 1.		
		INTR pin will be active low if th s register bit is set		
		to 0.		
16.[13:12]	Reserved		RW	00
16.11	SQE Test	1 = Disable 10BaseT SQE testing.	RW	0
	Inhibi	0 = Enable 10BaseT SQE testing, which wil		
		generate a COL pulse following the completion of a		
		packet transmission.		
16.10	10BaseT	1 = Enable normal loopback in 10BaseT mode.	RW	1
	Loopback	0 = Disable normal loopback in 10BaseT mode.		
16.[9:6]	Reserved		RO	0000
16.5	Auto	1 = Disable auto polarity detection / correction.	RW	0
	polarit	0 = Enable auto polarity detection / correction.		
	Disable			
16.4	Reverse	If Reg. 16.5 is set to 0, and Reverse polarity is	RW	0
	Polarity	detected on the media, this bit will get set to 1.		
		If Reg. 16.5 is set to 1, writing a one to this bit will		
		reverse the polarity of the transmitter.		
		Note: the reverse polarity is detected either through		
		8 inverted NLP or through a burst of inverted FLP.		
16.[3:1]	Reserved		RO	000
16.0	Receive Clock	Write a one to this bit will shut off RX_CLK when	RW	0
	Control	incoming data is not present. RX_CLK will		
		resume active 1 clock cycle prior to RX_DV goes		
		high, and shut off 64 clock cycles after RX_DV		
		goes low.		
		However, in loopback and PCS bypassed modes,		
		writing to this bit does not affect RX_CLK.		

Reg.bit	Name	Description	Mode	Default
		Receive clock will be active all the time		

Register 17: Interrupt Control/Status Register

Reg.bit	Name	Description	Mode	Default
17.15	Jabber_IE	Jabber Interrupt Enable	RW	0
17.14	Rx_Er_IE	Receive Error Interrupt Enable.	RW	0
17.13	Page_Rx_I E	Page Received Interrupt Enable.	RW	0
17.12	PD_Fault_I E	Parallel Detection Fault Inter rupt Enable.	RW	0
17.11	LP_Ack_I E	Link Partner Acknowledge Interrupt Enable.	RW	0
17.10	Link_Not_ OK_ IE	Link Status Not OK Interrupt Enable.	RW	0
17.9	R_Fault_IE	Remote Fault Interrupt Enable	RW	0
17.8	ANeg_Co mp_IE	Auto-Negotiation Complete Interrupt Enable.	RW	0
17.7	Jabber_Int	This bit is set when a jabber event is detected.	RC	0
17.6	Rx_Er_In	This bit is set when RX_ER transitions high	RC	0
17.5	Page_Rx_I	This bit is set when a new page is received from link partner during Auto-Neg.	RC	0
17.4	PD_Fault_I	This bit is set when parallel detect fault is detected.	RC	0
17.3	LP_Ack_In	This bit is set when the FLP with acknowledge bit set is received.	RC	0
17.2	Link_Not_ OK Int	This bit is set when link status switches from O status to Non-OK status (Fail or Ready).	RC	0
17.1	R_Fault_In	This bit is set when remote fault is detected.	RC	0
17.0	A_Neg_Co	This bit is set when Auto-Neg is complete.	RC	0

mp Int		

^{*} See Interrupt Source Table for bit assignments

Register 18: Diagnostic Registe

Reg.bit	Name	Description	Mode	Default
18.[15:12]	Reserved		RO	0000
18.11	DPLX	This bit indicates the result of the Auto-Neg for	RO	0
18.10	Speed	duplex arbitration. This bit indicates the result of the Auto-Neg for data speed arbitration.	RO	0
18.9	RX_PASS	In 10BT mode, this bit indicates that Manchester data has been detected. In 100BT mode, it indicates valid signal has been received but not necessarily locked on to.	RO	0
18.8	RX_LOCK	Indicates the receive PLL has locked onto the received signal for the selected speed of operation (10Bas -T or 100Base-TX). This bit is set whenever a cycl -slip occurs, and will remain set until it is read.	RO/SC	0
18.[7:0]	Reserved		RO	0

Register 19: Power/Loopback Registe

Reg.bit	Name	Description	Mode	Default
19.[14:7]	Reserved		RW	00
19.6	TP12	Transmit transformer ratio selection	RW	0
		1 = 1.25:1		
		0 = 1:1		
19.5	Low Power	1 = Enable advanced power saving mode.	RW	1
	Mode	0 = disable advanced power saving mode.		
19.4	Test	1 = Enable test loopback. Data will e transmitted	RW	0
	Loopbac	from MII interface to clock recovery and loopback		

		to MII received data.		
19.3	Digital	1 = Enable loopback. RW		0
	loopback	0 = Normal operation.		
19.2	LP_LPBK	1 = Enable link pulse loopback.	RW	0
		0 = Normal operation.		
19.1	NLP Link	1 = In Auto-Neg test mode, send NLP instead of	RW	0
	Integrity	FLP in order to test NLP receive integrity.		
	Test	0 = Sending FLP in Auto-Neg test mode.		
19.0	Reduc	1= Reduce time constant for Auto-Negotiation	R	0
	Timer	timer.		
		0 = Normal operation.		

Register 20: Loopback and Power Management Register

Reg.bit	Name	Description	Mode	Default
20.[15:8]	Reserved		RO	0
20.[7:4]	Cable	These bits can be used as cable length indicator. The	RO	0
	measureme	bits are incremented from 0000 to 1111, with an		
	nt	increment of approximately 10 meters. The		
	capability	equivalent is 0 to 32 dB with an increment of 2 dB		
		@ 100MHz. The value is a read back from the		
		equalizer, and the measured value is not absolute.		
20.[3:0]	Reserved		RO	0

Register 21: Mode Control Register

Reg.bit	Name	Description	Mode	Default
21.15	Reserved		RO	0
21.14	NLP	1 = Force 10B-T link up without checking NLP.	RW	0
	Disable	0 = Normal Operation.		
21.13	Force_link	1 = force link up, auto negotiation must be disabled	R/W	0
	_up	at this tim		

Reg.bit	Name	Description	Mode	Default
21.12	Jabber	1 = Disable Jabber function in PHY.	RW	0
	Disable	0 = Enable Jabber function in PHY.		
21.11	10BT_Sel	1 = Enable 7-wire interface for 10Base-T operation.	RW	0
		This bit is useful only when the chip is not in PCS		
		bypass mode		
		0 = Normal operation.		
21.[10:9]	Reserved		RO	0
21.8	FEF_Disab	1 = Enable far-end-fault generation and detection	RW	Set b
	le	function.		TECH
		0 = Disable far-end-fault.		FX_SEL
				ANEGA
21.7	Force FEF	This bit is set to force to transmit Far End Faul	RW	0
	Transmit	(FEF) pattern.		
21.6	Rx_Er_Cnt	When Receive Error Counter is full, this bit will ge	RO/ RC	0
	Full	set to one.		
21.5	Disable	1 = Disable Receive Error Counter.	RW 0	
	Rx_Er_Cnt	0 = Enable Receive Error Counter.		
21.4	Dis_WDT	1 = Disable the watchdog timer in the decipher.	RW	0
		0 = Enable watchdog timer.		
21.3	En_RPB	1 = Enable remote loopback.	RW	0
		0 = Disable remote loopback.		
21.2	Dis_Scrm	1 = Enable data scrambling.	RW	1
		0 = Disable data scrambling.		
		When FX mode is selected, this bit will be forced to		
		one		
21.[1:0]	Reserved		RO	

Register 23: PLL Lock Registe

Reg.bit	Name	Description	Mode	Default
23.[15:0]	DLOCK	Count PLL lock drop events.	RW	0000
	drop			

Centaur	-P Specific	atio		53
	counter			

Register 24: Receive Error Counter Register

Reg.bit	Name	Description	Mode	Default
24.[15:0]	RX_ER	Count receive err or events.	RW	0000
	counter			

7.4. Descriptors and Buffer Management

The CENTAUR-P provides receive and transmit descriptors for packet buffering and management.

7.4.1. Receive descriptor

7.4.1.1. Receive Descriptor Table

-	31				0	
RDES0	Own			Status		
RDES1		I	Contro	Buffer2 byte-count	Buffer1 byte-count	
RDES2			Buffer1 address (DW boundary)			
RDES3			Buffer2 address (DW boundary)			

Descriptors and receive buffers addresses must be longword alignment

7.4.1.2. Receive Descriptor Descriptions

RDES0

Bit#	Name	Descriptions
31	OWN	Own bit
		1: indicate the new receiving data can be put into this descriptor
		0: Host does not move the receiving data out yet.
30-16	FL	Frame length, including CRC. This field is valid only in last descriptor
15	ES	Error summary, OR of the following bit
		0: overflow
		1: CRC erro
		6: late collision
		7: frame too long
		11: runt packet
		14: descriptor error
		This field is valid only in last descriptor.
14	DE	Descriptor error. This bit is valid only in last descriptor
		1: the current receiving packet is not able to put into the current valid descriptor. This packet i truncated.
13-12	DT	Data type.
		00: normal

riptor
last descriptor
or.
1

RDES1

KDESI		
Bit #	Name	Descriptions
31~26		reserved
25	RER	Receive end of ring
		indicates this descriptor is last, return to base address of descripto
24	RCH	Second address chain
		Use for chain structure. Indicates the buffer2 address is the next descriptor address.
		Ring mode takes precedence over chained mod
23~22		reserved
21~11	RBS2	Buffer 2 size (DW boundary
10~ 0	RBS1	Buffer 1 size (DW boundary

RDES2

Bit #	Name	Descriptions
31~0	RBA1	Receive Buffer Address 1. This buffer address should be double word aligned

RDES3

Bit #	Name	Descriptions
31~0	RBA2	Receive Buffer Address 2. This buffer address should be double word aligned

7.4.2. Transmit Descriptor

7.4.2.1. Transmit Descriptor Table

	31			0
TDES0	Own		Status	
TDES1		Contro	Buffer2 byte-count	Buffer1 byte-count
TDES2			Buffer1 address	
TDES3			Buffer2 address	

Descriptor addresses must be longword alignment

7.4.2.2. Transmit Descriptor Descriptions

TDES0

2000/3/23

DESU	NT	D. C.	
Bit #	Name	Descriptions	
31	OWN	Own bit	
		1: Indicate this descriptor is ready to transmit	
		0: No transmit data in this descriptor for transmission	
30-24		Reserved	
23-22	UR	Under-run count	
21-16		Reserved	
15	ES	Error summary, OR of the following b	
		1: under-run error	
		8: excessive collision	
		9: late collision	
		10: no carrier	
		11: loss carrier	
		14: jabber time-out	
14	ТО	Transmit jabber time-out	
13-12		Reserved	
11	LO	Loss carrier	
10	NC	No carrier	

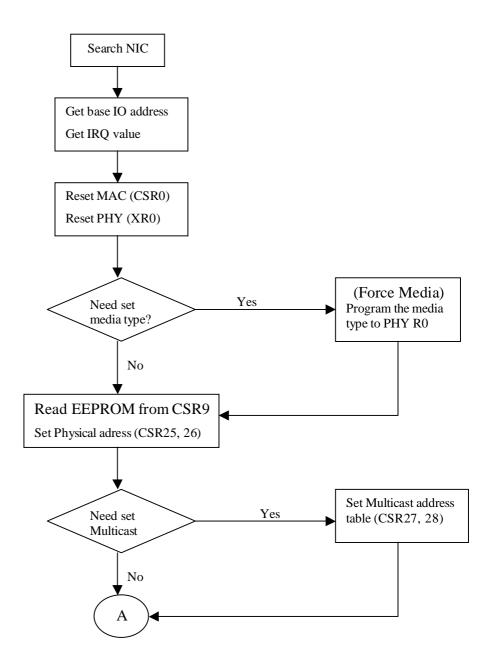
9	LC	Late collision
8	EC	Excessive collision
7	HF	Heartbeat fail
6-3	CC	Collision count
2		Reserved
1	UF	Under-run error
0	DE	Deferred

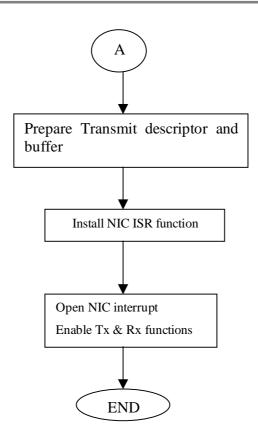
TDES1

Bit #	Name	Descriptions
31	IC	Interrupt completed
30	LS	Last descriptor
29	FS	First descriptor
28,27		Reserved
26	AC	Disable add CRC function
25	TER	End of Ring
24	ТСН	2nd address chain
		Indicate the buffer2 address is the next descriptor address
23	DPD	Disable padding functi
22		Reserved
21-11	TBS2	Buffer 2 size
10-0	TBS1	Buffer 1 size

TDES2

Bit #	Name	Descriptions
31~0	BA1	Buffer Address 1. Without any limitation on the transmission buffer address.


TDES3


Bit #	Name	Descriptions
31~0	BA2	Buffer Address 2. Without any limitation on the transmission buffer address.

8. Functional Descriptions

8.1. Initialization Flow

The flow of initialize AN983 is shown as below.

8.2. Network Packet Buffer Managemen

8.2.1 Descriptor Structure Types

For networking operation, the CENTAUR-P transmits the data packet from transmit buffers in host memory to CENTAUR-P's transmit FIFO and receives the data packet from CENTAUR-P's receive FIFO to receive buffers in host memory. The descriptors that the CENTAUR-P supports to build in host memory are used as the pointers of thes transmit and receive buffers.

There are two structure types for the descriptor **Ring and Chain**, supported by the CENTAUR-P and are shown as below. The type selection are controlled by the bit24 of RDES1 and the bit24 of TDES1.

The transmit and receive buffers are physically built in host memory. Any buffer ca contain either a whole packet or just part of a packet. But it can't contain more than one packet.

• Ring structure: There are two buffers per descriptor in the ring structure. Support receive early interrupt.

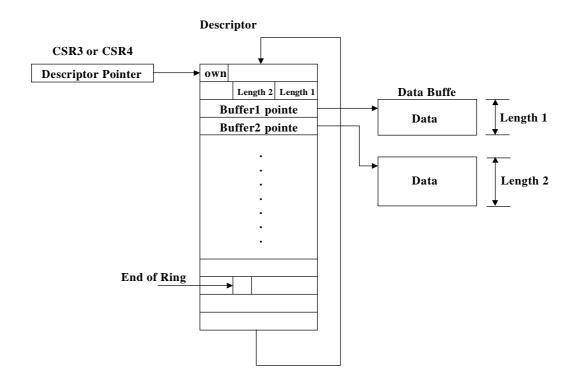


Fig.3 Ring structure of frame buffer

Chain structure: There is only one buffer per descriptor in chain structure.

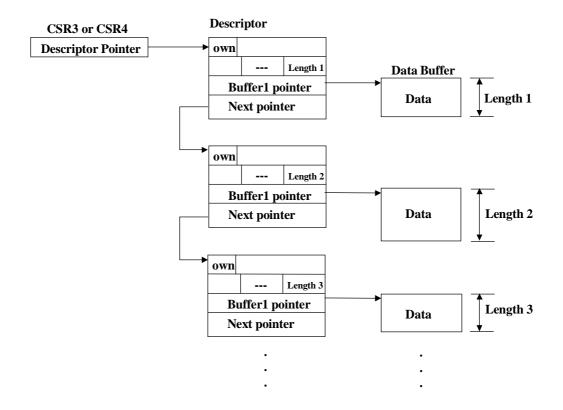


Fig.4 Chain structure of frame buffer

8.2.2. The point of descriptor management

OWN bit = 1, ready for network side access OWN bit = 0, ready for host side access

• Transmit Descriptor Pointers

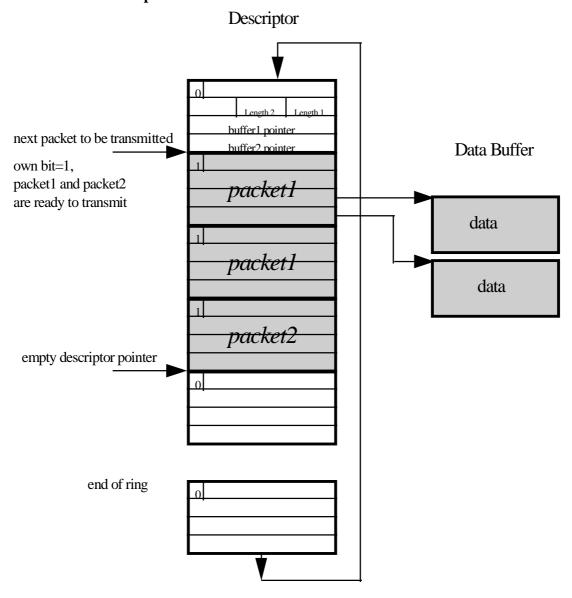


Fig.5 Transmit pointers for descriptor management

• Receive Descriptor Pointers

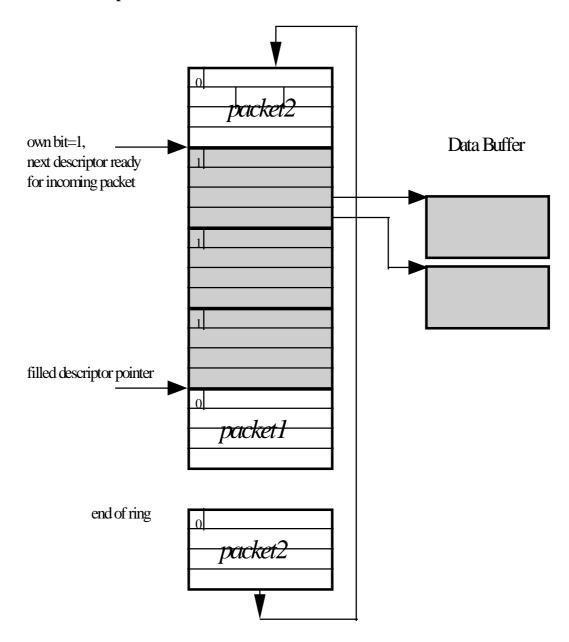
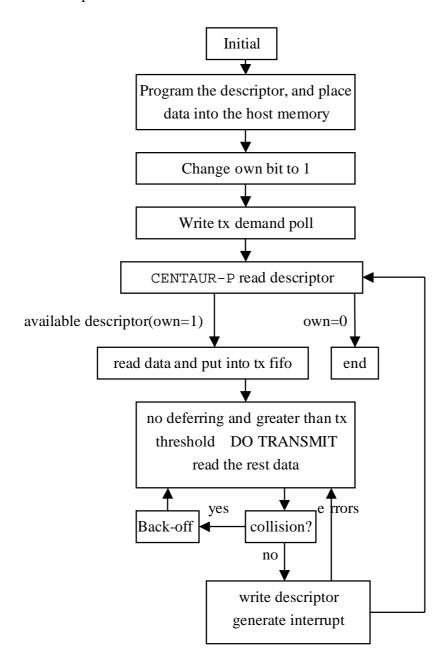



Fig.6 Receive pointers for descriptor managemen

8.3. Transmit Scheme and Transmit Early Interrupt

8.3.1. Transmit flow

The flow of packet transmit is shown as below.

8.3.2 Transmit pre-fetch data flow

- Transmit FIFO size=2K-byte
- two packets in the FIFO at the same time
- meet the transmit min. back-to-back

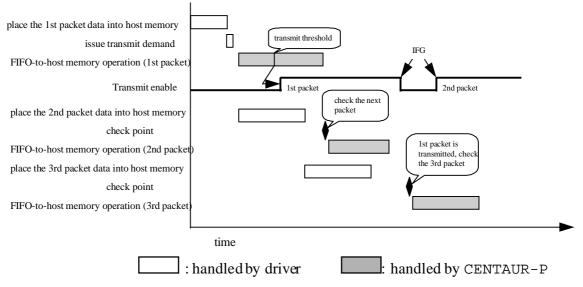


Fig.7 Transmit data flow of pre-fetch data

8.3.3. Transmit early interrupt Schem

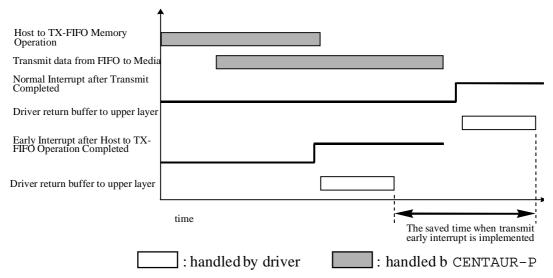


Fig.8 Transmit normal interrup and early interrupt comparison

8.4 Receive scheme and Receive early interrupt scheme

The following figure shows the difference of timing without early interrupt and wit early interrupt.

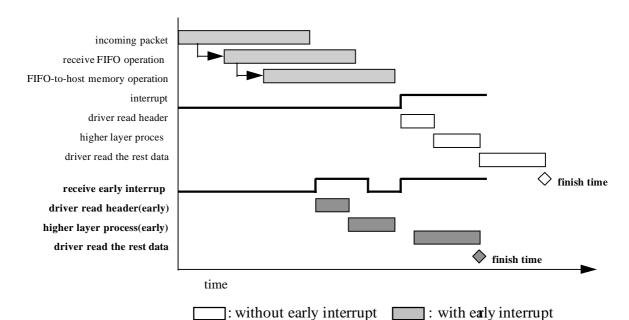


Fig.9 Receive data flow (without early interrupt and with early interrupt)

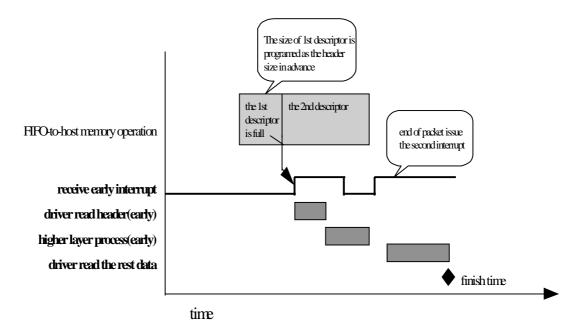


Fig.10 Detailed Receive Early interrupt flow

ADMtek Incorporated. Confidential

8.5. Network Operation

8.5.1.MAC Operation

In the MAC (Media Access Control) portion o CENTAUR-P, it incorporates the essential protocol requirements for operating as an IEEE802.3 and Ethernet compliant node.

Format

Field	Description
Preamble	A 7-byte field of (10101010b)
Start Frame Delimiter	A 1-byte field of (10101011b)
Destination Address	A 6-byte field
Source Address	A 6-byte field
Length/Typ	A 2-byte field indicated the frame is in IEEE802.3 format or
	Ethernet format.
	IEEE802.3 format: 0000H ~ 05DCH for Length field
	Ethernet format: 05DD ~ FFFFH for Type fiel
Data	*46 ~ 1500 bytes of data information
CRC	A 32-bit cyclic redundant code for error detection

^{*}Note: If padding is disabled(TDES1 bit23), the data field may be shorter than 46 bytes.

• Transmit Data Encapsulatio

The differences between the encapsulation and a MAC frame while operating in th 100BASE-TX mode are listed as follow

- 1. The first byte of the preamble is replaced by the JK code according to the IEE802.3u, clause 24.
- 2. After the CRC field of the MAC frame, th CENTAUR-P insert the TR code according to the IEE802.3u, clause 24.

• Receive Data Decapsulation

When operate in 100BAS -TX mode the CENTAUR-P detects a JK code for preamble as well as a TR code for the packet end. If a JK code is not detected, the CENTAUR-P will abort this frame receiving and wait for a new JK code detection. If a

TR code is not detected, th CENTAUR-P will report a CRC error.

Deferring

The Inter-Frame Gap (IFG) time is divided into two parts

- 1. IFG1 time (64-bit time): If a carrier is detected on the medium during this time, th CENTAUR-P will reset the IFG1 time counter and restart to monitor the channel for an idle again.
- 2. IFG2 time (32-bit time): After counting the IFG2 time the CENTAUR-P will access the channel even though a carrier has been sensed on the network.

Collision Handling

The scheduling of re-transmissions are determined by a controlled randomization process called "truncated binary exponential back -off". At the end of enforcing a collision (jamming), the CENTAUR-P delays before attempting to re-transmit the packet The delay is an integer multiple of slot time. The number of slot times to delay before the nth re-transmission attempt is chosen as a uniform distributed integer r in the range:

$$0 \le r < 2^k$$
 where $k = \min(n, 10)$

8.5.2. Transceiver Operatio

In the transceiver portion of th CENTAUR-P, it integrates the IEEE802.3u compliant functions of PCS(physical coding sub-layer), PMA(physical medium attachment) sub-layer, and PMD(physical me ium dependent) sub-layer for 100BASE-TX, and the IEEE802.3 compliant functions of Manchester encoding/decoding and transceiver for 10BASE-T. All the functions and operation schemes are described in the following sections.

• 100BASE-TX Transmit Operation

Regarding the 100BASE-TX transmission, the transceiver provides the transmission functions of PCS, PMA, and PMD for encoding of MII data nibbles to fiv -bit code-groups (4B/5B), scrambling, serialization of scrambled code-groups, converting the serial NRZ code into NRZI code, converting the NRZI code into MLT3 code, and then driving the MLT3 code into the category 5 Unshielded Twisted Pair cable through an isolation transformer with the turns ratio of 1: 1.

- **Data code-groups Encoder** In normal MII mode application, the transceiver receives nibble type 4B data via the TxD0~3 inputs of the MII. These inputs are sampled by the transceiver on the rising edge of Tx -clk and passed to the 4B/5B encoder to generate the 5B cod -group used by 100BAS -TX.
- Idle code-groups: In order to establish and maintain the clock synchronization, the transceiver need to keep transmitting signals to medium. The transceiver wil generate Idle code-groups for transmission when there is no real data want to be sent by MAC.
- Start-of-Stream Delimiter-SSD (/J/K/): In a transmission stream, the first 16 nibbles are MAC preamble. In order to let partner delineate the boundary of a data transmission sequence and to authenticate carrier events, the transceiver will replace the first 2 nibbles of the MAC preamble with /J/K/ code-groups.
- End-of-Stream Delimiter-ESD (/T/R/) In order to indicate the termination of the normal data transmissions, the transceiver will insert 2 nibbles of /T/R/ code-group after the last nibble of FCS.
- Scrambling: All the encoded data(including the idle, SSD, and ESD code-groups) is passed to data scrambler to reduce the EMI and spread the power spectrum using a 10-bit scrambler seed loaded at the beginning.
- Data conversion of Parallel to Serial, NRZ to NRZI, NRZI to MLT3 After scrambled, the transmission data with 5B type in 25MHz will be converted to serial bit stream in 125HMz by the parallel to serial function. After serialized, the transmission serial bit stream will be further converted from NRZ to NRZI format. After NRZI converted, the NRZI bit stream is passed through MLT3 encoder to generate the TP-PMD specified MLT3 code. With this MLT3 code, it lowers the frequency and reduces the energy of the transmission signal in th UTP cable and also makes the system easily to meet the FCC specification of EMI.
- Wav -Shaper and Media Signal Driver: In order to reduce the energy of the

harmonic frequency of transmission signals, the transceiver provides the wave-shaper prior the line driver to smooth but keep symmetric the rising/falling edge of transmission signals. The wave -shaped signals include the 100BASE-TX and 10BAS -T both are passed to the same media signal driver. This design can simplify the external magnetic connection with single one.

• 100BASE-TX Receiving Operation

Regarding the 100BASE-TX receiving operation, the transceiver provides the receiving functions of PMD, PMA, and PCS for receiving incoming data signals through category 5 UTP cable and an isolation transformer with turns ratio of 1: 1. It includes the adaptive equalizer and baseline wander, data conversions of MLT3 to NRZI, NRZI to NRZ and serial to parallel, the PLL for clock and data recovery, the de-scrambler, and the decoder of 5B/4B.

- Adaptive Equalizer and Baseline Wander Since the high speed signals over the unshielded (or shielded) twisted Pair cable will induce the amplitude attenuation and phase shifting. Furthermore, these effects are depends on th signal frequency, cable type, cable length and the connectors of the cabling. So a reliable adaptive equalizer and baseline wander to compensate all the amplitud attenuation and phase shifting are necessary. In the transceiver, it provides th robust circuits to perform these functions
- MLT3 to NRZI Decoder and PLL for Data Recovery: After receiving the proper MLT3 signals, the transceiver converts the MLT3 to NRZI code for further processing. After adaptive equalizer, baseline wander, and MLT3 to NRZI decoder, the compensated signals with NRZI type in 125MHz are passed to the Phase Lock Loop circuits to extract out the original data and the synchronous clock.
- Data Conversions of NRZI to NRZ and Serial to Parallel After data recovered, the signals will be passed to the NRZI to NRZ converter to generate the 125MHz serial bit stream. This serial bit stream will be packed to parallel 5B type for further processing
- **De-scrambling and Decoding of 5B/4B:** The parallel 5B type data is passed t

de-scrambler and 5B/4B decoder to return their original MII nibble type data.

■ Carrier sensing: Carrier Sense(CRS) signal is asserted when the transceiver detects any 2 non-contiguous zeros within any 10bit boundary of the receiving bit stream. CRS is de-asserted when ESD code-group or Idle code-group is detected. In half duplex mode, CRS is asserted during packet transmission or receive. But in full duplex mode, CRS is asserted only during packet reception.

• 10BASE-T Transmission Operation

It includes the parallel to serial converter, Manchester Encoder, Link test function, Jabber function and the transmit wave-shaper and line driver described in the section of "Wave-Shaper and Media Signal Driver" of "100BASE-T Transmission Operation". It also provides Collision detection and SQE test for half duplex application.

• 10BASE-T Receive Operation

It includes the carrier sense function, receiving filter, PLL for clock and data recovering, Manchester decoder, and serial to parallel converter

Loop-back Operation of transceiver

The transceiver provides internal loop -back(also called transceiver loo -back) operation for both the 100BASE-TX and 10BASE-T operations. The loo -back operation can be enabled by setting bit 14 of PHY register 0 to 1. In this loo -back operation, the TX± and RX± lines are isolated from the media. The transceiver also provides remote loo -back operation for 100BASE-TX operation. The remote loop -back operation can be enabled by setting bit 3 of PHY register 21 to 1.

In the 100BASE-TX internal loop-back operation, the data comes from the transmi output of NRZ to NRZI converter then loop-back to the receive path into the input of NRZI to NRZ converter.

In the 100BASE-TX remote loop-back operation, the data is received from RX± pins through receive path to the output of data and clock recover and then loop-back to the input of NRZI to MLT3 converter of transmit path then transmit out to the medium vi the transmit line drivers.

In the 10BASE-T loop-back operation, the data is through transmit path and loo -back from the output of the Manchester encoder into the input of Phase Lock Loop circuit of receive path.

• Full Duplex and Half Duplex Operation of Transceiver

The transceiver can operate for either full duplex or half duplex network application. In full duplex, both transmit and receive can be operated simultaneously. Under full duplex mode, collision(COL) signal is ignored and carrier sense(CRS) signal is asserted only when the transceiver is receiving.

In half duplex mode, either transmit or receive can be operated at one time. Under half duplex mode, collision signal is asserted when transmit and receive signals collided and carrier sense asserted during transmission and reception.

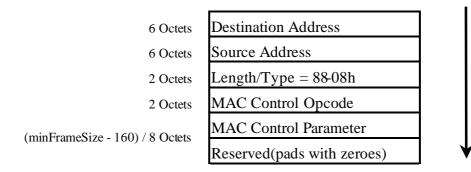
Auto-Negotiation Operation

The Auto-Negotiation function is designed to provide the means to exchange information between the transceiver and the network partner to automatically configure both to take maximum advantage of their abilities, and both are setup accordingly. The Auto-Negotiation function can be controlled through bit 12 of PHY register 0.

The Auto-Negotiation exchanges information with the network partner using the Fast Link Pulses(FLPs) - a burst of link pulses. There are 16 bits of signaling information contained in the burst pulses to advertise all remote partner's capabilities which are determined by PHY register 4. According to this information they find out their highest common capability by following the priority sequence as below

- 1. 100BASE-TX full duplex
- 2. 100BASE-TX half duplex
- 3. 10BASE-T full duplex
- 4. 10BASE-T half duplex

During powe -up or reset, if Auto-Negotiation is found enabled then FLPs will be transmitted and the Aut -Negotiation function will process. Otherwise, th Auto-Negotiation will not occur until the bit 12 of PHY register 0 is set to 1. When the Auto-Negotiation is disabled, then the Network Speed and Duplex Mode are selected by programming PHY register 0.


• Power Down Operation

To reduce the power consumption the transceiver is designed with power down feature which can save the power consumption significantly. Since the power supply o the 100BASE-TX and 10BASE-T circuits are separated, the transceiver can turn off th circuit of either the 100BASE-TX or 10BASE-T when the other one of them is operating

8.5.3. Flow Control in Full Duplex Application

The PAUSE function operation is used to inhibit transmission of data frames for specified period of time. The CENTAUR-P supports full duplex protocol of IEEE802.3x. To support PAUSE function, the CENTAUR-P implements the MAC Control Su -layer functions to decode the MAC Control frames received from MAC control clients and execute the relative requests accordingly. When the Full Duplex mode and PAUSE function are selected after Auto-Negotiation completed, then the CENTAUR-P enables the PAUSE function for flow control of full duplex application. In this section we will describe how the CENTAUR-P implements the PAUSE function.

MAC Control Frame and PAUSE Fram

Fig.11 MAC Control Frame Format

The MAC Control frame is distinguished from other MAC frames only by their Length/Type field identifier. The MAC Control Opcode defined in MAC Control Frame format for PAUSE function is 0001h. Besides, the PAUSE time is specified in the MAC Control Parameters field with 2 Octets, unsigned integer, in the units of Slot-Times. The range of possible PAUSE time is 0 to 65535 Slot-Times.

So, a valid PAUSE frame issued by a MAC control client(could be a switch or a bridge) will contains

- The destination address is set equal to the globally assigned 48 bit mulitcast address 01-80-C2-00-00-01, or equal to the unicast address which the MAC control client wishes to inhibit its transmission of data frames.
- Filled the MAC Control Opcode field with 0001h.
- 2 Octets of PAUSE time specified in the MAC Control parameter field to

indicate the length of time for which the destination is wished to inhibit data frame transmission.

Receive Operation for PAUSE functio

Upon reception of a valid MAC Control frame, the CENTAUR-P will start a timer for the length of time specified by the MAC Control Parameters field. When the timer value reaches zero then the CENTAUR-P ends PAUSE state. However, a PAUSE frame should not affect the transmission of a frame that has been submitted to the MAC(started Transmit out of the MAC and can't be interrupted). On the other hand, the CENTAUR-P shall not begin to transmit a frame more than one Slot-Times after received a valid PAUSE frame with a n -zero PAUSE time. If th CENTAUR-P receives a PAUSE frame with a zero PAUSE time value, then the CENTAUR-P ends the PAUSE stat immediately.

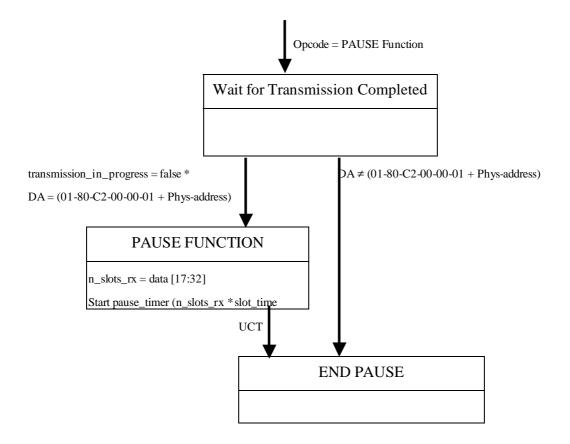


Fig.12 PAUSE operation receive state diagram

8.6. LED Display Operation

The Centaur-P provides 2 kinds of LED display mode, the detail descriptions about the operation are described in the PIN Description section.

- First mode 3 LED displays fo
 - ◆ 100Mbps(on) or 10Mbps(off)
 - ◆ Link(Keeps on when link ok) or Activity(Blink with 10Hz when receiving or transmitting but not collision
 - ◆ FD(Keeps on when in Full duplex mode) or Collision(Bl ink with 20Hz when colliding
- \triangleright Second mod -4 LED displays fo
 - ◆ 100 Link(On when 100M link ok)
 - ◆ 10 Link(On when 10M link ok)

ADMtek Incorporated. 1F, No.9, Industry E.9 th Rd., SBIP, HsinChu Tel: 886-3-5788879 Fax: -578887

- ◆ Activity (Blink with 10Hz when receiving or transmitting)
- ◆ FD(Keeps on when in Full duplex mode) or Collision(Blink with 20Hz when colliding)

8.7. Reset Operation

8.7.1. Reset whole chip

There are two ways to reset th CENTAU -P. First, hardware reset, th CENTAUR-P can be reset via RST# pin. For ensuring proper reset operation, at least 100µs active Reset input signal is required. Second, software reset, when bit 0 of CSR0 register is set to 1, the CENTAUR-P will reset entire circuits and register to default value then clear the bit 0 of CSR0 to 0.

8.7.2. Reset Transceiver only

When bit 15 of PHY register 0 is set to 1, the transceiver will reset entire circuits and register contains to default value then clear the bit 15 of PHY register 0 to 0.

8.8. Wake on LAN Function

The CENTAUR-P can assert a signal to wake up the system when it received a Magic Packet from the network. The Wake on LAN operation is described as follow.

• The Magic Packet format:

- Valid destination address that can pass the address filter of the CENTAUR-P
- The payload of frame must include at least 6 contiguous 'FF' followed immediately by 16 repetitions of IEEE a dress.
- The frame can contain multiple 'six FF + sixteen IEEE address' pattern.
- CRC OK

• The Wake on LAN operatio

The Wake on LAN enable function is controlled by bit 18 of CSR18, it is loaded from EEPROM after reset or programmed by driver to enable Wake on LAN function. If the bit 18 of CSR18 is set and th CENTAUR-P receive a Magic Packet, it will assert th PME# signal (drive to low) to indicate receiving a wake up frame as well as to set the PME status bit (the bit 15 of CSR20).

8.9. ACPI Power Management Function

The CENTAUR-P has a built-in capability for Power Management (PM) whic controlled by the host system

The CENTAUR-P will provide

- Compatibility with Device Class Power Management Reference Specification, Rev1.09
- Compatibility with ACPI specification, Rev 1.0
- Compatibility with PCI Bus Power Management Interface Specification, Rev 1.1
- Compatibility with AMD Magic PacketTM Technology.
- Compatibility with PCI CLKRUN scheme.

8.9.1. Power States

• DO (Fully On)

In this state th CENTAUR-P operates as full functionality and consumes its normal power. While in the D0 state, if the PCI clock is lower than 16MHz, the CENTAUR-P may not receive or transmit frames properly.

• D1

In this state th CENTAUR-P doesn't response to any accesses except configuration space and full function context in place. The only network operation th CENTAUR-P can initiate is a wake-up event.

• D2

In this state the CENTAUR-P only respond to access configuration space and full function context in place. Th CENTAUR-P can't transmit or receive even the wak -up frame.

• D3_{cold} (Power Removed

In this state all function context is lost. When power is restored, the function will return to D0.

• D3_{hot} (Software Visible D3)

When the CENTAUR-P is brought back to D0 from $D3_{hot}$ the software must perfor a full initialization.

The CENTAUR-P in the D3hot state respond to configurations cycles as long as power and clock are supplied. This requires the device to perform an internal reset and return to a power-up reset condition without the RST# pin asserted.

Device	PCI	Function	Clock	Power	Supported	Supported
State	Bus	Context			Actions to	Actions from
	State				Function	Function
D0	В0	Full function	Full speed	Full	Any PCI	Any PCI
		context in place		power	transaction	transaction or
						interrupt
D1	B0, B1	Configuration	Stopped to		PCI	Only wake-up
		maintained. No Tx	Full speed		configuration	events
		and Rx except			access	
		wake-up events				
D2	B0, B1,	Configuration	Stopped to		PCI	
	B2	maintained. No Tx	Full speed		configuratio	
		and Rx			access(B0, B1)	
D3hot	B0, B1,	Configuration lost,	Stopped to		PCI	
	B2	full initialization	Full speed		configuratio	
		required upon			access(B0, B1)	
		return to D0				
D3cold	В3	All configuratio	No clock	No	Power-on reset	
		lost. Power-on		power		
		defaults in place				
		on return to D0				

Table 1 Power state

Rev: 1.1

9. General EEPROM Format Descriptio

Offset	Length	Description
0	2	AN983 Signature: 0x85 , 0x09
2	1	Format major version 0x02 .
3	1	Format minor version 0x00
4	4	Reserved
8	6	IEEE network address ID1,ID2,ID3,ID4,ID5,ID6
Е	1	Reserved, should be zero.
F	1	Reserved, should be zero.
10	1	Phytype
		Reserved, should be zero.
11	1	Reserved, should b zero.
12	2	Default Connection Type,
		see Table 9.1
14	0B	Reserved, should be zero.
1F	1	Reserved, should be zero.
20	2	PCI Device ID.:0x0985(PCI), 0x1985(Cardbus)
22	2	PCI Vendor ID::0x1317
24	2	PCI Subsystem ID.
26	2	PCI Subsystem Vendor ID.
28	1	MIN_GNT value.
29	1	MAX_LAT value.
2A	4	Load to configuration register offset 0x28
2E	2	CSR18 (CR) bit 31-16 recall data.
30	22	Reserved, should be zero .
52	2	Cardbus CIS length
54	2A	Reserved, should be zero .
7E	2	<i>CheckSum</i> , the least significant two bytes of FCS for data stored in
		offset 07D of EEPROM
140	C0	Cardbus CIS

Table 9.1 Connection Type Definition

0xFFFF	Software Driver Default
0x0100	Auto-Negotiatio
0x0200	Power-on Auto-detection
0x0400	Auto Sense
0x0000	10BaseT
0x0001	BNC
0x0002	AUI
0x0003	100BaseTx
0x0004	100BaseT4
0x0005	100BaseFx
0x0010	10BaseT Full Duplex
0x0013	100BaseTx Full Duplex
0x0015	100BaseFx Full Duplex

10. Electrical Specifications and Timings

10.1 Absolute Maximum Ratings

Supply Voltage(Vcc) -0.5V to 3.6V

Input Voltag -0.5V to VCC+0.5 V
Output Voltage -0.5V to VCC+0.5 V

Storage Temperature -65 degree C to 150 degree C
Ambient Temperature 0° degree C to 70 degree C

ESD Protection 2000V

10.2 DC Specifications

General DC Specifications

Parameter	Description	Condition	Min	Typical	Max	Units
Vcc	Supply Voltag		3.0		3.6	V
Icc	Power Supply			150		mA

PCI Interface DC Specfications

Parameter Description	Condition	Min	Typical	Max	Units	
-----------------------	-----------	-----	---------	-----	-------	--

ADMtek Incorporated. 1F, No.9, Industry E.9th Rd., SBIP, HsinChu Tel: 886-3-5788879 Fax: -578887

		1			1
Vilp	Input LOW Voltag		-0.5	0.325vcc	V
Vihp	Input HIGH Voltage		0.475vcc	Vcc+0.5	V
Iilp	Input Leakage Current	0 <vin <vcc<="" td=""><td>-10</td><td>10</td><td>uA</td></vin>	-10	10	uA
Volp	Output LOW Voltag	Iout=700uA		0.1Vcc	V
Vohp	Output HIGH Voltag	Iout -150uA	0.9Vcc		V
Cinp	Input Pin Capacitance		5	17	pF
Cclkp	CLK Pin Capacitance		10	22	pF

Flash/EEPROM Interface DC Specifications

Parameter	Description	Condition	Min	Typical	Max	Units
Vilf	Input LOW Voltag		0		0.3Vcc	V
Vihf	Input HIGH Voltage		0.7Vcc		Vcc + 1	V
Iif	Input Leakage Current		-10		10	uA
Volf	Output LOW Voltag				0.2	V
Vohf	Output HIGH Voltag		Vcc - 0.2			V
Cinf	Input Pin Capacitance		5		8	pF

10.3 AC Specifications

PCI Signaling AC Specifications for 3.3V

Parameter	Description	Condition	Min	Typical	Max	Units
Ioh(AC)	Switching Current High			4		mA
Iol(AC)	Switching Current Low			6		mA
	Slew Rate		0.25		1	V/ns
Tr	Unloaded Output Rise Tim	0.2vcc~0.6vcc	1		4	V/ns
Tf	Unloaded Output Fall Time	0.6vcc~0.2vcc	1		4	V/ns

10.4 Timing Specifications

PCI Clock Specification

Parameter	Description	Condition	Min	Typical	Max	Units
Тсус	Clock Cycle Time		30			ns
Thigh	Clock High Time		12			ns
Tlow	Clock Low Time		12			ns

ADMtek Incorporated. 1F, No.9, Industry E.9 th Rd., SBIP, HsinChu Tel: 886-3-5788879 Fax: -578887

Clock Slew Rate	1	4	V/ns

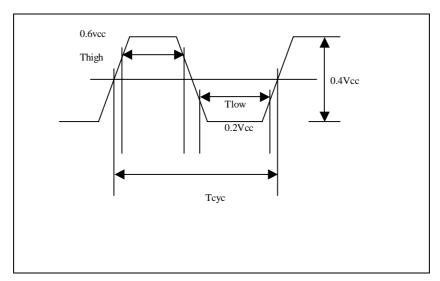
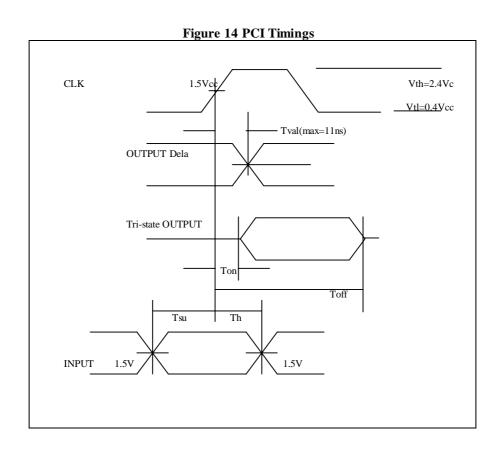
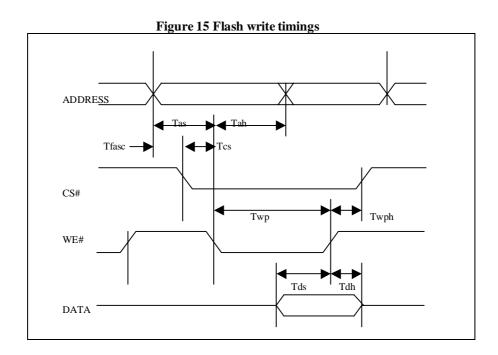



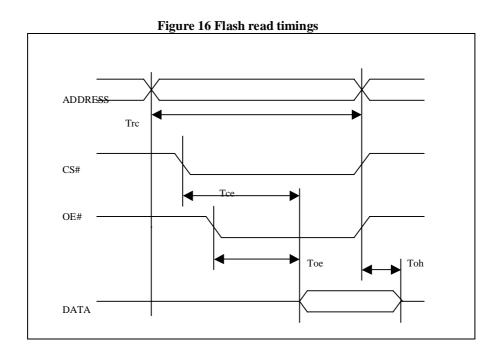
Figure 13 PCI Clock Waveform

PCI Timings

Parameter	Description	Condition	Min	Typical	Max	Units
Tval	access time – bused signals		2		11	ns
Tval(ptp)	access time -point to point		2		12	ns
Ton	Float to Active Delay		2			ns
Toff	Active to Float Delay				28	ns
Tsu	Input Set up Time to Clock – bused signals		7			ns
Tsu(ptp)	Input Set up Time to Clock - point to point		10,12			ns
Th	Input Hold Time from Clock		0			ns
Trst	Reset Active Time after Power Stable		1			ms
Trst-clk	Reset Active Time after CLK Stable		100			us

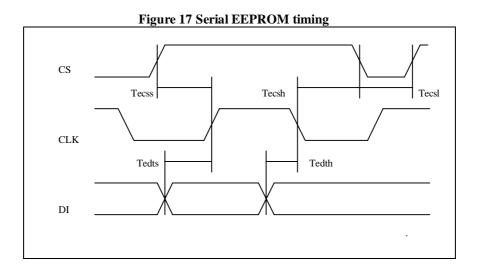
Trst-off	Reset Active to Output Float		40	ns
	delay			


Flash Interface Timings


Parameter	Description	Condition	Min	Typical	Max	Units
Trc	Read cycle time		90			ns
Tce	Chip enable access tim				90	ns
Taa	Address access time				90	ns
Toe	Output enable access time				45	ns
Tclz	#CE low to active output		0			ns
Tolz	#OE low to active output		0			ns
Tchz	#CE high to active output				45	ns
Tohz	#OE high to active output				45	ns
Toh	Output hold from address change		0			ns

ADMtek Incorporated. 1F, No.9, Industry E.9 th Rd., SBIP, HsinChu Tel: 886-3-5788879 Fax: -578887

2000/3/23 Rev: 1.1 *ADMtek Incorporated. Confidential*


Twc	Write cycle time		10	ms
Tas	Address setup time	0		ns
Tah	Address hold time	50		ns
Tcs	#WE and #CE setup time	0		ns
Tch	#WE and #CE hold time	0		ns
Toes	#OE high setup time	10		ns
Toeh	#OE high hold time	10		ns
Тср	#CE pulse width	70		ns
Twp	#WE pulse width	70		ns
Twph	#WE high width	150		ns
Tds	Data setup tim	50		ns
Tdh	Data hold time	10		ns
Tblc	Byte load cycle tim	0.22	200	us
Tblco	Byte laod cycle time out	300		us

EEPROM Interface Timings (AC/AD)

Parameter	Description	Condition	Min	Typical	Max	Units
Tsc	Serial Clock Frequency	2.7V <vcc<5.5v< td=""><td></td><td></td><td>0.4M/</td><td>Hz</td></vcc<5.5v<>			0.4 M /	Hz
					0.1M	
Tecss	Delay from CS High to SK High	2.7V <vcc<5.5v< td=""><td>160/640</td><td></td><td></td><td>ns</td></vcc<5.5v<>	160/640			ns
Tecsh	Delay from SK Low to CS Low	2.7V <vcc<5.5v< td=""><td>1120 /4480</td><td></td><td></td><td>ns</td></vcc<5.5v<>	1120 /4480			ns
Tedts	Setup Time of DI to SK	2.7V <vcc<5.5v< td=""><td>160/640</td><td></td><td></td><td>ns</td></vcc<5.5v<>	160/640			ns
Tedth	Hold Time of DI after SK	2.7V <vcc<5.5v< td=""><td>2320 /9280</td><td></td><td></td><td>ns</td></vcc<5.5v<>	2320 /9280			ns
Tecsl	CS Low Time	2.7V <vcc<5.5v< td=""><td>7400/ 29600</td><td></td><td></td><td>ns</td></vcc<5.5v<>	7400/ 29600			ns

11. Package

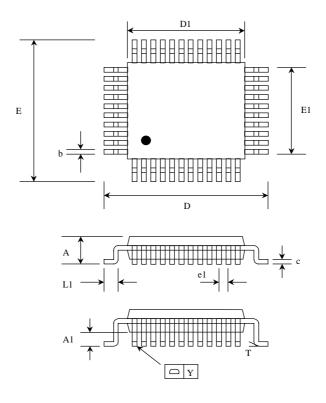


Fig.20 Package outline for the Centaur-P

Symbol	Description	Minimum	Maximum
A	Overall Height	-	3.4mm
A1	Stand Off	0.25mm	-
b	Lead Width	0.17mm	0.27mm
c	Lead Thickness	0.13mm	0.23mm
D	Terminal Dimension 1	23.0mm	23.4mm
D1	Package Body 1	19.9mm	20.1mm
E	Terminal Dimension 2	17.0mm	17.4mm
E1	Package Body 2	13.9mm	14.1mm
e1	Lead Pitch	0.50mm	-
L1	Foot Length	0.65mm	0.95mm
Т	Lead Angl	O°	7°
Y	Coplanarity		0.076mm

Table 2 Dimensions for 12 -pin PQFP Package

ADMtek Incorporated. 1F, No.9, Industry E.9 th Rd., SBIP, HsinChu Tel: 886-3-5788879 Fax: -578887

Symbol	Description	Minimum	Maximum
A	Overall Height	-	1.6mm
A1	Stand Off	0.05mm	0.15mm
b	Lead Width	0.17mm	0.27mm
c	Lead Thickness	0.13mm	0.23mm
D	Terminal Dimension 1	21.9.0mm	22.1mm
D1	Package Body 1	19.9mm	20.1mm
Е	Terminal Dimension 2	15.9.0mm	16.1mm
E1	Package Body 2	13.9mm	14.1mm
e1	Lead Pitch	0.50mm	-
L1	Foot Length	0.45mm	0.75mm
T	Lead Angl	0	7
Y	Coplanarity		0.076mm

Table 3 Dimensions for 12 -pin LQFP Package