

Welcome to

Developing Palm OS
Conduits

08.96

Navigate this online document as follows:

To see bookmarks Type Command-7
To see information on
Adobe Acrobat Reader

Type Command-?

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar

©1996 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmit-
ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and Graffiti are registered trademarks, and Palm
Computing, HotSync, Palm OS, and the Palm OS logo are trademarks of U.S. Robotics
and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK ARE
SUBJECT TO THE LICENSE AGREEMENT

.

U.S. Robotics, Palm Computing Division
Mail Order

1-800-881-7256

U.S. Robotics, Palm Computing Division
World Wide Web site:

http://www.usr.com/palm

Registration information (Internet):

register@metrowerks.com

Technical support (Internet):

devsupp@palm.com

Developing Palm OS Applications, Part I

 iii

Table of Contents

Table of Contents . iii

1 Getting Started .9

What’s a Conduit? . 9
What Are Development System Requirements? 10
What’s in the Conduit SDK? 11

Overview of the Conduit SDK 11
Top-Level Directories 11
SDK Development Directories 12

Directories . 12
Files . 12
Conduits Sample Source Code Directory Contents 12

What About HotSync1.1 13
What’s in This Guide? 13

2 Conduit Basics . 15

Basic Approaches to Conduit Design 15
Conduit Basic Control Flow 16
Locating Records on the Device. 19
Minimum Conduit Requirements 21

Registering the Conduit 21
Providing C Entry Points 21
Providing a DllMain() Routine 21
Sending Errors and Other Messages 22

SyncManager Memory Management 24
Structures with Dynamically Allocated Memory: 24

Conduits and the Windows Registry 24
Naming Third Party Conduits 25
Registering Third Party Conduits. 25

Providing the Conduit Name 25
Providing Name/Data Pairs. 26
Registry Entry Example. 28

Default Registry Keys 28
Installing and Removing Your Conduit 29

Table of Contents

iv

Developing Palm OS Applications, Part I

Installing Your Conduit 29
HotSync 1.1 Installation. 29
Conduit Installation 31

Removing Your Conduit 31
Cable vs. Modem Connection 31
FastSync and SlowSync 32

3 Conduit Design Decisions . 35

Conduit Design Questions 36
Using the Native Synchronization Logic 38

Pilot Desktop OS Native Synchronization Algorithm 38
Record-Level Synchronization with Pilot Applications . . . 40
Archiving Records 41

4 Control Flow of Pilot Desktop’s Native Synchronization Logic . 43

Basic Control Flow . 43
Functions Called During Synchronization 44
Synchronizing with Existing PC Applications. 45
Synchronizing Categories 46

5 Implementing a Conduit . 47

Providing “C” Entry Points 47
Providing a DllMain Routine 48
Providing Entry Point Routines 50

The OpenConduit Function 50
The GetConduitName Function 52
The GetConduitVersion Function 52

Creating a CBaseMonitor Subclass 53
CBaseMonitor Basic Structure 53
CBaseMonitor Data Members 55

CBaseDTLinkConverter* m_pDTConvert 55
PROGRESSFN m_pfnProgress 55
CBaseTable* m_LocRealTable 56
CBaseTable* m_LocArchTable 56
CBaseTable* m_BackupTable 56
CBaseTable* m_RemRealTable 56
CSyncProperties m_rSyncProperties 57

Table of Contents

Developing Palm OS Applications, Part I

 v

CCategoryMgr* m_LocCategory 57
CCategoryMgr* m_RemCategory 57
BYTE m_RemHandle 57
char m_ArchFileExt[5] 57
int m_TotRemoteDBs 57
int m_CurrRemoteDB 58
CDbGenInfo m_DbGenInfo 58
HINSTANCE m_DllInstance 58

CBaseMonitor Functions Must to Override 58
Monitor Constructor and Destructor 60
ObtainLocalTables 61
ObtainRemoteTables 62
AddRecord . 64
AddRemoteRecord. 65
ChangeRemoteRecord 66
CreateLocalArchTable 68
FastSyncRecords 69
SlowSyncRecords 71
CopyRecordsPCtoHH 74
CopyRecordsHHtoPC 76
LogRecordData 78
LogApplicationName 79

CBaseMonitor Functions You May to Override 79
SaveLocalTables 80
PurgeLocalDeletedRecs 81
ApplyRemotePositionMap 83

Creating a CBaseDTLinkConverter Subclass 84
CBaseDTLinkConverter Basic Structure 84

The Log Object 85
Casting of Member Functions 85
Carriage Returns and Line Feeds. 85

CBaseDTLinkConverter Data Members 85
CSyncLog* m_pLog 86
TCHAR* m_TransBuff 86
HINSTANCE m_DllInstance 86

CBaseDTLinkConverter Functions You Must Override . . . 87

Table of Contents

vi

Developing Palm OS Applications, Part I

CAddressDTLinkConverter Constructor and Destructor . 87
ConvertToRemote 88
ConvertFromRemote 90
ConvertToRemoteCategories 92
ConvertFromRemoteCategories 94

CBaseDTLinkConverter Functions You May Override 95
CBaseDTLinkConverter Utility Member Functions 95

Creating a CBaseTable Subclass 97
How to Set Up Tables 97
More About Tables 99

CBaseTable Class 99
CBaseRecord Class 102
CBaseSchema Class 104
 CBaseIterator Class 104

Considering Category Manager Modifications 105

6 SyncManager Function Calls 109

Session-Oriented Calls 109
SyncRegisterConduit 109
SyncUnRegisterConduit. 110

File-Oriented Calls . 110
SyncCloseDB . 112
SyncCreateDB . 112
SyncDeleteDB . 113
SyncOpenDB . 114
SyncReadDBAppInfoBlock 115
SyncReadDBSortInfoBlock. 116
SyncResetSyncFlags 117
SyncWriteDBAppInfoBlock 118
SyncWriteDBSortInfoBlock 118

Record-Oriented Calls 119
SyncDeleteAllResourceRec 120
SyncDeleteRecord 121
SyncDeleteResourceRec 121
SyncGetDBRecordCount 122
SyncPurgeAllRecs 122

Table of Contents

Developing Palm OS Applications, Part I

 vii

SyncPurgeDeletedRecs 123
SyncReadNextModifiedRec 123
SyncReadRecordById 124
SyncReadRecordByIndex 125
SyncReadResRecordByIndex. 125
SyncWriteRec . 126
SyncWriteResourceRec 127

Utility Calls . 128
SyncReadDBList . 128
SyncReadSingleCardInfo 129
SyncReadSystemInfo 130

7 Error Codes . 133

SyncManager Return Codes 133
SyncManager Fatal Return Codes 134
SyncManager Base Class Return Codes 135

Table of Contents

viii

Developing Palm OS Applications, Part I

Developing Palm OS Conduits

9

1

Getting Started

This chapter helps you get started with conduit design by providing an
overview of the available software and a roadmap to the conduit design
process described in this manual. This chapter answers the following ques-
tions:

• What’s a Conduit?

• What Are Development System Requirements?

• What’s in the Conduit SDK?

• What About HotSync1.1

• What’s in This Guide?

What’s a Conduit?

A conduit is a dynamic link library (DLL) running under Microsoft Win-
dows. Conduits exchange and synchronize data between an application
running on a PC under Windows and an application running on the Pilot or-
ganizer or another Palm OS based device.

End-users can push the HotSync button on the cradle to request synchroni-
zation of data between all device applications and the corresponding Win-
dows applications. To do so, the end-user must perform the following two
steps:

1. Insert the device into its cradle, which has to be connected to the PC
with a serial cable

2. Press the HotSync button on the cradle

The HotSync program, which runs under Windows, synchronizes each ap-
plication by executing its conduit.

Many conduits (including the conduits for the four native applications on
the first device) synchronize data between the device and the PC to be mir-
ror images after synchronization. Other conduits perform more complex
operations. The complexity of your conduit’s behavior determines the de-
velopment effort involved.

Gett ing Star ted

What Are Development System Requirements?

10

 Developing Palm OS Conduits

To make things easier for you, part of the conduit SDK consists of several
C++ classes that provide predetermined functionality that you may be able
to customize to suit your needs. The four applications included on the first
Pilot device (Date book, address book, ToDo list, and MemoPad) use con-
duits based on those classes and the associated synchronization logic.
Source code for each of the four native applications is part of the SDK.

If your application doesn’t sync with one of the four native Pilot applica-
tions, or your application’s behavior is so different from the existing con-
duits behavior (the native synchronization logic) that customizing becomes
impractical, you can still take advantage of the SyncManager API. In that
case, you should do the following:

• Read, at a minimum, the chapter Conduit Basics in this document.
You may find it helpful to look at other chapters as well.

• Look at the documentation in SyncManager Function Calls

• Examine a small example conduit (\poscond\txtcond) with more
simple behavior to write your conduit from scratch

Conduits are AFX extension modules; see MFC Tech Note 33 for more in-
formation. Note that the sample Makefile provided with the Conduit SDK
automatically makes your conduit an AFX extension.

What Are Development System Requirements?

Conduits are developed using standard Microsoft Visual C++ tools. To in-
stall and use the Conduit SDK for Windows, your system must be equipped
with:

• Windows 95 or Windows NT

• Visual C++ version 4.0 or greater

• Microsoft MFC 3.0 or greater

• At least 16 MB RAM and 5 MB free disk space

• Pilot with cradle for testing

• Adobe Acrobat Reader for viewing the online documentation (in-
cluded in the SDK)

Gett ing Star ted

What’s in the Conduit SDK?

Developing Palm OS Conduits

11

What’s in the Conduit SDK?

This sections starts with an Overview of the Conduit SDK, then lists rele-
vant parts of the Top-Level Directories and the SDK Development Directo-
ries

Overview of the Conduit SDK

The conduit SDK provides the following header files, libraries, and sample
code that you need to develop a conduit for your Palm OS application:

•

Header Files

—C and C++ header files with structure definitions
and function prototypes

•

API Libraries—

A set of libraries that provide access to device
data.

•

HotSync 1.1 and HotSync 1.1 Libraries

—The executable loads
and executes conduits, the libraries must be present at runtime for
conduits to execute properly. Both debug and release versions are
included.

• Sample Code

– Source code for a conduit that synchronizes memo pad data by
storing it as a simple ASCII text file on the PC

– Source code for the four conduits included with the first release
of the device (address book, memo pad, to do list, date book)

This section provides an overview of important folders and files in the
SDK. See the Installation Instruction for information on how to install the
SDK.

Top-Level Directories

During installation, the SDK creates the following directory structure on
your system:

\POSCOND\—Main directory
CONDSDK—SDK development files and documentation
TODCOND—Code for the sample ToDo conduit
TXTCOND—Code for the sample text file conduit
ADDCOND—Code for the sample Address Book conduit
DATCOND—Code for the sample Date Book conduit
MEMCOND—Code for the sample Memo Pad conduit

Gett ing Star ted

What’s in the Conduit SDK?

12

 Developing Palm OS Conduits

SDK Development Directories

Directories

\POSCOND\CONDSDK
\INCLUDE—Header files for development
\SRC—Source files used for development
\HELP—Help file for the HotSync program
\DOCS—Conduit SDK documentation in .pdf format
\BIN—Debug and release build of libraries and HotSync1.1

Files

\POSCOND\CONDSDK\INCLUDE
\abrecord.h—Address Book record class definition \dataprv.h—
Definitions and structs for Pilot database records \syncmgr.h—Syn-
cManager public API and structures
\updcatid.h—Object used for updating categories
\logstrng.h—#defines for resource string IDs
\catmgr.h—Category manager class definitions
\basemon.h—BaseMonitor class definition
\synclog.h—CSyncLog class definition
\

Native

table.h—Table subclass definition for native app
\

Native

record.h—Record class definition for native app
\basetabl.h—Base table class definition
\bfields.h—Field objects class definitions
\basemon.rc—Resource file containing error and log strings
\basemon.cpp—Source code to the base monitor class

Conduits Sample Source Code Directory Contents

The following is a list of files for the ToDo conduit; the conduits of the
other native applications have the same structure.

\POSCOND\TODCOND
\todlink.h—ToDo link converter class definition
\todlink.cpp—ToDo link converter source code
\todmon.h—ToDo link monitor class definition
\todmon.cpp—ToDo link monitor source code
\todcond.h—ToDo DLL header file
\todcond.cpp—DLLMain() and ‘C’ entry points source code
\todcond.mak—ToDo conduit make file

The text conduit is included as a simple example for developers who decide
not to use the native logic.

Gett ing Star ted

What About HotSync1.1

Developing Palm OS Conduits

13

\TXTCOND
\STEP01—A simple text file transfer to the Pilot MemoPad
\STEP02—More advanced version of Step01 source code

What About HotSync1.1

When you ship your conduit to end-users, you need to include HotSync1.1,
the 1.1 conduits for the four native Pilot applications, and the appropriate
installation procedure on the installation disks. You must do this because
the HotSync Application included with the Pilot Desktop 1.0 was compiled
with VC++ 2.2 and MFC 2.0. Because you are most likely using VC++ and
MFC 4.0, your application won’t run with HotSync 1.0. For more informa-
tion, see HotSync 1.1 Installation.

What’s in This Guide?

This guide serves as a programming guide and a reference manual. It helps
you make design decisions and provides structure and function descriptions
to help you implement your design.

This manual contains the following:

• Conduit Basics—Provides a top-level overview of the behavior of
any application. It explains how HotSync interacts with the differ-
ent conduits on the system to synchronize each.

• Conduit Design Decisions—Points to some critical design deci-
sions you have to make early. This includes a list of questions that
help you determine whether using the available C++ class hierarchy
makes sense.

• Control Flow of Pilot Desktop’s Native Synchronization Logic—
Describes how the four built-in applications use the C++ classes to
implement their synchronization behavior

• Implementing a Conduit—Steps you through implementing a con-
duit based on the available C++ classes. This chapter includes de-
scriptions of the classes you have to subclass and their data
members and member functions.

• SyncManager Function Calls—Provides complete description of
the API calls that all conduit applications can use

• Error Codes—Lists the error codes that can be triggered when call-
ing SyncManager functions

Gett ing Star ted

What’s in This Guide?

14

 Developing Palm OS Conduits

Developing Palm OS Conduits

15

2

Conduit Basics

This chapter describes what every conduit must do to successfully synchro-
nize a device application with the PC. This chapter provides an overview of
the control flow inside the simplest possible conduit library. When you de-
sign a conduit, it’s essential that you understand how a synchronization
process works and which part of the system is responsible for correspond-
ing synchronization process.

To provide information that is applicable no matter how complex your con-
duit is, this chapter usually assumes a simple conduit that links an applica-
tion on the Palm OS device to a simple text file on the PC. While this kind
of synchronization is not realistic for most applications, it is helpful for get-
ting started; a sample conduit library that performs exactly that kind of syn-
chronization is included in your software development kit.

The sample conduit is called txtcond. Two versions are included, one more
complex than the other. They both import and export memo pad data to and
from text files on the PC.

This chapter discusses the following topics:

• Basic Approaches to Conduit Design

• Conduit Basic Control Flow

• Minimum Conduit Requirements

• SyncManager Memory Management

• Conduits and the Windows Registry

• Installing and Removing Your Conduit

• Cable vs. Modem Connection

• FastSync and SlowSync

Basic Approaches to Conduit Design

Conduit developers generally take one of the following approaches to con-
duit design:

Conduit Basics

Conduit Basic Control Flow

16

 Developing Palm OS Conduits

• If the conduit is relatively similar to the four conduits included with
the Pilot Desktop, you can use the existing C++ classes and modify
the source code of one of the conduits appropriately.

– Conduit Design Decisions helps you decide whether using the
native synchronization logic makes sense for you.

– Chapter 5, Implementing a Conduit explains what you need to
do to implement such a conduit.

• If the conduit requires behavior that the native conduits don’t deal
with, it might make more sense to develop the conduit from scratch.
In that case, the simple sample conduit (textcond) provides a useful
starting point. You can use the API documented in SyncManager
Function Calls to implement your conduit.

Conduit Basic Control Flow

When the user presses the HotSync button on the device, the following
events occur:

1. HotSync looks for the User ID transmitted by the Palm OS device
and compares it with the local Pilot user database. It finds the user
ID on the device or creates a new user ID.

2. Upon startup, HotSync looks at the list of conduits in the registry
and prepares a list of their creator IDs.
Each conduit has to enter appropriate registry information when the
application is first installed see Installing and Removing Your Con-
duit.

3. HotSync determines whether to do a FastSync or a SlowSync based
on whether the device was previously synchronized with the same
PC or a different one. If the device was last synchronized with a dif-
ferent PC, the modification flags on the device are not accurate with
respect to the current PC.
The native synchronization logic in the four native conduits takes
advantage of this distinction by using an optimized FastSync algo-
rithm whenever it can. This algorithm only considers records on ei-
ther side that have one of the modification flags set (dirty or
deleted). If the flags are not reliable, a SlowSync algorithm is used
that examines each record on both sides of the sync.

4. HotSync queries the Palm OS device for all databases that do not
have one of the executable system types, such as

sysFileTApplication

. These databases are matched up with
the creatorIDs from the registry.

Conduit Basics

Conduit Basic Control Flow

Developing Palm OS Conduits

17

5. HotSync starts the synchronization process.

6. For each creatorID that’s found in the registry, HotSync passes the

SyncProperties

 class to the matching conduit including the
name of the first matching database found on the Palm OS device.
At this point, HotSync passes control to the conduit until the con-
duit returns when synchronization of that application is complete or
had to be aborted.
It is the conduit’s responsibility to retrieve any required data-
bases—other than the one passes with the SyncProperties object—
from the Palm OS device.

7. After HotSync has iterated through all conduits in the registry, it
calls the backup conduit and install conduit.

– If there is a database on the device for which the backup flag is
set but no conduit exists, the backup conduit provided by the
system copies the data from the device into the BACKUP direc-
tory in the user’s area on the PC. The file format is the same as
on the device. Note that this backup conduit does not check
whether data have been modified and will therefore execute
each time.
While setting the backup bit may be appropriate for small data
databases, it’s not recommended for applications or large data
databases. For large data databases, create a specific conduit.

– The install conduit works together with the AppInstaller pro-
vided by Pilot Desktop to install applications or other databases
onto the Palm OS device. The App Installer places a copy of the
database to be installed in the user’s Install directory and puts
some installation information in the user database and the regis-
try (or /.ini) file. The install conduit uses this information to
copy the database down to Pilot, replacing any existing copies.
In the event of a hard reset, the install conduit is used to restore
databases that have been previously been backed up and are re-
siding in the user’s Backup directory.

8. The conduit performs synchronization using calls from the Sync-
Manager library (see SyncManager Function Calls).
As the conduit performs the synchronization, it must pay attention
to the following:

– Minimum Conduit Requirements. Every conduit must publish
three “C” entry points to be invoked by HotSync (see Providing
C Entry Points and Providing a DllMain() Routine.

Conduit Basics

Conduit Basic Control Flow

18

 Developing Palm OS Conduits

– Sending Errors and Other Messages. A conduit should log er-
rors and other information using the log object. This helps
HotSync determine whether synchronization was successful
and whether the log should be displayed to the user.

– Appropriate updates. Each conduit has to decide on proper up-
dates of records on both the device and the PC depending on
their current status. Using the Native Synchronization Logic ex-
plains how the four applications included on the Pilot device
perform synchronization. Your application may use a different
logic based on the information each record contains.

Conduit Basics

Locating Records on the Device

Developing Palm OS Conduits

19

Locating Records on the Device

Database records on the device consist of the following two distinct parts:

• The first part is a fixed-length portion containing the record ID, a
status field (indicating Add, Modify, Delete, or Archive status for
the native applications), and a category ID field

• The second part is of variable length depending on the number of
fields and whether they contain any data

records

categories

device

BaseLinkConverter

AddrLinkConverter

remote table

CategoryMgr

CBaseMonitor

local table

ObtainLocalTables()

iterator

schemaAddrMonitor

re
co

rd
s

records

records

categories
categories

categories

records
records

...

local

desktop
data files

Conduit Basics
Locating Records on the Device

20 Developing Palm OS Conduits

Because the SyncManager DLL acts as a channel for byte traffic to and
from the device, a generic structure that handles any record format is
needed. This generic structure then becomes a parameter in the record-ori-
ented API.

To locate remote records, three different APIs are provided, allowing you to
do the following:

• Sequentially locate the next altered record using
SyncReadNextModifiedRec.

• An exact record lookup using SyncReadRecordById.

• Top to bottom iteration using SyncReadRecordByIndex.

The same object, CRawRecordInfo, is used by all three functions. How-
ever, different members of the object are used by each function call to help
indicate the nature of the remote lookup activity.

Figure 2.1 illustrates where the fixed-length data from a device record is
stored in the CRawRecordInfo object and also shows that the data mem-
ber m_pBytes points to the variable-length record body. These CRawRe-
cordInfo structure members are populated by the record-oriented API
when a record has been retrieved successfully.

Figure 2.1 CRawRecordInfo Structure Pointing to Record Information

class CRawRecordInfo{
public

BYTE
DWORD
WORD
BYTE
short

DWORD
WORD
BYTE*

m_FileHandle;
m_RecId;
m_RecIndex;
m_Attribs;
m_CatId;

m_RecSize;
m_TotalBytes;
m_pBytes;

fixed length

m_ConduitId;int

variable length

Conduit Basics
Minimum Conduit Requirements

Developing Palm OS Conduits 21

Minimum Conduit Requirements
If the predefined C++ classes and the associated synchronization logic is
not appropriate for your application, the only requirements (recommended)
to have HotSync accept your conduit include the following:

• Registering the Conduit

• Providing C Entry Points

• Providing a DllMain() Routine

• Sending Errors and Other Messages (strongly recommended)

Registering the Conduit
You must insure that information about the conduit is included in the win-
dows registry when users first install your application.

See Conduits and the Windows Registry for details on the information you
must enter into the Registry and Installing and Removing Your Conduit for
information on how to provide it.

Providing C Entry Points
Every conduit must publish the following three “C” entry points to be in-
voked by HotSync:

• OpenConduit

• GetConduitName

• GetConduitVersion

All native conduits carry out all synchronization duties within OpenCon-
duit before returning control to HotSync. HotSync invokes OpenCon-
duit only once, immediately after it has dynamically loaded the conduit
into memory. See Providing “C” Entry Points for more detailed informa-
tion.

Providing a DllMain() Routine
Your application must provide a typical 32-bit Windows
DllMain() routine. The Windows operating system automatically calls
DllMain() when it loads the conduit DLL into memory because
HotSync performs a LoadLibrary() call on it.

Conduit Basics
Minimum Conduit Requirements

22 Developing Palm OS Conduits

Note that the Makefile provided for compiling the library makes it an AFX
extension library, which means that certain classes outside the included
files are available to your application.

Sending Errors and Other Messages
When HotSync starts a conduit, it passes a pointer to a log object to it. The
object is a member of the SyncProperties class named m_pSyncLog
and is used to store error messages and other information for the end-user.

Note that a C-based conduit can use the log object like it would use a struc-
ture, but it is still an object and the library therefore has to be compiled as
C++.

The CSyncLog object has the following public interface:

Listing 2.1 CSyncLog class

class CSyncLog {
public:
CSyncLog(int nFlushThreshold = 0);
~CSyncLog();
LogError AddEntry(const char* pszEntry,

Activity act=slText,
BOOL bTimeStamp = FALSE);

 LogError SaveLog(const char* pszLogFile);
BOOL BuildRemoteLog(CString& csRemoteLog);
void GetWorkFileName(CString& csWorkFileName);
void CloseLog();
WORD TestCounters(); };

When all conduits have completed, HotSync saves the log object to disk.

The member function most often used by a conduit to log information is
the AddEntry() routine. In its simplest form, a string may be recorded
into the log:

Conduit Basics
Minimum Conduit Requirements

Developing Palm OS Conduits 23

AddEntry("Simple Line of Text").

The other parameters to AddEntry have default values that the caller may
but doesn’t have to override:

• The act parameter is a member of the Activity enum defined in
SYNCLOG.H and discussed below.

• The bTimeStamp parameter signals the log object to time stamp
the new entry as it is added to the log. In most cases, you can leave
this parameter undefined (the default).

Here’s some information about the values you’re most likely to supply as
the act parameter, and how to use them:

• slSyncStarted—send at the beginning of the synchronization pro-
cess, don’t supply a text string. This is required so the log knows
you are logging a new conduit.

• slSyncFinished—send at the end of the synchronization process
and pass in the name of the application.

• slSyncAborted—requests that HotSync put up banner that a prob-
lem occurred.

• Other enum values—these will signal HotSync to display banner to
the user at the conclusion of the sync. They may be passed with a
text string to be included in the log file.

The following example code shows a conduit reporting that it encountered
a problem adding a new record to the remote device database.

Listing 2.2 Error Logging Example

if (AddRemoteRecord(rLocRecord)!= 0)
 {

char errBuff[MAX_LOG_STRING];
strcpy(errBuff, "Could not Add the Smith

address record");
m_rSyncProperties.m_pSyncLog->AddEntry(

(const char*)errBuff, slRemoteAddFailed);
}

Conduit Basics
SyncManager Memory Management

24 Developing Palm OS Conduits

SyncManager Memory Management
The SyncManager carries out commands and returns replies from the de-
vice. When supplying or retrieving data accompanying to these commands,
the SyncManager acts as a channel for this raw byte traffic.

Some of the objects that are passed as parameters between functions in the
SyncManager and a Conduit.DLL contain dynamically allocated memory.
These objects contain a generic data area (usually named m_pBytes)
where the SyncManager places raw data obtained from the device. Each
Conduit.DLL reads from (or write to) this area in its own specific data for-
mats.

It is usually desirable to keep the allocating and freeing responsibilities in
the same component of code. Because of this, the following rules on dy-
namically allocated memory are enforced:

• The calling Conduit.DLL must pre-allocate memory onto the
m_pBytes pointer before invoking any SyncManager APIs which
use these structures

• The SyncManager does not allocate any memory into these struc-
tures and is also not responsible for freeing any memory within the
structures. Sole responsibility lies within the calling client Con-
duit.DLL

Structures with Dynamically Allocated Memory:

• CRawRecordInfo - used by the record-oriented API

• CDbGenInfo - used by the file-oriented API

• CPositionInfo - used to obtain record position information

Conduits and the Windows Registry
When HotSync synchronizes all device applications, it relies on informa-
tion on the PC to find each application. All conduits must enter the follow-
ing information in the Windows Registry (Windows NT/Windows 95) or an
HSM11.ini file:

• Required information for HotSync—When HotSync is first
started, it reads the Windows Registry to find the conduits it needs
to load and execute. This plug-in architecture allows for easy con-
figuration of a user's PC for new or updated conduits.

Conduit Basics
Conduits and the Windows Registry

Developing Palm OS Conduits 25

• Optional information for HotSync—You can place information in
the Registry that HotSync needs to execute or communicate to a
conduit

HotSync loads only conduits named in the Windows Registry under one of
the following keys:

• Key for Pilot applications-
HKEY_CURRENT_USER\Software\Palm Computing\/
Pilot Desktop\ComponentX

• Key for add-on conduits-
HKEY_CURRENT_USER\Software\Palm Computing\/
Pilot Desktop\ApplicationX

Naming Third Party Conduits
The desktop software that ships with Pilot contains four native conduits,
which are named starting with the Component0 Registry key.

To keep third party conduits separate from the native conduit entries, place
them under the ApplicationX key where

• ApplicationX is a sequentially numbered entry representing the first
third party conduit (e.g., Application0)

• Application1 represents the second conduit

and so on. The Pilot Desktop software does not need to be installed in order
for HotSync and a third party conduit to function. However, there are some
reserved Registry entries that cannot be used by third parties.

Registering Third Party Conduits
When you install your conduit for the first time, you have to register it as
part of the installation process. This includes the following:

• Providing the Conduit Name

• Providing Name/Data Pairs

Providing the Conduit Name

HotSync expects that conduits are named in sequential order. The conduit
name (ApplicationX) therefore needs to be based on the number of the con-
duit that was last loaded. If the last conduit loaded was named
Application5, your conduit needs to be named Application6.

Conduit Basics
Conduits and the Windows Registry

26 Developing Palm OS Conduits

Note that if you are supplying a de-installation procedure with your con-
duit, you need to be sure that all conduits loaded after it are renamed to
maintain the proper numbering sequence. You may archive this either by
changing the name of the last conduit to have the name of the deleted con-
duit or by changing the name of each conduit. The important issue is that
the sequence of numbers is not interrupted.

Providing Name/Data Pairs

A set of required name/data pairs is under the ApplicationX key. These
name/data pairs describe the instructions that HotSync gathers as it scans
through the Windows Registry at startup. Some of the information is used
only by HotSync, while others, for example File0, are only passed along to
the target conduit when HotSync loads it into memory. Because a single
conduit synchronizes one database on the device with one database (or file)
on the PC by default, every third-party conduit requires a new ApplicationX
Registry key and its required set of name/data pairs.

The following table lists the minimum set of name/data pairs placed under
an ApplicationX registry key.

The following table provides descriptions of name/data pairs under an Ap-
plicationX key.

Name Type Value (Address Book Application)

Conduit String addbook.dll

Creator DWORD 0x61646472 (’addr’)

Remote0 String AddressDB

Directory String addbook

File0 String databaseName.db

Integrate DWORD 0

Module String foo

Name String Address Book

Priority DWORD 2

Conduit Basics
Conduits and the Windows Registry

Developing Palm OS Conduits 27

Name Data

Conduit String indicating the disk filename of the third party conduit
DLL. This disk file needs to be placed somewhere within
the PATH environment variable. Conduits are generally in-
stalled in the same directory as HotSync.

Creator Hexadecimal numeric value matching the Creator ID of the
application residing on the Palm OS device. This value al-
lows creation/modification of the remote database. This
unique key ties the Palm OS application’s database to a con-
duit on the PC.

Remote0 String indicating the name of the database residing on the
device. This is a case-sensitive string and it is used by the
native conduit logic in its remote File Open activities.

Directory A string indicating the local PC directory to be created
under the username directory. This directory may hold sup-
port files needed to accurately perform a record-level syn-
chronization with a third party database, such as record ID
mapping files.
This directory will be the current directory when the con-
duit is invoked.

File0 A string indicating the local PC directory and filename of
the third party database (or file) to be synchronized with the
Pilot database named in the Remote0 Name/Data pair.
This file is usually in the above-named directory.

Integrate A hexadecimal value that for third party entries. Should be
set to 0.

Module A string which for third party entries can contain anything.
This string is not used, but must be present.

Conduit Basics
Conduits and the Windows Registry

28 Developing Palm OS Conduits

Registry Entry Example

[HKEY_CURRENT_USER\Software\Palm Computing\/
Pilot Desktop\Component2]
"Module"="todo.dll"
"Conduit"="todcn11d.dll"
"Creator"=dword:746f646f
"Directory"="todo"
"File0"="todo.dat"
"Remote0"="ToDoDB"
"Priority"=dword:1

Default Registry Keys
To operate correctly, HotSync needs other Registry keys in addition to the
ApplicationX Registry keys. These Registry keys do not need to be entered
by a third party conduit author. HotSync can set up a set of default Registry
keys that allow it to operate normally. HotSync will set up all of the default
Registry keys (excluding any ApplicationX keys) when invoked with the
command line argument -r:

HotSync -r

Name A string which is displayed in the HotSync Progress dialog
to identify which conduit is currently executing.

Priority Indicates the execution priority. Conduits with lower num-
bers execute before higher ones. Minimum value is 0, maxi-
mum is 4. If two conduits have the same priority, their
execution order is undefined.
Defaults to 2 if you don’t provide a value. Don’t change the
default unless your conduit relies on a certain execution or-
der.
In the example below, the ToDo native conduit is assigned a
priority of 1, which would cause it to execute before other
native conduits.

Name Data

Conduit Basics
Installing and Removing Your Conduit

Developing Palm OS Conduits 29

Important: Execute this command only once to initialize the Win-
dows Registry. Any subsequent invocations (including the -r
switch) overwrites existing Registry keys with the default values.

If a third party conduit requires any additional custom information when it
executes, you may place additional name/data pairs under its ApplicationX
key, as long as the mandatory pairs are presented first.

Installing and Removing Your Conduit
This section discusses Installing Your Conduit and Removing Your Con-
duit:

Installing Your Conduit
When the end-user first installs your application, it must install your con-
duit and also HotSync1.1 and the 1.1 Pilot Desktop conduits.

• HotSync 1.1 Installation is required because HotSync 1.0, which is
included with the Pilot package, was compiled with VC++ 2.2 MFC
Library 2.2. Because most developers are now using VC++ 4.0 and
MFC Library 4.0, it’s necessary you include HotSync 1.1 in your
package.
All the files you need to install HotSync 1.1 are included with the
Conduit SDK. The steps are described in some detail in HotSync
1.1 Installation.

• Conduit Installation is required so HotSync knows your applica-
tion’s key and registry information.

HotSync 1.1 Installation

1. Make sure HotSync is not running.

2. Copy the HSMII.EXE from poscond\condsdk\bin to the Pilot Desk-
top directory.

3. Copy the 1.1 libraries from poscond\condsdk\bin to the Pilot Desk-
top directory:

– TABLE11.DLL

– CMDS11.DLL

– SYNC11.DLL

Conduit Basics
Installing and Removing Your Conduit

30 Developing Palm OS Conduits

– BAKCN11.DLL

– INSCN11.DLL

– PDN11.DLL

– PDCMN11.DLL

4. Copy the 1.1 conduits to the Pilot Desktop directory:

– ADDCN11.DLL

– DATCN11.DLL

– MEMCN11.DLL

– TODCN11.DLL

5. For Windows 3.1 installation, edit hsm11.ini OR.

6. For Windows95 or Windows NT installation, make the following
changes to the registry:
This may be automated using a registry extract file. See the release
notes for more information.

Action Component From To

Change Component0 conduit
Value

Conduit = datacond.dll Conduit =
datacn1.1.dll

Change Component1 Conduit
Value

Conduit = addcond.dll Conduit =
addcn11.dll

Change Component2 Conduit
Value

Conduit = todcond.dll Conduit =
todcn111.dll

Change Component3 Conduit
Value

Conduit = memcond.dll Conduit =
mamcn11.dll

Change HotSync Manager Back-
upConduit Value

BackupConduit =
bakcond.dll

BackupConduit =
bakcn11.dll

Change HotSync Manager In-
stallConduit Value

InstallConduit =
instcond.dll

InstallConduit =
inscn11.dll

Add HotSync Manager
Notifier0 Value

Notifier0 =
pdn11.dll

Conduit Basics
Cable vs. Modem Connection

Developing Palm OS Conduits 31

Conduit Installation

After you’ve successfully installed HotSync1.1 and modified the registry
appropriately, you can install your conduit as follows:

1. Use GetProfileInt to look for the first open ApplicationX key,
starting with Application0. Increment until you’ve found the last
application (ApplicationN).

2. Add 1 to that number and add your application to the registry as
(ApplicationN + 1) using SetProfileInt

3. Add the standard name/data pairs for your application to the regis-
try using SetProfileInt (see Providing Name/Data Pairs)

NOTE: You have to restart HotSync at this time and at any other
time you’ve made changes to the registry (or .INI file).

Removing Your Conduit
It is customary that applications provide end-users a facility to easily re-
move all the relevant files and other information and restore the conduits
for Pilot Desktop if necessary.

If you choose to do so, your application should follow these steps:

1. Remove the ApplicationX key for your application from the registry

2. Decrement all ApplicationX keys that follow to eliminate any gaps;
HotSync relies on consecutive numbering of applications for execu-
tion

Cable vs. Modem Connection
Synchronization between PC and device applications can take place via a
cable attached to a serial port on the PC or via a modem. Before requesting
synchronization, the user must indicate cable or modem connection by se-
lecting the appropriate command from the HotSync menu in Pilot Desktop.
The selection is recorded in the Windows Registry.

When HotSync is started, it checks the Registry to determine whether a
cable or modem was selected. It then opens the appropriate communica-
tions port to allow synchronization through the cable or modem.

Conduit Basics
FastSync and SlowSync

32 Developing Palm OS Conduits

In most cases, all other steps in the synchronization process are identical
regardless of whether cable or modem connection is specified, and there is
no impact on the conduit or the function calls needed for synchronization.

FastSync and SlowSync
If your conduit takes advantage of the native synchronization logic, it can
perform two different types of synchronization.

The HotSync application generates a recommendation of which type to
use. If your conduit does not use the native sync logic, this information can
be ignored.

FastSync and SlowSync are two types of record-level synchronization.
When the user starts the HotSync process, HotSync determines whether to
perform a FastSync or a SlowSync. This decision is based on the last PC
ID, which is stored on Pilot. A SlowSync is performed if this ID does not
match the PC on which HotSync is currently executing, that is, if Pilot was
last synchronized with a different PC than the one currently being used.

The HotSync synchronization decisions (including FastSync or SlowSync)
are packaged into the CSyncProperties structure, which is passed to
each conduit when it is started.

• FastSync.The record status fields must be accurate in order for data
to be synchronized properly in a FastSync. To optimize the syn-
chronization process, only records that have been modified since
the last synchronization are retrieved from Pilot; records that have
not been modified do not get retrieved from Pilot. In most cases, if a
corresponding PC record is found for a Pilot record flagged as mod-
ified, the records are compared and record-level synchronization is
carried out.

• SlowSync. If a user wants to synchronize one Pilot with two differ-
ent PCs, the record status fields on the Pilot are cleared after syn-
chronizing with the first PC, and will be cleared after the user
synchronizes their Pilot with the second PC. In this scenario, a
SlowSync is required.
In a SlowSync, every record is retrieved from Pilot for comparison.
Since the status fields have been cleared after the previous synchro-
nization, they cannot be used to detect modifications after the Pilot
has been syncronized with a different PC. During a SlowSync, cor-
responding records from Pilot and the Pilot Desktop are compared,
and record-level synchronization is carried out.

Conduit Basics
FastSync and SlowSync

Developing Palm OS Conduits 33

To determine whether Pilot records with a status field of 0 have
been modified since the last synchronization, HotSync searches for
the record ID in the PC backup file (before the last sync).

– If the record exists in the backup file, the records are compared
to determine whether the record has been modified since the last
sync.

– If the record has been modified, its flag is set to Modify, and
record-level synchronization proceeds.

Conduit Basics
FastSync and SlowSync

34 Developing Palm OS Conduits

Developing Palm OS Conduits 35

3
Conduit Design
Decisions
The minimal conduit structure described in Conduit Basics allows your
conduit to provide a wide range of functions, including import/export,
transaction processing and mirror-image synchronization. This structure al-
lows conduits to be written in either C or C++.

This SDK provides two samples of simple C conduits, which use the Sync-
Manager API to import and export Pilot Memo data to a text file on the PC
(Txtcond, step 1, and step 2).

The SDK also provides source code for the four main conduits of Pilot
Desktop (Memo, Date Book, Address Book and To Do List). These con-
duits are written in C++ and perform a very complex record-level synchro-
nization with the PC that results in a perfect mirror-image of the data on the
PC and the Palm OS device. All user changes on either side will be propa-
gated to both sides during this process. These conduits also archive deleted
records to separate files on the PC at the user’s request.

In order to decide which sample conduit to use as a model for your conduit,
answer the following question:

Will your conduit be performing a record-level mirror-image syn-
chronization between the two devices?

– If not, the simple text conduit examples are the best to follow

– If it is, the C++ examples might be the best to follow

This chapter explores several issues you need to consider when deciding
whether to use the existing C++ conduit sample or to write your own. It
discusses these topics:

• Conduit Design Questions

• Using the Native Synchronization Logic

• Record-Level Synchronization with Pilot Applications

• Pilot Desktop OS Native Synchronization Algorithm

Conduit Design Decisions
Conduit Design Questions

36 Developing Palm OS Conduits

Conduit Design Questions
You should note that it is possible to perform record-level, mirror-image
synchronization with a straight - C conduit using only the Sync Manager
API calls, but you can save a great deal of time and effort writing this sort
of conduit by using one of our examples.

Consider the following issues which indicate the extent of the modifica-
tions that one of the synchronization samples requires:

• The samples sync with the four main Pilot ROM applications. If
your conduit syncs with another Pilot application, you will have to
change the data conversion routines between the Pilot and the con-
duits main data structure (a C Base Table subclass).

• The samples depend on unique record ID’s on both devices when
locating records for comparison. Unique ID’s should always be
present in the Pilot data. If the PC data does not have unique ID’s,
another unique key will have to be used for locating and comparing
records.

• You will most likely have to map the record ID’s of the Pilot to the
record ID’s of the PC application as records are read in from the
PC’s data files. Developers generally choose to store their Pilot-to-
PC mappings in a text file in the user’s Pilot directory on the PC.

• The sample conduits make extensive use of the status flags associ-
ated with each Pilot record (Deleted, Changed . . .). Is similar infor-
mation available for the PC data? If it is not, then a copy of the PC
data from the previous sync may have to be kept on the PC to do
comparisons against.

• The sample conduits synchronize the Pilot’s categories with the PC.
Does the PC data have categories? Are they modifiable? How well
do they map to the categories on the Pilot? Is there an alternative
way to map the data without losing the category information? The
functions of the Category Manager object may have to be modified
to handle these differences.

• The sample conduits perform two types of synchronization—
FastSync and SlowSync.
The FastSync is highly optimized to limit the amount of data that
must be transmitted between two devices. It makes extensive use of
the modification status flags on both sides.
The SlowSync does not use the status information. All Pilot records
are copied to the PC and compared with their PC counterparts to
determine modifications.

Conduit Design Decisions
Conduit Design Questions

Developing Palm OS Conduits 37

The HotSync manager will determine which type of sync is appro-
priate based on the Pilot’s status information. If the Pilot was previ-
ously synchronized with a different PC, its status flags would have
been cleared and are therefore not accurate with respect to the cur-
rent PC.
Your conduit may or may not elect to handle these two variations.
You may opt to use the same logic for both.

To determine whether you choose to base your conduit on one of the C++
record-level synchronization conduits, or the simpler C conduits, consider
the following issues:

• All of the sample conduits support a concept known as archiving
records. When a user deletes a record on the Pilot he may opt to
keep an archive copy on the PC. These conduits will recognize this
and will copy the record to an archive file on the PC before com-
pleting the deletion. Your conduit may or may not provide this func-
tion.

• Is there a defined API for accessing data in the PC files? Is it imple-
mented in C or C++? This will affect the architecture of your con-
duit.

• Is your conduit going to synchronize/import/export only a subset of
the data on the Pilot or PC?
If so, consider using categories on the Pilot to define that subset,
and consider whether or not you want to reset the modification sta-
tus flags for all of the records on the Pilot at the conclusion of the
sync.
Also, consider how you will keep track of which subsets of data are
currently on each device.

• Is your conduit going to access data from multiple PC files/applica-
tions or multiple Pilot databases/applications?
If so, consider whether the order of conduit execution will affect the
reliability of the data in question. In general, we don’t recommend
that one conduit attempt to sync the data of multiple applications.
If your conduit accesses the data of other applications it should be
either read-only, or for the purposes of updating cross-reference
links between two applications. In the latter case, you should insure
that your conduit runs before that of the other application. See Con-
duit Execution Order.

• Note that your conduit will be executed for each user/Pilot that
HotSync’s with the PC where the conduit is installed. HotSync does
not allow different sets of conduits to be specified for different us-

Conduit Design Decisions
Using the Native Synchronization Logic

38 Developing Palm OS Conduits

ers. Therefore, your conduit should check the user name field
passed with the SyncProperties structure and use it to decide which
PC data to sync with, if any.

• When synchronizing two applications (PC + Pilot) whose fields do
not match exactly, great care should be taken in mapping the fields
to one another. This is the most critical and user-noticeable design
decision you will make in your conduit development. Is data loss
acceptable when fields on one side don’t have counterparts on the
other side? If not, the following two strategies have been used suc-
cessfully:

– Hide the extra data fields on one side in the note field on the
other side

– Cache the extra fields (from either or both sides) in the same file
used for record ID mapping on the PC

Using the Native Synchronization Logic
To develop a conduit that uses the synchronization logic provided by the
C++ classes the four native applications use, the conduit must meet the fol-
lowing requirements:

• Be constructed as a DLL with a single known “C” entry point

• Be written in C++

• Derive a class from CBaseMonitor to control overall sync logic and
Implementing a Conduit. See Control Flow of Pilot Desktop’s Na-
tive Synchronization Logic for details.

• Convert its own record formats into a CBaseRecord subclass using
subclasses of CBaseTable, CBaseLinkConverter, CBaseSchema
and CBaseIterator objects

• Rely on HotSync and it’s libraries for all serial communications

The following sections provide additional information:

• Pilot Desktop OS Native Synchronization Algorithm

• Record-Level Synchronization with Pilot Applications

• Archiving Records

Pilot Desktop OS Native Synchronization

Conduit Design Decisions
Using the Native Synchronization Logic

Developing Palm OS Conduits 39

Algorithm
Most of the default synchronization logic for the sample conduits resides in
BaseMon.cpp. This default synchronization will produce identical data on
both platforms (the PC and the Pilot) at the end of the sync.

The default synchronization logic assumes that each PC and device appli-
cation record has a status field to indicate that one of the following con-
ditions has occurred since the last synchronization:

• The record has not been modified (No Modify)

• The record has just been added (Add)

• The record has been modified (Modify)

• The record has been deleted (Delete)

• The record has been archived (Archive)

Note: Archive means to save the record in an Archive file and re-
move the record from the current platform.

The conduit compares Pilot records with records in the PC table, and takes
an action based on the status of each record. The following table summa-
rizes the possible synchronization cases and describes the action taken to
synchronize the records.

Pilot PC Action

Add No Record Add the Pilot record to the PC.

No Record Add Add the PC record to Pilot.

Delete No Modify Delete the record on Pilot and the PC.

No Modify Delete Delete the record on Pilot and the PC.

Delete Modify Instead of deleting the Pilot record, replace the Pilot record
with the PC record. Message is sent to the log.

Modify Delete Instead of deleting the PC record, replace the PC record with
the Pilot record. Message is sent to the log.

Modify No Modify Replace the PC record with the Pilot record.

Conduit Design Decisions
Using the Native Synchronization Logic

40 Developing Palm OS Conduits

Record-Level Synchronization with Pilot

No Modify Modify Replace the Pilot record with the PC record.

Modify Modify If changes are identical, no action is taken.

Modify Modify If changes are different, add the Pilot record to the PC, and
add the PC record to Pilot. Message is sent to the log.

Archive No Record/
No Modify

Archive the Pilot record. If the PC record exists, delete it.

Archive Delete Archive the Pilot record. Delete the PC record.

Archive with
No Modify

Modify Instead of archiving the Pilot record, replace the Pilot record
with the PC record. Message is sent to the log.

Archive after
Modify

Modify If the records are identical, archive the Pilot record and delete
the record from the PC.

Archive after
Modify

Modify If changes are different, do not archive the Pilot record. Add
the Pilot record to the PC and add the PC record to Pilot.
Message is sent to the log.

No Record/
No Modify

Archive Archive the PC record. If the Pilot record exists, delete it.

Delete Archive Archive the PC record. Delete the Pilot record.

Modify Archive with
No Modify

Instead of archiving the PC record, replace the PC record
with the Pilot record. Message is sent to the log.

Modify Archive after
Modify

If the records are identical, archive the PC record and delete
the record from Pilot.

Modify Archive after
Modify

If changes are different, do not archive the PC record. Add
the Pilot record to the PC, and add the PC record to Pilot.
Message is sent to the log.

Pilot PC Action

Conduit Design Decisions
Using the Native Synchronization Logic

Developing Palm OS Conduits 41

Applications
To perform record-level synchronization with the four native applications
on the first Pilot device, the third-party database schema should meet the
following guidelines:

• A unique key (usually a record ID) must be present in each record
of the database. If the unique key of a record is a user-editable field,
or combination of fields, comparisons will be somewhat less reli-
able.
Unique ID’s for Pilot records should be assigned by the Pilot appli-
cation. To do this, a new record is passed to the Pilot (via a Sync-
Manager call) with an ID of 0. The Pilot will return the assigned ID
number.

• A one-to-one relationship must exist between individual records in
both databases.
While it may seem obvious when thinking about an address data-
base (for instance), this becomes an issue when dealing with the Pi-
lot's Date Book database. The Pilot Date Book stores all repeating
event information in a single physical database record, as it does
with non-repeating events. However, some Desktop PIMs produce
multiple physical database records when they store repeating event
data. This makes record-level synchronization much more difficult.

Archiving Records
For the sample Pilot Desktop conduits, records that are marked ‘archive’
are placed in the appropriate archive file depending on the application and
category. The archive filename is derived from the category name and ap-
plication extension. For example, an archived Address Book record under
the Unfiled category would be saved in a file called UNFILED.ABA. All
archived records, whether they originate from Pilot or the PC, are stored on
the PC. Archive files can be read into the desktop application using the
OpenArchive command.

During synchronization, after the records marked to be archived are added
to the PC Archive file, they are deleted from their current platform.

Consider using this feature or a similar one in your conduit. It can be a sim-
ple way of segmenting the data between the PC and Pilot.

We strongly recommend implementing this feature if your conduit sync’s
with one of the standard Pilot applications. Because archiving is a feature

Conduit Design Decisions
Using the Native Synchronization Logic

42 Developing Palm OS Conduits

of the standard Pilot applications, users won’t understand it if it is not sup-
ported in the conduit.

Developing Palm OS Conduits 43

4
Control Flow of
Pilot Desktop’s
Native
Synchronization
Logic
This chapter examines the default synch behavior provided by the conduits
of the PIM applications included with the first release of Pilot Desktop.
Source code for these conduits is included as part of your Conduit SDK. To
decide whether it makes sense for you to adapt one of these existing con-
duits to fit your application, see Chapter 3, Conduit Design Decisions. To
understand more clearly what you have to do to implement your own con-
duit, look at Chapter 5, Implementing a Conduit.

This chapter discusses the following topics:

• Basic Control Flow

• Functions Called During Synchronization

• Synchronizing with Existing PC Applications

• Synchronizing Categories

Basic Control Flow
When the user presses the HotSync button on the cradle, the system goes
through the following steps:

1. HotSync loads the tables library and instantiates

– a LocalTable object that holds all application records stored
on the PC

Control Flow of Pilot Desktop’s Native Synchronization Logic
Functions Called During Synchronization

44 Developing Palm OS Conduits

– a RemoteTable object into which Pilot records will be loaded
one at a time for processing.

2. HotSync calls the C entry point which in turn calls OpenConduit,
passing in a SyncProperties structure.

3. From then on, a subclass of CBaseMonitor (the monitor) is in
charge of the control flow. It iterates through all records in the table
by calling SyncGetNextModifiedRecord.

4. The SyncGetNextModifiedRecord. routine calls the Link-
Converter object to

– Convert the Pilot record into the monitor object’s common for-
mat

– Place the converted record into the LocalTable object

5. The monitor object compares the record that was just loaded into
RemoteTable with the records in the LocalTable.

– If there is no record in the LocalTable that matches that from
the RemoteTable, it creates a new record in LocalTable
that will later be saved on the PC when the table is saved.

– If there is a record with a matching ID, it compares the status of
the two using the synchronization algorithm.

Note sync logic is stored only in the following locations:

• A class derived from CBaseMonitor contains all the synchroni-
zation logic (see Creating a CBaseMonitor Subclass)

• A class derived from CBaseDTLinkConverter performs PC to
Pilot data conversion (categories & records) in both directions (see
Creating a CBaseDTLinkConverter Subclass)

• A class derived from CBaseTable handles adding and removing
records and record locating

Functions Called During Synchronization

Control Flow of Pilot Desktop’s Native Synchronization Logic
Synchronizing with Existing PC Applications

Developing Palm OS Conduits 45

Figure 4.1 Functions Called During Synchronization

Synchronizing with Existing PC Applications
If you have a PC application that you want to synchronize and you want to
use the Pilot Desktop’s native synchronization logic, be aware that the na-
tive logic expects the following:

• A maximum of 16 categories total (PC and device combined); the
category “unfiled” and 15 additional categories.

• That the record ID is assigned by the device, not the PC.

If your two databases don’t meet these requirements, you need a preproces-
sor to do some work before calling the link converter to do its conversion.

Start

ObtainRemoteTables() Open device database

ObtainLocalTables() Open local PC database(s)

ObtainRemoteCategories()
Read categories from open
device database

SynchronizeAppInfoBlock() Sync info (excluding categories)

SynchronizeCategories()
Sync categories between

Synchronize the records
Perform 1 of 4 types of
synchronization set by HotSync.

Handle record count mismatch
Table with highest record count
copies to other device.

ArchiveRecords()
Place deleted records
into proper archive files.

SaveLocalTables()

Back up previous PC file,
then save newly sync’ed PC file

SyncBaseSyncFlags() Reset status flag on device.

device and PC

End

Control Flow of Pilot Desktop’s Native Synchronization Logic
Synchronizing Categories

46 Developing Palm OS Conduits

You might also need a postprocessor to do some work after the link con-
verter has done its conversion.

Synchronizing Categories
Categories are a central data handling concept for all Palm OS applications.
Pilot Desktop’s native logic synchronizes categories first. For more infor-
mation, see Considering Category Manager Modifications before starting
on the records.

Developing Palm OS Conduits 47

5
Implementing a
Conduit
This chapter helps you develop a conduit that’s based on the C++ classes
that provide the synchronization logic used by the native PIMs. It looks in
some detail at each of the following steps a developer must take to imple-
ment such a conduit:

• Providing “C” Entry Points

• Creating a CBaseMonitor Subclass. Includes supplying a construc-
tor that calls the base class constructor, and overriding the manda-
tory virtual member functions. It may also include overriding
additional virtual functions.

• Creating a CBaseDTLinkConverter Subclass. Includes determining
the need for a new converter class, writing the code for a new con-
verter, and placing it in a separate source code file if necessary.

• Creating a CBaseTable Subclass Includes creating subclasses asso-
ciated with CBaseTable, overriding some of the virtual functions,
and incorporating necessary information in the header file.

• Considering Category Manager Modifications While many appli-
cations find they can use the native category behavior, you need to
understand how categories are synchronized to decide whether you
can use the native behavior.

Note that in this exploration of adapting the native logic to your application
you will often encounter discussions of classes provided by the library that
implements the native logic. These classes always have the word “Base” in
them (e.g. CBaseTable). Their subclasses can have names you choose,
it’s probably best you replace “Base” with a word of your choice.

Providing “C” Entry Points
Every conduit must publish a DllMain() routine for the to be used by the
Windows operating system and three public “C” entry points (OpenCon-

Implementing a Conduit
Providing “C” Entry Points

48 Developing Palm OS Conduits

duit, GetConduitName, and GetConduitVersion) to be invoked
by HotSync. They are discussed in some detail in this section. Place the
code for all four functions in a single C++ source file, such as MY-
COND.CPP.

Listing 5.1 C Entry Points

extern “C” {
typedef long (*PROGRESSFN) (char*);

ExportFunc long OpenConduit
(PROGRESSFN, CSyncProperties&);

typedef long (*POPENCONDUIT)
(PROGRESSFN, CSyncProperties&);

ExportFunc long GetConduitName(char*, WORD);
typedef long (*PGETCONDUITNAME) char*, WORD);

ExportFunc DWORD GetConduitVersion()
typedef DWORD (*PGETCONDUITVERSION)();
};

The rest of this section discusses:

• Providing a DllMain Routine. This function has to save the hIn-
stance parameter which is needed by the class derived from
CBaseMonitor.

• Providing Entry Point Routines. Three functions must be provided,
OpenConduit, GetConduitName, and
GetConduitVersion.

Providing a DllMain Routine
The DllMain routine is a typical 32-bit Windows DllMain routine, except
for the saving of the passed in hInstance parameter. The CBaseMoni-
tor that determines the control flow needs this instance handle. The Win-
dows operating system automatically calls DllMain when it loads the
conduit DLL into memory as a result of HotSync performing a LoadLi-
brary call on it.

Implementing a Conduit
Providing “C” Entry Points

Developing Palm OS Conduits 49

Listing 5.2 DllMain Startup Routine

// Filename: mycond.cpp
// Description: Source code for the Windows
// DllMain() function and the Conduit routine
//'Open Conduit()'.

// Init global variable to null
HINSTANCE myInst = 0;
extern “C” int APIENTRY
DllMain (HINSTANCE hInstance,

DWORD dwReason,
LPVOID lpReserved)

{
 if (dwReason == DLL_PROCESS_ATTACH)
 {

TRACE0(“ADDCOND.DLL Initializing!”);

//Extension DLL one-time initialization
AfxInitExtensionModule(addcondDLL,

hInstance);

//Insert this DLL into the resource chain
new CDynLinkLibrary (addcondDLL);

myInst = hInstance;
}
else if (dwReason ==DLL_PROCESS_DETACH)
{
TRACE0(“ADDCOND.DLL Terminating!”);

//properly clean up the extension module
AfxTermExtensionModule(addcondDLL);

}
return 1 /ok

}

Implementing a Conduit
Providing “C” Entry Points

50 Developing Palm OS Conduits

Providing Entry Point Routines
Your Conduit should provide 3 entry point routines, discussed in this sec-
tion:

• The OpenConduit Function

• The GetConduitName Function

• The GetConduitVersion Function

The OpenConduit Function

When HotSync calls OpenConduit, the conduit carries out all its syn-
chronization duties before returning control to HotSync. HotSync invokes
this routine only once, immediately after it has dynamically loaded the con-
duit into memory.

The function is passed two parameters:

• A pointer to a callback routine within HotSync that a conduit can
invoke periodically during its activities.

• A pointer to the CSyncProperties object which contains the
characteristics of the current synchronization session (see Listing
5.4).

Because this function resides in the same source code file as DllMain, the
myInst variable, which is set by DllMain, is accessible (see Providing a
DllMain Routine.)

Listing 5.3 shows the OpenConduit function for the address book con-
duit included with your Conduit SDK.

Listing 5.3 OpenConduit Function

ExportFunc long OPENCONDUIT (
PROGRESSFN pFn,
CSyncProperties& rProps)

{
long retval = -1;
if (pFn)
{
CAddressConduitMonitor* pMonitor;
pMonitor = new CAddressConduitMonitor(

pFn, rProps, myInst);

Implementing a Conduit
Providing “C” Entry Points

Developing Palm OS Conduits 51

if (pMonitor)
{

retval = pMonitor->Engage();
delete pMonitor;

}
}
 return(retval);

}

The two parameters passed in by HotSync (callback routine and CSyn-
cProperties instance) are passed into the constructor of the CBase-
Monitor, along with the instance handle from DllMain.

CSyncProperties is a C++ class, however all of its members are pub-
lic. As a result, using it’s similar to using a traditional C structure. CSyn-
cProperties contains:

• Much of the vital information regarding the nature of the synchroni-
zation process to execute.

• Assisting information (such as filenames) for synchronization of
the local and remote databases.

Other data members serve as function parameters for some of the Sync-
Manager function calls that a conduit must invoke to control the Palm OS
device. HotSync supplies all the information inside CSyncProperties.

Listing 5.4 CSyncProperties class

enum eSyncTypes { eFast, eSlow, eHHtoPC, ePCtoHH,
eInstall, eBackup};

enum eFirstSync { eNeither, ePC, eHH};
enum eConnType { eCable, eModem};

class CSyncProperties {
public:
 eSyncTypes m_SyncType;
 char m_PathName[256];
 char m_LocalName[256];
 char m_UserName [256];

Implementing a Conduit
Providing “C” Entry Points

52 Developing Palm OS Conduits

 char* m_RemoteName[DB_NAMELEN];
 CDbList* m_RemoteDbList[DB_NAMELEN];
 int m_nRemoteCount;
 CSyncLog* m_pSyncLog;
 DWORD m_Creator;
 WORD m_CardNo;
 DWORD m_DbType;
 DWORD m_AppInfoSize;
 DWORD m_SortInfoSize;
 eFirstSync m_FirstDevice;
 eConnType m_Connection;
 char m_Registry[256];
 HKEY m_hKey;
};

The GetConduitName Function

This function is the extern “C” entry point into the conduit which returns
the name to be used when displaying messages regarding this conduit:

Listing 5.5 GetConduitName Example

ExportFunc long GETCONDUITNAME(char* pszName,
 WORD nLen)

{
long retval = -1;
if (::LoadString(myInst, IDSTR_ADDRESSBOOK,

pszName, nLen))
retval = 0;

return retval;

The GetConduitVersion Function

This routine is the extern “C” entry point into this conduit which returns
the conduits version number.

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 53

Listing 5.6 GetConduitVersion Example

ExportFunc DWORD GETCONDUITVERSION()
{
return ADDRESS_CONDUIT_VERSION;

}

Creating a CBaseMonitor Subclass
This section looks in some detail at the CBaseMonitor class. This class
determines the control flow for the conduit and is at the heart of the native
synchronization logic. Its data members store information about the syn-
chronization process; its member functions determine the behavior. Every
conduit has to create a subclass of this class because it’s necessary to over-
ride a number of virtual functions that by default have no behavior.

You may decide to use or adapt some of the virtual functions defined by the
conduits of the four native applications (which are included in the SDK),
but you cannot use the class as is because the functions have no behavior at
that level.

You learn about the following aspects of CBaseMonitor:

• CBaseMonitor Basic Structure

• CBaseMonitor Data Members

• CBaseMonitor Functions Must to Override

• CBaseMonitor Functions You May to Override

CBaseMonitor Basic Structure
The CBaseMonitor class provided in Basemon.h contains data members
necessary for performing all required synchronization activities. When you
derive a subclass from CBaseMonitor, you must initialize some of these
data members in order for the base synchronization logic to execute suc-
cessfully. Listing 5.7 is an excerpt of the class definition for
CBaseMonitor from the header file BASEMON.H in the Conduit SDK;
it shows the data members that need to be initialized.

Implementing a Conduit
Creating a CBaseMonitor Subclass

54 Developing Palm OS Conduits

Listing 5.7 CBaseConduitMonitor Class Data Members

//
// Base Monitor
//
class CBaseConduitMonitor {
protected:

CBaseDTLinkConverter* m_pDTConvert;
PROGRESSFN m_pfnProgress;
CBaseTable* m_LocRealTable;
CBaseTable* m_LocArchTable;
CBaseTable* m_BackupTable;
CBaseTable* m_RemRealTable;
CSyncProperties m_rSyncProperties;
CCategoryMgr* m_LocCategory;
CCategoryMgr* m_RemCategory;
BYTE m_RemHandle;
char m_ArchFileExt[5];
int m_TotRemoteDBs;
int m_CurrRemoteDB;
CDbGenInfo m_DbGenInfo;
HINSTANCE m_DllInstance;

The following data members are the most important ones:

• m_pDTConverter points to a converter object that converts
record data obtained from the device into a format used by the mon-
itor object’s synchronization logic (see Creating a CBaseDTLink-
Converter Subclass).

• m_LocRealTable is the table that will hold data resident on the
PC.

• m_RemRealTable is the table that will hold data coming from the
device.

• CSyncProperties (see Listing 5.4) is a copy of the object
passed into the conduit by HotSync when it invokes the conduit.

Many of the member function prototypes define a parameter as a CBaseR-
ecord&, then rely on the code you provide to cast the parameter to the

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 55

specific record object that the conduit is synchronizing. Because casting
happens so low in the hierarchy, the core synchronization logic only has to
deal with CBaseRecord instances. This helps reduce its compile time ex-
posure to the growing list of header files containing class definitions for
CBaseRecord subclasss. It also makes it possible to have all conduits use
the same core logic.

CBaseMonitor Data Members
The following data members of CBaseMonitor are discussed below:

• CBaseDTLinkConverter* m_pDTConvert

• CBaseTable* m_LocRealTable

• CBaseTable* m_LocArchTable

• CBaseTable* m_BackupTable

• PROGRESSFN m_pfnProgress

• CSyncProperties m_rSyncProperties

• CCategoryMgr* m_LocCategory

• CCategoryMgr* m_RemCategory

• BYTE m_RemHandle

• CBaseTable* m_RemRealTable

• int m_CurrRemoteDB

• CDbGenInfo m_DbGenInfo

• HINSTANCE m_DllInstance

CBaseDTLinkConverter* m_pDTConvert

A converter object that is usually created from within the constructor for
the CBaseMonitor subclass. The converter must understand the record
layouts living on the Palm OS device; it has to transform that record infor-
mation from device format into a format the synchronization logic can use.

Most conduits derive a class from CBaseDTLinkConverter to handle
new file formats on the Palm OS device (see Creating a CBaseDTLinkCon-
verter Subclass).

PROGRESSFN m_pfnProgress

HotSync supplies this function pointer. It allows the conduit to call back
into HotSync and periodically report its progress. This function pointer

Implementing a Conduit
Creating a CBaseMonitor Subclass

56 Developing Palm OS Conduits

currently has no effect on HotSync, and is in place for possible future ex-
pansion. For now, the only requirement of a monitor subclass is to pass the
first parameter of its constructor down to its base classes constructor, and
ignore this data member.

CBaseTable* m_LocRealTable

This data member is a pointer to the table that contains all the records on
the PC. The function ObtainLocalTables opens and reads in this ta-
ble.

Your base monitor subclass must create an instance of your subclass of the
CBaseTable class (see Creating a CBaseTable Subclass), that is then
used to store the data retrieved by ObtainLocalTables.

NOTE: No synchronization can occur unless this data member is
correctly initialized.

CBaseTable* m_LocArchTable

Represents an archive database on the PC; a file which can store all records
from the main database the user marked for archiving. This table and
m_LocRealTable have to be an instance of the same subclass. Initialize
this table in the function CreateLocalArchTable.

CBaseTable* m_BackupTable

This data member and the m_LocRealTable data member must belong
to the same class. This table represents a backup of the original PC data-
base after the last synchronization. It provides a snapshot of the PC data as
it looked after the last synchronization session ended.

A backup table is important when HotSync has to perform a slow synchro-
nization. HotSync decides to perform a slow synchronization when it finds
that no record status flags are set on the device’s database. This may occur
if the device initiates a synchronization session with more than one PC be-
cause the built-in synchronization logic clears all the status flags at the end
of a session, in preparation for detecting future record alterations.

CBaseTable* m_RemRealTable

This table object represents the database on the device that will be synchro-
nized with its counterpart on the PC. This table and the

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 57

m_LocRealTable data member must be instances of the same subclass
of CBaseTable because the native synchronization logic can’t compare
objects that aren’t instances of the same class. This data member is initial-
ized when the native synchronization logic invokes the ObtainRemoteTa-
bles virtual member function.

CSyncProperties m_rSyncProperties

This data member is a copy of the SyncProperties object passed from
HotSync into a CBaseMonitor subclass constructor. Normally, the con-
structor of a CBaseMonitor subclass should simply pass the CSyn-
cProperties parameter down to its base class constructor, where a copy
is made into this data member.

CCategoryMgr* m_LocCategory

A pointer to the category manager that contains all the categories that exist
on the PC.

CCategoryMgr* m_RemCategory

A pointer to the category manager that contains all categories that exist on
the device.

BYTE m_RemHandle

If the SyncManager calls ObtainRemoteTables, and if the device success-
fully opens the named database during execution, a handle is returned by
the function call. The returned handle should be stored in the data member
m_RemHandle, because it’s needed by several of the SyncManager func-
tions.

char m_ArchFileExt[5]

Holds the PC file extension that is used when creating a local archive disk
file. This data member may be populated within the virtual member func-
tion ObtainLocalTables. It should be a NULL-terminated string.

int m_TotRemoteDBs

Holds the number of remote databases to be opened during the current syn-
chronization session. This is currently always set to 1 but provided in case a
conduit has to open more than one remote database to synchronize cor-
rectly with a local PC database(s).

Implementing a Conduit
Creating a CBaseMonitor Subclass

58 Developing Palm OS Conduits

A limitation on the current Pilot device prevents more than one remote da-
tabase to be open concurrently.

int m_CurrRemoteDB

Holds the current offset into an array of remote database names (zero-
based). When a conduit is dealing with more than one remote database,
HotSync hands it an array of database names within the
CSyncProperties object.

NOTE: This data member must be set to 0 (zero) in the constructor
of the CBaseMonitor subclass.

CDbGenInfo m_DbGenInfo

Used by SyncManager function calls as a convenience to the built-in syn-
chronization logic. Subclasses of CBaseMonitor don’t need to perform
any actions on this data member.

HINSTANCE m_DllInstance

Used by the CBaseMonitor class for discovering strings from a resource
file and for logging conflicts. The third parameter in the constructor, which
represents the instance handle for the Conduit.DLL, must be passed down
to the base class constructor. The keyword ExportFunc used in the Open-
Conduit function prototype is defined in the header file SYNCMGR.H and
exports the OpenConduit function from the DLL. This eliminates the need
to place it in the EXPORTS section of the module definition file.

CBaseMonitor Functions Must to Override
This section discusses the constructor and the virtual functions that you
must override if you derive a class derived from CBaseMonitor as fol-
lows:

• Monitor Constructor and Destructor

• ObtainLocalTables

• ObtainRemoteTables

• AddRecord

• AddRemoteRecord

• ChangeRemoteRecord

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 59

• CreateLocalArchTable

• FastSyncRecords

• SlowSyncRecords

• CopyRecordsPCtoHH

• CopyRecordsHHtoPC

• LogRecordData

• LogApplicationName

By default, these virtual functions in CBaseMonitor do nothing. Unless
the subclass supplies working code for them, the conduit fails.

NOTE: You can use the code in the Examples section, which is
from the CAddressConduitMonitor subclass, as a template for the
functions you write.

CBaseConduitMonitor(PROGRESSFN pFn,
CSyncProperties&,
HINSTANCE hInst = NULL)

~CBaseMonitor()
virtual long ObtainRemoteTables(void)
virtual long ObtainLocalTables()(void)
virtual long AddRecord(CBaseRecord& rFromRec,
 CBaseTable& rTable)
virtual long AddRemoteRecord(CBaseRecord& rRec)
virtual long ChangeRemoteRecord(CBaseRecord& rRec)
virtual long CreateLocalArchTable(CBaseTable*&)
virtual long FastSyncRecords(void)
virtual long SlowSyncRecords(void)
virtual long CopyRecordsPCtoHH(void)
virtual long CopyRecordsHHtoPC(void)
virtual long LogRecordData(DBaseRecord& rRec,

 char* fieldInfo)
virtual long LogApplicationName (char* appName,

 WORD, len)

Implementing a Conduit
Creating a CBaseMonitor Subclass

60 Developing Palm OS Conduits

Monitor Constructor and Destructor

Every subclass of CBaseMonitor that you create has to have a constructor
and destructor. The destructor is a standard C++ destructor. An example for
the constructor is provided below.

Prototype CAddressConduitMonitor(PROGRESSFN pFn,
CSyncProperties& rProps,
HINSTANCE hInst)

Parameters pFn Pointer to a function existing in HotSync.

rProps Reference to a CSyncProperties object.

hInst Instance handle of the DLL.

Purpose Every class derived from CBaseMonitor must supply its own construc-
tor. This constructor is called from the C entry point routine OpenCon-
duit as part of the conduit start-up. This constructor has to pass all three
parameters to the CBaseMonitor constructor. Additional responsibilities
are:

• To construct a proper converter object and populate the data mem-
ber m_pDTConvert with its address.

• To set the following data members:
m_TotRemoteDBs = 1
m_CurrRemoteDB = 0

Return Codes None.

Example

CAddressConduitMonitor:: CAddressConduitMonitor (PROGRESSFN pFn,
 CSyncProperties& rProps, HINSTANCE hInst)

 : CBaseConduitMonitor(pFn, rProps, hInst)
{
 m_pDTConvert = new CAddressDTLinkConverter

(rProps.m_pSyncLog, hInst);
 m_TotRemoteDBs = 1;
 m_CurrRemoteDB = 0;

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 61

}

ObtainLocalTables

Prototype long ObtainLocalTables(void)

Parameters None.

Purpose Populate the three data members m_LocRealTable,
m_LocArchTable, and m_BackupTable.

Description This function needs to:

• Populate the data member m_LocRealTable with an instance of a
CBaseTable subclass (see Creating a CBaseTable Subclass).
Once this has happened, the new conduit should open its local PC
disk file and read the existing data into this object, setting it up for
synchronization. It’s not necessarily a problem if no disk file is
available from which to read data.

• Create an archive table object and place it into the data member
m_LocArchTable, which also is derived from the class
CBaseTable. If your conduit does not support archiving, deleted
records, this data member should remain set to NULL.

• Populate the data member m_BackupTable, which is used
mainly by the slow sync logic.

Return Codes 0 = success

CONDERR_BAD_LOCAL_TABLES

Example

long CAddressConduitMonitor::ObtainLocalTables(void)
{
long retval= CONDERR_BAD_LOCAL_TABLES;
long lTblErr;
CString dataFile(m_rSyncProperties.m_PathName);
dataFile += m_rSyncProperties.m_LocalName;
dataFile += DATA_EXT;

Implementing a Conduit
Creating a CBaseMonitor Subclass

62 Developing Palm OS Conduits

// Create our local table object and open it's disk file.
m_LocRealTable = new CAddressTable();
if (m_LocRealTable) {
 retval = 0;
 if (m_rSyncProperties.m_SyncType != eHHtoPC) {
 lTblErr = m_LocRealTable->OpenFrom(dataFile, 0);
 if (!(lTblErr == 0 || lTblErr == DERR_FILE_NOT_FOUND))
 retval = CONDERR_BAD_LOCAL_TABLES;
 }
}

// Create our local archive table object
if (!retval)

m_LocArchTable = new CAddressTable();

if (m_LocArchTable)
{

// Set Archive File Extension
strcpy(m_ArchFileExt, ARCHIVE_FILE_EXT);

// Create Backup table object
if (m_rSyncProperties.m_SyncType == eFast ||

m_rSyncProperties.m_SyncType == eSlow)
{

if ((m_BackupTable = new CAddressTable()) == NULL)
retval = CONDERR_BAD_LOCAL_TABLES;

}
}
else

retval = CONDERR_BAD_LOCAL_TABLES;

return(retval);
}

ObtainRemoteTables

Prototype long ObtainRemoteTables(void)

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 63

Parameters None.

Purpose Populate the two data members m_RemRealTable and m_RemHandle.
The chief purpose of this function is to instruct the Palm OS device to open
a particular database that will be synchronized with a local PC database.
This routine should create a database if a failure of the open function indi-
cates that none exists.

Return Codes 0 = success

CONDERR_BAD_REMOTE_TABLES

Example

long CAddressConduitMonitor::ObtainRemoteTables(void)
{
long retval;
// Call into SyncManager.DLL to open the Remote database
retval =
SyncOpenDB(m_rSyncProperties.m_RemoteName[m_CurrRemoteDB], 0,
 m_RemHandle);

// Create remote dataBase, if it's not there (check sync type)
if (retval == SYNCERR_FILE_NOT_FOUND &&
 m_rSyncProperties.m_SyncType != eHHtoPC) {
 CDbCreateDB dbInfo;
 memset(&dbInfo, 0, sizeof(dbInfo));
 dbInfo.m_Creator = m_rSyncProperties.m_Creator;
 dbInfo.m_Flags = eRecord;
 dbInfo.m_CardNo = (BYTE)m_rSyncProperties.m_CardNo;
 dbInfo.m_Type = m_rSyncProperties.m_DbType;
 strcat(dbInfo.m_Name,
 m_rSyncProperties.m_RemoteName[m_CurrRemoteDB]);
 if (!(retval = SyncCreateDB(dbInfo))) {
 m_RemHandle = dbInfo.m_FileHandle;
 }
}

Implementing a Conduit
Creating a CBaseMonitor Subclass

64 Developing Palm OS Conduits

// Need a table to hold converted remote records (one at a time)
if (!retval)

{
 if (!(m_RemRealTable = new CAddressTable()))

{
SyncCloseDB(m_RemHandle);
retval = CONDERR_BAD_REMOTE_TABLES;
}

}
return(retval);
}

AddRecord

Prototype long AddRecord (CBaseRecord& rFromRec,
CBaseTable& rTable)

Parameters rFromRec Record to be added to Table object.

rTable Table object that is to receive new record.

Purpose To populate the rTable table object with a new record using the rTable
record object). The main purpose of this routine is to cast the generic in-
coming parameters to the specific table object needed by the conduit. The
routine is called by the CBaseMonitor generic synchronization logic,
where it does not have the typing information necessary to deal with all
possible CBaseRecord subclasses. This function relies on a member
function of the CBaseTable class, which adds a new record then popu-
lates it with information passed into it. (See AppendDuplicateRecord
of the CBaseTable class.)

Return Codes 0 = success

CONDERR_ADD_LOCAL_RECORD

Example

long CAddressConduitMonitor::AddRecord(CBaseRecord& rFromRec,
CBaseTable& rTable)

{

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 65

 long retval=0;

 // Cast the parameters to our own specific object types
 CAddressTable& rToTable = (CAddressTable&)rTable;
 CAddressRecord& rFromRecord = (CAddressRecord&)rFromRec;

 // Instantiate a new record object to represent the fresh row
 CAddressRecord toRec(rTable, 0);

 if (rTable.AppendDuplicateRecord(rFromRecord, toRec))
 retval = CONDERR_ADD_LOCAL_RECORD;

 return(retval);
}

AddRemoteRecord

Prototype long AddRemoteRecord (CBaseRecord& rRec)

Parameters rRec Record to be added to the remote database.

Purpose Add a new record to the remote database and obtain the newly assigned
unique record ID.

• Allocate enough memory for the device format record layout.

• Convert the passed-in table record to the format needed by the de-
vice. This is done by the ConvertToRemote function in the link con-
verter.

• Use the SyncManager to send the device data to the Palm OS de-
vice.

• After the SyncManager call, obtain the new unique record ID as-
signed by the device and store it in the ID field of the passed-in
record object.

This function is called by the CBaseMonitor generic synchronization
logic, where it does not have the typing information necessary to convert
the base record object to the specific record layout used by the device.

Return Codes 0 = success

Implementing a Conduit
Creating a CBaseMonitor Subclass

66 Developing Palm OS Conduits

CONDERR_ADD_REMOTE_RECORD

CONDERR_CONVERT_TO_REMOTE_REC

Example

long CAddressConduitMonitor::AddRemoteRecord(CBaseRecord& rRec)
{
CRawRecordInfo rawRec;
CAddressRecord &rLocRec = (CAddressRecord&)rRec;
long retval = CONDERR_ADD_REMOTE_RECORD;

memset(&rawRec, 0, sizeof(rawRec));
rawRec.m_FileHandle = m_RemHandle; // remote file handle
rawRec.m_RecId = 0 ;

// Palm OS device assigns new RecId

// Allocate memory for rawRecord.m_pBytes
if (!AllocateRawRecordMemory(rawRec, ADDRESS_RAW_REC_MEM)) {

// Convert record data for remote, upon return grab new
//RecordId.
if (!(retval = m_pDTConvert->ConvertToRemote(

rLocRec, rawRec))) {
 if (!(retval = SyncWriteRec(rawRec)))
 rRec.SetRecordId(rawRec.m_RecId);
 }
 else
 retval = CONDERR_CONVERT_TO_REMOTE_REC;
 // Free memory not needed anymore
 if (rawRec.m_TotalBytes > 0 && rawRec.m_pBytes)
 delete rawRec.m_pBytes;
}
return(retval);

ChangeRemoteRecord

Prototype long ChangeRemoteRecord (CBaseRecord& rRec)

Parameters rRec Record to be overwritten in the remote database.

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 67

Purpose To alter an existing record in the remote database on the device. The record
is located by its unique key, the record ID.

• Ask for the unique record ID present in the passed-in record object.
(This will be used as a key to look up the matching record on the
device.)

• Allocate enough memory to hold the converted record format.

• Call on the converter data member to do the actual data conversion
from a base record object to the record layout acceptable by the re-
mote database.

• Call the SyncManager function SyncWriteRec to send the data
to the Palm OS device.

Return Codes 0 = success

CONDERR_CHANGE_REMOTE_RECORD

CONDERR_CONVERT_TO_REMOTE_REC

Example

long CAddressConduitMonitor::ChangeRemoteRecord
(CBaseRecord& rRec)

{
 CRawRecordInfo rawRec;
 CAddressRecord &rLocRec = (CAddressRecord&)rRec;
 long retval = CONDERR_CHANGE_REMOTE_RECORD;
 int locRecId;

 memset(&rawRec, 0, sizeof(rawRec));
 rLocRec.GetRecordId(locRecId);
 rawRec.m_FileHandle = m_RemHandle;

 // remote file handle
 rawRec.m_RecId = (DWORD)locRecId;

 // key used for record location

 // Allocate memory for rawRecord.m_pBytes
 if (!AllocateRawRecordMemory(rawRec, ADDRESS_RAW_REC_MEM)) {

// Prepare record data for remote, upon return grab
// new RecordId.

Implementing a Conduit
Creating a CBaseMonitor Subclass

68 Developing Palm OS Conduits

 if (!m_pDTConvert->ConvertToRemote(rLocRec, rawRec))
 retval = SyncWriteRec(rawRec);
 else
 retval = CONDERR_CONVERT_TO_REMOTE_REC;

 if (rawRec.m_TotalBytes > 0 && rawRec.m_pBytes)
 delete rawRec.m_pBytes;
 }
 return(retval);
}

CreateLocalArchTable

Prototype long CreateLocalArchTable (CBaseTable*& pBase)

Parameters pBase Reference to a table pointer receiving allocated
memory.

Purpose To create a conduit-specific table object to work with all archived records.
The generic synchronization engine calls this virtual function when it’s
processing deleted records that optionally get stored in an archive database
after removal from the main table. The archive table has to use the same
schema as the main table (see CBaseSchema Class).

Return Codes 0 = success

-1 = could not allocate archive table object

Example

long CAddressConduitMonitor::CreateLocalArchTable(
CBaseTable*& pBase)

{
 long retval = -1;
 pBase = new CAddressTable();
 if (pBase)
 retval = 0;

 return(retval);

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 69

}

FastSyncRecords

Prototype long FastSyncRecords(void)

 Parameters None.

Purpose Perform an optimized record-level synchronization involving only the
modified records from the Palm OS device. Each conduit has to supply this
function because it has to create application-specific record objects used in
traversing each of the two tables to be synchronized.

The function traverses the remote database and reads in records that have
been modified since the last synchronization session. The device knows the
modification status of a record; the status is available through the Sync-
Manager function SyncReadNextModifiedRec. If no records have
been modified since the last synchronization session, the SyncManger re-
turns an end-of-file error on the first read and no more processing is neces-
sary.

Once a remote record is obtained, the inherited base class routine Syn-
chronizeRecord is invoked with the record. This routine contains all
the native synchronization conflict resolution logic.

Return Codes 0 = Success

CONDERR_BAD_REMOTE_TABLES

CONDERR_CONVERT_FROM_REMOTE_REC

Example

long CAddressConduitMonitor::FastSyncRecords(void)
{
 long retval = 0, err = 0;
 CRawRecordInfo rawRecord;
 CAddressRecord locRecord(*m_LocRealTable, 0);
 CAddressRecord backRecord(*m_BackupTable, 0);

 memset(&rawRecord, 0, sizeof(rawRecord));
 rawRecord.m_FileHandle = m_RemHandle;

Implementing a Conduit
Creating a CBaseMonitor Subclass

70 Developing Palm OS Conduits

// remote file handle
 rawRecord.m_RecId = 0;

// Palm OS device assigns RecId

 if (!m_RemRealTable)
 return(CONDERR_BAD_REMOTE_TABLES);

// Create record object to be a holding buffer for converted
// remote raw records. To store field values in a record
// object, our table object requires they be positioned in
// order.
CAddressRecord remRecord(*m_RemRealTable, 0);
if (m_RemRealTable->AppendBlankRecord(remRecord))

return(CONDERR_BAD_REMOTE_TABLES);

// Allocate memory for raw record conversion buffer.
retval = AllocateRawRecordMemory(

rawRecord, ADDRESS_RAW_REC_MEM);

// The main loop iterating over the remote modified records.
while (!err && !retval) {

if (!(err = SyncReadNextModifiedRec(rawRecord))) {

// Convert from raw record format to PC record object
if (!m_pDTConvert->ConvertFromRemote

(remRecord, rawRecord)) {

 // Call inherited base class function to
// synchronize the record
retval = SynchronizeRecord(

remRecord, locRecord, backRecord);
else
retval = CONDERR_CONVERT_FROM_REMOTE_REC;

}
memset(rawRecord.m_pBytes, 0, rawRecord.m_TotalBytes);

}
if (err && err != SYNCERR_FILE_NOT_FOUND)

LogBadReadRecord(err);

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 71

// Free memory allocated for raw record conversion buffer.
if (rawRecord.m_TotalBytes > 0 && rawRecord.m_pBytes)

delete rawRecord.m_pBytes;

// Send all modified records to the Palm OS device. Supply a
// record object to the inherited base class member function.
if (!retval) {

 CAddressRecord loc2Rec(*m_LocRealTable, 0);
 retval = SendRemoteChanges(loc2Rec);

 }
 return(retval);
}

SlowSyncRecords

Prototype long SlowSyncRecords (void)

Parameters None

Purpose Applications use SlowSync when they can’t rely on the status flags to be
accurate. If the user has performed a HotSync with another PC, the status
flags are cleared. SlowSync uses the backup file, which is a copy of the file
after the last HotSync, to determine which records have been added,
changed, or deleted on the device since the last HotSync. To perform a
SlowSync, every record must be read in from the device. This contrasts
with FastSync which reads only the modified records.

All the PC records have already been read into memory (into the
m_LocRealTable table on the PC). For each PC record, if the statusFlag
is None, it’s set to Pending. Device records are read in one at a time.

Since the Palm OS device status flags may not be accurate, SlowSync pro-
ceeds as follows: If the device statusFlag is None, then that record is com-
pared against the Backup file record to determine if the device record has
been added, changed, or deleted. Then, each device record is compared
with the record in the PC table (which contains the PC records along with
the newly merged device records) to determine if the device record should
be added to the PC table, replace the current PC record, cause the PC
record to be deleted from the PC table, or be added to the Archive file. If
the record exists on both the device and the PC and the PC record has a

Implementing a Conduit
Creating a CBaseMonitor Subclass

72 Developing Palm OS Conduits

Pending statusFlag, the statusFlag is changed to its appropriate value. This
is important because in the second pass, if the statusFlag is Pending, that
means that the record does not exist on the device and it does exist on the
PC with no changes, therefore the record was deleted on the device so it
needs to be deleted from the PC. After each device record has been read
with its sync action performed to the PC table, then a second pass is made
to the PC table. For each PC record that is marked as modified (statusFlag !
= None), a message will be send to the device to update that device record.
After all the appropriate records are updated on the device and the status-
Flags for each PC record have been cleared, then the PC table is ready to be
written to the PC as the new PC file.

Example

long CAddressConduitMonitor::SlowSyncRecords(void)
{

long retval = 0, tErr, err = 0;
WORD rawRecIx = 0;
CRawRecordInfo rawRecord;
CAddressRecord backRecord(*m_BackupTable, 0);
CAddressRecord locRecord(*m_LocRealTable, 0);
CBaseIterator locIterator(*m_LocRealTable);

CString backFile(m_rSyncProperties.m_PathName);
backFile += m_rSyncProperties.m_LocalName;
backFile += BACK_EXT;

memset(&rawRecord, 0, sizeof(rawRecord));
rawRecord.m_FileHandle = m_RemHandle; // Remote File Handle

// Read in PC Backup file (file after last sync)
tErr = m_BackupTable->OpenFrom(backFile, 0);

if (!m_RemRealTable)
return(CONDERR_BAD_REMOTE_TABLES);

// Create a holding place for converted remote field values.
// We need at least one valid record (with valid fields) in the

table.

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 73

CAddressRecord remRecord(*m_RemRealTable, 0);

if (m_RemRealTable->AppendBlankRecord(remRecord))
return(CONDERR_BAD_REMOTE_TABLES);

else if ((retval = AllocateRawRecordMemory(rawRecord,
ADDRESS_RAW_REC_MEM)))

return(retval);

// Set each PC record with statusFlag = None to Pending
err = locIterator.FindFirst(locRecord, TRUE);
while (!err)
{

if ((!locRecord.IsArchived()) && locRecord.IsNone())
locRecord.SetStatus(fldStatusPENDING);

err = locIterator.FindNext(locRecord, TRUE);
}

err = 0;
rawRecIx = 0;
while (!err && !retval)
{

rawRecord.m_RecIndex = rawRecIx;

// Read && Convert each remote record from raw format to
// CAddressRecord
if (!(err = SyncReadRecordByIndex(rawRecord)))
{

// Convert from raw record format to CAddressRecord
if (!m_pDTConvert->ConvertFromRemote(remRecord, rawRecord))
{
// Synchronize the record obtained from the handheld
retval = SynchronizeRecord(remRecord, locRecord,

backRecord);
}
else
retval = CONDERR_CONVERT_FROM_REMOTE_REC;

}

Implementing a Conduit
Creating a CBaseMonitor Subclass

74 Developing Palm OS Conduits

rawRecIx++;
}
if (err != SYNCERR_FILE_NOT_FOUND)

LogBadReadRecord(err);

// Free the memory allocated for the raw record
if (rawRecord.m_TotalBytes > 0 && rawRecord.m_pBytes)

delete rawRecord.m_pBytes;

// Send all modified records to the Palm OS device. Give a
// specific record object.
if (!retval)
{

CAddressRecord loc2Rec(*m_LocRealTable, 0);
retval = SendRemoteChanges(loc2Rec);

}

return(retval);
}

CopyRecordsPCtoHH

Prototype long CopyRecordsPCtoHH (void)

Parameters None

Purpose Copies all records from the PC to the device with the exception of records
marked for archiving or deletion. Records marked for archiving are added
to the archive table and later added to the appropriate archive files.

Example

long CAddressConduitMonitor::CopyRecordsPCtoHH(void)
{

long retval = 0, err = 0;
CAddressRecord locRecord(*m_LocRealTable, 0);
CBaseIterator locIterator(*m_LocRealTable);

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 75

// Delete all Remote (Handheld) records
if (SyncPurgeAllRecs(m_RemHandle))
{

retval = CONDERR_REMOTE_RECS_NOT_PURGED;
return(retval);

}

// For each PC record ...
err = locIterator.FindFirst(locRecord, FALSE);
while (!err && !retval)
{

if (locRecord.IsArchived())
{

// Add PC record to Archive table
retval = ClearStatusAddRecord(locRecord, *m_LocArchTable);
// Mark for deletion
locRecord.SetStatus(fldStatusDELETE);

}
else if (!locRecord.IsDeleted()) // record not deleted
{

// Add the record to the Handheld by virtual worker
//function.
locRecord.SetStatus(fldStatusNONE);
if (retval = AddRemoteRecord(locRecord))
LogBadAddRecord(locRecord);

}
err = locIterator.FindNext(locRecord, FALSE);

}

// Purge all deleted records from the PC table
if (!retval)

retval = m_LocRealTable->PurgeDeletedRecords();

return(retval);
}

Implementing a Conduit
Creating a CBaseMonitor Subclass

76 Developing Palm OS Conduits

CopyRecordsHHtoPC

Prototype long CopyRecordsHHtoPC (void)

Parameters None

Purpose Copies all the records from the Palm OS device to the PC except for the
records marked for archiving or deletion. Records marked for archiving are
added to the archive table and later added to their appropriate archive files.

Example

long CAddressConduitMonitor::CopyRecordsHHtoPC(void)
{

long retval = 0, err = 0;
CRawRecordInfo rawRecord;
WORD recIx = 0;

memset(&rawRecord, 0, sizeof(CRawRecordInfo));
rawRecord.m_FileHandle = m_RemHandle; // remote file handle
rawRecord.m_RecIndex = recIx;

if (!m_RemRealTable)
return(CONDERR_BAD_REMOTE_TABLES);

// Create a holding place for converted remote field values.
// We need at least one valid record (with valid fields) in
// the table.
CAddressRecord remRecord(*m_RemRealTable, 0);
if (m_RemRealTable->AppendBlankRecord(remRecord))

return(CONDERR_BAD_REMOTE_TABLES);

// Allocate memory for rawRecord.m_pBytes, return if Bad!
if (retval = AllocateRawRecordMemory(rawRecord,

ADDRESS_RAW_REC_MEM))
return(retval);

// Read in each Palm OS device record one at a time
while (!retval && !err)

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 77

{
rawRecord.m_RecIndex = recIx ;
if (!(err = SyncReadRecordByIndex(rawRecord)))
{

// Convert from raw record format to CAddressRecord
if (!m_pDTConvert->ConvertFromRemote(remRecord, rawRecord))
{
if (remRecord.IsArchived())
// Add device record to Archive table
retval = ClearStatusAddRecord(remRecord,

*m_LocArchTable);

else if (remRecord.IsDeleted() == FALSE)
// Add device record to PC table
retval = ClearStatusAddRecord(remRecord,

*m_LocRealTable);
}
else
retval = CONDERR_CONVERT_FROM_REMOTE_REC;

}
recIx++;

}
if (err != SYNCERR_FILE_NOT_FOUND)

LogBadReadRecord(err);

// Free memory for rawRecord data
if (rawRecord.m_TotalBytes > 0 && rawRecord.m_pBytes)

delete rawRecord.m_pBytes;

// Delete all records marked for deletion on the handheld
if (!retval && SyncPurgeDeletedRecs(m_RemHandle))

LogBadPurge(CONDERR_REMOTE_RECS_NOT_PURGED);

return(retval);
}

Implementing a Conduit
Creating a CBaseMonitor Subclass

78 Developing Palm OS Conduits

LogRecordData

Prototype long LogRecordData(CBaseRecord& rRec,
char* fieldInfo)

 Parameters rRec Pointer to a CBaseRecord.

fieldInfo Buffer to store field values.

Purpose Adds information about a record to the log.

Return Codes None

Example

void CAddressConduitMonitor::LogRecordData(CBaseRecord& rRec,
char * errBuff)

{
CAddressRecord &rLocRec = (CAddressRecord&)rRec;
CString csStr;
int len = 0;

rLocRec.GetName(csStr);
len = csStr.GetLength();
if (len > 20)

len = 20;

strcpy(errBuff, " ");
strncat(errBuff, csStr, len);
strcat(errBuff, ", ");

rLocRec.GetFirst(csStr);
len = csStr.GetLength();
if (len > 20)

len = 20;

strncat(errBuff, csStr, len);
strcat(errBuff, ", ");

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 79

rLocRec.GetCompany(csStr);
len = csStr.GetLength();
if (len > 30)

len = 30;

strncat(errBuff, csStr, len);
}

LogApplicationName

Prototype long LogApplicationName (char* appName, WORD len)

 Parameters appName Buffer in which to store the application name.

len Length of appName.

Purpose Retrieves the application name, for example “Address Book” that will ap-
pear in the log.

Return Codes None

Example

void CAddressConduitMonitor::LogApplicationName(char* appName,
WORD len)

{
// Load string from the resource file.
::LoadString(m_DllInstance, IDSTR_ADDRESSBOOK, appName, len);

}

CBaseMonitor Functions You May to Override
The following section provides a list of virtual functions that a subclass of
CBaseMonitor may choose to override. Note that for these functions, the
base class provides enough built-in functionality to allow any new conduits
to execute and function without supplying code for these routines. How-
ever, the new conduit may want to disable some of the logic of the base

Implementing a Conduit
Creating a CBaseMonitor Subclass

80 Developing Palm OS Conduits

class by overriding some of these virtual functions and supplying essen-
tially hollow code.

A CBaseMonitor subclass responsible for its own existing file formats
will most likely override the following member functions:

• SaveLocalTables

• PurgeLocalDeletedRecs

• ApplyRemotePositionMap

Note that in contrast to the examples above, these examples can’t be used
as a template but just illustrate one way to implement the logic. The logic
you need to implement may look completely different.

SaveLocalTables

Prototype long SaveLocalTables (const char*)

Parameters char* Disk file name to save records into.

Purpose Writes all records residing in the data member m_LocRealTable to a
disk file using the passed-in string as its name. By default, the base class
commits the contents of the m_LocRealTable object to disk using MFC
serialization logic.

Note that this function does have behavior if you don’t override it. If you
want data formats that differ at all from those in the four native device ap-
plication, you must override it.

If your conduit synchronizes with a file format different from the MFC se-
rialization provided by the CBaseTable class, it should override this
member function. The core synchronization logic invokes this routine after
all data has been exchanged with the device. The data present in the
m_LocRealTable data member are fully synchronized at the time this
function is called. This would be the logical point to convert the records
contained in the m_LocRealTable object into the format required as out-
put from the conduit.

Return Codes 0 = success

-1 = could not save the data

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 81

Default Logic

// This is the default logic in the base class
long CBaseConduitMonitor::SaveLocalTables (const char* fileName)
{
 CString destFile(fileName);

 long retval = m_LocRealTable->SaveTo(destFile);
 return(retval);
}

//
// This shows how a Monitor subclass may override the member
// function and invoke its own processing logic for the
// freshly synchronized table object. The new data member
// m_Generator is assumed to have been created during the
// overridden version of the ObtainLocalTables() member function.
//
long CMyConduitMonitor::SaveLocalTables(const char* fileName)
{
 long lErr = 0;
 CString destFile(fileName);

if (m_Generator) {
CAddressRecord addrRec(*m_LocRealTable);
lErr = m_Generator->PostProcessTables

(*m_LocRealTable, addrRec);
}
return(lErr);

}

PurgeLocalDeletedRecs

Prototype long PurgeLocalDeletedRecs (void)

Parameters None

Implementing a Conduit
Creating a CBaseMonitor Subclass

82 Developing Palm OS Conduits

Purpose The default logic (provided by the base class CBaseMonitor) of this rou-
tine iterates through the data member m_LocRealTable and physically
removes each record marked for deletion. The native synchronization logic
processing or the desktop software may have marked records for deletion.
It’s not necessary to override this function unless a conduit’s concerned
about proprietary file formats.

If your conduit synchronizes with a file format that’s different from the
MFC serialization provided by CBaseTable, it should override this mem-
ber function. The core synchronization logic invokes this routine before
SaveLocalTables. A conduit performing a post-processing pass on the
m_LocRealTable object may actually want deleted records to remain in
the table so it can detect them. For this to occur, the conduit may need to
override this member function just to make it inactive.

Return Codes 0 = success

-1 = could not purge the data

Default Logic

// This is the default logic in the base class
long CBaseConduitMonitor::PurgeLocalDeletedRecs()
{
 long retval = m_LocRealTable->PurgeDeletedRecords();
 return(retval);
}

//
// This shows how a Monitor subclass may override the member
// function and supply no code, in effect neutralizes this
// function.

long CMyConduitMonitor::PurgeLocalDeletedRecs()
{
 return(0);
}

Implementing a Conduit
Creating a CBaseMonitor Subclass

Developing Palm OS Conduits 83

ApplyRemotePositionMap

Prototype long ApplyRemotePositionMap (void)

Parameters None

Purpose The default logic (provided by the base class CBaseMonitor) issues a re-
quest to the device asking for a sorted list of its record IDs. Once obtained,
it’s applied to the order of records in the m_LocRealTable table object.
As a result, the desktop software will display its records in the same order
as the device.

If the destination for the synchronized data is a proprietary file format, your
conduit needs to override this function so it does nothing. This saves execu-
tion time by eliminating unnecessary traffic over the serial link.

Return Codes 0 = success

-1 = could not apply the cross mapping

Default Logic

// This is the default logic in the base class
long CBaseConduitMonitor::ApplyRemotePositionMap()
{
 // To view this code look in the basemon.cpp file
 // residing in the \condsdk\src directory.
}

//
// This is shows how a Monitor subclass may override the member
// function and supply no code, which in effect neutralizes this
// function.

long CMyConduitMonitor::ApplyRemotePositionMap()
{
 return(0);
}

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

84 Developing Palm OS Conduits

Creating a CBaseDTLinkConverter Subclass
Any conduit has to convert record layouts between those on the device and
those on the PC. If your conduit exchanges data with the native applica-
tions on the device, you can use the one of the subclasses of
CBaseDTLinkConverter which are provided as sample code. Other-
wise, you must create a subclass and initialize data members and provide
virtual functions as necessary.

The Conduit.DLL is responsible for adhering to the proper data structures.
Conduits pass records destined for the device through a link converter,
which formats records in a layout to match the device record layout. This
conversion facilitates data storage on the device. The conduits provided
with the Desktop pass any raw record data retrieved from the device
through their own link converter, which formats the data into a layout that
matches the record layout on the PC. Using this link converter streamlines
the development process by utilizing the existing record synchronization
logic used between the device and the Desktop to facilitate record compar-
isons during the synchronization process.

The CBaseDTLinkConverter instance is created by an instance of
CBaseMonitor or by an instance of one of its subclasses and stored in-
side that instance. The converter understands the remote database record
layouts and converts them into a form the native synchronization logic can
use.

You learn about these aspects of a CBaseDTLinkConverter:

• CBaseDTLinkConverter Basic Structure

• CBaseDTLinkConverter Data Members

• CBaseDTLinkConverter Functions You Must Override

• CBaseDTLinkConverter Functions You May Override

CBaseDTLinkConverter Basic Structure
This section provides a brief introduction to the most important aspects of
the link converter:

• The Log Object

• Casting of Member Functions

• Carriage Returns and Line Feeds

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Developing Palm OS Conduits 85

The Log Object

The CBaseMonitor gives the CBaseDTLinkConverter a CSyncLog
data member. This log object allows the link converter to record important
events that the desktop software user can view. The CSyncLog class is de-
fined in TABLES.DLL

Casting of Member Functions

Just as for CBaseMonitor, many of the member function prototypes de-
fine a parameter as a CBaseRecord&, then rely on the code you provide
to cast the parameter to the specific record object (an instance of a subclass
of CBaseRecord) that the conduit is synchronizing. This makes it possi-
ble to have all conduits use the same core logic.

Carriage Returns and Line Feeds

All converters must deal with the carriage return/ line feeds issue. The
Palm OS device uses Macintosh-style text conventions; it allows only line
feeds but not carriage returns embedded in any of its text fields. Con-
versely, in the PC/conduit environment, carriage returns appear in text
fields along with new lines. As a result, the converter has to do the follow-
ing:

• From PC to Device. A converter must strip all carriage returns
from the text fields of a given record before sending them to the
Palm OS device. If a converter fails to strip out carriage returns, the
device applications may not be able to handle the new data.

• From Device to PC. A converter must add carriage returns into all
text fields (which contain only new lines) coming from the Palm OS
device.

CBaseDTLinkConverter Data Members
The CBaseDTLinkConverter class contains a few data members which
assist in performing the data conversion. These data members are main-
tained by the CBaseDTLinkConverter class and made available for use
by subclasses.

Normally the code for a converter is placed in a separate source file from
that of the monitor. The four conduits provided with the Palm OS Desktop
software each have a source file which holds the converter code (AD-
DLINK.CPP, TODLINK.CPP, DATLINK.CPP, or MEMLINK.CPP). List-
ing 5.8 is an excerpt of the class definition for the

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

86 Developing Palm OS Conduits

CBaseDTLinkConverter class present in the header file BASEMON.H
from the conduit SDK.

Listing 5.8 Base Converter Data Members

//
// Base Converter class
//
class CBaseDTLinkConverter {
protected:
 CSyncLog* m_pLog;
 TCHAR* m_TransBuff;
 HINSTANCE m_DllInstance;
};

CSyncLog* m_pLog

A pointer to the log object created by the HotSync program and handed
into the link converter class as a parameter on its constructor line. The log
is available for recording short statements that alert the end user about ac-
tions to take. The link converter should neither create nor destroy this
pointer.

TCHAR* m_TransBuff

A pointer to memory which is allocated/destroyed by the CBaseDTLink-
Converter class. No subclass should attempt to maintain this memory
pointer. This memory buffer is used by some of the inherited utility func-
tions which adds or removes line feeds aon string buffers that are ex-
changed with the device.

HINSTANCE m_DllInstance

This instance handle is passed in on the constructor line, and originates
from the OpenConduit startup routine. This instance handle is made
available to the converter should it decide to extract strings from a resource
file for use in a log entry. It can also be used for other Windows-related
functions which need an instance handle.

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Developing Palm OS Conduits 87

CBaseDTLinkConverter Functions You Must
Override
This section first provides a list and then the definition and purpose of the
constructor and virtual functions that a class derived from
CBaseDTLinkConverter is required to override. By default, the base
class version of the virtual functions do nothing. Unless the subclass sup-
plies working code for them, the conduit will fail to convert any records
from the Palm OS device.

• CAddressDTLinkConverter Constructor and Destructor

• ConvertToRemote

• ConvertFromRemote

• ConvertToRemoteCategories

• ConvertFromRemoteCategories

CAddressDTLinkConverter Constructor and Destructor

Like every C++ class, the link converted needs a constructor and destructor.
The constructor is discussed in some detail, the destructor is a standard
C++ destructor.

Prototype CAddressDTLinkConverter (CSyncLog* pLog,
HINSTANCE hInst)

Parameters pLog Pointer to a log object (may be NULL).

hInst Instance handle of the DLL.

Purpose Each class derived from CBaseDTLinkConverter must supply its own
constructor. It’s important that this constructor pass both parameters to its
base class constructor, where they are stored on the data members that are
then inherited to the subclass.

Return Codes None

Example CAddressDTLinkConverter::CAddressDTLinkConverter
(CSyncLog* pLog, HINSTANCE hInst)
:CBaseDTLinkConverter(pLog, hInst)

{
}

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

88 Developing Palm OS Conduits

ConvertToRemote

Prototype long ConvertToRemote (CBaseRecord &rRec,
 CRawRecordInfo &rInfo)

Parameters rRec Reference to a PC format record object to supply
unconverted information.

rInfo Reference to a structure containing a buffer for device
 format record data.

Purpose This member function prepares a data record for transmission from the PC
to the device. The first parameter contains a valid PC database record (in
the form of a CBaseRecord subclass) whose data must be extracted and
formatted into the a format the Palm OS device can read. The second pa-
rameter has a memory buffer rInfo.m_pBytes large enough to contain
the device version of the record data. The function must place the newly
formatted record information into this memory buffer, which the SyncMan-
ager transmits over to the device.

The example illustrates how to populate the CRawRecordInfo structure
handling both the fixed portion and variable length portion of an Address
Book record. Also shown is how the PC has to strip any carriage returns out
of its text fields before sending them to the device. This is a required activ-
ity and if omitted, may cause the device to crash when its application at-
tempts to read that data.

Return Codes 0 = success

-1 = failed to convert record

Example Body

CAddressDTLinkConverter::ConvertToRemote(CBaseRecord& rRec,
CRawRecordInfo& rInfo)

{
 long retval = 0;

 CAddressRecord& rAddrRec = (CAddressRecord &)rRec;
// cast to proper class

 rInfo.m_RecSize = 0;

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Developing Palm OS Conduits 89

 rAddrRec.GetRecordId(tempInt);
// set RecordID

 rInfo.m_RecId = (long)tempInt;
 rAddrRec.GetCategoryId(tempInt);

// set Category ID
 rInfo.m_CatId = tempInt;
 rInfo.m_Attribs = 0;

 if (rAddrRec.IsPrivate())
 // deal with attributes

 rInfo.m_Attribs |= PRIVATE_BIT;
 if (rAddrRec.IsArchived())
 rInfo.m_Attribs |= ARCHIVE_BIT;
 if (rAddrRec.IsDeleted())
 rInfo.m_Attribs |= DELETE_BIT;
 if (rAddrRec.IsModified() || rAddrRec.IsAdded())
 rInfo.m_Attribs |= DIRTY_BIT;
 pBuff = (char*)rInfo.m_pBytes;

// get a handy pointer

 // Last Name field
 retval = rAddrRec.GetName(tempStr);
 len = tempStr.GetLength();
 if (len != 0) {
 flags.name = 1;

// Strip the CR's (if present)
//place result directly into pBuff

 pSrc = tempStr.GetBuffer(len);
 destLen = StripCRs(pBuff, pSrc, len);
 tempStr.ReleaseBuffer(-1);
 pBuff += destLen;
 rInfo.m_RecSize += destLen;

// accumulate variable length
 }

 // FirstName field
 retval = rAddrRec.GetFirst(tempStr);
 len = tempStr.GetLength();

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

90 Developing Palm OS Conduits

 if (len != 0) {
 flags.firstName = 1;

// Strip the CR's (if present)
// place result directly into pBuff

 pSrc = tempStr.GetBuffer(len);
 destLen = StripCRs(pBuff, pSrc, len);
 tempStr.ReleaseBuffer(-1);
 pBuff += destLen;
 rInfo.m_RecSize += destLen;

// accumulate variable length
 }

// Deal with all other fields...
 return(retval);
}

ConvertFromRemote

Prototype long ConvertFromRemote (CBaseRecord &rRec,
CRawRecordInfo &rInfo)

Parameters rRec Reference to PC format record object to receive converted
information.

rInfo Reference to structure holding a record from device.

Purpose Converts the remote data record (which exists in the second parameter
rInfo in as packed bytes), into data that can be set into the first parameter
(a CBaseRecord subclass). Information is pulled out of the rInfo pa-
rameter and set into the rRec parameter.

Subclasses must override this routine; the CBaseRecord instance arriving
in the first parameter must be cast to the specific record object used on the
local PC database. Shown here is an example of adding carriage returns
into text fields (Last Name), coming from the Palm OS device that contain
only new lines.

Return Codes 0 = success

-1 = failed to convert record

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Developing Palm OS Conduits 91

Example

CAddressDTLinkConverter::ConvertFromRemote (CBaseRecord& rRec,
 CRawRecordInfo& rInfo)
{
 long retval = 0;

 CAddressRecord& rAddrRec = (CAddressRecord &)rRec;
 rAddrRec.SetRecordId(rInfo.m_RecId);

// grab and set the record Id
 rAddrRec.SetCategoryId(rInfo.m_CatId);

// grab and set Category Id

 if (rInfo.m_Attribs & ARCHIVE_BIT)
// check and set archive flag

 rAddrRec.SetArchiveBit(TRUE);
 else
 rAddrRec.SetArchiveBit(FALSE);

 if (rInfo.m_Attribs & PRIVATE_BIT)
// check and set private flag

 retval = rAddrRec.SetPrivate(TRUE);
 else
 retval = rAddrRec.SetPrivate(FALSE);

 retval = rAddrRec.SetStatus(fldStatusNONE);
// clear record status field

 if (rInfo.m_Attribs & DELETE_BIT)
// check and set Delete status

 retval = rAddrRec.SetStatus(fldStatusDELETE);
 else if (rInfo.m_Attribs & DIRTY_BIT)

// check and set Modified status
 retval = rAddrRec.SetStatus(fldStatusUPDATE);

 // Only convert body if remote record is *not* deleted..

 if (!(rInfo.m_Attribs & DELETE_BIT)) {

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

92 Developing Palm OS Conduits

 pBuff = (char*)rInfo.m_pBytes;
// get a handy pointer

 // Last Name field (deal with adding carriage returns)
 if (flags.name) {
 // Add any necessary CRs,

//result is placed in m_TransBuff
 AddCRs(pBuff, strlen(pBuff));
 aString = m_TransBuff;
 retval = rAddrRec.SetName(aString);
 pBuff += strlen(pBuff) + 1;
 }
 else
 retval = rAddrRec.SetName(csEmpty);
 // FirstName field (deal with adding carriage returns)
 if (flags.firstName) {

// Add any necessary CRs,
//result is placed in m_TransBuff

 AddCRs(pBuff, strlen(pBuff));
 aString = m_TransBuff;
 retval = rAddrRec.SetFirst(aString);
 pBuff += strlen(pBuff) + 1;
 }
 else
 retval = rAddrRec.SetFirst(csEmpty);

 // Convert all other fields.......

 }
 return(retval);
}

ConvertToRemoteCategories

Prototype long ConvertToRemoteCategories(
CDbGenInfo& dbInfo,
CCategoryMgr* catMgr)

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Developing Palm OS Conduits 93

Parameters dbInfo Reference to an object containing the AppInfoBlock.

pCatMgr Pointer to a CategoryManager object.

Purpose Prepares the AppInfoBlock structure (which contains the categories and
is contained in dBInfo) to be sent to the Palm OS device. The second pa-
rameter holds the synchronized categories (in a PC formatted object) which
need to be converted and placed into the first parameter.

Each Palm OS database stores its categories inside the AppInfoBlock
along with other proprietary information. The categories exist at a well-
known byte offset into this AppInfoBlock.

The utility routine ReplaceCategories, which moves categories from
the CategoryManager object to the AppInfoBlock, is defined in the
CBaseDTLinkConverter class that all its subclasses may invoke.

Return Codes 0 = success

CONDERR_CONVERT_TO_REMOTE_CATS

Example

CAddressDTLinkConverter::ConvertToRemoteCategories
(CDbGenInfo& dbInfo,
CCategoryMgr* catMgr)

{
 long retval = CONDERR_CONVERT_TO_REMOTE_CATS;
 char* pBuff;

 if (dbInfo.m_pBytes) {
 pBuff = (char*)dbInfo.m_pBytes;
 *((WORD *)pBuff) = 0;

// Clear the category dirty flags
 pBuff += sizeof(WORD);

// offset to specific spot for cats
 retval = CBaseDTLinkConverter::ReplaceCategories

(pBuff, catMgr);
 }
 return(retval);
}

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

94 Developing Palm OS Conduits

ConvertFromRemoteCategories

Prototype long ConvertFromRemoteCategories
(CDbGenInfo& dbInfo, CCategoryMgr* catMgr)

Parameters dbInfo Reference to an object containing the AppInfoBlock.

pCatMgr Pointer to a CategoryManager object.

Purpose Extracts the category strings and IDs (that have just been delivered from
the device) from dbInfo and places them into catMgr.

Categories generally exist at a well-known byte offset into the AppIn-
foBlock, and a given subclass should know its particular placement of
categories. A utility routine defined in the CBaseDTLinkConverter is
available for all subclasses to assist in extracting raw category information
to place into the PC-formatted CategoryManager object.

Return Codes 0 = success

CONDERR_CONVERT_TO_LOCAL_CATS

Example

CAddressDTLinkConverter::ConvertFromRemoteCategories
(CDbGenInfo& dbInfo,

CCategoryMgr* catMgr)
{
 long retval = CONDERR_CONVERT_TO_LOCAL_CATS;
 char* pBuff;
 short wTemp;

 if (dbInfo.m_pBytes) {
 pBuff = (char*)dbInfo.m_pBytes;
 wTemp = *((WORD*)pBuff);
 wTemp = FlipWord(wTemp);

// two byte words arrive in Motorola format

 pBuff += sizeof(WORD);
// offset into category area

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Developing Palm OS Conduits 95

 retval = CBaseDTLinkConverter::ExtractCategories
(pBuff, wTemp, catMgr);

}
return(retval);

}

CBaseDTLinkConverter Functions You May
Override
A class derived from CBaseDTLinkConverter can optionally override
these virtual member functions.

virtual long ConvertPositionMap(
CPositionInfo &rInfo);

The routine ConvertPositionMap does perform some processing by
default.

It runs through the record ID’s and flips the DWords to Intel format.

virtual void SynchronizeAppInfoBlock(
CDbGenInfo& dbInfo,
CBaseTable& rTable,
eSyncTypes syncType,
eFirstSync firstSync)

This routine does nothing but is available in case a conduit is aware of cus-
tom information stored in the AppInfoBlock by an application residing
on the device; in effect any information except the categories, which are
handled separately.

CBaseDTLinkConverter Utility Member Functions

The following member functions are available for all subclasses of
CBaseDTLinkConverter. They help you deal with date formats arriv-
ing from the Palm OS device. They also help you deal with two and four
byte integer values that exist in Motorola format on the device and must be
flipped to Intel format on the PC. Other utility functions to assist in strip-

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

96 Developing Palm OS Conduits

ping and adding carriage returns into text fields, and extracting category
strings and IDs.

long ConvertToTdDate(TdDateType& rTdDate,
TdTimeTyp& rTdTime,
long lDate);

long ConvertFromTdDate (TdDateType& rTdDate,
 TdTimeType& rTdTime,

long& rDate);

unsigned long SwapDWordToMotor(unsigned long);

unsigned long SwapDWordToIntel (unsigned long);

unsigned short FlipWord (unsigned short);

int StripCRs (TCHAR* pDest, TCHAR* Src, int len);

long AddCRs (TCHAR* pSrc, int len);

long ExtractCategories(char *catLabelsPtr,
short dirtyCats,
CCategoryMgr* catMgr);

long ReplaceCategories(char *catLabelsPtr,

Implementing a Conduit
Creating a CBaseTable Subclass

Developing Palm OS Conduits 97

CCategoryMgr* catMgr);

Creating a CBaseTable Subclass
The information the conduit uses to synchronize an application on the de-
vice with one on the PC is stored in two table objects, which must both be
instances of CBaseTable or one of its subclasses. The tables are used as
follows:

• The conduit loads all locally stored records of an application in an
instance that’s the m_LocRealTable data member of CBase-
Monitor.

• The conduit then retrieves remote records, one at a time and stores
them in the instance that’s the m_RemRealTable data member of
CBaseMonitor. It compares each record with the record that has
the same recordID (record IDs are assigned by the device).

• Most applications also provide a backup table that is used during
SlowSync operations.

• If an application allows users to archive records that they deleted on
the device, it also has to provide an archive table. The four native
application allow users to do this.

If you have decided to use the native synchronization logic, the work you
must do with the tables is actually rather limited. However, because it’s
useful you both understand what you must do and why you must do it, this
section actually discusses this topic from both points of view:

• How to Set Up Tables provides step by step instructions for setting
up the tables.

• More About Tables provides more detailed information about what
the tables do, including some code examples from the ToDo appli-
cation.

How to Set Up Tables
This section explains what an application needs to do to synchronize
records and categories appropriately using the native synchronization logic.

The process differs slightly depending on the application; see the source
code of the four native applications for examples of similar but different
setups. The examples in this section come mostly from the ToDo conduit

Implementing a Conduit
Creating a CBaseTable Subclass

98 Developing Palm OS Conduits

because its records are more complex than those of the address book used
in previous sections.

To use the native synchronization logic, you need to do the following:

1. Create a subclass of CBaseTable. This class is the “glue” that
holds all things together; some of the information it needs is in the
classes associated with it (which you create in the steps below).

– Create a subclass of CBaseTable with an appropriate con-
structor and destructor.

– Override the virtual function AppendDuplicateRecord.
The function lets each record work on all its fields; it takes care
of the details of copying from one record to a new record. See
AppendDuplicateRecord function from ToDo base table.

– If your application requires specialized sorting, optionally over-
ride AppendBlankRecord.

Note that you don’t have to override the standard OpenFrom and
SaveTo functions; the functions use the information in your sub-
class of CBaseSchema to determine how to write the data in and
out.

2. Create a subclass of CBaseSchema with an appropriate construc-
tor and destructor and override the DiscoverSchema virtual
function. (see DiscoverSchema function from CToDoSchema)
The schema is a template of the record, the table uses that informa-
tion when synchronizing the record.

3. Create a subclass of CBaseRecord
This subclass needs to have one virtual function for each applica-
tion-specific field of the record. For example, for records in the
ToDo PIM, functions SetDescription, SetDueDate, Set-
Completed, SetPriority, and so on are provided. The record
inherits the fields Status, RecordID and Category ID, so your sub-
class does not need to take care of them (see DiscoverSchema func-
tion from CToDoSchema)
Note that if the record class and the schema class don’t agree on the
fields in your records, problems will result.

4. Create a subclass of CBaseIterator
The iterator class contains behavior for sorting and finding things;
functions that apply to all records at once, for example, sorting by
field. You must override its virtual functions with functions that call
the same function in the base class. You may also decide to add

Implementing a Conduit
Creating a CBaseTable Subclass

Developing Palm OS Conduits 99

functions to your class that perform special actions, for example,
sorting by priority.

More About Tables
This section provides more detailed information about the classes that
allow CBaseMonitor to synchronize your database and its records. For
each class, you learn about the functions you must override, likely or re-
quired additions, and some information about the inherited behavior as ap-
propriate. Code examples from the ToDo conduit are included.

You learn about these classes:

• CBaseTable Class

• CBaseIterator Class

• CBaseSchema Class

• CBaseRecord Class

Note that all table classes can take advantage of a lot of prepackaged func-
tionality provided in bfields.h. This includes the ability to sign things, dif-
ferent operators, and functionality that helps with serializing fields. For
example, if you tell a field to serialize itself, it knows how to do it. When
you define something as an integer field, you get a lot of functionality with
it.

CBaseTable Class

A conduit using the native synchronization logic uses four table instances
while it’s executing: local table, remote table, archive table, and backup
table (SlowSync only). Each table has to be an instance of the same sub-
class of CBaseTable.

From CBaseTable, the table inherits some behavior as well as places to
store pointers to the schema, record, and iterator objects. These objects
contain some of the application-specific record information and are dis-
cussed below.

CBaseTable is defined in basetable.h

The only virtual function you must override in CBaseTable is
AppendDuplicateRecord. Here’s an example from the ToDo conduit.

Implementing a Conduit
Creating a CBaseTable Subclass

100 Developing Palm OS Conduits

Listing 5.9 AppendDuplicateRecord function from ToDo base table.

//
// Function: AppendDuplicateRecord()
//
// Description: Appends a new blank record then fills it with
// the passed parameter 'rFromRec'.
//
// Allows a new set of fields (a row) to be added
// to table object. The set of fields comprises one
// full record, and initially each has blank data
// Next the passed in record object is used as a
// source of fields whose values are duplicated in
// the newly appended 'blank' set of fields.
//
// *Note* Generally only called from the ConduitMonitor /
/ object during synchronization procedures.
//
// Parameters:
// rFrom - Record object to copy data from
// rTo - Ends up positioned at the new row of fields

in the table
// bAllFlds - If true replicates ALL fields including **RecordID*
// - If false does *not* duplicate the recordId or Status
//
// Returns: 0 - Success
//
long CToDoTable::AppendDuplicateRecord(CBaseRecord& rFrom,
 CBaseRecord& rTo, BOOL
bAllFlds)
{

int tempInt;
CString tempStr;
long tempLong, len, retval = -1;

CToDoRecord& rFromRec = (CToDoRecord&)rFrom;
CToDoRecord& rToRec = (CToDoRecord&)rTo;

Implementing a Conduit
Creating a CBaseTable Subclass

Developing Palm OS Conduits 101

//
// Source record must be positioned at valid data.
//
if (rFromRec.m_Positioned)
{

if (!CBaseTable::AppendBlankRecord(rToRec))
{

if (bAllFlds)
{
if (!rFromRec.GetRecordId(tempInt))
 retval = rToRec.SetRecordId(tempInt);

if (!(retval = rFromRec.GetStatus(tempInt)))
retval = rToRec.SetStatus(tempInt);

 retval = rToRec.SetArchiveBit(rFromRec.IsArchived());
}
if (!retval && !rFromRec.GetDescription(tempStr))
retval = rToRec.SetDescription (tempStr);

if (!retval && !rFromRec.GetDueDate(tempLong))
retval = rToRec.SetDueDate(tempLong);

if (!retval)
retval = rToRec.SetCompleted(rFromRec.IsCompleted());

if (!retval && !rFromRec.GetPriority(tempInt))
retval = rToRec.SetPriority(tempInt);

if (!retval)
retval = rToRec.SetPrivate(rFromRec.IsPrivate());

if (!retval && !rFromRec.GetCategoryId(tempInt))
retval = rToRec.SetCategoryId(tempInt);

if (!retval)
{
rFromRec.GetNote(tempStr);

Implementing a Conduit
Creating a CBaseTable Subclass

102 Developing Palm OS Conduits

len = tempStr.GetLength();
if (len > 0)

retval = rToRec.SetNote(tempStr);
}

}
}
return(retval);

}

The table class relies on a schema, record, and iterator object for informa-
tion about the records your conduit synchronizes. You therefore must create
subclasses of CBaseSchema, CBaseRecord, and CBaseIterator,
discussed in the next three sections.

CBaseRecord Class

The CBaseRecord class is one of the places where information about your
records is stored.

This information is actually made known to the system in several ways:

• FieldIDs provide the ID for each field in your conduit’s header file.
Here’s a partial example from tdtable.h, which defines the To Do
table class:

#define tdFLDRecordID 0
#define tdFLDStatus 1
#define tdFLDPosition 2
#define tdFLDDesc 3
#define tdFLDDueDate 4

• A DiscoverSchema function you must supply inside your
schema subclass that defines the template of the record (see Discov-
erSchema function from CToDoSchema).

• A virtual set and a virtual get function for each record, for example,
SetDescription and GetDescription or SetDueDate
and GetDueDate. Each function fills in the corresponding record
using the information in the schema.
The MODFILTER_STUPID flag set by this function sets the record
dirty whenever it’s touched. This is usually recommended.

Implementing a Conduit
Creating a CBaseTable Subclass

Developing Palm OS Conduits 103

Here’s an example of the SetDescription function from the
ToDo record.

Listing 5.10 SetDescription function in CToDoRecord

long CToDoRecord::SetDescription(CString& rDesc)
{

BOOL autoFlip = FALSE;
int currStatus = 0;
long retval = DERR_RECORD_NOT_POSITIONED;

CStringField* pFld = NULL;

if (m_Positioned && (pFld = (CStringField*)
m_Fields.GetAt(tdFLDDesc)))

{
if (m_wModAction == MODFILTER_STUPID)
{
GetStatus(currStatus);
if (currStatus != fldStatusADD)
{
CStringField tmpFld(rDesc);
if (pFld->Compare(&tmpFld))
autoFlip = TRUE;

}
}
if (!pFld->SetValue(rDesc)) // Set new field value
{

if (autoFlip)
SetStatus(fldStatusUPDATE);

retval = 0;
}

}
return(retval);

}

Implementing a Conduit
Creating a CBaseTable Subclass

104 Developing Palm OS Conduits

CBaseSchema Class

The Schema class contains information the record object uses inside the
SetDescription function to set up the record. Here’s an example from the
ToDo conduit:

Listing 5.11 DiscoverSchema function from CToDoSchema

long CToDoSchema::DiscoverSchema(void)
{

m_FieldsPerRow = 10;
m_FieldTypes.SetSize(m_FieldsPerRow);
m_FieldTypes.SetAt(tdFLDRecordID, (WORD)eInteger);
m_FieldTypes.SetAt(tdFLDStatus, (WORD)eInteger);
m_FieldTypes.SetAt(tdFLDPosition, (WORD)eInteger);
m_FieldTypes.SetAt(tdFLDDesc, (WORD)eString);
m_FieldTypes.SetAt(tdFLDDueDate, (WORD)eDate);
m_FieldTypes.SetAt(tdFLDCompleted, (WORD)eBool);
m_FieldTypes.SetAt(tdFLDPriority, (WORD)eInteger);
m_FieldTypes.SetAt(tdFLDPrivate, (WORD)eBool);
m_FieldTypes.SetAt(tdFLDCategoryID, (WORD)eInteger);
m_FieldTypes.SetAt(tdFLDNote, (WORD)eString);

// Be sure to set the 3 common fields' position
m_RecordIdPos = tdFLDRecordID;
m_RecordStatusPos = tdFLDStatus;
m_CategoryIdPos = tdFLDCategoryID;
m_PlacementPos = tdFLDPosition;

return(0);
}

 CBaseIterator Class

The CBaseIterator class holds functions that perform actions on all
records, such as searching and sorting them. Here’s how the class is defined
at the top level:

Implementing a Conduit
Considering Category Manager Modifications

Developing Palm OS Conduits 105

Listing 5.12 CBaseIterator Class

class TABLES_DECL CBaseIterator
{
public:

 CBaseIterator (CBaseTable&);
 ~CBaseIterator ();

long UnSort (void);
long SortByRecordId (void);
long SortByRecordStatus (void);
long SortByCatId (void);
long SortByPlacementField (void);
long FindFirst (CBaseRecord&,
 BOOL skipDels = TRUE);

 long FindNext (CBaseRecord&,
 BOOL skipDels = TRUE);
long FindByRecordId (int nRecId, CBaseRecord&,
 BOOL skipDels = TRUE);
long FindByCatId (int nCatId, CBaseRecord&,
 BOOL skipDels = TRUE);
long FindByPlacementField (int nPlaceKey, CBaseRecord&,
 BOOL skipDels = TRUE);

long GetAt (CBaseRecord&, long lRowOffset);
long GetCurrentRowPosition(long& rCurrRowOffset);

//long SetTableDirty (void); // Flips m_ValidTable to FALSE
};

Considering Category Manager Modifications
Categories are “buckets” in the database to which records are assigned;
they include, for example, Business and Personal or other, user-defined cat-
egories. The native applications always synchronize categories first; this is

Implementing a Conduit
Considering Category Manager Modifications

106 Developing Palm OS Conduits

done by BaseMonitor standard logic inside FastSync. After categories are
set up, records are synchronized.

NOTE: Many developers find they can use the native category be-
havior as is.

There are several restrictions on using categories:

• The maximum number of categories is 16 (Palm OS device and
desktop combined). This includes the category unfiled.

• By default, each category has an index, an ID, and a name.

• Category IDs are assigned on the device

The category manager is actually part of the tables library. The category
manager knows how to add, delete, and rename categories. It knows about
the categories’ Index, ID, Name, and FileName.

In effect, the category manager knows how to find categories and serialize
them in and out.

Listing 5.13 CategoryManager Class

class TABLES_DECL CCategoryMgr : public CObject
{

DECLARE_SERIAL(CCategoryMgr)

public:

CCategoryMgr();
~CCategoryMgr();

void DeleteAllCategories(BOOL bNailUnfiled = TRUE);

CatError GenFileName (CString& csFileName, CString& csCatName);
int GetFreeIndex ();
int GetNextAddID ();

CatError Add(CCategory* pCategory);
CatError Delete(int nIndex);
CatError Rename(int nIndex, CString& csName);

Implementing a Conduit
Considering Category Manager Modifications

Developing Palm OS Conduits 107

CatError FindFirst(CCategory*& pCategory);
CatError FindNext(CCategory*& pCategory);
CatError FindName(CString& csName, CCategory*& pCategory);
CatError FindIndex(int nIndex, CCategory*& pCategory);
CatError FindID(int nID, CCategory*& pCategory);

int GetCount()
{ return (m_Categories.IsEmpty() ? 0 :

m_Categories.GetCount()); }

virtual void Serialize(CArchive& archive);
};

In most cases, no modifications to category behavior are required. If you do
decide you need specialized category management, you have several op-
tions:

• Use the link converter to have categories correspond to the format
expected by the native synchronization logic.

• Ignore categories altogether.

• Create a subclass of the CategoryManager class an provide virtual
functions or data members to work with your categories.

Implementing a Conduit
Considering Category Manager Modifications

108 Developing Palm OS Conduits

Developing Palm OS Conduits 109

6
SyncManager
Function Calls
This chapter lists all SyncManager function calls, organized as follows:

• Session-Oriented Calls

• File-Oriented Calls

• Record-Oriented Calls

• Utility Calls

A complete list of error codes is provided in Error Codes.

Session-Oriented Calls
The session-oriented API consists of two calls.

• SyncRegisterConduit

• SyncUnRegisterConduit

SyncRegisterConduit

Purpose Check whether a conduit is registered. If it isn’t, the conduit is registered
internally by the HotSync manager.

Prototype long SyncRegisterConduit (CONDHANDLE &)

Parameters CONDHANDLE Reference to CONDHANDLE that is
populated.

Result SYNCERR_NONE
SYNCERR_COMM_NOT_INIT
SYNCERR_REMOTE_CANCEL_SYNC

SyncManager Function Calls
File-Oriented Calls

110 Developing Palm OS Conduits

Description This routine is called when a conduit DLL first begins its synchronization
activities. It has to be called by every conduit to prepare the device for syn-
chronization. If the conduit doesn’t make this call, synchronization cannot
take place.

SyncUnRegisterConduit

Purpose Unregister a conduit.

Prototype long SyncUnRegisterConduit (CONDHANDLE)

Parameters CONDHANDLE Conduit handle received from a
SyncRegisterConduit call.

Result SYNCERR_NONE
SYNCERR_COMM_NOT_INIT

Description This call allows the device to clean up memory and resources following
synchronization.

File-Oriented Calls
The file-oriented function calls provide file manipulation of the databases
on the device.

All remote databases exist on a memory card. In the first Pilot release, only
one memory card is present on the device, referred to as card #0. A memory
card may store databases in one of two areas, either RAM or ROM. When
opening or creating a remote database, it is necessary to indicate which of
the memory cards the database is to reside upon.

The figure below illustrates the layout of a remote Pilot database. It is not
necessary to know this layout, however it does show the components that
can be manipulated by the file-oriented API.

SyncManager Function Calls
File-Oriented Calls

Developing Palm OS Conduits 111

Figure 6.1 Remote Database Layout

The AppInfoBlock and SortInfoBlock are variable-length blocks of
information that a caller can read/write to the database. For the four built-in
Pilot applications, the AppInfoBlock contains the list of 16 category strings
which are associated with a database. Currently the SortInfoBlock is un-
used by the built-in applications, however if a new database is created on
the device, the caller may store whatever they wish in this variable length
block. The figure also illustrates the fixed portion of data records contain-
ing the unique record ID (assigned by the Pilot operating system), the cate-
gory ID, and an attributes byte, signifying the status of the individual
record (Add/Modify/Delete). Records that are deleted through the API
SyncDeleteRecord(), are actually only marked for deletion, where the at-
tribute byte has a single bit set to indicate the record is deleted. To actually
remove the physical space from the database which the (deleted) record oc-
cupies, the API SyncPurgeDeletedRecs() must be called.

The file-oriented API includes these calls:

• SyncCloseDB

• SyncCreateDB

• SyncDeleteDB

• SyncOpenDB

Database Name

Number of Records

Last Sync Date

AppInfo Block *p

SortInfo Block *p

File Header

Data Records

UniqueID1

UniqueID2

Cat

Cat

Attribs

Attribs

*p

*p

Remaining Records...

AppInfo (Categories)

Sorting Information

Record Body

Record Body

SyncManager Function Calls
File-Oriented Calls

112 Developing Palm OS Conduits

• SyncReadDBAppInfoBlock

• SyncReadDBSortInfoBlock

• SyncResetSyncFlags

• SyncWriteDBAppInfoBlock

• SyncWriteDBSortInfoBlock

SyncCloseDB

Purpose Close the currently open database on the device

Prototype long SyncCloseDB (BYTE fHandle)

Parameters fHandle Database file handle from an open or create call.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN

SyncCreateDB

Purpose Create a new database on the Palm OS device.

Prototype long SyncCreateDB (CDbCreateDB& rDbStats)

Parameters rDbStats Reference to a CDbCreateDB structure (see
Description).

Result SYNCERR_NONE,
SYNCERR_FILE_ALREADY_EXISTS
 SYNCERR_FILE_TOO_MANY_FILES
SYNCERR_REMOTE_BAD_ARG

Description Creates a new database on the Palm OS device with the name specified in
the CDbCreateDB structure.

class CDbCreateDB
{
public:
BYTE m_FileHandle;

SyncManager Function Calls
File-Oriented Calls

Developing Palm OS Conduits 113

// Upon return gets filled in by SyncMgr.Dll
DWORD m_Creator;

// Supplied by caller, obtained from DbList
eDbFlags m_Flags;

// Supplied by caller, Res/Rec/RAM
BYTE m_CardNo;

// Supplied by caller, target card #
char m_Name[DB_NAMELEN];

// Supplied by caller, target DBase Name
DWORD m_Type;

// for example sysFileTApplication
WORD m_Version;

};

Upon success, the structure member m_FileHandle contains a valid file
handle to access the new remote database. When finished using this new
handle, the application has to call SyncCloseDB to close the handle.

Before calling this function, you have to fill out some of the structure mem-
bers which influence the newly created database.

• The m_Flags member may contain either of the following eDb-
Flags values:

– eRecord indicates a record-oriented database (holding data
records)

– eResource indicates a resource-oriented database (usually
storing code).

• The structure member m_Type must contain the hexadecimal val-
ues for the characters that indicate the type of the database being
created, for example:

– sysFileTApplication contains application resources such
as executable code.

– other values are defined by the application and must be mixed
case or upper case four-byte values.

SyncDeleteDB

Purpose Delete a database

SyncManager Function Calls
File-Oriented Calls

114 Developing Palm OS Conduits

Prototype long SyncDeleteDB (char* pName, int nCardNum)

Parameters Name Name of database to remove (must be closed).

CardNum Number of card where database resides.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_FOUND
SYNCERR_FILE_OPEN

Description Instructs the Palm OS device to delete the named database from its storage
on the specified card number. The database must be closed (not in use).

SyncOpenDB

Purpose Open a database on the Palm OS device.

Prototype long SyncOpenDB (char* pName,
int nCardNum,
BYTE& rHandle,
BYTE openMode)

Parameters pname Name of remote database to open (contained in
CSyncProperties structure).

cardNum Number of memory card on which the
CSyncProperties structure resides
(currently, only 0 is supported).

rHandle Reference to a BYTE that receives the open file handle.

mode Bit flag that can be a combination of eDbWrite,
eDbRead, and eDbExclusive. In eDbExclusive
mode, no user can access the file.

(XX doc also has eDbShowSecretXX)

Result SYNCERR_NONE
SYNCERR_FILE_NOT_FOUND
SYNCERR_FILE_NOT_OPEN
SYNCERR_FILE_OPEN

SyncManager Function Calls
File-Oriented Calls

Developing Palm OS Conduits 115

Description Opens a database on the Palm OS device for read/write/exclusive access.
The name of the database to open is provided to the conduit as part of the
CSyncProperties structure. Upon successful return, rHandle will
contain a numeric file handle that should be used in all subsequent file I/O
operations.

SyncReadDBAppInfoBlock

Purpose Locate and retrieve information.

Prototype long SyncReadDBAppInfoBlock (BYTE fHandle,
CDbGenInfo &rDbInfo)

Parameters fHandle Open valid file handle.

rDbInfo Reference to a CDbGenInfoStructure to receive
information.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEMES

Description The AppInfoBlock is a generalized way for a Palm OS device application
to store application-specific information in a database. This call instructs
the Palm OS device to locate and retrieve the information stores it in the
passed CDbGenInfo structure.

class CDbGenInfocode {
public:

// Name of remote database file
char m_FileName[DB_NAMELEN];

//Length of m_pBytes buffer
allocated by the caller.

WORD m_TotalBytes;
// Byte length of 'pBytes'

WORD m_BytesRead;
// Inbound byte count

BYTE * m_pBytes;

SyncManager Function Calls
File-Oriented Calls

116 Developing Palm OS Conduits

};

The calling client conduit library must allocate enough memory in the gen-
eral data area to hold the information returned.

If the m_BytesRead value is > m_TotalBytes, then m_pBytes has not been
touched. The caller should reallocate m_pBytes to be at least m_BytesRead
and make the call again.

If m_BytesRead <= m_TotalBytes then it is the total number of bytes read
into m_pBytes.

It is in place to facilitate trading of database-specific information which
may assist in the synchronization process. Enough memory (less than 1K)
must be preallocated on the incoming pointer by the calling conduit library
to hold the response data returned by the devise (and placed in the
m_pBytes member).

The built-in applications on the device store categories in AppInfoB-
lock. See the Developing Palm OS Applications documentation set for
more information.

SyncReadDBSortInfoBlock

Purpose Read database information from the device.

Prototype long SyncReadDBSortInfoBlock(BYTE fHandle,
CDbGenInfo &rDbInfo)

Parameters fHandle Database file handle from an open or create call.

rDbInfo Reference to a CDbGenInfoStructure to receive
remote sort information.

Result SYNCERR_NONE
 SYNCERR_FILE_NOT_OPEN
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEME

Description This function lets you read database information from the device, storing it
in the CDbGenInfocode class.

SyncManager Function Calls
File-Oriented Calls

Developing Palm OS Conduits 117

class CDbGenInfocode {
public:
char m_FileName[DB_NAMELEN];

// Name of remote database file
??header conflict: NOT USE in doc

WORD m_TotalBytes;
// Byte length of 'pBytes'

WORD m_BytesRead;
// Inbound byte count

BYTE * m_pBytes;
};

The calling client conduit library must preallocate enough memory onto
the member m_pBytes to hold the incoming reply data. Upon return, the
member m_BytesRead holds the number of bytes actually transferred to
the m_pBytes buffer.

This function provides a way to exchange a block of information attached
to a database on the device. This function is not required; conduits may or
may not use it.

SyncResetSyncFlags

Purpose Reset flags of all open database records that is, clear dirty and archived
flags for the whole database.

Prototype long SyncResetSyncFlags (BYTE fHandle)

Parameters fHandle Database file handle from an open or create call.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN.

Description Instructs the Palm OS device to scan all the records of the open database
and clears dirty and archived flags. This may or may not be applicable for
every conduit.

Applications typically call this function before closing the database.

SyncManager Function Calls
File-Oriented Calls

118 Developing Palm OS Conduits

SyncWriteDBAppInfoBlock

Purpose Write information to the device.

Prototype long SyncWriteDBAppInfoBlock (BYTE fHandle,
CDbGenInfo rDbInfo)

Parameters fHandle Database file handle from an open or create call.

rDbInfo Reference to a CDbGenInfoStructure for a remote
write.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEME.

Description Instructs the device to write the information in the passed structure to the
device’s permanent storage associated with the open file handle.

class CDbGenInfocode {
public:
char m_FileName[DB_NAMELEN];

// Name of remote database file
??header conflict: NOT USE in doc

WORD m_TotalBytes;
// Byte length of 'pBytes'

WORD m_BytesRead;
// Inbound byte count

BYTE * m_pBytes;
};

The structure member m_TotalBytes should contain the number of
bytes within the m_pBytes buffer to actually write to the device.

SyncWriteDBSortInfoBlock

Purpose Write information to the device.

SyncManager Function Calls
Record-Oriented Calls

Developing Palm OS Conduits 119

Prototype long SyncWriteDBSortInfoBlock (BYTE fHandle,
CdBGenInfo *pDbInfo)

Parameters fHandle Database file handle from an open or create call.

rDbInfo Reference to a CDbGenInfo structure containing
remote sort information.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEM

Description Instruct the device to write the information stored in the passed structure to
the device’s permanent storage associated with the open file handle. The
structure member m_TotalBytes should contain the number of bytes
within the m_pBytes buffer to actually write to the device.

class CDbGenInfocode {
public:
char m_FileName[DB_NAMELEN];

// Name of remote database file
??header conflict: NOT USE in doc

WORD m_TotalBytes;
// Byte length of 'pBytes'

WORD m_BytesRead;
// Inbound byte count

BYTE * m_pBytes;
};

Record-Oriented Calls
The record-oriented APIs are used to pass the representation of a record
(which resides in a database file) between the PC and Pilot. Because one
primary purpose of the SyncManager.DlL is to act as a ??shipping chan-
nel?? for byte traffic to the device, there is a need for a generic definition of
a structure which should handle any record format. This structure then be-
comes a parameter in these record-oriented APIs.

For reading records, three different APIs are provided, allowing for:

SyncManager Function Calls
Record-Oriented Calls

120 Developing Palm OS Conduits

• Sequential location of the next modified record via
SyncReadNextModifiedRec

• Exact record lookup via SyncReadRecordById

• Top to bottom iteration via SyncReadRecordByIndex

The same CRawRecordInfo structure is used in all three APIs. However,
different structure fields are used by each call. If a field is commented
“Filled in by Pilot,” the device supplies the data for it.

The record-oriented API provides these calls:

• SyncDeleteAllResourceRec

• SyncDeleteRecord

• SyncDeleteResourceRec

• SyncGetDBRecordCount

• SyncPurgeAllRecs

• SyncReadNextModifiedRec

• SyncReadRecordById

• SyncReadRecordByIndex

• SyncReadResRecordByIndex

• SyncWriteRec

• SyncWriteResourceRec

SyncDeleteAllResourceRec

Purpose Delete all resource records from the currently open database on the device.

Prototype long SyncDeleteAllResourceRec (BYTE fHandle)

Parameters fHandle Database file handle from an open or create call.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_ROM_BASED
SYNCERR_READ_ONLY.

Description This routine instructs the device to delete all resource records from the cur-
rently open resource database. Use this routine on a remote database con-

SyncManager Function Calls
Record-Oriented Calls

Developing Palm OS Conduits 121

sisting of resource type records. These records generally consist of code
resources, such as an executable program that runs on the device.

SyncDeleteRecord

Purpose Delete a specified record on the device.

Prototype long SyncDeleteRecord (CRawRecordINfo &rRec)

Parameters rRec Reference to incoming CRawRecordInfo structure.

Result SYNCERR_NONE, SYNCERR_COM_NOT_INIT,
SYNCERR_FILE_NOT_OPEN, SYNCERR_RECORD_BUSY,
SYNCERR_FILE_NOT_FOUND, SYNCERR_ROM_BASED,
SYNCERR_READ_ONLY.

Description Instructs the device to delete the record specified in the structure member
m_RecId in the open database.

SyncDeleteResourceRec

Purpose Delete the passed resource on the device.

Prototype long SyncDeleteResourceRec (CRawRecordINfo rRec)

Parameters rRec Reference to incoming cRawRecordInfo structure.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_FILE_NOT_FOUND
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEM

Description This routine instructs the device to delete resource identified by its unique
ID (passed in the structure member m_RecIndex) from the open data-
base. It is not necessary to allocate memory or fill out any structure mem-
bers other than the first three.

SyncManager Function Calls
Record-Oriented Calls

122 Developing Palm OS Conduits

Use this routine on a remote database consisting of resource type records.
These records typically consist of code resources such as executable pro-
grams which run on the device.

SyncGetDBRecordCount

Purpose Obtain total record count from currently open device database.

Prototype long SyncGetDBRecordCount (BYTE fHandle,
Word &rCount)

Parameters fHandle Database file handle from an open or create call.

rCount Reference to a variable to receive the record count.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN

Description This routine obtains the total record count for the currently open database
on the device.

SyncPurgeAllRecs

Purpose Delete all records from currently open database on device, regardless of
status.

Prototype long SyncPurgeAllRecs (BYTE fHandle)

Parameters fHandle Database file handle from an open or create call.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_RECORD_BUSY
SYNCERR_ROM_BASE
 SYNCERR_READ_ONLY

Description This routine instructs the device to delete every record from the currently
open database, regardless of the current status flags.

SyncManager Function Calls
Record-Oriented Calls

Developing Palm OS Conduits 123

SyncPurgeDeletedRecs

Purpose Delete all records marked “deleted” from currently open database on the
device.

Prototype long SyncPurgeDeletedRecs (BYTE fHandle)

Parameters fHandle Database file handle from an open or create call.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_ROM_BASED
SYNCERR_READ_ONLY
SYNCERR_REMOTE_RECS_NOT_PURGED

Description This routine instructs the device to delete all records from the currently
open database that have their status flags set to delete. When the user de-
letes a record on the device, the record is marked for deletion but not actu-
ally removed from the data file. This allows the conduit program on the PC
to delete matching records from the local data file and purge the record
after the PC record has been purged.

SyncReadNextModifiedRec

Purpose Traverse the currently open database on device and return the next modi-
fied record.

Prototype long SyncReadNextModifiedRec (
CRawRecordInfo &rRec)

Parameters rRect Reference to incoming CRawRecordInfo structure.

Result SYNCERR_NONE
SYNCERR_COM_NOT_INIT
 SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND

Description Instructs the Palm OS device to traverse its currently open database and re-
turn the next record it encounters that has been modified since the last syn-
chronization session.

SyncManager Function Calls
Record-Oriented Calls

124 Developing Palm OS Conduits

The caller is expected to have allocated enough memory onto the
m_pBytes pointer of the CRawRecordInfo structure to contain a full
record’s worth of bytes in the reply from the device. The structure member
m_RecSize is provided so the remote device can indicate the exact num-
ber of bytes returned in the reply data.

The CRawRecordInfo structure is defined as follows:

class CRawRecordInfo
{
public:
BYTE m_FileHandle; // Supplied by caller
DWORD m_RecId; // Supplied by caller

(when appropriate)
WORD m_RecIndex; // Supplied by caller

(when appropriate)
BYTE m_Attribs; // Filled in by HH
short m_CatId; // Filled in by HH
int m_ConduitId; // Ignore
DWORD m_RecSize; // Filled in by HH
WORD m_TotalBytes; // Supplied by caller
BYTE * m_pBytes; // Allocated by caller

};

SyncReadRecordById

Purpose Search device database for match on a record.

Prototype long SyncReadRecordById(CRawRecordInfo &rRec)

Parameters rRec Reference to incoming CRawRecordInfo structure.

Result SYNCERR_NONE
SYNCERR_COM_NOT_INIT
SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND

SyncManager Function Calls
Record-Oriented Calls

Developing Palm OS Conduits 125

Description This function can be thought of as a seek and find procedure. The device
searches its currently open database and looks for a match on the unique
record (supplied in the structure member m_RecId). Upon successful exe-
cution of the routine, the structure member m_pBytes contains the raw
record body from the device and the structure member m_RecSize is up-
dated with the length of the returned record body.

SyncReadRecordByIndex

Purpose Traverse Palm OS device database.

Prototype long SyncReadRecordByIndex (CRawRecordInfo &rRec)

Parameters rRec Reference to incoming CRawRecordInfo structure.

Result SYNCERR_NONE, SYNCERR_COM_NOT_INIT,
SYNCERR_FILE_NOT_OPEN, SYNCERR_RECORD_BUSY,
SYNCERR_FILE_NOT_FOUND.

Description By iteratively supplying sequential values to the structure member
m_RecIndex, starting with zero, a conduit can use this function to
traverse a Palm OS device database from top to bottom. The structure
member m_RecIndex can be though of an array offset, in essence access-
ing a specific record in an open database by its relative offset from the be-
ginning of the file.

The device typically traverses its currently open database from the top and
returns the record body located at the m_RecIndex position. Upon suc-
cessful execution of the routine, the structure member m_pBytes will
contain the raw record body from the device and the structure member
m_RecSize is updated with the length of the returned record body.

SyncReadResRecordByIndex

Purpose Traverse the currently open database on the device.

Prototype long SyncReadResRecordByIndex (
CRawRecordInfo &rRec,
BOOL bBody

SyncManager Function Calls
Record-Oriented Calls

126 Developing Palm OS Conduits

Parameters rRec Reference to incoming cRawRecordInfo structure.

bBody Indicates whether to retrieve the record (TRUE) or not
(FALSE). Default is TRUE.

Result SYNCERR_NONE
SYNCERR_COM_NOT_INIT
SYNCERR_FILE_NOT_OPEN
SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEM

Description This routine provides a mechanism to traverse the currently open resource
database on the device from top to bottom. The structure member
m_RecIndex can be thought of as an array offset, in essence accessing a
specific record in an open database by its relative offset from the beginning
of the file. On success, the device returns the record body located at the
m_RecIndex position.

Upon successful execution of this routine, the structure member
m_pBytes will contain the raw record body from the device and the struc-
ture member m_RecSize is updated with the length of the returned record
body. Use this routine on a remote database consisting of resource type
records. These record types generally consist of code resources, such as an
executable program which runs on the device, as well as other types of re-
sources like preferences, images, and so on.

SyncWriteRec

Purpose Instruct the device to write the passed record into the open database.

Prototype long SyncWriteRec (CRawRecordInfo &rRec)

Parameters rRec Reference to incoming cRawRecordInfo structure.

Result SYNCERR_NONE
SYNCERR_COM_NOT_INIT
SYNCERR_FILE_NOT_OPEN
SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND

SyncManager Function Calls
Record-Oriented Calls

Developing Palm OS Conduits 127

SYNCERR_ROM_BASED
SSYNCERR_READ_ONLY

Description Instructs the device to write the passed record into the open database. The
caller must supply either a valid record ID in the member m_RecId or place
zero in this member. This instructs the device to append the record as a new
record to the open database. The record body is placed in the memory on
the pointer m_pBytes and should be formatted to match the record layout
in the open database on the device.

SyncWriteResourceRec

Purpose Write the passed resource into the open database.

Prototype long SyncWriteResourceRec (CRawRecordInfo rRec)

Parameters rRec Reference to incoming CRawRecordInfo structure.

Result SYNCERR_NONE
SYNCERR_COM_NOT_INIT
SYNCERR_FILE_NOT_OPEN
SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND
SYNCERR_ROM_BASED
SYNCERR_READ_ONLY
SYNCERR_REMOTESYS
SYNCERR_REMOTE_MEM

Description This routine instructs the device to write the resource passed in the struc-
ture member m_RecId into the open database. The record body contained
in the memory on the pointer m_pBytes is sent as is and should be for-
matted to match the resource record layout in the currently open database
on the device.

Use this routine on a remote database consisting of resource type records.
These records typically consist of code resources, such as an executable
program which runs on the device, as well as other types of resource like
images or preferences.

SyncManager Function Calls
Utility Calls

128 Developing Palm OS Conduits

Utility Calls
The calls provided by the utility API retrieve information on how the re-
mote device is configured. There is also a function that lets the caller obtain
the list of files present on any of the memory cards currently present in the
device. The API consists of these calls:

• SyncReadDBList

• SyncReadSingleCardInfo

• SyncReadSystemInfo

SyncReadDBList

Purpose Retrieve information about list of databases on Palm OS device.

Prototype long SyncReadDBList (BYTE cardNo,
WORD startIX,
BOOL bRam,
CDbList* pList,
int& rCnt);

Parameters ->cardNo Number of card to search on Palm OS device.

->startIx Beginning offset of list to search (0-based)

->bRam If TRUE, search RAM, otherwise search ROM.

<-pList Preallocated memory to be filled.

<-rCnt Number of database entries returned.

Result SYNCERR_NONE
SYNCERR_FILE_NOT_FOUND
SYNCERR_COMM_NOT_INIT
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEM

Description This function allows the caller to discover a list of all the databases (both
data and program) that reside on a memory card within the Palm OS de-
vice. This is analogous to a directory listing on a PC; the result contains
both data files and program files.

SyncManager Function Calls
Utility Calls

Developing Palm OS Conduits 129

The pList parameter contains an array of the following structure:

class CDbList
{
public:
int m_CardNum;
WORD m_DbFlags;

// contains Res/Record/Backup/ReadOnly
DWORD m_DbType;
char m_Name[DB_NAMELEN];
DWORD m_Creator;
WORD m_Version;
DWORD m_ModNumber;
WORD m_Index;
long m_CreateDate;
long m_ModDate;
long m_BackupDate;
BOOL m_bReadOnly;
long m_RecCount;
long m_ModRecCount;

};

SyncReadSingleCardInfo

Purpose Retrieve information about the specified memory card.

Prototype long SyncReadSingleCardInfo (CardInfo &rInfo)

Parameters rInfo Reference to incoming CardInfo structure.

Result SYNCERR_NONE
SYNCERR_COMM_NOT_INIT
SYNCERR_REMOTE_SYS

Description Retrieves information about a memory card. Memory card numbers on the
device start at zero. The caller must fill out the first member of the structure
mCardNo with the number of the memory card it wants to gather data

SyncManager Function Calls
Utility Calls

130 Developing Palm OS Conduits

about (currently, only 0 is supported). When the call returns, the remaining
structure members are filled with data.

class CCardInfo
{
public:
BYTE m_CardNo;
WORD m_CardVersion;
long m_CreateDate;
DWORD m_RomSize;
DWORD m_RamSize;
DWORD m_FreeRam;
BYTE m_CardNameLen;
BYTE m_ManufNameLen;
char m_CardName[REMOTE_CARDNAMELEN];
char m_ManufName[REMOTE_MANUFNAMELEN];

SyncReadSystemInfo

Purpose Retrieve information from the Palm OS device.

Prototype long SyncReadSystemInfo (CSystemInfo &rInfo)

Parameters rInfo Reference to an incoming CSystemInfo structure.

Result SYNCERR_NONE
SYNCERR_COMM_NOT_INIT
SYNCERR_REMOTE_SYS
SYNCERR_LOCAL_BUFF_TOO_SMALL.

Description Instructs the Palm OS device to populate the passed CSystemInfo struc-
ture:

class CSystemInfo
{
public:
DWORD m_RomSoftVersion;

SyncManager Function Calls
Utility Calls

Developing Palm OS Conduits 131

// Upon return is filled in
DWORD m_LocalId;

// Upon return is filled in
BYTE m_ProdIdLength;

// Upon return is filled in (actual len)
BYTE m_AllocedLen;

// Supplied by caller
BYTE* m_ProductIdText;

// Allocated by caller
};

The information includes the revision level of the ROM software, the ID of
the device, a string buffer containing product text information. the caller
must preallocate memory on the m_productIdText pointer before call-
ing this routine, and initialize the m_AlloceedLen member with the size
of memory preallocated. If not enough memory (or none at all) is preallo-
cated, the function returns with error
SYNCERR_LOCAL_BUFF_TOO_SMALL

SyncManager Function Calls
Utility Calls

132 Developing Palm OS Conduits

Developing Palm OS Conduits 133

7
Error Codes

SyncManager Return Codes
SyncManager return codes begin with the hexadecimal value 0x4000 and are returned as long
(four byte) values from each of the public function calls. See also SyncMgr.h.
SyncManager return codes are as follows:

Return Code Meaning

SYNCERR_NONE 0x000 Function completed successfully.

SYNCERR_FILE_NOT_FOUND 0x4003 Database filename could not be found on the
Palm OS device.

SYNCERR_FILE_NOT_OPEN 0x4004 Database on the Palm OS device is not cur-
rently open, or the handle value is invalid.

SYNCERR_FILE_OPEN 0x4004 Database already open. Cannot be reopened
in the current mode.

SYNCERR_RECORD_BUSY 0x4006 Write or delete operation could not be per-
formed on the specified record ID because
Palm OS device is already using the record.
File is busy or another process is accessing
it.

SYNCERR_RECORD_DELETED 0x4007 Could not read or update the record because
it not longer exists.

SYNCERR_ROM_BASED 0x4008 Writing a ROM-based database is not al-
lowed.

SYNCERR_READ_ONLY 0x4009 Writing to a read-only database is not al-
lowed.

Error Codes
SyncManager Fatal Return Codes

134 Developing Palm OS Conduits

SyncManager Fatal Return Codes
For fatal return codes, the high bit of the long value is set, which indicates that the syn-
chronization session has already been halted or is in such a misaligned state that no fur-

SYNCERR_COM_NOT_INIT 0x0A Failed to create a valid internal communica-
tions object.

SYNCERR_FILE_ALREADY_EXISTS Cannot create the specified database. The
file already exists on the Palm OS device.

SYNCERR_FILE_ALREADY_OPEN Cannot create the specified database. The
database is currently open.

SYNCERR_NO_FILES_OPEN Protocol error.

SYNCERR_BAD_OPERATION Protocol error.

SYNCERR_REMOTE_BAD_ARG An invalid structure member was supplied.

SYNCERR_BAD_ARG_WRAPPER Protocol error.

SYNCERR_ARG_MISSING Protocol error.

SYNCERR_LOCAL_BUFFER_TOO_SMALL Insufficient memory was allocated for the
incoming record.

SYNCERR_REMOTE_MEM Memory allocation failed on the Palm OS
device. This is a nonfatal memory condition.
Either the communications layer or the de-
vice application could not perform the oper-
ation.
This does not necessarily indicate that there
is no more memory on the device. Other op-
erations could potentially be performed.

SYNCERR_REMOTE_NO_SPACE There is no space on the Palm OS device to
add records to the database.

Return Code Meaning

Error Codes
SyncManager Base Class Return Codes

Developing Palm OS Conduits 135

ther calls should be made into the SyncManager library. See also syncmgr.h.
The following fatal codes are currently defined:

SyncManager Base Class Return Codes
The base class returns a base class error if the conduit uses the built-in synchronization
logic. Base class returns codes for the Conduit DLLs range from 0x5000 through 0x5FF.
See also basemon.h
The following base class errors are currently defined:

Return Code Meaning

SYNCERR_REMOTE_SYS System failure on the Palm OS device.

SYNCERR_TOO_MANY_FILES Cannot create; too many files already exist.

SYNCERR_REMOTE_CANCEL_SYNC User cancelled synch session from device.

Return Code Meaning

CONDERR_NONE Function completed successfully.

CONDERR_NO_REMOTE_CATEGORIES
CONDERR_FIRST+1

Not currently used.

CONDERR_NO_LOCAL_CATEGORIES
CONDERR_FIRST+2

Not currently used.

CONDERR_SAVE_REMOTE_CATEGORIES
CONDERR_FIRST+3

Problems opening or creating the remote
database.

CONDERR_BAD_REMOTE_TABLES
CONDERR_FIRST+4

Not currently used.

CONDERR_BAD_LOCAL_TABLES
CONDERR_FIRST+5

Problems appending duplicate record.

CONDERR_BAD_LOCAL_BACKUP
CONDERR_FIRST+6

Not currently used.

CONDERR_ADD_LOCAL_RECORD
CONDERR_FIRST+7

Problems appending duplicate record.

Error Codes
SyncManager Base Class Return Codes

136 Developing Palm OS Conduits

CONDERR_ADD_REMOTE_RECORD
CONDERR_FIRST+8

Problems adding the remote record.

CONDERR_CHANGE_REMOTE_RECORD
CONDERR_FIRST+9

Could not allocate memory for buffer.

CONDERR_RAW_RECORD_ALLOCATE
CONDERR_FIRST+0X0A

Memory allocation for a buffer used to
hold an incoming raw record from the Palm
OS device failed.

CONDERR_REMOTE_CHANGES_NOT_SENT
CONDERR_FIRST+0X0B

Failed to send all changes to Palm OS de-
vice.

CONCERR_LOCAL_MEMORY_ALLOC_FAILED
CONDERR_FIRST+0X0C

Attempt to allocate memory for an AppIn-
foBlock to be read from device.

CONDERR_CONVERT_TO_REMOTE_CATS
CONDERR_FIRST+0X0D

Failure to convert.

CONDERR_CONVERT_TO_LOCAL_CATS
CONDERR_FIRST+0X0E

??Failure to convert.

CONDERR_CONVERT_TO_REMOTE_REC
CONDERR_FIRST+0X0F

Could not convert to raw record layout.

CONDERR_CONVERT_FROM_REMOTE_REC
CONDERR_FIRST+0X010

Could not convert remote record.

CONDERR_REMOTE_RECS_NOT_PURGED
CONDERR_FIRST+0X011

Issued during either a CopyToPC() or
CopyToHH() call. After either call, an at-
tempt is made to purge the remote records
marked for deletion on the device. If a de-
rived base conduit monitor calls Syn-
cPurgeAllRecs() and that call fails,
this code is returned.

Return Code Meaning

Error Codes
SyncManager Base Class Return Codes

Developing Palm OS Conduits 137

CONDERR_BAD_SYNC_TYPE
CONDERR_FIRST+0x012

The conduit was initiated to being its oper-
ations, but was passed a synchronization
action it did not understand. The following
valid actions are defined:
eFast, eSlow, eHHtoPC, ePCtoHH, eIn-
stall, eBackup

CONDERR_DATE_MOVED
CONDERR_FIRST+0x050

Issued by the baseDTLinkConverter in its
routine to convert a data field from the de-
vice format to the PC. The device allows
users to enter dates that precede 1970. On
the PC, dates before 1970 are invalid, so
the converter moves any dates before 1970
up to 1970. This code is warning, not an er-
ror; information is saved in the log when a
date conversion takes place.

Return Code Meaning

Error Codes
SyncManager Base Class Return Codes

138 Developing Palm OS Conduits

	Table of Contents
	Getting Started
	What’s a Conduit?
	What Are Development System Requirements?
	What’s in the Conduit SDK?
	Overview of the Conduit SDK
	Top-Level Directories
	SDK Development Directories
	Directories
	Files
	Conduits Sample Source Code Directory Contents

	What About HotSync1.1
	What’s in This Guide?

	Conduit Basics
	Basic Approaches to Conduit Design
	Conduit Basic Control Flow
	Locating Records on the Device
	Minimum Conduit Requirements
	Registering the Conduit
	Providing C Entry Points
	Providing a DllMain() Routine
	Sending Errors and Other Messages

	SyncManager Memory Management
	Structures with Dynamically Allocated Memory:

	Conduits and the Windows Registry
	Naming Third Party Conduits
	Registering Third Party Conduits
	Providing the Conduit Name
	Providing Name/Data Pairs
	Registry Entry Example

	Default Registry Keys

	Installing and Removing Your Conduit
	Installing Your Conduit
	HotSync 1.1 Installation
	Conduit Installation

	Removing Your Conduit

	Cable vs. Modem Connection
	FastSync and SlowSync

	Conduit Design Decisions
	Conduit Design Questions
	Using the Native Synchronization Logic
	Pilot Desktop OS Native Synchronization Algorithm
	Record-Level Synchronization with Pilot Applicatio...
	Archiving Records

	Control Flow of Pilot Desktop’s Native Synchroniza...
	Basic Control Flow
	Functions Called During Synchronization
	Synchronizing with Existing PC Applications
	Synchronizing Categories

	Implementing a Conduit
	Providing “C” Entry Points
	Providing a DllMain Routine
	Providing Entry Point Routines
	The OpenConduit Function
	The GetConduitName Function
	The GetConduitVersion Function

	Creating a CBaseMonitor Subclass
	CBaseMonitor Basic Structure
	CBaseMonitor Data Members
	CBaseDTLinkConverter* m_pDTConvert
	PROGRESSFN m_pfnProgress
	CBaseTable* m_LocRealTable
	CBaseTable* m_LocArchTable
	CBaseTable* m_BackupTable
	CBaseTable* m_RemRealTable
	CSyncProperties m_rSyncProperties
	CCategoryMgr* m_LocCategory
	CCategoryMgr* m_RemCategory
	BYTE m_RemHandle
	char m_ArchFileExt[5]
	int m_TotRemoteDBs
	int m_CurrRemoteDB
	CDbGenInfo m_DbGenInfo
	HINSTANCE m_DllInstance

	CBaseMonitor Functions Must to Override
	Monitor Constructor and Destructor
	ObtainLocalTables
	ObtainRemoteTables
	AddRecord
	AddRemoteRecord
	ChangeRemoteRecord
	CreateLocalArchTable
	FastSyncRecords
	SlowSyncRecords
	CopyRecordsPCtoHH
	CopyRecordsHHtoPC
	LogRecordData
	LogApplicationName

	CBaseMonitor Functions You May to Override
	SaveLocalTables
	PurgeLocalDeletedRecs
	ApplyRemotePositionMap

	Creating a CBaseDTLinkConverter Subclass
	CBaseDTLinkConverter Basic Structure
	The Log Object
	Casting of Member Functions
	Carriage Returns and Line Feeds

	CBaseDTLinkConverter Data Members
	CSyncLog* m_pLog
	TCHAR* m_TransBuff
	HINSTANCE m_DllInstance

	CBaseDTLinkConverter Functions You Must Override
	CAddressDTLinkConverter Constructor and Destructor...
	ConvertToRemote
	ConvertFromRemote
	ConvertToRemoteCategories
	ConvertFromRemoteCategories

	CBaseDTLinkConverter Functions You May Override
	CBaseDTLinkConverter Utility Member Functions

	Creating a CBaseTable Subclass
	How to Set Up Tables
	More About Tables
	CBaseTable Class
	CBaseRecord Class
	CBaseSchema Class
	CBaseIterator Class

	Considering Category Manager Modifications

	SyncManager Function Calls
	Session-Oriented Calls
	SyncRegisterConduit
	SyncUnRegisterConduit

	File-Oriented Calls
	SyncCloseDB
	SyncCreateDB
	SyncDeleteDB
	SyncOpenDB
	SyncReadDBAppInfoBlock
	SyncReadDBSortInfoBlock
	SyncResetSyncFlags
	SyncWriteDBAppInfoBlock
	SyncWriteDBSortInfoBlock

	Record-Oriented Calls
	SyncDeleteAllResourceRec
	SyncDeleteRecord
	SyncDeleteResourceRec
	SyncGetDBRecordCount
	SyncPurgeAllRecs
	SyncPurgeDeletedRecs
	SyncReadNextModifiedRec
	SyncReadRecordById
	SyncReadRecordByIndex
	SyncReadResRecordByIndex
	SyncWriteRec
	SyncWriteResourceRec

	Utility Calls
	SyncReadDBList
	SyncReadSingleCardInfo
	SyncReadSystemInfo

	Error Codes
	SyncManager Return Codes
	SyncManager Fatal Return Codes
	SyncManager Base Class Return Codes

