Monte Carlo Method for Nuclear Reactor Analysis

by

Bryan Robert Herman

B.S., Rensselaer Institute of Technology (2009)
S.M., Massachusetts Institute of Technology (2011)

Submitted to the Department of Nuclear Science and Engineering
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Nuclear Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

© Massachusetts Institute of Technology 2014. All rights reserved.
Monte Carlo Method for Nuclear Reactor Analysis

by

Bryan Robert Herman

Submitted to the Department of Nuclear Science and Engineering on May 18, 2014, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Nuclear Science and Engineering

Abstract

In this thesis, I designed and implemented a compiler which performs optimizations that reduce the number of low-level floating point operations necessary for a specific task; this involves the optimization of chains of floating point operations as well as the implementation of a “fixed” point data type that allows some floating point operations to simulated with integer arithmetic. The source language of the compiler is a subset of C, and the destination language is assembly language for a micro-floating point CPU. An instruction-level simulator of the CPU was written to allow testing of the code. A series of test pieces of codes was compiled, both with and without optimization, to determine how effective these optimizations were.

Thesis Supervisor: Kord S. Smith
Title: Professor

Thesis Supervisor: Benoit Forget
Title: Professor
Acknowledgments

This is the acknowledgements section. You should replace this with your own acknowledgements.
Contents

1 Introduction 13

1.1 Motivations for micro-optimization 14

1.2 Description of micro-optimization 14

1.2.1 Post Multiply Normalization 15

1.2.2 Block Exponent 15

1.3 Integer optimizations 16

1.3.1 Conversion to fixed point 16

1.3.2 Small Constant Multiplications 17

1.4 Other optimizations 18

1.4.1 Low-level parallelism 18

1.4.2 Pipeline optimizations 19

A Tables .. 21

B Figures ... 23
List of Figures

B-1 Armadillo slaying lawyer. ... 23
B-2 Armadillo eradicating national debt. 24
List of Tables

A.1 Armadillos ... 21
Chapter 1

Introduction

Micro-optimization is a technique to reduce the overall operation count of floating point operations. In a standard floating point unit, floating point operations are fairly high level, such as “multiply” and “add”; in a micro floating point unit (µFPU), these have been broken down into their constituent low-level floating point operations on the mantissas and exponents of the floating point numbers.

Chapter two describes the architecture of the µFPU unit, and the motivations for the design decisions made.

Chapter three describes the design of the compiler, as well as how the optimizations discussed in section 1.2 were implemented.

Chapter four describes the purpose of test code that was compiled, and which statistics were gathered by running it through the simulator. The purpose is to measure what effect the micro-optimizations had, compared to unoptimized code. Possible future expansions to the project are also discussed.

My Custom Block

This is an example of creating a custom environment. Here we designed a nice MIT themed block.
1.1 Motivations for micro-optimization

The idea of micro-optimization is motivated by the recent trends in computer architecture towards low-level parallelism and small, pipelineable instruction sets [?, ?]. By getting rid of more complex instructions and concentrating on optimizing frequently used instructions, substantial increases in performance were realized.

Another important motivation was the trend towards placing more of the burden of performance on the compiler. Many of the new architectures depend on an intelligent, optimizing compiler in order to realize anywhere near their peak performance [?, ?, ?]. In these cases, the compiler not only is responsible for faithfully generating native code to match the source language, but also must be aware of instruction latencies, delayed branches, pipeline stages, and a multitude of other factors in order to generate fast code [?].

Taking these ideas one step further, it seems that the floating point operations that are normally single, large instructions can be further broken down into smaller, simpler, faster instructions, with more control in the compiler and less in the hardware. This is the idea behind a micro-optimizing FPU; break the floating point instructions down into their basic components and use a small, fast implementation, with a large part of the burden of hardware allocation and optimization shifted towards compile-time.

Along with the hardware speedups possible by using a µFPU, there are also optimizations that the compiler can perform on the code that is generated. In a normal sequence of floating point operations, there are many hidden redundancies that can be eliminated by allowing the compiler to control the floating point operations down to their lowest level. These optimizations are described in detail in section 1.2.

1.2 Description of micro-optimization

In order to perform a sequence of floating point operations, a normal FPU performs many redundant internal shifts and normalizations in the process of performing a sequence of operations. However, if a compiler can decompose the floating point op-
erations it needs down to the lowest level, it then can optimize away many of these redundant operations.

If there is some additional hardware support specifically for micro-optimization, there are additional optimizations that can be performed. This hardware support entails extra “guard bits” on the standard floating point formats, to allow several unnormalized operations to be performed in a row without the loss information\(^1\). A discussion of the mathematics behind unnormalized arithmetic is in appendix ??.

The optimizations that the compiler can perform fall into several categories:

1.2.1 Post Multiply Normalization

When more than two multiplications are performed in a row, the intermediate normalization of the results between multiplications can be eliminated. This is because with each multiplication, the mantissa can become denormalized by at most one bit. If there are guard bits on the mantissas to prevent bits from “falling off” the end during multiplications, the normalization can be postponed until after a sequence of several multiplies\(^2\).

As you can see, the intermediate results can be multiplied together, with no need for intermediate normalizations due to the guard bit. It is only at the end of the operation that the normalization must be performed, in order to get it into a format suitable for storing in memory\(^3\).

1.2.2 Block Exponent

In a unoptimized sequence of additions, the sequence of operations is as follows for each pair of numbers \((m_1,e_1)\) and \((m_2,e_2)\).

1. Compare \(e_1\) and \(e_2\).

\(^1\)A description of the floating point format used is shown in figures ?? and ??.

\(^2\)Using unnormalized numbers for math is not a new idea; a good example of it is the Control Data CDC 6600, designed by Seymour Cray. [?] The CDC 6600 had all of its instructions performing unnormalized arithmetic, with a separate NORMALIZE instruction.

\(^3\)Note that for purposed of clarity, the pipeline delays were considered to be 0, and the branches were not delayed.
2. Shift the mantissa associated with the smaller exponent \(|e_1 - e_2| \) places to the right.

3. Add \(m_1 \) and \(m_2 \).

4. Find the first one in the resulting mantissa.

5. Shift the resulting mantissa so that normalized

6. Adjust the exponent accordingly.

Out of 6 steps, only one is the actual addition, and the rest are involved in aligning the mantissas prior to the add, and then normalizing the result afterward. In the block exponent optimization, the largest mantissa is found to start with, and all the mantissa’s shifted before any additions take place. Once the mantissas have been shifted, the additions can take place one after another\(^4\). An example of the Block Exponent optimization on the expression \(X = A + B + C \) is given in figure ??.

1.3 Integer optimizations

As well as the floating point optimizations described above, there are also integer optimizations that can be used in the \(\muFPU \). In concert with the floating point optimizations, these can provide a significant speedup.

1.3.1 Conversion to fixed point

Integer operations are much faster than floating point operations; if it is possible to replace floating point operations with fixed point operations, this would provide a significant increase in speed.

This conversion can either take place automatically or or based on a specific request from the programmer. To do this automatically, the compiler must either be very smart, or play fast and loose with the accuracy and precision of the programmer’s variables. To\(^4\)This requires that for \(n \) consecutive additions, there are \(\log_2 n \) high guard bits to prevent overflow. In the \(\muFPU \), there are 3 guard bits, making up to 8 consecutive additions possible.
be “smart”, the computer must track the ranges of all the floating point variables through
the program, and then see if there are any potential candidates for conversion to floating
point. This technique is discussed further in section ??, where it was implemented.

The other way to do this is to rely on specific hints from the programmer that a
certain value will only assume a specific range, and that only a specific precision is
desired. This is somewhat more taxing on the programmer, in that he has to know
the ranges that his values will take at declaration time (something normally abstracted
away), but it does provide the opportunity for fine-tuning already working code.

Potential applications of this would be simulation programs, where the variable
represents some physical quantity; the constraints of the physical system may provide
bounds on the range the variable can take.

1.3.2 Small Constant Multiplications

One other class of optimizations that can be done is to replace multiplications by small
integer constants into some combination of additions and shifts. Addition and shifting
can be significantly faster than multiplication. This is done by using some combination
of

\[
\begin{align*}
 a_i &= a_j + a_k \\
 a_i &= 2a_j + a_k \\
 a_i &= 4a_j + a_k \\
 a_i &= 8a_j + a_k \\
 a_i &= a_j - a_k \\
 a_i &= a_j \ll mshift \\
\end{align*}
\]

instead of the multiplication. For example, to multiply \(s \) by 10 and store the result in \(r \),
you could use:

\[
 r = 4s + s
\]
\begin{align*}
 r &= r + r
\end{align*}

Or by 59:
\begin{align*}
 t &= 2s + s \\
 r &= 2t + s \\
 r &= 8r + t
\end{align*}

Similar combinations can be found for almost all of the smaller integers\(^5\). \([?]\]

\section{1.4 Other optimizations}

\subsection{1.4.1 Low-level parallelism}

The current trend is towards duplicating hardware at the lowest level to provide parallelism\(^6\)

Conceptually, it is easy to take advantage to low-level parallelism in the instruction stream by simply adding more functional units to the \(\mu\)FPU, widening the instruction word to control them, and then scheduling as many operations to take place at one time as possible.

However, simply adding more functional units can only be done so many times; there is only a limited amount of parallelism directly available in the instruction stream, and without it, much of the extra resources will go to waste. One process used to make more instructions potentially schedulable at any given time is “trace scheduling”. This technique originated in the Bulldog compiler for the original VLIW machine, the ELI-512. \([?, ?]\) In trace scheduling, code can be scheduled through many basic blocks.

\(^5\)This optimization is only an “optimization”, of course, when the amount of time spent on the shifts and adds is less than the time that would be spent doing the multiplication. Since the time costs of these operations are known to the compiler in order for it to do scheduling, it is easy for the compiler to determine when this optimization is worth using.

\(^6\)This can be seen in the i860; floating point additions and multiplications can proceed at the same time, and the RISC core be moving data in and out of the floating point registers and providing flow control at the same time the floating point units are active. \([?]\)
at one time, following a single potential “trace” of program execution. In this way, instructions that might be executed depending on a conditional branch further down in the instruction stream are scheduled, allowing an increase in the potential parallelism. To account for the cases where the expected branch wasn’t taken, correction code is inserted after the branches to undo the effects of any prematurely executed instructions.

1.4.2 Pipeline optimizations

In addition to having operations going on in parallel across functional units, it is also typical to have several operations in various stages of completion in each unit. This pipelining allows the throughput of the functional units to be increased, with no increase in latency.

There are several ways pipelined operations can be optimized. On the hardware side, support can be added to allow data to be recirculated back into the beginning of the pipeline from the end, saving a trip through the registers. On the software side, the compiler can utilize several tricks to try to fill up as many of the pipeline delay slots as possible, as seen described by Gibbons. [?]
Appendix A

Tables

Table A.1: Armadillos

<table>
<thead>
<tr>
<th>Armadillos</th>
<th>are</th>
</tr>
</thead>
<tbody>
<tr>
<td>our</td>
<td>friends</td>
</tr>
</tbody>
</table>
Appendix B

Figures

Figure B-1: Armadillo slaying lawyer.
Figure B-2: Armadillo eradicating national debt.
Bibliography