
Multics

ΣΠ
Β

Inessential MATLAB on Athena
1

Version 1.02

/afs/sipb.mit.edu/project/doc/current/imatlab.dvi

The Student Information Processing Board
Jamie Morris

jemorris@mit.edu

June 29, 1997

1Copyright c© 1996 Student Information Processing Board of the Massachusetts Institute of Technology

Contents

1 Introduction 1
1.1 What is MATLAB? . 1
1.2 Getting into MATLAB . 1
1.3 Demos . 1
1.4 Help . 1

2 The Basics 2
2.1 Fundamentals of Use . 2
2.2 Building Matrices . 4
2.3 Matrix and Element-wise Operations . 7
2.4 Flow . 9

2.4.1 Relations . 9
2.4.2 Control . 9
2.4.3 Selective Indexing . 10

3 Graphics 12
3.1 2-D Graphics . 12
3.2 Handles . 13
3.3 Graphics Hardcopy . 13
3.4 3-D . 14

3.4.1 Line Plots . 14
3.4.2 Surface Plots . 14

3.5 Animation . 15

4 The Session 15
4.1 Recording and Retrieving . 15
4.2 Shell Escapes . 15
4.3 M-files . 16

4.3.1 Script and Data Files . 16
4.3.2 Function Files . 16
4.3.3 Paths . 18

4.4 Numerical Formats . 18

5 Further MATLAB 19
5.1 Debugging . 19
5.2 Efficiency Testing, Times and Dates . 19
5.3 Polynomials . 20
5.4 Text . 20
5.5 Sparse Matrices . 21
5.6 Calculus . 21

5.6.1 Differential Equations . 21
5.6.2 Numerical Integration . 23

5.7 Optimizing . 24
5.8 Symbolic Math . 24
5.9 SIMULINK . 25
5.10 Other Features . 26

i

1 Introduction

1.1 What is MATLAB?

MATLAB (MATrix LABoratory) is an interactive system for matrix-based computation designed
for scientific and engineering use. It is good for many forms of numeric computation and visualiza-
tion. Besides dealing with explicit matrices in linear algebra, it can handle differential equations,
polynomials, signal processing, and other applications. Results can be made available both numer-
ically and as excellent graphics.

Some classes at MIT require the use of MATLAB; it is also useful for many that don’t. It may
not be most suitable tool for your needs; e.g. Maple and Mathematica are better for symbolic math
(MATLAB’s symbolic math draws on part of Maple), Xess for spreadsheet work.

This document is intended partially as a MATLAB tutorial and partially as a reference.

1.2 Getting into MATLAB

As you use MATLAB you will create data files, function files, and script files. While you can
arrange for these files to be found by MATLAB no matter where you put them (see 4.3.3 Paths),
it is simplest to use the default behavior by putting all these files in a directory called matlab in
your home directory. To create this directory, do (only once ever):

athena% mkdir ∼/matlab

MATLAB will then use this directory for files unless you tell it not to. (See 4.3 M-files.) If you
created this directory after starting a MATLAB session, you will need to do addpath(’∼/matlab’)
in MATLAB that session to tell it the directory exists; future sessions will notice it upon startup.

To get a session of MATLAB, do

athena% add matlab
athena% matlab &

(if you have already done add matlab in that login session, you need not repeat it).
MATLAB may also be started from the menu bar; it is in the “Math/Plotting” menu.
When you start MATLAB, it creates a new xterm, with the MATLAB header and MATLAB

>> prompt. As you create graphics in MATLAB, it will pop up additional windows for them.

1.3 Demos

The MATLAB demo is very instructive if you’ve never used MATLAB. To get it, do

>> demo

Also see help demo for a list of demostration facilities.

1.4 Help

MATLAB has several internal help features. To get a listing of help topics, do

>> help

To get more help on a specific topic,

>> help topic

1

In particular, help general will give you a table of contents listing many of the available functions
by category. Topics also include every individual function, so you can do

>> help function

You may also search for functions whose descriptions contain a keyword. To use this, do the
following and go for a water cooler break (the search will be slow):

>> lookfor keyword

The MATLAB on Athena Homepage, which you can get to with add matlab and then the URL
file://localhost/mit/matlab/www/home.html, and has pointers to lots of information about
MATLAB. Type doc at the MATLAB prompt to start up a web browser on this page.

Complete documentation on MATLAB, including the MATLAB New Features Guide,
MATLAB Release Notes, and the SIMULINK User’s Guide, are available for reference in
the Athena Consulting Office (11-115) and in Barker and Hayden Libraries. The Barton catalog
at http://libraries.mit.edu/barton lists several textbooks in various topics, which use Mat-
lab as a tool for walking through their subject matter. There is also the Mathworks web site,
http://www.mathworks.com.

2 The Basics

2.1 Fundamentals of Use

Your interaction with MATLAB is in the form of you giving MATLAB a statement, possibly
followed by MATLAB giving you a result, then back to you giving a statement. A statement is
usually of the form of either

>> variable = expression

or just

>> expression

The result (which is almost always a matrix — see 2.2 Building Matrices) of evaluating expression
is immediately displayed. To suppress display, end the line with a semicolon; this will greatly speed
up calculations resulting in large matrices. If no variable is given in which to store the result of
expression, it is automatically stored in the variable ans.

>> x = 3 + 2
x =

5

>> y = 4 + 6;
>> y
y =

10

>> 5 + 3
ans =

8

To put more than one statement on a single line, separate them by commas or semicolons. To have
a single statement span several lines, end each line before the last with a space followed by three

2

or more periods.

>> a = 1 + 1, b = 2 + 2
a =

2

b =

4

>> c = 1 + 2 + 3 ...
>> + 4 + 5 + 6 + ...
>> 7 + 8 + 9 + 10
c =

55

A function may have more than one output, and moreover, all the outputs may depend on how
many outputs you request. For example, [val vec] = eig(matrix) gives a (diagonal) matrix of
eigenvalues of matrix and a matrix of the eigenvectors of matrix; however, v = eig(matrix) gives
a vector of eigenvalues — which is not the same as either of the former two outputs. See the help
on a function for details; it is generally wise to look at the help before first using any function.

MATLAB is, by default, case-sensitive to names, so myvar and myVAR are distinct. Typing
casesen toggles this sensitivity on and off.

Normal scalar arithmetic works; you can use MATLAB as a basic calculator. The arithmetic
functions are +, -, ∗, /, and ˆ (exponentiation). Use parentheses as usual to specify precedence.
Also see help arith.

MATLAB always does complex math, though it will display purely real results intelligently by
omitting the imaginary part. Both i and j are equal to the square root of -1. If you happen to
overwrite both of these (by using them as variables for something else), you can recreate with, e.g.

>> myi = sqrt(-1)

or do clear i to remove your definitions of i, leaving it with its original meaning.
A complex number is specified in the form 1+2i or 1-2i, where there are no spaces inside the

number. Spaces can cause complex numbers in vectors and matrices to seem like two numbers,
which will produce errors or at least undesired results.

>> x = (1+2i)ˆ2
x =

-3.0000 + 4.0000i

Mathematical functions will accept complex arguments and, in general, give complex answers
(e.g. the trigonometric functions and arcfunctions are defined over the complex plane). Specifically
complex manipulations are available in the form of real and imag (giving the real and imaginary
parts of their argument), conj for complex conjugation, abs for absolute value, and angle for the
phase (in radians; also see help unwrap).

See help elfun for a list of trigonometric, exponential, complex, and numeric elementary scalar
functions. For more specialized functions see help specfun.

There are several commands to help with variable assignments; who will list the variables
currently in use in this session, and whos lists the variables along with their sizes and whether
they are purely real. Use clear variable to remove variable from those currently in use; clear by
itself removes all variables.

The MATLAB-defined constant eps gives the machine unit roundoff, typically about 10−16;

3

this is useful in specifying tolerances. The constant pi exists. Some other predefined constants are
realmax and realmin for largest and smallest (positive) floating point numbers, inf for infinity,
NaN for Not-a-Number, and version for the MATLAB version number.

To halt a runaway computation, use Control-C. Use more on, more off, and more(n) to have
MATLAB scroll as the UNIX more, turn off such scrolling, and set the number of lines per page
(default 23). This is useful with calculations giving long results and with long help entries. Use
clc to clear the command window, and home to send the cursor to the upper left without clearing.

Line editing in MATLAB will Do The Right Thing: you can use the up and down arrows to get
at old command lines, left and right arrows to move in and edit these lines, etc. For more details
see help cedit or type cedit in MATLAB.

2.2 Building Matrices

Everything in MATLAB is a matrix. A vector is a 1xN or Nx1 matrix; a scalar is a 1x1 matrix.
The most straightforward way to make a vector or matrix is to write it out:

>> v = [1 2 3 4 5]

creates the obvious vector (the spaces may be replaced with commas); the statements

>> m = [1 2 3; 4 5 6; 7 8 9]

and

>> m = [1 2 3
4 5 6
7 8 9]

both create the obvious 3 × 3 matrix. Note that semicolons are used to separate the rows of the
matrix in the one-line square bracket notation.

It can be convenient to enter a complex-valued matrix or vector in the form

>> m = [1 2; 3 4] + i ∗ [4 3; 2 1]

instead of the equivalent

>> m = [1+4i 2+3i; 3+2i 4+i]

There are a number of useful functions to create a matrix from scratch. Specifically, zeros(M ,
N) and ones(M , N) create M × N all-zero and all-one matrices respectively, eye(N) the size-N
identity matrix, rand(M , N) a uniformly random matrix, randn(M , N) a normally distributed
one, and hilb(N) a Hilbert matrix, among others. Some more specialized matrix generators are
listed by help specfun. Those that take arguments (M, N) will create a square matrix if given
only (N).

The function size takes a matrix and returns the vector [width height]; this can be used with
other functions to build matrices the same size as existing ones, e.g.

>> emptym = zeros(size(m))

The length function gives the maximum of width and height.

4

Matrices and vectors may be built out of smaller ones;

>> va = [1 2 3]; vb = [4 5 6]; vc = [7 8 9];
>> m = [va; vb; vc]

produces the same 3 × 3 matrix as before. Similarly, matrices can be built in blocks:

>> ma = [1 2; 3 4]
ma =

1 2

3 4

>> mb = [5 6; 7 8];
>> mwide = [ma mb]
mwide =

1 2 5 6

3 4 7 8

>> mtall = [ma ; mb]
mtall =

1 2

3 4

5 6

7 8

Since the size of a matrix can be changed at any time (and can be zero), things like this are valid:

>> x = [];
>> x = [x 1]
x =

1

>> x = [x 2]
x =

1 2

>> x = [x 3 x]
x =

1 2 3 1 2

Note that resizing a matrix does take time; doing it ten thousand times in a loop can be noticeable.
A way to avoid this is to start with a matrix of zeros (or ones, as appropriate) of the eventual
largest size, and then to use only part of the matrix at a time.

There are operations specifically to let you get a new object from an existing one; triu and
tril take a matrix and produce its upper and lower triangular matrices. Diag takes a matrix and
produces the vector of its diagonal entries, or takes a vector and produces a diagonal matrix with
those entries. fliplr and flipud take a matrix and flip it left-right or up-down; rot90 takes a
matrix and rotates it counterclockwise 90 degrees (an optional integer second argument specifies
repetition). The operator ’ takes the conjugate transpose of a matrix; the operator .’ takes the
transpose. The reshape function rearranges matrix elements into a new shape.

>> [1 2+i]’
ans =

1

2-i

5

Elements of a matrix are referenced as m(row, column) (or v(n) for a vector); this can be used to
access elements, or to build a matrix. Indexing starts at one, not at zero, so it looks like

(1, 1) (1, 2) ...
(2, 1) (2, 2) ...

...

You could, painfully, build a matrix like

>> m(1, 1) = 1; m(1, 2) = 2; m(2, 1) = 3; m(2, 2) = 4
m =

1 2

3 4

but this is more useful used in conjuction with for and while statements (see 2.4 Flow). On the
other hand, submatrices can often be done this way quickly:

>> m = [1 2 3; 4 5 6; 7 8 9]; s = m([1 2], [2 3])
s =

2 3

5 6

The colon operator is critical to efficient use of MATLAB. The expression a : b evaluates to a
row vector with values starting at a and incrementing by one as long as they are no greater than
b. The expression a : s : b uses increments of s instead of one. A colon by itself as a matrix index,
e.g. m(1, :) or m(:, 5), yields the entire row or column, while a colon used as the only index to a
matrix turns it into a vector by stringing the columns together.

Also see help colon.

>> v = 1:5
v =

1 2 3 4 5

>> w = 5:-1:1
w =

5 4 3 2 1

>> m = [1 2 3; 4 5 6; 7 8 9];
>> s = m(1:2, 2:3)
s =

2 3

5 6

>> t = m(1:2, 3:-1:2)
t =

3 2

6 5

>> m(1:2, :)
ans =

1 2 3

4 5 6

>> m(:)’
ans =

1 4 7 2 5 8 3 6 9

6

In a similar fashion, linspace(low, high, n) gives a linearly evenly spaced vector of n points
from low to high; n is 100 if omitted. Further, logspace(low, high, n) gives a logarithmically
evenly spaced points between 10low and 10high (n defaults to 50); however, if high is pi, the high
end is π itself and not 10π.

Finally, matrices can be loaded from a disk file created via MATLAB or some other application
(e.g. a text editor); this is the fastest method for large matrices. If a file named base.extension
contains a series of rows of numbers (no other formatting) defining a matrix, load base.extension
will assign that matrix to the variable base. E.g. load values.txt takes data from the file val-
ues.txt and puts it into values. Don’t use a .mat extension, since that will make load assume
it is a MATLAB-saved file. Since load is frequently used for very large matrices, it does not echo
the input.

2.3 Matrix and Element-wise Operations

Some operations are intended for matrices in particular. These include the conjugate and non-
conjugate transpose operators ’ and .’, the matrix multiplication operator ∗, and the left and right
matrix “division” operators \ and /. For instance, if A is a matrix and x and b are vectors, then
the lines

>> A’
>> Aˆ2
>> A * x = b
>> x = A\b
>> x * A = b
>> x = A/b

respectively take the conjugate transpose of A, take the square of A, give a typical matrix equation
involving matrix multiplication, give the solution for that equation, give another matrix equation,
and give the solution for the second equation.

Such solutions to matrix equations are solved exactly (with Gaussian elimination) if the matrix
is square; others are solved in a least-squares sense (with Householder orthogonalization). Also see
help slash.

To get inner and outer products of vectors, remember their formal definitions. The inner product
is given by x’ * y = y’ * x, and the outer products by x * y’ and y * x’ = (x * y’)’.
MATLAB understands multiplication and division between a matrix and a scalar in the normal
sense;

>> 10 * [1 2; 3 4]
ans =

10 20

30 40

If you want to take two matrices (or vectors) and multiply or divide them element by element,
or if you want to exponentiate each element of a matrix, place a period before the operator. These
are array operations as opposed to matrix operations.

>> [1 2; 3 4].̂ 2
ans =

1 4

9 16

7

Exponentiation also has both matrix and array forms. If x and y are scalars and A and B

are matrices, yˆx, Aˆx, and xˆA have their usual mathematical meanings. Array exponentiation is
available with A.̂ x to raise each element to a power, and A.̂ B to raise each element of A to the
power of the corresponding element of B.

MATLAB also has a large number of matrix functions to implement common mathematical op-
erations, such as finding eigenvalues and eigenvectors. For instance, kron will give the (Kronecker)
tensor product. See help matfun.

If you apply a function that operates on scalars to a matrix or vector, or if you apply a function
that operates on vectors to a matrix, MATLAB performs the operation element-wise. Scalar
functions will be applied to each element of the matrix, and the result will be a matrix of the
same size. Vector functions will be applied to each column of the matrix, and the result will be a
row vector of the same width. (Use the transpose operators to effect row-by-row application.) See
help funm if you want to use the matrix and not the array version of a function. Lastly, functions
defined strictly on the real line are applied separately to the real and imaginary parts of a complex
number.

>> sin([0 (pi/6) (pi/2) pi])
ans =

0 .5 1 0

>> max([1 10; 20 2])
ans =

20 10

>> max(max([1 10; 20 2]))
ans =

20

>> round(1.7+3.2i)
ans =

2 + 3i

Certain functions are particularly useful for this. The functions max, min, median, mean,
std, sum, and prod take a vector and return its maximum, minimum, median, arithmetic mean,
standard deviation, element sum, and element product (respectively). Applied to a matrix, they
return a row vector of the result on each column. sort sorts a vector (or each column of a matrix)
in ascending order. Also see help datafun.

Applying operations element-wise is a powerful feature of MATLAB and using it is the fastest
and best way to accomplish most things.

8

2.4 Flow

2.4.1 Relations

MATLAB provides these logical operators:

& and
| or
∼ not
xor exclusive or

and these boolean relations:

< less than
> greater than

<= less than or equal to
>= greater than or equal to
== is equal to
∼= is not equal to

The result of applying any of these to a scalar or pair of scalars (as appropriate) is always a 1
(True) or a 0 (False). They operate element-wise on matrices; there are no “full matrix” versions.
To test whether a relation holds over an entire matrix, or whether it holds anywhere in the matrix,
the commands any and all are useful. Each takes a vector; any ORs the elements (true iff any
are true) and all ANDs the elements (true iff all are true). They operate column-by-column on a
matrix to produce a vector. So, for instance,

>> all(all(A == B))
>> any(any(A ∼= B))

both test for whether the matrices A and B are entirely equal, the former returning 1 if so (because
every element in every column matches), the latter returning 1 if not (because some element in
some column did not match). The function find will return the indices of the non-zero (True)
elements of a matrix; this is useful for selective indexing.

There are also a number of boolean tests for various characteristics; see help ops for most of
them.

2.4.2 Control

You can do normal programming things in MATLAB. The explicit looping operators are while
and for. The syntax of while is

while relation
statements

end

The indentation is customary but not required. As long as relation holds true, statements will
be executed repeatedly. The end is mandatory. When relation evaluates to False (0), execution
resumes after end.

for variable = matrix
statements

end

9

causes variable to assume the value of each column of matrix in succession, and execute statements
for each, then resume after the mandatory end. Frequently matrix will be a vector, e.g.

for n = 1:5
will run n from 1 to 5.

If MATLAB encounters the command break inside a for or while loop, it immediately jumps
to the end. If there are nested loops, only the innermost is broken out of.

Conditional control and branching are accomplished with if, whose most general syntax is

if relation
statements

elseif another relation
more statements

elseif a third relation
a third set of statements

else
last statements

end

There can be any number of elseifs, and the final else is optional; the end is mandatory as usual.
The first relation of an if or elseif that evaluates to True (anything non-zero) is used; its statements
are executed and control then passes to after the end. If no relation is True, the else statements,
if any, are executed.

All control structures can be nested. Control structures are relatively slow and inefficient in
MATLAB; what MATLAB is good at is matrices. Instead of applying for over a vector, you can
usually apply your function(s) to the vector directly so it operates element-wise; this will be much
faster. Instead of for with if, to test over the elements of a vector, you can and should use selective
indexing (see below).

2.4.3 Selective Indexing

The syntax M(row, column) to examine or change a specific element of matrix M has already been
explained (2.2 Building Matrices). This can be generalized by replacing row and/or column

with vectors of the same height and/or width (respectively) as M with entries all 1 (True) or 0
(False). This specifies a matrix with entries corresponding to those in M whose indices are specified
as True in the vectors.

>> x = [1 2 3 4 5];
>> x([1 0 1 0 1])
ans =

1 3 5

>> m = [1 2 3; 4 5 6; 7 8 9];
>> m([1 0 1], [1 1 0])
ans =

1 2

7 8

>> m(3, [1 0 1])
ans =

7 9

One rarely enters the indexing vectors by hand this way. Since a relation operator applied to a

10

matrix results in a matrix of 1s and 0s, it is naturally useful to index a matrix of the same size.

>> x = 3:7
x =

3 4 5 6 7

>> big = x > 4
big =

0 0 1 1 1

>> x(big)
ans =

5 6 7

>> x(x > 3 & x < 6)
ans =

4 5

This is even more useful when specifying elements, or specifying changes to elements, rather
than merely viewing them.

>> disp(x)
3 4 5 6 7

>> x(x > 4) = x(x > 4) + 10
x =

3 4 15 16 17

>> x = 1:5;
>> x(x > 2) = x(x < 4) + 10
x =

1 2 11 12 13

>> x = 1:5; y = x.̂ 2
y =

1 4 9 16 25

>> x(y > 8) = x(y > 8) + y(y > 8)
x =

1 2 12 20 30

Let us examine the second example in more detail. We make x [1 2 3 4 5]. The relation x > 2
is then the vector [0 0 1 1 1]; therefore x(x > 2) is the last three elements of x, which currently
hold [3 4 5]. On the other side, x < 4 is [1 1 1 0 0], so x(x < 4) is the first three elements of x,
which currently hold [1 2 3]. To this matrix is added the scalar 10; adding a scalar to a matrix is
always elementwise, so the right-hand side becomes [11 12 13]. Since this is a 1x3 vector and the
left-hand side is also a 1x3 vector, the assignment is valid, and the left-hand side (i.e. the last three
elements of x) becomes [11 12 13]. MATLAB then prints the entirety of the vector x, including the
parts that have not changed: [1 2 11 12 13].

The first and third examples, x(x > 2) = x(x > 2) + 10 and x(y > 8) = x(y > 8) + y(y > 8),
are perhaps less general but more typical. They could each be replaced with a for loop over the
vectors with an if to perform the test. The selective indexing method is much, much faster, because
MATLAB is specifically built to do this sort of thing. The code is also more readable. Therefore,
you should use MATLAB in this form whenever possible. Between selective indexing and the colon
operator, most procedures can be “vectorized.”

11

3 Graphics

Also see help graphics.

3.1 2-D Graphics

The plot command suffices for basic 2-D graphics. If x and y are equal-length vectors, plot(x,
y) will plot the values of y on the y-axis versus those of x on the x-axis. If the first argument is
omitted, it will be taken to be the indices of y — that is, 1:n where n is the length of y. Since
graphs usually begin at zero, and MATLAB indexes from one, this is rarely wanted. If y has n

elements, plot(0:n− 1, y) may be more appropriate. A frequent usage is the form x = 0:.01:1, y
= sin(2 * pi *x), plot(x, y). Parametrics, e.g. t = 0:.01:1, x = sin(t), y = cos(t), plot(x,
y) work well, since the arguments just expand into the same vector.

To change the style of the lines, put in a third argument, in single quotes. E.g. plot(x, y,
’-’) specifies a solid line (the default). ’--’ is a dashed line, ’:’ dotted, ’-.’ alternating dots
and dashes. To plot only the data points and not draw lines between them, put ’.’ (points), ’+’
(crosses), ’∗’ (stars), ’o’ (circles), or ’x’ (x’s).

To specify a color, give the appropriate letter in single quotes as a third argument. To specify
both color and line style, give both (in that order) as a single single-quoted argument, with no
spaces; e.g. ’b:’ is a blue dashed line. Available colors are white (w), black (k), red (r), green (g),
blue (b), cyan (c), magenta (m), and yellow (y).

To put multiple pictures in the same graph window, simply give all their arguments to a single
plot. E.g. plot(x1, y1, x2, y2) plots x1 versus y1 and x2 versus y2. plot(x1, y1, ’b:’, x2, y2)
does the same, but with the former as a dotted blue curve.

For multiple nonoverlapping plots in one window, use subplot(x, y, n), where x and y are each
1 or 2, to break the figure window into an x by y set of subgraphs, selecting the nth as the current
subplot. MATLAB will rotate the current subplot clockwise by default (see 3.2 Handles and use
axes to override this; subplot 1 is in the upper left). Use subplot with no arguments to regain the
single-plot figure window.

For multiple figure windows, figure n will make the nth figure window current, creating it if
necessary; figure by itself creates the next figure window. Use gcf to see which figure is current.

Use clf and cla to clear the current figure or axes.
Replacing plot with loglog, semilogx, or semilogy produces a plot that is logarithmic in

both axes, the x axis, or the y axis, respectively (non-logarithmic axes remaining linear). For other
kinds of plots, use help on polar, bar, hist, quiver, compass, feather, rose, stairs, fill.

Both xlabel and ylabel take a text string (in single quotes) and use it to label the appropriate
axis. Similarly title uses its text string argument as the graph’s title. To place text arbitrarily,
use gtext to place via mouse and text to place via specifying coordinates — help for details. Use
grid to get gridlines. Stylized versions are available as stext, sxlabel, stitle, etc (see help).

You can find the coordinates of a series of points with ginput by clicking with the mouse.
MATLAB will auto-scale the axes by default, using the minimum and maximum values of the

data given to it for each axis. To examine or change this behavior, use axis. axis(xmin, xmax,
ymin, ymax) sets the limits. v = axis returns in v the current limits, in the same order. axis(axis)
prevents the graph from rescaling when you make a new plot, axis auto returns to auto-scaling,
axis square uses the same scaling for both axes, axis equal uses the same scaling and ticmarks
for both, and axis on and axis off turn scaling and ticmarks on and off. See help axis and
help hold for details.

12

Given a function, fplot(’function name’, [xmin xmax]) will plot the function in the given
range; this can offer a more convenient way to view a MATLAB-defined or M-file function than
constructing vectors of values by hand. See help fplot. (Remember that MATLAB isn’t big on
symbolic things like this, though; a problem set asking you to plot a function probably wants it
evaluated on a vector of points.)

Also see help plotxy.

3.2 Handles

Every feature of a figure on display can be edited as needed. Simply click on “Figure Properties” in
the “Edit” menu to go into the property editor, and you will see all of the objects you can change.
These same objects can also be edited from the Matlab prompt as is descripbed below.

A handle is a special MATLAB object attached to part of a plot that lets you find and change
the properties of that part. The boolean ishandle tests whether something is a handle.

A plot always has at least two parts with handles, the figure and the axis. The former has
general characteristics of the entire window; the latter has characteristics of the axes. The special
constant gcf (for get current figure) is a handle to the current plot’s figure; gca (get current axis)
is a handle to the current plot’s axis; and gco (object) is a handle to the last piece of the plot
you clicked on with the mouse. Various graphics commands return handles; generally a handle is
returned by any function that creates or adds something to a plot. figure, axes, and text all do
this. See the help entries for specific other functions for their return values.

Objects with handles have properties. Each property has a name, which is a text string. The
value of a property of an object is given by get(handle, propertyname); if the property name is
omitted, all properties are listed (with their names). You change these values with set, whose most
general format is set(vector of handles, property name, property value, another property name,
value for that property, a third property name, value for third property, ...). For each handle in
the vector (a single handle is fine), each given property is set to the specified value. Omitting
the property values will display the possible values for the specified property, with curly braces {}
around the current value. Also omitting the property names gives such a list for all the object’s
properties.

Some objects have children, which are objects under them; you can get handles to these objects
from their parent by getting the ’Children’ property. You can tell a parent that you want its
children to have certain defaults unless they override; set on the parent the property of ’Default’
followed by the name fo the object type (given by the ’Type’ property) followed by the defaulting
property name (e.g. ’DefaultTextColor’).

Three special property values can be given for any property. Giving ’default’ resets the property
to its default value as affected by any parental defaults; giving ’factory’ sets to the default value
ignoring any parental defaults. The ’remove’ value removes the default value.

To return all properties (except position) to the factory defaults use reset. An object can be
destroyed with delete(handle). The findobj function can be used to seek for objects with given
property values.

A typical strategy is to get handles to the top objects, look through their children for the object
you want, look through its properties for the one you want, see what possible values it has, and set
the one you want.

13

3.3 Saving Graphs and Producing Hardcopy

The figure’s file menu will let you save it and all of its attributes and properties under a filename
of your choosing. The format is Matlab’s .fig format. For important figures, it is recommended
that you do this.

The print command, by itself, sends the current graphics figure to the printer. See help print-
opt about setting default options in an M-file.

MATLAB will print in portrait orientation (vertical longest, in the middle of the page, 4/3
aspect ratio) unless you specify otherwise with orient prior to printing. orient landscape changes
to landscape (horizontal longest), portrait to the default, and tall to full-page portrait; with no
argument, orient returns the current orientation.

To save the picture, print filename will save the current graphics figure; if filename does not
have an appropriate suffix (e.g. .ps, .eps, .jet), the default mode will be used and the default
suffix added. Specify -append to append to an existing file instead of overwriting it (the default).
To save a non-current figure, specify -fnumber; to save in a specific format, specify -ddevice. See
help print.

Other formats for printing or displaying the figure are available from the “Export” dialog in
the “File” menu. Among these are the PDF and PNG formats.

3.4 3-D

Also see help graph3d.

3.4.1 Line Plots

A one-dimensional curve in 3-D is produced by plot3, which is completely analogous to plot;
plot3(x, y, z) plots the curve, plot3(x, y, z, ’b:’) makes it a blue dotted line, etc. As with plot,
including more than one triplet (or quadruplet) of values in a single call overlays the plots. There
exists zlabel exactly like xlabel and ylabel, and axis actually has six arguments, the last two
being for z.

3.4.2 Surface Plots

Both surf and mesh plot a two-dimensional curve in 3-D; surf facets the surface, while mesh
plots the facet outlines only. They are identical otherwise, including in taking arguments. There
are variants; surfc and meshc include a contour plot (see help contour), surfl provides lighting,
meshz provides a reference plane, and waterfall gives a mesh without column lines.

The most general argument to surf is a vector of four matrices, e.g. surf(X, Y, Z, C). The
first three matrices give the 3-D coordinates of each point on the surface, and the last gives its
color as per the current colormap. Omitting the last, e.g. surf(X, Y, Z), uses C = Z, i.e. color
is proportional to height.

The X and Y matrices can be replaced by vectors of the width and height of Z; both or neither
must be replaced. A X matrix is then used with the x vector as each row, and a Y matrix with
the y vector as each column. If X and Y are omitted entirely, the vectors 1:width and 1:height are
used instead.

To evaluate a function that can be performed elementwise on a matrix over a grid of points on
the plane and plot it at even intervals, use meshgrid to create X and Y matrices from vectors
with [X, Y] = meshgrid(x, y) (all the rows of X are x, all the columns of Y are y). Then e.g.

14

Z = X.∗Y and mesh(Z) will display (in this case) the coordinate products, but at evenly spaced
intervals as the x and y vectors did not directly reach mesh.

Portions of a surface plot may be hidden behind others. One method of dealing with this is to
change the viewpoint; see help view. Alternatively, since MATLAB does not plot values of NaN
and Inf, you can make “cutouts” in a plot by setting the color value on some region of facets to
one of those.

Other features of 3-D plots can be set with caxis, colormap, shading, and view, and various
color functions, for all of which see the help entries, as well as the commands described above for
2-D plots.

3.5 Animation

MATLAB provides simple animation capabilities with three movie functions: moviein, getframe,
and movie. A movie consists of a series of frames, a frame being a special MATLAB object that
holds a copy of the current picture, based on the current axis. A movie is a matrix whose columns
are frames.

Because of the way MATLAB handles matrix resizing, you will suffer if you do not preallocate
the movie matrix. Use mov = moviein(nframes) to make mov a matrix capable of holding nframes
frames of the current axis and contents. If you will be getting frames (see below) for a specific
object, and perhaps in a specific position rectangle, allocate the matrix as mov = moviein(nframes,
handle, rectangle) or mov = moviein(nframes, handle).

Build your movie matrix out of columns provided by getframe. By itself getframe gets a
frame of the current axis and contents. As getframe(handle) (or getframe(handle, rectangle)) it
gets a frame from the object specified by handle (in the rectangle region, from the lower left corner,
in the ’Units’ property units). The calls to getframe to build a movie should be consistent with
each other and the moviein preallocation call.

The function movie(handle, mov, n) plays the movie mov in the object given by handle (or in
the current figure if handle is omitted) n times (once if n is omitted). A negative n plays the movie
back and forth each time. A vector n gives the repetitions in the first element and the frames to
play, in order, in succeeding elements. An optional extra argument specifies the frames per second
(defaulting to 12), limited by machine capabilities. An optional further extra argument specifies
the location to play at, from the lower left corner, in the ’Units’ property units.

4 The Session

4.1 Recording and Retrieving

To store and retrieve the state of your session, save filename and load filename write and read
filename.mat. The file matlab.mat will be used if filename is omitted. Default .mat files are
not human-readable; see help save and help load for other uses, including ASCII formats and
partial-state operations.

If you want to keep a record of your session, diary filename will store in filename (using the
file “diary” if filename is omitted) everything that appears in the MATLAB xterm afterwards.
(Graphics are not recorded.) diary off will turn off this recording until restored with diary on.
(Or plain diary to toggle between these.) The diary is plain text, so your favorite text editor can
be used on it.

15

4.2 Shell Escapes

MATLAB provides ways to deal with the shell from within MATLAB. pwd and cd give the current
directory path, cd directory changes the current directory. dir and ls give a directory listing; what
lists the M-files. type filename shows the contents of text file filename or filename.m. delete
filename will remove the file — it acts as the UNIX command “rm,” not the UNIX “delete.” To
send an arbitrary command to your shell, prefix it with “!”;

>> !emacs &

will start up an emacs in the background just as from an athena prompt. This is frequently helpful
for managing M-files (see 4.3 M-files). The command

[status result] = unix(’unix command string’)
also executes an arbitrary command in the operating system, returning the command status (zero
for success, nonzero for failure) and standard output.

4.3 M-files

An m-file is a plain text file (created with your favorite text editor) in a format MATLAB under-
stands. They must end in .m or MATLAB won’t accept them. Experience shows (but documen-
tation is silent on) that m-file names may not have periods in them other than the .m, nor may
they have any hyphens (apparently MATLAB wants to think they’re minuses). Underscores are
acceptable.

Any m-files in any directory in your path (see 4.3.3 Paths) can be used, as can m-files in the
current directory. Use clash to test if your m-file name will collide with an existing one.

M-files can reference each other and themselves recursively.
To see what an m-file says, type file.m. This works for MATLAB’s built-in m-files as well

as for those you create. Use what directoryname or help directoryname to see what m-files (and
mat-files and mex-files) are available; what by itself looks in the current directory. exist(’thingy’)
will return zero if thingy is undefined, and nonzero otherwise; the exact value specifies the nature
of thingy (see help exist). See 4.3.3 Paths about where MATLAB will look for m-files.

In theory, MATLAB only loads in an m-file script or function the first time you refer to it;
it caches the contents and refers to the contents thereafter. This would mean changes in the file
would not affect MATLAB’s actions. In practice, MATLAB (at least on Athena) does read the
m-file each time, and uses the cache only if it can no longer find the m-file in question. To force
MATLAB to reread the file, use clear(filename) to remove the cached meaning.

If all you want to do is supply some data, see 2.2 Building Matrices.

4.3.1 Script and Data Files

A script is a list of commands that you might give to MATLAB directly. Typing script in MATLAB
will execute, in order, the commands in the script.m file. As usual, the result of each will be printed
out unless it ends with a semicolon; putting a semicolon at the end of the script invocation will not
suppress these results.

To see the commands themselves as well as their results, use echo on and echo off.
Variables in a script file are automatically global; that is, if there is a variable of the same name

in the workplace, it is what will be used and/or changed by the script.

16

4.3.2 Function Files

You may define your own functions in m-files named functionname.m.

function s = squares(high)

%SQUARES Make a vector of squares.

% squares(high) returns (1:high)

temp = 1:high;

s = temp.∗temp;

This (in squares.m) may then be used as any function;

>> sq = squares(5)
sq =

1 4 9 16 25

You will note that squares.m puts semicolons after each line; if it did not, every time it was
called it would echo the result of each line of computation, which is extremely annoying.

A more sophisticated version of such a function could be

function [y x] = powers(high, p)

%POWERS Table of some power of n versus n.

% powers(high, p) returns [1:high] to the pth (elementwise)

% powers(high) returns the square

if nargin < 2, p = 2; end;

y = [1:high].ˆp;
if nargout > 1, x = 1:high;

end

>> [y x] = powers(4, 3)
y =

1 8 27 64

x =

1 2 3 4

>> y = powers(4, 3)
y =

1 8 27 64

>> [y x] = powers(4)
y =

1 4 9 16

x =

1 2 3 4

This function would be placed in the file powers.m; a function must always be in an m-file of the
same name (.m).

In this example, more than one argument can be given, but the second is optional; the special
variable nargin is consulted to see how many arguments were passed to the function, and the
second is given a default value if omitted. There may also be more than one output value, and
the special value nargout is checked to see how many assignments should be carried out. Use
nargchk to confirm that nargin is in a valid specified range.

17

The character % at the beginning of a line indicates a comment. The set of commented lines
after the function line is returned by help functionname, so it is important that they exist and
document the function’s behavior. The first line is what lookfor examines, so it should be the
name and a concise summary.

A function need not return anything; many plotting functions do not. For these the first line is
of the form function functionname(arguments).

Encountering the return command causes the function to terminate and sends control back to
what invoked the function.

Variables within a function exist only within the function; changing them does not affect any
variables of the same name in the workspace, nor does referencing them reference variables of the
same name in the workspace (or in other functions). This is not always the desired behavior. If you
wish some variable to be used in more than one area, global variable1 variable2... in each such
area. Any assignment to a variable declared global in one area affects the value of that variable in
all areas in which it is declared global. isglobal will test if a given variable is global in an area;
who(s) global will list the global variables.

If you wish your function to be able to take a function as argument, you should take its name
and apply feval(’functionname’, arguments for function), which will evaluate the function of that
name with those arguments.

Useful operations for functions include pause, which waits argument seconds, or for the user
to strike any key given no argument (pause off and pause on change whether pause should be
ignored); keyboard, which passes control to the keyboard (using a K>>prompt as indication)
until RETURN is entered; and error and input for which see 5.4 Text.

As with scripts, echo can be used to have the text of a function file be echoed when the function
is invoked. echo functionname on and echo functionname off will turn echoing on and off for a
single file, while echo functionname will toggle. echo on all and echo off all affect echoing of all
function files.

4.3.3 Paths

MATLAB cannot search the entire filesystem for m-files. The places MATLAB looks, and the order
in which it searches them, are defined by the path. The command path will list them from first
to last as a vector of strings. On Athena, the initial path will consist of a set of directories in the
matlab locker, and your ∼/matlab directory if it exists; the directory where you run MATLAB
does not get put in the path, but the current directory always gets searched for m-files.

Giving path an argument of one or more strings will set the path to that list. Usually one merely
wants to extend the current path and therefore does path(path, ’/mit/foo’) or path(’/mit/foo’,
path) to retain the current path but add /mit/foo to its end or beginning, respectively. The
function addpath(’new path’) simplifies this operation; the function rmpath simplifies the reverse.
These are both in the contrib/names toolbox, which is primarily for name collision testing; see
help contrib/names or just help names.

To see the source of a given function or m-file, which gives the path followed to find its
argument, while where gives all paths with a file matching the argument. If you are seeking a
function to do some job, but whose name you do not know, use lookfor to search for a keyword.

When MATLAB wants to know what you mean by a name, it first looks for a variable of that
name, then for a built-in function, then for an m-file in the current directory, and finally for an
m-file in the path. Use clash to see what m-files will collide with a particular name.

18

4.4 Numerical Formats

MATLAB always keeps track of numbers to double precision regardless of the output format. To
alter the display of numbers, use format. The argument short gives five digits (the default) and
long fifteen digits; a second argument of e to either switches to floating-point.

Further, format hex gives hexadecimal, format + gives signs only, format bank uses dollars
and cents, and format rat uses ratios of small integers as approximations.

Finally, format compact and format loose can be set independantly of all the other format-
ting, and supress or allow, respectively, extra linefeeds in output.

5 Further MATLAB

5.1 Debugging

MATLAB has special functions for debugging m-file functions (but not scripts). You establish
breakpoints within the m-file; when these are encountered control passes to the keyboard as with
the keyboard command, giving a K>> prompt. You may then examine (or change) the variables
with normal MATLAB commands.

Breakpoints are established with dbstop, in four ways. dbstop in m-file puts a breakpoint at
the first executable line. dbstop at line in m-file puts one at the specified line number. dbstop
if error causes a stop (in any m-file function) when a runtime error occurs; execution may not be
continued after a runtime error. Finally, dbstop if naninf and dbstop if infnan cause stops (in
any m-file function) when a value is noted to be Inf (infinite) or Not-a-Number (NaN). In all of
these, the keywords at, in, and if are optional.

The command dbtype is similar to type, but it gives the line number of each line of the m-file,
for setting breakpoints. It also takes as an optional third argument a vector of lines to display
(instead of all of them).

A list of all breakpoints is available with dbstatus. Use dbclear to remove breakpoints;
dbclear at line in m-file; dbclear all in m-file; dbclear in m-file (removes a breakpoint set at
the first executable line); dbclear all; dbclear if error; and dbclear if naninf and dbclear if
infnan (clear the breakpoints set by the corresponding forms of dbstop). As with dbstop, the
keywords at, in, and if are optional.

Having finished exercising keyboard control at a breakpoint, use dbcont to resume execution
after the breakpoint. Note that when the debugger prints out a line, that is the next line to be
executed; it has not yet been executed.

Instead of letting execution continue to the next breakpoint, you can use dbstep number
to execute the next number lines (one if number is omitted). This lets you examine the state
everywhere without making every line a breakpoint. If the m-file being debugged is about to itself
call an m-file function, dbstep in steps the debugger into the latter line by line instead of executing
it as a single line.

To track which m-files called which, use dbstack. To change the scope of the local workspace
— that is, to have the variables you refer to at the K>> prompt be those of the m-file function or
those of the function caller — user dbdown and dbup respectively.

The command dbquit aborts execution of the m-file (returning nothing) and leaves debugging
mode.

19

5.2 Efficiency Testing, Times and Dates

Most of the time spent in an algorithm is consumed by floating-point operations; integer operations
are relatively instantaneous. The special function flops tracks the number of floating-point oper-
ations performed. It begins at zero, and flops(0) will reset it. Therefore, flops(0); operation(s);
flops gives a reasonable measure of the effort spent in operation(s).

Alternatively, you may wish to time your operations. Use tic to start a stopwatch and toc
to read it. So tic; operation(s); toc gives the number of seconds during operation(s). However,
since your computer was probably doing other things during that time, this is not a very reliable
indication of the operations’ efficiency; repeat it and see.

A better method of measuring time consumption is given by cputime, which is a non-resettable
counter giving the CPU time used by MATLAB since it started:

cpu = cputime; operation(s); disp(cputime - cpu).
If you simply wish to see the time, clock offers a wall clock giving a [year month day hour

minute second] vector, and etime gives the time elapsed between two such vectors. A day-month-
year string is returned by date.

5.3 Polynomials

A polynomial is represented by a vector of the coefficients, constant last. E.g. 2x3 + 8x2 − 7x

becomes [2 8 -7 0].
Polynomial multiplication is performed by conv(p, q) (which convolves the vectors). Division

is available with [q, r] = deconv(denom, numer), which sets the quotient q and remainder
r such that denom = q ∗ numer + r. Polynomials of equal degree can be added with +, but
polynomials of unequal degree cannot be add directly; the lesser must be padded with zeros in
front.

polyfit(x, y, n) finds the polynomial p in x of degree n that best fits y = p(x) in the least-
squares sense. polyval(p, x) evaluates the polynomial p at the point x, elementwise, if x is a
matrix. These functions can also give error estimates; see the help entries. polyvalm(p, m)
performs polynomial evaluation on a matrix (i.e. as a matrix, not elementwise). For some other
curve-fitting capabilities see curvefit.

You can find the roots of a polynomial with roots and its derivative with polyder. The charac-
teristic polynomial of a matrix M (i.e. det(M - lambda)) is given by poly(M). See help polyfun
for further polynomial and interpolation functions.

5.4 Text

Text strings are given in single quotes, e.g. ’a test string’. A string is a row vector of characters.

>> s = ’a string’;
>> s(5)
ans =

r

Normal vector manipulation carries over into strings; resultant vectors will frequently be of
numbers, especially if the manipulation wouldn’t make sense as a string. This is done with normal
ASCII converson. Both real(vector) and abs(vector) force ASCII decimal representation, while
setstr(vector) forces character representation if possible. You can use isstr to test whether a
vector is a string. (And isletter and isspace to test individual characters.)

20

>> s - 1
ans =

96 31 114 115 113 104 109 102

>> [s ’ which is longer than it was’]
ans =

a string which is longer than it was

The help strfun entry gives a nice summary of string functions.
A string (like anything else) can be displayed with disp; this can be useful in M-files. Prompted

input is available with input. In the form input(’give me an answer: ’), it prints its string
argument without a carriage return and waits for the user to respond; the response is evaluated
in the workspace and the result returned. In the form input(’give me an answer: ’, ’s’), the
response is not evaluated, but is returned as a literal string. Advanced prompted input is available
with menu, and beyond that with uimenu and uicontrol.

To execute a string as a MATLAB expression, use eval. Given a single string argument, it
attempts to evaluate it as if it had been entered in the current workspace. The results are returned
in a vector. If eval is given a second string argument, and the execution of the first generates an
error, it will attempt to evaluate the second.

The function error takes a single string argument, displays it, and exits from any m-file it
occurs within (unless the argument is an empty string, in which case nothing happens).

The last error message generated is recalled by lasterr. It is reset to an empty string by
lasterr(”). It is most often used when giving eval two arguments, as the second can examine its
contents to see how the first failed.

There are a number of other useful string functions. Case conversion is done by upper and
lower. Sequences of spaces are generated by blanks (the transpose then acts as a sequence
of newlines), and trailing spaces are removed by deblank. Comparison is done with strcmp,
searching with findstr, search and replace with strrep, and parsing by delimiters with strtok.

Conversions between strings and integer, real, and hex representations of numbers are available
with num2str, int2str, str2num, hex2num, hex2dec, and dec2hex. Matrix conversations are
handled by str2mat and mat2str. For more general conversions, see help for sprintf and sscanf;
for use with files see help for fprintf and fscanf.

5.5 Sparse Matrices

MATLAB has two matrix storage modes. Full storage is the default and stores the value of each
element; it is appropriate for matrices with many nonzero elements. Sparse storage is used only
when you explicitly invoke it (though it propagates somewhat thereafter); it stores only the values
of the nonzero elements (and their integer indices, of course). It is therefore appropriate for matrices
with few nonzero elements, i.e. sparse matrices.

The advantages of sparse matrices are size and speed. A 5000 by 5000 matrix in full storage
requires space for 25 million complex numbers even if only 50,000 are nonzero. The same 50,000-
nonzero element matrix, in sparse storage, would store 50,000 complex numbers and 50,000 pairs
of integer indices, less than .5% the space (less than one megabyte, instead of 200 meg). Similarly,
solving Ma = b where M is such a matrix would take most of a day in full storage, and less than
half a minute in sparse. Obviously if you are dealing with large, sparse matrices, you should take
advantage of these features.

Some sparsity functions are useful for other purposes, as sparsity is connected to graph and tree
theory.

21

See help sparse for a description of sparse storage mode, and help sparfun for a list of the
sparse matrix functions. The MATLAB User’s Guide (see 1.4 Help) has (as usual) a much
fuller description of the nature, uses, and manipulation of sparse matrices.

5.6 Calculus

5.6.1 Differential Equations

For exact (symbolic) differentiations and solutions, see 5.8 Symbolic Math.
The function ode23 is used to solve ordinary differential equations with 2nd and 3rd order

Runge-Kutta formulas. The variant ode23p also plots the results. The function ode45 uses 4th
and 5th order Runge-Kutta formulas and so is slower but more accurate; it otherwise acts as ode23.
A simple demo is available with odedemo.

The basic format is [t, y] = ode23(′mysystem′, t0, tf , y0). Here t is the single independent
variable and y is a vector (or scalar) of the dependent variables. The scalars t0 and tf specify the
initial and final times; y0 is a vector with the initial state of the dependent variables. The system
of equations to be solved is in the m-file mysystem.m.

(An optional fifth argument can specify the tolerance, which defaults to 10−3; an optional
boolean sixth argument specifies whether to give status displays while integrating, defaulting to 0
(False).)

The results are a vector t of times and a matrix y in which the nth column gives the values of
the nth dependent variable (yn) at those positions. Thus plot(t, y) suffices for basic display. (See
ode23p for automatic phase plane plots.)

The m-file defines a function with the same name as the system of equations, with one output
(a vector of derivatives) and two inputs (a scalar time, and a vector holding the variables whose
derivatives are returned). It is important to realize that y, ẏ, and ÿ are independent variables as
far as MATLAB is concerned until you define their relationships. This means that the y vector
will typically contain some intermediate derivatives of your basic dependent variables. The output
vector is defined to be the derivative vector of the input vector; the process by which you specify
this defines the system.

As an example, consider the system of equations

ẍ + ẏ − 2ẋ = 3 (1)

ẏ = 3x + 5 (2)

(3)

Here x and y are our basic dependent variables, and t is our independent variable (since we
used time derivatives). Since the system is second-order in x, we must consider ẋ as a necessary
part of the state of the system and include it in our vectors of dependent variables. Thus we want a
function that takes a scalar t and a vector holding (in whatever order) x, y, ẋ, and returns a vector
holding in the same order ẋ, ẏ, ẍ, i.e. the derivative of the input vector.

function der = mysystem(t, state)

% MYSYSTEM to solve the system x’’ + y’ - 2x’ = 3, y’ = 3x + 5.

% mysystem(t, [x(t) y(t) x’(t)])

% returns [x’(t) y’(t) x’’(t)]

% Suitable for use with ode23, ode45.

22

% First assign the input values to variables with names that

% make what they are easier to remember.

x = state(1);

y = state(2);

xdot = state(3);

% Now calculate the output values.

% The first, the derivative of x, is trivial since we require

% it as an input value. We’ll put a line to do it anyway as a reminder.

xdot = xdot;

% We can get the second derivative of x in terms of x’ and y’ from

% our first equation, but we need y’ first. We’ll use the second for that.

ydot = 3*x + 5;

% Now we can get the second derivative of x.

xdoubledot = 3 - 2*xdot - ydot;

% Construct the vector of derivatives in the same order as

% the inputs. We took them as x, y, x’, so we must return x’, y’, x’’.

der = [xdot, ydot, xdoubledot];

With this function in the file mysystem.m, we can solve the system over any stretch of time
with any initial values:

>> t0 = 0;
>> tf = 10;
>> x0 = 0;
>> y0 = 1;
>> xdot0 = -1;
>> state0 = [x0 y0 xdot0];
>> [t state] = ode23(’mysystem’, t0, tf, state0);
>> x = state(:, 1); y = state(:, 2); xdot = state(:, 3);
>> figure(1); plot(t, x); title(’x(t)’)
>> figure(2); plot(t, y); title(’y(t)’)
>> figure(3); plot(t, xdot); title(’xdot(t)’)
>> figure(4); plot(x, y); title(’phase plot’)

While we have considered the independent variable to be time, it is obvious no such interpretation
is required.

MATLAB does not have built-in functionality to solve systems with multiple independent vari-
ables.

5.6.2 Numerical Integration

For exact (symbolic) integrations and solutions, see 5.8 Symbolic Math.
There are three functions available for numerical integration. The functions quad and quad8

use adaptive, recursive rules, the low order Simpson’s and the higher order Newton Cotes 8 panel
respectively; other than the rule used, they act identically. The basic format is quad(’function’,

23

start, finish) to get the integral of function from start to finish. The function must take a single
vector as input (of the length of start and finish) and return a single vector of output.

If the integration requires too much recursion (e.g. if the integral is singular), the value Inf is
returned.

An optional fourth argument may be specified to give the tolerance (default 10−3. An optional
boolean fifth argument may then be given to specify whether the evalutions should be traced in a
point plot automatically (False if 0, True otherwise). An empty matrix may be passed for either
of these to keep the defaults.

If function takes more than one argument, the others may be specified as constant (for the
integration) parameters by quad(’function’, start, finish, tolerance, trace, first parameter, second
parameter...). This integrates function(x, first parameter, second parameter...) over x = start to
finish.

Alternatively, trapz may be used for trapezoidal numerical integration; the format is trapz(x,
y). Here x is a vector and y is a matrix of any number of columns, but as many rows as the length
of x. Each column of y is considered to be a function over x and is integrated with the trapezoidal
approximation. The result is a vector of the column integrations. If x is omitted, unit spacing
between points is assumed.

5.7 Optimizing

The function fmin(’function’, start, finish) will attempt to return the minimum of function (a
scalar function of a scalar argument) in the interval [start, finish]. Of course, no numeric method
can guarentee a minimum for a function that varies too rapidly.

An optional fourth argument may be given; this is a vector of options (see help foptions).
The relevant options for fmin are the first, second, and fourteenth elements in the vector. If and
only if element 1 is nonzero, the intermediate steps are displayed (default is 0). Element 2 gives
the termination tolerance in the function argument (default 10−4). Element 14 gives the maximum
number of steps (default 500). The other elements of the options vector are ignored.

If function takes more than one argument, the others may be specified as constant parameters
by fmin(’function’, start, finish, options, first parameter, second parameter...). This minimizes
function(x, first parameter, second parameter...) over x ∈ [start, finish].

A function of more than one variable may be similarly minimized with fmins, which uses a
simplex search. The basic form is fmins(’function’, v), which looks for a local minimum near the
vector v. The function must still return a scalar.

A vector of options may be passed to fmins exactly as to fmin, with the same meanings and
defaults. Parameters may also be passed to fmins as to fmin, except that there is a mandatory
empty matrix argument between the options vector and the first parameter.

To maximize a function, minimize its negative.
The function fzero(’function’, x) seeks a zero of function with x as a starting point. The

function must take and return a scalar; there is no vector-argument form of fzero. The value of the
function at the returned point may not be exactly zero, but the function will change sign near that
point. An optional third argument may be given to specify the convergence tolerance; an optional
fourth boolean argument may be given to cause (if nonzero) intermediate printing.

See help optim for the contents of the Optimization Toolbox.

24

5.8 Symbolic Math

MATLAB obtains some basic symbolic math capabilities by using the Maple kernel. If you want
to do a lot of symbolic math, you probably want to use Maple directly.

An expression is a text string (see 5.4 Text). Isolated lower case characters of the alphabet
(other than the imaginary constants i and j) are taken to be variables. Function names and operator
symbols are usually interpreted correctly.

For many purposes, only one variable in an expression can be used as a free variable — for
instance, when doing a single differentiation or integration. This is referred to as “the” symbolic
variable of the expression. Use symvar on an expression to see what variable will be taken as the
free variable by default; you will usually be able to override the default when using a symbolic
function.

A symbolic matrix is a matrix of text characters, intepreted row by row. Each row begins with
’[’ and ends with ’]’; the individual elements are substrings separated by commas.

Rather than give exhaustive descriptions here, we will list most of the symbolic functions with
short descriptions based on their help entries, which you may see for full details:

sym Create, access, or modify a symbolic matrix
symop Symbolic operations; general arithmetic strings
symadd Symbolic addition
symsub Symbolic subtraction
symmul Symbolic multiplication
symdiv Symbolic division
sympow Symbolic exponentation
inverse Symbolic matrix inverse
diff Symbolic differentiation
int Symbolic integration
factor Factor elements of symbolic matrix
simplify Simplify elements of symbolic matrix
simple Search for simplest form of a symbolic expression
expand Expand elements of symbolic matrix
collect Collect powers of free variables in symbolic expression
taylor Taylor series expansion in symbolic variable
solve Symbolic solution of algebraic equations
dsolve Symbolic solution of ordinary differential equations

A special constant, Digits, determines the numeric accuracy of symbolic computations. Use digits
to find the current accuracy and digits(d) to set the accuracy. The function vpa, for “variable
precision arithmetic,” numerically evaluates (to Digits precision) a symbolic expression.

A symbolic expression with a single free variable can be plotted with ezplot(function).

5.9 SIMULINK

SIMULINK is a special interactive toolbox for simulating dynamic systems in block diagrams with
a graphical (mouse-driven) interface. It can handle nonlinear systems of many variables and rates,
in discrete or continuous time. The results can be further analyzed in the MATLAB workspace.

SIMULINK is available on DECstations, IBM RS/6000s, and Suns. It cannot be accessed from
within a regular MATLAB session, but must be started by itself.

athena% add matlab
athena% simulink &

25

This will generate a MATLAB window named SIMULINK. All MATLAB functionality is present
as are SIMULINK functions, for which full help information should be available. Use simdemo
for demonstrations.

Copies of the SIMULINK User’s Guide are available for reference in the Athena Consulting
Office (11-115), and in Barker and Hayden Libraries.

26

5.10 Other Features

Type help by itself to list categories of MATLAB functions.
Among those that we have not gone into in detail are
matlab/datafun Data analysis and Fourier transform functions.
matlab/sounds Sound processing functions.
matlab/iofun Low-level file I/O functions.
toolbox/uitools User Interface Utilities.
toolbox/control Control System Toolbox.
toolbox/ident System Identification Toolbox.
toolbox/local Local function library.
mutools/commands Mu-Analysis and Synthesis Toolbox.: Commands directory
mutools/subs Mu-Analysis and Synthesis Toolbox – Supplement
toolbox/optim Optimization Toolbox.
toolbox/robust Robust Control Toolbox.
toolbox/signal Signal Processing Toolbox.
toolbox/splines Spline Toolbox.
toolbox/stats Statistics Toolbox.
toolbox/images Image Processing Toolbox.
toolbox/symbolic Symbolic Math Toolbox.
nnet/nnet Neural Network Toolbox.
nnet/nndemos Neural Network Demonstrations and Applications.
toolbox/pde Partial Differential Equation Toolbox.

27

