

Welcome to

Developing Palm OS
Applications

Part II: Memory and
Communications Management

Navigate this online document as follows:

To see bookmarks Type Command-7
To see information on
Adobe Acrobat Reader

Type Command-?

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar

U.S. Robotics®

Developing Palm OS™
Applications

Part II
Some information in this manual may be out of date.

Read all Release Notes files for the latest information.

©1996 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmit-
ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and Graffiti are registered trademarks, and Palm
Computing, HotSync, Palm OS, and the Palm OS logo are trademarks of U.S. Robotics
and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK ARE
SUBJECT TO THE LICENSE AGREEMENT.

Canada
Metrowerks Inc.
1500 du College, suite 300
St. Laurent, QC
H4L 5G6 Canada

voice: (514) 747-5999
fax: (514) 747-2822

U.S.A. and International
Metrowerks Corporation
2201 Donley Drive
Suite 310
Austin, TX 78758

voice: (512) 873-4700
fax: (512) 873-4900

U.S. Robotics, Palm Computing Division
Mail Order
1-800-881-7256
Metrowerks Mail Order
voice: (800) 377-5416
fax: (512) 873-4901

U.S. Robotics, Palm Computing Division
World Wide Web site: http://www.usr.com/palm

Metrowerks World Wide Web site (Internet): http://www.metrowerks.com
Registration information (Internet): register@metrowerks.com

Technical support (Internet): support@metrowerks.com
Sales, marketing, & licensing (Internet): sales@metrowerks.com

AppleLink: METROWERKS
America OnLine: goto: METROWERKS

Compuserve: goto: METROWERKS

Table of Contents

Table of Contents . v

1 Palm OS Memory Management 13
Introduction to Memory Use on Palm OS 14

RAM and ROM Use 14
PC Connectivity . 14

Memory Architecture 15
Data Storage . 16
Accessing Data. 16

Memory Structure Overview 17
How Applications Access Data 17

Locating Storage Data With Local IDs 18
The Memory Manager. 19

Memory Hierarchy: RAM Store and ROM Store 19
Heap Overview . 20
Memory Manager Structures. 20

Heap Structures 21
Chunk Structures 22
Local ID Structures 23

Using the Memory Manager 23
Memory Manager Function Summary. 24

The Data Manager . 26
Records and Databases 26

Accessing Data with Local IDs 27
Using Presorted Lists 27

Structure of a Database Header. 28
Database Header Fields. 28
Structure of a Record Entry in a Database Header 29

Using the Data Manager 30
Data Manager Function Summary 32

The Resource Manager 34
Structure of a Resource Database Header 35
Using the Resource Manager. 36
Resource Manager Functions 37
Developing Palm OS Applications, Part II v

Table of Contents

2 Palm OS Communications . 39
Byte Ordering . 39
Communications Architecture Hierarchy 40
The Serial Manager . 42

Using the Serial Manager 42
Serial Manager Function Summary 45

The Serial Link Protocol 45
SLP Packet Structures 45

SLP Packet Format 45
Packet Type Assignment 47
Socket ID Assignment 47
Transaction ID Assignment 47

Transmitting an SLP Packet 48
Receiving an SLP Packet 48

The Serial Link Manager. 49
Using the Serial Link Manager 49
Serial Link Manager Function Summary. 53

The Packet Assembly/Disassembly Protocol 53
PADP Packet Structures 54

PADP Header . 55
PADP padData Packet 55
PADP padAck Packet. 57
PADP padTickle Packet 58

PADP Algorithms 58
Sending a Client Data Block 59
Receiving a Client Data Block 62

The PAD Server . 65
Using the PAD Server 66
PAD Server Function Summary 68

3 Memory Manager Functions . 69
MemCardInfo . 69
MemChunkFree . 70
MemDebugMode 70
MemHandleDataStorage 70
MemHandleCardNo 71
vi Developing Palm OS Applications, Part II

Table of Contents

MemHandleFree . 71
MemHandleHeapID 72
MemHandleLock. 72
MemHandleNew. 73
MemHandleResize 73
MemHandleSize . 74
MemHandleToLocalID 74
MemHandleUnlock. 75
MemHeapCheck . 75
MemHeapCompact. 76
MemHeapDynamic. 76
MemHeapFlags . 77
MemHeapFreeBytes 77
MemHeapID . 78
MemHeapScramble. 78
MemHeapSize . 79
MemLocalIDKind 79
MemLocalIDToGlobal 80
MemLocalIDToLockedPtr 80
MemLocalIDToPtr 81
MemMove . 81
MemNumCards . 82
MemNumHeaps . 82
MemNumRAMHeaps 82
MemPtrCardNo . 83
MemPtrDataStorage 83
MemPtrFree . 83
MemPtrHeapID . 84
MemPtrToLocalID 84
MemPtrNew. 84
MemPtrRecoverHandle 85
MemPtrResize . 85
MemSet . 86
MemSetDebugMode 87
MemPtrSize . 87
MemPtrUnlock . 88
Developing Palm OS Applications, Part II vii

Table of Contents

MemStoreInfo . 89
Functions for System Use Only. 90

MemCardFormat 90
MemChunkNew. 90
MemHandleFlags 90
MemHandleLockCount. 90
MemHandleOwner 91
MemHandleResetLock 91
MemHandleSetOwner 91
MemHeapFreeByOwnerID 91
MemHeapInit . 91
MemInit . 92
MemInitHeapTable. 92
MemKernelInit 92
MemPtrFlags . 92
MemPtrOwner 92
MemPtrResetLock 92
MemPtrSetOwner 93
MemSemaphoreRelease. 93
MemSemaphoreReserve 93
MemStoreSetInfo 93

4 Data and Resource Manager Functions 95
DmArchiveRecord 95
DmAttachRecord. 96
DmAttachResource 97
DmCloseDatabase 98
DmCreateDatabase 98
DmCreateDatabaseFromImage. 99
DmDatabaseInfo 100
DmDatabaseSize 101
DmDeleteDatabase 102
DmDeleteRecord 103
DmDetachRecord 104
DmDetachResource. 105
DmFindDatabase. 105
viii Developing Palm OS Applications, Part II

Table of Contents

DmFindRecordByID 106
DmFindResource. 107
DmFindResourceType 108
DmFindSortPosition 109
DmGetAppInfoID 110
DmGetDatabase . 110
DmGetLastErr . . 111
DmGetNextDatabaseByTypeCreator 112
DmGetRecord . 113
DmGetResource . 114
DmGetResourceIndex. 114
DmGet1Resource. 115
DmInsertionSort . 116
DmMoveCategory 117
DmMoveRecord . 118
DmNewHandle . 118
DmNextOpenDatabase 119
DmNextOpenResDatabase 119
DmNewRecord . 120
DmNewResource 121
DmNumDatabases 121
DmNumRecords 122
DmNumRecordsInCategory 122
DmNumResources 122
DmOpenDatabase 123
DmOpenDatabaseByTypeCreator 124
DmOpenDatabaseInfo 125
DmPositionInCategory 126
DmQueryNextInCategory 126
DmQueryRecord 127
DmQuickSort . 128
DmRecordInfo . . 129
DmResourceInfo 130
DmReleaseRecord 131
DmReleaseResource 131
DmRemoveRecord 132
Developing Palm OS Applications, Part II ix

Table of Contents

DmRemoveResource 132
DmRemoveSecretRecords 133
DmResetRecordStates. 133
DmResizeRecord 134
DmResizeResource 134
DmSearchRecord. 135
DmSearchResource 136
DmSeekRecordInCategory 137
DmSet . 138
DmSetDatabaseInfo 138
DmSetRecordInfo 140
DmSetResourceInfo 141
DmStrCopy . 142
DmWrite . 142
DmWriteCheck . 143
System Use Only 143

DmMoveOpenDBContext. 143

5 Communications Functions 145
Serial Manager . . 145

SerClearErr . 145
SerClose . 146
SerGetSettings . . 146
SerGetStatus . . 147
SerOpen . 148
SerReceive . 149
SerReceiveCheck 150
SerReceiveFlush . 150
SerReceiveWait . 151
SerSend . . 152
SerSendWait . . 153
SerSetReceiveBuffer 154
SerSetSettings . 155
Functions Used Only by System Software 156

SerSleep . 156
SerWake . 156
x Developing Palm OS Applications, Part II

Table of Contents

SerReceiveISP 156
Serial Link Manager Functions 157

SlkClose . 157
SlkCloseSocket . . 158
SlkFlushSocket. . 158
SlkOpen . 159
SlkOpenSocket . . 160
SlkReceivePacket 161
SlkSendPacket . . 162
SlkSetSocketListener 163
SlkSocketRefNum 164
SlkSocketSetTimeout 164
Functions for Use By System Software Only 164

SlkSysPktDefaultResponse 164
SlkProcessRPC 165

PAD Server Functions 165
PsrClose . 165
PsrGetCommand. 166
PsrInit . 167
PsrSendReply . 168

Miscellaneous Communications Functions 169
Crc16CalcBlock . 169
Developing Palm OS Applications, Part II xi

Table of Contents

xii Developing Palm OS Applications, Part II

1
Palm OS Memory
Management

This chapter helps you understand memory use on Palm OS. The
chapter starts with an introduction to the memory layout and to the
memory architecture:

• Introduction to Memory Use on Palm OS provides informa-
tion about Palm OS hardware relevant to memory manage-
ment. For more information on Palm OS hardware, see “Basic
Hardware” in Chapter 1 of “Developing Palm OS Applica-
tions, Part 1.”

• Memory Architecture discusses in detail how memory is
structured on Palm OS. It includes a discussion of the struc-
ture of heaps, chunks, and records, the basic building blocks
of Palm OS memory.

The second part of the chapter explains the different parts of the sys-
tem—the managers—that you can use for memory management.
Each discussion includes a brief overview of the relevant functions,
with links to the related function descriptions.
• The Memory Manager maintains location and size of each

memory chunk in nonvolatile storage, volatile storage, and
ROM. It provides functions for allocating chunks, disposing
of chunks, resizing chunks, locking and unlocking chunks,
and compacting the heap when it becomes fragmented.

• The Data Manager manages user data, which is stored in da-
tabases for convenient access.

• The Resource Manager can be used by applications to conve-
niently retrieve and save chunks of data similar to the data
manager, but with the added capability of tagging each
chunk with a unique resource type and ID. These tagged data
chunks, called resources, are stored in resource databases.
Resources are typically used to store the application’s user in-
terface elements (e.g. images, fonts, or dialog layouts.)
Developing Palm OS Applications, Part II 13

Palm OS Memory Management

Introduction to Memory Use on Palm OS

Introduction to Memory Use on Palm OS
The Palm OS system software supports applications on low-cost,
low-power, palm-top devices. Given these constraints, the OS is effi-
cient in its use of both memory and processing resources. This sec-
tion looks at two aspects of the device that contribute to this: RAM
and ROM Use and PC Connectivity.

RAM and ROM Use
The first implementation of Palm OS provides nearly instantaneous
response to user input while running on a 16 MHz Motorola 68000
type processor with a minimum of 128K of nonvolatile storage
memory and 512K of ROM. The target battery life is 40 hours or
more of “on” time from two AAA alkaline batteries.

The Palm OS device has its main suite of applications prebuilt into
ROM. The preferred method for updating or enhancing the software
is by replacing the ROM. Alternatively, additional or replacement
applications and system extensions can be loaded into RAM, but
given the limited amount of RAM this is not always practical. The
ROM and RAM on each Palm OS device is on a memory module,
permitting the user to completely replace the entire system software
and applications suite by installing a single replacement module.
There is no RAM or ROM storage on the motherboard of the device.

Because the Palm OS device permits easy wholesale replacement of
the memory module, the design and operation of the system soft-
ware does not have to be cast in stone. Each new ROM module for a
Palm OS device can have different system software and applications
on it. It is still advantageous however, to keep applications compati-
ble at the source code level to minimize the engineering effort re-
quired to produce each new version of the ROM module.

PC Connectivity
PC connectivity is an integral component of the Palm OS device.
The device comes with a cradle that connects to a desktop PC and
with software for the PC that provides “one-button” backup and
synchronization of all data on the device with the user’s PC.
14 Developing Palm OS Applications, Part II

Palm OS Memory Management

Memory Architecture

Because all user data can be backed up on the PC, replacement of
the nonvolatile storage area of the Palm OS device becomes a simple
matter of installing the new module in place of the old one, and re-
synchronizing with the PC. The format of the user’s data in the stor-
age RAM can change with a new version of the ROM; the
connectivity software on the PC is responsible for translating the
data into the correct format when downloading it onto a device with
a new ROM.

Memory Architecture
The Palm OS system software is designed around a 32-bit architec-
ture. All addresses are 32-bit and the basic data types are 8, 16, and
32 bits long. The Motorola 68328 processor’s registers are all 32 bits
wide, which allows a 32-bit execution model. The external data bus
is only 16 bits wide; this reduces cost without impacting the soft-
ware model. The processor’s bus controller automatically breaks
down 32-bit reads and writes into multiple 16-bit reads and writes
externally.

The 32-bit addresses available to software provide a total of 4 GB of
address space for storing code and data. This provides a large
growth potential for future revisions of both the hardware and soft-
ware without affecting the execution model (the first shipping ver-
sion has less than 1 MB of memory, or .025% of this address space).

Although a large memory space is available, Palm OS was designed
to work efficiently with small amounts of RAM. It uses a total of
only 32K of RAM for all working space: stacks, globals, temporary
memory allocations, etc. This leaves the remainder of RAM avail-
able for storing user data like appointments, to do lists, memos, ad-
dress lists, etc.

The Palm OS system software divides the total available RAM into
two virtual pieces: dynamic RAM and storage RAM. The dynamic
area of RAM is the 32K used for working space and is analogous to
the total amount of memory installed into a typical desktop system.
The remainder of the available RAM is designated as storage RAM
and is analogous to disk storage on a typical desktop system.

Since power is always applied to the memory system, both areas of
RAM preserve their contents when the device is turned “off” (i.e., is
Developing Palm OS Applications, Part II 15

Palm OS Memory Management

Memory Architecture

in low-power sleep mode. See “Palm OS Power Modes” in Chapter
6, “Using Palm OS Managers,” of “Developing Palm OS Applica-
tions, Part 1.” Even when the device is explicitly reset, all of memory
is preserved, but the system software reinitializes the dynamic area
only as part of the boot-up sequence.

Data Storage
Because the Palm OS device has a limited amount of dynamic mem-
ory available and uses nonvolatile RAM instead of disk storage,
using a traditional file system is not the optimal method for storing
and retrieving user data such as meetings or address book entries.
Palm OS differs from traditional file systems as follows:

• Traditional file systems work by first reading all or a portion
of a file into a memory buffer from disk, using or updating
the information in the memory buffer, and then writing the
updated memory buffer back to disk. Because of the high la-
tency involved in reading or writing to disk, it is not practical
to use small memory buffers and typically many kilobytes of
data are read from or written to disk at a time.

• On the Palm OS device, it makes more sense to access and
update data directly in place, because all nonvolatile infor-
mation in the Palm OS device is stored in memory. This elim-
inates the extra overhead involved in a file system of
transferring the data to and from another memory buffer and
also reduces the dynamic memory requirements.
As a further enhancement, data in the Palm OS device is bro-
ken down into multiple finite size records, which can be left
freely scattered throughout the memory space. Allowing
records to be scattered throughout memory space means that
the process of adding, deleting, or resizing a record does not
require moving any other records around in memory.

Accessing Data
User data on the Palm OS device can be managed at the lowest level
through the memory manager because:

• most chunks of data, like address book records, datebook
records, etc., are relatively small (less than 256 bytes)

• all data is always resident in memory
16 Developing Palm OS Applications, Part II

Palm OS Memory Management

Memory Architecture

This section first briefly discusses how data is organized, then ex-
plains the basic principles behind accessing data. More details, in-
cluding a list of the API calls, are given in the sections on the
different managers (The Memory Manager, The Data Manager, and
The Resource Manager).

Memory Structure Overview

The Palm OS memory manager is designed to work best with small
chunks of data; in fact, the first implementation enforces the con-
straint that all chunks be less than 64K each (even though the API
does not have this constraint). To support this design, the memory
in the Palm OS device is subdivided into multiple heaps of less than
64K each (see Heap Overview), which can each contain one or more
chunks (see Chunk Structures). Because all heaps are less than 64K
each, memory overhead for managing each heap is kept to a mini-
mum since word (16-bit) offsets can be used to track each chunk in
the heap. Finding and compacting free space is also faster with
smaller heaps.

In the Palm OS environment all data are stored in memory manager
chunks and each chunk resides in a heap. These data include dy-
namic data (such as global variables), nonvolatile storage data (anal-
ogous to files in disk-based systems), and any data or resources in
ROM. Some heaps are ROM-based and contain only nonmovable
chunks; some are RAM-based and may contain movable or non-
movable chunks. RAM-based heaps may either be dynamic heaps
(for storing run-time variables) or storage heaps (for storage data).

Every memory chunk used to hold storage data (as opposed to
memory chunks used to store dynamic data) is also referenced
through a database. A database is analogous to a file in a traditional
desktop system. In the Palm OS environment, a database is simply a
list of all memory chunks that logically belong to a particular data-
base. Every storage data chunk belongs to one and only one data-
base. For every database, there is a database header chunk which
contains a list of data chunks belonging to that database. See The
Data Manager for more information.

How Applications Access Data

Applications reference most data chunks in the Palm OS device
through handles to minimize fragmentation of heaps. A handle is a
Developing Palm OS Applications, Part II 17

Palm OS Memory Management

Memory Architecture

reference to a master chunk pointer. Using handles imposes a slight
performance penalty over direct pointer access, but permits the
memory manager to move chunks around in the heap without in-
validating any chunk references that an application might have
stored away. As long as an application uses handles to reference
data, only the master pointer to a chunk needs to be updated by the
memory manager when it moves a chunk during defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the memory manager to mark that data
chunk as immobile. When an application no longer needs the data
chunk, it should immediately “unlock” the handle to keep heap
fragmentation to a minimum.

Locating Storage Data With Local IDs
Once a storage data record is located, an application can access it
through its handle. A handle, however, is good only until the system
is reset. Memory cards on the Palm OS device can be removed or in-
serted when power is off. When the system resets, it reinitializes all
dynamic memory areas and relaunches applications. A handle to a
storage chunk may not be the same after a reset if the user moved a
memory card to a slot with a different base address. To work in this
environment, all storage data on a memory card must be located
through memory card–relative references, called Local IDs.

Note that the first version of the hardware has only one slot.

A Local ID is a card-relative reference to a data chunk and remains
valid no matter what the base address of the card becomes. Once the
base address of the card is determined at run time, a Local ID can be
quickly converted to a real pointer or handle. A Local ID of a non-
movable chunk is simply the offset of the chunk from the base ad-
dress of the card. A Local ID of a movable chunk is the offset of the
master pointer to the chunk from the base address of the card, but
with the low-order bit set. Since chunks are always aligned on word
boundaries, only Local IDs of movable chunks have the low-order
bit set.

When an application needs the handle for a particular data record, it
must use the data manager. The application tells the data manager
which record to get (by index) out of which database. The data man-
18 Developing Palm OS Applications, Part II

Palm OS Memory Management

The Memory Manager

ager fetches the Local ID of the record out of the database header,
and uses it to compute the handle to the record. The handle to the
record is never actually stored in the database itself.

The Memory Manager
The Palm OS memory manager is responsible for maintaining the
location and size of every memory chunk in nonvolatile storage,
volatile storage, and ROM. It provides an API for allocating new
chunks, disposing chunks, resizing chunks, locking and unlocking
chunks, and compacting heaps when they become fragmented. Be-
cause of the limited RAM and processor resources of the Palm OS
device, the memory manager is efficient in its use of processing
power and memory.

This section gives some background information on the organiza-
tion of memory in Palm OS and provides an overview of the API,
discussing these topics:

• Memory Hierarchy: RAM Store and ROM Store
• Heap Overview
• Memory Manager Structures
• Using the Memory Manager
• Memory Manager Function Summary

Memory Hierarchy: RAM Store and ROM Store
The processor address space on the Palm OS device spans 4 GB
since the 68328 has 32 internal address lines. Each memory card in
the Palm OS device has 256 MB of address space reserved for it.
Memory card 0 starts at address $1000000, memory card 1 starts at
address $2000000, and so on.

Each memory card can contain ROM, RAM, or both. The ROM and
RAM on each card is further divided into one or more heaps of 64K
(in the current implementation) or less. All the RAM-based heaps on
a memory card are treated as the RAM store and all the ROM-based
heaps are treated as the ROM store. The heaps for a store do not
have to be adjacent to each other in address space; they may be scat-
tered throughout the memory space on the card.
Developing Palm OS Applications, Part II 19

Palm OS Memory Management
The Memory Manager
Heap Overview
A heap is a 64K (or less) contiguous area of memory used to contain
and manage one or more smaller chunks of memory. When applica-
tions work with memory (allocate, resize, lock, etc.) they usually
work with chunks of memory. An application can specify in which
heap it wishes to allocate a new chunk of memory. The memory
manager manages each heap independently and rearranges chunks
as necessary to defragment the heap and merge free space. Once a
chunk is allocated in a specific heap, the memory manager never
moves it out of that heap.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a 16-bit value that the memory manager uses to
uniquely identify any heap in the entire address space. The heap IDs
in card 0 start at 0 and increment sequentially first through the RAM
heaps and then through the ROM heaps. The heap IDs in card 1
start at some value greater than 0 and also increment sequentially,
first through all the RAM heaps and then through the ROM heaps.

The first heap(s) in card 0 is (are) dynamic heap(s), used for tempo-
rary memory allocations only, that is, non-file-related data, stack
space, etc. Dynamic heaps are reinitialized every time the Palm OS
device is reset. Every time an application quits, the system software
frees any chunks in dynamic heaps that have been allocated by that
application. All other heaps are nonvolatile and retain their contents
through soft reset cycles. These nonvolatile heaps are used to store
database directories, headers, and records.

Memory Manager Structures
This section discusses the different structures the memory manager
uses:

• Heap Structures
• Chunk Structures
• Local ID Structures
20 Developing Palm OS Applications, Part II

Palm OS Memory Management
The Memory Manager
Heap Structures

WARNING: Expect the heap structure to change in the future. Use
the API to work with heaps.

A heap consists of the heap header, master pointer table, and the
heap chunks.

• Heap header. The heap header is at the beginning of the
heap. It holds the size of the heap and contains flags for the
heap that provide certain information to the memory man-
ager; for example, whether the heap is ROM-based.

• Master pointer table. Following the heap header is a master
pointer table. It is used to store 32-bit pointers to movable
chunks in the heap. When the memory manager moves a
chunk to compact the heap, the pointer for that chunk in the
master pointer table is updated to the chunk’s new location.
The handles an application uses to track movable chunks ref-
erence the address of the master pointer to the chunk, not the
chunk itself. In this way, handles remain valid even after a
chunk is moved. If the master pointer table becomes full, an-
other is allocated and its offset is stored in the
nextMstrPtrTable field of the previous master pointer ta-
ble. Any number of master pointer tables can be linked in this
way.

• Heap chunks. Following the master pointer table are the ac-
tual chunks in the heap. Movable chunks are generally allo-
cated at the beginning of the heap, and nonmovable chunks
at the end of the heap. Nonmovable chunks do not need an
entry in the master pointer table since they are never relo-
cated by the memory manager. Since each chunk header con-
tains the size of the chunk, the heap can be easily walked by
hopping from chunk to chunk. All free and nonmovable
chunks can be found in this manner by checking the flags in
each chunk header.
Because heaps can be ROM-based, there is no information in
the header that must be changed when using a heap. Also,
ROM-based heaps contain only nonmovable chunks and
have a master pointer table with 0 entries.
Developing Palm OS Applications, Part II 21

Palm OS Memory Management
The Memory Manager
Chunk Structures

WARNING: Expect the chunk structure to change in the future.
Use the API to work with chunks.

A chunk consists of a chunk header, a lock:owner byte and a
Flags:size adjustment byte, and the hOffset word.

• Chunk header. At the start of the chunk is a 6-byte chunk
header. The chunk header contains the size of the chunk
which is larger than the size requested by the application and
includes the size of the header itself. Since an entire heap
must be 64K or less, the maximum data size for a chunk is
64K, minus the size of the heap header and master pointer ta-
ble, minus 6 bytes for the chunk header.

• Lock:owner byte. Following the size field is a byte which
holds the lock count in the high nibble and the owner ID in
the low nibble. The owner ID determines the owner of a
memory chunk and is set by the memory manager when allo-
cating a new chunk. The owner ID is useful information for
debugging and for garbage collection when an application
terminates abnormally. The lock count is incremented every
time a chunk is locked and decremented every time a chunk
is unlocked. A movable chunk can be locked a maximum of
14 times before being unlocked. Nonmovable chunks always
have 15 in the lock field.

• Flags:size adjustment byte. Following the lock:owner byte
is a byte which contains flags in the high nibble and a size ad-
justment in the low nibble. The flags nibble has 1 bit currently
defined, which is set for free chunks. The size adjustment
nibble can be used to calculate the requested size of the
chunk, given the actual size. The requested size is computed
by taking the size as stored in the chunk header and subtract-
ing the size of the header and the size adjustment field. The
actual size of a chunk is always a multiple of two so that
chunks always start on a word boundary.

• hOffset word. The last word in the chunk header is the dis-
tance from the master pointer for the chunk to the chunk’s
header, divided by two. Note that this offset could be a nega-
tive value if the master pointer table is at a higher address
22 Developing Palm OS Applications, Part II

Palm OS Memory Management
The Memory Manager
than the chunk itself. For nonmovable chunks that do not
need an entry in the master pointer table, this field is 0.

Local ID Structures

WARNING: Expect the Local ID structure to change in the future.
Use the API to work with chunks.

Chunks that contain database records or other database information
are tracked by the data manager through Local IDs. A Local ID is
card relative and is always valid no matter what memory slot the
card resides in. A Local ID can be easily converted to a pointer or the
handle to a chunk once the base address of the card is known.

The upper 31 bits of a Local ID contain the offset of the chunk or
master pointer to the chunk from the beginning of the card. The
low-order bit is set for Local IDs of handles and clear for Local IDs
of pointers.

The memory manager call MemLocalIDToGlobal takes a Local ID
and a card number (either 0 or 1) and converts the Local ID to a
pointer or handle. It looks at the card number and adds the appro-
priate card base address to convert the Local ID to a pointer or han-
dle for that card.

Using the Memory Manager
Usually, applications use the memory manager to allocate memory
only in the dynamic heap(s). The data manager provides an API for
allocating memory in the storage heaps used to hold user data. The
data manager calls the memory manager as appropriate to do its
low-level allocations.

To allocate a movable chunk, call MemHandleNew and pass the de-
sired chunk size. Before you can read or write data to this chunk,
you must call MemHandleLock to lock it and get a pointer to it.
Every time you lock a chunk, its lock count is incremented. You can
lock a chunk a maximum of 14 times before an error is returned.
MemHandleUnlock unlocks a chunk.

To determine the size of a movable chunk, pass its handle to
MemHandleSize. To resize it, call MemHandleResize. You gener-
Developing Palm OS Applications, Part II 23

Palm OS Memory Management
The Memory Manager
ally cannot increase the size of a chunk if it’s locked unless there
happens to be free space in the heap immediately following the
chunk. If the chunk is unlocked, the memory manager is allowed to
move it to another area of the heap to increase its size.When you no
longer need the chunk, call MemHandleFree, which releases the
chunk even if it is locked.

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MemPtrRecoverHandle. In fact, all of the
MemPtrXXX calls, including MemPtrSize, also work on pointers to
locked, movable chunks.

To allocate a nonmovable chunk, call MemPtrNew and pass the de-
sired size of the chunk. This call returns a pointer to the chunk
which can be used directly to read or write to it.

To determine the size of a nonmovable chunk, call MemPtrSize. To
resize it, call MemPtrResize. You generally can’t increase the size of
a nonmovable chunk unless there is free space in the heap immedi-
ately following the chunk. When you no longer need the chunk, call
MemPtrFree, which releases the chunk even if it’s locked.

Use the memory manager utility routines MemMove and MemSet to
conveniently move memory from one place to another or to fill
memory with a specific value.

When an application allocates memory in the dynamic heap(s), the
memory manager gives it an owner ID that associates that chunk
with the application. When the application quits, all chunks in the
dynamic heap that have its owner ID are disposed of automatically.
If the system needs to allocate a chunk that is not disposed of when
an application quits, it has to change the owner ID to 0 by calling the
system function MemHandleSetOwner.

Memory Manager Function Summary
• MemCardInfo

• MemChunkFree

• MemDebugMode

• MemHandleDataStorage

• MemHandleCardNo

• MemHandleFree
24 Developing Palm OS Applications, Part II

Palm OS Memory Management
The Memory Manager
• MemHandleHeapID

• MemHandleLock

• MemHandleNew

• MemHandleResize

• MemHandleSize

• MemHandleToLocalID

• MemHandleUnlock

• MemHeapCheck

• MemHeapCompact

• MemHeapDynamic

• MemHeapFlags

• MemHeapFreeBytes

• MemHeapID

• MemHeapScramble

• MemHeapSize

• MemLocalIDKind

• MemLocalIDToGlobal

• MemLocalIDToLockedPtr

• MemLocalIDToPtr

• MemMove

• MemNumCards

• MemNumHeaps

• MemNumRAMHeaps

• MemPtrCardNo

• MemPtrDataStorage

• MemPtrFree

• MemPtrHeapID

• MemPtrToLocalID

• MemPtrNew

• MemPtrRecoverHandle

• MemPtrResize

• MemSet

• MemSetDebugMode
Developing Palm OS Applications, Part II 25

Palm OS Memory Management
The Data Manager
• MemPtrSize

• MemPtrUnlock

• MemStoreInfo

• MemPtrUnlock

The Data Manager
The Palm OS device has only a limited amount of dynamic memory
available and uses nonvolatile RAM instead of disk storage. Using a
traditional file system is therefore not the optimal method for stor-
ing and retrieving user data such as meetings, address book entries,
and so on. A traditional file system first reads all or a portion of a file
into a memory buffer from disk, using and/or updating the infor-
mation in the memory buffer, and then writes the updated memory
buffer back to disk.

Because all nonvolatile information in the Palm OS device is stored
in memory, it makes sense to access and update the data directly in
place. This eliminates the overhead of transferring the data to and
from another memory buffer involved in a file system. It also re-
duces the dynamic memory requirements.

As a further enhancement, data in the Palm OS device is broken
down into multiple, finite-size records which can be left freely scat-
tered throughout the memory space. Allowing records to be scat-
tered throughout memory space means that adding, deleting, or
resizing a record does not require moving any other records around
in memory.

This section explains how to use the database manager by discuss-
ing these topics:

• Records and Databases
• Structure of a Database Header
• Using the Data Manager

Records and Databases
Databases organize related records; every record belongs to one and
only one database. A database may be a collection of all address
book entries, or all datebook entries, and so on. An application on
26 Developing Palm OS Applications, Part II

Palm OS Memory Management
The Data Manager
Palm OS can create, delete, open, and close databases as necessary,
just as a traditional file system can create, delete, open, and close a
traditional file. There is no restriction on where the records for a par-
ticular database reside as long as they are all on the same memory
card. The records from one database can be interspersed with the
records from one or more other databases in memory.

This database method of storing data fits in nicely with the design of
the Palm OS memory manager. Each record in a database is in fact a
memory manager chunk. The data manager uses memory manager
calls to allocate, delete, and resize database records. All heaps ex-
cept for the dynamic heap(s) are nonvolatile, so database records
can be stored in any heap except for the dynamic heap(s) (see “Heap
Overview” on page 20). Because the records can be stored anywhere
on the memory card, databases can even be distributed over multi-
ple discontiguous areas of physical RAM.

Accessing Data with Local IDs

A database maintains a list of all records that belong to it by storing
the Local ID of each record in the database header. Because of the
use of Local IDs, it is possible to place the memory card into any
memory slot of a Palm OS device. An application finds a particular
record in a database by index. When an application requests a par-
ticular record, the data manager fetches the Local ID of the record
from the database header by index, converts the Local ID to a han-
dle using the card number that contains the database header, and re-
turns the handle to the record.

Using Presorted Lists

One side benefit of the Palm OS database method of storing records
by index is that it becomes fairly cheap to maintain one or more pre-
sorted versions of the database record list. A sorted list for a data-
base can simply be a list of record indices, presorted in the correct
manner. For example, the address book database can be presorted
by last name, company, or city, just by maintaining three separate
sort lists. Since each sort list entry is only a 16-bit record index, this
is a relatively small data array. Having precalculated sort lists avail-
able allows different sorted views of the address book to be dis-
played quickly.
Developing Palm OS Applications, Part II 27

Palm OS Memory Management
The Data Manager
Structure of a Database Header
A database header consists of some basic database information and
a list of records in the database. Each record entry in the header has
the local ID of the record, 8 attribute bits, and a 3-byte unique ID for
the record. This section provides information about database head-
ers, discussing Database Header Fields and Structure of a Record
Entry in a Database Header.

WARNING: Expect the database header structure to change in the
future. Use the API to work with database structures.

Database Header Fields

The database header has the following fields:

• The name field holds the name of the database.
• The attributes field has flags for the database.
• The version field holds an application-specific version

number for that database.
• The modificationNumber is incremented every time a

record in the database is deleted, added, or modified; this al-
lows applications to quickly determine if a shared database
has been modified by another process.

• The appInfoID is an optional field that an application can
use to store application-specific information about the data-
base. For example it might be used to store user display pref-
erences for a particular database.

• The sortInfoID is another optional field that can be used
by an application for storing the local ID of a sort table for the
database.

• The type and creator fields are each 4 bytes and hold the
database type and creator. These fields are used by the sys-
tem to distinguish application databases from data databases
and to associate data databases with the appropriate applica-
tion. See “The System Manager” in Chapter 6, “Using Palm
OS Managers,” of “Developing Palm OS Applications, Part
1” for more information.

• The numRecords field holds the number of record entries
stored in the database header itself. If all the record entries
28 Developing Palm OS Applications, Part II

Palm OS Memory Management
The Data Manager
cannot fit in the header, then nextRecordList has the local
ID of a recordList that contains the next set of records.
Each record entry stored in a record list has three fields and is
8 bytes in length. Each entry has the local ID of the record
which takes up 4 bytes: 1 byte of attributes, and a 3-byte
unique ID for the record. The attribute field, shown in
Figure 1.1, is 8 bits long and contains 4 flags and a 4-bit cate-
gory number. The category number is used to place records
into user-defined categories like “business,” or “personal.”

Structure of a Record Entry in a Database Header

Each record entry has the local ID of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

• Local IDs are used so that the database is slot-independent.
Since all the records for a database reside on the same mem-
ory card as the header, the handle of any record in the data-
base can be quickly calculated. When an application requests
a specific record from a database, the data manager returns a
handle to the record that it determines from the stored Local
ID.
A special situation occurs with ROM-based databases. Be-
cause ROM-based heaps use nonmovable chunks exclusively,
the Local IDs to records in a ROM-based database are Local
IDs of pointers, not handles. So, when an application opens a
ROM-based database, the data manager allocates and initial-
izes a fake handle for each record and returns the appropriate
fake handle when the application requests a record. Because
of this, applications can use handles to access both RAM- and
ROM-based database records.

• The unique ID must be unique for each record within a data-
base. It remains the same for a particular record no matter
how many times the record is modified. It is used during syn-
chronization with the desktop to track records on the Palm
OS device with the same records on the desktop system.

When the user deletes or archives a record on Palm OS:

• The deleted bit is set in the attributes flags, but its entry in
the database header is kept around until the next synchroni-
zation with the PC.

• The dirty bit is set whenever a record is updated.
Developing Palm OS Applications, Part II 29

Palm OS Memory Management
The Data Manager
• The busy bit is set when an application currently has a record
locked for reading or writing.

• The secret bit is set for records that should not be displayed
before the user password has been entered on the device.

When a user “deletes” a record on the Palm OS device, the record’s
data chunk is freed, the Local ID stored in the record entry is set to 0,
and the delete bit is set in the attributes. When the user archives a
record, the deleted bit is also set but the chunk is not freed and the
Local ID is preserved. By using this scheme, the next time synchro-
nization is performed with the desktop system, the desktop can
quickly determine which records the user wants to delete (since
their record entries are still around on the Palm OS device). In the
case of archived records, it can save the record data on the PC before
it permanently removes the record entry and data from the Palm OS
device. For deleted records, the PC just has to delete the same record
from the PC before permanently removing the record entry from the
Palm OS device.

Figure 1.1 Record Attributes

Using the Data Manager
Using the data manager is similar to using a traditional file man-
ager, except that the data is broken down into multiple records in-
stead of being stored in one contiguous chunk. To create or delete a
database, call DmCreateDatabase and DmDeleteDatabase.

Each memory card is akin to a disk drive and can contain multiple
databases. To open a database for reading or writing, you must first
get the database ID, which is simply the Local ID of the database

Category (4)

secret bit
busy bit

dirty bit

delete bit
30 Developing Palm OS Applications, Part II

Palm OS Memory Management
The Data Manager
header. Calling DmFindDatabase searches a particular memory
card for a database by name and returns the Local ID of the database
header. Alternatively, calling DmGetDatabase returns the database
ID for each database on a card by index.

After determining the database ID, you can open the database for
read-only or read/write access. When you open a database, the sys-
tem locks down the database header and returns a reference to a da-
tabase access structure, which tracks information about the open
database and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DmDatabaseInfo, DmSetDatabaseInfo, and
DmDatabaseSize to query or set information about a database,
such as its name, size, creation and modification dates, attributes,
type, and creator.

Call DmGetRecord, DmQueryRecord, and DmReleaseRecord
when viewing or updating a database.

• DmGetRecord takes a record index as a parameter, marks the
record busy, and returns a handle to the record. If a record is
already busy when DmGetRecord is called, an error is re-
turned.

• DmQueryRecord is faster if the application only needs to
view the record; it doesn’t check or set the busy bit, so it’s not
necessary to call DmReleaseRecord when finished viewing
the record.

• DmReleaseRecord clears the busy bit, and updates the
modification number of the database and marks the record
dirty if the dirty parameter is true.

To resize a record to grow or shrink its contents, call
DmResizeRecord. This routine automatically reallocates the record
in another heap of the same card if the current heap does not have
enough space for it. Note that if the data manager needs to move the
record into another heap to resize it, the handle to the record
changes. DmResizeRecord returns the new handle to the record.

To add a new record to a database, call DmNewRecord. This routine
can insert the new record at any index position, append it to the
Developing Palm OS Applications, Part II 31

Palm OS Memory Management
The Data Manager
end, or replace an existing record by index. It returns a handle to the
new record.

There are three methods for removing a record: DmRemoveRecord,
DmDeleteRecord, and DmArchiveRecord.

• DmRemoveRecord removes the record’s entry from the data-
base header and disposes of the record data.

• DmDeleteRecord also disposes of the record data but in-
stead of removing the record’s entry from the database
header, it sets the deleted bit in the record entry attributes
field and clears the local chunk ID.

• DmArchiveRecord does not dispose of the record’s data; it
just sets the deleted bit in the record entry.

Both DmDeleteRecord and DmArchiveRecord are useful when
synchronizing information with a desktop PC. Since the unique ID
of the deleted or archived record is still kept in the database header,
the desktop PC can perform the necessary operations on its own
copy of the database before permanently removing the record from
the Palm OS database.

Call DmRecordInfo and DmSetRecordInfo to retrieve or set the
record information stored in the database header, such as the at-
tributes, unique ID and Local ID of the record. Typically, these rou-
tines are used to set or retrieve the category of a record which is
stored in the lower-4 bits of the record’s attribute field.

To move records from one index to another or from one database to
another, call DmMoveRecord, DmAttachRecord and
DmDetachRecord. DmDetachRecord removes a record entry from
the database header and returns the record handle. Given the han-
dle of a new record, DmAttachRecord inserts or appends that new
record to a database, or replaces an existing record with the new
record. DmMoveRecord is an optimized way to move a record from
one index to another in the same database.

Data Manager Function Summary
• DmQuickSort

• DmFindSortPosition

• DmInsertionSort

• DmCreateDatabaseFromImage
32 Developing Palm OS Applications, Part II

Palm OS Memory Management
The Data Manager
• DmGetNextDatabaseByTypeCreator

• DmCreateDatabase

• DmDeleteDatabase

• DmNumDatabases

• DmGetDatabase

• DmFindDatabase

• DmOpenDatabaseByTypeCreator

• DmCloseDatabase

• DmGetAppInfoID

• DmDatabaseInfo

• DmSetDatabaseInfo

• DmDatabaseSize

• DmOpenDatabase

• DmCloseDatabase

• DmNextOpenDatabase

• DmOpenDatabaseInfo

• DmResetRecordStates

• DmGetLastErr

• DmNumRecords

• DmRecordInfo

• DmSetRecordInfo

• DmAttachRecord

• DmDetachRecord

• DmMoveRecord

• DmNewRecord

• DmRemoveRecord

• DmDeleteRecord

• DmArchiveRecord

• DmNewHandle

• DmRemoveSecretRecords

• DmFindRecordByID

• DmSearchRecord

• DmQueryRecord
Developing Palm OS Applications, Part II 33

Palm OS Memory Management
The Resource Manager
• DmGetRecord

• DmResizeRecord

• DmReleaseRecord

• DmNumRecordsInCategory

• DmMoveCategory

• DmQueryNextInCategory

• DmPositionInCategory

• DmSeekRecordInCategory

• DmStrCopy

• DmSet

• DmWriteCheck

• DmWrite

The Resource Manager
Applications can use the Resource Manager much like the data
manager to conveniently retrieve and save chunks of data. It has the
added capability of tagging each chunk of data with a unique re-
source type and resource ID. These tagged data chunks, called re-
sources, are stored in resource databases. Resource databases are
almost identical in structure to normal databases except for a slight
amount of increased storage overhead per resource record (2 extra
bytes). In fact, the resource manager is nothing more than a subset
of routines in the data manager that are broken out here for concep-
tual reasons only.

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, etc. Part of
building an application involves creating these resources and merg-
ing them with the actual executable code. In the Palm OS environ-
ment, an application is in fact simply a resource database with the
executable code stored as one or more code resources and the
graphics elements and other miscellaneous data stored in the same
database as other resource types.

Applications may also find the resource manager useful for storing
and retrieving application preferences, saved window positions,
34 Developing Palm OS Applications, Part II

Palm OS Memory Management
The Resource Manager
state information, etc. These preferences settings can be stored in a
separate resource database.

This section explains how to work with the resource manager by
discussing these topics:

• Structure of a Resource Database Header
• Using the Resource Manager
• Resource Manager Functions

Structure of a Resource Database Header
A resource database header consists of some general database infor-
mation followed by a list of resources in the database. The first por-
tion of the header is identical in structure to a normal database
header. Resource database headers are distinguished from normal
database headers by the dmHdrAttrResDB bit in the attributes
field.

WARNING: Expect the resource database header structure to
change in the future. Use the API to work with resource database
structures.

• The name field holds the name of the resource database.
• The attributes field has flags for the database and always

has the dmHdrAttrResDB bit set.
• The modificationNumber is incremented every time a re-

source in the database is deleted, added, or modified. This al-
lows applications to quickly determine if a shared resource
database has been modified by another process.

• The appInfoID and sortInfoID fields are not normally
needed for a resource database but are included to match the
structure of a regular database. An application may option-
ally use these fields for its own purposes.

• The type and creator fields hold 4-byte signatures of the
database type and creator as defined by the application
that created the database.

• The numResources field holds the number of resource info
entries that are stored in the header itself. In most cases, this
is the total number of resources. If all the resource info entries
Developing Palm OS Applications, Part II 35

Palm OS Memory Management
The Resource Manager
cannot fit in the header, however, then nextResourceList
has the chunkID of a resourceList that contains the next
set of resource info entries.

Each 10-byte resource info entry in the header has the resource type,
the resource ID, and the Local ID of the memory manager chunk
that contains the resource data.

Using the Resource Manager
You can create, delete, open, and close resource databases with the
routines used to create normal record-based databases (see Using
the Data Manager). This includes all database-level (not record-
level) routines in the data manager such as DmCreateDatabase,
DmDeleteDatabase, DmDatabaseInfo, and so on.

When you create a new database using DmCreateDatabase, the
type of database created (record or resource) depends on the value
of the resDB parameter. If set, a resource database is created and the
dmHdrAttrResDB bit is set in the attributes field of the database
header. Given a database header ID, an application can determine
which type of database it is by calling DmDatabaseInfo and exam-
ining the dmHdrAttrResDB bit in the returned attributes field.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
routines of the resource manager. Generally, applications use the
DmGetResource and DmReleaseResource routines.
DmGetResource returns a handle to a resource, given the type and
ID. This routine searches all open resource databases for a resource
of the given type and ID, and returns a handle to it. The search starts
with the most recently opened database. To search only the most re-
cently opened resource database for a resource instead of all open
resource databases, call DmGet1Resource.

DmReleaseResource should be called as soon as an application
finishes reading or writing the resource data. To resize a resource,
call DmResizeResource, which accepts a handle to a resource and
reallocates the resource in another heap of the same card if neces-
sary. It returns the handle of the resource, which might have been
changed if the resource had to be moved to another heap to resize it.
36 Developing Palm OS Applications, Part II

Palm OS Memory Management
The Resource Manager
The remaining resource manager routines are usually not required
for most applications. These include functions to get and set re-
source attributes, move resources from one database to another, get
resources by index, and create new resources. Most of these func-
tions reference resources by index to optimize performance. When
referencing a resource by index, the DmOpenRef of the open re-
source database that the resource belongs to must also be specified.
Call DmSearchResource to find a resource by type and ID or by
pointer by searching in all open resource databases.

To get the DmOpenRef of the topmost open resource database, call
DmNextOpenResDatabase and pass nil as the current DmOpenRef.
To find out the DmOpenRef of each successive database, call
DmNextOpenResDatabase repeatedly with each successive
DmOpenRef.

Given the access pointer of a specific open resource database,
DmFindResource can be used to return the index of a resource,
given its type and ID. DmFindResourceType can be used to get the
index of every resource of a given type. To get a resource handle by
index, call DmGetResourceIndex.

To determine how many resources are in a given database, call
DmNumResources. To get and set attributes of a resource including
its type and ID, call DmResourceInfo and DmSetResourceInfo.
To attach an existing data chunk to a resource database as a new re-
source, call DmAttachResource. To detach a resource from a data-
base, call DmDetachResource.

To create a new resource, call DmNewResource and pass the desired
size, type, and ID of the new resource. To delete a resource call
DmRemoveResource. Removing a resource disposes of its data
chunk and removes its entry from the database header.

Resource Manager Functions
To work with resources, you can use the functions listed in Data
Manager Function Summary as well as these functions:

• DmGetResource

• DmGet1Resource

• DmReleaseResource

• DmResizeResource
Developing Palm OS Applications, Part II 37

Palm OS Memory Management
The Resource Manager
• DmNextOpenResDatabase

• DmFindResourceType

• DmFindResource

• DmSearchResource

• DmNumResources

• DmResourceInfo

• DmSetResourceInfo

• DmAttachResource

• DmDetachResource

• DmNewResource

• DmRemoveResource

• DmGetResourceIndex
38 Developing Palm OS Applications, Part II

2
Palm OS Communications

The Palm OS communications software provides high-performance
serial communications capabilities including byte-level serial I/O,
best-effort packet-based I/O with CRC-16, reliable data transport
with retries and acknowledgments, connection management, and
modem dialing capabilities.

This chapter helps you understand the different parts of the com-
munications software and explains how to use them, discussing
these topics:

• Byte Ordering briefly explains the byte order used for all
data.

• Communications Architecture Hierarchy provides an over-
view of the hierarchy, including an illustration.

• The Serial Manager is responsible for byte-level serial I/O
and control of the RS232 signals.

• The Serial Link Protocol provides an efficient packet send
and receive mechanism.

• The Serial Link Manager is the Palm OS implementation of
the serial link protocol.

• The Packet Assembly/Disassembly Protocol (PADP).
• The PAD Server is the Palm OS implementation of the PADP.

Byte Ordering
By convention, all data originating from and destined for the Palm
OS device uses Motorola byte ordering. That is, data of compound
types such as Word (2 bytes) and DWord (4 bytes), as well as their
integral counterparts, is packaged with the most-significant byte at
the lowest address. This contrasts with Intel byte ordering.
Developing Palm OS Applications, Part II 39

Palm OS Communications
Communications Architecture Hierarchy
Communications Architecture Hierarchy
The communications software has multiple layers, with higher lay-
ers depending on more primitive functionality provided by lower
layers. Functionality of all layers is available to applications. The
software consists of these layers, described in more detail below:

• The serial manager, at the lowest layer, deals with the Palm
OS serial port and control of the RS232 signals, providing
byte-level serial I/O.

• The modem manager provides modem dialing capabilities.
• The Serial Link Protocol (SLP) provides best-effort packet

send and receive capabilities with CRC-16. SLP does not
guarantee packet delivery; this is left to the higher-level pro-
tocols.

• The Packet Assembly/Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efficient protocol fea-
turing variable-size block transfers with robust error check-
ing and automatic retries.

• The Connection Management Protocol (CMP) provides con-
nection-establishment capabilities featuring baud rate arbi-
tration and exchange of communications software version
numbers.

• The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other sub-systems. DLP facilitates
efficient data synchronization between desktop (i.e., PC,
Macintosh, etc.) and Palm OS applications, database backup,
installation of code patches, extensions, applications, and
other databases, as well as Remote Inter-Application Com-
munication (RIAC) and Remote Procedure Calls (RPC).
40 Developing Palm OS Applications, Part II

Palm OS Communications
Communications Architecture Hierarchy
Figure 2.1 Palm OS Communications Architecture

Packet Assembly/
Disassembly

Protocol (PADP)

Modem Manager

Serial Link
Protocol (SLP)

Connection
Management

Protocol (CMP)

Desktop Link
Protocol (DLP)

Serial Manager

Modem
(optional)

Serial Port

Hardware
Developing Palm OS Applications, Part II 41

Palm OS Communications
The Serial Manager
The Serial Manager
The Palm OS serial manager is responsible for byte-level serial I/O
and control of the RS232 signals.

In order to prolong battery life, the serial manager must be very effi-
cient in its use of processing power. To reach this goal, the serial
manager receiver is interrupt-driven. In the present implementa-
tion, the serial manager sends data using the polling model.

Using the Serial Manager
Before using the serial manager, call SysLibFind, passing ”Serial
Library” for the library name to get the serial library reference
number. This reference number is used with all subsequent serial
manager calls. The system software automatically installs the serial
library during system initialization.

To open the serial port, call SerOpen, passing the serial library ref-
erence number (returned by SysLibFind), 0 (zero) for the port
number, and the desired baud rate. An error code of 0 (zero) or
serErrAlreadyOpen indicates that the port was successfully
opened. If the serial port is already open when SerOpen is called,
the port’s open count is incremented and an error code of
serErrAlreadyOpen is returned.

This ability to open the serial port multiple times is provided for use
by cooperating tasks which need to share the serial port. All other
applications must refrain from sharing the serial port and close it by
calling SerClose when serErrAlreadyOpen is returned. Error
codes other than 0 (zero) or serErrAlreadyOpen indicate failure.
The application must open the serial port before making other serial
manager calls.

To close the serial port, call SerClose. Every successful call to
SerOpen must eventually be paired with a call to SerClose. Be-
cause an open serial port consumes more energy from the device’s
batteries, it is essential not to keep the port open any longer than
necessary.

To change serial port settings such as the baud rate, CTS time-out,
number of data and stop bits, parity options, and handshaking op-
42 Developing Palm OS Applications, Part II

Palm OS Communications
The Serial Manager
tions, call SerSetSettings. For baud rates above 19200, use of
hardware handshaking is advised.

To retrieve the current serial port settings, call SerGetSettings.

To retrieve the current line error status, call SerGetStatus, which
returns the cumulative status of all line errors being monitored. This
includes parity, hardware and software overrun, framing, break de-
tection, and handshake errors.

To reset the serial port error status, call SerClearErr, which resets
the serial port’s line error status. Other serial manager functions,
such as SerReceive, immediately return with the error code
serErrLineErr if any line errors are pending. It is therefore im-
portant to check the result of serial manager function calls and call
SerClearErr if line error(s) occurred.

To send a stream of bytes, call SerSend. In the present implementa-
tion, SerSend blocks until all data is transferred to the UART or a
time-out error (if CTS handshaking is enabled) occurs. If your soft-
ware needs to detect when all data has been transmitted, see
SerSendWait .

To wait until all data queued up for transmission has been transmit-
ted, call SerSendWait. SerSendWait blocks until all pending data
is transmitted or a CTS time-out error occurs (if CTS handshaking is
enabled).

To flush all bytes from the transmission queue, call SerSendWait.
This routine discards any data not yet transferred to the UART for
transmission.

To receive a stream of bytes from the serial port, call SerReceive,
specifying a buffer, the number of bytes desired, and the interbyte
time out. This call blocks until all the requested data has been re-
ceived or an error occurs. To read bytes already in the receive queue,
call SerReceiveCheck (see below) to get the number of bytes
presently in the receive queue, and then call SerReceive, specify-
ing the number of bytes desired. Because SerReceive returns im-
mediately without any data if line errors are pending, it is important
to acknowledge the detection of line errors by calling
SerClearErr.

To wait for a specific number of bytes to be queued up in the receive
queue, call SerReceiveWait, passing the desired number of bytes
Developing Palm OS Applications, Part II 43

Palm OS Communications
The Serial Manager
and an interbyte time out. This call blocks until the desired number
of bytes have accumulated in the receive queue or an error occurs.
The desired number of bytes must be less than the current receive
queue size. The default queue size is 512 bytes. Because this call re-
turns immediately if line errors are pending, it is important to ac-
knowledge the detection of line errors by calling SerClearErr. See
also SerReceiveCheck and SerSetReceiveBuffer.

To check how many bytes are presently in the receive queue, call
SerReceiveCheck.

To discard all data presently in the receive queue and to flush bytes
coming into the serial port, call SerReceiveFlush, specifying the
inter-byte time-out. This call blocks until a time out occurs waiting
for the next byte to arrive.

To replace the default receive queue, call SerSetReceiveBuffer,
specifying the pointer to the buffer to be used for the receive queue
and its size. The default receive queue must be restored before the
serial port is closed. To restore the default receive queue, call
SerSetReceiveBuffer, passing 0 (zero) for the buffer size. The se-
rial manager does not free the custom receive queue.

To avoid having the system go to sleep while it’s waiting to receive
data, an application should call EvtResetAutoOffTimer periodi-
cally. For example, the serial link manager automatically calls
EvtResetAutoOffTimer each time a new packet is received. Note
that this facility is not part of the serial manager but part of the
event manager. See Chapter 12, “System Manager Functions,” of
“Developing Palm OS Applications.”
44 Developing Palm OS Applications, Part II

Palm OS Communications
The Serial Link Protocol
Serial Manager Function Summary
• SerClearErr

• SerClose

• SerGetSettings

• SerGetStatus

• SerOpen

• SerReceive

• SerReceiveCheck

• SerReceiveFlush

• SerReceiveWait

• SerSend

• SerSendWait

• SerSetReceiveBuffer

• SerSetSettings

The Serial Link Protocol
The Serial Link Protocol (SLP) provides an efficient packet send and
receive mechanism. SLP provides robust error detection with CRC-
16. SLP is a best-effort protocol; it does not guarantee packet deliv-
ery (this is left to the higher-level protocols). For enhanced error de-
tection and implementation convenience of higher-level protocols,
SLP specifies packet type, source, destination, and transaction ID in-
formation as an integral part of its data packet structure.

SLP Packet Structures
The following sections describe SLP Packet Format, Packet Type As-
signment, Socket ID Assignment, and Transaction ID Assignment.

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer.

• The packet header contains the packet signature, the destina-
tion socket ID, the source socket ID, packet type, client data
size, transaction ID, and header checksum. The packet signa-
Developing Palm OS Applications, Part II 45

Palm OS Communications
The Serial Link Protocol
ture is composed of the three bytes 0xBE, 0xEF, 0xED, in that
order. The header checksum is an 8-bit arithmetic checksum
of the entire packet header, not including the checksum field
itself.

• The client data is a variable-size block of binary data speci-
fied by the user and is not interpreted by the Serial Link Pro-
tocol.

• The packet footer consists of the CRC-16 value computed
over the packet header and client data.

Figure 2.2 Structure of a Serial Link Packet

Packet Header

Client Data

Packet Footer

0xBE
0xEF
0xED

signature (3):

destination socket (1)
source socket (1)
packet type (1)
client data size (2)
transaction id (1)
header checksum (1)

CRC-16 (2)
46 Developing Palm OS Applications, Part II

Palm OS Communications
The Serial Link Protocol
Packet Type Assignment

Packet type values in the range of 0x00 through 0x7F are reserved
for use by the system software. The following packet type assign-
ments are currently implemented:

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are “well-known” socket ID values which are re-
served by the components of the system software. The dynamic
socket IDs are assigned at run time when requested by clients of
SLP. Static socket ID values in the ranges 0x00 through 0x03 and
0xE0 through 0xFF are reserved for use by the system software. The
following static socket IDs are currently implemented or reserved:

Transaction ID Assignment

Transaction id values are not interpreted by the Serial Link Protocol
and are for the sole benefit of the higher-level protocols. The follow-
ing transaction ID values are currently reserved:

0x00 Remote Debugger, Remote Console, and System Re-
mote Procedure Call packets.

0x02 PADP packets.

0x03 Loop-back Test packets.

0x00 Remote Debugger socket.

0x01 Remote Console socket.

0x02 Remote UI socket.

0x03 Desktop Link Server socket.

0x04 -0xCF Reserved for dynamic assignment.

0xD0 - 0xDF Reserved for testing.
Developing Palm OS Applications, Part II 47

Palm OS Communications
The Serial Link Protocol
Transmitting an SLP Packet
This section provides an overview of the steps involved in transmit-
ting an SLP packet. The next section describes the implementation.

Transmission of an SLP packet consists of these steps:

1. Fill in the packet header and compute its checksum.
2. Compute the CRC-16 of the packet header and client data.
3. Transmit the packet header, client data, and packet footer.
4. Return an error code to the client.

Receiving an SLP Packet
Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its check-
sum.

3. Read in the client data.
4. Read in the packet footer and validate the packet CRC.
5. Dispatch/return an error code and the packet (if successful)

to the client.

0x00 and 0xFF Reserved for use by the system software.

0x00 Reserved by the Palm OS implementation of SLP
to request automatic transaction ID generation.

0xFF Reserved for the connection manager’s WakeUp
packets.
48 Developing Palm OS Applications, Part II

Palm OS Communications
The Serial Link Manager
The Serial Link Manager
The serial link manager is the Palm OS implementation of the Palm
OS Serial Link Protocol.

Serial link manager provides the mechanisms for managing multi-
ple client sockets, sending packets, and receiving packets both syn-
chronously and asynchronously. It also provides support for the
Remote Debugger and Remote Procedure Calls (RPC).

Using the Serial Link Manager
Before an application can use the services of the serial link manager,
it must open it by calling SlkOpen. Success is indicated by error
codes of 0 (zero) or slkErrAlreadyOpen. The return value slkEr-
rAlreadyOpen indicates that the serial link manager has already
been opened (most likely by another task). Other error codes indi-
cate failure.

When you finish using the serial link manager, call SlkClose. Slk-
Close may be called only if SlkOpen returned 0 (zero) or
slkErrAlreadyOpen. When open count reaches zero, SlkClose
frees resources allocated by SlkOpen.

To use the serial link manager socket services, open a Serial Link
socket by calling SlkOpenSocket. Pass a reference number of an
opened and initialized communications library (see SerOpen), a
pointer to a memory location for returning the socket ID, and a
Boolean indicating whether the socket is static or dynamic. If open-
ing a static socket, the memory location for the socket id must con-
tain the desired socket number. If opening a dynamic socket, the
new socket ID is returned in the passed memory location. Sharing of
sockets is not supported. Success is indicated by an error code of 0
(zero). For information about static and dynamic socket IDs, see
Socket ID Assignment.

When you have finished using a Serial Link socket, you must close it
by calling SlkCloseSocket. This releases system resources allo-
cated for this socket by the serial link manager.

To obtain the communications library reference number for a partic-
ular socket, call SlkSocketRefNum. The socket must already be
open.
Developing Palm OS Applications, Part II 49

Palm OS Communications
The Serial Link Manager
To set the interbyte packet receive timeout for a particular socket,
call SlkSocketSetTimeout.

To flush the receive stream for a particular socket, call
SlkFlushSocket, passing the socket number and the interbyte
time out.

To register a socket listener for a particular socket, call
SlkSetSocketListener, passing the socket number of an open
socket and a pointer to the SlkSocketListenType structure. Be-
cause the serial link manager does not make a copy of the
SlkSocketListenType structure, but instead saves the pointer
passed to it, the structure may not be an automatic variable (that is,
allocated on the stack). The SlkSocketListenType structure may
be a global variable in an application or a locked chunk allocated
from the dynamic heap. The SlkSocketListenType structure
specifies pointers to the socket listener procedure and the data buff-
ers for dispatching packets destined for this socket. Pointers to two
buffers must be specified:

• the packet header buffer (size of SlkPktHeaderType)

• the packet body buffer, which must be large enough for the
largest expected client data size

Both buffers may be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is re-
ceived for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The serial link manager does not free the
SlkSocketListenType structure or the buffers when the socket is
closed; that is the responsibility of the application. For this mecha-
nism to function, some task needs to assume the responsibility to
“drive” the serial link manager receiver by periodically calling
SlkReceivePacket.

To send a packet, call SlkSendPacket, passing a pointer to the
packet header (SlkPktHeaderType) and a pointer to an array of
SlkWriteDataType structures. SlkSendPacket stuffs the signa-
ture, client data size, and the checksum fields of the packet header.
The caller must fill in all other packet header fields. If the transac-
tion ID field is set to 0 (zero), the serial link manager automatically
50 Developing Palm OS Applications, Part II

Palm OS Communications
The Serial Link Manager
generates and stuffs a new non-zero transaction ID. The array of
SlkWriteDataType structures enables the caller to specify the cli-
ent data part of the packet as a list of noncontiguous blocks. The end
of list is indicated by an array element with the size field set to 0
(zero).

Listing 2.1 Sending a Serial Link Packet

Err err;
SlkPktHeaderType sendHdr;

//serial link packet header
SlkWriteDataType writeList[2];

//serial link write data segments
Byte body[20];

//packet body(example packet body)

// Initialize packet body
...

// Compose the packet header
sendHdr.dest = slkSocketDLP;
sendHdr.src = slkSocketDLP;
sendHdr.type = slkPktTypeSystem;
sendHdr.transId = 0;

// let Serial Link Manager set the transId
// Specify packet body
writeList[0].size = sizeof(body);

// first data block size
writeList[0].dataP = body;

// first data block pointer
writeList[1].size = 0;

// no more data blocks

// Send the packet
err = SlkSendPacket(&sendHdr, writeList);
...

}

Developing Palm OS Applications, Part II 51

Palm OS Communications
The Serial Link Manager
Listing 2.2 Generating a New Transaction ID

//
// Example: Generating a new transaction ID given
// the previous transaction ID. Can start with
// any seed value.
//

Byte NextTransactionID (Byte previousTransactionID)
{
Byte nextTransactionID;

// Generate a new transaction id, avoid the
// reserved values (0x00 and 0xFF)
if (previousTransactionID >= (Byte)0xFE)
nextTransactionID = 1; // wrap around

else
nextTransactionID = previousTransactionID + 1;

// increment

return nextTransactionID;
}

To receive a packet, call SlkReceivePacket. You may request a
packet for the passed socket ID only, or for any open socket which
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a time out. The time out
indicates how long the receiver should wait for a packet to begin ar-
riving before timing out. A time-out value of (-1) means “wait for-
ever.” If a packet is received for a socket with a registered socket
listener, it is dispatched via its socket listener procedure.
52 Developing Palm OS Applications, Part II

Palm OS Communications
The Packet Assembly/Disassembly Protocol
Serial Link Manager Function Summary
• SlkClose

• SlkCloseSocket

• SlkFlushSocket

• SlkOpen

• SlkOpenSocket

• SlkReceivePacket

• SlkSendPacket

• SlkSetSocketListener

• SlkSocketRefNum

• SlkSocketSetTimeout

The Packet Assembly/Disassembly Protocol
The Packet Assembly/Disassembly Protocol (PADP) provides the
infrastructure for sending variable-size commands and receiving
variable-size responses. As is common for transport layer protocols,
PADP is asymmetric in the sense that only one side of the connec-
tion can issue commands, while the other side can only send re-
sponses. For convenience, this document uses the term workstation
to refer to the side of the connection which sends commands. The
side of the connection which sends responses is referred to as the
server. A single command-response cycle is a transaction.

PADP provides reliable buffered data transfer capabilities. It is a
simple and efficient half-duplex protocol featuring variable-size
block transfers with robust error checking and automatic retries.
The packet assembly/disassembly technique is used to break up a
large block of client data into multiple data packets, thus improving
error recovery performance over possibly noisy connections such as
telephone lines. Up to 65535 bytes of client data can be transferred
in each direction within a single PADP transaction.

PADP builds on top of the Serial Link Protocol (SLP) by building its
own packet structure into the client data section of the SLP packet.

The following sections describe the PADP packets and their formats,
and the PADP algorithms for sending and receiving client data.
Developing Palm OS Applications, Part II 53

Palm OS Communications
The Packet Assembly/Disassembly Protocol
PADP Packet Structures
PADP employs three types of packets: padData, padAck, and
padTickle.

• A PADP padData Packet transfers client data .
• A PADP padAck Packet acknowledges the receipt of valid

padData packets.
• A PADP padTickle Packet keeps the session “alive” while the

workstation is performing a time-consuming activity be-
tween commands.

PADP packets are embedded within the client data section of SLP
packets. SLP reserves SLP packet type 0x02 for PADP packets. (see
PADP padTickle Packet below)

Figure 2.3 PADP Packet Within the SLP Packet

...
SLP packet type = 0x02

...

SLP Packet

SLP Footer

PADP Packet

SLP Client Data

SLP header
54 Developing Palm OS Applications, Part II

Palm OS Communications
The Packet Assembly/Disassembly Protocol
The following sections describe the formats of the PADP structures
embedded within the SLP client data. For a detailed description of
SLP packet structure refer to The Serial Link Protocol.

PADP Header

All PADP packets contain the PADP header. The PADP header con-
tains the PADP packet type field, a flags field, and a
sizeOrOffset field. The type field identifies the PADP packet as
one of the following three PADP packet types:

• 0x01 = padData
• 0x02 = padAck
• 0x04 = padTickle

The usage of the individual fields within each type of PADP packet
is described in detail in the following sections. presents the PADP
header fields, with the field size (in bytes) indicated in parentheses.

Figure 2.4 PADP Packet Header

PADP padData Packet

The padData packets are used to transfer client data. A padData
packet consists of the fixed-size PADP header followed by a vari-
able-size section of PADP client data. A single padData packet may
contain at most 1024 bytes of PADP client data.

The flags field in the PADP header of a padData packet is used to
identify first and last padData packets within the block of client data
being transferred. When the entire block of client data fits within a
single padData packet, the packet is marked as both first and last.
All unused bits must be set to zero.

Usage of the sizeOrOffset field in the PADP header of a padData
packet depends on whether this padData packet is the first packet
within the block of client data being transferred.

PADP type (1)
flags (1)
sizeOrOffset (2)
Developing Palm OS Applications, Part II 55

Palm OS Communications
The Packet Assembly/Disassembly Protocol
• If this is the first padData packet of the block (it will be
marked as “first” in the PADP header flags field), the
sizeOrOffset field contains the total size of the client data
block being transferred. This provides the receiver with the
necessary information to determine whether it can accommo-
date a block of this size, as well as the opportunity to allocate
a memory buffer for the entire client data block being re-
ceived.

• If the padData packet is not marked as first in the PADP
header flags field, the sizeOrOffset fields holds the rela-
tive zero-based offset of the client data contained in the
packet from the beginning of the entire client data block
being transferred.

Figure 2.5 presents the padData packet.

Figure 2.5 PADP padData Packet Format

...
SLP packet type = 0x02

...

SLP
Packet

SLP
Footer

PADP
padData
Packet

SLP
header

PADP type = 0x01

flags

Flag bits:

7 - first packet
6 - last packet

sizeOrOffset

PADP
Header

PADP
Client
Data

. .

. .

. .

Up to 1024 bytes of
PADP Client Data

7 6
56 Developing Palm OS Applications, Part II

Palm OS Communications
The Packet Assembly/Disassembly Protocol
PADP padAck Packet

The padAck packets are used to acknowledge valid padData pack-
ets. A padAck packet consists of the fixed-size PADP header only.

The “first” and “last” packet bits of the flags field in the PADP
header of a padAck packet match those of the padData packet being
acknowledged. The memory error bit is for signaling to the data
sender that the receiver cannot accommodate the incoming data
block whose size is indicated in the first padData packet. When the
data sender receives a padAck packet with the memory error bit
set in response to the first padData packet, it must abort sending the
data block immediately, returning an error code to the caller. All un-
used bits must be set to zero.

The value of the sizeOrOffset field in the PADP header of a
padAck packet matches that of the padData packet being acknowl-
edged.

Figure 2.6 presents the padAck packet.

Figure 2.6 PADP padAck Packet Format

...
SLP packet type = 0x02

...

SLP
Packet

SLP
Footer

PADP
padAck
Packet

SLP
header

PADP type = 0x02

flags

Flag bits:
7 - first packet
6 - last packet
5 - memory error

sizeOrOffset

PADP
Header 7 6 5
Developing Palm OS Applications, Part II 57

Palm OS Communications
The Packet Assembly/Disassembly Protocol
PADP padTickle Packet

The padTickle packets are used for keeping the session alive while
the workstation is performing a time-consuming activity between
transactions.

The flags and sizeOrOffset fields in the PADP header of a
padTickle packet are set to zero.

Figure 2.7 presents the padTickle packet.

Figure 2.7 PADP padTickle Packet Format

PADP Algorithms
The model employed by PADP consists of two entities: the worksta-
tion and the server.

• The workstation issues commands and receives responses.
• The server receives commands and sends responses. The

server entity is not allowed to initiate commands.

A single command and its matching response constitute one trans-
action.

To keep the session alive between transactions, the workstation en-
tity sends padTickle packets to the server entity at 7-second inter-

...
SLP packet type = 0x02

...

SLP
Packet

SLP
Footer

PADP
padTickle
Packet

SLP
header

PADP type = 0x04

flags = 0

sizeOrOffset = 0

PADP
Header
58 Developing Palm OS Applications, Part II

Palm OS Communications
The Packet Assembly/Disassembly Protocol
vals. In the future, the protocol may be extended to have the server
entity also send padTickle packets to the workstation entity.

A maximum of 65535 bytes of client data may be sent in a single
PADP command or response. The client data block is logically di-
vided into segments of 1024 bytes; the last segment may contain less
than 1024 bytes. Each segment is then sent in a padData packet,
with retries if necessary. Since the protocol is half-duplex, each
padData packet must be acknowledged by the receiver before the
next segment can be sent. Each padData packet is resent at fixed in-
tervals until it is acknowledged or the maximum retry count (dis-
cussed later) is exceeded. Refer to PADP Packet Structures for
packet format details.

All padData and padAck packets within a single transaction are
identified by the same transaction ID value. Subsequent transac-
tions increment through the transaction ID values, wrapping
around eventually. The workstation entity issuing the command
generates the transaction ID. The server entity uses that transaction
ID value in the corresponding response. While waiting for a new
command, the server entity filters out any PADP packets which
have the transaction ID of the last successfully received command.
Refer to The Serial Link Protocol and The Serial Link Manager for
information about reserved transaction ID values.

After sending a packet, the implementations needs to wait for the
transmit queue to empty before starting the time-out counter to re-
ceive the next expected packet. Only then the protocol timing
schemes will work correctly and will be independent of the baud
rate and packet size,

Sending a Client Data Block

This section presents the algorithm for sending a block of client data
(i.e., a command to the server or response to the workstation). Note
that

• For the workstation implementation, retryInterval is cur-
rently 4 seconds and maxRetries is 14 seconds.

• For the server implementation on Palm OS, retryInterval
is 2 seconds and maxRetries is 10 seconds.

The values of retryInterval and maxRetries are greater for the
workstation implementation to allow for heap compaction on the
Developing Palm OS Applications, Part II 59

Palm OS Communications
The Packet Assembly/Disassembly Protocol
device. On rare occasions, compaction may take as long as 20 sec-
onds per storage heap (when receiving a large data block, the Palm
OS receiver attempts to allocate the buffer space from one of the
storage heaps before acknowledging the first padData packet from
the sender, and this could require heap compaction).

Listing 2.3 Sending a block of data

//
// Algorithm for sending a block of data
//

initialize reference to the first client data
segment to be sent;
while (there are more segments to send)
{
generate the correct PADP packet header flags

and sizeOrOffset values for the current segment;

// Retry loop
for (up to maxRetries)
{
send a padData packet containing the current
client data segment;
wait for retryInterval seconds to receive a
matching padAck packet;
if (matching padAck packet received)
{
if (the "memory error" bit is set in the

padAck header)
abort transmission of this client data

block;
else
break out of the retry loop;

}
}

if ((we were sending an intermediate
60 Developing Palm OS Applications, Part II

Palm OS Communications
The Packet Assembly/Disassembly Protocol
(other than last) padData packet of the
block) and (retry count was exceeded))

{
// See discussion below
abort transmission - the connection is lost;
}

adjust reference to the next client data
segment to be sent;
}

There is a special case which arises and must be addressed in the
implementation to ensure error recovery under adverse line condi-
tions.

Consider the case of a lost or damaged padAck packet. If an inter-
mediate (other than last) padData packet of the data block is sent,
and the matching padAck is lost, the receiver, who is still waiting
for subsequent padData packets, will acknowledge retries, ensuring
recovery.

The situation is different if the last padData packet of the block is
sent and the matching padAck is lost. In this case, the receiver, hav-
ing received and acknowledged the last padData packet of the
block, ceases to wait and returns the received block to its client for
processing. In the meantime, the sender, who never received that ill-
fated padAck, is in its retry loop resending the last padData packet
and awaiting the matching padAck.

In this situation the entire block of data was successfully received
but the sender doesn’t know this because of one lost padAck. Be-
cause a padAck is as likely to be lost on a noisy line as any other
packet, a recovery technique must be introduced. The solution,
which differs slightly between the workstation and server imple-
mentations, is discussed next.

When the workstation is sending a client data block, it’s sending a
command for which it expects a response from the server. When the
client of the server entity finishes processing the command, it ini-
tiates a response by sending the response data block.
Developing Palm OS Applications, Part II 61

Palm OS Communications
The Packet Assembly/Disassembly Protocol
The padData packets of the response carry the same transaction ID
as the padData packets of the command. If the workstation is still in
its retry loop waiting for a matching padAck to the last padData
packet of the block, but instead receives a “first” padData packet
with a matching transaction ID from the server, the workstation en-
tity can recover by treating the received padData packet as the
equivalent of the expected padAck packet.

It is also possible that the workstation entity exhausts all the retries
of the last padData without receiving the first padData packet of the
response block due to time-consuming processing of the command.
In this case, the workstation entity can assume that the last padData
packet of the block was delivered successfully and leave it to the
workstation receiver to detect a lost connection if it times out while
waiting to receive the response.

When the server entity is sending a client data block, it is sending a
response to the command it received from the workstation entity.
After the client of the workstation entity receives the response, it
eventually sends a new command (unless that was its last com-
mand). The new command uses a different transaction ID. There-
fore, if the server entity is still in its retry loop waiting for a
matching padAck to the last padData packet of the block, but in-
stead receives a “first” padData packet with a different transaction
ID from the workstation entity, the server entity can recover by
treating the received padData packet as the equivalent of the ex-
pected padAck packet.

It is also possible that the server entity exhausts all the retries of the
last padData without receiving the first padData packet of a new
command block due to time-consuming processing on the worksta-
tion end. In this case, the server entity can make the assumption that
the last padData packet of the block was delivered successfully,
leaving it to the server receiver to detect a lost connection if it times
out while waiting to receive the next command.

Receiving a Client Data Block

This section presents the algorithm for receiving a block of client
data. Please note that for the workstation implementation, the term
“expected transaction ID” means the same transaction ID as that
used for the matching command. For the server implementation, the
term “expected transaction ID” means a transaction ID value which
62 Developing Palm OS Applications, Part II

Palm OS Communications
The Packet Assembly/Disassembly Protocol
is different from that of the last successfully received command. The
receiver must filter out any packet which does not have the ex-
pected transaction ID. For the workstation implementation,
blockReceiveTimeout and segmentReceiveTimeout are 45
seconds each. For the server implementation on the Palm OS device,
blockReceiveTimeout and segmentReceiveTimeout are 30
seconds each.

Listing 2.4 Receiving a Block of Data

initialize expected offset to zero;

// Receive the first data segment
reset the timeout counter;
while (elapsed time is less than
blockReceiveTimeout)
{
attempt to receive the first padData packet
with the expected transaction id.
if (succeeded)
{
if (there is enough storage to receive the

 entire data block)
{
// The implementation may choose to use a
// preallocated buffer or allocate a new
// buffer for the incoming block.
save the first data segment in our buffer;
increment the expected offset by the size
of the data segment;
acknowledge this padData packet with a
matching padAck;
break out of this loop and go on to receive
remaining segments;
}

else
{
send a padAck packet with the "memory
Developing Palm OS Applications, Part II 63

Palm OS Communications
The Packet Assembly/Disassembly Protocol
error" flag set;
return to caller with appropriate error
code;
}

}
else
if (received a padTickle packet)
{
reset the timeout counter, continue waiting;
}

}

if (we timed out without receiving the first
data segment)

{
// The connection is presumed lost
return to caller with appropriate error code;
}

// Receive the remaining data segments
while (there are more segments to receive)
{
// Wait for the next data segment
reset the timeout counter;
while (elapsed time is less than

 segmentReceiveTimeout)
{
attempt to receive a padData packet with the
expected transaction id.
if (succeeded)
{
if (the padData packet has the expected
offset)
{
save the data segment in our buffer;
increment the expected offset by the size
of the data segment;
acknowledge this padData packet with a
64 Developing Palm OS Applications, Part II

Palm OS Communications
The PAD Server
matching padAck;
break out of the inner loop;
}

else
{
// This is a retry of an already received
padData packet

acknowledge this padData packet with a
matching padAck;
reset the timeout counter;
continue waiting for expected data
segment;
}

}

}

if (we timed out without receiving the
expected data segment)
{
// The connection is presumed lost
return to caller with appropriate error code;
}

}

The PAD Server
The PAD Server is the Palm OS implementation of the Palm OS
PADP Server entity.

The PAD Server provides the mechanisms for receiving PADP com-
mands and sending PADP responses via synchronous function calls.

PAD Server provides an API for receiving PADP commands from
the PADP workstation entity, and for sending PADP responses. The
present implementation of PAD Server supports only one client ses-
sion at a time. Higher-level services are built on top of those pro-
vided by PAD Server. For example, the connection manager and
Developing Palm OS Applications, Part II 65

Palm OS Communications
The PAD Server
Desktop Link Server (discussed later) both use PAD Server for reli-
able data transfer. The services of PAD Server are available to any
application which needs to incorporate a reliable data transport
layer.

See The Packet Assembly/Disassembly Protocol for a detailed dis-
cussion of PADP concepts.

Using the PAD Server
Before an application can use the services of the PAD Server, it has
to open and initialize a serial port (see The Serial Manager), open
the serial link manager and open a Serial Link socket (see The Serial
Link Manager).

The next step is to call PsrInit to open and initialize the PAD
Server. An error code of 0 (zero) indicates success. Other error codes
indicate failure. In the call to PsrInit you can specify a pointer to a
Cancel Callback procedure. If specified, the Cancel Callback is
called periodically while waiting for a command or sending a re-
sponse. If the Cancel Callback returns non-zero, the wait aborts im-
mediately, permitting fast response in situations such as cancelling
by the user.

When you finish using the PAD Server, you have to call PsrClose.
PsrClose may be called only if PsrInit returned 0 (zero).
PsrClose frees the resources allocated by PsrInit.

To receive a PADP command, call PsrGetCommand. On success,
PsrGetCommand returns the command block, the remote socket ID,
and the transaction ID of the command.

To send a PADP response, call PsrSendReply, passing the remote
socket ID, transaction ID, an array of PmSegmentType structures
and the number of elements in the array. For convenience, the re-
sponse block is specified as a list of data segments via an array of
PmSegmentType structures. The PmSegmentType structure allows
selective specification of word alignment for each data segment. If
word alignment is enabled for a segment and the previous seg-
ment’s data size forces it to begin at an odd offset, PsrSendReply
automatically inserts a byte to force word alignment of the seg-
ment’s data. Any bytes inserted as the result of word alignment are
set to 0 (zero) in the resulting response block.
66 Developing Palm OS Applications, Part II

Palm OS Communications
The PAD Server
Listing 2.5 Sending a PADP Response

//
//Using PsrSendReply to send a PADP response.
//

Err SendPADPResponseExample(Byte remoteSocketID,
Byte transactionID)
{
Err err;
PmSegmentType seg[3];
Byte dataSegment0[53];
Byte dataSegment1[10];
Byte dataSegment2[15];

seg[0].dataP = dataSegment0;
seg[0].dataSize = sizeof(dataSegment0);
seg[0].wordAlign = false;

seg[1].dataP = dataSegment1;
seg[1].dataSize = sizeof(dataSegment1);
seg[1].wordAlign = true;

seg[2].dataP = dataSegment2;
seg[2].dataSize = sizeof(dataSegment2);
seg[2].wordAlign = false;

err = PsrSendReply(remoteSocketID,
transactionID, seg, 3/*segCount*/);

return(err);
}

Developing Palm OS Applications, Part II 67

Palm OS Communications
The PAD Server
PAD Server Function Summary
• PsrClose

• PsrGetCommand

• PsrInit

• PsrSendReply
68 Developing Palm OS Applications, Part II

3
Memory Manager Functions

MemCardInfo

Purpose Return information about a memory card.

Prototype Err MemCardInfo (UInt cardNo,
CharPtr cardNameP,
CharPtr manufNamP,
UIntPtr versionP,
ULongPtr crDateP,
ULongPtr romSizeP,
ULongPTr ramSizeP,
ULongPtr freeBytesP)

Parameters cardNo Card number.

cardNameP Pointer to character array (32 bytes) or 0.

manufNameP Pointer to character array (32 bytes) or 0.

versionP Pointer to version variable, or 0.

crDateP Pointer to creation date variable, or 0.

romSizeP Pointer to ROM size variable, or 0.

ramSizeP Pointer to RAM size variable, or 0.

freeBytesP Pointer to free byte-count variable, or 0.

Result Returns 0 if no error.

Comments Pass 0 for those variables that you don’t want returned.
Developing Palm OS Applications 69

Memory Manager Functions
MemChunkFree

Purpose Dispose of a chunk.

Prototype Err MemChunkFree (VoidPtr chunkDataP)

Parameters chunkDataP Chunk data pointer.

Result 0 No error

memErrInvalidParam Invalid parameter

Comments Call this routine to dispose of a chunk, which is disposed of even if
it’s locked.

MemDebugMode

Purpose Return the current debugging mode of the memory manager.

Prototype Word MemDebugMode (void)

Parameters No parameters.

Result Returns debug flags as described for MemSetDebugMode.

MemHandleDataStorage

Purpose Return true if the given handle is part of a data storage heap. If not,
it’s a handle in the dynamic heap.

Prototype Boolean MemHandleDataStorage (VoidHand h)

Parameters h Chunk handle.

Result Returns true if the handle is part of a data storage heap.

Comments Called by Fields package routines to determine if they need to
worry about data storage write-protection when editing a text field.

See Also MemPtrDataStorage
70 Developing Palm OS Applications

Memory Manager Functions
MemHandleCardNo

Purpose Return the card number a chunk resides in.

Prototype UInt MemHandleCardNo (VoidHand h)

Parameters -> h Chunk handle.

Result Returns the card number.

Comments Call this routine to retrieve which card number (0 or 1) a movable
chunk resides on.

See Also MemPtrCardNo

MemHandleFree

Purpose Dispose of a movable chunk.

Prototype Err MemHandleFree (VoidHand h)

Parameters -> h Chunk handle.

Result: Returns 0 if no error, or memErrInvalidParam if an error occurs.

Comments Call this routine to dispose of a movable chunk.

See Also MemHandleNew
Developing Palm OS Applications 71

Memory Manager Functions
MemHandleHeapID

Purpose Return the heap ID of a chunk.

Prototype UInt MemHandleHeapID (VoidHand h)

Parameters -> h Chunk handle.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

See Also MemPtrHeapID

MemHandleLock

Purpose Lock a chunk and obtain a pointer to the chunk’s data.

Prototype VoidPtr MemHandleLock (VoidHand h)

Parameters -> h Chunk handle.

Result Returns a pointer to the chunk.

Comments Call this routine to lock a chunk and obtain a pointer to the chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleNew, MemHandleUnlock
72 Developing Palm OS Applications

Memory Manager Functions
MemHandleNew

Purpose Allocate a new movable chunk in the dynamic heap.

Prototype VoidHand MemHandleNew (ULong size)

Parameters -> size The desired size of the chunk.

Result Returns handle to the new chunk, or 0 if unsuccessful.

Comments Allocates a movable chunk in the dynamic heap and returns a
handle it. Use this call when allocating dynamic memory.

See Also MemPtrFree, MemPtrNew, MemHandleFree

MemHandleResize

Purpose Resize a chunk.

Prototype Err MemHandleResize (VoidHandle h,
ULong newSize)

Parameters -> h Chunk handle.

-> newSize The new desired size.

Result 0 No error.
memErrInvalidParam Invalid parameter passed.
memErrNotEnoughSpace Not enough free space in heap to grow

chunk.
memErrChunkLocked Can’t grow chunk because it’s locked.

Comments Call this routine to resize a chunk. This routine is always suc-
cessful when shrinking the size of a chunk, even if the chunk is
locked. When growing a chunk, it first attempts to grab free space
immediately following the chunk so that the chunk does not have
to move. If the chunk has to move to another free area of the heap
to grow, it must be movable and have a lock count of 0.

See Also MemHandleNew, MemHandleSize
Developing Palm OS Applications 73

Memory Manager Functions
MemHandleSize

Purpose Return the requested size of a chunk.

Prototype ULong MemHandleSize (VoidHand h)

Parameters -> h Chunk handle.

Result Returns the requested size of the chunk.

Comments Call this routine to get the size originally requested for a chunk.

See Also MemHandleResize

MemHandleToLocalID

Purpose Convert a handle into a local chunk ID which is card relative.

Prototype LocalID MemHandleToLocalID (VoidHand h)

Parameters -> h Chunk handle.

Result Returns Local ID, or nil (0) if unsuccessful.

Comments Call this routine to convert a chunk handle to a Local ID.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr
74 Developing Palm OS Applications

Memory Manager Functions
MemHandleUnlock

Purpose Unlock a chunk given a chunk handle.

Prototype Err MemHandleUnlock (VoidHand h)

Parameters -> h The chunk handle.

Result 0 No error.

memErrInvalidParam Invalid parameter passed

Comments Call this routine to decrement the lock count for a chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleLock

MemHeapCheck

Purpose Check validity of a given heap.

Prototype Err MemHeapCheck (UInt heapID)

Parameters heapID ID of heap to check.

Result Returns 0 if no error.

See Also MemDebugMode, MemSetDebugMode
Developing Palm OS Applications 75

Memory Manager Functions
MemHeapCompact

Purpose Compact a heap.

Prototype Err MemHeapCompact (UInt heapID)

Parameters -> heapID ID of the heap to compact.

Result Always returns 0.

Comments Call this routine to compact a heap and merge all free space. This
routine attempts to move all movable chunks to the start of the
heap and merge all free space in the center of the heap.

The system software calls this function at various times; for ex-
ample, during memory allocation (if sufficient free space is not
available) and during system reboot.

MemHeapDynamic

Purpose Return TRUE if the given heap is a dynamic heap.

Prototype Boolean MemHeapDynamic (UInt heapID)

Parameters heapID ID of the heap to be tested.

Result Returns TRUE if dynamic, FALSE if not.

Comments Dynamic heaps are used for volatile storage, application stacks,
globals, and dynamically allocated memory.

See Also MemNumHeaps, MemHeapID
76 Developing Palm OS Applications

Memory Manager Functions
MemHeapFlags

Purpose Return the heap flags for a heap.

Prototype UInt MemHeapFlags (UInt heapID)

Parameters -> heapID ID of heap.

Result Returns the heap flags.

Comments Call this routine to retrieve the heap flags for a heap. The flags can
be examined to determine if the heap is ROM based or not. ROM-
based heaps have the memHeapFlagReadOnly bit set.

See Also MemNumHeaps, MemHeapID

MemHeapFreeBytes

Purpose Return the total number of free bytes in a heap and the size of the
largest free chunk in the heap.

Prototype Err MemHeapFreeBytes (UInt heapID,
ULongPtr freeP,
ULongPtr maxP)

Parameters -> heapID ID of heap.

<-> freeP Pointer to a variable of type ULong for free bytes.

<-> maxP Pointer to a variable of type ULong for max free
chunk size.

Result Always returns 0.

Comments Call this routine to retrieve the total number of free bytes left in a
heap and the size of the largest free chunk. This routine doesn’t
compact the heap but the caller may compact the heap explicitly
before calling this routine to determine if an allocation will succeed
or not.

See Also MemHeapSize, MemHeapID, MemHeapCompact
Developing Palm OS Applications 77

Memory Manager Functions
MemHeapID

Purpose Return the heapID for a heap, given its index and the card number.

Prototype UInt MemHeapID (UInt cardNo, UInt heapIndex)

Parameters -> cardNo The card number, either 0 or 1.

-> heapIndex The heap index, anywhere from 0 to
 MemNumHeaps - 1.

Result Returns the heap ID.

Comments Call this routine to retrieve the heap ID of a heap, given the heap
index and the card number. A heap ID must be used to obtain in-
formation on a heap such as its size, free bytes, etc., and is also
passed to any routines which manipulate heaps.

See Also MemNumHeaps

MemHeapScramble

Purpose Scramble the given heap.

Prototype Err MemHeapScramble (UInt heapID)

Parameters heapID ID of heap to scramble.

Comments The system does multiple passes over the heap attempting to move
each movable chunk.

Useful during debugging.

Result Always returns 0.

See Also MemDebugMode, MemSetDebugMode
78 Developing Palm OS Applications

Memory Manager Functions
MemHeapSize

Purpose Return the total size of a heap including the heap header.

Prototype ULong MemHeapSize (UInt heapID)

Parameters -> heapID ID of heap.

Result Returns the total size of the heap.

See Also MemHeapFreeBytes, MemHeapID

MemLocalIDKind

Purpose Return whether or not a Local ID references a handle or a pointer.

Prototype LocalIDKind MemLocalIDKind (LocalID local)

Parameters -> local The Local ID to query

Result Returns LocalIDKind, or a memIDHandle or memIDPtr (see Mem-
oryMgr.h).

Comments This routine determines if the given Local ID is to a nonmovable
(memIDPtr) or movable (memIDHandle) chunk.
Developing Palm OS Applications 79

Memory Manager Functions
MemLocalIDToGlobal

Purpose Convert a Local ID, which is card relative, into a global pointer in
the designated card.

Prototype VoidPtr MemLocalIDToGlobal (LocalID local,
UInt cardNo)

Parameters -> local The Local ID to convert.

-> cardNo Memory card the chunk resides in.

Result Returns pointer or handle to chunk.

Comments This routine converts a Local ID back to a pointer or handle, given
the card number that the chunk resides in.

See Also MemLocalIDKind, MemLocalIDToLockedPtr

MemLocalIDToLockedPtr

Purpose Return a pointer to a chunk designated by Local ID and card
number.

Note: If the Local ID references a movable chunk handle, this
routine automatically locks the chunk before returning.

Prototype VoidPtr MemLocalIDToLockedPtr(LocalID local,
UInt cardNo)

Parameters local Local chunkID.

cardNo Card number.

Result Returns pointer to chunk, or 0 if an error occurs.

See Also MemLocalIDToGlobal, MemLocalIDToPtr, MemLocalIDKind,
MemPtrToLocalID, MemHandleToLocalID
80 Developing Palm OS Applications

Memory Manager Functions
MemLocalIDToPtr

Purpose Return pointer to chunk, given the Local ID and card number.

Prototype VoidPtr MemLocalIDToPtr(LocalID local,
UInt cardNo)

Parameters -> local Local ID to query.

-> cardNo Card number the chunk resides in.

Result Returns a pointer to the chunk or 0 if error.

Comments If the Local ID references a movable chunk and that chunk is not
locked, this function returns zero to indicate an error.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr

MemMove

Purpose Move a range of memory to another range in the dynamic heap.

Prototype Err MemMove(VoidPtr dstP,
VoidPtr srcP,
ULong numBytes)

Parameters dstP Pointer to destination.

srcP Pointer to source.

numBytes Number of bytes to move.

Result Always returns 0.

Comments Handles overlapping ranges.

For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.
Developing Palm OS Applications 81

Memory Manager Functions
MemNumCards

Purpose Return the number of memory card slots in the system, not all slots
need to be populated.

Prototype UInt MemNumCards (void)

Parameters None.

Result Returns number of slots in the system.

MemNumHeaps

Purpose Return the number of heaps available on a particular card.

Prototype UInt MemNumHeaps (UInt cardNo)

Parameters -> cardNo The card number; either 0 or 1.

Result Number of heaps available including ROM- and RAM-based heaps.

Comments Call this routine to retrieve the total number of heaps on a memory
card. The information can be obtained by calling MemHeapSize,
MemHeapFreeBytes, and MemHeapFlags on each heap using its
heapID. The heapID is obtained by calling MemHeapID with the
card number and the heap index which can be any value from 0 to
MemNumHeaps.

MemNumRAMHeaps

Purpose Return the number of RAM heaps in the given card.

Prototype UInt MemNumRAMHeaps (UInt cardNo)

Parameters cardNo The card number.

Result Returns the number of RAM heaps.

See Also MemNumCards
82 Developing Palm OS Applications

Memory Manager Functions
MemPtrCardNo

Purpose Return the card number (0 or 1) a nonmovable chunk resides on.

Prototype UInt MemPtrCardNo (VoidPtr chunkP)

Parameters -> chunkP Pointer to the chunk.

Result Returns the card number.

See Also MemHandleCardNo

MemPtrDataStorage

Purpose Return TRUE if the given pointer is part of a data storage heap; if
not, it is a pointer in the dynamic heap.

Prototype Boolean MemPtrDataStorage (VoidPtr p)

Parameters p Pointer to a chunk.

Result Returns true if the chunk is part of a data storage heap.

Comments Called by Fields package to determine if it needs to worry about
data storage write-protection when editing a text field.

See Also MemHeapDynamic

MemPtrFree

Purpose Macro to dispose of a chunk.

Prototype Err MemPtrFree (VoidPtr p)

Parameters -> p Pointer to a chunk.

Result Returns 0 if no error or memErrInvalidParam (Invalid parameter).

Comments Call this routine to dispose of a nonmovable chunk.
Developing Palm OS Applications 83

Memory Manager Functions
MemPtrHeapID

Purpose Return the heap ID of a chunk.

Prototype UInt MemPtrHeapID (VoidPtr p)

Parameters -> chunkP Pointer to the chunk.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

MemPtrToLocalID

Purpose Convert a pointer into a card-relative local chunk ID.

Prototype LocalID MemPtrToLocalID (VoidPtr chunkP)

Parameters -> chunkP Pointer to a chunk.

Result Returns the local ID of the chunk.

Comments Call this routine to convert a chunk pointer to a Local ID.

See Also MemLocalIDToPtr

MemPtrNew

Purpose Allocate a new nonmovable chunk in the dynamic heap.

Prototype VoidPtr MemPtrNew (ULong size)

Parameters -> size The desired size of the chunk.

Result Returns pointer to the new chunk, or 0 if unsuccessful.

Comments This routine allocates a nonmovable chunk in the dynamic heap
and returns a pointer to the chunk. Applications can use it when al-
locating dynamic memory.
84 Developing Palm OS Applications

Memory Manager Functions
MemPtrRecoverHandle

Purpose Recover the handle of a movable chunk, given a pointer to its data.

Prototype VoidHand MemPtrRecoverHandle (VoidPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the handle of the chunk, or 0 if unsuccessful.

Comments Don’t call this function for pointers in ROM or non-movable data
chunks.

MemPtrResize

Purpose Resize a chunk.

Prototype Err MemPtrResize (VoidPtr p, ULong newSize)

Parameters -> p Pointer to the chunk.

-> newSize The new desired size.

Result Returns 0 if no error, or memErrNotEnoughSpace
memErrInvalidParam, or memErrChunkLocked if an error oc-
curs.

Comments Call this routine to resize a locked chunk. This routine is always
successful when shrinking the size of a chunk. When growing a
chunk, it attempts to use free space immediately following the
chunk.

See Also MemPtrSize, MemHandleResize
Developing Palm OS Applications 85

Memory Manager Functions
MemSet

Purpose Set a memory range in a dynamic heap to a specific value.

Prototype Err MemSet(VoidPtr dstP,
ULong numBytes,
Byte value)

Parameters dstP Pointer to the destination.

numBytes Number of bytes to set.

value Value to set.

Result Always returns 0.

Comments For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.
86 Developing Palm OS Applications

Memory Manager Functions
MemSetDebugMode

Purpose Set the debugging mode of the memory manager.

Prototype Err MemSetDebugMode (Word flags)

Parameters flags Debug flags.

Comments Provide one (or none) of the following flags:

memDebugModeCheckOnChange

memDebugModeCheckOnAll

memDebugModeScrambleOnChange

memDebugModeScrambleOnAll

memDebugModeFillFree

memDebugModeAllHeaps

memDebugModeAllHeaps

memDebugModeRecordMinDynHeapFree

Result Returns 0 if no error, or -1 if an error occurs.

MemPtrSize

Purpose Return the size of a chunk.

Prototype ULong MemPtrSize (VoidPtr p)

Parameters -> p Pointer to the chunk.

Result The requested size of the chunk.

Comments Call this routine to get the original requested size of a chunk.
Developing Palm OS Applications 87

Memory Manager Functions
MemPtrUnlock

Purpose Unlock a chunk given a pointer to the chunk.

Prototype Err MemPtrUnlock (VoidPtr p)

Parameters p Pointer to a chunk.

Result 0 if no error, or memErrInvalidParam if an error occurs.

Comments A chunk must not be unlocked more times than it was locked.

See Also MemHandleLock
88 Developing Palm OS Applications

Memory Manager Functions
MemStoreInfo

Purpose Return information on either the RAM store or the ROM store for a
memory card.

Prototype Err MemStoreInfo (UInt cardNo,
UInt storeNumber,
UIntPtr versionP,
UIntPtr flagsP,
CharPtr nameP,
ULongPtr crDateP,
ULongPtr bckUpDateP,
ULongPtr heapListOffsetP,
ULongPtr initCodeOffset1P,
ULongPtr initCodeOffset2P,
LocalID* databaseDirIDP)

Parameters -> cardNo Card number, either 0 or 1.

-> storeNumber Store number; 0 for ROM, 1 for RAM.

<-> versionP Pointer to version variable, or 0.

<-> flagsP Pointer to flags variable, or 0.

<-> nameP Pointer to character array (32 bytes) or 0.

<-> crDateP Pointer to creation date variable, or 0.

<-> bckUpDateP Pointer to backup date variable, or 0.

<-> heapListOffsetP Pointer to heapListOffset variable, or 0.

<-> initCodeOffset1P Pointer to initCodeOffset1 variable,
or 0.

<-> initCodeOffset2P Pointer to initCodeOffset2 variable,
or 0.

<-> databaseDirIDP Pointer to database directory chunk ID
variable, or 0.

Result Returns 0 if no error, or memErrCardNoPresent,
memErrRAMOnlyCard, or memErrInvalidStoreHeader if an
error occurs.
Developing Palm OS Applications 89

Memory Manager Functions
Comments Call this routine to retrieve any or all information on either the
RAM store or the ROM store for a card. Pass 0 for variables that
you don’t wish returned.

Functions for System Use Only

MemCardFormat

Prototype Err MemCardFormat (UInt cardNo,
CharPtr cardNameP,
CharPtr manufNameP,
CharPtr ramStoreNameP)

WARNING: This function for use by system software only.

MemChunkNew

Prototype VoidPtr MemChunkNew (UInt heapID,
ULong size,
UInt attributes)

WARNING: This function for use by system software only.

MemHandleFlags

Prototype UInt MemHandleFlags (VoidHand h)

WARNING: This function for use by system software only.

MemHandleLockCount

Prototype UInt MemHandleLockCount (VoidHand h)

WARNING: This function for use by system software only.
90 Developing Palm OS Applications

Memory Manager Functions
MemHandleOwner

Prototype UInt MemHandleOwner (VoidHand h)

WARNING: This function for use by system software only.

MemHandleResetLock

Prototype Err MemHandleResetLock (VoidHand h)

WARNING: This function for use by system software only.

MemHandleSetOwner

Prototype Err MemHandleSetOwner (VoidHand h,
UInt owner)

WARNING: This function for use by system software only.

MemHeapFreeByOwnerID

Prototype Err MemHeapFreeByOwnerID (UInt heapID,
UInt ownerID)

WARNING: This function for use by system software only.

MemHeapInit

Prototype Err MemHeapInit(UInt heapID,
Int numHandles,
Boolean initContents)

WARNING: This function for use by system software only.
Developing Palm OS Applications 91

Memory Manager Functions
MemInit

Prototype Err MemInit (void)

Warning: This function for use by system software only.

MemInitHeapTable

Prototype Err MemInitHeapTable (UInt cardNo)

WARNING: This function for use by system software only.

MemKernelInit

Prototype Err MemKernelInit(void)

WARNING: This function for use by system software only.

MemPtrFlags

Prototype UInt MemPtrFlags (VoidPtr chunkDataP)

WARNING: This function for use by system software only.

MemPtrOwner

Prototype UInt MemPtrOwner (VoidPtr chunkDataP)

WARNING: This function for use by system software only.

MemPtrResetLock

Prototype Err MemPtrResetLock (VoidPtr chunkP)
92 Developing Palm OS Applications

Memory Manager Functions
WARNING: This function for use by system software only.

MemPtrSetOwner

Prototype Err MemPtrSetOwner (VoidPtr chunkP, UInt owner)

WARNING: This function for use by system software only.

MemSemaphoreRelease

Prototype Err MemSemaphoreRelease (Boolean writeAccess)

Warning: This function for use by system software only.

MemSemaphoreReserve

Prototype Err MemSemaphoreReserve (Boolean writeAccess)

Warning: This function for use by system software only.

MemStoreSetInfo

Prototype Err MemStoreSetInfo (UInt cardNo,
UInt storeNumber,
UIntPtr versionP,
UIntPtr flagsP,
CharPtr nameP,
ULongPtr crDateP,
ULongPtr bckUpDateP,
ULongPtr heapListOffsetP,
ULongPtr initCodeOffset1P,
ULongPtr initCodeOffset2P,
LocalID* databaseDirIDP)
Developing Palm OS Applications 93

Memory Manager Functions
94 Developing Palm OS Applications

4
Data and Resource Manager
Functions

DmArchiveRecord

Purpose Mark a record as archived by leaving the record’s chunk around
and setting the delete bit for the next sync.

Prototype Err DmArchiveRecord (DmOpenRef dbR, UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to archive.

Result Returns 0 if no error or dmErrIndexOutOfRange or
dmErrReadOnly if an error occurs.

Comments Marks the delete bit in the database header for the record but does
not dispose of the record’s data chunk.

See Also DmRemoveRecord, DmDetachRecord, DmNewRecord,
DmDeleteRecord
Developing Palm OS Applications 95

Data and Resource Manager Functions
DmAttachRecord

Purpose Attach an existing chunk ID handle to a database as a record.

Prototype Err DmAttachRecord (DmOpenRef dbR,
UIntPtr atP,
Handle newH,
Handle* oldHP)

Parameters -> dbR DmOpenRef to open database.

<-> atP Pointer to index where new record should be placed.

-> newH Handle of new record.

<-> oldHP Pointer to return old handle if replacing existing
record.

Result Returns 0 if no error, or dmErrIndexOutOfRange,
dmErrMemError, dmErrReadOnly, dmErrRecordInWrongCard,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments Given the handle of an existing chunk, this routine makes that
chunk a new record in a database and sets the dirty bit. The param-
eter atP points to an index variable. If oldHP is nil, the new record
is inserted at index *atP and all following record indices are
shifted down. If *atP is greater than the number of records cur-
rently in the database, the new record is appended to the end and
the index of it returned in *atP. If oldHP is not nil, the new record
replaces an existing record at index *atP and the handle of the old
record is returned in *oldHP so that the application can free it or
attach it to another database.

Useful for cutting and pasting between databases.

See Also DmDetachRecord, DmNewRecord, DmNewHandle
96 Developing Palm OS Applications

Data and Resource Manager Functions
DmAttachResource

Purpose Attach an existing chunk ID to a resource database as a new re-
source.

Prototype Err DmAttachResource (DmOpenRef dbR,
VoidHand newH,
ULong resType,
Int resID)

Parameters -> dbR DmOpenRef to open database.

-> newH Handle of new resource’s data.

-> resType Type of the new resource.

-> resID ID of the new resource.

Result Returns 0 if no error, or dmErrIndexOutOfRange,
dmErrMemError, dmErrReadOnly, dmErrRecordInWrongCard,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments Given the handle of an existing chunk with resource data in it, this
routine makes that chunk a new resource in a resource database.
The new resource will have the given type and ID.

See Also DmDetachResource, DmRemoveResource, DmNewHandle,
DmNewResource
Developing Palm OS Applications 97

Data and Resource Manager Functions
DmCloseDatabase

Purpose Close a database.

Prototype Err DmCloseDatabase (DmOpenRef dbR)

Parameters dbR Database access pointer.

Result Returns 0 if no error or dmErrInvalidParam if an error occurs.

Comments This routine doesn’t unlock any records in the database which
have been left locked, so the application should be careful not to
leave records locked. When performance is not an issue, call
DmResetRecordStates before closing the database in order to
unlock all records and clear the busy bits.

See Also DmOpenDatabase, DmDeleteDatabase,
DmOpenDatabaseByTypeCreator

DmCreateDatabase

Purpose Create a new database on the specified card with the given name,
creator, and type.

Prototype Err DmCreateDatabase (UInt cardNo,
CharPtr nameP,
ULong creator,
ULong type,
Boolean resDB)

Parameters -> cardNo The card number to create the database on.

-> nameP Name of new database, up to 31 ASCII bytes
long.

-> creator Creator of the database.

-> type Type of the database.

-> resDB If true, create a resource database.
98 Developing Palm OS Applications

Data and Resource Manager Functions
Result Returns 0 if no error, or dmErrInvalidDatabaseName,
dmErrAlreadyExists, memErrCardNotPresent,
dmErrMemError, memErrChunkLocked, memErrInvalidParam,
memErrInvalidStoreHeader, memErrNotEnoughSpace, or
memErrRAMOnlyCard if an error occurs.

Comments Call this routine to create a new database on a specific card. This
routine doesn’t check for a database with the same name, so check
for it yourself. Once created, the database ID can be retrieved by
calling DmFindDatabase and the database opened using the data-
base ID. To create a resource database instead of a record-based da-
tabase, set the resDB boolean to TRUE.

See Also DmCreateDatabaseFromImage, DmOpenDatabase,
DmDeleteDatabase

DmCreateDatabaseFromImage

Purpose Call to create an entire database from a single resource that con-
tains an image of the database; usually, make this call from an ap-
plication’s reset action code during boot.

Prototype Err DMCreateDatabaseFromImage (Ptr bufferP)

Parameters bufferP Pointer to locked resource containing database image.

Result Returns 0 if no error

Comments Use this function to create the default database for an application.

See Also DmCreateDatabase, DmOpenDatabase
Developing Palm OS Applications 99

Data and Resource Manager Functions
DmDatabaseInfo

Purpose Retrieve information about a database.

Prototype Err DmDatabaseInfo (
UInt cardNo, LocalID dbID,
CharPtr nameP, UIntPtr attributesP,
UIntPtr versionP, ULongPtr crDateP,
ULongPtr modDateP, ULongPtr bckUpDateP,
ULongPtr modNumP, LocalID* appInfoIDP,
LocalID* sortInfoIDP, ULongPtr typeP,
ULongPtr creatorP)

Parameters -> cardNo Which card number database resides on.

-> dbID Database ID of the database.

<-> nameP Pointer to 32-byte character array for
returning the name, or nil.

<-> attributesP Pointer to return attributes variable, or nil.

versionP Pointer to new version, or nil.

<-> crDateP Pointer to return creation date variable, or nil.

<-> modDateP Pointer to return modification date variable, or
nil.

<-> bckUpDateP Pointer to return backup date variable, or nil.

<-> modNumP Pointer to return modification number
variable, or nil.

<-> appInfoIDP Pointer to return appInfoID variable, or nil.

<-> sortInfoIDP Pointer to return sortInfoID variable, or nil.

<-> typeP Pointer to return type variable, or nil.

<-> creatorP Pointer to return creator variable, or nil.

Result Returns 0 if no error, or dmErrInvalidParam if an error occurs.
100 Developing Palm OS Applications

Data and Resource Manager Functions
Comments Call this routine to retrieve any or all information about a data-
base. This routine accepts nil for any return variable parameter
pointer you don’t want returned.

See Also DmSetDatabaseInfo, DmDatabaseSize,
DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator

DmDatabaseSize

Purpose Retrieve size information on a database.

Prototype Err DmDatabaseSize (UInt cardNo,
ChunkID dbID,
ULongPtr numRecordsP,
ULongPtr totalBytesP,
ULongPtr dataBytesP)

Parameters -> cardNo Which card number database resides on.

-> dbID Database ID of the database.

<-> numRecordsP Pointer to return numRecords variable, or nil.

<-> totalBytesP Pointer to return totalBytes variable, or nil.

<-> dataBytesP Pointer to return dataBytes variable, or nil.

Result Returns 0 if no error, or dmErrMemError if an error occurs.

Comments Call this routine to retrieve the size of a database. Any of the return
data variable pointers can be nil.

• The total number of records is returned in *numRecordsP.
• The total number of bytes used by the database

including the overhead is returned in *totalBytesP.
• The total number of bytes used to store just each record’s

data, not including overhead, is returned in
*dataBytesP.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator
Developing Palm OS Applications 101

Data and Resource Manager Functions
DmDeleteDatabase

Purpose Delete a database and all its records.

Prototype Err DmDeleteDatabase (UInt cardNo, LocalID dbID)

Parameters --> cardNo Card number the database resides on.

--> dbID Database ID.

Result Returns 0 if no error, or dmErrCantFind, dmErrCantOpen,
memErrChunkLocked, dmErrDatabaseOpen, dmErrROMBased,
memErrInvalidParam, or memErrNotEnoughSpace if an error
occurs.

Comments Call this routine to delete a database. This routine accepts a data-
base ID as a parameter. To determine the database ID, call either
DmFindDatabase or DmGetDatabase with a database index.

See Also DmDeleteRecord, DmRemoveRecord, DmRemoveResource,
DmCreateDatabase, DmGetNextDatabaseByTypeCreator,
DmFindDatabase
102 Developing Palm OS Applications

Data and Resource Manager Functions
DmDeleteRecord

Purpose Delete a record’s chunk from a database but leave the record entry
in the header and set the delete bit for the next sync.

Prototype Err DmDeleteRecord (DmOpenRef dbR, UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to delete.

Result Returns 0 if no error, or dmErrIndexOutOfRange,
dmErrReadOnly, or memErrInvalidParam if an error occurs.

Comments Marks the delete bit in the database header for the record and dis-
poses of the record’s data chunk. Does not remove the record entry
from the database header, but simply sets the localChunkID of the
record entry to nil.

See Also DmDetachRecord, DmRemoveRecord, DmArchiveRecord,
DmNewRecord
Developing Palm OS Applications 103

Data and Resource Manager Functions
DmDetachRecord

Purpose Detach and orphan a record from a database but don’t delete the
record’s chunk.

Prototype Err DmDetachRecord (DmOpenRef dbR,
UInt index,
Handle* oldHP)

Parameters -> dbR DmOpenRef to open.

-> index Index of the record to detach.

<-> oldHP Pointer to return handle of the detached record.

Result Returns 0 if no error or dmErrReadOnly (database is marked read
only), dmErrIndexOutOfRange (index out of range),
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments This routine detaches a record from a database by removing its
entry from the database header and returns the handle of the
record’s data chunk in *oldHP. Unlike DmDeleteRecord, this rou-
tine removes any traces of the record including its entry in the data-
base header.

See Also DmAttachRecord, DmRemoveRecord, DmArchiveRecord,
DmDeleteRecord
104 Developing Palm OS Applications

Data and Resource Manager Functions
DmDetachResource

Purpose Detach a resource from a database and return the handle of the re-
source’s data.

Prototype Err DmDetachResource (DmOpenRef dbR,
Int index,
VoidHand* oldHP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of resource to detach.

<-> oldHP Pointer to return handle of the detached record.

Result Returns 0 if no error, or dmErrCorruptDatabase,
dmErrIndexOutOfRange, dmErrReadOnly,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments This routine detaches a resource from a database by removing its
entry from the database header and returns the handle of the re-
source’s data chunk in *oldHP.

See Also DmAttachResource, DmRemoveResource

DmFindDatabase

Purpose Return the database ID of a database by card number and name.

Prototype LocalID DmFindDatabase (UInt cardNo,
CharPtr nameP)

Parameters -> cardNo Number of card to search.

-> nameP Name of the database to look for.

Result Returns the database ID, or 0 if not found.

See Also DmGetNextDatabaseByTypeCreator, DmDatabaseInfo,
DmOpenDatabase
Developing Palm OS Applications 105

Data and Resource Manager Functions
DmFindRecordByID

Purpose Return the index of the record with the given unique ID.

Prototype Err DmFindRecordByID (DmOpenRef dbR,
ULong uniqueID,
UIntPtr indexP)

Parameters dbR Database access pointer.

uniqueID Unique ID to search for.

indexP Return index.

Result Returns 0 if found, otherwise dmErrUniqueIDNotFound.

See Also DmQueryRecord, DmGetRecord, DmRecordInfo
106 Developing Palm OS Applications

Data and Resource Manager Functions
DmFindResource

Purpose Search the given database for a resource by type and ID, or by
pointer if it is non-nil.

Prototype Int DmFindResource (DmOpenRef dbR,
ULong resType,
Int resID,
VoidHand findResH)

Parameters -> dbR Open resource database access pointer.

-> resType Type of resource to search for.

-> resID ID of resource to search for.

->findResH Pointer to locked resource, or nil.

Result Returns index of resource in resource database, or -1 if not found.

Comments Use this routine to find a resource in a particular resource database
by type and ID or by pointer. It is particularly useful when you
want to search only one database for a resource and that database
is not the topmost one.

If findResH is nil, the resource is searched for by type and ID.

If findResH is not nil, resType and resID are ignored and the
index of the given locked resource is returned.

Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResourceType
Developing Palm OS Applications 107

Data and Resource Manager Functions
DmFindResourceType

Purpose Search the given database for a resource by type and type index.

Prototype Int DmFindResourceType (DmOpenRef dbR,
ULong resType,
Int typeIndex)

Parameters -> dbR Open resource database access pointer.

-> resType Type of resource to search for.

-> typeIndex Index of given resource type.

Result Index of resource in resource database, or -1 if not found.

Comments Use this routine to retrieve all the resources of a given type in a re-
source database. By starting at typeIndex 0 and incrementing
until an error is returned, the total number of resources of a given
type and the index of each of these resources can be determined.
Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResource
108 Developing Palm OS Applications

Data and Resource Manager Functions
DmFindSortPosition

Purpose Return where a record is or should be.

Useful to find an existing record or find where to insert a record.
Uses a binary search.

Prototype UInt DmFindSortPosition(DmOpenRef dbR,
VoidPtr newRecord,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.

newRecord Pointer to the new record.

compar Comparison function (see Comments).

other Any value the application wants to pass to the
comparison function.

Result Returns the position where the record should be inserted. The posi-
tion should be viewed as between the record returned and the
record before it. Note that the return value may be one greater than
the number of records.

Comments compar, the comparison function, accepts two arguments, elem1
and elem2, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result of the compar-
ison.

If the items compar returns

*elem1 < *elem2 an integer < 0

*elem1 == *elem2 0

*elem1 > *elem2 an integer > 0

See Also DmQuickSort, DmInsertionSort
Developing Palm OS Applications 109

Data and Resource Manager Functions
DmGetAppInfoID

Purpose Return the Local ID of the application info block.

Prototype LocalID DmGetAppInfoID (DmOpenRef dbR)

Parameters dbR Database access pointer.

Result Returns Local ID of the application info block

See Also DmDatabaseInfo, DmOpenDatabase

DmGetDatabase

Purpose Return the database header ID of a database by index and card
number.

Prototype LocalID DmGetDatabase (UInt cardNo, UInt index)

Parameters -> cardNo Which card number.

-> index Index of database.

Result Returns the database ID, or 0 if an invalid parameter passed.

Comments Call this routine to retrieve the database ID of a database by index.
The index should range from 0 to DmNumDatabases-1. This rou-
tine is useful for getting a directory of all databases on a card.

See Also DmOpenDatabase, DmNumDatabases, DmDatabaseInfo,
DmDatabaseSize
110 Developing Palm OS Applications

Data and Resource Manager Functions
DmGetLastErr

Purpose Return error code from last data manager call.

Prototype Err DmGetLastErr (void)

Parameters None

Result Error code from last unsuccessful data manager call.

Comments Use this routine to determine why a data manager call failed. In
particular, calls like DmGetRecord return 0 only if unsuccessful, so
calling DmGetLastErr is the only way to determine why they
failed.

Note that DmGetLastErr does not always reflect the error status
of the last data manager call. Rather, it reflects the error status of
data manager calls that don’t return an error code. For some of
those calls, the saved error code value is not set to 0 when the call
is successful.

For example, if a call to DmOpenDatabaseByTypeCreator returns
null for database reference (that is, it fails), DmGetLastErr returns
something meaningful; otherwise, it returns the error value of
some previous data manager call.

Only the following data manager functions currently affect the
value returned by DmGetLastErr:

DmFindDatabase, DmOpenDatabaseByTypeCreator,
DmOpenDatabase, DmNewRecord, DmQueryRecord,
DmGetRecord, DmQueryNextInCategory,
DmPositionInCategory, DmSeekRecordInCategory,
DmResizeRecord, DmGetResource, DmGet1Resource,
DmNewResource, DmGetResourceIndex.
Developing Palm OS Applications 111

Data and Resource Manager Functions
DmGetNextDatabaseByTypeCreator

Purpose Return a database header ID and card number given the type and/
or creator. This routine searches all memory cards for a match.

Prototype Err DmGetNextDatabaseByTypeCreator
(Boolean newSearch,
DmSearchStatePtr stateInfoP,
ULong type,
ULong creator,
Boolean onlyLatestVers,
UIntPtr cardNoP,
LocalID* dbIDP)

Parameters -> newSearch True if starting a new search.

-> stateInfoP If newSearch is false, this must point to the
same data used for the previous invocation.

-> type Type of database to search for, pass 0 as a
wildcard.

-> creator Creator of database to search for, pass 0 as
a wildcard.

-> onlyLatestVers If true, only latest version of each database
with a given type and creator is returned.

<- cardNoP On exit, the cardNo of the found database.

<- dbIDP Database Local ID of the found database.

Result 0 No error.

dmErrCantFind No matches found.

Comments To start the search, pass TRUE for newSearch. To continue a
search where the previous one left off, pass FALSE for newSearch.
When continuing a search, stateInfoP must point to the same
structure passed during the previous invocation.

If the type parameter is nil, this routine can be called successively
to return all databases of the given creator. If the creator param-
112 Developing Palm OS Applications

Data and Resource Manager Functions
eter is nil, this routine can be called successively to return all data-
bases of the given type.

If the onlyLatestVers parameter is set, only the latest version of
each database with a given creator/type pair is returned.

If you’re searching for the latest version and either type or
creator is nil (wildcard), this routine returns the index of the next
database which matches the search criteria. This database can’t
have been superseded by a newer version of that database with the
same type and creator.

See Also DmGetDatabase, DmFindDatabase, DmDatabaseInfo,
DmOpenDatabaseByTypeCreator, DmDatabaseSize

DmGetRecord

Purpose Return a handle to a record by index and mark the record busy.

Prototype VoidHand DmGetRecord (DmOpenRef dbR,
UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to retrieve.

Result Handle to record data.

Comments Returns handle to given record and sets the busy bit for the record.
If another call to DmGetRecord for the same record is attempted
before the record is released, an error is returned.

If the record is ROM-based (pointer accessed), this routine makes a
fake handle to it and store this handle in the DmAccessType struc-
ture.

 DmReleaseRecord should be called as soon as the caller is done
viewing or editing the record.

See Also DmSearchRecord, DmFindRecordByID, DmRecordInfo,
DmReleaseRecord, DmQueryRecord
Developing Palm OS Applications 113

Data and Resource Manager Functions
DmGetResource

Purpose Search all open resource databases and return a handle to a re-
source given the resource type and ID.

Prototype VoidHand DmGetResource (ULong type, Int ID)

Parameters -> type The resource type.

->ID The resource ID.

Result Returns pointer to resource data, or nil if unsuccessful.

Comments Searches all open resource databases starting with the most re-
cently opened one for a resource of the given type and ID. If found,
the resource handle is returned. The application should call
DmReleaseRecord as soon as it’s done accessing the resource data
to avoid fragmenting the heap.

See Also DmGet1Resource, DmReleaseResource

DmGetResourceIndex

Purpose Return a handle to a resource by index.

Prototype VoidHand DmGetResourceIndex (DmOpenRef dbR,
Int index)

Parameters -> dbR Access pointer to open database.

-> index Index of resource to lock down.

Result Handle to resource data, or nil if unsuccessful.

See Also DmFindResource, DmFindResourceType, DmSearchResource
114 Developing Palm OS Applications

Data and Resource Manager Functions
DmGet1Resource

Purpose Search the most recently opened resource database and return a
handle to a resource given the resource type and ID.

Prototype VoidHand DmGet1Resource (ULong type, Int ID)

Parameters -> type The resource type.

-> ID The resource ID.

Result Returns a pointer to resource data, or nil if unsuccessful.

Comments Searches the most recently opened resource database for a resource
of the given type and ID. If found, the resource handle is returned.
The application should call DmReleaseRecord as soon as it’s done
accessing the resource data in order to avoid fragmenting the heap.

See Also DmGetResource, DmReleaseResource
Developing Palm OS Applications 115

Data and Resource Manager Functions
DmInsertionSort

 Purpose Sort records in a database.

Prototype Err DmInsertionSort (DmOpenRef dbR,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.

compar Comparison function (see below).

other Any value the application wants to pass to the
comparison function.

Result Returns 0 if no error or dmErrReadOnly if read only database.

Comments Deleted records are placed last in any order. All others are sorted
according to the passed comparison function. Only records which
are out of order move. Moved records are moved to the end of the
range of equal records. If a large amount of records are being
sorted, try to use the quick sort.

The following insertion sort algorithm is used: Starting with the
second record, each record is compared to the preceding record.
Each record not greater than the last is inserted into sorted position
within those already sorted. A binary insertion is performed. A
moved record is inserted after any other equal records.

compar, the comparison function, accepts two arguments, *elem1
and * elem2, each a pointer to an entry in the table. The compar-
ison function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result * of the compar-
ison.

If the items compar returns

*elem1 < *elem2 an integer < 0

*elem1 == *elem2 0

*elem1 > *elem2 an integer > 0

Result Returns 0 if no error or dmErrInvalidParam.
116 Developing Palm OS Applications

Data and Resource Manager Functions
Comments Called by SysAppLaunch (see Part 1) to move an application data-
base is launching out of the system list and into the application’s
list.

See Also DmFindSortPosition, DmQuickSort

DmMoveCategory

Purpose Move all records in a category to another category.

Prototype Err DmMoveCategory (DmOpenRef dbR,
UInt toCategory,
UInt fromCategory,
Boolean dirty)

Parameters -> dbR DmOpenRef to open database.

<- toCategory Category to which to retrieve records.

-> fromCategory Category from which to retrieve records.

-> dirty If TRUE, set the dirty bit.

Result Returns 0 if successful, or dmErrReadOnly if read-only database.

Comments If dirty is TRUE, the moved records are marked as dirty.
Developing Palm OS Applications 117

Data and Resource Manager Functions
DmMoveRecord

Purpose Move a record from one index to another.

Prototype Err DmMoveRecord (DmOpenRef dbR,
UInt from, UInt to)

Parameters -> dbR DmOpenRef to open database.

-> from Index of record to move.

-> to Where to move the record.

Result Returns 0 if no error or one of dmErrIndexOutOfRange,
dmErrReadOnly, memErrChunkLocked, memErrInvalidParam,
or memErrNotEnoughSpace if an error occurs.

Comments Insert the record at the “to” index and move other records down.
The “to” position should be viewed as an insertion position. Note
that this value may be one greater than the index of the last record
in the database.

DmNewHandle

Purpose Attempt to allocate a new chunk in the same data heap or card as
the database header of the passed database access pointer. If there
is not enough space in that data heap, tries other heaps.

Prototype VoidHand DmNewHandle (DmOpenRef dbR, ULong size)

Parameters -> dbR DmOpenRef to open database.

-> size Size of new handle.

Result Returns the chunkID of new chunk, or 0 if not enough space.

Comments Allocates a new handle of the given size. Ensures that the new
handle is in the same memory card as the given database. This
guarantees that you can attach the handle to the database as a
record obtain and save its LocalID in the appInfoID or sortInfoID
fields of the header.
118 Developing Palm OS Applications

Data and Resource Manager Functions
DmNextOpenDatabase

Purpose Return DmOpenRef to next open database for the current task.

Prototype DmOpenRef DmNextOpenDatabase (DmOpenRef currentP)

Parameters -> currentP Current database access pointer or nil.

Result DmOpenRef to next open database, or nil if there are no more.

Comments Call this routine successively to get the DmOpenRefs of all open da-
tabases. Pass nil for currentP to get the first one. This routine
would not normally be called by applications but is useful for
system information.

See Also DmOpenDatabaseInfo, DmDatabaseInfo

DmNextOpenResDatabase

Purpose Return access pointer to next open resource database in the search
chain.

Prototype DmOpenRef DmNextOpenResDatabase (DmOpenRef dbR)

Parameters dbR Database reference, or 0 to start search from the top.

Result Pointer to next open resource database.

Comments Returns pointer to next open resource database. To get a pointer to
the first one in the search chain, pass nil for dbR. This first database
is the first and only one searched when DmGet1Resource is called.
Developing Palm OS Applications 119

Data and Resource Manager Functions
DmNewRecord

Purpose Return a handle to a new record in the database and mark the
record busy.

Prototype VoidHand DmNewRecord (DmOpenRef dbR,
UIntPtr atP,
ULong size)

Parameters -> dbR DmOpenRef to open database.

<-> atP Pointer to index where new record should be placed.

-> size Size of new record.

Result Pointer to record data, or 0 if error.

Comments Allocates a new record of the given size, and returns a handle to
the record data. The parameter atP points to an index variable.
The new record is inserted at index *atP and all following record in-
dices are shifted down. If *atP is greater than the number of
records currently in the database, the new record is appended to
the end and its index is returned in *atP.

Both the busy and dirty bits are set for the new record and a
unique ID is automatically created.

See Also DmAttachRecord, DmRemoveRecord, DmDeleteRecord
120 Developing Palm OS Applications

Data and Resource Manager Functions
DmNewResource

Purpose Allocate and add a new resource to a resource database.

Prototype VoidHand DmNewResource (DmOpenRef dbR,
ULong resType,
Int resID,
ULong size)

Parameters -> dbR DmOpenRef to open database.

-> resType Type of the new resource.

-> resID ID of the new resource.

-> size Desired size of the new resource.

Result Returns a handle to new resource, or nil if unsuccessful.

Comments Allocates a memory chunk for a new resource and adds it to the
given resource database. The new resource has the given type and
ID. If successful, the application should call DmReleaseResource
as soon as it finishes initializing the resource.

See Also DmAttachResource, DmRemoveResource

DmNumDatabases

Purpose Determine how many databases reside on a memory card.

Prototype UInt DmNumDatabases (UInt cardNo)

Parameters -> cardNo Number of the card to check.

Result Returns the number of databases found.

Comments This routine is helpful for getting a directory of all databases on a
card. The routine DmGetDatabase accepts an index from 0 to
DmNumDatabases -1 and returns a database ID by index.

See Also DmGetDatabase
Developing Palm OS Applications 121

Data and Resource Manager Functions
DmNumRecords

Purpose Return the number of records in a database.

Prototype UInt DmNumRecords (DmOpenRef dbR)

Parameters -> dbR DmOpenRef to open database.

Result Returns the number of records in a database.

See Also DmNumRecordsInCategory, DmRecordInfo, DmSetRecordInfo

DmNumRecordsInCategory

 Purpose Return the number of records of a specified category in a database.

 Prototype UInt DmNumRecordsInCategory (DmOpenRef dbR,
UInt category)

Parameters dbr DmOpenRef to open database.

category Category.

Result Returns the number of records.

See Also DmNumRecords, DmQueryNextInCategory,
DmPositionInCategory, DmSeekRecordInCategory,
DmMoveCategory

DmNumResources

Purpose Return the total number of resources in a given resource database.

Prototype UInt DmNumResources (DmOpenRef dbR)

Parameters -> dbR DmOpenRef to open database.

Result Returns the total number of resources in the given database.
122 Developing Palm OS Applications

Data and Resource Manager Functions
DmOpenDatabase

Purpose Open a database and return a reference to it.

Prototype DmOpenRef DmOpenDatabase (UInt cardNo,
LocalID dbID,
UInt mode)

Parameters -> cardNo Which card number database resides on.

-> dbID The database ID of the database.

-> mode Which mode to open database in (see below).

Result Returns DmOpenRef to open database, or 0 if unsuccessful.

Comments Call this routine to open a database for reading or writing. The
mode parameter can be one or more of the following constants
ORed together:

This routine returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling DmGetLastErr.

See Also DmCloseDatabase, DmCreateDatabase, DmFindDatabase,
DmOpenDatabaseByTypeCreator, DmDeleteDatabase

dmModeReadWrite Read-write access.

dmModeReadOnly Read-only access.

dmModeLeaveOpen Leave database open even after
application quits.

dmModeExclusive Don’t let anyone else open it.
Developing Palm OS Applications 123

Data and Resource Manager Functions
DmOpenDatabaseByTypeCreator

Purpose Open the most recent revision of a database with the given type
and creator.

Prototype DmOpenRef DmOpenDatabaseByTypeCreator(
ULong type,
ULong creator,
UInt mode)

Parameters type Type of database.

creator Creator of database.

mode Open mode (see Comments for DmOpenDatabase).

Result DmOpenRef to open database, or 0 if unsuccessful.

See Also DmCreateDatabase, DmOpenDatabase, DmOpenDatabaseInfo,
DmCloseDatabase
124 Developing Palm OS Applications

Data and Resource Manager Functions
DmOpenDatabaseInfo

Purpose Retrieve information about an open database.

Prototype Err DmOpenDatabaseInfo (DmOpenRef dbR,
 LocalIDPtr dbIDP,
 UIntPtr openCountP,
 UIntPtr modeP,
 UIntPtr cardNoP,
 BooleanPtr resDBP)

Parameters -> dbR DmOpenRef to open database.

<-> dbIDP Pointer to return dbID variable, or nil.

<-> openCountP Pointer to return openCount variable, or nil.

<-> modeP Pointer to return mode variable, or nil.

<-> cardNoP Pointer to return card number, or nil.

<-> resDBP Pointer to return resDB Boolean, or nil.

Result 0 No error.

dmErrInvalidParam Invalid parameter passed.

Comments This routine retrieves information about an open database. Any nil
return parameter pointers are ignored.

See Also DmDatabaseInfo
Developing Palm OS Applications 125

Data and Resource Manager Functions
DmPositionInCategory

Purpose Return a position of a record within the specified category.

Prototype UInt DmPositionInCategory (DmOpenRef dbR,
UInt index, UInt category)

Parameters dbR DmOpenRef to open database.

index Index of the record.

category Category to search.

Result Returns the position (zero-based).

Comments If the record is ROM-based (pointer accessed) this routine makes a
fake handle to it and stores this handle in the DmAccessType struc-
ture.

See Also DmQueryNextInCategory, DmSeekRecordInCategory,
DmMoveCategory

DmQueryNextInCategory

Purpose Return a handle to the next record in the specified category for
reading only (does not set the busy bit).

Prototype VoidHand DmQueryNextInCategory (DmOpenRef dbR,
 UIntPtr indexP,

UInt category)

Parameters dbR DmOpenRef to open database.

indexP Index of a known record (often retrieved with
DmPositionInCategory).

category Which category to query.

Result Returns a handle to the record following a known record.

See Also DmNumRecordsInCategory, DmPositionInCategory,
DmSeekRecordInCategory,
126 Developing Palm OS Applications

Data and Resource Manager Functions
DmQueryRecord

Purpose Return a handle to a record for reading only (does not set the busy
bit).

Prototype VoidHand DmQueryRecord (DmOpenRef dbR,
UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to retrieve.

Result Returns record handle, or 0 if record is out of range or deleted.

Comments Returns handle to given record. Use this routine only when
viewing the record. This routine successfully returns a handle to
the record even if the record is busy.

If the record is ROM-based (pointer accessed) this routine returns
the fake handle to it.
Developing Palm OS Applications 127

Data and Resource Manager Functions
DmQuickSort

Purpose Sort records in a database.

Prototype Err DmQuickSort(const DmOpenRef dbR,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer

compar Comparison function (see Comments)

other Any value the application wants to pass to the
comparison function.

Result Returns 0 if no error or DmErrReadOnly if an error occurred.

Comments Deleted records are placed last in any order. All others are sorted
according to the passed comparison function.

compar, the comparison function, accepts two arguments, elem1
and elem2, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result of the compar-
ison.

If the items compar returns

*elem1 < *elem2 an integer < 0

*elem1 == *elem2 0

*elem1 > *elem2 an integer > 0

See Also DmFindSortPosition, DmInsertionSort
128 Developing Palm OS Applications

Data and Resource Manager Functions
DmRecordInfo

Purpose Retrieve the record information as stored in the database header.

Prototype Err DmRecordInfo (DmOpenRef dbR,
UInt index,
UBytePtr attrP,
ULongPtr uniqueIDP,
LocalID* chunkIDP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of record.

<-> attrP Pointer to return attribute variable, or nil.

<-> uniqueIDP Pointer to return unique ID variable, or nil.

<-> chunkIDP Pointer to return Local ID variable, or nil.

Result Returns 0 if no error or dmErrIndexOutOfRange if an error oc-
curred.

Comments Retrieves information about a record. Any of the return variable
pointers can be nil.

See Also DmNumRecords, DmSetRecordInfo, DmQueryNextInCategory
Developing Palm OS Applications 129

Data and Resource Manager Functions
DmResourceInfo

Purpose Retrieve information on a given resource.

Prototype Err DmResourceInfo (DmOpenRef dbR,
Int index,
ULongPtr resTypeP,
IntPtr resIDP,
LocalID* chunkLocalIDP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of resource to get info on.

<-> resTypeP Pointer to return resType variable, or nil.

<-> resIDP Pointer to return resID variable, or nil.

<-> chunkLocalIDP Pointer to return chunkID variable, or nil.

Result Returns 0 if no error or dmErrIndexOutOfRange if an error oc-
curred.

Comments Use this routine to retrieve all or a portion of the information on a
particular resource. Any or all of the return variable pointers can
be nil. The type and ID of the resource are returned in *resTypeP
and *resIDP. The Memory Manager Local ID of the resource data
is returned in *chunkLocalIDP.

See Also DmGetResource, DmGet1Resource, DmSetResourceInfo,
DmFindResource, DmFindResourceType
130 Developing Palm OS Applications

Data and Resource Manager Functions
DmReleaseRecord

Purpose Clear the busy bit for the given record and set the dirty bit if dirty
is true.

Prototype Err DmReleaseRecord (DmOpenRef dbR,
UInt index,
Boolean dirty)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to unlock.

-> dirty If TRUE, set the dirty bit.

Result Returns 0 if no error or dmErrIndexOutOfRange if an error oc-
curred.

Comments Call this routine when you finished modifying or reading a record
that you’ve called DmGetRecord on. It sets the dirty bit for the
record if the dirty parameter is set.

See Also DmGetRecord

DmReleaseResource

Purpose Release a resource acquired with DmGetResource.

Prototype Err DmReleaseResource (VoidHand resourceH)

Parameters -> resourceH Handle to resource.

Result Returns 0 if no error.

Comments Marks a resource as being no longer needed by the application.

See Also DmGet1Resource, DmGetResource
Developing Palm OS Applications 131

Data and Resource Manager Functions
DmRemoveRecord

Purpose Remove a record from a database and dispose of its data chunk.

Prototype Err DmRemoveRecord (DmOpenRef dbR,
UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Index of the record to remove.

Result Returns 0 if no error, or dmErrCorruptDatabase,
dmErrIndexOutOfRange, dmErrReadOnly,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments Disposes of a the record’s data chunk and removes the record’s
entry from the database header.

See Also DmDetachRecord, DmDeleteRecord, DmArchiveRecord,
DmNewRecord

DmRemoveResource

Purpose Delete a resource from a resource database.

Prototype Err DmRemoveResource (DmOpenRef dbR, Int index)

Parameters -> dbR DmOpenRef to open database.

-> index Index of resource to delete.

Result Returns 0 if no error or dmErrCorruptDatabase,
dmErrIndexOutOfRange, dmErrReadOnly,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments This routine disposes of the memory manager chunk that holds the
given resource and removes its entry from the database header.

See Also DmDetachResource, DmRemoveResource, DmAttachResource
132 Developing Palm OS Applications

Data and Resource Manager Functions
DmRemoveSecretRecords

Purpose Remove all secret records.

Prototype Err DmRemoveSecretRecords (DmOpenRef dbR)

Parameters dbR DmOpenRef to open database.

Result Returns 0 if no error or dmErrReadOnly (read-only database) if an
error occurred.

See Also DmRemoveRecord, DmRecordInfo, DmSetRecordInfo

DmResetRecordStates

Purpose Unlock all records in a database and clear all busy bits.

Prototype Err DmResetRecordStates (DmOpenRef dbR)

Parameters -> dbR DmOpenRef to open database.

Result Returns 0 if no error or dmErrROMBased if an error occurred.

Comments This routine unlocks all records in a database and clears all busy
bits. It can optionally be called before closing a database to ensure
that the records are all unlocked. For performance reasons, the
data manager does not call DmResetRecordStates automatically
when closing a database.

This routine automatically allocates the record in another data
heap if the current heap is too full.
Developing Palm OS Applications 133

Data and Resource Manager Functions
DmResizeRecord

Purpose Resize a record by index.

Prototype VoidHand DmResizeRecord (DmOpenRef dbR,
UInt index,
ULong newSize)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to retrieve.

-> newSize New size of record.

Result Pointer to resized record, or nil if unsuccessful.

Comments This routine reallocates the record in another heap of the same
memory card if the current heap is not big enough. If this happens,
the handle changes, so be sure to use the return handle to access
the resized resource.

DmResizeResource

Purpose Resize a resource and return the new handle.

Prototype VoidHand DmResizeResource (VoidHand resourceH,
ULong newSize)

Parameters -> resourceH Handle to resource.

-> newSize Desired new size of resource.

Result Returns a handle to newly-sized resource or nil if unsuccessful.

Comments Resizes the resource and returns new handle. If necessary in order
to grow the resource, this routine will reallocate it in another heap
on the same memory card that it is currently in.

The handle may change if the resource had to be reallocated in a
different data heap because there was not enough space in its
present data heap.
134 Developing Palm OS Applications

Data and Resource Manager Functions
DmSearchRecord

Purpose Search all open record databases for a record with the handle
passed.

Prototype Int DmSearchRecord (VoidHand recH,
DmOpenRef* dbRP)

Parameters recH Record handle.

dbRP Pointer to return variable of type DmOpenRef.

Result Returns the index of the record and database access pointer; if not
found, index will be -1 and *dbRP will be 0.

See Also DmGetRecord, DmFindRecordByID, DmRecordInfo
Developing Palm OS Applications 135

Data and Resource Manager Functions
DmSearchResource

Purpose Search all open resource databases for a resource by type and ID,
or by pointer if it is non-nil.

Prototype Int DmSearchResource (ULong resType,
Int resID,
VoidHand resH,
DmOpenRef* dbRP)

Parameters -> resType Type of resource to search for.

-> resID ID of resource to search for.

-> resH Pointer to locked resource, or nil.

-> dbRP Pointer to return variable of type DmOpenRef.

Result Returns the index of the resource, stores DmOpenRef in dbRP.

Comments This routine can be used to find a resource in all open resource da-
tabases by type and ID or by pointer. If resH is nil, the resource is
searched for by type and ID. If resH is not nil, resType and resID is
ignored and the index of the resource handle is returned. On
return *dbRP contains the access pointer of the resource database
that the resource was eventually found in. Once the index of a re-
source is determined, it can be locked down and accessed by
calling DmGetResourceByIndex.

See Also DmGetResource, DmFindResourceType, DmResourceInfo,
DmGetResourceIndex, DmFindResource
136 Developing Palm OS Applications

Data and Resource Manager Functions
DmSeekRecordInCategory

Purpose Return the index of the record at the offset from the passed record
index. (The offset parameter indicates the number of records to
move forward or backward; the value for backward is negative.)

Prototype Err DmSeekRecordInCategory (DmOpenRef dbR,
 UIntPtr indexP,

Int offset,
Int direction,
UInt category)

Parameters dbR DmOpenRef to open database.

index Pointer to the returned index.

offset Offset of the passed record index.

direction dmSeekForward or dmSeekBackward.

category Category ID.

Result Returns 0 if no error or dmErrIndexOutOfRange or
dmErrSeekFailed if an error occurred.

See Also DmNumRecordsInCategory, DmQueryNextInCategory,
DmPositionInCategory, DmMoveCategory
Developing Palm OS Applications 137

Data and Resource Manager Functions
DmSet

Purpose Check the validity of the chunk pointer for a record and makes
sure that writing the record does not exceed the chunk bounds.

Prototype Err DmSet (VoidPtr recordP,
ULong offset,
ULong bytes,
Byte value)

Parameters recordP Pointer to locked data record (chunk pointer).

offset Offset within record to start writing.

bytes Number of bytes to write.

value Byte value to write.

Result Returns 0 if no error or dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

Comments Must be used to write to data manager records because the data
storage area is write-protected.

See Also DmWrite

DmSetDatabaseInfo

Purpose Set information about a database.

Prototype Err DmSetDatabaseInfo (UInt cardNo,
LocalID dbID, CharPtr nameP,
UIntPtr attributesP, UIntPtr versionP
ULongPtr crDateP, ULongPtr modDateP,
ULongPtr bckUpDateP, ULongPtr modNumP,
LocalID* appInfoIDP, LocalID* sortInfoIDP,
ULongPtr typeP, ULongPtr creatorP)

Parameters -> cardNo Card number the database resides on.

-> dbID Database ID of the database.
138 Developing Palm OS Applications

Data and Resource Manager Functions
-> nameP Pointer to 32-byte character array for new
name, or nil.

-> attributesP Pointer to new attributes variable, or nil.

versionP Pointer to new version, or nil.

-> crDateP Pointer to new creation date variable, or nil.

-> modDateP Pointer to new modification date variable, or
nil.

-> bckUpDateP Pointer to new backup date variable, or nil.

-> modNumP Pointer to new modification number variable,
or nil.

-> appInfoIDP Pointer to new appInfoID variable, or nil.

-> sortInfoIDP Pointer to new sortInfoID variable, or nil.

-> typeP Pointer to new type variable, or nil.

-> creatorP Pointer to new creator variable, or nil.

Result Returns 0 if no error or dmErrInvalidParam if an error occurred.

Comments When this call changes appInfoID or sortInfoID, the old
chunkID (if any) is marked as an orphan chunk and the new chunk
ID is unorphaned. Consequently, you shouldn’t replace an existing
appInfoID or sortInfoID if that chunk has already been at-
tached to another database.

Call this routine to set any or all information about a database
except for the card number and database ID. This routine sets the
new value for any non-nil parameter.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator
Developing Palm OS Applications 139

Data and Resource Manager Functions
DmSetRecordInfo

Purpose Set record information stored in the database header.

Prototype Err DmSetRecordInfo (DmOpenRef dbR,
UInt index,
UBytePtr attrP,
ULongPtr uniqueIDP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of record.

-> attrP Pointer to new attribute variable, or nil.

-> uniqueIDP Pointer to new unique ID variable, or nil.

Result Returns 0 if no error or dmErrIndexOutOfRange or
dmErrReadOnly if an error occurred.

Comments Set information about a record.

See Also DmNumRecords, DmRecordInfo
140 Developing Palm OS Applications

Data and Resource Manager Functions
DmSetResourceInfo

Purpose Set information on a given resource.

Prototype Err DmSetResourceInfo (DmOpenRef dbR,
Int index,
ULongPtr resTypeP,
IntPtr resIDP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of resource to set info for.

<-> resTypeP Pointer to new resType, or nil.

<-> resIDP Pointer to new resID, or nil.

Result Returns 0 if no error or dmErrIndexOutOfRange or
dmErrReadOnly if an error occurred.

Comments Use this routine to set all, or a portion of the information on a par-
ticular resource. Any or all of the new info pointers can be nil. If
not nil, the type and ID of the resource are changed to *resTypeP
and *resIDP.

Normally, the unique ID for a record is automatically created by
the Data Manager when a record is created using DmNewRecord,
so an application would not typically change the unique ID.
Developing Palm OS Applications 141

Data and Resource Manager Functions
DmStrCopy

Purpose Check the validity of the chunk pointer for the record and make
sure that writing the record will not exceed the chunk bounds.

Prototype Err DmStrCopy (VoidPtr recordP,
ULong offset,
CharPtr srcP)

Parameters recordP Pointer to Data Record (chunk pointer).

offset Offset within record to start writing.

srcP Pointer to 0-terminated string.

Result Returns 0 if no error or dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

See Also DmWrite, DmSet

DmWrite

Purpose Must be used to write to data manager records because the data
storage area is write-protected. This routine checks the validity of
the chunk pointer for the record and makes sure that the write will
not exceed the chunk bounds.

Prototype Err DmWrite (VoidPtr recordP, ULong offset,
VoidPtr srcP, ULong bytes)

Parameters recordP Pointer to locked data record (chunk pointer).

offset Offset within record to start writing.

srcP Pointer to data to copy into record.

bytes Number of bytes to write.

Result Returns 0 if no error or dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

See Also DmSet
142 Developing Palm OS Applications

Data and Resource Manager Functions
DmWriteCheck

Purpose Check the parameters of a write operation to a data storage chunk
before actually performing the write.

Prototype Err DmWriteCheck(VoidPtr recordP,
ULong offset,
ULong bytes)

Parameters recordP Locked pointer to recordH.

offset Offset into record to start writing.

bytes Number of bytes to write.

Result Returns 0 if no error or dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

System Use Only

DmMoveOpenDBContext

Prototype Err DmMoveOpenDBContext (DmOpenRef* dstHeadP,
DmOpenRef dbR)

Warning: System Use Only!
Developing Palm OS Applications 143

Data and Resource Manager Functions
144 Developing Palm OS Applications

5
Communications Functions

Serial Manager

SerClearErr

Purpose Reset the serial port’s line error status.

Prototype Err SerClearErr (UInt refNum)

Parameters -> refNum The serial library reference number.

Result 0 No error.

Comments Other serial manager functions, such as SerReceive, immediately
return with the error code serErrLineErr if any line errors are
pending. It is therefore important to check the result of serial man-
ager function calls and call SerClearErr in acknowledgment if
line error(s) occur.
Developing Palm OS Applications, Part II 145

Communications Functions
Serial Manager
SerClose

Purpose Release the serial port previously acquired by SerOpen.

Prototype Err SerClose (UInt refNum)

Parameters -> refNum Serial library reference number.

Result 0 No error.
serErrNotOpen The port wasn’t open.
serErrStillOpen The port is still held open by someone else.

Comments Releases the serial port and shuts down serial port hardware if the
open count has reached 0. SerClose may be called only if the re-
turn value fromSerOpen was 0 (zero) or serErrAlreadyOpen.
Open serial ports consume more energy from the device’s batteries;
it’s therefore essential to keep a port open only as long as necessary.

See Also SerOpen

SerGetSettings

Purpose Fill in SerSettingsType structure with current serial port at-
tributes.

Prototype Err SerGetSettings (UInt refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

<-> settingsP Pointer to SerSettingsType structure to be filled in.

Result 0 No error.
serErrNotOpen The port wasn’t open.

Comments The information returned by this call includes the current baud rate,
CTS timeout, handshaking options, data format options. See the
definition of the SerSettingsType structure for more details.

See Also SerSend
146 Developing Palm OS Applications, Part II

Communications Functions
Serial Manager
SerGetStatus

Purpose Return the pending line error status for errors which have been de-
tected since the last time SerClearErr was called.

Prototype Word SerGetStatus (UInt refNum,
BooleanPtr ctsOnP,
BooleanPtr dsrOnP)

Parameters -> refNum The serial library reference number.

-> ctsOnP Pointer to location for storing a Boolean value.

-> dsrOnP Pointer to location for storing a Boolean value.

Result Any combination of the following constants bitwise or’ed together:

serLineErrorParity Parity error.

serLineErrorHWOverrun Hardware overrun.

serLineErrorFraming Framing error.

serLineErrorBreak Break signal detected.

serLineErrorHShake Line hand-shake error.

serLineErrorSWOverrun Software overrun.

Comments When another serial manager function returns an error code of
serErrLineErr, SerGetStatus can be used to find out the spe-
cific nature of the line error(s). The values returned via ctsOnP and
dsrOnP are not meaningful in the present version of the software.
See also SerClearErr.
Developing Palm OS Applications, Part II 147

Communications Functions
Serial Manager
SerOpen

Purpose Acquire and open a serial port with given baud rate and default set-
tings.

Prototype Err SerOpen (UInt refNum, UInt port, ULong baud)

Parameters -> refNum Serial library reference number.

-> port Port number.

-> baud Baud rate.

Result 0 No error.

serErrAlreadyOpen Port was open. Enables port sharing by
“friendly” clients (not recommended).

serErrBadParam Invalid parameter.

memErrNotEnoughSpace Insufficient memory.

Comments Acquires the serial port, powers it up, and prepares it for operation.
To obtain the serial library reference number, call SysLibFind with
“Serial Library” as the library name. This reference number must be
passed as a parameter to all serial manager functions. The device
currently contains only one serial port with port number 0 (zero).

The baud rate is an integral baud value (for example - 300, 1200,
2400, 9600, 19200, 38400, 57600, etc.). The Palm OS device has been
tested at the standard baud rates in the range of 300 - 57600 baud.
Baud rates through 1 Mbit are theoretically possible. Use CTS hand-
shaking at baud rates above 19200 (see SerSetSettings).

An error code of 0 (zero) or serErrAlreadyOpen indicates that the
port was successfully opened. If the port is already open when
SerOpen is called, the port’s open count is incremented and an
error code of serErrAlreadyOpen is returned. This ability to open
the serial port multiple times is provided for use by cooperating
tasks which need to share the serial port. Other tasks must refrain
from using the port if serErrAlreadyOpen is returned and close it
by calling SerClose.

See Also SerClose
148 Developing Palm OS Applications, Part II

Communications Functions
Serial Manager
SerReceive

Purpose Receive a stream of bytes.

Prototype Err SerReceive (UInt refNum, VoidPtr bufP,
ULong bytes, Long timeout)

Parameters -> refNum The serial library reference number.

-> bufP Pointer to the buffer for receiving data.

-> bytes Number of bytes desired.

-> timeout Interbyte time out in system ticks (-1 = forever)

Result 0 No error. Requested number of bytes
was received.

serErrTimeOut Interbyte time out exceeded while waiting for
the next byte to arrive.

serErrLineErr Line error occurred (see SerClearErr
and SerGetStatus).

Comments SerReceive blocks until all the requested data has been received or
an error occurs. Because this call returns immediately without any
data if line errors are pending, it is important to acknowledge the
detection of line errors by calling SerClearErr. If you just need to
retrieve all or some of the bytes which are already in the receive
queue, call SerReceiveCheck first to get the count of bytes pres-
ently in the receive queue.
Developing Palm OS Applications, Part II 149

Communications Functions
Serial Manager
SerReceiveCheck

Purpose Return the count of bytes presently in the receive queue.

Prototype Err SerReceiveCheck(UInt refNum,
ULongPtr numBytesP)

Parameters -> refNum Serial library reference number.

<-> numBytesP Pointer to location for returning the byte count.

Result 0 No error.

serErrLineErr Line error pending (see SerClearErr and
SerGetStatus).

Comments Because this call does not return the byte count if line errors are
pending, it is important to acknowledge the detection of line errors
by calling SerClearErr.

See also SerReceiveWait

SerReceiveFlush

Purpose Discard all data presently in the receive queue and flush bytes com-
ing into the serial port. Clear the saved error status.

Prototype void SerReceiveFlush (UInt refNum, Long timeout)

Parameters -> refNum Serial library reference number.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result Returns nothing.

Comments SerReceiveFlush blocks until a time out occurs while waiting for
the next byte to arrive.
150 Developing Palm OS Applications, Part II

Communications Functions
Serial Manager
SerReceiveWait

Purpose Wait for at least bytes bytes of data to accumulate in the receive
queue.

Prototype Err SerReceiveWait (UInt refNum,
ULong bytes,
Long timeout)

Parameters -> refNum Serial library reference number.

-> bytes Number of bytes desired.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result 0 No error.

serErrTimeOut Interbyte time out exceeded while waiting for
next byte to arrive.

serErrLineErr Line error occurred (see SerClearErrr
and SerGetStatus).

Comments This is the preferred method of waiting for serial input, since it
blocks the current task and allows switching the processor into a
more energy-efficient state.

SerReceiveWait blocks until the desired number of bytes accu-
mulate in the receive queue or an error occurs. The desired number
of bytes must be less than the current receive queue size. The default
queue size is 512 bytes. Because this call returns immediately if line
errors are pending, it is important to acknowledge the detection of
line errors by calling SerClearErr.

See also SerReceiveCheck, SerSetReceiveBuffer
Developing Palm OS Applications, Part II 151

Communications Functions
Serial Manager
SerSend

Purpose Send a stream of bytes to the serial port.

Prototype Err SerSend (UInt refNum, VoidPtr bufP, ULong size)

Parameters -> refNum The serial library reference number.

-> bufP Pointer to the data to send.

-> size Size (in number of bytes) of the data to send.

Result 0 No error.

serErrTimeOut Handshake time out (such as waiting for CTS
to become asserted.)

Comments In the present implementation, SerSend blocks until all data is
transferred to the UART or a time out error (if CTS handshaking is
enabled) occurs. Future implementations may queue up the request
and return immediately, performing transmission in the back-
ground. If your software needs to detect when all data has been
transmitted, see SerSendWait.

This routine observes the current CTS time out setting if CTS hand-
shaking is enabled (see SerGetSettings and SerSend).
152 Developing Palm OS Applications, Part II

Communications Functions
Serial Manager
SerSendWait

Purpose Wait until the serial transmit buffer empties.

Prototype Err SerSendWait (UInt refNum, Long timeout)

Parameters -> refNum The serial library reference number.

-> timeout Reserved for future enhancements.
Set to (-1) for compatibility.

Result 0 No error.

serErrTimeOut Handshake time out (such as waiting for CTS
to become asserted).

Comments SerSendWait blocks until all data is transferred or a time-out error
(if CTS handshaking is enabled) occurs. This routine observes the
current CTS timeout setting if CTS handshaking is enabled (see
SerGetSettings and SerSend).
Developing Palm OS Applications, Part II 153

Communications Functions
Serial Manager
SerSetReceiveBuffer

Purpose Replace the default receive queue. To restore the original buffer,
pass bufSize = 0.

Prototype Err SerSetReceiveBuffer(UInt refNum, VoidPtr bufP,
UInt bufSize)

Parameters -> refNum Serial library reference number.

-> bufP Pointer to buffer to be used as the new receive queue.

-> bufSize Size of buffer, or 0 to restore the default receive queue.

Result Returns 0 if successful.

Comments The specified buffer needs to contain 32 extra bytes for serial man-
ager overhead (its size should be your application’s requirement
plus 32 bytes). The default receive queue must be restored before
the serial port is closed. To restore the default receive queue, call
SerSetReceiveBuffer passing 0 (zero) for the buffer size. The se-
rial manager does not free the custom receive queue.
154 Developing Palm OS Applications, Part II

Communications Functions
Serial Manager
SerSetSettings

Purpose Set the serial port settings; that is, change its attributes.

Prototype Err SerSetSettings (UInt refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

<-> settingsP Pointer to the filled in SerSettingsType structure.

Result 0 No error.

serErrNotOpen The port wasn’t open.

serErrBadParam Invalid parameter.

Comments The attributes set by this call include the current baud rate, CTS
time out, handshaking options, and data format options. See the
definition of the SerSettingsType structure for more details.

See Also SerGetSettings
Developing Palm OS Applications, Part II 155

Communications Functions
Serial Manager
Functions Used Only by System Software
These routines are for use by the system software only and should
not be called by the applications under any circumstances.

SerSleep

Prototype Err SerSleep (UInt refNum)

WARNING: This function for use by system software only.

SerWake

Prototype Err SerWake (UInt refNum)

WARNING: This function for use by system software only.

SerReceiveISP

Prototype Boolean SerReceiveISP (void)

WARNING: This function for use by system software only.
156 Developing Palm OS Applications, Part II

Communications Functions
Serial Link Manager Functions
Serial Link Manager Functions

SlkClose

Purpose Close down the serial link manager.

Prototype Err SlkClose (void)

Parameters None.

Result 0 No error.

slkErrNotOpen The serial link manager was not open.

Comments When the open count reaches zero, this routine frees resources allo-
cated by serial link manager.
Developing Palm OS Applications, Part II 157

Communications Functions
Serial Link Manager Functions
SlkCloseSocket

Purpose Closes a socket previously opened with SlkOpenSocket.

WARNING: The caller is responsible for closing the communica-
tions library used by this socket, if necessary.

Prototype Err SlkCloseSocket (UInt socket)

Parameters socket The socket ID to close.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

Comments SlkCloseSocket frees system resources the serial link manager al-
located for the socket. It does not free resources allocated and
passed by the client, such as the buffers passed to
SlkSetSocketListener; this is the client’s responsibility. The
caller is also responsible for closing the communications library
used by this socket.

See Also SlkOpenSocket, SlkSocketRefNum

SlkFlushSocket

Purpose Flush the receive queue of the communications library associated
with the given socket.

Prototype Err SlkFlushSocket (UInt socket, Long timeout)

Parameters -> socket Socket ID.

-> timeout Interbyte time out in system ticks.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.
158 Developing Palm OS Applications, Part II

Communications Functions
Serial Link Manager Functions
SlkOpen

Purpose Initialize the serial link manager.

Prototype Err SlkOpen (void)

Parameters None.

Result 0 No error.

slkErrAlreadyOpen No error.

Comments Initializes the serial link manager, allocating necessary resources.
Return codes of 0 (zero) and slkErrAlreadyOpen both indicate
success. Any other return code indicates failure.
slkErrAlreadyOpen informs the client that someone else is also
using the serial link manager. If the serial link manager was success-
fully opened by the client, the client needs to call SlkClose when it
finishes using the serial link manager.
Developing Palm OS Applications, Part II 159

Communications Functions
Serial Link Manager Functions
SlkOpenSocket

Purpose Open a serial link socket and associate it with a communications li-
brary. The socket may be a known static socket or a dynamically as-
signed socket.

Prototype Err SlkOpenSocket (UInt libRefNum,
UIntPtr socketP,
Boolean staticSocket)

Parameters libRefNum Communications library reference number for socket.

socketP Pointer to location for returning the socket ID.

staticSocket If true, *socketP contains the desired static socket
number to open. If false, any free socket number is
assigned dynamically and opened.

Result 0 No error.

slkErrOutOfSockets No more sockets can be opened.

Comments The communications library must already be initialized and opened
(see SerOpen). When finished using the socket, the caller must call
SlkCloseSocket to free system resources allocated for the socket.
For information about well-known static socket ID’s, see The Se-
rial Link Protocol.
160 Developing Palm OS Applications, Part II

Communications Functions
Serial Link Manager Functions
SlkReceivePacket

Purpose Receive and validate a packet for a particular socket or for any
socket. Check for format and checksum errors.

Prototype Err SlkReceivePacket(UInt socket,
Boolean andOtherSockets,
SlkPktHeaderPtr headerP,
void* bodyP,
UInt bodySize,
Long timeout)

Parameters -> socket The socket ID.

-> andOtherSockets If true, ignore actual dest in packet header.

<-> headerP Pointer to the packet header buffer (size of
SlkPktHeaderType).

<-> bodyP Pointer to the packet client data buffer.

-> bodySize Size of the client data buffer (maximum
client data size which may be accommodated).

-> timeout Maximum number of system ticks to wait for
beginning of a packet (-1) means wait forever.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

slkErrTimeOut Timed out waiting for a packet.

slkErrWrongDestSocket The packet being received had an
unexpected destination.

slkErrChecksum Invalid header checksum or packet
CRC-16.

slkErrBuffer Client data buffer was too small for
packet’s client data.

If andOtherSockets is FALSE, this routine returns with an error
code unless it gets a packet for the specific socket.
Developing Palm OS Applications, Part II 161

Communications Functions
Serial Link Manager Functions
If andOtherSockets is TRUE, this routine returns successfully if it
sees any incoming packet from the communications library used by
socket.

Comments You may request to receive a packet for the passed socket ID only, or
for any open socket which does not have a socket listener. The pa-
rameters also specify buffers for the packet header and client data,
and a timeout. The time out indicates how long the receiver should
wait for a packet to begin arriving before timing out. If a packet is
received for a socket with a registered socket listener, it will be dis-
patched via its socket listener procedure. On success, the packet
header buffer and packet client data buffer is filled in with the actual
size of the packet’s client data in the packet header’s bodySize
field.

SlkSendPacket

Purpose Send a serial link packet via the serial output driver.

Prototype Err SlkSendPacket(SlkPktHeaderPtr headerP,
 SlkWriteDataPtr writeList)

Parameters <-> headerP Pointer to the packet header structure with
client information filled in (see comments).

-> writeList List of packet client data blocks (see comments).

Result 0 No error.
slkErrSocketNotOpen The socket was not open.
slkErrTimeOut Handshake time out.

Comments SlkSendPacket stuffs the signature, client data size, and the
checksum fields of the packet header. The caller must fill in all other
packet header fields. If the transaction ID field is set to 0 (zero), the
serial link manager automatically generates and stuffs a new non-
zero transaction ID. The array of SlkWriteDataType structures en-
ables the caller to specify the client data part of the packet as a list of
non-contiguous blocks. The end of list is indicated by an array ele-
ment with the size field set to 0 (zero). This call blocks until the en-
tire packet is sent out or until an error occurs.
162 Developing Palm OS Applications, Part II

Communications Functions
Serial Link Manager Functions
SlkSetSocketListener

Purpose Register a socket listener for a particular socket.

Prototype Err SlkSetSocketListener (UInt socket,
 SlkSocketListenPtr socketP)

Parameters ->socket Socket ID.

->socketP Pointer to a SlkSocketListenType structure.

Result 0 No error.

slkErrBadParam Invalid parameter.

slkErrSocketNotOpen The socket was not open.

Comments Called by applications to set up a socket listener.

Since the serial link manager does not make a copy of the
SlkSocketListenType structure, but instead saves the passed
pointer to it, the structure may not be an automatic variable (that is,
local variable allocated on the stack). The SlkSocketListenType
structure may be a global variable in an application or a locked
chunk allocated from the dynamic heap. The
SlkSocketListenType structure specifies pointers to the socket
listener procedure and the data buffers for dispatching packets des-
tined for this socket. Pointers to two buffers must be specified: the
packet header buffer (size of SlkPktHeaderType), and the packet
body (client data) buffer. The packet body buffer must be large
enough for the largest expected client data size. Both buffers may be
application global variables or locked chunks allocated from the dy-
namic heap. The socket listener procedure is called when a valid
packet is received for the socket. Pointers to the packet header
buffer and the packet body buffer are passed as parameters to the
socket listener procedure.

Note: The application is responsible for freeing the
SlkSocketListenType structure or the allocated buffers when
the socket is closed. The serial link manager doesn’t do it.
Developing Palm OS Applications, Part II 163

Communications Functions
Serial Link Manager Functions
SlkSocketRefNum

Purpose Get the reference number of the communications library associated
with a particular socket.

Prototype Err SlkSocketRefNum (UInt socket, UIntPtr refNumP)

Parameters ->socket The socket ID.

<->refNumP Pointer to location for returning the
communications library reference number.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

SlkSocketSetTimeout

Purpose Set the interbyte packet receive time out for a particular socket.

Prototype Err SlkSocketSetTimeout (UInt socket, Long timeout)

Parameters -> socket Socket ID.

-> timeout Interbyte packet receive time out in system ticks.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

Functions for Use By System Software Only

SlkSysPktDefaultResponse

Prototype Err SlkSysPktDefaultResponse(
SlkPktHeaderPtr headerP,
void* bodyP)

WARNING: This function for use by system software only.
164 Developing Palm OS Applications, Part II

Communications Functions
PAD Server Functions
SlkProcessRPC

Prototype Err SlkProcessRPC(SlkPktHeaderPtr headerP,
void* bodyP)

WARNING: This function for use by system software only.

PAD Server Functions

PsrClose

Purpose Close the PAD server.

Prototype Err PsrClose(void)

Parameters None.

Result 0 No error.

Comments This routine frees resources allocated by the PAD server. It should
be called when the PAD server client is finished using PAD server
and only if the call to PsrInit was successful.

The routine must be called by the client when finished with the ses-
sion if the call to PsrInit was successful.
Developing Palm OS Applications, Part II 165

Communications Functions
PAD Server Functions
PsrGetCommand

Purpose Receive a command.

Prototype Err PsrGetCommand(
DmOpenRef refDBP, VoidPtr* cmdPP,
VoidHand* cmdBufHP, WordPtr rcvdCmdLenP,
BytePtr tidP, BytePtr remoteSocketP)

Parameters -> refDBP Database reference for allocating a command
buffer, or 0 (zero) for none.

<-> cmdPP Pointer to location for storing a pointer
to the internal command buffer.

<-> cmdBufHP Pointer to location for storing a handle of the
command buffer allocated from a data storage
heap.

<-> rcvdCmdLenP Pointer to location for storing the size (in
number of bytes) of the received command.

<-> tidP Pointer to location for storing the
transaction ID of the command.

<-> remoteSocketP Pointer to location for storing the
remote socket ID (the source socket).

Result 0 No error.

psrErrUserCan Cancelled by user (Cancel callback
returned non-zero).

psrErrParam Invalid parameter.

psrErrBlockFormat Invalid command data format detected
(severe protocol error).

psrErrTimeOut Timed out waiting for command.

Comments PsrGetCommand blocks until a command is received, a time-out
error occurs, or the Cancel callback (see PsrInit) returns non-zero.
On success, the command is in the buffer, referenced either by *cm-
dPP or by *cmdBufHP. In the first case (cmdPP), the command will be
in a Pad Server internal buffer in the dynamic heap. This buffer
166 Developing Palm OS Applications, Part II

Communications Functions
PAD Server Functions
must be treated as read-only. In the second case (cmdBufHP), the in-
ternal buffer was not big enough to contain the entire command
(such as when writing a large record), and a data heap chunk was
allocated by PAD server via DmNewHandle (provided that a valid
refDBP was specified). The caller inherits ownership of this chunk
and is responsible for freeing it if it is not needed (it can be resized,
attached to a database, deleted, etc.).

PsrInit

Purpose Initialize the PAD server.

Prototype Err PsrInit (Byte serverSocket,
 PsrUserCanProcPtr canProcP,

DWord userRef,
Int cmdWaitSec)

Parameters -> serverSocket Socket ID of an open Serial Link socket.

-> canProcP Pointer to the Cancel callback procedure or
0 (zero) if none.

-> userRef Any DWord(32-bit) parameter to be passed to
the Cancel callback procedure.

-> cmdWaitSec Number of seconds to wait for command;
 0 = default; -1 = forever.

Result 0 No error.

psrErrInUse PAD server is in use.

psrErrMemory Insufficient memory to initialize PAD server.

Comments This routine initializes the PAD server, allocating any necessary re-
sources. Return code of 0 (zero) indicates success; any other return
code indicates failure. If the PAD server was successfully opened by
the client, the client needs to call PsrClose when it has finished
using the PAD server. If specified, the cancel callback procedure is
called periodically. If the cancel callback procedure returns non-
zero, the current PAD server request aborts and returns immedi-
ately with an error code of psrErrUserCan.
Developing Palm OS Applications, Part II 167

Communications Functions
PAD Server Functions
PsrSendReply

Purpose Send a response to the workstation.

Prototype Err PsrSendReply (Byte remoteSocket,
Byte refTID,
PmSegmentPtr segP,
Int segCount)

Parameters -> remoteSocket Remote socket ID.

-> refTID Transaction ID of the response (should be
same as that returned by the matching
PsrGetCommand call).

-> segP Pointer to array of response data segments.

-> segCount Number of reply data segments in the array.

Result 0 No error.

psrErrParam Invalid ID parameter(s).

psrErrSizeErr Sum of the response data segments
exceeded PADP block size limit.

psrErrTooManyRetries Maximum retry count was exceeded
but acknowledgment wasn’t received.
(connection is presumed lost).

psrErrTimeOut Transmission handshake time out
 (connection is presumed lost).

psrErrUserCan Cancelled by user (cancel callback
returned non-zero).

Comments PsrSendReply blocks until the entire response data block is suc-
cessfully delivered to the workstation, lost connection is detected, or
the cancel callback (see PsrInit) returns non-zero. For conve-
nience, the response data block is specified as a list of data segments
via an array of PmSegmentType structures. The PmSegmentType
structure allows selective specification of word alignment for each
data segment. Any bytes inserted as the result of word alignment
are set to 0 (zero) in the resulting response block.
168 Developing Palm OS Applications, Part II

Communications Functions
Miscellaneous Communications Functions
Miscellaneous Communications Functions

Crc16CalcBlock

Purpose Calculate the 16-bit CRC of a data block using the table lookup
method.

Prototype Word Crc16CalcBlock (VoidPtr bufP,
UInt count,
Word crc)

Parameters bufP Pointer to the data buffer.

count Number of bytes in the buffer.

crc Seed crc value.

Result A 16-bit CRC for the data buffer.
Developing Palm OS Applications, Part II 169

	Table of Contents
	Palm OS Memory Management
	Introduction to Memory Use on Palm OS
	RAM and ROM Use
	PC Connectivity

	Memory Architecture
	Data Storage
	Accessing Data
	Memory Structure Overview
	How Applications Access Data

	Locating Storage Data With Local IDs

	The Memory Manager
	Memory Hierarchy: RAM Store and ROM Store
	Heap Overview
	Memory Manager Structures
	Heap Structures
	Chunk Structures
	Local ID Structures

	Using the Memory Manager
	Memory Manager Function Summary

	The Data Manager
	Records and Databases
	Accessing Data with Local IDs
	Using Presorted Lists

	Structure of a Database Header
	Database Header Fields
	Structure of a Record Entry in a Database Header

	Using the Data Manager
	Data Manager Function Summary

	The Resource Manager
	Structure of a Resource Database Header
	Using the Resource Manager
	Resource Manager Functions

	Palm OS Communications
	Byte Ordering
	Communications Architecture Hierarchy
	The Serial Manager
	Using the Serial Manager
	Serial Manager Function Summary

	The Serial Link Protocol
	SLP Packet Structures
	SLP Packet Format
	Packet Type Assignment
	Socket ID Assignment
	Transaction ID Assignment

	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager
	Serial Link Manager Function Summary

	The Packet Assembly/Disassembly Protocol
	PADP Packet Structures
	PADP Header
	PADP padData Packet
	PADP padAck Packet
	PADP padTickle Packet

	PADP Algorithms
	Sending a Client Data Block
	Receiving a Client Data Block

	The PAD Server
	Using the PAD Server
	PAD Server Function Summary

	Memory Manager Functions
	MemCardInfo
	MemChunkFree
	MemDebugMode
	MemHandleDataStorage
	MemHandleCardNo
	MemHandleFree
	MemHandleHeapID
	MemHandleLock
	MemHandleNew
	MemHandleResize
	MemHandleSize
	MemHandleToLocalID
	MemHandleUnlock
	MemHeapCheck
	MemHeapCompact
	MemHeapDynamic
	MemHeapFlags
	MemHeapFreeBytes
	MemHeapID
	MemHeapScramble
	MemHeapSize
	MemLocalIDKind
	MemLocalIDToGlobal
	MemLocalIDToLockedPtr
	MemLocalIDToPtr
	MemMove
	MemNumCards
	MemNumHeaps
	MemNumRAMHeaps
	MemPtrCardNo
	MemPtrDataStorage
	MemPtrFree
	MemPtrHeapID
	MemPtrToLocalID
	MemPtrNew
	MemPtrRecoverHandle
	MemPtrResize
	MemSet
	MemSetDebugMode
	MemPtrSize
	MemPtrUnlock
	MemStoreInfo
	Functions for System Use Only
	MemCardFormat
	MemChunkNew
	MemHandleFlags
	MemHandleLockCount
	MemHandleOwner
	MemHandleResetLock
	MemHandleSetOwner
	MemHeapFreeByOwnerID
	MemHeapInit
	MemInit
	MemInitHeapTable
	MemKernelInit
	MemPtrFlags
	MemPtrOwner
	MemPtrResetLock
	MemPtrSetOwner
	MemSemaphoreRelease
	MemSemaphoreReserve
	MemStoreSetInfo

	Data and Resource Manager Functions
	DmArchiveRecord
	DmAttachRecord
	DmAttachResource
	DmCloseDatabase
	DmCreateDatabase
	DmCreateDatabaseFromImage
	DmDatabaseInfo
	DmDatabaseSize
	DmDeleteDatabase
	DmDeleteRecord
	DmDetachRecord
	DmDetachResource
	DmFindDatabase
	DmFindRecordByID
	DmFindResource
	DmFindResourceType
	DmFindSortPosition
	DmGetAppInfoID
	DmGetDatabase
	DmGetLastErr
	DmGetNextDatabaseByTypeCreator
	DmGetRecord
	DmGetResource
	DmGetResourceIndex
	DmGet1Resource
	DmInsertionSort
	DmMoveCategory
	DmMoveRecord
	DmNewHandle
	DmNextOpenDatabase
	DmNextOpenResDatabase
	DmNewRecord
	DmNewResource
	DmNumDatabases
	DmNumRecords
	DmNumRecordsInCategory
	DmNumResources
	DmOpenDatabase
	DmOpenDatabaseByTypeCreator
	DmOpenDatabaseInfo
	DmPositionInCategory
	DmQueryNextInCategory
	DmQueryRecord
	DmQuickSort
	DmRecordInfo
	DmResourceInfo
	DmReleaseRecord
	DmReleaseResource
	DmRemoveRecord
	DmRemoveResource
	DmRemoveSecretRecords
	DmResetRecordStates
	DmResizeRecord
	DmResizeResource
	DmSearchRecord
	DmSearchResource
	DmSeekRecordInCategory
	DmSet
	DmSetDatabaseInfo
	DmSetRecordInfo
	DmSetResourceInfo
	DmStrCopy
	DmWrite
	DmWriteCheck
	System Use Only
	DmMoveOpenDBContext

	Communications Functions
	Serial Manager
	SerClearErr
	SerClose
	SerGetSettings
	SerGetStatus
	SerOpen
	SerReceive
	SerReceiveCheck
	SerReceiveFlush
	SerReceiveWait
	SerSend
	SerSendWait
	SerSetReceiveBuffer
	SerSetSettings
	Functions Used Only by System Software
	SerSleep
	SerWake
	SerReceiveISP

	Serial Link Manager Functions
	SlkClose
	SlkCloseSocket
	SlkFlushSocket
	SlkOpen
	SlkOpenSocket
	SlkReceivePacket
	SlkSendPacket
	SlkSetSocketListener
	SlkSocketRefNum
	SlkSocketSetTimeout
	Functions for Use By System Software Only
	SlkSysPktDefaultResponse
	SlkProcessRPC

	PAD Server Functions
	PsrClose
	PsrGetCommand
	PsrInit
	PsrSendReply

	Miscellaneous Communications Functions
	Crc16CalcBlock

