Dbt |
#include <db_cxx.h>class Dbt { public: void *get_data() const; void set_data(void *);
u_int32_t get_size() const; void set_size(u_int32_t);
u_int32_t get_ulen() const; void set_ulen(u_int32_t);
u_int32_t get_dlen() const; void set_dlen(u_int32_t);
u_int32_t get_doff() const; void set_doff(u_int32_t);
u_int32_t get_flags() const; void set_flags(u_int32_t);
Dbt(void *data, size_t size); Dbt(); Dbt(const Dbt &); Dbt &operator = (const Dbt &); ~Dbt();
DBT *Dbt::get_DBT(); const DBT *Dbt::get_const_DBT() const; static Dbt *Dbt::get_Dbt(DBT *dbt); static const Dbt *Dbt::get_const_Dbt(const DBT *dbt); };
This manual page describes the specific details of the Dbt class, used to encode keys and data items in a database.
Storage and retrieval for the Db access methods are based on key/data pairs. Both key and data items are represented by Dbt objects. Key and data byte strings may refer to strings of zero length up to strings of essentially unlimited length. See Database limits for more information.
The Dbt class provides simple access to an underlying data structure, whose elements can be examined or changed using the set_ or get_ methods. The remainder of the manual page sometimes refers to these accesses using the underlying name; for example, ulen rather than Dbt::get_ulen and Dbt::set_ulen. Dbt can be subclassed, providing a way to associate with it additional data or references to other structures.
The constructors set all elements of the underlying structure to zero. The constructor with two arguments has the effect of setting all elements to zero except for the data and size elements.
In the case in which the flags structure element is set to 0, when the application is providing Berkeley DB a key or data item to store into the database, Berkeley DB expects the data object to point to a byte string of size bytes. When returning a key/data item to the application, Berkeley DB will store into the data object a pointer to a byte string of size bytes, and the memory to which the pointer refers will be allocated and managed by Berkeley DB.
The elements of the structure underlying the Dbt class are defined as follows:
Note that applications can determine the length of a record by setting the ulen to 0 and checking the return value found in size. See the DB_DBT_USERMEM flag for more information.
This element is accessed using Dbt::get_ulen and Dbt::set_ulen.
The flags value must be set to 0 or by bitwise inclusively OR'ing together one or more of the following values:
It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and DB_DBT_USERMEM.
It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and DB_DBT_USERMEM.
It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLOC, and DB_DBT_USERMEM.
If DB_DBT_MALLOC or DB_DBT_REALLOC is specified, Berkeley DB allocates a properly sized byte array to contain the data. This can be convenient if you know little about the nature of the data, specifically the size of data in the database. However, if your application makes repeated calls to retrieve keys or data, you may notice increased garbage collection due to this allocation. If you know the maximum size of data you are retrieving, you might decrease the memory burden and speed your application by allocating your own byte array and using DB_DBT_USERMEM. Even if you don't know the maximum size, you can use this option and reallocate your array whenever your retrieval API call returns an ENOMEM error or throws an exception encapsulating an ENOMEM.
For example, if the data portion of a retrieved record was 100 bytes, and a partial retrieval was done using a Dbt having a dlen field of 20 and a doff field of 85, the get call would succeed, the data field would refer to the last 15 bytes of the record, and the size field would be set to 15.
If the calling application is doing a put, the dlen bytes starting doff bytes from the beginning of the specified key's data record are replaced by the data specified by the data and size objects. If dlen is smaller than size, the record will grow; if dlen is larger than size, the record will shrink. If the specified bytes do not exist, the record will be extended using nul bytes as necessary, and the put call will succeed.
It is an error to attempt a partial put using the Db::put method in a database that supports duplicate records. Partial puts in databases supporting duplicate records must be done using a Dbc method.
It is an error to attempt a partial put with differing dlen and size values in Queue or Recno databases with fixed-length records.
For example, if the data portion of a retrieved record was 100 bytes, and a partial put was done using a Dbt having a dlen field of 20, a doff field of 85, and a size field of 30, the resulting record would be 115 bytes in length, where the last 30 bytes would be those specified by the put call.
Each Dbt object has an associated DBT struct, which is used by the underlying implementation of Berkeley DB and its C-language API. The Dbt::get_DBT method returns a pointer to this struct. Given a const Dbt object, Dbt::get_const_DBT returns a const pointer to the same struct.
Given a DBT struct, the Dbt::get_Dbt method returns the corresponding Dbt object, if there is one. If the DBT object was not associated with a Dbt (that is, it was not returned from a call to Dbt::get_DBT), then the result of Dbt::get_Dbt is undefined. Given a const DBT struct, Dbt::get_const_Dbt returns the associated const Dbt object, if there is one.
These methods may be useful for Berkeley DB applications including both C and C++ language software. It should not be necessary to use these calls in a purely C++ application.