
Monte Carlo Method for Nuclear Reactor Analysis

by

Bryan Robert Herman

B.S., Rensselaer Institute of Technology (2009)
S.M., Massachusetts Institute of Technology (2011)

Submitted to the Department of Nuclear Science and Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Nuclear Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Nuclear Science and Engineering

May 18, 2014

Certified by .
Kord S. Smith

Professor
Thesis Supervisor

Certified by .
Benoit Forget

Professor
Thesis Supervisor

Accepted by .
Mujid S. Kazimi

Chairman, Department Committee on Graduate Theses

2

Monte Carlo Method for Nuclear Reactor Analysis

by

Bryan Robert Herman

Submitted to the Department of Nuclear Science and Engineering
on May 18, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Nuclear Science and Engineering

Abstract

In this thesis, I designed and implemented a compiler which performs optimizations
that reduce the number of low-level floating point operations necessary for a specific
task; this involves the optimization of chains of floating point operations as well as the
implementation of a “fixed” point data type that allows some floating point operations
to simulated with integer arithmetic. The source language of the compiler is a subset of
C, and the destination language is assembly language for a micro-floating point CPU. An
instruction-level simulator of the CPU was written to allow testing of the code. A series
of test pieces of codes was compiled, both with and without optimization, to determine
how effective these optimizations were.

Thesis Supervisor: Kord S. Smith
Title: Professor

Thesis Supervisor: Benoit Forget
Title: Professor

3

4

Acknowledgments

This is the acknowledgements section. You should replace this with your own acknowl-

edgements.

5

6

Contents

1 Introduction 13

1.1 Motivations for micro-optimization . 14

1.2 Description of micro-optimization . 14

1.2.1 Post Multiply Normalization . 15

1.2.2 Block Exponent . 15

1.3 Integer optimizations . 16

1.3.1 Conversion to fixed point . 16

1.3.2 Small Constant Multiplications . 17

1.4 Other optimizations . 18

1.4.1 Low-level parallelism . 18

1.4.2 Pipeline optimizations . 19

A Tables 21

B Figures 23

7

8

List of Figures

B-1 Armadillo slaying lawyer. 23

B-2 Armadillo eradicating national debt. 24

9

10

List of Tables

A.1 Armadillos . 21

11

12

Chapter 1

Introduction

Micro-optimization is a technique to reduce the overall operation count of floating point

operations. In a standard floating point unit, floating point operations are fairly high

level, such as “multiply” and “add”; in a micro floating point unit (µFPU), these have

been broken down into their constituent low-level floating point operations on the man-

tissas and exponents of the floating point numbers.

Chapter two describes the architecture of the µFPU unit, and the motivations for

the design decisions made.

Chapter three describes the design of the compiler, as well as how the optimizations

discussed in section 1.2 were implemented.

Chapter four describes the purpose of test code that was compiled, and which statis-

tics were gathered by running it through the simulator. The purpose is to measure what

effect the micro-optimizations had, compared to unoptimized code. Possible future ex-

pansions to the project are also discussed.

My Custom Block

This is an example of creating a custom environment. Here we designed a nice

MIT themed block.

13

1.1 Motivations for micro-optimization

The idea of micro-optimization is motivated by the recent trends in computer architec-

ture towards low-level parallelism and small, pipelineable instruction sets [?, ?]. By

getting rid of more complex instructions and concentrating on optimizing frequently

used instructions, substantial increases in performance were realized.

Another important motivation was the trend towards placing more of the burden of

performance on the compiler. Many of the new architectures depend on an intelligent,

optimizing compiler in order to realize anywhere near their peak performance [?, ?, ?].

In these cases, the compiler not only is responsible for faithfully generating native code

to match the source language, but also must be aware of instruction latencies, delayed

branches, pipeline stages, and a multitude of other factors in order to generate fast code

[?].

Taking these ideas one step further, it seems that the floating point operations that

are normally single, large instructions can be further broken down into smaller, simpler,

faster instructions, with more control in the compiler and less in the hardware. This

is the idea behind a micro-optimizing FPU; break the floating point instructions down

into their basic components and use a small, fast implementation, with a large part of

the burden of hardware allocation and optimization shifted towards compile-time.

Along with the hardware speedups possible by using a µFPU, there are also opti-

mizations that the compiler can perform on the code that is generated. In a normal

sequence of floating point operations, there are many hidden redundancies that can be

eliminated by allowing the compiler to control the floating point operations down to

their lowest level. These optimizations are described in detail in section 1.2.

1.2 Description of micro-optimization

In order to perform a sequence of floating point operations, a normal FPU performs

many redundant internal shifts and normalizations in the process of performing a se-

quence of operations. However, if a compiler can decompose the floating point op-

14

erations it needs down to the lowest level, it then can optimize away many of these

redundant operations.

If there is some additional hardware support specifically for micro-optimization,

there are additional optimizations that can be performed. This hardware support entails

extra “guard bits” on the standard floating point formats, to allow several unnormalized

operations to be performed in a row without the loss information1. A discussion of the

mathematics behind unnormalized arithmetic is in appendix ??.

The optimizations that the compiler can perform fall into several categories:

1.2.1 Post Multiply Normalization

When more than two multiplications are performed in a row, the intermediate nor-

malization of the results between multiplications can be eliminated. This is because

with each multiplication, the mantissa can become denormalized by at most one bit. If

there are guard bits on the mantissas to prevent bits from “falling off” the end during

multiplications, the normalization can be postponed until after a sequence of several

multiplies2.

As you can see, the intermediate results can be multiplied together, with no need for

intermediate normalizations due to the guard bit. It is only at the end of the operation

that the normalization must be performed, in order to get it into a format suitable for

storing in memory3.

1.2.2 Block Exponent

In a unoptimized sequence of additions, the sequence of operations is as follows for

each pair of numbers (m1,e1) and (m2,e2).

1. Compare e1 and e2.

1A description of the floating point format used is shown in figures ?? and ??.
2Using unnormalized numbers for math is not a new idea; a good example of it is the Control Data CDC

6600, designed by Seymour Cray. [?] The CDC 6600 had all of its instructions performing unnormalized
arithmetic, with a separate NORMALIZE instruction.

3Note that for purposed of clarity, the pipeline delays were considered to be 0, and the branches were
not delayed.

15

2. Shift the mantissa associated with the smaller exponent |e1 − e2| places to the

right.

3. Add m1 and m2.

4. Find the first one in the resulting mantissa.

5. Shift the resulting mantissa so that normalized

6. Adjust the exponent accordingly.

Out of 6 steps, only one is the actual addition, and the rest are involved in aligning

the mantissas prior to the add, and then normalizing the result afterward. In the block

exponent optimization, the largest mantissa is found to start with, and all the mantissa’s

shifted before any additions take place. Once the mantissas have been shifted, the addi-

tions can take place one after another4. An example of the Block Exponent optimization

on the expression X = A + B + C is given in figure ??.

1.3 Integer optimizations

As well as the floating point optimizations described above, there are also integer opti-

mizations that can be used in the µFPU. In concert with the floating point optimizations,

these can provide a significant speedup.

1.3.1 Conversion to fixed point

Integer operations are much faster than floating point operations; if it is possible to

replace floating point operations with fixed point operations, this would provide a sig-

nificant increase in speed.

This conversion can either take place automatically or or based on a specific request

from the programmer. To do this automatically, the compiler must either be very smart,

or play fast and loose with the accuracy and precision of the programmer’s variables. To

4This requires that for n consecutive additions, there are log2 n high guard bits to prevent overflow.
In the µFPU, there are 3 guard bits, making up to 8 consecutive additions possible.

16

be “smart”, the computer must track the ranges of all the floating point variables through

the program, and then see if there are any potential candidates for conversion to floating

point. This technique is discussed further in section ??, where it was implemented.

The other way to do this is to rely on specific hints from the programmer that a

certain value will only assume a specific range, and that only a specific precision is

desired. This is somewhat more taxing on the programmer, in that he has to know

the ranges that his values will take at declaration time (something normally abstracted

away), but it does provide the opportunity for fine-tuning already working code.

Potential applications of this would be simulation programs, where the variable

represents some physical quantity; the constraints of the physical system may provide

bounds on the range the variable can take.

1.3.2 Small Constant Multiplications

One other class of optimizations that can be done is to replace multiplications by small

integer constants into some combination of additions and shifts. Addition and shifting

can be significantly faster than multiplication. This is done by using some combination

of

ai = a j + ak

ai = 2a j + ak

ai = 4a j + ak

ai = 8a j + ak

ai = a j − ak

ai = a j � mshift

instead of the multiplication. For example, to multiply s by 10 and store the result in r,

you could use:

r = 4s+ s

17

r = r + r

Or by 59:

t = 2s+ s

r = 2t + s

r = 8r + t

Similar combinations can be found for almost all of the smaller integers5. [?]

1.4 Other optimizations

1.4.1 Low-level parallelism

The current trend is towards duplicating hardware at the lowest level to provide paral-

lelism6

Conceptually, it is easy to take advantage to low-level parallelism in the instruction

stream by simply adding more functional units to the µFPU, widening the instruction

word to control them, and then scheduling as many operations to take place at one time

as possible.

However, simply adding more functional units can only be done so many times;

there is only a limited amount of parallelism directly available in the instruction stream,

and without it, much of the extra resources will go to waste. One process used to

make more instructions potentially schedulable at any given time is “trace scheduling”.

This technique originated in the Bulldog compiler for the original VLIW machine, the

ELI-512. [?, ?] In trace scheduling, code can be scheduled through many basic blocks

5This optimization is only an “optimization”, of course, when the amount of time spent on the shifts
and adds is less than the time that would be spent doing the multiplication. Since the time costs of
these operations are known to the compiler in order for it to do scheduling, it is easy for the compiler to
determine when this optimization is worth using.

6This can been seen in the i860; floating point additions and multiplications can proceed at the same
time, and the RISC core be moving data in and out of the floating point registers and providing flow
control at the same time the floating point units are active. [?]

18

at one time, following a single potential “trace” of program execution. In this way,

instructions that might be executed depending on a conditional branch further down in

the instruction stream are scheduled, allowing an increase in the potential parallelism.

To account for the cases where the expected branch wasn’t taken, correction code is

inserted after the branches to undo the effects of any prematurely executed instructions.

1.4.2 Pipeline optimizations

In addition to having operations going on in parallel across functional units, it is also

typical to have several operations in various stages of completion in each unit. This

pipelining allows the throughput of the functional units to be increased, with no in-

crease in latency.

There are several ways pipelined operations can be optimized. On the hardware

side, support can be added to allow data to be recirculated back into the beginning of

the pipeline from the end, saving a trip through the registers. On the software side, the

compiler can utilize several tricks to try to fill up as many of the pipeline delay slots as

possible, as seendescribed by Gibbons. [?]

19

20

Appendix A

Tables

Table A.1: Armadillos

Armadillos are
our friends

21

22

Appendix B

Figures

Figure B-1: Armadillo slaying lawyer.

23

Figure B-2: Armadillo eradicating national debt.

24

Bibliography

25

