PALM (9 OS

Welcome to

Developing Palm OS
Conduits

08.96

Navigate this online document as follows:

To see bookmarks Type Command-7

To see information on Type Command-?
Adobe Acrobat Reader

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar

©1996 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.

Except for the foregoing, no part of this documentation may be reproduced or transmit-

ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and Graffiti are registered trademarks, and Palm
Computing, HotSync, Palm OS, and the Palm OS logo are trademarks of U.S. Robotics
and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK ARE
SUBJECT TO THE LICENSE AGREEMENT.

U.S. Robotics, Palm Computing Division
Mail Order
1-800-881-7256

U.S. Robotics, Palm Computing Division
World Wide Web site: http://ww. usr. com pal m

Registration information (Internet): r egi st er @ret r ower ks. com
Technical support (Internet): devsupp@al m com

Table of Contents

Tableof Contents ii

1 Getting Started 9
What’s a Conduit? I
What Are DevelopmentSystem ReqU|rements7 e
What’s in the ConduitSDK? 1

Overview of the ConduitSDK 1
Top-Level Directories. 1
SDK Development Directories 12
Directories 012
Files T 4
Conduits Sample Source Code DlrectoryContents. o012
What About HotSync2.12.13
What’sin ThisGuide?.13

2 ConduitBasics e 15
Basic Approaches to ConduitDesign 15
Conduit Basic ControlFlow16
Locating Records on the Device. 19
Minimum Conduit Requirements. 21

Registering the Conduit.21
Providing C Entry Points 21
Providing a DIIMain() Routine. 21
Sending Errors and Other Messages 22
SyncManager Memory Management ce. . 24
Structures with Dynamically Allocated Memory ... 24
Conduits and the Windows Registry 24
Naming Third Party Conduits 25
Registering Third Party Conduits. 25
Providing the ConduitName 25
Providing Name/Data Pairs. 26
Registry Entry Example. 28
Default Registry Keys. C e e e 28
Installing and RemovngourCondwt 24

Developing Palm OS Applications, Part | iii

Table of Contents

Installing Your Conduit .
HotSync 1.1 Installation.
Conduit Installation .

Removing Your Conduit

Cable vs. Modem Connection
FastSync and SlowSync .

3 Conduit Design Decisions

Conduit Design Questions . .
Using the Native Synchronization Logic .

Pilot Desktop OS Native Synchronization Algonthm :
Record-Level Synchronization with Pilot Applications

Archiving Records .

4 Control Flow of Pilot Desktop’s Native Synchronization Logic

Basic Control Flow . .
Functions Called During Synchronlzatlon .
Synchronizing with Existing PC Applications.
Synchronizing Categories .

5 ImplementingaConduit

Providing “C” Entry Points
Providing a DIIMain Routine
Providing Entry Point Routines
The OpenConduit Function .
The GetConduitName Function .
The GetConduitVersion Function
Creating a CBaseMonitor Subclass
CBaseMonitor Basic Structure .
CBaseMonitor Data Members .

CBaseDTLinkConverter* m pDTConvert .

PROGRESSFN m_pfnProgress.
CBaseTable* m_LocRealTable .
CBaseTable* m_LocArchTable .
CBaseTable* m_BackupTable
CBaseTable* m_RemRealTable .
CSyncProperties m_rSyncProperties .

. 29
. 29
. 31
. 31
. 31
. 32

. 36
. 38
. 38
. 40
.41

.43
. 43
. 44
. 45
. 46

. 47
. 48
. 50
. 50
. 52
. 52
. 53
. 53
. 55
. 55
. 55
. 56
. 56
. 56
. 56
. 57

iv. Developing Palm OS Applications, Part |

Table of Contents

CCategoryMgr* m_LocCategory. b7
CCategoryMgr* m_RemCategory 57
BYTEm _RemHandle.57
char m_ArchFileExt[5] 57
intm_TotRemoteDBs.57
intm_CurrRemoteDB b8
CDbGenInfo m_DbGeninfo. 58
HINSTANCE m_Dllinstance58
CBaseMonitor Functions Must to Overrlde .« 58
Monitor Constructor and Destructor 60
ObtainLocalTables61
ObtainRemoteTables 62
AddRecord04
AddRemoteRecord.65
ChangeRemoteRecord 66
CreateLocalArchTable 68
FastSyncRecords.69
SlowSyncRecords 1711
CopyRecordsPCtoHH 74
CopyRecordsHHtoPC 76
LogRecordData78
LogApplicationName Y 4]
CBaseMonitor Functions You MaytoOverrlde. R A°
SavelLocalTables. 80
PurgeLocalDeletedRecs. 81
ApplyRemotePositionMap 83
Creating a CBaseDTLinkConverter Subclass 84
CBaseDTLinkConverter Basic Structure 84
ThelLogObject285
Casting of Member Functions 85
Carriage Returnsand LineFeeds. 85
CBaseDTLinkConverter Data Members 85
CSyncLog*m pLog 86
TCHAR*m TransBuff 86
HINSTANCE m_Dllinstance 86
CBaseDTLinkConverter Functions You I\/IustOverrlde A 74

Developing Palm OS Applications, Part| v

Table of Contents

CAddressDTLinkConverter Constructor and Destructor . 87

ConvertToRemote 88
ConvertFromRemote. 9
ConvertToRemoteCategories 92
ConvertFromRemoteCategories N 71}
CBaseDTLinkConverter Functions You MayOverrlde .. 95
CBaseDTLinkConverter Utility Member Functions. . . . 95
Creating a CBaseTable Subclass. 97
HowtoSetUpTables.097
More AboutTables9
CBaseTableClass9
CBaseRecordClass.102
CBaseSchemaClass104
CBaselterator Class 1 07
Considering Category Manager I\/Iodlflcatlons e 1015
6 SyncManager FunctionCalls. 109
Session-Oriented Calls109
SyncRegisterConduit109
SyncUnRegisterConduit.110
File-OrientedCalls10
SyncCloseDB112
SyncCreateDB112
SyncDeleteDB13
SyncOpenDB O
SyncReadDBAppInfoBIock P N £ <Y
SyncReadDBSortInfoBlock.116
SyncResetSyncFlags117
SyncWriteDBApplInfoBlock118
SyncWriteDBSortInfoBlock118
Record-OrientedCalls.19
SyncDeleteAllResourceRec120
SyncDeleteRecord121
SyncDeleteResourceRec.121
SyncGetDBRecordCount122
SyncPurgeAllRecs122

vi Developing Palm OS Applications, Part |

Table of Contents

SyncPurgeDeletedRecs123
SyncReadNextModifiedRec123
SyncReadRecordByIld.124
SyncReadRecordByIndex125
SyncReadResRecordBylndex.125
SyncWriteRec126
SyncWriteResourceRec 127
UtilityCalls128
SyncReadDBList128
SyncReadSingleCardinfo129
SyncReadSysteminfo130
7 ErrorCodes 133
SyncManager ReturnCodes133
SyncManager Fatal ReturnCodes.134
SyncManager Base Class ReturnCodes135

Developing Palm OS Applications, Part | vii

Table of Contents

viii Developing Palm OS Applications, Part |

Getting Started

This chapter helps you get started with conduit design by providing an
overview of the available software and a roadmap to the conduit design
process described in this manual. This chapter answers the following ques-
tions:

What's a Conduit?

What Are Development System Requirements?

What's in the Conduit SDK?

What About HotSyncl.1

What's in This Guide?

What's a Conduit?

A conduit isadynamic link library (DLL) running under Microsoft Win-
dows. Conduits exchange and synchronize data between an application
running on a PC under Windows and an application running on the Pilot or-
ganizer or another Palm OS based device.

End-users can push the HotSync button on the cradle to request synchroni-
zation of data between all device applications and the corresponding Win-
dows applications. To do so, the end-user must perform the following two
steps:
1. Insert the deviceinto its cradle, which has to be connected to the PC
with aserial cable

2. Press the HotSync button on the cradle

The HotSync program, which runs under Windows, synchronizes each ap-
plication by executing its conduit.

Many conduits (including the conduits for the four native applications on
the first device) synchronize data between the device and the PC to be mir-
ror images after synchronization. Other conduits perform more complex
operations. The complexity of your conduit’s behavior determines the de-
velopment effort involved.

Developing Palm OS Conduits 9

Getting Started
What Are Devel opment System Requirements?

To make things easier for you, part of the conduit SDK consists of several
C++ classes that provide predetermined functionality that you may be able
to customize to suit your needs. The four applications included on the first
Pilot device (Date book, address book, ToDo list, and MemoPad) use con-
duits based on those classes and the associated synchronization logic.
Source code for each of the four native applicationsis part of the SDK.

If your application doesn’t sync with one of the four native Pilot applica-
tions, or your application’s behavior is so different from the existing con-
duits behavior (the native synchronization logic) that customizing becomes
impractical, you can still take advantage of the SyncManager API. In that
case, you should do the following:

* Read, at aminimum, the chapter Conduit Basics in this document.
You may find it helpful to look at other chapters as well.

* Look at the documentation in SyncManager Function Calls

» Examine asmall example conduit (\poscond\txtcond) with more
simple behavior to write your conduit from scratch

Conduits are AFX extension modules; see MFC Tech Note 33 for morein-
formation. Note that the sample Makefile provided with the Conduit SDK
automatically makes your conduit an AFX extension.

What Are Development System Requirements?

Conduits are developed using standard Microsoft Visual C++ tools. To in-
stall and use the Conduit SDK for Windows, your system must be equipped
with:

* Windows 95 or Windows NT

e Visua C++ version 4.0 or greater

e Microsoft MFC 3.0 or greater

» Atleast 16 MB RAM and 5 MB free disk space

 Pilot with cradle for testing

» AdobeAcrobat Reader for viewing the online documentation (in-
cluded in the SDK)

10 Developing Palm OS Conduits

Getting Started
What's in the Conduit SDK?

What's in the Conduit SDK?

This sections starts with an Overview of the Conduit SDK, then listsrele-
vant parts of the Top-Level Directories and the SDK Development Directo-
ries

Overview of the Conduit SDK

The conduit SDK provides the following header files, libraries, and sample
code that you need to develop a conduit for your Palm OS application:

* Header Files—C and C++ header files with structure definitions
and function prototypes

e API Libraries—A set of libraries that provide access to device
data.

* HotSync 1.1 and HotSync 1.1 Libraries—The executable loads
and executes conduits, the libraries must be present at runtime for
conduits to execute properly. Both debug and release versions are
included.

» Sample Code

— Source code for a conduit that synchronizes memo pad data by
storing it asasimple ASCI| text file on the PC

— Source code for the four conduits included with the first release
of the device (address book, memo pad, to do list, date book)

This section provides an overview of important folders and filesin the
SDK. Seethe Installation Instruction for information on how to install the
SDK.

Top-Level Directories

During installation, the SDK creates the following directory structure on
your system:

\POSCOND\—Main directory

CONDSDK—SDK development files and documentation
TODCOND—Code for the sample ToDo conduit
TXTCOND—Code for the sample text file conduit
ADDCOND—Code for the sample Address Book conduit
DATCOND—Code for the sample Date Book conduit
MEM COND—Code for the sample Memo Pad conduit

Developing Palm OS Conduits 11

Getting Started
What's in the Conduit SDK?

SDK Development Directories

Directories

\POSCOND\CONDSDK

\INCLUDE—Header files for development

\SRC—Source files used for development

\HEL P—Heélp file for the HotSync program
\DOCS—Conduit SDK documentation in .pdf format
\BIN—Debug and release build of libraries and HotSyncl.1

Files

\POSCOND\CONDSDK\INCLUDE

\abrecord.h—Address Book record class definition \dataprv.n—
Definitions and structs for Pilot database records \syncmgr.h—Syn-
cManager public APl and structures

\updcatid.h—Object used for updating categories
\logstrng.h—#defines for resource string IDs
\catmgr.h—Category manager class definitions
\basemon.h—BaseMonitor class definition
\synclog.h—CSyncL og class definition

\Nativetable.h—Table subclass definition for native app
\Nativerecord.n—Record class definition for native app
\basetabl .n—Base table class definition

\bfields.n—Field objects class definitions
\basemon.rc—Resource file containing error and log strings
\basemon.cpp—Source code to the base monitor class

Conduits Sample Source Code Directory Contents

Thefollowingisalist of filesfor the ToDo conduit; the conduits of the
other native applications have the same structure.

\POSCOND\TODCOND

\todlink.h—ToDo link converter class definition
\todlink.cpp—ToDo link converter source code
\todmon.h—ToDo link monitor class definition
\todmon.cpp—ToDo link monitor source code
\todcond.n—ToDo DLL header file
\todcond.cpp—DLLMain() and ‘C’ entry points source code
\todcond.mak—ToDo conduit make file

Thetext conduit isincluded as asimple example for devel opers who decide
not to use the native logic.

12 Developing Palm OS Conduits

Getting Started
What About HotSyncl.1

\TXTCOND

\STEPO1—A simple text file transfer to the Pilot MemoPad
\STEPO2—M ore advanced version of Step01 source code

What About HotSyncl.1

When you ship your conduit to end-users, you need to include HotSyncl.1,
the 1.1 conduits for the four native Pilot applications, and the appropriate
installation procedure on the installation disks. You must do this because
the HotSync Application included with the Pilot Desktop 1.0 was compiled
withVC++ 2.2 and MFC 2.0. Because you are most likely using vV C++ and
MFC 4.0, your application won’'t run with HotSync 1.0. For more informa-
tion, see HotSync 1.1 Installation.

What's in This Guide?

This guide serves as a programming guide and a reference manual. It helps
you make design decisions and provides structure and function descriptions
to help you implement your design.

This manual contains the following:

» Conduit Basics—Provides atop-level overview of the behavior of
any application. It explains how HotSync interacts with the differ-
ent conduits on the system to synchronize each.

» Conduit Design Decisions—Points to some critical design deci-
sions you have to make early. Thisincludes alist of questions that
help you determine whether using the available C++ class hierarchy
makes sense.

» Control Flow of Pilot Desktop’s Native Synchronization Logic—
Describes how the four built-in applications use the C++ classes to
implement their synchronization behavior

* Implementing a Conduit—Steps you through implementing a con-
duit based on the available C++ classes. This chapter includes de-
scriptions of the classes you have to subclass and their data
members and member functions.

» SyncManager Function Calls—Provides complete description of
the APl callsthat all conduit applications can use

» Error Codes—L iststhe error codes that can be triggered when call-
ing SyncManager functions

Developing Palm OS Conduits 13

Getting Started
What'sin This Guide?

14 Developing Palm OS Conduits

Conduit Basics

This chapter describes what every conduit must do to successfully synchro-
nize a device application with the PC. This chapter provides an overview of
the control flow inside the simplest possible conduit library. When you de-
sign a conduit, it’s essential that you understand how a synchronization
process works and which part of the system is responsible for correspond-
ing synchronization process.

To provide information that is applicable no matter how complex your con-
duit is, this chapter usually assumes a simple conduit that links an applica-

tion on the Palm OS device to a simpletext file on the PC. While this kind

of synchronization is not realistic for most applications, it is helpful for get-
ting started; a sample conduit library that performs exactly that kind of syn-
chronization isincluded in your software development kit.

The sample conduit is called txtcond. Two versions are included, one more
complex than the other. They both import and export memo pad datato and
from text files on the PC.

This chapter discusses the following topics:

Basic Approaches to Conduit Design
Conduit Basic Control Flow
Minimum Conduit Requirements
SyncManager Memory Management
Conduits and the Windows Reqistry
Installing and Removing Your Conduit
Cable vs. Modem Connection
FastSync and SlowSync

Basic Approaches to Conduit Design

Conduit developers generally take one of the following approaches to con-
duit design:

Developing Palm OS Conduits 15

Conduit Basics

Conduit Basic Control Flow

If the conduit isrelatively similar to the four conduitsincluded with
the Pilot Desktop, you can use the existing C++ classes and modify
the source code of one of the conduits appropriately.

— Conduit Design Decisions helps you decide whether using the
native synchronization logic makes sense for you.

— Chapter 5, Implementing a Conduit explains what you need to
do to implement such a conduit.

If the conduit requires behavior that the native conduits don’t deal
with, it might make more sense to devel op the conduit from scratch.
In that case, the simple sample conduit (textcond) provides a useful
starting point. You can use the APl documented in SyncM anager
Function Calls to implement your conduit.

Conduit Basic Control Flow

When the user presses the HotSync button on the device, the following
events occur:

1

3.

HotSync looks for the User ID transmitted by the Palm OS device
and comparesit with the local Pilot user database. It finds the user
ID on the device or creates anew user ID.

. Upon startup, HotSync looks at the list of conduits in the registry

and prepares alist of their creator IDs.

Each conduit has to enter appropriate registry information when the
application isfirst installed see Installing and Removing Your Con-
duit.

HotSync determines whether to do a FastSync or a SlowSync based
on whether the device was previously synchronized with the same
PC or adifferent one. If the device was last synchronized with a dif-
ferent PC, the modification flags on the device are not accurate with
respect to the current PC.

The native synchronization logic in the four native conduits takes
advantage of this distinction by using an optimized FastSync algo-
rithm whenever it can. This algorithm only considers records on ei-
ther side that have one of the modification flags set (dirty or
deleted). If the flags are not reliable, a SlowSync algorithm is used
that examines each record on both sides of the sync.

. HotSync queries the Palm OS device for all databases that do not

have one of the executable system types, such as
sysFi | eTAppl i cat i on. These databases are matched up with
the creatorl Ds from the registry.

16 Developing Palm OS Conduits

Conduit Basics
Conduit Basic Control Flow

5. HotSync starts the synchronization process.

6. For each creatorI D that’s found in the registry, HotSync passes the
SyncPr operti es classto the matching conduit including the
name of the first matching database found on the Palm OS device.
At this point, HotSync passes control to the conduit until the con-
duit returns when synchronization of that application is complete or
had to be aborted.

It is the conduit’s responsibility to retrieve any required data-

bases—other than the one passes with the SyncProperties object—
from the PAlm OS device.

7. After HotSync has iterated through all conduits in the registry, it
calls the backup conduit and install conduit.

— If there is a database on the device for which the backup flag is
set but no conduit exists, the backup conduit provided by the
system copies the data from the device into the BACKUP direc-
tory in the user’s area on the PC. Thefile format is the same as
on the device. Note that this backup conduit does not check
whether data have been modified and will therefore execute
each time.

While setting the backup bit may be appropriate for small data
databases, it’s not recommended for applications or large data
databases. For large data databases, create a specific conduit.

— Theinstall conduit works together with the Applnstaller pro-
vided by Pilot Desktop to install applications or other databases
onto the Palm OS device. The App Installer places a copy of the
database to beinstalled in the user’s Install directory and puts
some installation information in the user database and the regis-
try (or /.ini) file. Theinstall conduit uses this information to
copy the database down to Pilot, replacing any existing copies.
In the event of a hard reset, the install conduit is used to restore
databases that have been previously been backed up and are re-
siding in the user’s Backup directory.

8. The conduit performs synchronization using calls from the Sync-
Manager library (see SyncManager Function Calls).

As the conduit performs the synchronization, it must pay attention
to the following:

— Minimum Conduit Requirements. Every conduit must publish
three “C” entry points to be invoked by HotSync (see Providing
C Entry Points and Providing a DIIMain() Routine.

Developing Palm OS Conduits 17

Conduit Basics
Conduit Basic Control Flow

— Sending Errors and Other Messages. A conduit should log er-
rors and other information using the log object. This helps
HotSync determine whether synchronization was successful
and whether the log should be displayed to the user.

— Appropriate updates. Each conduit has to decide on proper up-
dates of records on both the device and the PC depending on
their current status. Using the Native Synchronization Logic ex-
plains how the four applications included on the Pilot device
perform synchronization. Your application may use a different
logic based on the information each record contains.

18 Developing Palm OS Conduits

Conduit Basics
Locating Records on the Device

records

< »

BaseLinkConverter

categories \/
° AddrLinkConverter
[%2]
device 'g
O iterator
o
Y
CBaseMonitor
remote table
AddrMonitor schema
Y
CategoryMgr T T T 1] records
local table
categories local _
categories ObtainLocalTables()
records desktop
records data files
records
categories

Locating Records on the Device
Database records on the device consist of the following two distinct parts:

» Thefirst part is afixed-length portion containing the record ID, a
status field (indicating Add, Modify, Delete, or Archive status for
the native applications), and a category 1D field

* Thesecond part is of variable length depending on the number of
fields and whether they contain any data

Developing Palm OS Conduits 19

Conduit Basics
Locating Records on the Device

Because the SyncManager DLL acts as a channel for byte traffic to and
from the device, a generic structure that handles any record format is
needed. This generic structure then becomes a parameter in the record-ori-
ented API.

To locate remote records, three different APIs are provided, allowing you to
do the following:

» Sequentially locate the next altered record using
SyncReadNextM odifiedRec.
» An exact record lookup using SyncReadRecordByld.
» Top to bottom iteration using SyncReadRecordBylndex.
The same object, CRawRecor dI nf 0, isused by al three functions. How-

ever, different members of the object are used by each function call to help
indicate the nature of the remote lookup activity.

Figure 2.1 illustrates where the fixed-length data from adevice record is
stored in the CRawRecor dl nf o object and also shows that the data mem-
ber m pByt es points to the variable-length record body. These CRawRe-
cor dI nf o structure members are populated by the record-oriented API
when arecord has been retrieved successfully.

class CRawRecordInfo{

public _
BYTE m_FileHandle; —
DWORD m_Recld;
WORD m_ReclIndex; -
BYTE m_Attribs; fixed length
short m_Catld;
int m_ Conduitld;
DWORD m_RecSize;
WORD m_TotalBytes; —
BYTE* m_pBytes; —— variable length

Figure 2.1 CRawRecordInfo Structure Pointing to Record Information

20 Developing Palm OS Conduits

Conduit Basics
Minimum Conduit Requirements

Minimum Conduit Requirements

If the predefined C++ classes and the associated synchronization logic is
not appropriate for your application, the only requirements (recommended)
to have HotSync accept your conduit include the following:

Registering the Conduit

Providing C Entry Points

Providing a DIIMain() Routine

Sending Errors and Other Messages (strongly recommended)

Registering the Conduit

You must insure that information about the conduit is included in the win-
dows registry when usersfirst install your application.

See Conduits and the Windows Registry for details on the information you
must enter into the Registry and Installing and Removing Your Conduit for
information on how to provide it.

Providing C Entry Points

Every conduit must publish the following three “C” entry points to be in-
voked by HotSync:

e (penCondui t

* Cet Condui t Nane

* Cet Condui t Ver si on
All native conduits carry out al synchronization duties within QoenCon-
dui t before returning control to HotSync. HotSync invokes QoenCon-
dui t only once, immediately after it has dynamically loaded the conduit

into memory. See Providing “C” Entry Points for more detailed informa-
tion.

Providing a DIIMain() Routine

Your application must provide atypical 32-bit Windows

Dl | Mai n() routine. The Windows operating system automatically calls
D | Mai n() when it loads the conduit DLL into memory because
HotSync performsalLoadLi brary() cal onit.

Developing Palm OS Conduits 21

Conduit Basics
Minimum Conduit Requirements

Note that the Makefile provided for compiling the library makesit an AFX
extension library, which means that certain classes outside the included
files are available to your application.

Sending Errors and Other Messages

When HotSync starts a conduit, it passes a pointer to alog object to it. The
object isamember of the SyncPr operti es classnamed m pSyncLog
and is used to store error messages and other information for the end-user.

Note that a C-based conduit can use the log object like it would use a struc-
ture, but it is still an object and the library therefore has to be compiled as
C++.

The CSyncLog object has the following public interface:

Listing 2.1 CSyncLog class

cl ass CSynclLog {
public:

CSyncLog(i nt nFl ushThreshold = 0);

~CSyncLog() ;

LogError AddEntry(const char* pszEntry,
Activity act=sl Text,
BOOL bTi neStanp = FALSE) ;

LogError SavelLog(const char* pszLogFile);

BOCOL Bui | dRenot eLog(CSt ri ng& csRenot eLog) ;

voi d Get WrkFi | eName(CStri ng& csWr kFi | eNane) ;

void d oseLog();

WORD Test Counters(); };

When al conduits have completed, HotSync saves the log object to disk.

The member function most often used by a conduit to log information is
the AddEnt r y() routine. In its simplest form, a string may be recorded
into the log:

22 Developing Palm OS Conduits

Conduit Basics
Minimum Conduit Requirements

Listing 2.2

AddEntry("Si npl e Line of Text").

The other parametersto AddEnt r y have default values that the caller may
but doesn’t have to override:

* Theact parameter isamember of the Activity enum defined in
SYNCLOG.H and discussed below.

* ThebTi neSt anp parameter signals the log object to time stamp
the new entry asit is added to the log. In most cases, you can leave
this parameter undefined (the default).

Here's some information about the values you're most likely to supply as
theact parameter, and how to use them:

« dSyncStarted—send at the beginning of the synchronization pro-
cess, don't supply atext string. Thisisrequired so the log knows
you are logging a new conduit.

» dSyncFinished—send at the end of the synchronization process
and pass in the name of the application.

» dSyncAborted—requests that HotSync put up banner that a prob-
lem occurred.

» Other enum values—these will signal HotSync to display banner to
the user at the conclusion of the sync. They may be passed with a
text string to be included in the log file.

The following example code shows a conduit reporting that it encountered
aproblem adding a new record to the remote device database.

Error Logging Example

i f (AddRenot eRecord(rLocRecord)!= 0)
{
char errBuf f[MAX_LOG STRI NG ;
strcpy(errBuff, "Could not Add the Smth
address record");
m r SyncProperties. m pSyncLog- >AddEnt r y(
(const char*)errBuff, sl RenoteAddFail ed);
}

Developing Palm OS Conduits 23

Conduit Basics
SyncManager Memory Management

SyncManager Memory Management

The SyncManager carries out commands and returns replies from the de-
vice. When supplying or retrieving data accompanying to these commands,
the SyncManager acts as a channel for this raw byte traffic.

Some of the objects that are passed as parameters between functionsin the
SyncManager and a Conduit.DLL contain dynamically allocated memory.
These objects contain a generic data area (usually named m pByt es)
where the SyncManager places raw data obtained from the device. Each
Conduit.DLL reads from (or write to) this areain its own specific data for-
mats.

It isusualy desirable to keep the allocating and freeing responsibilitiesin
the same component of code. Because of this, the following rules on dy-
namically allocated memory are enforced:

e Thecaling Conduit.DLL must pre-allocate memory onto the
m_pByt es pointer before invoking any SyncManager APIs which
use these structures

» The SyncManager does not allocate any memory into these struc-
tures and is aso not responsible for freeing any memory within the
structures. Sole responsibility lies within the calling client Con-
duit.DLL

Structures with Dynamically Allocated Memory:

» CRawRecordInfo - used by the record-oriented API
» CDbGenlInfo - used by the file-oriented API
» CPositioninfo - used to obtain record position information

Conduits and the Windows Registry

When HotSync synchronizes all device applications, it relies on informa-
tion on the PC to find each application. All conduits must enter the follow-
ing information in the Windows Registry (Windows NT/Windows 95) or an
HSM1Ll.ini file:

* Required information for HotSync—When HotSync isfirst
started, it reads the Windows Registry to find the conduits it needs
to load and execute. This plug-in architecture allows for easy con-
figuration of auser's PC for new or updated conduits.

24 Developing Palm OS Conduits

Conduit Basics
Conduits and the Windows Registry

» Optional information for HotSync—You can place informationin
the Registry that HotSync needs to execute or communicate to a
conduit

HotSync loads only conduits named in the Windows Registry under one of
the following keys:

» Key for Pilot applications-
HKEY _CURRENT_USER\Software\Palm ComputingV/
Pilot Desktop\ComponentX

» Key for add-on conduits-

HKEY_CURRENT_USER\Software\Palm Computing\/
Pilot Desktop\A pplicationX

Naming Third Party Conduits

The desktop software that ships with Pilot contains four native conduits,
which are named starting with the ComponentO Registry key.

To keep third party conduits separate from the native conduit entries, place
them under the ApplicationX key where

» ApplicationXisasequentially numbered entry representing the first
third party conduit (e.g., ApplicationQ)

» Applicationl represents the second conduit

and so on. The Pilot Desktop software does not need to be installed in order
for HotSync and athird party conduit to function. However, there are some
reserved Registry entries that cannot be used by third parties.

Registering Third Party Conduits

When you install your conduit for the first time, you have to register it as
part of the installation process. This includes the following:

Providing the Conduit Name
Providing Name/Data Pairs

Providing the Conduit Name

HotSync expects that conduits are named in sequential order. The conduit
name (ApplicationX) therefore needs to be based on the number of the con-
duit that was last loaded. If the last conduit loaded was named
Application5, your conduit needs to be named Application6.

Developing Palm OS Conduits 25

Conduit Basics

Conduits and the Windows Registry

Note that if you are supplying a de-installation procedure with your con-
duit, you need to be sure that all conduits loaded after it are renamed to
maintain the proper numbering sequence. You may archive this either by
changing the name of the last conduit to have the name of the deleted con-
duit or by changing the name of each conduit. The important issue is that
the sequence of numbersis not interrupted.

Providing Name/Data Pairs

A set of required name/data pairs is under the ApplicationX key. These
name/data pairs describe the instructions that HotSync gathers asit scans
through the Windows Registry at startup. Some of the information is used
only by HotSync, while others, for example File0, are only passed along to
the target conduit when HotSync loads it into memory. Because asingle
conduit synchronizes one database on the device with one database (or file)
on the PC by default, every third-party conduit requires anew ApplicationX
Registry key and its required set of name/data pairs.

The following table lists the minimum set of name/data pairs placed under
an ApplicationX registry key.

Name Type Value (Address Book Application)

Conduit String addbook.dll
Creator DWORD 0x61646472 ('addr’)

Remote0 String AddressDB
Directory String addbook
FileO String databaseName.db

Integrate DWORD O

Module String foo

Name String Address Book
Priority DWORD 2

The following table provides descriptions of name/data pairs under an Ap-
plicationX key.

26 Developing Palm OS Conduits

Conduit Basics
Conduits and the Windows Registry

Name

Data

Conduit

Creator

Remote0

Directory

FileO

Integrate

Module

String indicating the disk filename of the third party conduit
DLL. Thisdisk file needs to be placed somewhere within
the PATH environment variable. Conduits are generally in-
stalled in the same directory as HotSync.

Hexadecimal numeric value matching the Creator 1D of the
application residing on the Palm OS device. Thisvalue al-
lows creation/modification of the remote database. This
unique key ties the Palm OS application’s database to a con-
duit on the PC.

String indicating the name of the database residing on the
device. Thisisacase-sensitive string and it is used by the
native conduit logic in its remote File Open activities.

A string indicating the local PC directory to be created
under the username directory. This directory may hold sup-
port files needed to accurately perform arecord-level syn-
chronization with athird party database, such as record ID
mapping files.

This directory will be the current directory when the con-
duit is invoked.

A string indicating the local PC directory and filename of
the third party database (or file) to be synchronized with the
Pilot database named in the RemoteO Name/Data pair.
Thisfileisusualy in the above-named directory.

A hexadecimal value that for third party entries. Should be
set to 0.

A string which for third party entries can contain anything.
This string is not used, but must be present.

Developing Palm OS Conduits 27

Conduit Basics

Conduits and the Windows Registry

Name Data

Name A string which is displayed in the HotSync Progress dialog
to identify which conduit is currently executing.

Priority Indicates the execution priority. Conduits with lower num-
bers execute before higher ones. Minimum value is 0, maxi-
mum is 4. If two conduits have the same priority, their
execution order is undefined.

Defaultsto 2 if you don't provide avalue. Don’t change the
default unless your conduit relies on a certain execution or-
der.

In the example below, the ToDo native conduit is assigned a
priority of 1, which would cause it to execute before other
native conduits.

Registry Entry Example

[HKEY_CURRENT _USER\ Sof t war e\ Pal m Conput i ng\/
Pi | ot Deskt op\ Conponent 2]

"Modul e" ="t odo. dl | "

"Condui t"="todcnlld.dl "

" Cr eat or " =dwor d: 746f 646f

"Directory"="todo"

"Fi | e0"="t odo. dat "

" Renot e0" =" ToDoDB"

"Priority"=dword: 1

Default Registry Keys

To operate correctly, HotSync needs other Registry keysin addition to the
ApplicationX Registry keys. These Registry keys do not need to be entered
by athird party conduit author. HotSync can set up a set of default Registry
keysthat allow it to operate normally. HotSync will set up all of the default
Registry keys (excluding any ApplicationX keys) when invoked with the
command line argument -r:

Hot Sync -r

28 Developing Palm OS Conduits

Conduit Basics
Installing and Removing Your Conduit

Important: Execute this command only once to initialize the Win-
dows Registry. Any subsequent invocations (including the -r
switch) overwrites existing Registry keys with the default values.

If athird party conduit requires any additional custom information when it
executes, you may place additional name/data pairs under its ApplicationX
key, as long as the mandatory pairs are presented first.

Installing and Removing Your Conduit

This section discusses Installing Your Conduit and Removing Your Con-
duit:

Installing Your Conduit

When the end-user first installs your application, it must install your con-
duit and also HotSyncl.1 and the 1.1 Pilot Desktop conduits.

» HotSync 1.1 Installation is required because HotSync 1.0, which is
included with the Pil ot package, was compiled withVC++ 2.2 MFC
Library 2.2. Because most developers are now using VC++ 4.0 and
MFC Library 4.0, it's necessary you include HotSync 1.1 in your
package.

All thefiles you need to install HotSync 1.1 are included with the
Conduit SDK. The steps are described in some detail in HotSync
1.1 Installation.

» Conduit Installation is required so HotSync knows your applica-
tion’s key and registry information.

HotSync 1.1 Installation

1. Make sure HotSync is not running.

2. Copy the HSMI1.EXE from poscond\condsdk\bin to the Pilot Desk-
top directory.
3. Copy the 1.1 libraries from poscond\condsdk\bin to the Pilot Desk-
top directory:
— TABLE11.DLL
— CMDS11.DLL
— SYNC11.DLL

Developing Palm OS Conduits 29

Conduit Basics
Installing and Removing Your Conduit

BAKCN11.DLL
INSCN11.DLL
PDN11.DLL
PDCMN11.DLL
4. Copy the 1.1 conduits to the Pilot Desktop directory:
— ADDCNI11.DLL
— DATCN11.DLL
— MEMCN11.DLL
— TODCN11.DLL
5. For Windows 3.1 installation, edit hsm11.ini OR.

6. For Windows95 or Windows NT installation, make the following
changesto the registry:
This may be automated using aregistry extract file. See the release
notes for more information.

Action Component From To

Change ComponentO conduit Conduit = datacond.dl| Conduit =
Value datacnl.1.dll

Change Component1 Conduit Conduit = addcond.dll Conduit =
Value addcn11.dll

Change Component2 Conduit Conduit = todcond.dl| Conduit =
Value todcn111.dll

Change Component3 Conduit Conduit = memcond.dll Conduit =
Value mamcnl1l.dll

Change HotSync Manager Back- BackupConduit = BackupConduit =
upConduit Value bakcond.dl| bakcnl1l.dll

Change HotSync Manager In- Install Conduit = Install Conduit =
stallConduit Value instcond.dll inscnl11.dll

Add HotSync Manager NotifierO =
Notifier0 Value pdnl1l.dil

30 Developing Palm OS Conduits

Conduit Basics
Cable vs. Modem Connection

Conduit Installation

After you've successfully installed HotSyncl.1 and modified the registry
appropriately, you can install your conduit as follows:

1. UseCGet Profil el nt tolook for thefirst open ApplicationX key,
starting with ApplicationO. Increment until you've found the last
application (ApplicationN).

2. Add 1 to that number and add your application to the registry as
(ApplicationN + 1) using Set Pr of i | el nt

3. Add the standard name/data pairs for your application to the regis-
try using Set Pr of i | el nt (see Providing Name/Data Pairs)

NOTE: You have to restart HotSync at this time and at any other
time you’'ve made changes to the registry (or .INI file).

Removing Your Conduit

It is customary that applications provide end-users afacility to easily re-
move all the relevant files and other information and restore the conduits
for Pilot Desktop if necessary.

If you choose to do so, your application should follow these steps:

1. Remove the ApplicationX key for your application from the registry
2. Decrement all ApplicationX keysthat follow to eliminate any gaps,

HotSync relies on consecutive numbering of applications for execu-
tion

Cable vs. Modem Connection

Synchronization between PC and device applications can take place viaa
cable attached to aserial port on the PC or viaa modem. Before requesting
synchronization, the user must indicate cable or modem connection by se-
lecting the appropriate command from the HotSync menu in Pilot Desktop.
The selection is recorded in the Windows Registry.

When HotSync is started, it checks the Registry to determine whether a
cable or modem was selected. It then opens the appropriate communica
tions port to alow synchronization through the cable or modem.

Developing Palm OS Conduits 31

Conduit Basics

FastSync and SowSync

In most cases, al other stepsin the synchronization process are identical
regardless of whether cable or modem connection is specified, and there is
no impact on the conduit or the function calls needed for synchronization.

FastSync and SlowSync

If your conduit takes advantage of the native synchronization logic, it can
perform two different types of synchronization.

The HotSync application generates a recommendation of which typeto
use. If your conduit does not use the native sync logic, this information can
be ignored.

FastSync and SlowSync are two types of record-level synchronization.
When the user starts the HotSync process, HotSync determines whether to
perform a FastSync or a SlowSync. This decision is based on the last PC
ID, whichis stored on Pilot. A SlowSync is performed if this ID does not
match the PC on which HotSync is currently executing, that is, if Pilot was
last synchronized with a different PC than the one currently being used.

The HotSync synchronization decisions (including FastSync or SlowSync)
are packaged into the CSyncPr oper t i es structure, which is passed to
each conduit when it is started.

» FastSync.Therecord status fields must be accuratein order for data
to be synchronized properly in a FastSync. To optimize the syn-
chronization process, only records that have been modified since
the last synchronization are retrieved from Pilot; records that have
not been modified do not get retrieved from Pilot. In most cases, if a
corresponding PC record isfound for a Pilot record flagged as mod-
ified, the records are compared and record-level synchronization is
carried out.

* SlowSync. If auser wants to synchronize one Pilot with two differ-

ent PCs, the record status fields on the Pilot are cleared after syn-
chronizing with the first PC, and will be cleared after the user
synchronizes their Pilot with the second PC. In this scenario, a
SlowSync is required.
In aSlowSync, every record is retrieved from Pilot for comparison.
Since the status fields have been cleared after the previous synchro-
nization, they cannot be used to detect modifications after the Pilot
has been syncronized with a different PC. During a SlowSync, cor-
responding records from Pilot and the Pilot Desktop are compared,
and record-level synchronization is carried out.

32 Developing Palm OS Conduits

Conduit Basics
FastSync and SowSync

To determine whether Pilot records with a status field of O have
been modified since the last synchronization, HotSync searches for
the record ID in the PC backup file (before the last sync).

— If the record exists in the backup file, the records are compared
to determine whether the record has been modified since the last
sync.

— If the record has been modified, itsflag is set to Modi f y, and
record-level synchronization proceeds.

Developing Palm OS Conduits 33

Conduit Basics
FastSync and SowSync

34 Developing Palm OS Conduits

Conduit Design
Decisions

The minimal conduit structure described in Conduit Basics allows your
conduit to provide awide range of functions, including import/export,
transaction processing and mirror-image synchronization. This structure al-
lows conduits to be written in either C or C++.

This SDK provides two samples of simple C conduits, which use the Sync-
Manager API to import and export Pilot Memo datato atext file on the PC
(Txtcond, step 1, and step 2).

The SDK also provides source code for the four main conduits of Pilot
Desktop (Memo, Date Book, Address Book and To Do List). These con-
duits are written in C++ and perform a very complex record-level synchro-
nization with the PC that resultsin aperfect mirror-image of the data on the
PC and the Palm OS device. All user changes on either side will be propa-
gated to both sides during this process. These conduits also archive deleted
records to separate files on the PC at the user’s request.

In order to decide which sample conduit to use asamodel for your conduit,
answer the following question:

Will your conduit be performing a record-level mirror-image syn-
chronization between the two devices?

— If not, the simple text conduit examples are the best to follow
— Ifitis, the C++ examples might be the best to follow
This chapter explores several issues you need to consider when deciding
whether to use the existing C++ conduit sample or to write your own. It
discusses these topics:
Conduit Design Questions
Using the Native Synchronization Logic
Record-L evel Synchronization with Pilot Applications
Pilot Desktop OS Native Synchronization Algorithm

Developing Palm OS Conduits 35

Conduit Design Decisions
Conduit Design Questions

Conduit Design Questions

You should note that it is possible to perform record-level, mirror-image
synchronization with a straight - C conduit using only the Sync Manager
API calls, but you can save a great deal of time and effort writing this sort
of conduit by using one of our examples.

Consider the following issues which indicate the extent of the modifica-
tions that one of the synchronization samples requires:

» The samples sync with the four main Pilot ROM applications. If
your conduit syncs with another Pilot application, you will have to
change the data conversion routines between the Pilot and the con-
duits main data structure (a C Base Table subclass).

» The samples depend on unique record 1D’s on both devices when
locating records for comparison. Unique ID’s should always be
present in the Pilot data. If the PC data does not have unique ID’s,
another unique key will have to be used for locating and comparing
records.

* You will most likely have to map the record ID’s of the Pilot to the
record ID’s of the PC application as records are read in from the
PC’s data files. Developers generally choose to store their Pilot-to-
PC mappingsin atext file in the user’s Pilot directory on the PC.

» The sample conduits make extensive use of the status flags associ-
ated with each Pilot record (Deleted, Changed . . .). Issimilar infor-
mation available for the PC data? If it is not, then a copy of the PC
datafrom the previous sync may have to be kept on the PC to do
comparisons against.

» The sample conduits synchronize the Pilot’s categories with the PC.
Does the PC data have categories? Are they modifiable? How well
do they map to the categories on the Pilot? Is there an aternative
way to map the data without losing the category information? The
functions of the Category Manager object may have to be modified
to handle these differences.

» The sample conduits perform two types of synchronization—
FastSync and SlowSync.
The FastSync is highly optimized to limit the amount of data that
must be transmitted between two devices. It makes extensive use of
the modification status flags on both sides.
The SlowSync does not use the status information. All Pilot records
are copied to the PC and compared with their PC counterparts to
determine modifications.

36 Developing Palm OS Conduits

Conduit Design Decisions
Conduit Design Questions

The HotSync manager will determine which type of sync is appro-
priate based on the Pilot’s status information. If the Pilot was previ-
ously synchronized with a different PC, its status flags would have
been cleared and are therefore not accurate with respect to the cur-
rent PC.

Your conduit may or may not elect to handle these two variations.
You may opt to use the same logic for both.

To determine whether you choose to base your conduit on one of the C++
record-level synchronization conduits, or the simpler C conduits, consider
the following issues:

 All of the sample conduits support a concept known as archiving
records. When a user deletes arecord on the Pilot he may opt to
keep an archive copy on the PC. These conduits will recognize this
and will copy the record to an archive file on the PC before com-
pleting the deletion. Your conduit may or may not provide this func-
tion.

* Isthere adefined API for accessing datain the PC files? Isit imple-
mented in C or C++? Thiswill affect the architecture of your con-
duit.

* |syour conduit going to synchronize/import/export only a subset of
the data on the Pilot or PC?

If so, consider using categories on the Pilot to define that subset,
and consider whether or not you want to reset the modification sta-
tus flagsfor all of the records on the PFilot at the conclusion of the

sync.
Also, consider how you will keep track of which subsets of data are
currently on each device.

* Isyour conduit going to access data from multiple PC files/applica
tions or multiple Pilot databases/applications?

If so, consider whether the order of conduit execution will affect the
reliability of the datain question. In general, we don’t recommend
that one conduit attempt to sync the data of multiple applications.

If your conduit accesses the data of other applicationsit should be
either read-only, or for the purposes of updating cross-reference
links between two applications. In the latter case, you should insure
that your conduit runs before that of the other application. See Con-
duit Execution Order.

* Notethat your conduit will be executed for each user/Pilot that
HotSync’swith the PC where the conduit isinstalled. HotSync does
not allow different sets of conduitsto be specified for different us-

Developing Palm OS Conduits 37

Conduit Design Decisions
Using the Native Synchronization Logic

ers. Therefore, your conduit should check the user name field
passed with the SyncProperties structure and use it to decide which
PC datato sync with, if any.

» When synchronizing two applications (PC + Pilot) whose fields do
not match exactly, great care should be taken in mapping the fields
to one another. Thisisthe most critical and user-noticeable design
decision you will make in your conduit development. |s dataloss
acceptable when fields on one side don’t have counterparts on the
other side? If not, the following two strategies have been used suc-
cessfully:

— Hidethe extradatafields on one side in the note field on the
other side

— Cachethe extrafields (from either or both sides) in the samefile
used for record ID mapping on the PC

Using the Native Synchronization Logic

To develop a conduit that uses the synchronization logic provided by the
C++ classes the four native applications use, the conduit must meet the fol-
lowing requirements:

» Beconstructed asaDLL with asingle known “C” entry point

* Bewrittenin C++

» Deriveaclassfrom CBaseMonitor to control overall synclogic and
|mplementing a Conduit. See Control Flow of Pilot Desktop’s Na-
tive Synchronization Logic for details.

» Convert its own record formats into a CBaseRecord subclass using
subclasses of CBaseTable, CBaseLinkConverter, CBaseSchema
and CBaselterator objects

* Rely on HotSync and it’slibraries for all serial communications
The following sections provide additional information:

* Pilot Desktop OS Native Synchronization Algorithm

¢ Record-Level Synchronization with Pilot Applications

¢ Archiving Records

Pilot Desktop OS Native Synchronization

38 Developing Palm OS Conduits

Conduit Design Decisions
Using the Native Synchronization Logic

Algorithm

Most of the default synchronization logic for the sample conduitsresidesin
BaseMon.cpp. This default synchronization will produce identical data on
both platforms (the PC and the Pilot) at the end of the sync.

The default synchronization logic assumes that each PC and device appli-
cation record hasa st at us field to indicate that one of the following con-

ditions has occurred since the last synchronization:
» Therecord has not been modified (No Modify)
» Therecord has just been added (Add)
» Therecord has been modified (Modify)
» Therecord has been deleted (Delete)
» The record has been archived (Archive)

Note: Archive means to save the record in an Archive file and re-
move the record from the current platform.

The conduit compares Pilot records with records in the PC table, and takes
an action based on the status of each record. The following table summa-
rizes the possible synchronization cases and describes the action taken to
synchronize the records.

Pilot PC Action

Add No Record Add the Pilot record to the PC.

No Record Add Add the PC record to Pilot.

Delete No Modify Delete the record on Pilot and the PC.

No Modify Delete Delete the record on Pilot and the PC.

Delete Modify Instead of deleting the Pilot record, replace the Pilot record
with the PC record. Message is sent to the log.

Modify Delete Instead of deleting the PC record, replace the PC record with
the Pilot record. Message is sent to the log.

Modify No Modify Replace the PC record with the Pilot record.

Developing Palm OS Conduits 39

Conduit Design Decisions
Using the Native Synchronization Logic

Pilot PC Action

No Modify Modify Replace the Pilot record with the PC record.

Modify Modify If changes are identical, no action is taken.

Modify Modify If changes are different, add the Pilot record to the PC, and

add the PC record to Pilot. Message is sent to the log.

Archive No Record/ Archive the Pilot record. If the PC record exists, deleteit.
No Modify

Archive Delete Archive the Pilot record. Delete the PC record.

Archivewith Modify Instead of archiving the Pilot record, replace the Pilot record

No Modify with the PC record. Message is sent to the log.

Archive after ~ Modify If the records areidentical, archive the Pilot record and delete

Modify the record from the PC.

Archive after ~ Modify If changes are different, do not archive the Pilot record. Add

Modify the Pilot record to the PC and add the PC record to Pilot.

Message is sent to the log.

No Record/ Archive Archive the PC record. If the Pilot record exists, deleteit.

No Modify

Delete Archive Archive the PC record. Delete the Pilot record.

Modify Archivewith Instead of archiving the PC record, replace the PC record
No Modify with the Pilot record. Message is sent to the log.

Modify Archive after I the records are identical, archive the PC record and delete
Modify the record from Pilot.

Modify Archive after If changes are different, do not archive the PC record. Add
Modify the Pilot record to the PC, and add the PC record to Filot.

Message is sent to the log.

Record-Level Synchronization with Pilot

40 Developing Palm OS Conduits

Conduit Design Decisions
Using the Native Synchronization Logic

Applications

To perform record-level synchronization with the four native applications
on thefirst Pilot device, the third-party database schema should meet the
following guidelines:

* A unique key (usually arecord ID) must be present in each record
of the database. If the unique key of arecord is auser-editablefield,
or combination of fields, comparisons will be somewhat less reli-
able.

Unique ID’sfor Pilot records should be assigned by the Pilot appli-
cation. To do this, anew record is passed to the Pilot (viaa Sync-
Manager call) with an ID of 0. The Pilot will return the assigned ID
number.

* A one-to-one relationship must exist between individual recordsin
both databases.
While it may seem obvious when thinking about an address data-
base (for instance), this becomes an issue when dealing with the Pi-
lot's Date Book database. The Pilot Date Book stores all repeating
event information in asingle physical database record, asit does
with non-repeating events. However, some Desktop PIMs produce
multiple physical database records when they store repeating event
data. This makes record-level synchronization much more difficult.

Archiving Records

For the sample Pilot Desktop conduits, records that are marked ‘ archive’
are placed in the appropriate archive file depending on the application and
category. The archive filename is derived from the category name and ap-
plication extension. For example, an archived Address Book record under
the Unfiled category would be saved in afile called UNFILED.ABA. All
archived records, whether they originate from Pilot or the PC, are stored on
the PC. Archive files can be read into the desktop application using the
QpenAr chi ve command.

During synchronization, after the records marked to be archived are added
to the PC Archivefile, they are deleted from their current platform.

Consider using this feature or asimilar one in your conduit. It can beasim-
ple way of segmenting the data between the PC and Pilot.

We strongly recommend implementing this feature if your conduit sync’s
with one of the standard Pilot applications. Because archiving is afeature

Developing Palm OS Conduits 41

Conduit Design Decisions
Using the Native Synchronization Logic

of the standard Pilot applications, users won’t understand it if it is not sup-
ported in the conduit.

42 Developing Palm OS Conduits

Control Flow of
Pilot Desktop’s
Native
Synchronization
Logic

This chapter examines the default synch behavior provided by the conduits
of the PIM applications included with the first release of Pilot Desktop.
Source code for these conduitsisincluded as part of your Conduit SDK. To
decide whether it makes sense for you to adapt one of these existing con-
duits to fit your application, see Chapter 3, Conduit Design Decisions. To
understand more clearly what you have to do to implement your own con-
duit, look at Chapter 5, Implementing a Conduit.

This chapter discusses the following topics:

Basic Control Flow

Functions Called During Synchronization
Synchronizing with Existing PC Applications
Synchronizing Categories

Basic Control Flow

When the user presses the HotSync button on the cradle, the system goes
through the following steps.
1. HotSync loads the tables library and instantiates

— alocal Tabl e object that holds all application records stored
onthe PC

Developing Palm OS Conduits 43

Control Flow of Pilot Desktop’s Native Synchronization Logic
Functions Called During Synchronization

— aRenot eTabl e object into which Pilot records will be loaded
one at atime for processing.

2. HotSync callsthe C entry point which in turn callsOpenCondui t
passing inaSyncPr operti es structure.

3. From then on, a subclass of CBaseMoni t or (the monitor) isin
charge of the control flow. It iterates through all recordsin the table
by calling SyncGet Next Modi fi edRecor d.

4. The SyncGet Next Modi f i edRecor d. routine callsthe Li nk-
Convert er object to

— Convert the Pilot record into the monitor object’s common for-
mat

— Place the converted record into the Local Tabl e object

5. The monitor object compares the record that was just loaded into
Renot eTabl e with therecordsin the Local Tabl e.

— IfthereisnorecordinthelLocal Tabl e that matchesthat from
the Renot eTabl e, it createsanew record in Local Tabl e
that will later be saved on the PC when the table is saved.

— If thereisarecord with amatching ID, it compares the status of
the two using the synchronization algorithm.

Note sync logic is stored only in the following locations:
* A classderived from CBaseMbni t or contains all the synchroni-
zation logic (see Creating a CBaseMonitor Subclass)

* A classderived from CBaseDTLi nkConvert er performsPC to
Pilot data conversion (categories & records) in both directions (see
Creating a CBaseDTL inkConverter Subclass)

» A classderived from CBaseTable handles adding and removing
records and record locating

Functions Called During Synchronization

44 Developing Palm OS Conduits

Control Flow of Pilot Desktop’s Native Synchronization Logic
Synchronizing with Existing PC Applications

Start
; ObtainRemoteTables() Open device database
| ObtainLocalTables() Open local PC database(s)
I
| : , Read categories from open
I ObtainRemoteCategories() device database
| SynchronizeAppinfoBlock() Sync info (excluding categories)
| .
| : : Sync categories between
I SynchronizeCategories() device and PC
I _ Perform 1 of 4 types of
| Synchronize the records synchronization set by HotSync.
| . Table with highest record count
I Handle record count mismatch copies to other device.
|
| . Place deleted records
| ArchiveRecords() into proper archive files.
' Back up previous PC file,
| SavelocalTables() then save newly sync’ed PC file
I
| SyncBaseSyncFlags() Reset status flag on device.
¥
End

Figure 4.1 Functions Called During Synchronization

Synchronizing with Existing PC Applications

If you have a PC application that you want to synchronize and you want to
use the Pilot Desktop’s native synchronization logic, be aware that the na-
tive logic expects the following:

* A maximum of 16 categories total (PC and device combined); the
category “unfiled” and 15 additional categories.
» That therecord ID is assigned by the device, not the PC.

If your two databases don’t meet these requirements, you need a preproces-
sor to do some work before calling the link converter to do its conversion.

Developing Palm OS Conduits 45

Control Flow of Pilot Desktop’s Native Synchronization Logic
Synchronizing Categories

You might also need a postprocessor to do some work after the link con-
verter has done its conversion.

Synchronizing Categories

Categories are a central data handling concept for al Palm OS applications.
Pilot Desktop’s native logic synchronizes categories first. For more infor-
mation, see Considering Category Manager Modifications before starting
on the records.

46 Developing Palm OS Conduits

Implementing a
Conduit

This chapter helps you develop a conduit that’s based on the C++ classes

that provide the synchronization logic used by the native PIMs. It looksin
some detail at each of the following steps a devel oper must take to imple-
ment such a conduit:

e Providing “C” Entry Points

» Creating a CBaseMonitor Subclass. Includes supplying a construc-
tor that calls the base class constructor, and overriding the manda-
tory virtual member functions. It may also include overriding
additional virtual functions.

» Creating aCBaseDTLinkConverter Subclass. Includes determining
the need for a new converter class, writing the code for a new con-
verter, and placing it in a separate source code file if necessary.

» Creating a CBaseTable Subclass Includes creating subclasses asso-
ciated with CBaseTabl e, overriding some of the virtual functions,
and incorporating necessary information in the header file.

» Considering Category Manager M odifications While many appli-
cations find they can use the native category behavior, you need to
understand how categories are synchronized to decide whether you
can use the native behavior.

Note that in this exploration of adapting the native logic to your application
you will often encounter discussions of classes provided by the library that
implements the native logic. These classes aways have the word “Base” in
them (e.g. CBaseTabl e). Their subclasses can have names you choose,
it's probably best you replace “Base” with aword of your choice.

Providing “C” Entry Points

Every conduit must publishaDl | Mai n() routinefor the to be used by the
Windows operating system and three public “C” entry points (QpenCon-

Developing Palm OS Conduits 47

Implementing a Conduit
Providing “ C” Entry Points

Listing 5.1

dui t, Get Condui t Nane, and Get Condui t Ver si on) to beinvoked
by HotSync. They are discussed in some detail in this section. Place the
code for al four functionsin asingle C++ sourcefile, suchasMY-
COND.CPP.

C Entry Points

extern “C {
t ypedef |ong (*PROGRESSFN) (char*);

Export Func | ong QpenCondui t

(PROGRESSFN, CSyncProperties&);
t ypedef | ong (*POPENCONDUI T)

(PROGRESSFN, CSyncProperties&);

Export Func | ong Get Condui t Name(char*, WORD);
typedef |ong (*PGETCONDU TNAME) char*, WORD);

Export Func DWORD Get Condui t Ver si on()
t ypedef DWORD (* PGETCONDUI TVERSI ON) () ;

}s

The rest of this section discusses:

* Providing a DIIMain Routine. This function has to save the hl n-
st ance parameter which is needed by the class derived from
CBaselMoni t or.

« Providing Entry Point Routines. Three functions must be provided,
OpenCondui t, Get Condui t Nane, and
Get Condui t Ver si on.

Providing a DIIMain Routine

The DIIMain routineisatypical 32-bit WindowsDl | Mai n routine, except
for the saving of the passed in hl nst ance parameter. The CBaselMbni -
t or that determines the control flow needs this instance handle. The Win-
dows operating system automatically calls D | Mai n when it loads the
conduit DLL into memory as aresult of HotSync performing aLoadLi -
brary cal onit.

48 Developing Palm OS Conduits

Implementing a Conduit
Providing “ C” Entry Points

Listing 5.2

DlIMain Startup Routine

Il
11
Il

I

11

Fi | enane: nycond. cpp

Description: Source code for the Wndows
DI Main() function and the Conduit routine
Open Conduit()".

Init global variable to null

H NSTANCE nyl nst = O,
extern “C int API ENTRY
D | Mai n (H NSTANCE hl nst ance,

DWORD dwReason,
LPVA D | pReserved)

i f (dwReason == DLL_PROCESS ATTACH)

{
TRACEO(“ ADDCOND. DLL Initializing!”™);

// Extension DLL one-tine initialization
Af xI ni t Ext ensi onMbdul e(addcondDLL,
hl nst ance) ;

//Insert this DLL into the resource chain
new CDynLi nkLi brary (addcondDLL);

nyl nst = hlnstance;
}
el se if (dwReason ==DLL_PROCESS DETACH)

{
TRACEO(“ ADDCOND. DLL Term nating!”);

/I properly clean up the extension nodul e
Af xTer nExt ensi onMbdul e(addcondDLL) ;

}

return 1 / ok

Developing Palm OS Conduits 49

Implementing a Conduit
Providing “ C” Entry Points

Providing Entry Point Routines
Your Conduit should provide 3 entry point routines, discussed in this sec-
tion:

» The OpenConduit Function

* The GetConduitName Function

* The GetConduitVersion Function

The OpenConduit Function

When HotSync calls QpenCondui t , the conduit carries out all its syn-
chronization duties before returning control to HotSync. HotSync invokes
thisroutine only once, immediately after it has dynamically loaded the con-
duit into memory.

The function is passed two parameters:
A pointer to a callback routine within HotSync that a conduit can
invoke periodically during its activities.

» A pointer to the CSyncPr opert i es object which contains the
characteristics of the current synchronization session (see Listing
5.4).

Because this function resides in the same source codefileas Dl | Mai n, the
nyl nst variable, whichisset by Dl | Mai n, isaccessible (see Providing a
DIIMain Routine.)

Listing 5.3 shows the OpenCondui t function for the address book con-
duit included with your Conduit SDK.

Listing 5.3 OpenConduit Function

Export Func | ong OPENCONDUI T (
PROGRESSFN pFn,
CSyncProperties& rProps)
{
long retval = -1;
if (pFn)
{
CAddr essCondui t Moni tor* pMoni t or;
pMoni tor = new CAddr essCondui t Moni t or (
pFn, rProps, nylnst);

50 Developing Palm OS Conduits

Implementing a Conduit
Providing “ C” Entry Points

if (pMonitor)
{
retval = pMonitor->Engage();
del ete pMonitor;
}
}

return(retval);

The two parameters passed in by HotSync (callback routine and CSyn-
cProperti es instance) are passed into the constructor of the CBase-
Moni t or, adong with thei nst ance handlefrom Dl | Mai n.

CSyncPr operti es isaC++ class, however al of its members are pub-
lic. Asaresult, using it’s similar to using atraditional C structure. CSyn-
cProperti es contans:

» Much of thevital information regarding the nature of the synchroni-
zation process to execute.

» Assisting information (such as filenames) for synchronization of
the local and remote databases.

Other data members serve as function parameters for some of the Sync-
Manager function calls that a conduit must invoke to control the Palm OS
device. HotSync supplies all the information inside CSyncPr operti es.

Listing 5.4 CSyncProperties class

enum eSyncTypes { eFast, eSlow, eHH oPC, ePC oHH,
elnstall, eBackup};

enum eFirst Sync { eNeither, ePC, eHH};

enum eConnType { eCabl e, eMdent;

cl ass CSyncProperties {

public:
eSyncTypes m SyncType,;
char m_Pat hName[256] ;
char m Local Nane[256] ;
char m User Nane [256] ;

Developing Palm OS Conduits 51

Implementing a Conduit
Providing “ C” Entry Points

char* m_Renot eNane[DB_NAVELEN] ;
CDbLi st * m_Renot eDoLi st [DB_NAMELEN] ;
i nt m nRenot eCount ;

CSyncLog* m pSynclLog;

DWCORD m Cr eat or;

WORD m_Car dNo;

DWORD m DbType;

DWORD m_Appl nf oSi ze;

DWORD m Sort | nf 0Si ze;

eFi rst Sync m Fi r st Devi ce;
eConnType m Connecti on;
char m Regi stry[256] ;
HKEY m_hKey;

s

The GetConduitName Function

Thisfunction isthe extern “C” entry point into the conduit which returns
the name to be used when displaying messages regarding this conduit:

Listing 5.5 GetConduitName Example

Export Func | ong GETCONDU TNAME(char * pszNane,
WORD nLen)

{
long retval = -1;
if (::LoadString(nylnst, |DSTR _ADDRESSBOCK,
pszNane, nLen))
retval = 0;
return retval;

The GetConduitVersion Function

Thisroutine isthe extern “C” entry point into this conduit which returns
the conduits version number.

52 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

Listing 5.6 GetConduitVersion Example

Expor t Func DWORD GETCONDU TVERS! ON()
{

}

return ADDRESS CONDUI T_VERSI ON;

Creating a CBaseMonitor Subclass

This section looks in some detail at the CBaseMoni t or class. This class
determines the control flow for the conduit and is at the heart of the native
synchronization logic. Its data members store information about the syn-
chronization process; its member functions determine the behavior. Every
conduit hasto create a subclass of this class because it’s necessary to over-
ride a number of virtual functions that by default have no behavior.

You may decide to use or adapt some of the virtual functions defined by the
conduits of the four native applications (which are included in the SDK),
but you cannot use the class as is because the functions have no behavior at
that level.

You learn about the following aspects of CBaseMoni t or :

CBaseMonitor Basic Structure

CBaseMonitor Data Members

CBaseMonitor Functions Must to Override
CBaseMonitor FunctionsYou May to Override

CBaseMonitor Basic Structure

The CBaseMbni t or class provided in Basemon.h contains data members
necessary for performing all required synchronization activities. When you
derive a subclass from CBaseMbni t or, you must initialize some of these
data membersin order for the base synchronization logic to execute suc-
cessfully. Listing 5.7 is an excerpt of the class definition for

CBaseMoni t or from the header file BASEMON.H in the Conduit SDK;;
it shows the data members that need to be initialized.

Developing Palm OS Conduits 53

Implementing a Conduit
Creating a CBaseMonitor Subclass

Listing 5.7 CBaseConduitMonitor Class Data Members

Il

/] Base Mbnitor

Il

cl ass CBaseCondui t Monitor {
pr ot ect ed:

CBaseDTLi nkConverter*
PROGRESSFN
CBaseTabl e*
CBaseTabl e*
CBaseTabl e*
CBaseTabl e*
CSyncProperties
CCat egor yMyr *
CCat egor yMyr *
BYTE

char

i nt

i nt

CDbGenl nfo

H NSTANCE

m _pDTConvert ;
m_pf nPr ogr ess;

m LocReal Tabl e;

m _LocAr chTabl e;

m BackupTabl e;

m RenReal Tabl e;

m r SyncProperti es;
m _LocCat egory;,
m_RentCat egory;

m RenHandl e;

m ArchFi | eExt [5] ;
m _Tot Renot eDBs;

m _Cur r Renot eDB;

m _DbGenl nf o;

m DI | I nst ance;

The following data members are the most important ones:

« m pDTConvert er pointsto aconverter object that converts
record data obtained from the device into aformat used by the mon-
itor object’s synchronization logic (see Creating a CBaseDTL ink-

Converter Subclass).

* m LocReal Tabl e isthetable that will hold data resident on the

PC.

* m RenReal Tabl e isthetablethat will hold data coming from the

device.

* CSyncProperti es (seelisting 5.4) isacopy of the object
passed into the conduit by HotSync when it invokes the conduit.

Many of the member function prototypes define a parameter asaCBaseR-
ecor d&, then rely on the code you provide to cast the parameter to the

54 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

specific record object that the conduit is Ssynchronizing. Because casting
happens so low in the hierarchy, the core synchronization logic only hasto
deal with CBaseRecor d instances. This helps reduce its compile time ex-
posure to the growing list of header files containing class definitions for
CBaseRecor d subclasss. It also makesit possible to have all conduits use
the same core logic.

CBaseMonitor Data Members
The following data members of CBaseMoni t or are discussed below:

CBaseDTLinkConverter* m pDTConvert
CBaseTable* m_L ocReal Table
CBaseTable* m_LocArchTable
CBaseTable* m_BackupTable
PROGRESSFN m_pfnProgress
CSyncProperties m_rSyncProperties
CCategoryMar* m_L ocCategory
CCategoryMar* m_RemCategory
BYTE m RemHandle

CBaseTable* m_RemReal Table

int m_CurrRemoteDB

CDbGeninfo m_DbGeninfo
HINSTANCE m_DllInstance

CBaseDTLinkConverter* m_pDTConvert

A converter object that isusually created from within the constructor for
the CBaseMbni t or subclass. The converter must understand the record
layouts living on the Palm OS device; it has to transform that record infor-
mation from device format into aformat the synchronization logic can use.

Most conduits derive aclass from CBaseDTLi nkConvert er to handle
new file formats on the Palm OS device (see Creating a CBaseDTLinkCon-
verter Subclass).

PROGRESSFN m_pfnProgress

HotSync supplies this function pointer. It allows the conduit to call back
into HotSync and periodically report its progress. This function pointer

Developing Palm OS Conduits 55

Implementing a Conduit
Creating a CBaseMonitor Subclass

currently has no effect on HotSync, and isin place for possible future ex-
pansion. For now, the only requirement of a monitor subclassisto passthe
first parameter of its constructor down to its base classes constructor, and
ignore this data member.

CBaseTable* m_LocRealTable

This data member is a pointer to the table that contains all the records on
the PC. The function Cbt ai nLocal Tabl es opensand readsin thista
ble.

Your base monitor subclass must create an instance of your subclass of the
CBaseTabl e class (see Creating a CBaseTable Subclass), that is then
used to store the data retrieved by ObtainL ocal Tables.

NOTE: No synchronization can occur unless this data member is
correctly initialized.

CBaseTable* m_LocArchTable

Represents an archive database on the PC; afile which can store all records
from the main database the user marked for archiving. This table and
m_LocReal Tabl e have to be an instance of the same subclass. Initialize
thistable in the function Createl ocalArchTable.

CBaseTable* m_BackupTable

This data member and the m LocReal Tabl e data member must belong
to the same class. This table represents a backup of the original PC data-
base after the last synchronization. It provides a snapshot of the PC data as
it looked after the last synchronization session ended.

A backup table is important when HotSync has to perform a slow synchro-
nization. HotSync decides to perform a slow synchronization when it finds
that no record status flags are set on the device's database. This may occur
if the device initiates a synchronization session with more than one PC be-
cause the built-in synchronization logic clears all the status flags at the end
of asession, in preparation for detecting future record aterations.

CBaseTable* m_RemRealTable

This table object represents the database on the device that will be synchro-
nized with its counterpart on the PC. This table and the

56 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

m_LocReal Tabl e data member must be instances of the same subclass
of CBaseTabl e because the native synchronization logic can’t compare
objects that aren’t instances of the same class. This data member isinitial-
ized when the native synchronization logic invokes the ObtainRemoteTa-

bles virtual member function.

CSyncProperties m_rSyncProperties

This data member is acopy of the SyncPr oper ti es object passed from
HotSync into a CBaseMoni t or subclass constructor. Normally, the con-
structor of a CBaseMoni t or subclass should ssmply pass the CSyn-
cProperti es parameter down to its base class constructor, where a copy
is made into this data member.

CCategoryMgr* m_LocCategory

A pointer to the category manager that contains all the categories that exist
on the PC.

CCategoryMgr* m_RemCategory

A pointer to the category manager that contains all categories that exist on
the device.

BYTE m_RemHandle

If the SyncManager calls ObtainRemoteTables, and if the device success-
fully opens the named database during execution, a handle is returned by
the function call. The returned handle should be stored in the data member
m_RenHandl e, becauseit’s needed by several of the SyncManager func-
tions.

char m_ArchFileExt[5]

Holds the PC file extension that is used when creating alocal archive disk
file. This data member may be populated within the virtual member func-
tion Cbt ai nLocal Tabl es. It should be a NULL-terminated string.

int m_TotRemoteDBs

Holds the number of remote databases to be opened during the current syn-
chronization session. Thisis currently always set to 1 but provided in case a
conduit has to open more than one remote database to synchronize cor-
rectly with alocal PC database(s).

Developing Palm OS Conduits 57

Implementing a Conduit
Creating a CBaseMonitor Subclass

A limitation on the current Pilot device prevents more than one remote da-
tabase to be open concurrently.

int m_CurrRemoteDB

Holds the current offset into an array of remote database names (zero-
based). When a conduit is dealing with more than one remote database,
HotSync hands it an array of database names within the
CSyncProperti es object.

NOTE: This data member must be set to 0 (zero) in the constructor
of the CBaseMbni t or subclass.

CDbGenInfo m_DbGenInfo

Used by SyncManager function calls as a convenience to the built-in syn-
chronization logic. Subclasses of CBaseMoni t or don’t need to perform
any actions on this data member.

HINSTANCE m_Dllinstance

Used by the CBaseMoni t or classfor discovering strings from aresource
file and for logging conflicts. The third parameter in the constructor, which
represents the instance handle for the Conduit.DLL, must be passed down
to the base class constructor. The keyword ExportFunc used in the Open-
Conduit function prototype is defined in the header file SYNCMGR.H and

exports the OpenConduit function from the DLL. This eliminates the need
to placeit in the EXPORTS section of the module definition file.

CBaseMonitor Functions Must to Override

This section discusses the constructor and the virtual functions that you
must override if you derive a class derived from CBaseMoni t or asfol-
lows:

Monitor Constructor and Destructor

ObtainL ocal Tables

ObtainRemoteTables

AddRecord

AddRemoteRecord

ChangeRemoteRecord

58 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

Createl ocalArchTable
FastSyncRecords
SlowSyncRecords
CopyRecordsPCtoHH
CopyRecordsHHtoPC
L ogRecordData

L ogA pplicationName

By default, these virtual functionsin CBaseMoni t or do nothing. Unless
the subclass supplies working code for them, the conduit fails.

NOTE: You can use the code in the Examples section, which is
from the CAddressConduitMonitor subclass, as a template for the
functions you write.

CBaseCondui t Moni t or (PROGRESSFN pFn,
CSyncProperti es&,
H NSTANCE hl nst = NULL)
~CBaseMoni t or ()
virtual |ong Qbtai nRenot eTabl es(voi d)
virtual |ong CbtainLocal Tabl es() (voi d)
virtual |ong AddRecord(CBaseRecord& rFronRec,
CBaseTabl e& r Tabl e)
virtual |ong AddRenot eRecor d(CBaseRecor d& r Rec)
virtual |ong ChangeRenot eRecor d(CBaseRecor d& r Rec)
virtual |ong CreatelLocal ArchTabl e(CBaseTabl e* &)
virtual |ong Fast SyncRecords(void)
virtual |ong Sl owSyncRecords(voi d)
virtual |ong CopyRecordsPCt oHH(voi d)
virtual |ong CopyRecor dsHH oPC(voi d)
virtual |ong LogRecordData(DBaseRecord& rRec,
char* fiel dl nfo)
virtual |ong LogApplicationNane (char* appNane,
WORD, | en)

Developing Palm OS Conduits 59

Implementing a Conduit
Creating a CBaseMonitor Subclass

Prototype

Parameters

Purpose

Return Codes

Example

Monitor Constructor and Destructor

Every subclass of CBaseMonitor that you create has to have a constructor
and destructor. The destructor is a standard C++ destructor. An example for
the constructor is provided below.

CAddr essCondui t Moni tor (PROGRESSFN pFn,
CSyncProperti es& rProps,
HI NSTANCE hl nst)

pFn Pointer to a function existing in HotSync.
rProps Referenceto aCSyncPr operti es object.
hinst Instance handle of the DLL.

Every class derived from CBaseMoni t or must supply its own construc-
tor. This constructor is called from the C entry point routine GpenCon-
dui t aspart of the conduit start-up. This constructor hasto pass all three
parameters to the CBaseMoni t or constructor. Additional responsibilities
are:

» To construct a proper converter object and popul ate the data mem-
ber m pDTConvert withits address.
» To set the following data members:
m Tot RenoteDBs = 1
m CurrRenoteDB = 0O

None.

CAddr essCondui t Moni t or: : CAddr essCondui t Moni t or (PROGRESSFN pFn,

CSyncProperties& rProps, H NSTANCE hlnst)

CBaseCondui t Moni t or (pFn, rProps, hlnst)

m pDTConvert = new CAddr essDTLi nkConvert er

m_Tot Renot eDBs
m_Cur r Renot eDB

(rProps. m pSyncLog, hlnst);
1;
0;

60 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

ObtainLocalTables
Prototype | ong Obt ai nLocal Tabl es(voi d)
Parameters None.

Purpose Populate the three data members m LocReal Tabl e,
m _LocAr chTabl e, and m BackupTabl e.

Description Thisfunction needs to:

 Populate the data member m_L ocReal Table with an instance of a
CBaseTabl e subclass (see Creating a CBaseTable Subclass).
Once this has happened, the new conduit should open its local PC
disk file and read the existing data into this object, setting it up for
synchronization. It's not necessarily a problem if no disk fileis
available from which to read data.

» Create an archive table object and place it into the data member
m _LocAr chTabl e, which also is derived from the class
CBaseTabl e. If your conduit does not support archiving, deleted
records, this data member should remain set to NULL.

» Populate the data member m BackupTabl e, whichisused
mainly by the slow sync logic.

Return Codes 0= success
CONDERR _BAD LOCAL_TABLES

Example

| ong CAddr essCondui t Moni t or: : Gbt ai nLocal Tabl es(voi d)
{

| ong retval = CONDERR_BAD LOCAL_TABLES;

long | Tbl Err;

CString dataFil e(mrSyncProperties. m Pat hNane) ;
dataFile += mrSyncProperties. m Local Nane;

dat aFi | e += DATA EXT,

Developing Palm OS Conduits 61

Implementing a Conduit
Creating a CBaseMonitor Subclass

I/l Create our |local table object and open it's disk file.
m LocReal Tabl e = new CAddressTabl e();
if (mLocReal Table) {
retval = 0;
if (mrSyncProperties. mSyncType != eHHt oPC) {
| Tbl Err = m LocReal Tabl e- >CpenFron{dataFile, 0);
if ('(ITblErr == 0 || | Tbl Err == DERR _FI LE_NOT_FOUND))
retval = CONDERR BAD LOCAL_TABLES;
}
}
/'l Create our |ocal archive table object
if ('retval)
m _LocArchTabl e = new CAddr essTabl e();

if (m.LocArchTabl e)

{
/1l Set Archive File Extension
strcpy(mArchFi | eExt, ARCH VE FI LE EXT);

/] Create Backup tabl e object
if (mrSyncProperties. mSyncType == eFast ||
m r SyncProperties. m SyncType == eS| ow)

{
i f ((mBackupTabl e = new CAddressTabl e()) == NULL)
retval = CONDERR BAD LOCAL_TABLES;
}
}
el se

retval = CONDERR BAD LOCAL_TABLES;

return(retval);

}

ObtainRemoteTables

Prototype | ong (bt ai nRenot eTabl es(voi d)

62 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

Parameters None.

Purpose Populate the two data members m RenReal Tabl e and m RenHandl e.
The chief purpose of this function isto instruct the Palm OS device to open

a particular database that will be synchronized with alocal PC database.

This routine should create a database if a failure of the open function indi-

cates that none exists.

Return Codes 0 = success
CONDERR_BAD_REMOTE_TABLES

Example

| ong CAddr essCondui t Moni t or: : Qbt ai nRenot eTabl es(voi d)

{

long retval;

/1 Call into SyncManager.DLL to open the Renote database

retval =

SyncCpenDB(m r SyncProperti es. m Renot eName[m Cur r Renot eDB], 0,
m RenHandl e) ;

/Il Create renote dataBase, if it's not there (check sync type)
if (retval == SYNCERR FI LE_NOT_FOUND &&
m r SyncProperties. m SyncType != eHH oPC) {
CDbCr eat eDB dbl nf o;
menset (&bl nfo, 0, sizeof(dblnfo));
dbl nfo. m Creat or m r SyncProperti es. m Creator;

dbl nf 0. m Fl ags = eRecord;
dblnfo.mCardNo = (BYTE)mr SyncProperties. m CardNo;
dbl nfo. m Type = mrSyncProperties. mDbType;

strcat (dbl nf o. m Nane,
m r SyncProperties. m Renot eNane[m Curr Renot eDB]) ;
if (!'(retval = SyncCreateDB(dblInfo))) {
m RenHandl e = dbl nfo. m Fi | eHandl e;

}

Developing Palm OS Conduits

63

Implementing a Conduit
Creating a CBaseMonitor Subclass

/'l Need a table to hold converted renote records (one at a tine)
if ('retval)

{

if (!'(mRenReal Tabl e = new CAddressTabl e()))
{
Syncd oseDB(m RenHandl e) ;
retval = CONDERR BAD REMOTE TABLES;
}

}

return(retval);

}

AddRecord

Prototype | ong AddRecord (CBaseRecor d& r FronRec,
CBaseTabl e& r Tabl e)

Parameters rFromRec Record to be added to Table object.
rTable Table object that is to receive new record.

Purpose To populatether Tabl e table object with anew record using ther Tabl e
record object). The main purpose of this routine is to cast the generic in-
coming parameters to the specific table object needed by the conduit. The
routineis called by the CBaseMoni t or generic synchronization logic,
where it does not have the typing information necessary to deal with all
possible CBaseRecor d subclasses. This function relies on a member
function of the CBaseTabl e class, which adds a new record then popu-
lates it with information passed into it. (See AppendDupl i cat eRecor d
of the CBaseTabl e class.)

Return Codes 0 = success
CONDERR_ADD_LOCAL_RECORD

Example

| ong CAddr essCondui t Monitor:: AddRecord(CBaseRecord& rFronRec,
CBaseTabl e& r Tabl e)

{

64 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

long retval =0;

/] Cast the paraneters to our own specific object types
CAddr essTabl e& rToTabl e = (CAddr essTabl e&) r Tabl e;
CAddr essRecor d& r FronRecord (CAddr essRecor d&) r Fr onRec;

/1l Instantiate a new record object to represent the fresh row
CAddr essRecord toRec(rTable, 0);

i f (rTabl e. AppendDupl i cat eRecord(rFronRecord, toRec))
retval = CONDERR _ADD LOCAL_ RECORD;

return(retval);

AddRemoteRecord
Prototype | ong AddRenot eRecord (CBaseRecord& rRec)
Parameters rRec Record to be added to the remote database.

Purpose Add anew record to the remote database and obtain the newly assigned
unique record ID.

 Allocate enough memory for the device format record layout.

» Convert the passed-in table record to the format needed by the de-
vice. Thisis done by the ConvertToRemote function in the link con-
verter.

» Use the SyncManager to send the device data to the Pam OS de-
vice.

» After the SyncManager call, obtain the new unique record ID as-
signed by the device and store it in the ID field of the passed-in
record object.

Thisfunction is called by the CBaseMoni t or generic synchronization
logic, where it does not have the typing information necessary to convert
the base record object to the specific record layout used by the device.

Return Codes 0 = success

Developing Palm OS Conduits 65

Implementing a Conduit
Creating a CBaseMonitor Subclass

CONDERR_ADD_REMOTE_RECORD
CONDERR_CONVERT _TO_REMOTE_REC

Example

| ong CAddr essCondui t Moni t or: : AddRenot eRecor d(CBaseRecor d& r Rec)
{

CRawRecor dl nf o rawRec;

CAddr essRecord & LocRec = (CAddressRecord&)r Rec;

| ong retval CONDERR_ADD REMOTE_RECORD;

nmenset (& awRec, 0, sizeof (rawRec));
rawRec. m Fil eHandle = m RenHandl e; // renote file handle
rawRec. m Recl d =0 ;
/1 Pal m CS devi ce assigns new Recld

/1 Alocate nenory for rawRecord. m pBytes
if (!'All ocateRawRecor dMenory(rawRec, ADDRESS RAW REC MEM)) {
/1l Convert record data for renote, upon return grab new
/| Recor dl d.
if (!(retval = m pDTConvert->Convert ToRenot e(
rLocRec, rawRec))) {
if (!(retval = SyncWiteRec(rawRec)))
r Rec. Set Recordl d(rawRec. m Recl d);
}
el se
retval = CONDERR_CONVERT_TO REMOTE_REC,
/'l Free nenory not needed anynore
if (rawRec. m Total Bytes > 0 && rawRec. m pByt es)
del ete rawRec. m pByt es;
}

return(retval);

ChangeRemoteRecord
Prototype | ong ChangeRenot eRecord (CBaseRecor d& r Rec)

Parameters rRec Record to be overwritten in the remote database.

66 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

Purpose To alter an existing record in the remote database on the device. The record
islocated by its unique key, the record ID.

» Ask for the unique record ID present in the passed-in record object.
(Thiswill be used as akey to look up the matching record on the
device))

* Allocate enough memory to hold the converted record format.

» Call on the converter data member to do the actual data conversion
from a base record object to the record layout acceptable by the re-
mote database.

e Cadll the SyncManager function SyncW i t eRec to send the data
to the Palm OS device.

Return Codes 0 = success

CONDERR_CHANGE_REMOTE_RECORD
CONDERR_CONVERT _TO REMOTE_REC

Example

| ong CAddr essCondui t Moni t or : : ChangeRenot eRecor d

{

(CBaseRecor d& r Rec)

CRawRecor dl nf o rawRec;

CAddr essRecord & LocRec = (CAddressRecord&)r Rec;
|l ong retval = CONDERR CHANGE REMOTE RECORD,

I nt | ocRecl d;

nmenset (& awRec, 0, sizeof (rawRec));
rLocRec. Get Recordl d(| ocRecl d) ;

rawRec. m Fi | eHandl e = m RenHandl e;

/1 renote file handle

rawRec. m Recl d = (DWORD) | ocRecl d;
/'l key used for record | ocation

/1 Allocate nmenory for rawRecord. m pBytes

if (!'Allocat eRawRecor dMenory(rawRec, ADDRESS RAW REC MEM) {
/'l Prepare record data for renote, upon return grab
/'l new Recordl d.

Developing Palm OS Conduits 67

Implementing a Conduit
Creating a CBaseMonitor Subclass

if (!mpDTConvert->Convert ToRenot e(r LocRec, rawRec))
retval = SyncWiteRec(rawRec);

el se
retval = CONDERR_CONVERT _TO REMOTE_REC,

if (rawRec. m Total Bytes > 0 & & rawRec. m pByt es)
del ete rawRec. m pByt es;

}

return(retval);

CreateLocalArchTable
Prototype | ong O eatelLocal ArchTabl e (CBaseTabl e*& pBase)

Parameters pBase Reference to atable pointer receiving allocated
memory.

Purpose To create a conduit-specific table object to work with all archived records.
The generic synchronization engine calls this virtual function when it's
processing deleted records that optionally get stored in an archive database
after removal from the main table. The archive table has to use the same
schema as the main table (see CBaseSchema Class).

Return Codes 0 = success

-1 = could not allocate archive table object

Example

| ong CAddr essCondui t Moni tor:: O eat eLocal ArchTabl e(
CBaseTabl e*& pBase)

{
|l ong retval = -1;
pBase = new CAddressTabl e();
I f (pBase)
retval = O;

return(retval);

68 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

Prototype
Parameters

Purpose

Return Codes

Example

FastSyncRecords
| ong Fast SyncRecor ds(voi d)
None.

Perform an optimized record-level synchronization involving only the
modified records from the Palm OS device. Each conduit hasto supply this
function because it has to create application-specific record objectsused in
traversing each of the two tables to be synchronized.

The function traverses the remote database and reads in records that have
been modified since the last synchronization session. The device knowsthe
modification status of arecord; the status is available through the Sync-
Manager function SyncReadNext Modi f i edRec. If no records have
been modified since the last synchronization session, the SyncManger re-
turns an end-of-file error on the first read and no more processing is neces-
sary.

Once aremote record is obtained, the inherited base class routine Syn-
chroni zeRecor d isinvoked with the record. This routine contains al
the native synchronization conflict resolution logic.

0 = Success
CONDERR _BAD_REMOTE _TABLES
CONDERR_CONVERT_FROM_REMOTE_REC

| ong CAddr essCondui t Moni t or: : Fast SyncRecor ds(voi d)

{

| ong

retval = 0, err = 0;

CRawRecor di nfo r awRecor d;
CAddr essRecor d | ocRecord(*m LocReal Tabl e, 0);
CAddr essRecord backRecor d(*m BackupTabl e, 0);

nmenset (& awRecord, 0, sizeof (rawRecord));
rawRecord. m Fi | eHandl e = m RenHandl e;

Developing Palm OS Conduits 69

Implementing a Conduit
Creating a CBaseMonitor Subclass

/'l renmote file handle
rawRecord. m Recl d = 0;
/1 Pal m OS device assigns Recld

i f (!mRenReal Tabl e)
ret ur n(CONDERR_BAD REMOTE TABLES) ;
/Il Create record object to be a holding buffer for converted
/1l renote raw records. To store field values in a record
/'l object, our table object requires they be positioned in
/] order.
CAddr essRecord renRecord(*m RenReal Tabl e, 0);
i f (m RenReal Tabl e- >AppendBl ankRecor d(renRecord))
r et ur n(CONDERR_BAD REMOTE_TABLES) ;

/1l Al'locate nmenory for raw record conversion buffer.
retval = Al ocat eRawRecor dMenor y(
rawRecord, ADDRESS RAW REC MEM ;

/1 The main loop iterating over the renote nodified records.
while (lerr & !'retval) {
if (!'(err = SyncReadNext Modi fi edRec(rawRecord))) {

/'l Convert fromraw record format to PC record object
if (!'m pDTConvert->Convert FronRenot e
(remRecord, rawRecord)) {

/1 Call inherited base class function to

/'l synchroni ze the record

retval = Synchroni zeRecor d(

renRecord, |ocRecord, backRecord);
el se
retval = CONDERR_CONVERT FROM REMOTE REC;
}
menset (rawRecord. m pBytes, 0, rawRecord. m Tot al Bytes);

}
if (err & err !'= SYNCERR_FI LE_NOT_FOUND)

LogBadReadRecord(err);

70 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

/'l Free nenory allocated for raw record conversion buffer.
if (rawRecord. m Total Bytes > 0 & rawRecord. m pByt es)
del ete rawRecord. m pByt es;

/'l Send all

nodi fied records to the Pal m CS device. Supply a

/'l record object to the inherited base class nenber function.
if ('retval) {
CAddr essRecord | oc2Rec(*m LocReal Tabl e, 0);

ret val

}

= SendRenot eChanges(| oc2Rec) ;

return(retval);

Prototype
Parameters

Purpose

SlowSyncRecords
| ong Sl owSyncRecords (voi d)
None

Applications use SlowSync when they can't rely on the status flags to be
accurate. If the user has performed a HotSync with another PC, the status
flags are cleared. SlowSync uses the backup file, which isacopy of thefile
after the last HotSync, to determine which records have been added,
changed, or deleted on the device since the last HotSync. To perform a
SlowSync, every record must be read in from the device. This contrasts
with FastSync which reads only the modified records.

All the PC records have already been read into memory (into the
m_LocReal Tabl e table on the PC). For each PC record, if the statusFag
isNone, it’s set to Pending. Device records are read in one at atime.

Since the Palm OS device status flags may not be accurate, SlowSync pro-
ceeds as follows: If the device statusFl ag is None, then that record is com-
pared against the Backup file record to determine if the device record has
been added, changed, or deleted. Then, each device record is compared
with the record in the PC table (which contains the PC records along with
the newly merged device records) to determine if the device record should
be added to the PC table, replace the current PC record, cause the PC
record to be deleted from the PC table, or be added to the Archivefile. If
the record exists on both the device and the PC and the PC record has a

Developing Palm OS Conduits 71

Implementing a Conduit
Creating a CBaseMonitor Subclass

Pending statusFl ag, the statusFlag is changed to its appropriate value. This
isimportant because in the second pass, if the statusFlag is Pending, that
means that the record does not exist on the device and it does exist on the
PC with no changes, therefore the record was deleted on the device so it
needs to be deleted from the PC. After each device record has been read
with its sync action performed to the PC table, then a second pass is made
to the PC table. For each PC record that is marked as modified (statusFag !
= None), amessage will be send to the device to update that device record.
After al the appropriate records are updated on the device and the status-
Flagsfor each PC record have been cleared, then the PC tableis ready to be
written to the PC as the new PC file.

Example

| ong CAddr essCondui t Moni tor:: Sl owSyncRecor ds(voi d)

{

| ong ret val =0, tEerr, err = 0O;
WCORD rawRecl x 0;

CRawRecordlnfo rawRecord;

CAddr essRecord backRecord(*m BackupTabl e, 0);
CAddressRecord | ocRecord(*m LocReal Table, 0);
CBasel t er at or | oclterator(*m LocReal Tabl e);

CString backFile(mrSyncProperties. m Pat hNane);
backFil e += mrSyncProperties. m Local Nane;
backFi | e += BACK EXT;

menset (& awRecord, 0, sizeof (rawRecord));
rawRecord. m Fi | eHandl e = m RenHandl e; /! Renote File Handl e

/'l Read in PC Backup file (file after |ast sync)
t Err = m BackupTabl e- >QpenFr on{ backFile, 0);

if (!'mRenReal Tabl e)
r et ur n(CONDERR_BAD REMOTE_TABLES) ;

I/l Create a holding place for converted renote field val ues.
/1 W need at |east one valid record (with valid fields) in the

t abl e.

72 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

CAddr essRecord renRecord(*m RenReal Tabl e, 0);

i f (m_RenReal Tabl e- >AppendBl ankRecor d(renRecord))
ret ur n(CONDERR_BAD REMOTE TABLES) ;
else if ((retval = Al ocat eRawRecor dMenory(rawRecord,
ADDRESS _RAW REC_MEM))
return(retval);

/'l Set each PC record with statusFlag = None to Pendi ng
err = loclterator. FindFirst(locRecord, TRUE);
while (lerr)
{
if ((!locRecord.lsArchived()) && | ocRecord.|sNone())
| ocRecord. Set St at us(fl dSt at usPENDI NG ;

err = |loclterator. Fi ndNext (|l ocRecord, TRUE);
}

err = 0;
rawRecl x = 0O;
while (lerr & !retval)

{
rawRecor d. m Recl ndex = rawRecl x;

/! Read && Convert each renpte record fromraw format to
/! CAddressRecord
if (!'(err = SyncReadRecor dByl ndex(rawRecord)))
{
/] Convert fromraw record format to CAddressRecord
if (!'m pDTConvert->Convert FronRenot e(renRecord, rawRecord))

{
/'l Synchroni ze the record obtai ned fromthe handhel d
retval = Synchroni zeRecord(renRecord, |ocRecord,
backRecord);
}
el se

retval = CONDERR CONVERT FROM REMOTE REC;

Developing Palm OS Conduits 73

Implementing a Conduit
Creating a CBaseMonitor Subclass

rawRecl x++;
}
if (err !'= SYNCERR FI LE _NOT_FQOUND)
LogBadReadRecord(err);

/1l Free the nenory allocated for the raw record
if (rawRecord. m Total Bytes > 0 & rawRecord. m pByt es)
del ete rawRecord. m pBytes;

/1 Send all nodified records to the PalmCS device. Gve a
/'l specific record object.
if ('retval)
{
CAddressRecord | oc2Rec(*m LocReal Table, 0);
retval = SendRenot eChanges(| oc2Rec);

}

return(retval);

CopyRecordsPCtoHH
Prototype | ong CopyRecor dsPCt oHH (voi d)
Parameters None
Purpose Copiesal records from the PC to the device with the exception of records
marked for archiving or deletion. Records marked for archiving are added
to the archive table and later added to the appropriate archive files.

Exanpl e

| ong CAddr essCondui t Moni t or: : CopyRecor dsPCt oHH(voi d)
{

| ong retval =0, err = 0;
CAddressRecord | ocRecord(*m LocReal Table, 0);
CBasel t er at or | oclterator(*mLocReal Tabl e);

74 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

/'l Delete all Renote (Handhel d) records

i f (SyncPurgeAl | Recs(m RentHandl e))

{
retval = CONDERR_REMOTE_RECS NOT_PURGED;
return(retval);

}

/'l For each PC record ...
err = loclterator. FindFirst(locRecord, FALSE);
while (lerr & !'retval)

{
if (locRecord.|sArchived())

{
/1 Add PC record to Archive table
retval = O ear Stat usAddRecord(| ocRecord, *m LocArchTabl e);
/1 Mark for deletion
| ocRecord. Set St at us(fl dSt at usDELETE) ;
}
else if (!locRecord.IsDeleted()) // record not del eted
{
/1l Add the record to the Handhel d by virtual worker
[/ functi on.
| ocRecord. Set St at us(f | dSt at usNONE) ;
if (retval = AddRenot eRecord(l ocRecord))
LogBadAddRecor d(| ocRecord);
}
err = loclterator. Fi ndNext (|l ocRecord, FALSE);
}

/1l Purge all deleted records fromthe PC table
if (!retval)
retval = m LocReal Tabl e- >Pur geDel et edRecords();

return(retval);

Developing Palm OS Conduits 75

Implementing a Conduit
Creating a CBaseMonitor Subclass

CopyRecordsHHtoPC
Prototype | ong CopyRecor dsHHt oPC (voi d)
Parameters None
Purpose Copiesall the records from the Palm OS device to the PC except for the
records marked for archiving or deletion. Records marked for archiving are

added to the archive table and later added to their appropriate archive files.

Example

| ong CAddr essCondui t Moni t or: : CopyRecor dsHHt oPC(voi d)
{

| ong retval = 0, err = 0;
CRawRecordli nfo rawRecord;
WORD reclx = 0O;

nmenset (& awRecord, 0, sizeof (CRawRecordlnfo));
rawRecord. m Fi | eHandl e = m RenHandl e; /'l renotefilehandle
rawRecor d. m Recl ndex = reclx;

if (! m RenReal Tabl e)
r et ur n(CONDERR_BAD REMOTE_TABLES) ;

I/l Create a holding place for converted renote field val ues.
/1 W need at | east one valid record (with valid fields) in
/1 the table.
CAddr essRecord renRecord(*m RenReal Tabl e, 0);
i f (m_RenReal Tabl e- >AppendBl ankRecor d(renRecord))

ret ur n(CONDERR_BAD REMOTE TABLES)

/1l Allocate nmenory for rawRecord. m pBytes, return if Bad!
if (retval = Al ocat eRawRecor dMenor y(rawRecord,
ADDRESS RAW REC MEM))
return(retval);

// Read in each Pal m CS device record one at a tine
while (!'retval && 'err)

76 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

}

rawRecord. m Recl ndex = reclx ;
if (!'(err = SyncReadRecor dByl ndex(rawRrecord)))
{
/] Convert fromraw record format to CAddressRecord
if (!m pDTConvert->Convert FronRenot e(renRecord, rawRecord))
{
if (renmRecord.|sArchived())
/] Add device record to Archive table
retval = O earStatusAddRecord(renRecord,
*m_LocAr chTabl e) ;

else if (renRecord.|sDel eted() == FALSE)
/1 Add device record to PC table
retval = O ear Stat usAddRecord(renRecord,
*m _LocReal Tabl e);

}

el se
retval = CONDERR CONVERT FROM REMOTE REC,
}

recl x++;

if (err !'= SYNCERR FI LE_NOT_FOUND)

LogBadReadRecord(err);

/1l Free nmenory for rawRecord data
if (rawRecord. m Total Bytes > 0 & rawRecord. m pByt es)

del ete rawRecord. m pBytes;

/] Delete all records nmarked for deletion on the handhel d
if ('retval && SyncPurgeDel et edRecs(m RenHandl e))

LogBadPur ge(CONDERR_REMOTE _RECS NOT_PURGED) ;

return(retval);

Developing Palm OS Conduits 77

Implementing a Conduit
Creating a CBaseMonitor Subclass

LogRecordData

Prototype | ong LogRecor dDat a(

Parameters rRec Pointer to a CBaseRecord.
fieldinfo Buffer to store field values.

Purpose Addsinformation about arecord to the log.

Return Codes None

Example

CBaseRecor d& r Rec,
char* fi el dl nfo)

voi d CAddr essCondui t Moni t or: : LogRecor dDat a(CBaseRecor d& r Rec,

{

char * errBuff)

CAddressRecord & LocRec = (CAddressRecord&)rRec;

CString csStr;
i nt len = 0;

rLocRec. Get Nane(csStr);
len = csStr. GetLengt h();
if (len > 20)

len = 20;

strcpy(errBuff, " ")

strncat(errBuff, csStr, len);

strcat(errBuff, ", ");

rLocRec. GetFirst(csStr);
len = csStr. Get Lengt h();
if (len > 20)

len = 20;

strncat(errBuff, csStr, len);

strcat(errBuff, ", ");

78 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

r LocRec. Get Conpany(csStr);
len = csStr. GetLengt h();
if (len > 30)

len = 30;

strncat(errBuff, csStr, len);

LogApplicationName
Prototype | ong LogApplicationNane (char* appNane, WORD | en)

Parameters appName Buffer in which to store the application name.
len Length of appNane.

Purpose Retrievesthe application name, for example “Address Book” that will ap-
pear in the log.

Return Codes None

Example

voi d CAddr essCondui t Moni tor: : LogAppl i cati onNane(char* appNane,
WORD | en)
{
/1 Load string fromthe resource file.
::LoadString(mD I Instance, | DSTR ADDRESSBOOK, appNane, |en);

}

CBaseMonitor Functions You May to Override

The following section provides alist of virtual functions that a subclass of
CBaseMoni t or may chooseto override. Note that for these functions, the
base class provides enough built-in functionality to allow any new conduits
to execute and function without supplying code for these routines. How-
ever, the new conduit may want to disable some of the logic of the base

Developing Palm OS Conduits 79

Implementing a Conduit
Creating a CBaseMonitor Subclass

Prototype
Parameters

Purpose

Return Codes

class by overriding some of these virtual functions and supplying essen-
tially hollow code.

A CBaseMoni t or subclass responsible for its own existing file formats
will most likely override the following member functions:

e Savel ocalTables
* Purgel ocalDeletedRecs
* ApplyRemotePositionM ap

Note that in contrast to the examples above, these examples can't be used
as atemplate but just illustrate one way to implement the logic. The logic
you need to implement may look completely different.

SavelLocalTables
| ong Savelocal Tabl es (const char*)
char* Disk file name to save records into.

Writes al records residing in the data member m_LocReal Tabl e toa
disk file using the passed-in string as its name. By default, the base class
commits the contents of them LocReal Tabl e object to disk using MFC
serialization logic.

Note that this function does have behavior if you don’t overrideit. If you
want data formats that differ at all from those in the four native device ap-
plication, you must override it.

If your conduit synchronizes with afile format different from the MFC se-
rialization provided by the CBaseTabl e class, it should override this
member function. The core synchronization logic invokes this routine after
all data has been exchanged with the device. The data present in the
m_LocReal Tabl e datamember are fully synchronized at the time this
function is called. Thiswould be the logical point to convert the records
contained inthem LocReal Tabl e object into the format required as out-
put from the conduit.

0 = success
-1 = could not save the data

80 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

DefaultLogic

/11

This is the default logic in the base cl ass

| ong CBaseCondui t Moni tor:: SaveLocal Tabl es (const char* fil eNane)

{

11
/1
/11
/1
/11
/1
11

CString destFile(fil eNane);

| ong retval = m LocReal Tabl e->SaveTo(destFile);
return(retval);

This shows how a Monitor subclass may override the nenber
function and invoke its own processing logic for the

freshly synchroni zed tabl e object. The new data nenber

m CGenerator is assuned to have been created during the

overri dden version of the QotainLocal Tabl es() nenber function.

| ong CMyCondui t Moni tor:: SaveLocal Tabl es(const char* fil eNane)

{

long | Err = O;
CString destFile(fil eName);

if (mGCenerator) {
CAddr essRecord addr Rec(*m LocReal Tabl e);
| Err = m Cener at or - >Post ProcessTabl es
(*m LocReal Tabl e, addrRec);
}

return(l Err);

PurgeLocalDeletedRecs
Prototype | ong PurgelLocal Del et edRecs (voi d)

Parameters None

Developing Palm OS Conduits 81

Implementing a Conduit
Creating a CBaseMonitor Subclass

Purpose

Return Codes

Default Logic

The default logic (provided by the base class CBaseMoni t or) of thisrou-
tine iterates through the data member m LocReal Tabl e and physically
removes each record marked for deletion. The native synchronization logic
processing or the desktop software may have marked records for deletion.
It's not necessary to override this function unless a conduit’s concerned
about proprietary file formats.

If your conduit synchronizes with afile format that’s different from the
MFC serialization provided by CBaseTabl e, it should override this mem-
ber function. The core synchronization logic invokes this routine before
Savelocal Tabl es. A conduit performing a post-processing pass on the
m_LocReal Tabl e object may actually want deleted records to remain in
the table so it can detect them. For this to occur, the conduit may need to
override this member function just to make it inactive.

0 = success
-1 = could not purge the data

/[l This is the default logic in the base cl ass
| ong CBaseCondui t Moni t or: : PurgelLocal Del et edRecs()

= m _LocReal Tabl e- >Pur geDel et edRecor ds() ;

{
| ong retval
return(retval);
}
I

/1 This shows how a Monitor subclass nmay override the nenber
/1 function and supply no code, in effect neutralizes this

/] function.

| ong CWCondui t Moni tor: : PurgeLocal Del et edRecs()

{
}

return(0);

82 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseMonitor Subclass

Prototype
Parameters

Purpose

Return Codes

Default Logic

ApplyRemotePositionMap
| ong Appl yRenot ePosi ti onMap (voi d)
None

The default logic (provided by the base class CBaseMboni t or) issuesare-
guest to the device asking for a sorted list of itsrecord IDs. Once obtained,
it's applied to the order of recordsin them LocReal Tabl e table object.
As aresult, the desktop software will display its records in the same order
asthe device.

If the destination for the synchronized datais a proprietary file format, your
conduit needsto override this function so it does nothing. This saves execu-
tion time by eliminating unnecessary traffic over the serial link.

0 = success
-1 = could not apply the cross mapping

/[l This is the default logic in the base cl ass
| ong CBaseCondui t Moni t or: : Appl yRenot ePosi ti onMVap()

{

/1l To view this code |ook in the basenon.cpp file
/1 residing in the \condsdk\src directory.

11

/1 This is shows how a Monitor subclass nmay override the nenber
/1l function and supply no code, which in effect neutralizes this

/] function.

| ong CMyCondui t Moni t or: : Appl yRenot ePosi ti onMap()

{
}

return(0);

Developing Palm OS Conduits 83

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Creating a CBaseDTLinkConverter Subclass

Any conduit has to convert record layouts between those on the device and
those on the PC. If your conduit exchanges data with the native applica-
tions on the device, you can use the one of the subclasses of

CBaseDTLi nkConvert er which are provided as sample code. Other-
wise, you must create a subclass and initialize data members and provide
virtual functions as necessary.

The Conduit.DLL isresponsible for adhering to the proper data structures.
Conduits pass records destined for the device through alink converter,
which formats records in alayout to match the device record layout. This
conversion facilitates data storage on the device. The conduits provided
with the Desktop pass any raw record data retrieved from the device
through their own link converter, which formats the data into alayout that
matches the record layout on the PC. Using this link converter streamlines
the development process by utilizing the existing record synchronization
logic used between the device and the Desktop to facilitate record compar-
isons during the synchronization process.

The CBaseDTLi nkConvert er instanceis created by an instance of
CBaseMoni t or or by an instance of one of its subclasses and stored in-
side that instance. The converter understands the remote database record
layouts and converts them into a form the native synchronization logic can
use.

You learn about these aspects of aCBaseDTLi nkConvert er:

CBaseDTLinkConverter Basic Structure
CBaseDTLinkConverter Data Members
CBaseDTLinkConverter FunctionsYou Must Override
CBaseDTLinkConverter FunctionsYou May Override

CBaseDTLinkConverter Basic Structure

This section provides a brief introduction to the most important aspects of
the link converter:

The Log Object
Casting of Member Functions

Carriage Returns and Line Feeds

84 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

The Log Object

TheCBaseMoni t or givestheCBaseDTLi nkConvert er aCSynclLog
data member. Thislog object allows the link converter to record important
events that the desktop software user can view. The CSyncLog classis de-
fined in TABLES.DLL

Casting of Member Functions

Just as for CBaseMoni t or, many of the member function prototypes de-
fine aparameter as a CBaseRecor d&, then rely on the code you provide
to cast the parameter to the specific record object (an instance of a subclass
of CBaseRecor d) that the conduit is synchronizing. This makes it possi-
ble to have all conduits use the same core logic.

Carriage Returns and Line Feeds

All converters must deal with the carriage return/ line feedsissue. The
Palm OS device uses Macintosh-style text conventions; it allows only line
feeds but not carriage returns embedded in any of itstext fields. Con-
versely, in the PC/conduit environment, carriage returns appear in text
fields along with new lines. As aresult, the converter has to do the follow-
ing:
* From PC to Device. A converter must strip al carriage returns

from the text fields of a given record before sending them to the

Palm OS device. If aconverter failsto strip out carriage returns, the

device applications may not be able to handle the new data.

* From Deviceto PC. A converter must add carriage returns into all

text fields (which contain only new lines) coming from the Palm OS
device.

CBaseDTLinkConverter Data Members

TheCBaseDTLi nkConvert er classcontainsafew datamemberswhich
assist in performing the data conversion. These data members are main-
tained by the CBaseDTLi nkConvert er classand made available for use
by subclasses.

Normally the code for a converter is placed in a separate source file from
that of the monitor. The four conduits provided with the PAlm OS Desktop
software each have a source file which holds the converter code (AD-
DLINK.CPP, TODLINK.CPP, DATLINK.CPP, or MEMLINK.CPP). List-
ing 5.8 is an excerpt of the class definition for the

Developing Palm OS Conduits 85

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Listing 5.8

CBaseDTLi nkConvert er class present in the header file BASEMON.H
from the conduit SDK.

Base Converter Data Members

/1
/| Base Converter class
/1
cl ass CBaseDTLi nkConverter {
pr ot ect ed:
CSyncLog* m pLog;
TCHAR* m Tr ansBuff;
H NSTANCE mD || nstance;
s

CSyncLog*m_plLog

A pointer to the log object created by the HotSync program and handed
into the link converter class as a parameter on its constructor line. The log
isavailable for recording short statements that alert the end user about ac-
tions to take. The link converter should neither create nor destroy this
pointer.

TCHAR* m_TransBuff

A pointer to memory which is allocated/destroyed by the CBaseDTLi nk-
Convert er class. No subclass should attempt to maintain this memory
pointer. This memory buffer is used by some of the inherited utility func-
tions which adds or removes line feeds aon string buffers that are ex-
changed with the device.

HINSTANCE m_Dllinstance

Thisinstance handle is passed in on the constructor line, and originates
from the QpenCondui t startup routine. Thisinstance handle is made
available to the converter should it decide to extract strings from aresource
filefor usein alog entry. It can also be used for other Windows-related
functions which need an instance handle.

86 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Prototype

Parameters

Purpose

Return Codes

Example

CBaseDTLinkConverter Functions You Must
Override

This section first provides alist and then the definition and purpose of the
constructor and virtual functions that a class derived from

CBaseDTLi nkConvert er isrequired to override. By default, the base
class version of the virtual functions do nothing. Unless the subclass sup-
plies working code for them, the conduit will fail to convert any records
from the Palm OS device.

CAddressDTL inkConverter Constructor and Destructor
ConvertToRemote

ConvertFromRemote

ConvertToRemoteCategories

ConvertFromRemoteCategories

CAddressDTLinkConverter Constructor and Destructor

Like every C++ class, the link converted needs a constructor and destructor.
The constructor is discussed in some detail, the destructor is a standard
C++ destructor.

CAddr essDTLi nkConverter (CSyncLog* pLog,
HI NSTANCE hl nst)

pLog Pointer to alog object (may be NULL).
hinst Instance handle of the DLL.

Each class derived from CBaseDTLi nkConver t er must supply itsown
constructor. It’simportant that this constructor pass both parametersto its

base class constructor, where they are stored on the data members that are
then inherited to the subclass.

None

CAddr essDTLi nkConvert er: : CAddr essDTLi nkConvert er
(CSyncLog* pLog, HI NSTANCE hl nst)
: CBaseDTLi nkConverter(pLog, hlnst)

Developing Palm OS Conduits 87

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Prototype

Parameters

Purpose

Return Codes

Example Body

ConvertToRemote

| ong Convert ToRenot e (CBaseRecord &rRec,
CRawRecordl nfo &l nfo)

rRec Reference to a PC format record object to supply
unconverted information.

rinfo Reference to a structure containing a buffer for device
format record data.

This member function prepares a data record for transmission from the PC
to the device. The first parameter contains avalid PC database record (in
the form of a CBaseRecor d subclass) whose data must be extracted and
formatted into the aformat the Palm OS device can read. The second pa-
rameter has amemory buffer r I nf 0. m pByt es large enough to contain
the device version of the record data. The function must place the newly
formatted record information into this memory buffer, which the SyncMan-
ager transmits over to the device.

The exampleillustrates how to popul ate the CRawRecor dl nf o structure
handling both the fixed portion and variable length portion of an Address
Book record. Also shown is how the PC hasto strip any carriage returns out
of itstext fields before sending them to the device. Thisis arequired activ-
ity and if omitted, may cause the device to crash when its application at-
tempts to read that data.

0 = success
-1 = failed to convert record

CAddr essDTLi nkConverter: : Convert ToRenot e(CBaseRecor d& r Rec,

{

| ong retval

CRawRecor dI nf 0& r I nf 0)

:O’

CAddr essRecor d& r Addr Rec = (CAddressRecord &)r Rec;

/1l cast to proper class

rinfo.mRecSi ze = 0;

88 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

r Addr Rec. Get Recordl d(tenplnt);

/! set Recordl D

rinfo.mRecld = (long)tenplnt;
r Addr Rec. Get Cat egoryl d(tenpl nt);

/]l set Category ID

rinfo.mCatld = tenplnt;
rinfo.mAttribs = 0;

if (rAddrRec.|sPrivate())

/] deal with attri butes
rinfo.mAttribs | = PRI VATE BI T,

I f (rAddrRec.|sArchived())

rinfo.mAttribs | = ARCH VE BI T,

if (rAddrRec.|sDeleted())

rinfo.mAttribs | = DELETE BIT;

I f (rAddrRec.|sMdified() || rAddrRec.|sAdded())

pBuf f

rinfo.mAttribs |= DRTY_BIT;
= (char*)rlnfo. mpBytes;
/'l get a handy pointer

/1 Last Nane field

retval = r Addr Rec. Get Nane(tenpStr);
len = tenpStr. Get Lengt h();

if (len!=0) {

}

flags. nane = 1;
[l Strip the CRs (if present)
//place result directly into pBuff
pSrc = tenmpStr. GetBuffer(len);
destLen = Stri pCRs(pBuff, pSrc, len);
tenpStr. Rel easeBuffer(-1);
pBuf f += destLen;
rinfo.mRecSi ze += dest Len;

/'l accumul ate variable | ength

[l FirstNane field
retval = rAddrRec. GetFirst(tenpStr);
len = tenpStr. Get Lengt h();

Developing Palm OS Conduits 89

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

if (len!=0) {
flags.firstNanme = 1;
[l Strip the CRs (if present)
/1l place result directly into pBuff
pSrc = tempStr. CetBuffer(len);
destLen = Stri pCRs(pBuff, pSrc, len);
tenpStr. Rel easeBuffer(-1);
pBuf f += dest Len;
rinfo.mRecSi ze += dest Len;
/1l accumul ate variable I ength

/1l Deal with all other fields...
return(retval);

ConvertFromRemote

Prototype | ong Convert FronRenote (CBaseRecord &rRec,
CRawRecordl nfo &l nfo)

Parameters rRec Referenceto PC format record object to receive converted
information.

rinfo Reference to structure holding arecord from device.

Purpose Converts the remote data record (which exists in the second parameter
r I nf o in as packed bytes), into datathat can be set into the first parameter
(aCBaseRecor d subclass). Information is pulled out of ther | nf o pa
rameter and set into the r Rec parameter.

Subclasses must override thisroutine; the CBaseRecor d instance arriving
in the first parameter must be cast to the specific record object used on the
local PC database. Shown here is an example of adding carriage returns
into text fields (Last Name), coming from the Palm OS device that contain
only new lines.

Return Codes 0 = success
-1 = failed to convert record

90 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Example

CAddr essDTLi nkConverter:: Convert FronRenot e (CBaseRecord& rRec,

{

CRawRecor dl nf o0& r | nf 0)
| ong retval = 0;

CAddr essRecor d& r Addr Rec = (CAddressRecord &)r Rec;
r Addr Rec. Set Recordl d(r 1 nfo. m Recld);

/1l grab and set the record Id
r Addr Rec. Set Cat egoryl d(rinfo.mCatld);

/1l grab and set Category Id

If (rinfo.mAttribs & ARCH VE BIT)
/'l check and set archive flag
r Addr Rec. Set Ar chi veBi t (TRUE) ;
el se
r Addr Rec. Set Ar chi veBi t (FALSE) ;

If (rinfo.mAttribs & PRIVATE BIT)
/'l check and set private flag
r Addr Rec. Set Pri vat e(TRUE) ;

r et val
el se
r et val

r Addr Rec. Set Pri vat e(FALSE) ;

retval = r Addr Rec. Set St at us(f | dSt at usNONE) ;
/'l clear record status field

if (rinfo.mAttribs & DELETE BIT)
/'l check and set Del ete status
retval = rAddrRec. Set St at us(fl dSt at usDELETE) ;
else if (rinfo.mAttribs & DRTY_BIT)
/'l check and set Modified status
retval = r AddrRec. Set St at us(f | dSt at usUPDATE) ;

[l Only convert body if renote record is *not* del eted..

if (!'(rinfo.mAttribs & DELETE BIT)) {

Developing Palm OS Conduits 91

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

pBuff = (char*)rlnfo. mpBytes;
/1 get a handy pointer

/1 Last Nane field (deal with adding carriage returns)
i f (flags.name) ({
/1 Add any necessary CRs,
/[lresult is placed in m TransBuff
AddCRs(pBuff, strlen(pBuff));
asString = mTransBuff;
retval = r Addr Rec. Set Nane(aStri ng);
pBuff += strlen(pBuff) + 1;
}
el se
retval = r Addr Rec. Set Nane(csEnpty);
I/ FirstName field (deal with adding carriage returns)
if (flags.firstNanme) {
/1l Add any necessary CRs,
[lresult is placed in m TransBuff
AddCRs(pBuff, strlen(pBuff));
aString = m TransBuff;
retval = rAddrRec. SetFirst(aString);
pBuff += strlen(pBuff) + 1;
}
el se
retval = r Addr Rec. Set Fi rst (csEnpty);

/! Convert all other fields.......

}

return(retval);

ConvertToRemoteCategories

Prototype | ong Convert ToRenot eCat egori es(
CDbGenl nf 0& dbl nf o,
CCat egoryMgr* cat Myr)

92 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

Parameters dbinfo Reference to an object containing the Appl nf 0Bl ock.
pCatMgr Pointer to a CategoryManager object.

Purpose Preparesthe Appl nf 0Bl ock structure (which contains the categories and
iscontained in dBI nf 0) to be sent to the Palm OS device. The second pa-
rameter holds the synchronized categories (in a PC formatted object) which
need to be converted and placed into the first parameter.

Each Palm OS database stores its categories inside the Appl nf oBl ock
along with other proprietary information. The categories exist at awell-
known byte offset into this ApplnfoBlock.

The utility routine Repl aceCat egor i es, which moves categories from
the Cat egor yManager object to the Appl nf oBIl ock, isdefined in the
CBaseDTLi nkConvert er classthat all its subclasses may invoke.

Return Codes 0 = success
CONDERR_CONVERT _TO REMOTE_CATS

Example

CAddr essDTLi nkConverter:: Convert ToRenot eCat egori es
(CDbGenl nfo& dbl nfo,
CCat egoryMyr* cat Myr)

{
| ong retval = CONDERR _CONVERT_TO REMOTE_CATS;
char* pBuff;
i f (dblnfo.mpBytes) {
pBuf f = (char*)dbl nfo. m pByt es;
*((WORD *) pBuff) = 0;
/'l Cear the category dirty fl ags
pBuf f += si zeof (WORD) ;
/]l offset to specific spot for cats
retval = CBaseDTLi nkConverter:: Repl aceCat egori es
(pBuff, catMyr);
}
return(retval);
}

Developing Palm OS Conduits 93

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

ConvertFromRemoteCategories

Prototype | ong Convert FronRenot eCat egori es
(CDbGenl nf 0& dbl nfo, CCategoryMyr* cat Myr)

Parameters dbinfo Reference to an object containing the Appl nf 0Bl ock.
pCatMgr Pointer to a CategoryManager object.

Purpose Extractsthe category strings and IDs (that have just been delivered from
the device) from dbl nf o and placesthem into cat Myr .

Categories generally exist at awell-known byte offset into the Appl n-

f 0Bl ock, and agiven subclass should know its particular placement of
categories. A utility routine defined in the CBaseDTLi nkConverter is
available for all subclassesto assist in extracting raw category information
to place into the PC-formatted CategoryManager object.

Return Codes 0= success
CONDERR_CONVERT _TO LOCAL_CATS

Example

CAddr essDTLi nkConverter:: Convert Fr onRenot eCat egori es
(CDbGenl nf o0& dbl nf o,

CCat egoryMyr* cat Myr)

{
| ong retval = CONDERR_CONVERT_TO LOCAL_CATS;
char* pBuff;
short wrlenp;

i f (dblnfo.mpBytes) {
pBuf f = (char*)dbl nfo. m pByt es;
wlenp = *((WORD*) pBuff);
wlenp FI i pWord(wTenp) ;
/1l two byte words arrive in Mtorola fornmat

pBuff += si zeof (WORD) ;
/'l offset into category area

94 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

retval = CBaseDTLi nkConverter:: Extract Categories
(pBuff, wrlenp, catMyr);
}

return(retval);

CBaseDTLinkConverter Functions You May
Override

A class derived from CBaseDTLi nkConvert er can optionally override
these virtual member functions.

virtual |ong Convert PositionMap(
CPositionlnfo &I nfo);

Theroutine Convert Posi t i onMap does perform some processing by
default.

It runs through the record ID’s and flips the DWords to Intel format.

virtual void Synchroni zeAppl nf oBl ock(
CDbGenl nf 0& dbl nf o,
CBaseTabl e& r Tabl e,
eSyncTypes syncType,
eFirst Sync firstSync)

This routine does nothing but is available in case a conduit is awvare of cus-
tom information stored in the Appl nf oBl ock by an application residing
on the device; in effect any information except the categories, which are
handled separately.

CBaseDTLinkConverter Utility Member Functions

The following member functions are available for all subclasses of
CBaseDTLi nkConvert er. They help you dea with date formats arriv-
ing from the Palm OS device. They aso help you deal with two and four
byte integer values that exist in Motorolaformat on the device and must be
flipped to Intel format on the PC. Other utility functions to assist in strip-

Developing Palm OS Conduits 95

Implementing a Conduit
Creating a CBaseDTLinkConverter Subclass

ping and adding carriage returns into text fields, and extracting category
strings and IDs.

| ong Convert ToTdDat e(TdDateType& r TdDat e,
TdTi meTyp& r TdTi e,
|l ong | Date);

| ong Convert FronTdDat e (TdDat eType& r TdDat e,
TdTi meType& r TdTi ne,
| ong& rDate);

unsi gned | ong SwapDWr dToMot or (unsi gned | ong) ;

unsi gned | ong SwapDWordTol ntel (unsigned | ong);

unsi gned short FlipWrd (unsigned short);

int StripCRs (TCHAR* pDest, TCHAR* Src, int len);

| ong AddCRs (TCHAR* pSrc, int len);

| ong Extract Categories(char *catLabel sPtr,
short dirtyCats,
CCat egoryMyr* cat Myr) ;

| ong Repl aceCat egori es(char *catLabel sPtr,

96 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseTable Subclass

CCat egoryMgr* cat Myr) ;

Creating a CBaseTable Subclass

The information the conduit uses to synchronize an application on the de-
vice with one on the PC is stored in two table objects, which must both be
instances of CBaseTabl e or one of its subclasses. The tables are used as
follows:

» The conduit loads all locally stored records of an application in an
instance that’'sthem LocReal Tabl e data member of CBase-
Moni t or.

» The conduit then retrieves remote records, one at atime and stores
them in the instance that’'s them RenReal Tabl e data member of
CBaselMbni t or. It compares each record with the record that has
the same recordI D (record IDs are assigned by the device).

» Most applications also provide a backup table that is used during
SlowSync operations.

* |If an application allows usersto archive records that they deleted on
the device, it aso has to provide an archive table. The four native
application allow usersto do this.

If you have decided to use the native synchronization logic, the work you
must do with the tablesis actually rather limited. However, becauseit’s
useful you both understand what you must do and why you must do it, this
section actually discusses this topic from both points of view:

* How to Set Up Tables provides step by step instructions for setting
up the tables.

» MoreAbout Tables provides more detailed information about what
the tables do, including some code examples from the ToDo appli-
cation.

How to Set Up Tables

This section explains what an application needs to do to synchronize
records and categories appropriately using the native synchronization logic.

The process differs dlightly depending on the application; see the source
code of the four native applications for examples of similar but different
setups. The examplesin this section come mostly from the ToDo conduit

Developing Palm OS Conduits 97

Implementing a Conduit
Creating a CBaseTable Subclass

because its records are more complex than those of the address book used
in previous sections.

To use the native synchronization logic, you need to do the following:

1. Create asubclass of CBaseTabl e. Thisclassisthe “glue’ that
holds all things together; some of the information it needsisin the
classes associated with it (which you create in the steps below).

— Create a subclass of CBaseTabl e with an appropriate con-
structor and destructor.

— Override the virtual function AppendDupl i cat eRecor d.
The function lets each record work on all itsfields; it takes care
of the details of copying from one record to a new record. See
AppendDuplicateRecord function from ToDo base table.

— |If your application requires specialized sorting, optionally over-
ride AppendBl ankRecor d.

Note that you don’t have to override the standard GpenFr omand
SaveTo functions; the functions use the information in your sub-
class of CBaseSchenmna to determine how to write the datain and
out.

2. Create a subclass of CBaseSchemnma with an appropriate construc-
tor and destructor and override the Di scover Schena virtua
function. (see DiscoverSchema function from CToDoSchema)

The schemais atemplate of the record, the table uses that informa-
tion when synchronizing the record.

3. Create a subclass of CBaseRecor d

This subclass needs to have one virtual function for each applica-
tion-specific field of the record. For example, for recordsin the
ToDo PIM, functions Set Descri pti on, Set DueDat e, Set -
Conpl et ed, Set Pri ori ty, and so on are provided. The record
inherits the fields Status, RecordI D and Category 1D, so your sub-
class does not need to take care of them (see DiscoverSchema func-
tion from CToDoSchema)

Notethat if the record class and the schema class don’t agree on the
fieldsin your records, problems will result.

4. Create asubclass of CBasel t er at or

The iterator class contains behavior for sorting and finding things;
functions that apply to all records at once, for example, sorting by
field. You must overrideits virtual functions with functions that call
the same function in the base class. You may also decide to add

98 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseTable Subclass

functionsto your class that perform special actions, for example,
sorting by priority.

More About Tables

This section provides more detailed information about the classes that
allow CBaseMbni t or to synchronize your database and its records. For
each class, you learn about the functions you must override, likely or re-
quired additions, and some information about the inherited behavior as ap-
propriate. Code examples from the ToDo conduit are included.

You learn about these classes:

CBaseTable Class
CBaselterator Class
CBaseSchema Class
CBaseRecord Class

Note that all table classes can take advantage of alot of prepackaged func-
tionality provided in bfields.h. Thisincludes the ability to sign things, dif-
ferent operators, and functionality that helps with serializing fields. For
example, if you tell afield to seriadizeitsdlf, it knows how to do it. When
you define something as an integer field, you get alot of functionality with
it.

CBaseTable Class

A conduit using the native synchronization logic uses four table instances
whileit's executing: local table, remote table, archive table, and backup
table (SlowSync only). Each table has to be an instance of the same sub-
class of CBaseTabl e.

From CBaseTabl e, the table inherits some behavior aswell as placesto
store pointers to the schema, record, and iterator objects. These objects
contain some of the application-specific record information and are dis-
cussed below.

CBaseTabl e isdefined in basetable.h

The only virtual function you must overridein CBaseTabl e is
AppendDupl i cat eRecor d. Here's an example from the ToDo conduit.

Developing Palm OS Conduits 99

Implementing a Conduit
Creating a CBaseTable Subclass

Listing 5.9 AppendDuplicateRecord function from ToDo base table.

FEEEEEEEEr bbb bbb r i bbb bbby

/1
11
/1
/11
/1
/11
/1
/11
/1
/11
/1
11
/1
/

/11
11
/11
11

11
/11
11
/11

Functi on: AppendDupl i cat eRecor d()

Description: Appends a new blank record then fills it with
t he passed paraneter 'rFronRec'.

Allows a new set of fields (a row to be added
to table object. The set of fields conprises one
full record, and initially each has bl ank data
Next the passed in record object is used as a
source of fields whose values are duplicated in
the newly appended ' bl ank' set of fields.

* Not e* Cenerally only called fromthe ConduitMonitor /
obj ect during synchronization procedures.

Par anet er s:
r From - Record object to copy data from
rTo - Ends up positioned at the new row of fields

in the table
bAIlFlds - If true replicates ALL fields including **Recordl D
- If false does *not* duplicate the recordld or Status

Ret ur ns: 0 - Success

LEETETEEEEEE i bbb bbb iirrr
| ong CToDoTabl e: : AppendDupl i cat eRecor d(CBaseRecor d& r From

CBaseRecord& r To, BOCL

bAl | FI ds)

{

i nt t enpl nt ;
CString tenmpStr;
| ong tenpLong, len, retval = -1;

CToDoRecord& r FronRec = (CToDoRecor d&) r From
CToDoRecor d& r ToRec = (CToDoRecord&)r To;

100 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseTable Subclass

11

/1l Source record nmust be positioned at valid data.
11

i f (rFronmRec. m Positioned)

{
if (!CBaseTabl e:: AppendBl ankRecor d(r ToRec))

{
if (bA I Flds)

{
if (!'rFronRec. Get Recordl d(tenplnt))

retval = rToRec. Set Recordl d(tenplnt);

if (!'(retval = rFronRec. Get Status(tenplnt)))
retval = rToRec. Set St atus(tenplnt);

retval = rToRec. Set ArchiveBit (rFronRec.|sArchived());

}
if ('retval && !rFronRec. Get Description(tenpStr))

retval = rToRec. Set Description (tenpStr);

if ('retval && !rFronRec. Get DueDat e(t enpLong))
retval = rToRec. Set DueDat e(t enpLong);

if ('retval)
retval = rToRec. Set Conpl et ed(r FronRec. | sConpl eted());

if ('retval & !rFronRec. GetPriority(tenplint))
retval = rToRec. SetPriority(tenplnt);

if ('retval)
retval = rToRec. Set Private(rFronRec.IsPrivate());

if ('retval &% !rFronRec. Get Categoryl d(tenplnt))
retval = rToRec. Set Cat egoryl d(tenplnt);

if ('retval)

{
rFronRec. Get Not e(tenpStr);

Developing Palm OS Conduits 101

Implementing a Conduit
Creating a CBaseTable Subclass

len = tempStr. GetLengt h();
if (len > 0)
retval = rToRec. Set Note(tenpStr);
}
}
}

return(retval);

}

The table class relies on a schema, record, and iterator object for informa-
tion about the records your conduit synchronizes. You therefore must create
subclasses of CBaseSchena, CBaseRecor d, and CBasel t er at or,
discussed in the next three sections.

CBaseRecord Class

The CBaseRecord classis one of the places where information about your
recordsis stored.

Thisinformation is actually made known to the system in severa ways.

» FieldIDsprovidetheID for each field in your conduit’s header file.
Here's a partial example from tdtable.h, which defines the To Do
table class:

#def i ne t dFLDRecordl D 0
#defi ne t dFLDSt at us 1
#defi ne t dFLDPosi ti on 2
#defi ne t dFLDDesc 3
#def i ne t dFLDDueDat e 4

» A D scover Schenma function you must supply inside your
schema subclass that defines the template of the record (see Discov-
erSchema function from CToDoSchema).

» A virtua set and avirtual get function for each record, for example,
Set Descri pti onand Get Descri pti on or Set DueDat e
and CGet DueDat e. Each function fills in the corresponding record
using the information in the schema.

The MODFILTER_STURPID flag set by this function sets the record
dirty whenever it's touched. Thisis usually recommended.

102 Developing Palm OS Conduits

Implementing a Conduit
Creating a CBaseTable Subclass

Here's an example of the Set Descr i pt i on function from the
ToDo record.

Listing 5.10 SetDescription function in CToDoRecord

| ong CToDoRecord: : Set Descri pti on(CString& rDesc)

{
BOOL autoFlip = FALSE
int currStatus = 0O;
| ong retval = DERR_RECCRD NOT_PGCsI TI ONED,

CStringFiel d* pFld = NULL;

if (mPositioned & (pFld = (CStringFi el d*)
m Fi el ds. Get At (t dFLDDesc)))
{
if (mwMbdAction == MODFI LTER STUPI D)
{
Cet Status(curr Status);
if (currStatus !'= fl dStat usADD)
{
CStringField tnpFl d(rDesc);
i f (pFl d->Conpare(& npFl d))
aut oFl i p = TRUE;
}
}
if (!pFld->SetVal ue(rDesc)) /'l Set new field val ue
{
if (autoFlip)
Set St at us(f | dSt at usUPDATE) ;
retval = 0;
}
}

return(retval);

}

Developing Palm OS Conduits 103

Implementing a Conduit
Creating a CBaseTable Subclass

Listing 5.11

CBaseSchema Class

The Schema class contains information the record object uses inside the
SetDescription function to set up the record. Here's an example from the
ToDo conduit:

DiscoverSchema function from CToDoSchema

| ong CToDoSchena: : D scover Schema(voi d)

{
m Fi
m_Fi
m Fi
m_Fi
m Fi
m_Fi
m Fi
m_Fi
m Fi
m_Fi
m Fi
m_Fi

el dsPer Row = 10;

el dTypes.
el dTypes.
el dTypes.
el dTypes.
el dTypes.
el dTypes.
el dTypes.
el dTypes.
el dTypes.
el dTypes.
el dTypes.

Set Si ze(m Fi el dsPer Row) ;

Set At (t dFLDRecor dI D, (WORD) el nt eger) ;
Set At (t dFLDSt at us, (WORD) el nt eger) ;
Set At (t dFLDPosi ti on, (WORD) el nt eger) ;
Set At (t dFLDDesc, (WORD) eString);
Set At (t dFLDDueDat €, (WORD) eDat e) ;
Set At (t dFLDConpl et ed, (WORD) eBool) ;
Set At (tdFLDPriority, (WORD) el nt eger) ;
Set At (t dFLDPri vat e, (WORD) eBool) ;
Set At (t dFLDCat egoryl D, (WORD) el nt eger) ;
Set At (t dFLDNot e, (WORD) eString);

/]l Be sure to set the 3 common fields' position

m_Recor dl dPos

= tdFLDRecor dl D

m Recor dSt at usPos = t dFLDSt at us;

m_Cat egor yl dPos
m Pl acenent Pos

return(0);

t dFLDCat egor yl D
t dFLDPosi ti on;

CBaselterator Class

The CBasel t er at or class holds functions that perform actions on all
records, such as searching and sorting them. Here’s how the classis defined
at the top level:

104 Developing Palm OS Conduits

Implementing a Conduit
Considering Category Manager Modifications

Listing 5.12 CBaselterator Class

cl ass TABLES DECL CBaselterator

{
public:
CBasel t er at or (CBaseTabl e&) ;
~CBasel t er at or 0);
| ong UnSort (void);
| ong SortByRecordld (void);
| ong Sort ByRecordSt at us (void);
| ong SortByCatld (void);
| ong SortByPl acenentField (void);
| ong Fi ndFir st (CBaseRecor d&,
BOOL ski pDels = TRUE);
| ong Fi ndNext (CBaseRecor d&,
BOOL ski pDels = TRUE);
| ong Fi ndByRecordl d (int nRecld, CBaseRecordg&,
BOOL ski pDels = TRUE);
| ong FindByCatld (int nCatld, CBaseRecordg&,
BOOL ski pDels = TRUE);
| ong Fi ndByPl acenment Fi el d (i nt nPl aceKey, CBaseRecordg&,
BOOL ski pDels = TRUE);
| ong Cet At (CBaseRecord&, long | RowO fset);
| ong Get Current RowPosi tion(l ong& r Curr Rowd f set) ;
//long SetTableDirty (void); /1l Flips mValidTable to FALSE
}

Considering Category Manager Modifications

Categories are “buckets’ in the database to which records are assigned,;
they include, for example, Business and Personal or other, user-defined cat-
egories. The native applications aways synchronize categoriesfirst; thisis

Developing Palm OS Conduits 105

Implementing a Conduit
Considering Category Manager Modifications

done by BaseMonitor standard logic inside FastSync. After categories are
set up, records are synchronized.

NOTE: Many developers find they can use the native category be-
havior as is.

There are several restrictions on using categories:
* The maximum number of categoriesis 16 (Palm OS device and
desktop combined). This includes the category unfiled.
» By default, each category has an index, an ID, and a name.
» Category |Ds are assigned on the device
The category manager is actually part of the tables library. The category

manager knows how to add, delete, and rename categories. It knows about
the categories' Index, ID, Name, and FileName.

In effect, the category manager knows how to find categories and serialize
them in and out.

Listing 5.13 CategoryManager Class
cl ass TABLES DECL CCategoryMgr : public CObject
{
DECLARE SERI AL(CCat egor yMyr)
public:
CCat egor yMyr () ;
~CCat egor yMyr () ;
voi d Del et eAl | Cat egori es(BOCL bNai l Unfiled = TRUE);
CatError GCenFileNanme (CString& csFileName, CString& csCat Nane);
i nt CGet Freel ndex ();
i nt Cet Next AddI D ();

Cat Error Add(CCat egory* pCategory);
Cat Error Del ete(int nlndex);
Cat Error Renane(int nlndex, CString& csNane);

106 Developing Palm OS Conduits

Implementing a Conduit
Considering Category Manager Modifications

Cat Error Fi ndFirst(CCategory*& pCategory);

Cat Error Fi ndNext (CCat egor y*& pCat egory);

Cat Error Fi ndNane(CString& csNane, CCategory*& pCategory);
Cat Error Fi ndl ndex(i nt nlndex, CCategory*& pCategory);
CatError FindlD(int nlD CCategory*& pCategory);

i nt GetCount ()
{ return (mCategories.|IsEmpty() ? O :
m Cat egories. GetCount ()); }

virtual void Serialize(CArchive& archive);

¥

In most cases, no modificationsto category behavior are required. If you do
decide you need specialized category management, you have several op-
tions:

» Usethelink converter to have categories correspond to the format
expected by the native synchronization logic.
* Ignore categories atogether.

» Create a subclass of the CategoryManager class an provide virtual
functions or data members to work with your categories.

Developing Palm OS Conduits 107

Implementing a Conduit
Considering Category Manager Modifications

108 Developing Palm OS Conduits

SyncManager
Function Calls

This chapter lists all SyncManager function calls, organized as follows:

Session-Oriented Calls

File-Oriented Calls

Record-Oriented Calls

Utility Calls

A completelist of error codesis provided in Error Codes.

Session-Oriented Calls
The session-oriented API consists of two calls.
» SyncRegisterConduit
¢ SyncUnRegisterConduit

SyncRegisterConduit

Purpose Check whether a conduit isregistered. If it isn’t, the conduit is registered
internally by the HotSync manager.

Prototype | ong SyncRegi st er Conduit (CONDHANDLE &)

Parameters CONDHANDLE Referenceto CONDHANDLE that is
populated.

Result SYNCERR NONE
SYNCERR_COMM_NOT _INIT
SYNCERR_REMOTE_CANCEL_SYNC

Developing Palm OS Conduits 109

SyncManager Function Calls

File-Oriented Calls

Description

Purpose
Prototype

Parameters

Result

Description

Thisroutineis called when a conduit DLL first begins its synchronization
activities. It has to be called by every conduit to prepare the device for syn-
chronization. If the conduit doesn’t make this call, synchronization cannot
take place.

SyncUnRegisterConduit
Unregister a conduit.
| ong SyncUnRegi st er Condui t (CONDHANDLE)

CONDHANDLE Conduit handle received from a
SyncRegi st er Condui t call.

SYNCERR_NONE
SYNCERR_COMM_NOT _INIT

This call allows the device to clean up memory and resources following
synchronization.

File-Oriented Calls

The file-oriented function calls provide file manipulation of the databases
on the device.

All remote databases exist on amemory card. In thefirst Pilot release, only
one memory card is present on the device, referred to as card #0. A memory
card may store databases in one of two areas, either RAM or ROM. When
opening or creating a remote database, it is necessary to indicate which of
the memory cards the database isto reside upon.

The figure below illustrates the layout of aremote Pilot database. It is not
necessary to know this layout, however it does show the components that
can be manipulated by the file-oriented API.

110 Developing Palm OS Conduits

SyncManager Function Calls
File-Oriented Calls

File Header Last Sync Date

Data Records UniquelD2 | Cat | Attribs *p

Figure 6.1

Database Name

Number of Records

| Applnfo (Categories)

Applnfo Block *p

Y

- Sortinfo Block *p Sorting Information

UniquelD1 | Cat | Attribs | *p >

Record Body

|| Remaining Records... Record Body

Remote Database Layout

The Appl nf 0Bl ock and Sor t | nf oBl ock are variable-length blocks of
information that a caller can read/write to the database. For the four built-in
Pilot applications, the ApplnfoBlock containsthelist of 16 category strings
which are associated with a database. Currently the SortInfoBlock is un-
used by the built-in applications, however if a new databaseis created on
the device, the caller may store whatever they wish in this variable length
block. The figure also illustrates the fixed portion of data records contain-
ing the unique record ID (assigned by the Pilot operating system), the cate-
gory 1D, and an attributes byte, signifying the status of the individual
record (Add/Modify/Delete). Records that are deleted through the API
SyncDeleteRecord(), are actually only marked for deletion, where the at-
tribute byte has a single bit set to indicate the record is deleted. To actually
remove the physical space from the database which the (deleted) record oc-
cupies, the APl SyncPurgeDel etedRecs() must be called.

The file-oriented APl includes these calls:;

SyncCloseDB
SyncCreateDB
SyncDeleteDB
SyncOpenDB

Developing Palm OS Conduits 111

SyncManager Function Calls

File-Oriented Calls

Purpose
Prototype
Parameters

Result

Purpose
Prototype

Parameters

Result

Description

* SyncReadDBA pplnfoBlock
* SyncReadDBSortlnfoBlock
* SyncResetSyncFlags

SyncWriteDBA pplnfoBlock
SyncWriteDBSortlnfoBlock

SyncCloseDB

Close the currently open database on the device

| ong Syncd oseDB (BYTE f Handl e)

fHandle Database file handle from an open or create call.

SYNCERR_NONE
SYNCERR _FILE_NOT_OPEN

SyncCreateDB
Create a new database on the Palm OS device.
| ong SyncCreat eDB (CDbCreat eDB& rDbSt at s)

rDbStats Reference to a CDbCr eat eDB structure (see
Description).

SYNCERR_NONE,

SYNCERR _FILE_ALREADY_EXISTS

SYNCERR _FILE_TOO MANY_FILES
SYNCERR _REMOTE_BAD_ ARG

Creates a new database on the Palm OS device with the name specified in
the CDbCr eat eDB structure.

cl ass CDbCr eat eDB

{
public:
BYTE m Fi | eHandl e;

112 Developing Palm OS Conduits

SyncManager Function Calls
File-Oriented Calls

Purpose

/1 Upon return gets filled in by SyncMyr. Dl |
DWORD m Creat or;

/'l Supplied by caller, obtained from DbLi st
eDbFl ags m Fl ags;

/1l Supplied by caller, Res/Rec/RAM

BYTE m_Car dNo;
/'l Supplied by caller, target card #
char m_Nane[DB_NAVELEN] ;

/1l Supplied by caller, target DBase Nane
DWCRD m Type;

/1 for exanple sysFileTApplication
WORD m Ver si on;

¥

Upon success, the structure member m Fi | eHandl e containsavalid file
handle to access the new remote database. When finished using this new
handle, the application hasto call SyncC oseDB to close the handle.

Before calling this function, you have to fill out some of the structure mem-
bers which influence the newly created database.

* Them Fl ags member may contain either of the following e Db-
FI ags values:

— eRecor d indicates a record-oriented database (holding data
records)

— eResour ce indicates a resource-oriented database (usually
storing code).

* The structure member m_Type must contain the hexadecimal val-
ues for the characters that indicate the type of the database being
created, for example:

— sysFi | eTAppl i cat i on contains application resources such
as executable code.

— other values are defined by the application and must be mixed
case or upper case four-byte values.

SyncDeleteDB

Delete a database

Developing Palm OS Conduits 113

SyncManager Function Calls

File-Oriented Calls

Prototype

Parameters

Result

Description

Purpose

Prototype

Parameters

Result

| ong SyncDel eteDB (char* pNanme, int nCardNum

Name Name of database to remove (must be closed).
CardNum Number of card where database resides.

SYNCERR_NONE
SYNCERR_FILE_NOT_FOUND
SYNCERR_FILE_OPEN

Instructs the Palm OS device to del ete the named database from its storage
on the specified card number. The database must be closed (not in use).

SyncOpenDB
Open a database on the Palm OS device.

| ong SyncQpenDB (char* pNane,
i nt nCardNum
BYTE& r Handl e,
BYTE openMbde)

pname Name of remote database to open (contained in
CSyncPr operti es structure).

cardNum Number of memory card on which the
CSyncPr operti es structure resides
(currently, only O is supported).

rHandle Reference to aBY TE that receives the open file handle.

mode Bit flag that can be a combination of eDoW i t e,
eDbRead, and eDbExcl usi ve. IneDbExcl usi ve
mode, no user can access the file.

(XX doc also has eDbShowSecretX X)

SYNCERR_NONE
SYNCERR_FILE_NOT_FOUND
SYNCERR_FILE_NOT_OPEN
SYNCERR_FILE_OPEN

114 Developing Palm OS Conduits

SyncManager Function Calls
File-Oriented Calls

Description

Purpose

Prototype

Parameters

Result

Description

Opens a database on the Palm OS device for read/write/exclusive access.
The name of the database to open is provided to the conduit as part of the
CSyncPr operti es structure. Upon successful return, r Handl e will
contain a numeric file handle that should be used in al subsequent file I/O
operations.

SyncReadDBAppInfoBlock

Locate and retrieve information.

| ong SyncReadDBAppl nf oBl ock (BYTE f Handl e,
CDbCGenl nf o & Dbl nf 0)

fHandle Open valid file handle.

rDblnfo Referenceto aCDbCGenl nf oSt r uct ur e to receive
information.

SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEMES

The ApplnfoBlock is a generalized way for a Palm OS device application
to store application-specific information in adatabase. This call instructs
the Palm OS device to locate and retrieve the information storesit in the
passed CDbGenl nf o structure.

cl ass CDbCGenl nf ocode {
public:
/'l Name of renote database file
char m _Fi | eName[DB_NAMELEN ;
//Length of m pBytes buffer
al l ocated by the caller.
WORD m Tot al Byt es;
/1l Byte length of 'pBytes’
WORD m Byt esRead;
/1 1 nbound byte count
BYTE * m pBytes;

Developing Palm OS Conduits 115

SyncManager Function Calls

File-Oriented Calls

Purpose

Prototype

Parameters

Result

Description

¥

The calling client conduit library must allocate enough memory in the gen-
eral data areato hold the information returned.

If the m_BytesRead valueis > m_Tota Bytes, then m_pBytes has not been
touched. The caller should reallocate m_pBytesto be at least m_BytesRead
and make the call again.

If m_BytesRead <= m_TotalBytesthen it is the total number of bytes read
into m_pBytes.

Itisin placeto facilitate trading of database-specific information which
may assist in the synchronization process. Enough memory (less than 1K)
must be preallocated on the incoming pointer by the calling conduit library
to hold the response data returned by the devise (and placed in the
m_pByt es member).

The built-in applications on the device store categoriesin Appl nf oB-
| ock. See the Developing Palm OS Applications documentation set for
more information.

SyncReadDBSortinfoBlock
Read database information from the device.

| ong SyncReadDBSort | nf oBl ock(BYTE f Handl e,
CDbCGenl nf o & Dbl nf 0)

fHandle Database file handle from an open or create call.

rDblnfo Referenceto aCDbCGenl nf oSt r uct ur e to receive
remote sort information.

SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEME

Thisfunction lets you read database information from the device, storing it
in the CDbCGenl nf ocode class.

116 Developing Palm OS Conduits

SyncManager Function Calls
File-Oriented Calls

Purpose

Prototype
Parameters

Result

Description

cl ass CDbGenl nf ocode {
publi c:
char m Fi | eName[DB_NAMELEN ;
/1 Name of renote database file
??header conflict: NOT USE in doc
WORD m Tot al Byt es;
/1l Byte length of 'pBytes'
WORD m Byt esRead;
/1 I nbound byte count
BYTE * m pBytes;
1

The calling client conduit library must preallocate enough memory onto
the member m_pByt es to hold the incoming reply data. Upon return, the
member m Byt esRead holds the number of bytes actually transferred to
them pByt es buffer.

This function provides away to exchange ablock of information attached
to a database on the device. This function is not required; conduits may or
may not use it.

SyncResetSyncFlags

Reset flags of all open database records that is, clear dirty and archived
flags for the whole database.

| ong SyncReset SyncFl ags (BYTE f Handl e)
fHandle Database file handle from an open or create call.

SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN.

Instructs the Palm OS device to scan al the records of the open database
and clears dirty and archived flags. This may or may not be applicable for
every conduit.

Applicationstypically call this function before closing the database.

Developing Palm OS Conduits 117

SyncManager Function Calls

File-Oriented Calls

Purpose

Prototype

Parameters

Result

Description

Purpose

SyncWriteDBAppInfoBlock

Write information to the device.

| ong SyncWi t eDBAppl nf oBl ock (BYTE f Handl e,
CDbCGenl nf o r Dbl nf 0)

fHandle Database file handle from an open or create call.
rDblnfo Reference to aCDbCGenl nf oSt r uct ur e for aremote
write.

SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_REMOTE_SYS

SYNCERR_REMOTE_MEME.

Instructs the device to write the information in the passed structure to the
device's permanent storage associated with the open file handle.

cl ass CDbGenl nf ocode {
public:
char m_Fi | eName[DB_NAMELEN ;
/1 Name of renote database file
??header conflict: NOTI' USE i n doc
WORD m Tot al Byt es;
/1l Byte length of 'pBytes'
WORD m Byt esRead;
/1 1 nbound byte count
BYTE * m pByt es;
s

The structure member m Tot al Byt es should contain the number of
bytes within the m pByt es buffer to actually write to the device.

SyncWriteDBSortinfoBlock

Write information to the device.

118 Developing Palm OS Conduits

SyncManager Function Calls
Record-Oriented Calls

Prototype | ong SyncWiteDBSort| nfoBl ock (BYTE fHandl e,
CdBGenl nf o *pDbl nf 0)

Parameters fHandle Database file handle from an open or create call.

rDbinfo Reference to aCDbCGenl nf o structure containing
remote sort information.

Result SYNCERR NONE
SYNCERR _FILE_NOT_OPEN
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEM

Description Instruct the device to write the information stored in the passed structure to
the device's permanent storage associated with the open file handle. The
structure member m Tot al Byt es should contain the number of bytes
within the m_pByt es buffer to actually write to the device.

cl ass CDbGenl nf ocode {
public:
char m_Fi | eName[DB_NAMELEN ;
/1 Name of renote database file
??header conflict: NOTI' USE i n doc
WORD m Tot al Byt es;
/1l Byte length of 'pBytes'
WORD m Byt esRead;
/1 1 nbound byte count
BYTE * m pBytes;
}

Record-Oriented Calls

The record-oriented APIs are used to pass the representation of arecord
(which resides in a database file) between the PC and Pilot. Because one
primary purpose of the SyncManager.DIL isto act as a ??shipping chan-
nel?? for byte traffic to the device, thereis aneed for ageneric definition of
a structure which should handle any record format. This structure then be-
comes a parameter in these record-oriented APIs.

For reading records, three different APIs are provided, allowing for:

Developing Palm OS Conduits 119

SyncManager Function Calls
Record-Oriented Calls

* Sequential location of the next modified record via
SyncReadNextM odifiedRec

» Exact record lookup via SyncReadRecordByld
» Top to bottom iteration via SyncReadRecordByIndex

The same CRawRecordInfo structureis used in all three APIs. However,
different structure fields are used by each call. If afield is commented
“Filled in by Pilot,” the device supplies the data for it.

The record-oriented API provides these calls:

SyncDel eteAllResourceRec
SyncDeleteRecord
SyncDeleteResourceRec
SyncGetDBRecordCount
SyncPurgeAllRecs
SyncReadNextM odifiedRec
SyncReadRecordByld
SyncReadRecordByIndex
SyncReadResRecordBylndex
SyncWriteRec

SvyncWriteResourceRec

SyncDeleteAllIResourceRec
Purpose Deleteal resource records from the currently open database on the device.
Prototype | ong SyncDel et eAl | Resour ceRec (BYTE f Handl e)
Parameters fHandle Database file handle from an open or create call.
Result SYNCERR _NONE

SYNCERR_FILE_NOT_OPEN
SYNCERR_ROM_BASED
SYNCERR_READ_ONLY.

Description Thisroutine instructs the device to delete all resource records from the cur-
rently open resource database. Use this routine on a remote database con-

120 Developing Palm OS Conduits

SyncManager Function Calls
Record-Oriented Calls

Purpose
Prototype
Parameters

Result

Description

Purpose
Prototype
Parameters

Result

Description

sisting of resource type records. These records generally consist of code
resources, such as an executable program that runs on the device.

SyncDeleteRecord

Delete a specified record on the device.

| ong SyncDel et eRecord (CRawRecordl Nfo & Rec)
rRec Reference to incoming CRawRecor dl nf o structure.

SYNCERR_NONE, SYNCERR _COM_NOT_INIT,
SYNCERR_FILE_NOT_OPEN, SYNCERR_RECORD_BUSY,
SYNCERR_FILE_NOT_FOUND, SYNCERR_ROM_BASED,
SYNCERR _READ_ONLY.

Instructs the device to delete the record specified in the structure member
m_Recl d in the open database.

SyncDeleteResourceRec

Delete the passed resource on the device.

| ong SyncDel et eResour ceRec (CRawRecordl Nf o r Rec)
rRec Referenceto incoming cRawRecor dl nf o structure.

SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_FILE_NOT_FOUND
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEM

This routine instructs the device to delete resource identified by its unique
ID (passed in the structure member m_Recl ndex) from the open data-
base. It is not necessary to allocate memory or fill out any structure mem-
bers other than the first three.

Developing Palm OS Conduits 121

SyncManager Function Calls
Record-Oriented Calls

Purpose

Prototype

Parameters

Result

Description

Purpose

Prototype
Parameters

Result

Description

Use this routine on aremote database consisting of resource type records.
These recordstypically consist of code resources such as executable pro-
grams which run on the device.

SyncGetDBRecordCount

Obtain total record count from currently open device database.

| ong SyncCGet DBRecor dCount (BYTE f Handl e,
Word & Count)

fHandle Database file handle from an open or create call.
rCount Reference to a variable to receive the record count.

SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN

This routine obtains the total record count for the currently open database
on the device.

SyncPurgeAllRecs

Delete all records from currently open database on device, regardless of
status.

| ong SyncPurgeAl | Recs (BYTE f Handl e)
fHandle Database file handle from an open or create call.

SYNCERR_NONE
SYNCERR_FILE_NOT OPEN
SYNCERR_RECORD_BUSY
SYNCERR_ROM_BASE
SYNCERR_READ_ONLY

This routine instructs the device to delete every record from the currently
open database, regardless of the current status flags.

122 Developing Palm OS Conduits

SyncManager Function Calls
Record-Oriented Calls

Purpose

Prototype
Parameters

Result

Description

Purpose

Prototype

Parameters

Result

Description

SyncPurgeDeletedRecs

Delete all records marked “ deleted” from currently open database on the
device.

| ong SyncPur geDel et edRecs (BYTE f Handl e)
fHandle Database file handle from an open or create call.

SYNCERR_NONE
SYNCERR_FILE_NOT_OPEN
SYNCERR_ROM_BASED
SYNCERR_READ_ONLY
SYNCERR_REMOTE_RECS NOT_PURGED

This routine instructs the device to delete al records from the currently
open database that have their status flags set to delete. When the user de-
letes arecord on the device, the record is marked for deletion but not actu-
ally removed from the data file. This allows the conduit program on the PC
to delete matching records from the local datafile and purge the record
after the PC record has been purged.

SyncReadNextModifiedRec

Traverse the currently open database on device and return the next modi-
fied record.

| ong SyncReadNext Modi fi edRec (
CRawRecor dl nf o &r Rec)

rRect Reference to incoming CRawRecor dI nf o structure.

SYNCERR_NONE
SYNCERR_COM_NOT_INIT
SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND

Instructs the PaAlm OS device to traverse its currently open database and re-
turn the next record it encounters that has been modified since the last syn-
chronization session.

Developing Palm OS Conduits 123

SyncManager Function Calls
Record-Oriented Calls

Purpose
Prototype
Parameters

Result

The caller is expected to have allocated enough memory onto the

m _pByt es pointer of the CRawRecor dI nf o structure to contain afull
record’s worth of bytesin the reply from the device. The structure member
m RecSi ze is provided so the remote device can indicate the exact num-
ber of bytes returned in the reply data.

The CRawRecor dl nf o structure is defined as follows:

cl ass CRawRecordl nfo

{
public:
BYTE m Fi | eHandl e; /1 Supplied by caller
DWORD m Recl d; /1l Supplied by caller
(when appropri ate)
WORD m Recl ndex; /1l Supplied by caller
(when appropri ate)
BYTE mAttri bs; /1l Filled in by HH
short mCatld, /[l Filled in by HH
int mConduitld; /1 1gnore
DWORD m RecSi ze; /1 Filled in by HH
WORD m Tot al Byt es; /1l Supplied by caller
BYTE * m pBytes; /1 Alocated by caller
1

SyncReadRecordByld

Search device database for match on arecord.

| ong SyncReadRecor dByl d(CRawRecor dl nf o &r Rec)
rRec Reference to incoming CRawRecor dl nf o structure.
SYNCERR_NONE

SYNCERR_COM_NOT_INIT

SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND

124 Developing Palm OS Conduits

SyncManager Function Calls
Record-Oriented Calls

Description

Purpose
Prototype
Parameters

Result

Description

Purpose

Prototype

This function can be thought of as a seek and find procedure. The device
searches its currently open database and |ooks for a match on the unique
record (supplied in the structure member m_Recl d). Upon successful exe-
cution of the routine, the structure member m pByt es contains the raw
record body from the device and the structure member m RecSi ze isup-
dated with the length of the returned record body.

SyncReadRecordBylIndex

Traverse Palm OS device database.

| ong SyncReadRecor dByl ndex (CRawRecordl nfo & Rec)
rRec Reference to incoming CRawRecor dl nf o structure.

SYNCERR_NONE, SYNCERR _COM_NOT_INIT,
SYNCERR_FILE_NOT_OPEN, SYNCERR_RECORD_BUSY,
SYNCERR_FILE_NOT_FOUND.

By iteratively supplying sequential values to the structure member

m_Recl ndex, starting with zero, a conduit can use this function to
traverse a Palm OS device database from top to bottom. The structure
member m Recl ndex can be though of an array offset, in essence access-
ing a specific record in an open database by its relative offset from the be-
ginning of thefile.

The devicetypically traversesits currently open database from the top and
returns the record body located at the m Recl ndex position. Upon suc-
cessful execution of the routine, the structure member m pByt es will
contain the raw record body from the device and the structure member
m_RecSi ze isupdated with the length of the returned record body.

SyncReadResRecordBylIndex
Traverse the currently open database on the device.

| ong SyncReadResRecor dByl ndex (
CRawRecor dl nfo & Rec,
BOOL bBody

Developing Palm OS Conduits 125

SyncManager Function Calls
Record-Oriented Calls

Parameters

Result

Description

Purpose
Prototype
Parameters

Result

rRec Reference to incoming cRawRecor dl nf o structure.

bBody Indicates whether to retrieve the record (TRUE) or not
(FALSE). Default is TRUE.

SYNCERR_NONE
SYNCERR_COM_NOT_INIT
SYNCERR_FILE_NOT_OPEN
SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEM

This routine provides a mechanism to traverse the currently open resource
database on the device from top to bottom. The structure member

m_Recl ndex can be thought of as an array offset, in essence accessing a
specific record in an open database by its relative offset from the beginning
of thefile. On success, the device returns the record body located at the
m_Recl ndex position.

Upon successful execution of this routine, the structure member

m _pByt es will contain the raw record body from the device and the struc-
ture member m RecSi ze isupdated with the length of the returned record
body. Use this routine on a remote database consisting of resource type
records. These record types generally consist of code resources, such as an
executable program which runs on the device, as well as other types of re-
sources like preferences, images, and so on.

SyncWriteRec

Instruct the device to write the passed record into the open database.
| ong SyncWiteRec (CRawRecordl nfo & Rec)

rRec Reference to incoming cRawRecor dl nf o structure.

SYNCERR_NONE
SYNCERR_COM_NOT_INIT
SYNCERR_FILE_NOT_OPEN
SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND

126 Developing Palm OS Conduits

SyncManager Function Calls
Record-Oriented Calls

Description

Purpose
Prototype
Parameters

Result

Description

SYNCERR _ROM_BASED
SSYNCERR_READ_ONLY

Instructs the device to write the passed record into the open database. The
caller must supply either avalid record 1D in the member m_Recld or place
zero in this member. Thisinstructs the device to append the record as anew
record to the open database. The record body is placed in the memory on
the pointer m pByt es and should be formatted to match the record layout
in the open database on the device.

SyncWriteResourceRec

Write the passed resource into the open database.

| ong SyncWiteResourceRec (CRawRecordl nfo rRec)
rRec Reference to incoming CRawRecor dl nf o structure.

SYNCERR_NONE
SYNCERR_COM_NOT_INIT
SYNCERR_FILE_NOT_OPEN
SYNCERR_RECORD_BUSY
SYNCERR_FILE_NOT_FOUND
SYNCERR_ROM_BASED
SYNCERR_READ ONLY
SYNCERR_REMOTESYS
SYNCERR_REMOTE_MEM

This routine instructs the device to write the resource passed in the struc-
ture member m_Recl d into the open database. The record body contained
in the memory on the pointer m pByt es issent asis and should be for-
matted to match the resource record layout in the currently open database
on the device.

Use this routine on a remote database consisting of resource type records.
These records typically consist of code resources, such as an executable
program which runs on the device, as well as other types of resource like
images or preferences.

Developing Palm OS Conduits 127

SyncManager Function Calls

Utility Calls

Utility Calls

Purpose

Prototype

Parameters

Result

Description

The calls provided by the utility API retrieve information on how the re-
mote deviceis configured. Thereisalso afunction that letsthe caller obtain
the list of files present on any of the memory cards currently present in the
device. The API consists of these calls:

SyncReadDBList
SyncReadSingleCardinfo
SyncReadSysteminfo

SyncReadDBList
Retrieve information about list of databases on Palm OS device.

| ong SyncReadDBLi st (BYTE cardNo,
WORD startl X
BOOL bRam
CDbLi st* pLi st,
int& rCnt);

->cardNo Number of card to search on Palm OS device.
->startlx Beginning offset of list to search (0-based)
->pRam If TRUE, search RAM, otherwise search ROM.
<-pList Preallocated memory to be filled.

<-rCnt Number of database entries returned.

SYNCERR_NONE
SYNCERR_FILE_NOT_FOUND
SYNCERR_COMM_NOT_INIT
SYNCERR_REMOTE_SYS
SYNCERR_REMOTE_MEM

Thisfunction alows the caller to discover alist of al the databases (both
data and program) that reside on a memory card within the Palm OS de-
vice. Thisisanalogousto a directory listing on a PC; the result contains
both data files and program files.

128 Developing Pa

Im OS Conduits

SyncManager Function Calls
Utility Calls

Purpose
Prototype
Parameters

Result

Description

ThepLi st parameter contains an array of the following structure:

cl ass CDbLi st
{
publi c:
i nt m_Car dNum
WORD m_DbFl ags;
/' contains Res/Record/ Backup/ ReadOnl y
DWORD m DbType;
char m_Nane[DB_NAMELEN ;
DWCRD m Cr eat or;
WORD m Ver si on;
DWORD m_ModNunber ;
WORD m | ndex;
| ong m Cr eat eDat e;
| ong m_ModDat e;
| ong m BackupDat e;
BOCL m bReadOnl y;
| ong m RecCount ;
| ong m _MbodRecCount ;

SyncReadSingleCardInfo

Retrieve information about the specified memory card.

| ong SyncReadSi ngl eCardinfo (Cardlnfo & I nfo)

rinfo Reference to incoming Cardinfo structure.
SYNCERR_NONE

SYNCERR_COMM_NOT_INIT

SYNCERR_REMOTE_SYS

Retrieves information about a memory card. Memory card numbers on the

device start at zero. The caller must fill out the first member of the structure
nCar dNo with the number of the memory card it wants to gather data

Developing Palm OS Conduits 129

SyncManager Function Calls

Utility Calls

Purpose
Prototype
Parameters

Result

Description

about (currently, only 0 is supported). When the call returns, the remaining
structure members are filled with data.

class CCardlnfo
{
public:
BYTE m_Car dNo;
WORD m_Car dVer si on;
| ong m_Cr eat eDat e;
DWORD m_Ronbi ze;
DWORD m _Ranbi ze;
DWORD m_Fr eeRam
BYTE m_Car dNaneLen;
BYTE m_Manuf NanelLen;
char m_Car dNane[REMOTE_CARDNAMELEN] ;
char m Manuf Nanme[REMOTE_MANUFNAMELEN] ;

SyncReadSysteminfo

Retrieve information from the Palm OS device.

| ong SyncReadSystenm nfo (CSystem nfo &I nfo)
rinfo Reference to an incoming CSyst end nf o structure.
SYNCERR_NONE

SYNCERR_COMM_NOT_INIT

SYNCERR_REMOTE_SYS
SYNCERR_LOCAL_BUFF_TOO_SMALL.

Instructs the Palm OS device to populate the passed CSyst enl nf o struc-
ture:

cl ass CSystem nfo

{
public:
DWORD m Ronfof t Ver si on;

130 Developing Palm OS Conduits

SyncManager Function Calls
Utility Calls

BYTE
BYTE

BYTE*

Hs

/1 Upon return is filled in
m Local | d;
/1 Upon return is filled in
m Pr odl dLengt h;
/1 Upon return is filled in (actual |en)
m Al | ocedLen;
/1 Supplied by caller
m Pr oduct | dText ;
/1l Allocated by caller

Theinformation includes the revision level of the ROM software, the ID of
the device, a string buffer containing product text information. the caller
must preallocate memory on them pr oduct | dText pointer before call-
ing thisroutine, and initializethem_ Al | oceedLen member with the size
of memory preallocated. If not enough memory (or none at all) is preallo-
cated, the function returns with error

SYNCERR_LOCAL_BUFF TOO _SMALL

Developing Palm OS Conduits 131

SyncManager Function Calls
Utility Calls

132 Developing Palm OS Conduits

Error Codes

SyncManager Return Codes

SyncManager return codes begin with the hexadecimal value 0x4000 and are returned as long
(four byte) values from each of the public function calls. See also SyncMgr.h.

SyncManager return codes are as follows:

Return Code

Meaning

SYNCERR_NONE 0x000
SYNCERR_FILE_NOT_FOUND 0x4003

SYNCERR_FILE_NOT_OPEN 0x4004

SYNCERR_FILE_OPEN 0x4004

SYNCERR_RECORD_BUSY 0x4006

SYNCERR_RECORD_DELETED 0x4007

SYNCERR_ROM_BASED 0x4008

SYNCERR_READ_ONLY 0x4009

Function completed successfully.

Database filename could not be found on the
Pam OS device.

Database on the Palm OS deviceis not cur-
rently open, or the handle value isinvalid.

Database already open. Cannot be reopened
in the current mode.

Write or delete operation could not be per-
formed on the specified record ID because
Palm OS device is aready using the record.
Fileis busy or another processis accessing
it.

Could not read or update the record because
it not longer exists.

Writing a ROM-based database is not al-
lowed.

Writing to aread-only database is not al-
lowed.

Developing Palm OS Conduits 133

Error Codes
SyncManager Fatal Return Codes

Return Code

Meaning

SYNCERR _COM_NOT_INIT Ox0A

SYNCERR_FILE_ALREADY_EXISTS

SYNCERR _FILE_ALREADY_ OPEN

SYNCERR_NO _FILES OPEN
SYNCERR_BAD_OPERATION
SYNCERR_REMOTE_BAD_ARG
SYNCERR_BAD_ARG_WRAPPER
SYNCERR_ARG_MISSING
SYNCERR_LOCAL_BUFFER TOO_SMALL

SYNCERR_REMOTE_MEM

SYNCERR _REMOTE_NO SPACE

Failed to create avalid internal communica-
tions object.

Cannot create the specified database. The
file already exists on the Palm OS device.

Cannot create the specified database. The
database is currently open.

Protocol error.
Protocol error.
An invalid structure member was supplied.
Protocol error.
Protocol error.

Insufficient memory was allocated for the
incoming record.

Memory allocation failed on the PAlm OS
device. Thisisanonfatal memory condition.
Either the communications layer or the de-
vice application could not perform the oper-
ation.

This does not necessarily indicate that there
isno more memory on the device. Other op-
erations could potentially be performed.

There is no space on the Palm OS device to
add records to the database.

SyncManager Fatal Return Codes

For fatal return codes, the high bit of the long value is set, which indicates that the syn-
chronization session has already been halted or is in such a misaligned state that no fur-

134 Developing Palm OS Conduits

Error Codes
SyncManager Base Class Return Codes

ther calls should be made into the SyncManager library. See also syncmgr.h.

The following fatal codes are currently defined:

Return Code Meaning
SYNCERR_REMOTE_SYS System failure on the Palm OS device.
SYNCERR_TOO MANY_FILES Cannot create; too many files already exist.

SYNCERR_REMOTE_CANCEL_SYNC User cancelled synch session from device.

SyncManager Base Class Return Codes

The base class returns a base class error if the conduit uses the built-in synchronization
logic. Base class returns codes for the Conduit DLLs range from 0x5000 through Ox5FF.

See also basemon.h

The following base class errors are currently defined:

Return Code

Meaning

CONDERR_NONE

CONDERR_NO_REMOTE_CATEGORIES
CONDERR_FIRST+1

CONDERR_NO_LOCAL_CATEGORIES
CONDERR_FIRST+2

CONDERR_SAVE_REMOTE_CATEGORIES
CONDERR_FIRST+3

CONDERR_BAD_REMOTE_TABLES
CONDERR_FIRST+4

CONDERR_BAD_LOCAL_TABLES
CONDERR_FIRST+5

CONDERR_BAD_L OCAL_BACKUP
CONDERR_FIRST+6

CONDERR_ADD_LOCAL_RECORD
CONDERR_FIRST+7

Function completed successfully.

Not currently used.

Not currently used.

Problems opening or creating the remote
database.

Not currently used.

Problems appending duplicate record.

Not currently used.

Problems appending duplicate record.

Developing Palm OS Conduits 135

Error Codes
SyncManager Base Class Return Codes

Return Code

Meaning

CONDERR_ADD_REMOTE_RECORD
CONDERR_FIRST+8

CONDERR_CHANGE_REMOTE_RECORD
CONDERR_FIRST+9

CONDERR_RAW_RECORD_ALLOCATE
CONDERR_FIRST+0x0A

CONDERR_REMOTE_CHANGES NOT_SENT
CONDERR_FIRST+0x0B

CONCERR_LOCAL_MEMORY_ALLOC_FAILED
CONDERR_FIRST+0x0C

CONDERR_CONVERT_TO_REMOTE_CATS
CONDERR_FIRST+0x0D

CONDERR_CONVERT _TO_LOCAL_CATS
CONDERR_FIRST+0X0E

CONDERR_CONVERT_TO_REMOTE_REC
CONDERR_FIRST+0xOF

CONDERR_CONVERT_FROM_REMOTE_REC
CONDERR_FIRST+0x010

CONDERR_REMOTE_RECS NOT_PURGED
CONDERR_FIRST+0x011

Problems adding the remote record.

Could not allocate memory for buffer.

Memory allocation for a buffer used to
hold an incoming raw record from the Palm
OS devicefailed.

Failed to send al changesto Palm OS de-
vice.

Attempt to allocate memory for an Appln-
foBlock to be read from device.

Failure to convert.

??Failure to convert.

Could not convert to raw record layout.

Could not convert remote record.

Issued during either a Copy ToPC() or
CopyToHH() call. After either call, an at-
tempt is made to purge the remote records
marked for deletion on the device. If ade-
rived base conduit monitor calls Syn-
cPur geAl | Recs() andthat cal fails,
this code is returned.

136 Developing Palm OS Conduits

Error Codes
SyncManager Base Class Return Codes

Return Code

Meaning

CONDERR BAD_SYNC_TYPE
CONDERR_FIRST+0x012

CONDERR_DATE_MOVED
CONDERR_FIRST+0x050

The conduit was initiated to being its oper-
ations, but was passed a synchronization
action it did not understand. The following
valid actions are defined:

eFast, eSlow, eHHtoPC, ePCtoHH, eln-
stall, eBackup

Issued by the baseDTLinkConverter in its
routine to convert adatafield from the de-
vice format to the PC. The device allows
usersto enter dates that precede 1970. On
the PC, dates before 1970 areinvalid, so
the converter moves any dates before 1970
up to 1970. This code is warning, not an er-
ror; information is saved in the log when a
date conversion takes place.

Developing Palm OS Conduits 137

Error Codes
SyncManager Base Class Return Codes

138 Developing Palm OS Conduits

	Table of Contents
	Getting Started
	What’s a Conduit?
	What Are Development System Requirements?
	What’s in the Conduit SDK?
	Overview of the Conduit SDK
	Top-Level Directories
	SDK Development Directories
	Directories
	Files
	Conduits Sample Source Code Directory Contents

	What About HotSync1.1
	What’s in This Guide?

	Conduit Basics
	Basic Approaches to Conduit Design
	Conduit Basic Control Flow
	Locating Records on the Device
	Minimum Conduit Requirements
	Registering the Conduit
	Providing C Entry Points
	Providing a DllMain() Routine
	Sending Errors and Other Messages

	SyncManager Memory Management
	Structures with Dynamically Allocated Memory:

	Conduits and the Windows Registry
	Naming Third Party Conduits
	Registering Third Party Conduits
	Providing the Conduit Name
	Providing Name/Data Pairs
	Registry Entry Example

	Default Registry Keys

	Installing and Removing Your Conduit
	Installing Your Conduit
	HotSync 1.1 Installation
	Conduit Installation

	Removing Your Conduit

	Cable vs. Modem Connection
	FastSync and SlowSync

	Conduit Design Decisions
	Conduit Design Questions
	Using the Native Synchronization Logic
	Pilot Desktop OS Native Synchronization Algorithm
	Record-Level Synchronization with Pilot Applicatio...
	Archiving Records

	Control Flow of Pilot Desktop’s Native Synchroniza...
	Basic Control Flow
	Functions Called During Synchronization
	Synchronizing with Existing PC Applications
	Synchronizing Categories

	Implementing a Conduit
	Providing “C” Entry Points
	Providing a DllMain Routine
	Providing Entry Point Routines
	The OpenConduit Function
	The GetConduitName Function
	The GetConduitVersion Function

	Creating a CBaseMonitor Subclass
	CBaseMonitor Basic Structure
	CBaseMonitor Data Members
	CBaseDTLinkConverter* m_pDTConvert
	PROGRESSFN m_pfnProgress
	CBaseTable* m_LocRealTable
	CBaseTable* m_LocArchTable
	CBaseTable* m_BackupTable
	CBaseTable* m_RemRealTable
	CSyncProperties m_rSyncProperties
	CCategoryMgr* m_LocCategory
	CCategoryMgr* m_RemCategory
	BYTE m_RemHandle
	char m_ArchFileExt[5]
	int m_TotRemoteDBs
	int m_CurrRemoteDB
	CDbGenInfo m_DbGenInfo
	HINSTANCE m_DllInstance

	CBaseMonitor Functions Must to Override
	Monitor Constructor and Destructor
	ObtainLocalTables
	ObtainRemoteTables
	AddRecord
	AddRemoteRecord
	ChangeRemoteRecord
	CreateLocalArchTable
	FastSyncRecords
	SlowSyncRecords
	CopyRecordsPCtoHH
	CopyRecordsHHtoPC
	LogRecordData
	LogApplicationName

	CBaseMonitor Functions You May to Override
	SaveLocalTables
	PurgeLocalDeletedRecs
	ApplyRemotePositionMap

	Creating a CBaseDTLinkConverter Subclass
	CBaseDTLinkConverter Basic Structure
	The Log Object
	Casting of Member Functions
	Carriage Returns and Line Feeds

	CBaseDTLinkConverter Data Members
	CSyncLog* m_pLog
	TCHAR* m_TransBuff
	HINSTANCE m_DllInstance

	CBaseDTLinkConverter Functions You Must Override
	CAddressDTLinkConverter Constructor and Destructor...
	ConvertToRemote
	ConvertFromRemote
	ConvertToRemoteCategories
	ConvertFromRemoteCategories

	CBaseDTLinkConverter Functions You May Override
	CBaseDTLinkConverter Utility Member Functions

	Creating a CBaseTable Subclass
	How to Set Up Tables
	More About Tables
	CBaseTable Class
	CBaseRecord Class
	CBaseSchema Class
	CBaseIterator Class

	Considering Category Manager Modifications

	SyncManager Function Calls
	Session-Oriented Calls
	SyncRegisterConduit
	SyncUnRegisterConduit

	File-Oriented Calls
	SyncCloseDB
	SyncCreateDB
	SyncDeleteDB
	SyncOpenDB
	SyncReadDBAppInfoBlock
	SyncReadDBSortInfoBlock
	SyncResetSyncFlags
	SyncWriteDBAppInfoBlock
	SyncWriteDBSortInfoBlock

	Record-Oriented Calls
	SyncDeleteAllResourceRec
	SyncDeleteRecord
	SyncDeleteResourceRec
	SyncGetDBRecordCount
	SyncPurgeAllRecs
	SyncPurgeDeletedRecs
	SyncReadNextModifiedRec
	SyncReadRecordById
	SyncReadRecordByIndex
	SyncReadResRecordByIndex
	SyncWriteRec
	SyncWriteResourceRec

	Utility Calls
	SyncReadDBList
	SyncReadSingleCardInfo
	SyncReadSystemInfo

	Error Codes
	SyncManager Return Codes
	SyncManager Fatal Return Codes
	SyncManager Base Class Return Codes

