PALM (9 OS

Welcome to

Developing Palm OS
Applications

Part II: Memory and
Communications Management

Navigate this online document as follows:

To see bookmarks Type Command-7

To see information on Type Command-?
Adobe Acrobat Reader

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar







PALM () OS

U.S. Robotics®

Developing Palm OS™
Applications

Part |l

Some information in this manual may be out of date.
Read all Release Notes files for the latest information.



©1996 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmit-
ted in any form by any means, electronic or mechanical, including photocopying, record-

ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and Graffiti are registered trademarks, and Palm
Computing, HotSync, Palm OS, and the Palm OS logo are trademarks of U.S. Robotics
and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK ARE
SUBJECT TO THE LICENSE AGREEMENT.

Canada U.S.A. and International
Metrowerks Inc. Metrowerks Corporation
1500 du College, suite 300 2201 Donley Drive

St. Laurent, QC Suite 310

H4L 5G6 Canada Austin, TX 78758

voice: (512) 873-4700
voice: (514) 747-5999 fax: (512) 873-4900
fax: (514) 747-2822

U.S. Robotics, Palm Computing Division
Mail Order

1-800-881-7256

Metrowerks Mail Order

voice: (800) 377-5416

fax: (512) 873-4901

U.S. Robotics, Palm Computing Division
World Wide Web site: http://ww. usr. coni pal m

Metrowerks World Wide Web site (Internet): htt p: // www. met r oner ks. com
Registration information (Internet): r egi st er @ret r oner ks. com
Technical support (Internet): support @ret r oner ks. com
Sales, marketing, & licensing (Internet): sal es@ret r oner ks. com
AppleLink: METROAERKS
America OnLine: got o: METROAERKS
Compuserve: got o: METRONERKS



Table of Contents

Tableof Contents . . . . . . . . . . . . . . . . ...

1 Palm OS Memory Management . . . . .. ... ... ...

Introduction to Memory Use on Palm OS

RAMand ROMUse . . . . . . . . . . . . . ..
PC Connectivity . . . . . . . . . . . ..o

Memory Architecture .

Data Storage. . . . . . . . . . . . ...
AccessingData. . . . . . . . . . . . ...

Memory Structure Overview
How Applications Access Data
Locating Storage Data With Local IDs .
The Memory Manager.
Memory Hierarchy: RAM Store and ROM Store

Heap Overview . . . . . . . . . . . . . . . ..

Memory Manager Structures.

Heap Structures . . . . . . . . . . . . . . ..

Chunk Structures

Local ID Structures.
Using the Memory Manager .
Memory Manager Function Summary.

The Data Manager . . . . . . . . . . . . . . . ..
Records and Databases . . . . . . . . . . . . ..

Accessing Data with Local IDs.
Using Presorted Lists.

Structure of a Database Header. . . . . . . . . . .

Database Header Fields.

Structure of a Record Entry in a Database I—Ieader
Using the Data Manager . . . . . . . . . . . ..

Data Manager Function Summary .

The Resource Manager Coe
Structure of a Resource Database Header .
Using the Resource Manager.

Resource Manager Functions

Developing Palm OS Applications, Part Il v



Table of Contents

2 Palm OS Communications . . . . . .. ... .. ......... 39
Byte Ordering . . . . . . . . . . . . . ... ... 39
Communications Architecture Hierarchy . . . . . . . . . . 40
The Serial Manager . . . . . . . . . . . . . . . ... .. 42

Using the Serial Manager . . . . . . . . . . . . . ... 42
Serial Manager Function Summary . . . . . . . . . . . . 45
The Serial Link Protocol . . . . . . . . . . . . .. ... .45
SLP Packet Structures. . . . . . . . . . . .. ... .. 45
SLP Packet Format. . . . . . . . . . . . . . . . .. 45
Packet Type Assignment . . . . . . . . . . . . . .. 47
Socket ID Assignment . . . . . . . . . . .. ... .47
Transaction ID Assignment . . . . . . . . . . . . . . 47
Transmitting an SLP Packet . . . . . . . . . . . . . . . 48
Receiving an SLP Packet . . . . . . . . . . . . . . . .48
The Serial Link Manager. . . . . . . . . . . . . . . . .. 49
Using the Serial Link Manager . . . . . . . . . . . . . . 49
Serial Link Manager Function Summary. . . . . . . . . . 53
The Packet Assembly /Disassembly Protocol . . . . . . . . . 53
PADP Packet Structures. . . . . . . . . . . . . .. .. 54
PADPHeader . . . . . . . . . . . . . ... .. .. 55
PADP padData Packet . . . . . . . . . . . . . . .. 55
PADP padAck Packet. . . . . . . . . . . . . .. .. 57
PADP padTickle Packet. . . . . . . . . . . . . . . . 58
PADP Algorithms . . . . . . . . . . . ..o 58
Sending a Client Data Block . . . . . . . . . . . . .. 59
Receiving a Client DataBlock . . . . . . . . . . . . . 62

The PAD Server . . . . . . . . . . . . . . ... 65
Using the PAD Server. . . . . . . . . . .. ... ... 66
PAD Server Function Summary . . . . . . . . . . . . . 68

3 Memory Manager Functions . . . . ... .. ... .. ... ... 69
MemCardInfo . . . . . . . . . .. ..o 69
MemChunkFree . . . . . . . . . . . . ..o 70
MemDebugMode . . . . . . . .. o000 oL L 70
MemHandleDataStorage . . . . . . . . . . . . . . .. 70
MemHandleCardNo . . . . . . . . . . . . ... L. 71

vi Developing Palm OS Applications, Part I



Table of Contents

MemHandleFree .
MemHandleHeapID .
MemHandleLock.

MemHandleNew. . . . . . .

MemHandleResize .
MemHandleSize .

MemHandleToLocallD . . . .
MemHandleUnlock. . . . . .

MemHeapCheck .

MemHeapCompact. . . . . .

MemHeapDynamic.

MemHeapFlags . . . . . . .

MemHeapFreeBytes

MemHeaplD . . . . . . . .
MemHeapScramble. . . . . .
MemHeapSize . . . . . . . .

MemLocallDKind
MemLocallDToGlobal

MemLocallDToLockedPtr .

MemLocallDToPtr .

MemMove . . . . . . . ..
MemNumCards . . . . . . .

MemNumHeaps .
MemNumRAMHeaps

MemPtrCardNo . . . . . . .

MemPtrDataStorage .

MemPtrFree. . . . . . . . .

MemPtrHeapID .
MemPtrToLocallD .

MemPtrNew. . . . . . . . .
MemPtrRecoverHandle .

MemPtrResize .

MemSet. . . . . . . . . ..

MemSetDebugMode .

MemPtrSize . . . . . . . . .
MemPtrUnlock . . . . . . .

Developing Palm OS Applications, Part Il vii



Table of Contents

MemStorelnfo . . . . . . .

Functions for System Use Only.

MemCardFormat oo
MemChunkNew. . . . .
MemHandleFlags . . . .
MemHandleLockCount.
MemHandleOwner
MemHandleResetLock .
MemHandleSetOwner .

MemHeapFreeByOwnerID .

MemHeaplnit . . . . . .
MemlInit . . . . . . . .
MemlnitHeapTable. . . .
MemKernellnit
MemPtrFlags . . . . . .
MemPtrOwner . . . . .
MemPtrResetLock .
MemPtrSetOwner . . . .
MemSemaphoreRelease. .
MemSemaphoreReserve
MemStoreSetInfo . . . .

4 Data and Resource Manager Functions
DmArchiveRecord . . . . .
DmAttachRecord. . . . . .
DmAttachResource. . . . .
DmCloseDatabase . . . . .
DmCreateDatabase. . . . .
DmCreateDatabaseFromImage
DmDatabaselnfo. . . . . .
DmbDatabaseSize . . . . . .
DmbDeleteDatabase . . . . .
DmbDeleteRecord. . . . . .
DmDetachRecord . . . . .
DmDetachResource. . . . .
DmFindDatabase. . . . . .

viii  Developing Palm OS Applications, Part Il



Table of Contents

DmFindRecordByID . . . . . . . .
DmFindResource. . . . . . . . . .

DmFindResourceType
DmPFindSortPosition .
DmGetApplnfolD .

DmGetDatabase . . . . . . . . . .
DmGetLastErr. . . . . . . . . ..
DmGetNextDatabaseByTypeCreator .

DmGetRecord .

DmGetResource . . . . . . . . . .

DmGetResourcelndex.
DmGetlResource.

DmlnsertionSort . . . . . . . . . .

DmMoveCategory .
DmMoveRecord .

DmNewHandle . . . . . . . . . .

DmNextOpenDatabase .
DmNextOpenResDatabase

DmNewRecord . . . . . . . . . .

DmNewResource

DmNumDatabases . . . . . . . . .
DmNumRecords. . . . . . . . . .

DmNumRecordsInCategory .
DmNumResources . -
DmOpenDatabase . . . . . . .
DmOpenDatabaseByTypeCreator

DmOpenDatabaselnfo . . . . . . .

DmPositionInCategory .
DmQueryNextInCategory .

DmQueryRecord. . . . . . . . ..

DmQuickSort .
DmRecordInfo .

DmResourcelnfo. . . . . . . . . .

DmReleaseRecord .
DmReleaseResource

DmRemoveRecord . . . . . . . . .

Developing Palm OS Applications, Part Il ix



Table of Contents

5 Communications Functions

Serial Manager
SerClearErr . . . . . . . . . . . . . . . ..
SerClose . . . . . . . . . . . . . .. ...
SerGetSettings . . . . . . . . . . .. ...
SerGetStatus. . . . . . . . . . .. ... L.
SerOpen . . . . . . . . . . . . ...
SerReceive . . . . . . . . . . . . . . ...

DmRemoveResource .
DmRemoveSecretRecords .
DmResetRecordStates.

DmResizeRecord. . . . . . . . . . . . . ..

DmResizeResource .
DmSearchRecord .
DmSearchResource .
DmSeekRecordInCategory

DmSet . . . . . . . . ... L.
DmSetDatabaselnfo . . . . . . . . . . . . .
DmSetRecordInfo . . . . . . . . . . . . ..

DmSetResourcelnfo

DmStrCopy . . . . . . . . ..o
DmWrite . . . . . . . . ..o 0oL
DmWriteCheck . . . . . . . . . . ... ..
System UseOnly. . . . . . . . . . . . . ..

DmMoveOpenDBContext.

SerReceiveCheck .
SerReceiveFlush .

SerReceiveWait . . . . . . . . . . . . . ..
SerSend. . . . . . . . . . .. ... L L.
SerSendWait. . . . . . . . . . . . . . . ..

SerSetReceiveBuffer

SerSetSettings . . . . . . . . . . . ... ..
Functions Used Only by System Software . . . .
SerSleep . . . . . . . . . ...
SerWake . . . . . . . . ... ... ...

132
. 133
... . .133
..... 134
. 134
. 135
. 136
I K V4
..... 138
..... 138
..... 140
oL 141
..... 142
..... 142
..... 143
..... 143
. 143

X Developing Palm OS Applications, Part Il



Table of Contents

SerReceivelSP . . . . . . . . . . . . . . ... L. 156
Serial Link Manager Functions . . . . . . . . . . . . . .. 157
SlkClose . . . . . . . . . . . . ... 157
SlkCloseSocket. . . . . . . . . . . . . . . . .. ... 158
SIkFlushSocket. . . . . . . . . . . . . . . . . .. .. 158
SIkOpen . . . . . . . . . .00 159
SlkOpenSocket. . . . . . . . . . . . ..o 160
SlkReceivePacket. . . . . . . . . . . . . . . . . . .. 161
SlkSendPacket . . . . . . . . . . . . . . ... .. 162
SlkSetSocketListener . . . . . . . . . . . . . . . . .. 163
SlkSocketRefNum . . . . . . . . . . . . . . . .. .. 164
SlkSocketSetTimeout . . . . . . . . . . . . . . . . .. 164
Functions for Use By System SoftwareOnly . . . . . . . . 164
SIkSysPktDefaultResponse . . . . . . . . . . . . .. 164
SlkProcessRPC . . . . . . . . . . . . . . . ... 165

PAD Server Functions. . . . . . . . . . . . . . . . . .. 165
PsrClose . . . . . . . . . . . . . . ... 165
PsrGetCommand. . . . . . . . . . . . . . . . . ... 166
Psrlnit . . . . . . . . . . . . 0.0 167
PstSendReply . . . . . . . . . . . . ..o 168
Miscellaneous Communications Functions. . . . . . . . . . 169
Crcl6CalcBlock . . . . . . . . . . .. ... 169

Developing Palm OS Applications, Part Il Xi



Table of Contents

xii Developing Palm OS Applications, Part I



Palm OS Memory
Management

This chapter helps you understand memory use on Palm OS. The
chapter starts with an introduction to the memory layout and to the
memory architecture:

¢ Introduction to Memory Use on Palm OS provides informa-
tion about Palm OS hardware relevant to memory manage-
ment. For more information on Palm OS hardware, see “Basic
Hardware” in Chapter 1 of “Developing Palm OS Applica-
tions, Part 1.”

e Memory Architecture discusses in detail how memory is
structured on Palm OS. It includes a discussion of the struc-
ture of heaps, chunks, and records, the basic building blocks
of Palm OS memory.

The second part of the chapter explains the different parts of the sys-
tem—the managers—that you can use for memory management.
Each discussion includes a brief overview of the relevant functions,
with links to the related function descriptions.

e The Memory Manager maintains location and size of each
memory chunk in nonvolatile storage, volatile storage, and
ROM. It provides functions for allocating chunks, disposing
of chunks, resizing chunks, locking and unlocking chunks,
and compacting the heap when it becomes fragmented.

e The Data Manager manages user data, which is stored in da-
tabases for convenient access.

e The Resource Manager can be used by applications to conve-
niently retrieve and save chunks of data similar to the data
manager, but with the added capability of tagging each
chunk with a unique resource type and ID. These tagged data
chunks, called resources, are stored in resource databases.
Resources are typically used to store the application’s user in-
terface elements (e.g. images, fonts, or dialog layouts.)

Developing Palm OS Applications, Part Il 13



Palm OS Memory Management
Introduction to Memory Use on Palm OS

Introduction to Memory Use on Palm OS

The Palm OS system software supports applications on low-cost,
low-power, palm-top devices. Given these constraints, the OS is effi-
cient in its use of both memory and processing resources. This sec-
tion looks at two aspects of the device that contribute to this: RAM
and ROM Use and PC Connectivity.

RAM and ROM Use

The first implementation of Palm OS provides nearly instantaneous
response to user input while running on a 16 MHz Motorola 68000
type processor with a minimum of 128K of nonvolatile storage
memory and 512K of ROM. The target battery life is 40 hours or
more of “on” time from two AAA alkaline batteries.

The Palm OS device has its main suite of applications prebuilt into
ROM. The preferred method for updating or enhancing the software
is by replacing the ROM. Alternatively, additional or replacement
applications and system extensions can be loaded into RAM, but
given the limited amount of RAM this is not always practical. The
ROM and RAM on each Palm OS device is on a memory module,
permitting the user to completely replace the entire system software
and applications suite by installing a single replacement module.
There is no RAM or ROM storage on the motherboard of the device.

Because the Palm OS device permits easy wholesale replacement of
the memory module, the design and operation of the system soft-
ware does not have to be cast in stone. Each new ROM module for a
Palm OS device can have different system software and applications
on it. It is still advantageous however, to keep applications compati-
ble at the source code level to minimize the engineering effort re-
quired to produce each new version of the ROM module.

PC Connectivity

PC connectivity is an integral component of the Palm OS device.
The device comes with a cradle that connects to a desktop PC and
with software for the PC that provides “one-button” backup and
synchronization of all data on the device with the user’s PC.

14 Developing Palm OS Applications, Part I



Palm OS Memory Management
Memory Architecture

Because all user data can be backed up on the PC, replacement of
the nonvolatile storage area of the Palm OS device becomes a simple
matter of installing the new module in place of the old one, and re-
synchronizing with the PC. The format of the user’s data in the stor-
age RAM can change with a new version of the ROM; the
connectivity software on the PC is responsible for translating the
data into the correct format when downloading it onto a device with
a new ROM.

Memory Architecture

The Palm OS system software is designed around a 32-bit architec-
ture. All addresses are 32-bit and the basic data types are 8, 16, and
32 bits long. The Motorola 68328 processor’s registers are all 32 bits
wide, which allows a 32-bit execution model. The external data bus
is only 16 bits wide; this reduces cost without impacting the soft-
ware model. The processor’s bus controller automatically breaks
down 32-bit reads and writes into multiple 16-bit reads and writes
externally.

The 32-bit addresses available to software provide a total of 4 GB of
address space for storing code and data. This provides a large
growth potential for future revisions of both the hardware and soft-
ware without affecting the execution model (the first shipping ver-
sion has less than 1 MB of memory, or .025% of this address space).

Although a large memory space is available, Palm OS was designed
to work efficiently with small amounts of RAM. It uses a total of
only 32K of RAM for all working space: stacks, globals, temporary
memory allocations, etc. This leaves the remainder of RAM avail-
able for storing user data like appointments, to do lists, memos, ad-
dress lists, etc.

The Palm OS system software divides the total available RAM into

two virtual pieces: dynamic RAM and storage RAM. The dynamic

area of RAM is the 32K used for working space and is analogous to
the total amount of memory installed into a typical desktop system.
The remainder of the available RAM is designated as storage RAM
and is analogous to disk storage on a typical desktop system.

Since power is always applied to the memory system, both areas of
RAM preserve their contents when the device is turned “off” (i.e., is

Developing Palm OS Applications, Part Il 15



Palm OS Memor
Memory Architecture

y Management

in low-power sleep mode. See “Palm OS Power Modes” in Chapter
6, “Using Palm OS Managers,” of “Developing Palm OS Applica-
tions, Part 1.” Even when the device is explicitly reset, all of memory
is preserved, but the system software reinitializes the dynamic area
only as part of the boot-up sequence.

Data Storage

Because the Palm OS device has a limited amount of dynamic mem-
ory available and uses nonvolatile RAM instead of disk storage,
using a traditional file system is not the optimal method for storing
and retrieving user data such as meetings or address book entries.
Palm OS differs from traditional file systems as follows:

¢ Traditional file systems work by first reading all or a portion
of a file into a memory buffer from disk, using or updating
the information in the memory buffer, and then writing the
updated memory buffer back to disk. Because of the high la-
tency involved in reading or writing to disk, it is not practical
to use small memory buffers and typically many kilobytes of
data are read from or written to disk at a time.

¢ On the Palm OS device, it makes more sense to access and
update data directly in place, because all nonvolatile infor-
mation in the Palm OS device is stored in memory. This elim-
inates the extra overhead involved in a file system of
transferring the data to and from another memory buffer and
also reduces the dynamic memory requirements.
As a further enhancement, data in the Palm OS device is bro-
ken down into multiple finite size records, which can be left
freely scattered throughout the memory space. Allowing
records to be scattered throughout memory space means that
the process of adding, deleting, or resizing a record does not
require moving any other records around in memory.

Accessing Data

User data on the Palm OS device can be managed at the lowest level
through the memory manager because:

¢ most chunks of data, like address book records, datebook
records, etc., are relatively small (less than 256 bytes)

* all data is always resident in memory

16 Developing Palm OS Applications, Part I



Palm OS Memory Management
Memory Architecture

This section first briefly discusses how data is organized, then ex-
plains the basic principles behind accessing data. More details, in-
cluding a list of the API calls, are given in the sections on the
different managers (The Memory Manager, The Data Manager, and
The Resource Manager).

Memory Structure Overview

The Palm OS memory manager is designed to work best with small
chunks of data; in fact, the first implementation enforces the con-
straint that all chunks be less than 64K each (even though the API
does not have this constraint). To support this design, the memory
in the Palm OS device is subdivided into multiple heaps of less than
64K each (see Heap Overview), which can each contain one or more
chunks (see Chunk Structures). Because all heaps are less than 64K
each, memory overhead for managing each heap is kept to a mini-
mum since word (16-bit) offsets can be used to track each chunk in
the heap. Finding and compacting free space is also faster with
smaller heaps.

In the Palm OS environment all data are stored in memory manager
chunks and each chunk resides in a heap. These data include dy-
namic data (such as global variables), nonvolatile storage data (anal-
ogous to files in disk-based systems), and any data or resources in
ROM. Some heaps are ROM-based and contain only nonmovable
chunks; some are RAM-based and may contain movable or non-
movable chunks. RAM-based heaps may either be dynamic heaps
(for storing run-time variables) or storage heaps (for storage data).

Every memory chunk used to hold storage data (as opposed to
memory chunks used to store dynamic data) is also referenced
through a database. A database is analogous to a file in a traditional
desktop system. In the Palm OS environment, a database is simply a
list of all memory chunks that logically belong to a particular data-
base. Every storage data chunk belongs to one and only one data-
base. For every database, there is a database header chunk which
contains a list of data chunks belonging to that database. See The
Data Manager for more information.

How Applications Access Data

Applications reference most data chunks in the Palm OS device
through handles to minimize fragmentation of heaps. A handle is a

Developing Palm OS Applications, Part Il 17



Palm OS Memor
Memory Architecture

y Management

reference to a master chunk pointer. Using handles imposes a slight
performance penalty over direct pointer access, but permits the
memory manager to move chunks around in the heap without in-
validating any chunk references that an application might have
stored away. As long as an application uses handles to reference
data, only the master pointer to a chunk needs to be updated by the
memory manager when it moves a chunk during defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the memory manager to mark that data
chunk as immobile. When an application no longer needs the data
chunk, it should immediately “unlock” the handle to keep heap
fragmentation to a minimum.

Locating Storage Data With Local IDs

Once a storage data record is located, an application can access it
through its handle. A handle, however, is good only until the system
is reset. Memory cards on the Palm OS device can be removed or in-
serted when power is off. When the system resets, it reinitializes all
dynamic memory areas and relaunches applications. A handle to a
storage chunk may not be the same after a reset if the user moved a
memory card to a slot with a different base address. To work in this
environment, all storage data on a memory card must be located
through memory card-relative references, called Local IDs.

Note that the first version of the hardware has only one slot.

A Local ID is a card-relative reference to a data chunk and remains
valid no matter what the base address of the card becomes. Once the
base address of the card is determined at run time, a Local ID can be
quickly converted to a real pointer or handle. A Local ID of a non-
movable chunk is simply the offset of the chunk from the base ad-
dress of the card. A Local ID of a movable chunk is the offset of the
master pointer to the chunk from the base address of the card, but
with the low-order bit set. Since chunks are always aligned on word
boundaries, only Local IDs of movable chunks have the low-order
bit set.

When an application needs the handle for a particular data record, it
must use the data manager. The application tells the data manager
which record to get (by index) out of which database. The data man-

18 Developing Palm OS Applications, Part I



Palm OS Memory Management
The Memory Manager

ager fetches the Local ID of the record out of the database header,
and uses it to compute the handle to the record. The handle to the
record is never actually stored in the database itself.

The Memory Manager

The Palm OS memory manager is responsible for maintaining the
location and size of every memory chunk in nonvolatile storage,
volatile storage, and ROM. It provides an API for allocating new
chunks, disposing chunks, resizing chunks, locking and unlocking
chunks, and compacting heaps when they become fragmented. Be-
cause of the limited RAM and processor resources of the Palm OS
device, the memory manager is efficient in its use of processing
power and memory.

This section gives some background information on the organiza-
tion of memory in Palm OS and provides an overview of the AP]I,
discussing these topics:

* Memory Hierarchy: RAM Store and ROM Store

* Heap Overview

* Memory Manager Structures

e Using the Memory Manager
* Memory Manager Function Summary

Memory Hierarchy: RAM Store and ROM Store

The processor address space on the Palm OS device spans 4 GB
since the 68328 has 32 internal address lines. Each memory card in
the Palm OS device has 256 MB of address space reserved for it.
Memory card 0 starts at address $1000000, memory card 1 starts at
address $2000000, and so on.

Each memory card can contain ROM, RAM, or both. The ROM and
RAM on each card is further divided into one or more heaps of 64K
(in the current implementation) or less. All the RAM-based heaps on
a memory card are treated as the RAM store and all the ROM-based
heaps are treated as the ROM store. The heaps for a store do not
have to be adjacent to each other in address space; they may be scat-
tered throughout the memory space on the card.

Developing Palm OS Applications, Part Il 19



Palm OS Memory Management
The Memory Manager

Heap Overview

Aheap is a 64K (or less) contiguous area of memory used to contain
and manage one or more smaller chunks of memory. When applica-
tions work with memory (allocate, resize, lock, etc.) they usually
work with chunks of memory. An application can specify in which
heap it wishes to allocate a new chunk of memory. The memory
manager manages each heap independently and rearranges chunks
as necessary to defragment the heap and merge free space. Once a
chunk is allocated in a specific heap, the memory manager never
moves it out of that heap.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a 16-bit value that the memory manager uses to
uniquely identify any heap in the entire address space. The heap IDs
in card 0 start at 0 and increment sequentially first through the RAM
heaps and then through the ROM heaps. The heap IDs in card 1
start at some value greater than 0 and also increment sequentially,
first through all the RAM heaps and then through the ROM heaps.

The first heap(s) in card 0 is (are) dynamic heap(s), used for tempo-
rary memory allocations only, that is, non-file-related data, stack
space, etc. Dynamic heaps are reinitialized every time the Palm OS
device is reset. Every time an application quits, the system software
frees any chunks in dynamic heaps that have been allocated by that
application. All other heaps are nonvolatile and retain their contents
through soft reset cycles. These nonvolatile heaps are used to store
database directories, headers, and records.

Memory Manager Structures

This section discusses the different structures the memory manager
uses:

* Heap Structures
o Chunk Structures
o Local ID Structures

20 Developing Palm OS Applications, Part I



Palm OS Memory Management
The Memory Manager

Heap Structures

WARNING: Expect the heap structure to change in the future. Use
the API to work with heaps.

A heap consists of the heap header, master pointer table, and the
heap chunks.

e Heap header. The heap header is at the beginning of the
heap. It holds the size of the heap and contains flags for the
heap that provide certain information to the memory man-
ager; for example, whether the heap is ROM-based.

* Master pointer table. Following the heap header is a master
pointer table. It is used to store 32-bit pointers to movable
chunks in the heap. When the memory manager moves a
chunk to compact the heap, the pointer for that chunk in the
master pointer table is updated to the chunk’s new location.
The handles an application uses to track movable chunks ref-
erence the address of the master pointer to the chunk, not the
chunk itself. In this way, handles remain valid even after a
chunk is moved. If the master pointer table becomes full, an-
other is allocated and its offset is stored in the
next Mst r Pt r Tabl e field of the previous master pointer ta-
ble. Any number of master pointer tables can be linked in this
way.

* Heap chunks. Following the master pointer table are the ac-
tual chunks in the heap. Movable chunks are generally allo-
cated at the beginning of the heap, and nonmovable chunks
at the end of the heap. Nonmovable chunks do not need an
entry in the master pointer table since they are never relo-
cated by the memory manager. Since each chunk header con-
tains the size of the chunk, the heap can be easily walked by
hopping from chunk to chunk. All free and nonmovable
chunks can be found in this manner by checking the flags in
each chunk header.

Because heaps can be ROM-based, there is no information in
the header that must be changed when using a heap. Also,
ROM-based heaps contain only nonmovable chunks and
have a master pointer table with 0 entries.

Developing Palm OS Applications, Part Il 21



Palm OS Memory Management
The Memory Manager

Chunk Structures

WARNING: Expect the chunk structure to change in the future.
Use the API to work with chunks.

A chunk consists of a chunk header, a| ock: owner byte and a
Fl ags: si ze adjustment byte, and the hOf f set word.

* Chunk header. At the start of the chunk is a 6-byte chunk
header. The chunk header contains the size of the chunk
which is larger than the size requested by the application and
includes the size of the header itself. Since an entire heap
must be 64K or less, the maximum data size for a chunk is
64K, minus the size of the heap header and master pointer ta-
ble, minus 6 bytes for the chunk header.

* Lock:owner byte. Following the size field is a byte which
holds the lock count in the high nibble and the owner ID in
the low nibble. The owner ID determines the owner of a
memory chunk and is set by the memory manager when allo-
cating a new chunk. The owner ID is useful information for
debugging and for garbage collection when an application
terminates abnormally. The lock count is incremented every
time a chunk is locked and decremented every time a chunk
is unlocked. A movable chunk can be locked a maximum of
14 times before being unlocked. Nonmovable chunks always
have 15 in the lock field.

* Flags:size adjustment byte. Following the | ock: owner byte
is a byte which contains flags in the high nibble and a size ad-
justment in the low nibble. The flags nibble has 1 bit currently
defined, which is set for free chunks. The size adjustment
nibble can be used to calculate the requested size of the
chunk, given the actual size. The requested size is computed
by taking the size as stored in the chunk header and subtract-
ing the size of the header and the size adjustment field. The
actual size of a chunk is always a multiple of two so that
chunks always start on a word boundary.

e hOffset word. The last word in the chunk header is the dis-
tance from the master pointer for the chunk to the chunk’s
header, divided by two. Note that this offset could be a nega-
tive value if the master pointer table is at a higher address

22 Developing Palm OS Applications, Part I



Palm OS Memory Management
The Memory Manager

than the chunk itself. For nonmovable chunks that do not
need an entry in the master pointer table, this field is 0.

Local ID Structures

WARNING: Expect the Local ID structure to change in the future.
Use the API to work with chunks.

Chunks that contain database records or other database information
are tracked by the data manager through Local IDs. A Local ID is
card relative and is always valid no matter what memory slot the
card resides in. A Local ID can be easily converted to a pointer or the
handle to a chunk once the base address of the card is known.

The upper 31 bits of a Local ID contain the offset of the chunk or
master pointer to the chunk from the beginning of the card. The
low-order bit is set for Local IDs of handles and clear for Local IDs
of pointers.

The memory manager call Meniocal | DTod obal takes a Local ID
and a card number (either 0 or 1) and converts the Local ID to a
pointer or handle. It looks at the card number and adds the appro-
priate card base address to convert the Local ID to a pointer or han-
dle for that card.

Using the Memory Manager

Usually, applications use the memory manager to allocate memory
only in the dynamic heap(s). The data manager provides an API for
allocating memory in the storage heaps used to hold user data. The
data manager calls the memory manager as appropriate to do its
low-level allocations.

To allocate a movable chunk, call MenHandl eNewand pass the de-
sired chunk size. Before you can read or write data to this chunk,
you must call MenHandl eLock to lock it and get a pointer to it.
Every time you lock a chunk, its lock count is incremented. You can
lock a chunk a maximum of 14 times before an error is returned.

MenmHandl eUnl ock unlocks a chunk.

To determine the size of a movable chunk, pass its handle to
MenHandl eSi ze. To resize it, call MenHandl eResi ze. You gener-

Developing Palm OS Applications, Part Il 23



Palm OS Memory Management
The Memory Manager

ally cannot increase the size of a chunk if it's locked unless there
happens to be free space in the heap immediately following the
chunk. If the chunk is unlocked, the memory manager is allowed to
move it to another area of the heap to increase its size. When you no
longer need the chunk, call MentHand| eFr ee, which releases the
chunk even if it is locked.

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MenPt r Recover Handl e. In fact, all of the
MenPt r XXX calls, including MenPt r Si ze, also work on pointers to
locked, movable chunks.

To allocate a nonmovable chunk, call MenPt r Newand pass the de-
sired size of the chunk. This call returns a pointer to the chunk
which can be used directly to read or write to it.

To determine the size of a nonmovable chunk, call MenPt r Si ze. To
resize it, call MenPt r Resi ze. You generally can’t increase the size of
a nonmovable chunk unless there is free space in the heap immedi-
ately following the chunk. When you no longer need the chunk, call
MenPt r Fr ee, which releases the chunk even if it’s locked.

Use the memory manager utility routines MeniVbve and MenBet to
conveniently move memory from one place to another or to fill
memory with a specific value.

When an application allocates memory in the dynamic heap(s), the
memory manager gives it an owner ID that associates that chunk
with the application. When the application quits, all chunks in the
dynamic heap that have its owner ID are disposed of automatically.
If the system needs to allocate a chunk that is not disposed of when
an application quits, it has to change the owner ID to 0 by calling the
system function MemHand| eSet Oaner.

Memory Manager Function Summary

e MenCardinfo
MenChunkFr ee
MenDebugMbde

MenHandl eDat aSt or age
MenHandl eCar dNo
MenHand! eFr ee

24 Developing Palm OS Applications, Part I



Palm OS Memory Management

The Memory Manager

MenHandl eHeapl D
MenHandl eLock
MenHandl eNew
MenHandl eResi ze
MenHandl eSi ze
MenHandl eTolLocal I D
MenHandl eUnl ock
MenHeapCheck
MenHeapConpact
MentHeapDynam ¢
MentHeapFl ags
MentHeapFr eeByt es
Menteapl D
MenHeapScr anbl e
MenHeapSi ze
Meniocal | DKi nd
Meniocal | DTod obal
Meniocal | DTolLockedPt r

Meniocal | DToPt r
MemVbve

MeniNunCar ds
MenNunHeaps
MenNunRAVHeaps
MenPt r Car dNo
MenPt r Dat aSt or age
MenPt r Fr ee

MenPt r Heapl D
MenPt r ToLocal I D
MenPt r New

MenPt r Recover Handl e
MenPt r Resi ze
Mentet

Mentet DebughMbde

Developing Palm OS Applications, Part Il 25



Palm OS Memory Management

The Data Manager

e MenPtrSize

MenPt r Unl ock
Mentt or el nf o
MenPt r Unl ock

The Data Manager

The Palm OS device has only a limited amount of dynamic memory
available and uses nonvolatile RAM instead of disk storage. Using a
traditional file system is therefore not the optimal method for stor-
ing and retrieving user data such as meetings, address book entries,
and so on. A traditional file system first reads all or a portion of a file
into a memory buffer from disk, using and/or updating the infor-
mation in the memory buffer, and then writes the updated memory
buffer back to disk.

Because all nonvolatile information in the Palm OS device is stored
in memory, it makes sense to access and update the data directly in
place. This eliminates the overhead of transferring the data to and
from another memory buffer involved in a file system. It also re-
duces the dynamic memory requirements.

As a further enhancement, data in the Palm OS device is broken
down into multiple, finite-size records which can be left freely scat-
tered throughout the memory space. Allowing records to be scat-
tered throughout memory space means that adding, deleting, or
resizing a record does not require moving any other records around
in memory.

This section explains how to use the database manager by discuss-
ing these topics:

e Records and Databases

e Structure of a Database Header

e Using the Data Manager

Records and Databases

Databases organize related records; every record belongs to one and
only one database. A database may be a collection of all address
book entries, or all datebook entries, and so on. An application on

26 Developing Palm OS Applications, Part I



Palm OS Memory Management
The Data Manager

Palm OS can create, delete, open, and close databases as necessary,
just as a traditional file system can create, delete, open, and close a
traditional file. There is no restriction on where the records for a par-
ticular database reside as long as they are all on the same memory
card. The records from one database can be interspersed with the
records from one or more other databases in memory.

This database method of storing data fits in nicely with the design of
the Palm OS memory manager. Each record in a database is in fact a
memory manager chunk. The data manager uses memory manager
calls to allocate, delete, and resize database records. All heaps ex-
cept for the dynamic heap(s) are nonvolatile, so database records
can be stored in any heap except for the dynamic heap(s) (see “Heap
Overview” on page 20). Because the records can be stored anywhere
on the memory card, databases can even be distributed over multi-
ple discontiguous areas of physical RAM.

Accessing Data with Local IDs

A database maintains a list of all records that belong to it by storing
the Local ID of each record in the database header. Because of the
use of Local IDs, it is possible to place the memory card into any
memory slot of a Palm OS device. An application finds a particular
record in a database by index. When an application requests a par-
ticular record, the data manager fetches the Local ID of the record
from the database header by index, converts the Local ID to a han-
dle using the card number that contains the database header, and re-
turns the handle to the record.

Using Presorted Lists

One side benefit of the Palm OS database method of storing records
by index is that it becomes fairly cheap to maintain one or more pre-
sorted versions of the database record list. A sorted list for a data-
base can simply be a list of record indices, presorted in the correct
manner. For example, the address book database can be presorted
by last name, company, or city, just by maintaining three separate
sort lists. Since each sort list entry is only a 16-bit record index, this
is a relatively small data array. Having precalculated sort lists avail-
able allows different sorted views of the address book to be dis-
played quickly.

Developing Palm OS Applications, Part Il 27



Palm OS Memory Management

The Data Manager

Structure of a Database Header

A database header consists of some basic database information and
a list of records in the database. Each record entry in the header has
the local ID of the record, 8 attribute bits, and a 3-byte unique ID for
the record. This section provides information about database head-
ers, discussing Database Header Fields and Structure of a Record
Entry in a Database Header.

WARNING: Expect the database header structure to change in the
future. Use the API to work with database structures.

Database Header Fields
The database header has the following fields:

e The nane field holds the name of the database.
e Theattri butes field has flags for the database.

e The ver si on field holds an application-specific version
number for that database.

e The nodi fi cati onNunber is incremented every time a
record in the database is deleted, added, or modified; this al-
lows applications to quickly determine if a shared database
has been modified by another process.

e The appl nf ol Dis an optional field that an application can
use to store application-specific information about the data-
base. For example it might be used to store user display pref-
erences for a particular database.

e The sort | nf ol Dis another optional field that can be used
by an application for storing the local ID of a sort table for the
database.

e Thetype and creat or fields are each 4 bytes and hold the
database type and creator. These fields are used by the sys-
tem to distinguish application databases from data databases
and to associate data databases with the appropriate applica-
tion. See “The System Manager” in Chapter 6, “Using Palm
OS Managers,” of “Developing Palm OS Applications, Part
1” for more information.

¢ The nunRecor ds field holds the number of record entries
stored in the database header itself. If all the record entries

28 Developing Palm OS Applications, Part I



Palm OS Memory Management
The Data Manager

cannot fit in the header, then next Recor dLi st has the local
ID of ar ecor dLi st that contains the next set of records.

Each record entry stored in a record list has three fields and is
8 bytes in length. Each entry has the local ID of the record
which takes up 4 bytes: 1 byte of attributes, and a 3-byte
unique ID for the record. The at t ri but e field, shown in
Figure 1.1, is 8 bits long and contains 4 flags and a 4-bit cate-
gory number. The category number is used to place records
into user-defined categories like “business,” or “personal.”

Structure of a Record Entry in a Database Header

Each record entry has the local ID of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

* Local IDs are used so that the database is slot-independent.
Since all the records for a database reside on the same mem-
ory card as the header, the handle of any record in the data-
base can be quickly calculated. When an application requests
a specific record from a database, the data manager returns a
handle to the record that it determines from the stored Local
ID.

A special situation occurs with ROM-based databases. Be-
cause ROM-based heaps use nonmovable chunks exclusively,
the Local IDs to records in a ROM-based database are Local
IDs of pointers, not handles. So, when an application opens a
ROM-based database, the data manager allocates and initial-
izes a fake handle for each record and returns the appropriate
fake handle when the application requests a record. Because
of this, applications can use handles to access both RAM- and
ROM-based database records.

* The unique ID must be unique for each record within a data-
base. It remains the same for a particular record no matter
how many times the record is modified. It is used during syn-
chronization with the desktop to track records on the Palm
OS device with the same records on the desktop system.

When the user deletes or archives a record on Palm OS:

e The deleted bitis setin the at t ri but es flags, but its entry in
the database header is kept around until the next synchroni-
zation with the PC.

 The dirty bit is set whenever a record is updated.

Developing Palm OS Applications, Part Il 29



Palm OS Memory Management

The Data Manager

Figure 1.1

e The busy bit is set when an application currently has a record
locked for reading or writing.

* The secret bit is set for records that should not be displayed
before the user password has been entered on the device.

When a user “deletes” a record on the Palm OS device, the record’s
data chunk is freed, the Local ID stored in the record entry is set to 0,
and the delete bit is set in the attributes. When the user archives a
record, the deleted bit is also set but the chunk is not freed and the
Local ID is preserved. By using this scheme, the next time synchro-
nization is performed with the desktop system, the desktop can
quickly determine which records the user wants to delete (since
their record entries are still around on the Palm OS device). In the
case of archived records, it can save the record data on the PC before
it permanently removes the record entry and data from the Palm OS
device. For deleted records, the PC just has to delete the same record
from the PC before permanently removing the record entry from the
Palm OS device.

Category (4)

L secret bit
busy bit
dirty bit
delete bit

Record Attributes

Using the Data Manager

Using the data manager is similar to using a traditional file man-
ager, except that the data is broken down into multiple records in-
stead of being stored in one contiguous chunk. To create or delete a
database, call DniCr eat eDat abase and DrDel et eDat abase.

Each memory card is akin to a disk drive and can contain multiple
databases. To open a database for reading or writing, you must first
get the database ID, which is simply the Local ID of the database

30 Developing Palm OS Applications, Part I



Palm OS Memory Management
The Data Manager

header. Calling Dnfi ndDat abase searches a particular memory
card for a database by name and returns the Local ID of the database
header. Alternatively, calling DnGet Dat abase returns the database
ID for each database on a card by index.

After determining the database ID, you can open the database for
read-only or read / write access. When you open a database, the sys-
tem locks down the database header and returns a reference to a da-
tabase access structure, which tracks information about the open
database and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DnDat abasel nf o, Dnfet Dat abasel nf o, and

DnDat abaseSi ze to query or set information about a database,
such as its name, size, creation and modification dates, attributes,
type, and creator.

Call Dnzet Recor d, DQuer yRecor d, and DnRel easeRecord
when viewing or updating a database.

e DntGet Recor d takes a record index as a parameter, marks the
record busy, and returns a handle to the record. If a record is
already busy when DnGet Recor d is called, an error is re-
turned.

e DnQuer yRecor d is faster if the application only needs to
view the record; it doesn’t check or set the busy bit, so it’s not
necessary to call DnRel easeRecor d when finished viewing
the record.

* DnRel easeRecor d clears the busy bit, and updates the
modification number of the database and marks the record
dirty if the di rt y parameter is true.

To resize a record to grow or shrink its contents, call

DnResi zeRecor d. This routine automatically reallocates the record
in another heap of the same card if the current heap does not have
enough space for it. Note that if the data manager needs to move the
record into another heap to resize it, the handle to the record
changes. DnResi zeRecor d returns the new handle to the record.

To add a new record to a database, call DhriNewRecor d. This routine
can insert the new record at any index position, append it to the

Developing Palm OS Applications, Part Il 31



Palm OS Memory Management

The Data Manager

end, or replace an existing record by index. It returns a handle to the
new record.

There are three methods for removing a record: DnRenoveRecor d,
Dnel et eRecor d, and DmAr chi veRecor d.

e DnRenoveRecor d removes the record’s entry from the data-
base header and disposes of the record data.

e DnDel et eRecor d also disposes of the record data but in-
stead of removing the record’s entry from the database
header, it sets the deleted bit in the record entry attributes
field and clears the local chunk ID.

* DmAr chi veRecor d does not dispose of the record’s data; it
just sets the deleted bit in the record entry.

Both DDel et eRecor d and DA chi veRecor d are useful when
synchronizing information with a desktop PC. Since the unique ID
of the deleted or archived record is still kept in the database header,
the desktop PC can perform the necessary operations on its own
copy of the database before permanently removing the record from

the Palm OS database.

Call DnRRecor dl nf o and DnfSet Recor dI nf 0 to retrieve or set the
record information stored in the database header, such as the at-
tributes, unique ID and Local ID of the record. Typically, these rou-
tines are used to set or retrieve the category of a record which is
stored in the lower-4 bits of the record’s attribute field.

To move records from one index to another or from one database to
another, call DnivbveRecor d, DmAt t achRecor d and

DnDet achRecor d. DnDet achRecor d removes a record entry from
the database header and returns the record handle. Given the han-
dle of a new record, DmAt t achRecor d inserts or appends that new
record to a database, or replaces an existing record with the new
record. DnivbveRecor d is an optimized way to move a record from
one index to another in the same database.

Data Manager Function Summary
DQui ckSor t

DnFi ndSort Posi tion

DM nsertionSort

DnCr eat eDat abaseFr oml mage

32 Developing Palm OS Applications, Part I



Palm OS Memory Management

The Data Manager

DnGet Next Dat abaseByTypeCr eat or

DnCr eat eDat abase

DnDel et eDat abase

DmNunDat abases

DnGet Dat abase

DnfFi ndDat abase

DnOpenDat abaseByTypeCr eat or

DnC oseDat abase

DnGet Appl nf ol D

DnDat abasel nf o

Dntet Dat abasel nf o

DnDat abaseSi ze

DnOpenDat abase

DnC oseDat abase

DnmiNext OpenDat abase

DnDpenDat abasel nf o

DnReset Recor dSt at es

Dntet Last Err

DmNunRecor ds

DnRecordl nf o

DntSet Recor dl nf o

DnmAt t achRecord

DnDet achRecor d

DnivbveRecor d

DnmiNewRecor d

DnRenoveRecor d

DnDel et eRecor d

DmAr chi veRecor d

DnmNewHandl e

DnRenoveSecr et Recor ds

DnFi ndRecor dByl D

Dnear chRecor d

DnQuer yRecord

Developing Palm OS Applications, Part Il 33



Palm OS Memory Management
The Resource Manager

DnGet Recor d

DnResi zeRecord

DnRel easeRecord
DiNunRecor dsl nCat egory
DmvbveCat egory

DQuer yNext | nCat egory
DnPosi ti onl nCat egory
DnSeekRecor dl nCat egory
Dnst r Copy

Dntet

DV t eCheck

Divite

The Resource Manager

Applications can use the Resource Manager much like the data
manager to conveniently retrieve and save chunks of data. It has the
added capability of tagging each chunk of data with a unique re-
source type and resource ID. These tagged data chunks, called re-
sources, are stored in resource databases. Resource databases are
almost identical in structure to normal databases except for a slight
amount of increased storage overhead per resource record (2 extra
bytes). In fact, the resource manager is nothing more than a subset
of routines in the data manager that are broken out here for concep-
tual reasons only.

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, etc. Part of
building an application involves creating these resources and merg-
ing them with the actual executable code. In the Palm OS environ-
ment, an application is in fact simply a resource database with the
executable code stored as one or more code resources and the
graphics elements and other miscellaneous data stored in the same
database as other resource types.

Applications may also find the resource manager useful for storing
and retrieving application preferences, saved window positions,

34 Developing Palm OS Applications, Part I



Palm OS Memory Management
The Resource Manager

state information, etc. These preferences settings can be stored in a
separate resource database.

This section explains how to work with the resource manager by
discussing these topics:

e Structure of a Resource Database Header

o Using the Resource Manager

* Resource Manager Functions

Structure of a Resource Database Header

A resource database header consists of some general database infor-
mation followed by a list of resources in the database. The first por-
tion of the header is identical in structure to a normal database
header. Resource database headers are distinguished from normal
database headers by the dmHdr At t r ResDB bitin the at t ri but es
field.

WARNING: Expect the resource database header structure to
change in the future. Use the API to work with resource database
structures.

¢ The nane field holds the name of the resource database.

e Theattri but es field has flags for the database and always
has the dnHdr At t r Res DB bit set.

e The nodi fi cati onNunber is incremented every time a re-
source in the database is deleted, added, or modified. This al-
lows applications to quickly determine if a shared resource
database has been modified by another process.

e The appl nf ol Dand sor t | nf ol Dfields are not normally
needed for a resource database but are included to match the
structure of a regular database. An application may option-
ally use these fields for its own purposes.

* Thetype and cr eat or fields hold 4-byte signatures of the
database t ype and cr eat or as defined by the application
that created the database.

e The nunResour ces field holds the number of resource info
entries that are stored in the header itself. In most cases, this
is the total number of resources. If all the resource info entries

Developing Palm OS Applications, Part Il 35



Palm OS Memory Management
The Resource Manager

cannot fit in the header, however, then next Resour ceLi st
has the chunkl Dof a r esour ceLi st that contains the next
set of resource info entries.

Each 10-byte resource info entry in the header has the resource type,
the resource ID, and the Local ID of the memory manager chunk
that contains the resource data.

Using the Resource Manager

You can create, delete, open, and close resource databases with the
routines used to create normal record-based databases (see Using
the Data Manager). This includes all database-level (not record-
level) routines in the data manager such as Dnixr eat eDat abase,
DnDel et eDat abase, DnDat abasel nf 0, and so on.

When you create a new database using DnCr eat eDat abase, the
type of database created (record or resource) depends on the value
of the r esDB parameter. If set, a resource database is created and the
dnHdr At t r ResDBbit is setin the at t r i but es field of the database
header. Given a database header ID, an application can determine
which type of database it is by calling DrDat abasel nf 0 and exam-
ining the dnHdr At t r ResDB bit in the returned at t r i but es field.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
routines of the resource manager. Generally, applications use the
DnGet Resour ce and DnRel easeResour ce routines.

DnCet Resour ce returns a handle to a resource, given the type and
ID. This routine searches all open resource databases for a resource
of the given type and ID, and returns a handle to it. The search starts
with the most recently opened database. To search only the most re-
cently opened resource database for a resource instead of all open
resource databases, call Dnzet 1Resour ce.

DnRel easeResour ce should be called as soon as an application
finishes reading or writing the resource data. To resize a resource,
call DnRResi zeResour ce, which accepts a handle to a resource and
reallocates the resource in another heap of the same card if neces-
sary. It returns the handle of the resource, which might have been
changed if the resource had to be moved to another heap to resize it.

36 Developing Palm OS Applications, Part I



Palm OS Memory Management
The Resource Manager

The remaining resource manager routines are usually not required
for most applications. These include functions to get and set re-
source attributes, move resources from one database to another, get
resources by index, and create new resources. Most of these func-
tions reference resources by index to optimize performance. When
referencing a resource by index, the DrOpenRef of the open re-
source database that the resource belongs to must also be specified.
Call DnSear chResour ce to find a resource by type and ID or by
pointer by searching in all open resource databases.

To get the DmOpenRef of the topmost open resource database, call
DiNext OpenResDat abase and pass nil as the current DnCpenRef .
To find out the DmOpenRef of each successive database, call
DmiNext OpenResDat abase repeatedly with each successive

DrOpenRef .

Given the access pointer of a specific open resource database,

DnFi ndResour ce can be used to return the index of a resource,
given its type and ID. DnFi ndResour ceType can be used to get the
index of every resource of a given type. To get a resource handle by
index, call DniGet Resour cel ndex.

To determine how many resources are in a given database, call
Dri\unResour ces. To get and set attributes of a resource including
its type and ID, call DnResour cel nf 0 and DnfSet Resour cel nf o.
To attach an existing data chunk to a resource database as a new re-
source, call DAt t achResour ce. To detach a resource from a data-
base, call DnDet achResour ce.

To create a new resource, call DriNewResour ce and pass the desired
size, type, and ID of the new resource. To delete a resource call
DnRenoveResour ce. Removing a resource disposes of its data
chunk and removes its entry from the database header.

Resource Manager Functions

To work with resources, you can use the functions listed in Data
Manager Function Summary as well as these functions:

¢ Dneet Resource
Dzt 1Resour ce
DnRel easeResource
DnResi zeResour ce

Developing Palm OS Applications, Part Il 37



Palm OS Memory Management
The Resource Manager

DriNext OpenResDat abase
DnFi ndResour ceType
DnFi ndResour ce
DnfSear chResour ce
Dm\NunResour ces
DResour cel nf o
DnSet Resour cel nf o
DAt t achResour ce
DnDet achResour ce
DmiNewResour ce
DnRenpbveResour ce
DrGet Resour cel ndex

38 Developing Palm OS Applications, Part I



2

Palm OS Communications

The Palm OS communications software provides high-performance
serial communications capabilities including byte-level serial 1/O,
best-effort packet-based I/ O with CRC-16, reliable data transport
with retries and acknowledgments, connection management, and
modem dialing capabilities.

This chapter helps you understand the different parts of the com-
munications software and explains how to use them, discussing
these topics:

 Byte Ordering briefly explains the byte order used for all
data.

e Communications Architecture Hierarchy provides an over-
view of the hierarchy, including an illustration.

* The Serial Manager is responsible for byte-level serial I/O
and control of the RS232 signals.

 The Serial Link Protocol provides an efficient packet send
and receive mechanism.

* The Serial Link Manager is the Palm OS implementation of
the serial link protocol.

¢ The Packet Assembly /Disassembly Protocol (PADP).
e The PAD Server is the Palm OS implementation of the PADP.

Byte Ordering

By convention, all data originating from and destined for the Palm
OS device uses Motorola byte ordering. That is, data of compound
types such as Word (2 bytes) and DWord (4 bytes), as well as their
integral counterparts, is packaged with the most-significant byte at
the lowest address. This contrasts with Intel byte ordering.

Developing Palm OS Applications, Part Il 39



Palm OS Communications
Communications Architecture Hierarchy

Communications Architecture Hierarchy

The communications software has multiple layers, with higher lay-
ers depending on more primitive functionality provided by lower
layers. Functionality of all layers is available to applications. The
software consists of these layers, described in more detail below:

* The serial manager, at the lowest layer, deals with the Palm
OS serial port and control of the RS232 signals, providing
byte-level serial I/O.

* The modem manager provides modem dialing capabilities.

 The Serial Link Protocol (SLP) provides best-effort packet
send and receive capabilities with CRC-16. SLP does not
guarantee packet delivery; this is left to the higher-level pro-
tocols.

e The Packet Assembly /Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efficient protocol fea-
turing variable-size block transfers with robust error check-
ing and automatic retries.

e The Connection Management Protocol (CMP) provides con-
nection-establishment capabilities featuring baud rate arbi-
tration and exchange of communications software version
numbers.

e The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other sub-systems. DLP facilitates
efficient data synchronization between desktop (i.e., PC,
Macintosh, etc.) and Palm OS applications, database backup,
installation of code patches, extensions, applications, and
other databases, as well as Remote Inter-Application Com-
munication (RIAC) and Remote Procedure Calls (RPC).

40 Developing Palm OS Applications, Part I



Palm OS Communications
Communications Architecture Hierarchy

Modem Manager

Connection Desktop Link

M anagement
Protocol (CMP) Protocol (DLP)

Packet Assembly/
Disassembly
Protocol (PADP)

Serial Link
Protocol (SLP)

Serial Manager

Serial Port

Modem
(optional)

Figure 2.1 Palm OS Communications Architecture

Developing Palm OS Applications, Part Il 41



Palm OS Communications

The Serial Manager

The Serial Manager

The Palm OS serial manager is responsible for byte-level serial I/O
and control of the RS232 signals.

In order to prolong battery life, the serial manager must be very effi-
cient in its use of processing power. To reach this goal, the serial
manager receiver is interrupt-driven. In the present implementa-
tion, the serial manager sends data using the polling model.

Using the Serial Manager

Before using the serial manager, call SysLi bFi nd, passing” Ser i al
Li brary” for the library name to get the serial library reference
number. This reference number is used with all subsequent serial
manager calls. The system software automatically installs the serial
library during system initialization.

To open the serial port, call Ser Qpen, passing the serial library ref-
erence number (returned by SysLi bFi nd), 0 (zero) for the port
number, and the desired baud rate. An error code of 0 (zero) or
ser Err Al r eadyQpen indicates that the port was successfully
opened. If the serial port is already open when Ser Qpen is called,
the port’s open count is incremented and an error code of

ser Err Al r eadyQpen is returned.

This ability to open the serial port multiple times is provided for use
by cooperating tasks which need to share the serial port. All other
applications must refrain from sharing the serial port and close it by
calling Ser O ose when ser Err Al r eadyOpen is returned. Error
codes other than 0 (zero) or ser Er r Al r eadyQpen indicate failure.
The application must open the serial port before making other serial
manager calls.

To close the serial port, call Ser A ose. Every successful call to
Ser Open must eventually be paired with a call to Ser d ose. Be-
cause an open serial port consumes more energy from the device’s
batteries, it is essential not to keep the port open any longer than
necessary.

To change serial port settings such as the baud rate, CTS time-out,
number of data and stop bits, parity options, and handshaking op-

42 Developing Palm OS Applications, Part I



Palm OS Communications
The Serial Manager

tions, call Ser Set Set t i ngs. For baud rates above 19200, use of
hardware handshaking is advised.

To retrieve the current serial port settings, call Ser Get Set t i ngs.

To retrieve the current line error status, call Ser Get St at us, which
returns the cumulative status of all line errors being monitored. This
includes parity, hardware and software overrun, framing, break de-
tection, and handshake errors.

To reset the serial port error status, call Ser d ear Er r, which resets
the serial port’s line error status. Other serial manager functions,
such as Ser Recei ve, immediately return with the error code

ser Err Li neErr if any line errors are pending. It is therefore im-
portant to check the result of serial manager function calls and call
Ser d ear Err if line error(s) occurred.

To send a stream of bytes, call Ser Send. In the present implementa-
tion, Ser Send blocks until all data is transferred to the UART or a
time-out error (if CTS handshaking is enabled) occurs. If your soft-

ware needs to detect when all data has been transmitted, see
Ser SendWai t .

To wait until all data queued up for transmission has been transmit-
ted, call Ser SendWai t . Ser SendWai t blocks until all pending data
is transmitted or a CTS time-out error occurs (if CTS handshaking is
enabled).

To flush all bytes from the transmission queue, call Ser Send\Wi t .
This routine discards any data not yet transferred to the UART for
transmission.

To receive a stream of bytes from the serial port, call Ser Recei ve,
specifying a buffer, the number of bytes desired, and the interbyte
time out. This call blocks until all the requested data has been re-
ceived or an error occurs. To read bytes already in the receive queue,
call Ser Recei veCheck (see below) to get the number of bytes
presently in the receive queue, and then call Ser Recei ve, specify-
ing the number of bytes desired. Because Ser Recei ve returns im-
mediately without any data if line errors are pending, it is important
to acknowledge the detection of line errors by calling

Serd earErr.

To wait for a specific number of bytes to be queued up in the receive
queue, call Ser Recei veWi t , passing the desired number of bytes

Developing Palm OS Applications, Part Il 43



Palm OS Communications

The Serial Manager

and an interbyte time out. This call blocks until the desired number
of bytes have accumulated in the receive queue or an error occurs.
The desired number of bytes must be less than the current receive
queue size. The default queue size is 512 bytes. Because this call re-
turns immediately if line errors are pending, it is important to ac-
knowledge the detection of line errors by calling Ser O ear Err . See
also Ser Recei veCheck and Ser Set Recei veBuf fer.

To check how many bytes are presently in the receive queue, call
Ser Recei veCheck.

To discard all data presently in the receive queue and to flush bytes
coming into the serial port, call Ser Recei veFl ush, specifying the
inter-byte time-out. This call blocks until a time out occurs waiting
for the next byte to arrive.

To replace the default receive queue, call Ser Set Recei veBuf f er,
specifying the pointer to the buffer to be used for the receive queue
and its size. The default receive queue must be restored before the
serial port is closed. To restore the default receive queue, call

Ser Set Recei veBuf f er, passing 0 (zero) for the buffer size. The se-
rial manager does not free the custom receive queue.

To avoid having the system go to sleep while it's waiting to receive
data, an application should call Evt Reset Aut oOf f Ti nmer periodi-
cally. For example, the serial link manager automatically calls

Evt Reset Aut oOf f Ti ner each time a new packet is received. Note
that this facility is not part of the serial manager but part of the
event manager. See Chapter 12, “System Manager Functions,” of
“Developing Palm OS Applications.”

44 Developing Palm OS Applications, Part I



Palm OS Communications
The Serial Link Protocol

Serial Manager Function Summary

e Serd earErr

¢ Serd ose

e SerGetSettings
e SerCetStatus

¢ Ser Open

¢ SerReceive

¢ SerRecei veCheck
¢ Ser Recei veFl ush
¢ SerRecei veWii t
¢ Ser Send

¢ Ser SendWai t

¢ Ser Set Recei veBuf f er
e SerSetSettings

:

The Serial Link Protocol

The Serial Link Protocol (SLP) provides an efficient packet send and
receive mechanism. SLP provides robust error detection with CRC-
16. SLP is a best-effort protocol; it does not guarantee packet deliv-
ery (this is left to the higher-level protocols). For enhanced error de-
tection and implementation convenience of higher-level protocols,
SLP specifies packet type, source, destination, and transaction ID in-
formation as an integral part of its data packet structure.

SLP Packet Structures

The following sections describe SLP Packet Format, Packet Type As-
signment, Socket ID Assignment, and Transaction ID Assignment.

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer.

e The packet header contains the packet signature, the destina-
tion socket ID, the source socket ID, packet type, client data
size, transaction ID, and header checksum. The packet signa-

Developing Palm OS Applications, Part Il 45



Palm OS Communications
The Serial Link Protocol

ture is composed of the three bytes OxBE, OXEF, 0XED, in that
order. The header checksum is an 8-bit arithmetic checksum
of the entire packet header, not including the checksum field
itself.

* The client data is a variable-size block of binary data speci-
fied by the user and is not interpreted by the Serial Link Pro-
tocol.

* The packet footer consists of the CRC-16 value computed
over the packet header and client data.

signature (3): OxBE
OxEF
OxED

destination socket (1)
Packet Header source socket (1)
packet type (1)

client datasize (2)
transaction id (1)
header checksum (1)

> <

Client Data

\ 4
Packet Footer I CRC-16 (2)

Figure 2.2  Structure of a Serial Link Packet

46 Developing Palm OS Applications, Part I



Palm OS Communications
The Serial Link Protocol

Packet Type Assignment

Packet type values in the range of 0x00 through 0x7F are reserved
for use by the system software. The following packet type assign-
ments are currently implemented:

0x00 Remote Debugger, Remote Console, and System Re-
mote Procedure Call packets.

0x02 PADP packets.
0x03 Loop-back Test packets.

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are “well-known” socket ID values which are re-
served by the components of the system software. The dynamic
socket IDs are assigned at run time when requested by clients of
SLP. Static socket ID values in the ranges 0x00 through 0x03 and
0xEO through OXFF are reserved for use by the system software. The
following static socket IDs are currently implemented or reserved:

0x00 Remote Debugger socket.

0x01 Remote Console socket.

0x02 Remote Ul socket.

0x03 Desktop Link Server socket.

0x04 -0xCF Reserved for dynamic assignment.

0xDO0 - 0xDF  Reserved for testing.

Transaction ID Assignment

Transaction id values are not interpreted by the Serial Link Protocol
and are for the sole benefit of the higher-level protocols. The follow-
ing transaction ID values are currently reserved:

Developing Palm OS Applications, Part Il 47



Palm OS Communications
The Serial Link Protocol

0x00 and OXFF  Reserved for use by the system software.

0x00 Reserved by the Palm OS implementation of SLP
to request automatic transaction ID generation.

OxFF Reserved for the connection manager’s WakeUp
packets.

Transmitting an SLP Packet

This section provides an overview of the steps involved in transmit-
ting an SLP packet. The next section describes the implementation.

Transmission of an SLP packet consists of these steps:

1. Fill in the packet header and compute its checksum.

2. Compute the CRC-16 of the packet header and client data.
3. Transmit the packet header, client data, and packet footer.
4. Return an error code to the client.

Receiving an SLP Packet
Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its check-
sum.

3. Read in the client data.
4. Read in the packet footer and validate the packet CRC.

5. Dispatch/return an error code and the packet (if successful)
to the client.

48 Developing Palm OS Applications, Part I



Palm OS Communications
The Serial Link Manager

The Serial Link Manager

The serial link manager is the Palm OS implementation of the Palm
OS Serial Link Protocol.

Serial link manager provides the mechanisms for managing multi-
ple client sockets, sending packets, and receiving packets both syn-
chronously and asynchronously. It also provides support for the
Remote Debugger and Remote Procedure Calls (RPC).

Using the Serial Link Manager

Before an application can use the services of the serial link manager,
it must open it by calling S| kQpen. Success is indicated by error
codes of 0 (zero) or sl kEr r Al r eadyOpen. The return value sl kEr -
r Al r eady Qpen indicates that the serial link manager has already
been opened (most likely by another task). Other error codes indi-
cate failure.

When you finish using the serial link manager, call S| kA ose. S| k-
d ose may be called only if S| kQpen returned 0 (zero) or

sl KErr Al r eadyQpen. When open count reaches zero, S| kG ose
frees resources allocated by SI kQpen.

To use the serial link manager socket services, open a Serial Link
socket by calling SI kOpenSocket . Pass a reference number of an
opened and initialized communications library (see Ser Qpen), a
pointer to a memory location for returning the socket ID, and a
Boolean indicating whether the socket is static or dynamic. If open-
ing a static socket, the memory location for the socket id must con-
tain the desired socket number. If opening a dynamic socket, the
new socket ID is returned in the passed memory location. Sharing of
sockets is not supported. Success is indicated by an error code of 0
(zero). For information about static and dynamic socket IDs, see

Socket ID Assignment.
When you have finished using a Serial Link socket, you must close it

by calling SI kO oseSocket . This releases system resources allo-
cated for this socket by the serial link manager.

To obtain the communications library reference number for a partic-
ular socket, call S| kSocket Ref Num The socket must already be
open.

Developing Palm OS Applications, Part Il 49



Palm OS Communications
The Serial Link Manager

To set the interbyte packet receive timeout for a particular socket,
call SI kSocket Set Ti meout .

To flush the receive stream for a particular socket, call
Sl KFl ushSocket , passing the socket number and the interbyte
time out.

To register a socket listener for a particular socket, call

Sl kSet Socket Li st ener, passing the socket number of an open
socket and a pointer to the Sl kSocket Li st enType structure. Be-
cause the serial link manager does not make a copy of the

Sl kSocket Li st enType structure, but instead saves the pointer
passed to it, the structure may not be an automatic variable (that is,
allocated on the stack). The Sl kSocket Li st enType structure may
be a global variable in an application or a locked chunk allocated
from the dynamic heap. The Sl kSocket Li st enType structure
specifies pointers to the socket listener procedure and the data buff-
ers for dispatching packets destined for this socket. Pointers to two
buffers must be specified:

e the packet header buffer (size of S| kPkt Header Type)

e the packet body buffer, which must be large enough for the
largest expected client data size

Both buffers may be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is re-
ceived for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The serial link manager does not free the

Sl kSocket Li st enType structure or the buffers when the socket is
closed; that is the responsibility of the application. For this mecha-
nism to function, some task needs to assume the responsibility to
“drive” the serial link manager receiver by periodically calling

Sl kRecei vePacket .

To send a packet, call SI kSendPacket , passing a pointer to the
packet header (S| kPkt Header Type) and a pointer to an array of
SI kWi t eDat aType structures. S| kSendPacket stuffs the signa-
ture, client data size, and the checksum fields of the packet header.
The caller must fill in all other packet header fields. If the transac-
tion ID field is set to 0 (zero), the serial link manager automatically

50 Developing Palm OS Applications, Part I



Palm OS Communications
The Serial Link Manager

Listing 2.1

generates and stuffs a new non-zero transaction ID. The array of

Sl kW i t eDat aType structures enables the caller to specify the cli-
ent data part of the packet as a list of noncontiguous blocks. The end
of list is indicated by an array element with the si ze field set to 0
(zero).

Sending a Serial Link Packet

Err err;
Sl kPkt Header Type  sendHdr;

[lserial |ink packet header
SIkWiteDataType witelList[2];

/[lserial Iink wite data segnents
Byt e body[ 20] ;

/| packet body(exanpl e packet body)

/[l Initialize packet body

/'l Conpose the packet header
sendHdr . dest = sl kSocket DLP;
sendHdr. src = sl kSocket DLP;
sendHdr . type = sl kPkt TypeSyst em
sendHdr.transld = O;

/1l let Serial Link Manager set the transld
/| Specify packet body
witeList[O0].size = sizeof (body);

/1 first data bl ock size
witeList[0].dataP = body;

/1 first data bl ock pointer
witeList[1l].size = 0;

/1 no nore data bl ocks

/'l Send the packet
err = Sl kSendPacket ( &endHdr, witelList );

}

Developing Palm OS Applications, Part Il 51



Palm OS Communications
The Serial Link Manager

Listing 2.2

Generating a New Transaction ID

I

/| Exanple: CGenerating a new transaction |ID given
/1l the previous transaction ID. Can start wth

/1 any seed val ue.

I

Byt e Next Transactionl D (Byte previousTransacti onl D)

{

Byt e next Transacti onl D

/'l Cenerate a new transaction id, avoid the
/'l reserved val ues (0x00 and OxFF)
if ( previousTransactionl D >= (Byte)OxFE )
next Transactionl D = 1; /'l wrap around
el se
next Transacti onl D

previ ousTransactionl D + 1;
/'l increnment

return nextTransacti onl D

To receive a packet, call S kRecei vePacket . You may request a
packet for the passed socket ID only, or for any open socket which
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a time out. The time out
indicates how long the receiver should wait for a packet to begin ar-
riving before timing out. A time-out value of (-1) means “wait for-
ever.” If a packet is received for a socket with a registered socket
listener, it is dispatched via its socket listener procedure.

52 Developing Palm OS Applications, Part I



Palm OS Communications
The Packet Assembly/Disassembly Protocol

Serial Link Manager Function Summary

« Sl kd ose

¢ Sl kd oseSocket

¢ Sl kFl ushSocket

¢ Sl kQpen

¢ Sl kQpenSocket

¢ Sl kRecei vePacket

* S| kSendPacket

¢ Sl kSet Socket Li st ener
¢ Sl kSocket Ref Num

e S| kSocket Set Ti neout

The Packet Assembly/Disassembly Protocol

The Packet Assembly /Disassembly Protocol (PADP) provides the
infrastructure for sending variable-size commands and receiving
variable-size responses. As is common for transport layer protocols,
PADP is asymmetric in the sense that only one side of the connec-
tion can issue commands, while the other side can only send re-
sponses. For convenience, this document uses the term workstation
to refer to the side of the connection which sends commands. The
side of the connection which sends responses is referred to as the
server. A single command-response cycle is a transaction.

PADP provides reliable buffered data transfer capabilities. It is a
simple and efficient half-duplex protocol featuring variable-size
block transfers with robust error checking and automatic retries.
The packet assembly / disassembly technique is used to break up a
large block of client data into multiple data packets, thus improving
error recovery performance over possibly noisy connections such as
telephone lines. Up to 65535 bytes of client data can be transferred
in each direction within a single PADP transaction.

PADP builds on top of the Serial Link Protocol (SLP) by building its
own packet structure into the client data section of the SLP packet.

The following sections describe the PADP packets and their formats,
and the PADP algorithms for sending and receiving client data.

Developing Palm OS Applications, Part Il 53



Palm OS Communications
The Packet Assembly/Disassembly Protocol

SL P Packet

Figure 2.3

PADP Packet Structures

PADP employs three types of packets: padData, padAck, and
padTickle.

¢ A PADP padData Packet transfers client data .

e A PADP padAck Packet acknowledges the receipt of valid
padData packets.

e A PADP padTickle Packet keeps the session “alive” while the
workstation is performing a time-consuming activity be-
tween commands.

PADP packets are embedded within the client data section of SLP
packets. SLP reserves SLP packet type 0x02 for PADP packets. (see
PADP padTickle Packet below)

A A
SLP packef 't'ype = 0x02 S P header

SLP Client Data

v

SLP Footer
\ 4 i

PADP Packet Within the SLP Packet

54 Developing Palm OS Applications, Part Il



Palm OS Communications
The Packet Assembly/Disassembly Protocol

Figure 2.4

The following sections describe the formats of the PADP structures
embedded within the SLP client data. For a detailed description of
SLP packet structure refer to The Serial Link Protocol.

PADP Header

All PADP packets contain the PADP header. The PADP header con-
tains the PADP packet t ype field, a f | ags field, and a
si zeOr O f set field. The type field identifies the PADP packet as
one of the following three PADP packet types:

¢ 0x01 = padData

* 0x02 = padAck

* 0x04 = padTickle
The usage of the individual fields within each type of PADP packet

is described in detail in the following sections. presents the PADP
header fields, with the field size (in bytes) indicated in parentheses.

PADPtype (1)
flags (1)
SzeOrOffset (2)

PADP Packet Header

PADP padData Packet

The padData packets are used to transfer client data. A padData
packet consists of the fixed-size PADP header followed by a vari-
able-size section of PADP client data. A single padData packet may
contain at most 1024 bytes of PADP client data.

The f | ags field in the PADP header of a padData packet is used to
identify first and last padData packets within the block of client data
being transferred. When the entire block of client data fits within a
single padData packet, the packet is marked as both first and last.
All unused bits must be set to zero.

Usage of the si zeOr O f set field in the PADP header of a padData
packet depends on whether this padData packet is the first packet
within the block of client data being transferred.

Developing Palm OS Applications, Part Il 55



Palm OS Communications
The Packet Assembly/Disassembly Protocol

e If this is the first padData packet of the block (it will be

marked as “first” in the PADP header flags field), the

si zeOr O f set field contains the total size of the client data
block being transferred. This provides the receiver with the
necessary information to determine whether it can accommo-
date a block of this size, as well as the opportunity to allocate
a memory buffer for the entire client data block being re-
ceived.

If the padData packet is not marked as first in the PADP
header flags field, the si zeOr Of f set fields holds the rela-
tive zero-based offset of the client data contained in the
packet from the beginning of the entire client data block
being transferred.

Figure 2.5 presents the padData packet.

A A
SLP packet type = 0x02 SLP
packe yp header
v
A PADP type = 0x01 A
Flag bits: __i_i
PADP 7 - first packet
Heeder | 6 |as packer | 7|6 flags
PADP o
; Packet
v SzeOrOffset padData
A Up to 1024 bytes of Packet
PADP Client Data
PADP -
Client
Daa
v \ 4
i SLP
Footer
v
Figure 2.5 PADP padData Packet Format

56 Developing Palm OS Applications, Part I



Palm OS Communications
The Packet Assembly/Disassembly Protocol

PADP padAck Packet

The padAck packets are used to acknowledge valid padData pack-
ets. A pad Ack packet consists of the fixed-size PADP header only.

The “first” and “last” packet bits of the f | ags field in the PADP
header of a pad Ack packet match those of the padData packet being
acknowledged. The menory error bitis for signaling to the data
sender that the receiver cannot accommodate the incoming data
block whose size is indicated in the first padData packet. When the
data sender receives a padAck packet with the menory error bit
set in response to the first padData packet, it must abort sending the
data block immediately, returning an error code to the caller. All un-
used bits must be set to zero.

The value of the si zeOr Of f set field in the PADP header of a
padAck packet matches that of the padData packet being acknowl-
edged.

Figure 2.6 presents the pad Ack packet.

A
SLP packet type = 0x02 SLP
P yp header
\ 4
A PADP type = 0x02 A
Flag bits: —
PADP | 7-firstpacket | ' [ '] PADP
Header | 6-lastpacket |[7|6|5| fla0s padAck
5 - memory error Packet SLP
sizeOrOffset Packet
v
¢SLP
Footer
\ 4
Figure 2.6 PADP padAck Packet Format

Developing Palm OS Applications, Part Il 57



Palm OS Communications
The Packet Assembly/Disassembly Protocol

Figure 2.7

PADP padTickle Packet

The padTickle packets are used for keeping the session alive while
the workstation is performing a time-consuming activity between
transactions.

The f | ags and si zeOr O f set fields in the PADP header of a
padTickle packet are set to zero.

Figure 2.7 presents the padTickle packet.

A A
SLP packet type = 0x02 SLP
P typ header
\ 4
4 PADP type = 0x04 L
PADP PADP
Header flags=0 padTickle
Packet SLP
SizeOrOffset =0 Packet
v v
i SLP
Footer
v

PADP padTickle Packet Format

PADP Algorithms

The model employed by PADP consists of two entities: the worksta-
tion and the server.
e The workstation issues commands and receives responses.

* The server receives commands and sends responses. The
server entity is not allowed to initiate commands.

A single command and its matching response constitute one trans-
action.

To keep the session alive between transactions, the workstation en-
tity sends padTickle packets to the server entity at 7-second inter-

58 Developing Palm OS Applications, Part I



Palm OS Communications
The Packet Assembly/Disassembly Protocol

vals. In the future, the protocol may be extended to have the server
entity also send padTickle packets to the workstation entity.

A maximum of 65535 bytes of client data may be sent in a single
PADP command or response. The client data block is logically di-
vided into segments of 1024 bytes; the last segment may contain less
than 1024 bytes. Each segment is then sent in a padData packet,
with retries if necessary. Since the protocol is half-duplex, each
padData packet must be acknowledged by the receiver before the
next segment can be sent. Each padData packet is resent at fixed in-
tervals until it is acknowledged or the maximum retry count (dis-
cussed later) is exceeded. Refer to PADP Packet Structures for
packet format details.

All padData and padAck packets within a single transaction are
identified by the same transaction ID value. Subsequent transac-
tions increment through the transaction ID values, wrapping
around eventually. The workstation entity issuing the command
generates the transaction ID. The server entity uses that transaction
ID value in the corresponding response. While waiting for a new
command, the server entity filters out any PADP packets which
have the transaction ID of the last successfully received command.
Refer to The Serial Link Protocol and The Serial Link Manager for
information about reserved transaction ID values.

After sending a packet, the implementations needs to wait for the
transmit queue to empty before starting the time-out counter to re-
ceive the next expected packet. Only then the protocol timing
schemes will work correctly and will be independent of the baud
rate and packet size,

Sending a Client Data Block

This section presents the algorithm for sending a block of client data
(i.e., a command to the server or response to the workstation). Note
that

* For the workstation implementation, r et ryl nt er val is cur-
rently 4 seconds and maxRet ri es is 14 seconds.

* For the server implementation on Palm OS, r et ryl nt er val
is 2 seconds and maxRet ri es is 10 seconds.

The values of ret ryl nt er val and maxRetri es are greater for the
workstation implementation to allow for heap compaction on the

Developing Palm OS Applications, Part Il 59



Palm OS Communications
The Packet Assembly/Disassembly Protocol

Listing 2.3

device. On rare occasions, compaction may take as long as 20 sec-
onds per storage heap (when receiving a large data block, the Palm
OS receiver attempts to allocate the buffer space from one of the
storage heaps before acknowledging the first padData packet from
the sender, and this could require heap compaction).

Sending a block of data

/1
/1l Algorithmfor sending a block of data
/1

initialize reference to the first client data
segnment to be sent;
while (there are nore segnents to send)

{

generate the correct PADP packet header fl ags
and sizeO O fset values for the current segnent;

/'l Retry | oop
for ( up to maxRetries )
{
send a padData packet containing the current
client data segnent;
wait for retrylnterval seconds to receive a
mat chi ng padAck packet;
if ( matching padAck packet received )
{
if ( the "nmenory error” bit is set in the
padAck header )
abort transm ssion of this client data
bl ock;
el se
break out of the retry | oop;

}
}

if ( (we were sending an internediate

60 Developing Palm OS Applications, Part Il



Palm OS Communications
The Packet Assembly/Disassembly Protocol

(other than | ast) padData packet of the
bl ock) and (retry count was exceeded) )
{
/'l See di scussion bel ow
abort transm ssion - the connection is |ost;

}

adj ust reference to the next client data
segnent to be sent;

}

There is a special case which arises and must be addressed in the
implementation to ensure error recovery under adverse line condi-
tions.

Consider the case of a lost or damaged pad Ack packet. If an inter-
mediate (other than last) padData packet of the data block is sent,
and the matching padAck is lost, the receiver, who is still waiting
for subsequent padData packets, will acknowledge retries, ensuring
recovery.

The situation is different if the last padData packet of the block is
sent and the matching padAck is lost. In this case, the receiver, hav-
ing received and acknowledged the last padData packet of the
block, ceases to wait and returns the received block to its client for
processing. In the meantime, the sender, who never received that ill-
fated padAck, is in its retry loop resending the last padData packet
and awaiting the matching pad Ack.

In this situation the entire block of data was successfully received
but the sender doesn’t know this because of one lost pad Ack. Be-
cause a padAck is as likely to be lost on a noisy line as any other
packet, a recovery technique must be introduced. The solution,
which differs slightly between the workstation and server imple-
mentations, is discussed next.

When the workstation is sending a client data block, it’s sending a
command for which it expects a response from the server. When the
client of the server entity finishes processing the command, it ini-
tiates a response by sending the response data block.

Developing Palm OS Applications, Part Il 61



Palm OS Communications
The Packet Assembly/Disassembly Protocol

The padData packets of the response carry the same transaction ID
as the padData packets of the command. If the workstation is still in
its retry loop waiting for a matching padAck to the last padData
packet of the block, but instead receives a “first” padData packet
with a matching transaction ID from the server, the workstation en-
tity can recover by treating the received padData packet as the
equivalent of the expected pad Ack packet.

It is also possible that the workstation entity exhausts all the retries
of the last padData without receiving the first padData packet of the
response block due to time-consuming processing of the command.
In this case, the workstation entity can assume that the last padData
packet of the block was delivered successfully and leave it to the
workstation receiver to detect a lost connection if it times out while
waiting to receive the response.

When the server entity is sending a client data block, it is sending a
response to the command it received from the workstation entity.
After the client of the workstation entity receives the response, it
eventually sends a new command (unless that was its last com-
mand). The new command uses a different transaction ID. There-
fore, if the server entity is still in its retry loop waiting for a
matching padAck to the last padData packet of the block, but in-
stead receives a “first” padData packet with a different transaction
ID from the workstation entity, the server entity can recover by
treating the received padData packet as the equivalent of the ex-
pected padAck packet.

It is also possible that the server entity exhausts all the retries of the
last padData without receiving the first padData packet of a new
command block due to time-consuming processing on the worksta-
tion end. In this case, the server entity can make the assumption that
the last padData packet of the block was delivered successfully,
leaving it to the server receiver to detect a lost connection if it times
out while waiting to receive the next command.

Receiving a Client Data Block

This section presents the algorithm for receiving a block of client
data. Please note that for the workstation implementation, the term
“expected transaction ID” means the same transaction ID as that
used for the matching command. For the server implementation, the
term “expected transaction ID” means a transaction ID value which

62 Developing Palm OS Applications, Part I



Palm OS Communications
The Packet Assembly/Disassembly Protocol

Listing 2.4

is different from that of the last successfully received command. The
receiver must filter out any packet which does not have the ex-
pected transaction ID. For the workstation implementation,

bl ockRecei veTi meout and segnent Recei veTi neout are 45
seconds each. For the server implementation on the Palm OS device,
bl ockRecei veTi neout and segnent Recei veTi nmeout are 30
seconds each.

Receiving a Block of Data

initialize expected offset to zero;

/'l Receive the first data segnent
reset the timeout counter;

while ( elapsed tinme is |less than
bl ockRecei veTi neout )

{

attenpt to receive the first padData packet

with the expected transaction id.

if ( succeeded )

{
if ( there is enough storage to receive the
entire data bl ock )

{
/1 The inplenmentati on may choose to use a
[l preallocated buffer or allocate a new
/'l buffer for the incom ng bl ock.
save the first data segnent in our buffer;
i ncrenent the expected offset by the size
of the data segnent;
acknowl edge this padData packet with a
mat chi ng padAck;
break out of this loop and go on to receive
remai ni ng segnents;
}

el se

{

send a padAck packet with the "nmenory

Developing Palm OS Applications, Part Il 63



Palm OS Communications
The Packet Assembly/Disassembly Protocol

error" flag set;
return to caller with appropriate error

code;
}
}
el se
if ( received a padTickle packet )
{
reset the tineout counter, continue waiting;
}

}

if ( we tined out without receiving the first
data segnent )
{
/1l The connection is presuned | ost
return to caller with appropriate error code;

}

/'l Receive the remaining data segnents
while ( there are nore segnments to receive )
{
/1l Wait for the next data segnent
reset the tineout counter;
while (elapsed tine is I ess than
segnent Recei veTi neout )
{
attenpt to receive a padData packet with the
expected transaction id.
if ( succeeded )
{
if ( the padData packet has the expected
of fset )
{
save the data segnment in our buffer;
i ncrement the expected offset by the size
of the data segnent;
acknowl edge this padData packet with a

64 Developing Palm OS Applications, Part Il



Palm OS Communications
The PAD Server

mat chi ng padAck;
break out of the inner |oop;

}

el se
{
/[l This is aretry of an already received
padDat a packet
acknowl edge this padData packet with a
mat chi ng padAck;
reset the tinmeout counter;
continue waiting for expected data
segnent ;
}
}

}

if ( we tinmed out without receiving the
expected data segnent )

{

/'l The connection is presumed | ost

return to caller with appropriate error code;

}
}

The PAD Server

The PAD Server is the Palm OS implementation of the Palm OS
PADP Server entity.

The PAD Server provides the mechanisms for receiving PADP com-
mands and sending PADP responses via synchronous function calls.

PAD Server provides an API for receiving PADP commands from
the PADP workstation entity, and for sending PADP responses. The
present implementation of PAD Server supports only one client ses-
sion at a time. Higher-level services are built on top of those pro-
vided by PAD Server. For example, the connection manager and

Developing Palm OS Applications, Part Il 65



Palm OS Communications

The PAD Server

Desktop Link Server (discussed later) both use PAD Server for reli-
able data transfer. The services of PAD Server are available to any
application which needs to incorporate a reliable data transport
layer.

See The Packet Assembly /Disassembly Protocol for a detailed dis-
cussion of PADP concepts.

Using the PAD Server

Before an application can use the services of the PAD Server, it has
to open and initialize a serial port (see The Serial Manager), open
the serial link manager and open a Serial Link socket (see The Serial
Link Manager).

The next step is to call Psr 1 ni t to open and initialize the PAD
Server. An error code of 0 (zero) indicates success. Other error codes
indicate failure. In the call to Psr | ni t you can specify a pointer to a
Cancel Callback procedure. If specified, the Cancel Callback is
called periodically while waiting for a command or sending a re-
sponse. If the Cancel Callback returns non-zero, the wait aborts im-
mediately, permitting fast response in situations such as cancelling
by the user.

When you finish using the PAD Server, you have to call Psr d ose.
Psr d ose may be called only if Psrl ni t returned 0 (zero).
Psr d ose frees the resources allocated by Psrl ni t .

To receive a PADP command, call Psr Get Conmand. On success,
Psr Get Command returns the command block, the remote socket ID,
and the transaction ID of the command.

To send a PADP response, call Psr SendRepl y, passing the remote
socket ID, transaction ID, an array of PnSegnent Type structures
and the number of elements in the array. For convenience, the re-
sponse block is specified as a list of data segments via an array of
PnSegnent Type structures. The PnSegnent Type structure allows
selective specification of word alignment for each data segment. If
word alignment is enabled for a segment and the previous seg-
ment’s data size forces it to begin at an odd offset, Psr SendRepl y
automatically inserts a byte to force word alignment of the seg-
ment’s data. Any bytes inserted as the result of word alignment are
set to 0 (zero) in the resulting response block.

66 Developing Palm OS Applications, Part I



Palm OS Communications
The PAD Server

Listing 2.5

Sending a PADP Response

Il

/1 Using PsrSendReply to send a PADP response.

Il

Err SendPADPResponseExanpl e( Byt e renot eSocket | D,
Byt e transacti onl D)

{
Err

PnSegnent Type
Byt e
Byt e
Byt e

err;
seg[3];

dat aSegnent 0] 53] ;
dat aSegnent 1] 10] ;
dat aSegnent 2[ 15] ;

seg[ 0] . dat aP = dat aSegnent O;
seg[ 0] . dat aSi ze = si zeof (dat aSegnent 0) ;
seg[ 0] .wordAlign = fal se;

seg[ 1] . dat aP = dat aSegnent 1;
seg[ 1] . dat aSi ze = si zeof (dat aSegnent 1) ;
seg[ 1] .wordAlign = true;

seg[ 2] . dat aP = dat aSegnent 2;
seg[ 2] . dat aSi ze = si zeof (dat aSegnent 2) ;
seg[ 2] .wordAlign = fal se;

err = PsrSendRepl y( renoteSocket| D,
transactionl D, seg, 3/*segCount*/ );

return( err );

}

Developing Palm OS Applications, Part Il 67



Palm OS Communications
The PAD Server

PAD Server Function Summary
e Psrd ose

¢ Psr Get Command

Psrinit

Psr SendRepl y

68 Developing Palm OS Applications, Part I



3

Memory Manager Functions

MemCardInfo

Purpose  Return information about a memory card.

Prototype Err MenCardlinfo ( U nt cardNo,
Char Ptr car dNaneP,
Char Pt r manuf NanP,
UntPtr versionP,
ULongPtr cr Dat eP,
ULongPtr ronSi zeP,
ULongPTr ranti zeP,
ULongPtr freeBytesP)

Parameters  cardNo Card number.
cardNameP Pointer to character array (32 bytes) or 0.
manufNameP Pointer to character array (32 bytes) or 0.
versionP Pointer to version variable, or 0.
crDatelP Pointer to creation date variable, or 0.
romSizelP Pointer to ROM size variable, or 0.
ramSizelP Pointer to RAM size variable, or 0.
freeBytesP Pointer to free byte-count variable, or 0.

Result Returns 0 if no error.

Comments  Pass 0 for those variables that you don’t want returned.

Developing Palm OS Applications 69



Memory Manager Functions

Purpose
Prototype
Parameters

Result

Comments

Purpose
Prototype
Parameters

Result

Purpose

Prototype
Parameters
Result

Comments

See Also

MemChunkFree

Dispose of a chunk.

Err MenChunkFree (Voi dPtr chunkDat aP)

chunkDat aP Chunk data pointer.
0 No error
memErrinvalidParam Invalid parameter

Call this routine to dispose of a chunk, which is disposed of even if
it’s locked.

MemDebugMode

Return the current debugging mode of the memory manager.
Wrd MenDebughMode (voi d)

No parameters.

Returns debug flags as described for Menfset Debugh©bde.

MemHandleDataStorage

Return true if the given handle is part of a data storage heap. If not,
it’s a handle in the dynamic heap.

Bool ean MenHandl eDat aSt or age (Voi dHand h)
h Chunk handle.
Returns true if the handle is part of a data storage heap.

Called by Fields package routines to determine if they need to
worry about data storage write-protection when editing a text field.

MenPt r Dat aSt or age

70 Developing Palm OS Applications



Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result:
Comments

See Also

MemHandleCardNo

Return the card number a chunk resides in.
U nt MenHandl eCar dNo (Voi dHand h)
->h Chunk handle.

Returns the card number.

Call this routine to retrieve which card number (0 or 1) a movable
chunk resides on.

MenPt r Car dNo

MemHandleFree

Dispose of a movable chunk.

Err MenHandl eFree (Voi dHand h)
->h Chunk handle.

Returns 0 if no error, or nenEr r | nval i dPar amif an error occurs.

Call this routine to dispose of a movable chunk.

MenHandl eNew

Developing Palm OS Applications 71



Memory Manager Functions

Purpose
Prototype
Parameters
Result
Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

MemHandleHeapID

Return the heap ID of a chunk.

U nt MenHandl eHeapl D ( Voi dHand h)
->h Chunk handle.
Returns the heap ID of a chunk.

Call this routine to get the heap ID of the heap a chunk resides in.

MenPt r Heapl D

MemHandleLock

Lock a chunk and obtain a pointer to the chunk’s data.
Voi dPtr MemHandl eLock (Voi dHand h)

->h Chunk handle.

Returns a pointer to the chunk.

Call this routine to lock a chunk and obtain a pointer to the chunk.
MenHandl eLock and MenHandl eUnl ock should be used in pairs.

MenHandl eNew, MenHandl eUnl ock

72 Developing Palm OS Applications



Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

MemHandleNew

Allocate a new movable chunk in the dynamic heap.
Voi dHand MenHandl eNew (ULong si ze)

-> size The desired size of the chunk.

Returns handle to the new chunk, or 0 if unsuccessful.

Allocates a movable chunk in the dynamic heap and returns a
handle it. Use this call when allocating dynamic memory.

MenPt r Fr ee, MenPt r New, MenHand| eFr ee

MemHandleResize
Resize a chunk.

Err MenHandl eResi ze (Voi dHandl e h,
ULong newsSi ze)

->h Chunk handle.
->newsSize The new desired size.
0 No error.

mentrrinval i dParam Invalid parameter passed.

menEr r Not EnoughSpace Not enough free space in heap to grow
chunk.

menEr r ChunkLocked Can’t grow chunk because it’s locked.

Call this routine to resize a chunk. This routine is always suc-

cessful when shrinking the size of a chunk, even if the chunk is

locked. When growing a chunk, it first attempts to grab free space

immediately following the chunk so that the chunk does not have

to move. If the chunk has to move to another free area of the heap

to grow, it must be movable and have a lock count of 0.

MenHandl eNew, MenHandl eSi ze

Developing Palm OS Applications 73



Memory Manager Functions

Purpose
Prototype
Parameters
Result
Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

MemHandleSize

Return the requested size of a chunk.
ULong MenHandl eSi ze (Voi dHand h)
->h Chunk handle.

Returns the requested size of the chunk.

Call this routine to get the size originally requested for a chunk.

MenHandl eResi ze

MemHandleToLocallD

Convert a handle into a local chunk ID which is card relative.
Local | D MenHandl eToLocal | D ( Voi dHand h)

->h Chunk handle.
Returns Local ID, or nil (0) if unsuccessful.

Call this routine to convert a chunk handle to a Local ID.

Menlocal | DTod obal , MenLocal | DToLockedPt r

74 Developing Palm OS Applications



Memory Manager Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

MemHandleUnlock

Unlock a chunk given a chunk handle.
Err MenHandl eUnl ock (Voi dHand h)
->h The chunk handle.

0 No error.

mentrrinval i dParam Invalid parameter passed

Call this routine to decrement the lock count for a chunk.
MenmHandl eLock and MenHandl eUnl ock should be used in pairs.

MenHandl eLock

MemHeapCheck

Check validity of a given heap.

Err MenHeapCheck (Ul nt heapl D)
heapID ID of heap to check.
Returns 0 if no error.

MenmDebugMode, Mentset Debughbde

Developing Palm OS Applications 75



Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result

Comments

See Also

MemHeapCompact

Compact a heap.

Err MenHeapConpact (Ul nt heapl D)

-> heapID ID of the heap to compact.

Always returns 0.

Call this routine to compact a heap and merge all free space. This

routine attempts to move all movable chunks to the start of the
heap and merge all free space in the center of the heap.

The system software calls this function at various times; for ex-
ample, during memory allocation (if sufficient free space is not
available) and during system reboot.

MemHeapDynamic

Return TRUE if the given heap is a dynamic heap.
Bool ean MenmHeapDynami ¢ (Ul nt heapl D)
heapID ID of the heap to be tested.
Returns TRUE if dynamic, FALSE if not.

Dynamic heaps are used for volatile storage, application stacks,
globals, and dynamically allocated memory.

MenNuntHeaps, MentHeapl D

76 Developing Palm OS Applications



Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

MemHeapFlags

Return the heap flags for a heap.

U nt MenHeapFl ags (U nt heapl D)
-> heapID ID of heap.

Returns the heap flags.

Call this routine to retrieve the heap flags for a heap. The flags can
be examined to determine if the heap is ROM based or not. ROM-
based heaps have the nenmtHeapFl agReadOnl y bit set.

MenmNuntHeaps, Menteapl D

MemHeapFreeBytes

Return the total number of free bytes in a heap and the size of the
largest free chunk in the heap.

Err MenHeapFreeBytes ( U nt heapl D,
ULongPtr freeP,
ULongPt r maxP)

->heapID  ID of heap.
<->freeP  Pointer to a variable of type ULong for free bytes.
<->maxP  Pointer to a variable of type ULong for max free

chunk size.
Always returns 0.

Call this routine to retrieve the total number of free bytes left in a
heap and the size of the largest free chunk. This routine doesn’t
compact the heap but the caller may compact the heap explicitly
before calling this routine to determine if an allocation will succeed
or not.

MenHeapSi ze, MenHeapl D, MenHeapConpact

Developing Palm OS Applications 77



Memory Manager Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters

Comments

Result

See Also

MemHeapID

Return the heaplD for a heap, given its index and the card number.

U nt MenHeapl D (U nt cardNo, U nt heapl ndex)

-> cardNo The card number, either 0 or 1.

-> heapIndex The heap index, anywhere from 0 to
MemNuntHeaps - 1.

Returns the heap ID.

Call this routine to retrieve the heap ID of a heap, given the heap
index and the card number. A heap ID must be used to obtain in-
formation on a heap such as its size, free bytes, etc., and is also
passed to any routines which manipulate heaps.

MemNunHeaps

MemHeapScramble

Scramble the given heap.

Err MenHeapScranbl e (Ul nt heapl D)
heapID ID of heap to scramble.

The system does multiple passes over the heap attempting to move
each movable chunk.

Useful during debugging.
Always returns 0.

MenDebugMode, Mentet Debughbde

78 Developing Palm OS Applications



Memory Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters

Result

Comments

MemHeapSize

Return the total size of a heap including the heap header.
ULong MenHeapSi ze (U nt heapl D)

-> heapID ID of heap.

Returns the total size of the heap.

MenteapFr eeByt es, MenHeapl D

MemLocallDKind

Return whether or not a Local ID references a handle or a pointer.
Local I DKi nd MenLocal | DKi nd (Local I D | ocal)

->local The Local ID to query

Returns Local | DKi nd, or a nend DHandl e or nen DPt r (see Mem-
oryMgr.h).

This routine determines if the given Local ID is to a nonmovable
(mem DPt r ) or movable (mem DHandl e) chunk.

Developing Palm OS Applications 79



Memory Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

MemLocallDToGlobal

Convert a Local ID, which is card relative, into a global pointer in
the designated card.

Voi dPtr MenlLocal | DTod obal ( Local I D | ocal,

U nt car dNo)
->local The Local ID to convert.
-> cardNo Memory card the chunk resides in.

Returns pointer or handle to chunk.

This routine converts a Local ID back to a pointer or handle, given
the card number that the chunk resides in.

Menlocal | DKi nd, Menliocal | DToLockedPt r

MemLocallDToLockedPtr

Return a pointer to a chunk designated by Local ID and card
number.

Note: If the Local ID references a movable chunk handle, this
routine automatically locks the chunk before returning.

Voi dPtr Menlocal | DToLockedPtr( Local I D | ocal,
U nt car dNo)

Local chunkID.

Card number.

local
cardNo

Returns pointer to chunk, or 0 if an error occurs.

Menlocal | DTod obal , Meniocal | DToPt r, Menlocal | DKi nd,
MenPt r ToLocal | D MenHandl eToLocal | D

80 Developing Palm OS Applications



Memory Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

MemLocallDToPtr

Return pointer to chunk, given the Local ID and card number.

Voi dPtr MenLocal | DToPtr( Local I D I ocal,
U nt car dNo)

->local Local ID to query.

->cardNo Card number the chunk resides in.
Returns a pointer to the chunk or 0 if error.

If the Local ID references a movable chunk and that chunk is not
locked, this function returns zero to indicate an error.

MenLocal | DTod obal , MenLocal | DToLockedPt r

MemMove
Move a range of memory to another range in the dynamic heap.

Err MenMove( Voi dPtr dstP,
Voi dPtr srcP,
ULong nunByt es)

dstP Pointer to destination.
srcl’ Pointer to source.
numBytes  Number of bytes to move.

Always returns 0.

Handles overlapping ranges.

For operations where the destination is in a data heap, see Dnfet ,
DnVi t e, and related functions.

Developing Palm OS Applications 81



Memory Manager Functions

Purpose

Prototype
Parameters

Result

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result

See Also

MemNumCards

Return the number of memory card slots in the system, not all slots
need to be populated.

U nt MemNunCards (void)
None.

Returns number of slots in the system.

MemNumHeaps
Return the number of heaps available on a particular card.
U nt MemNunmHeaps (Ul nt car dNo)

->cardNo  The card number; either 0 or 1.

Number of heaps available including ROM- and RAM-based heaps.

Call this routine to retrieve the total number of heaps on a memory
card. The information can be obtained by calling MenHeapSi ze,
MenHeapFr eeByt es, and MenHeapFl ags on each heap using its
heapID. The heapID is obtained by calling MenHeapl D with the
card number and the heap index which can be any value from 0 to
Mem\unHeaps.

MemNumRAMHeaps

Return the number of RAM heaps in the given card.
U nt MemNunRAMHeaps (Ul nt car dNo)

cardNo The card number.

Returns the number of RAM heaps.

MenNuntCar ds

82 Developing Palm OS Applications



Memory Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

MemPtrCardNo

Return the card number (0 or 1) a nonmovable chunk resides on.
U nt MenPtrCardNo (Voi dPtr chunkP)

-> chunkP  Pointer to the chunk.

Returns the card number.

MenHandl eCar dNo

MemPtrDataStorage

Return TRUE if the given pointer is part of a data storage heap; if
not, it is a pointer in the dynamic heap.

Bool ean MenPtr Dat aSt orage (Voi dPtr p)
P Pointer to a chunk.
Returns true if the chunk is part of a data storage heap.

Called by Fields package to determine if it needs to worry about
data storage write-protection when editing a text field.

MenHeapDynam ¢

MemPtrFree

Macro to dispose of a chunk.

Err MenPtrFree (VoidPtr p)
>p Pointer to a chunk.

Returns 0 if no error or memErrInvalidParam (Invalid parameter).

Call this routine to dispose of a nonmovable chunk.

Developing Palm OS Applications 83



Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result
Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

MemPtrHeapID

Return the heap ID of a chunk.

U nt MenPtrHeapl D (VoidPtr p)
-> chunkP  Pointer to the chunk.
Returns the heap ID of a chunk.

Call this routine to get the heap ID of the heap a chunk resides in.

MemPtrToLocallD

Convert a pointer into a card-relative local chunk ID.
Local | D MenPt r ToLocal I D (Voi dPtr chunkP)
->chunkP  Pointer to a chunk.

Returns the local ID of the chunk.

Call this routine to convert a chunk pointer to a Local ID.

Menlocal | DToPtr

MemPtrNew

Allocate a new nonmovable chunk in the dynamic heap.
Voi dPtr MenPtrNew (ULong si ze)

-> size The desired size of the chunk.

Returns pointer to the new chunk, or 0 if unsuccessful.

This routine allocates a nonmovable chunk in the dynamic heap

and returns a pointer to the chunk. Applications can use it when al-

locating dynamic memory.

84 Developing Palm OS Applications



Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype

Parameters

Result

Comments

See Also

MemPtrRecoverHandle
Recover the handle of a movable chunk, given a pointer to its data.
Voi dHand MenPt r Recover Handl e (Voi dPtr p)

->p Pointer to the chunk.

Returns the handle of the chunk, or 0 if unsuccessful.

Don’t call this function for pointers in ROM or non-movable data
chunks.

MemPtrResize
Resize a chunk.

Err MenPtrResize (VoidPtr p, ULong newSi ze)

>p Pointer to the chunk.

->newSize The new desired size.

Returns 0 if no error, or mener r Not EnoughSpace

menEer r I nval i dPar am or mener r ChunkLocked if an error oc-
curs.

Call this routine to resize a locked chunk. This routine is always
successful when shrinking the size of a chunk. When growing a
chunk, it attempts to use free space immediately following the
chunk.

MenPtr Si ze, MenHandl eResi ze

Developing Palm OS Applications 85



Memory Manager Functions

Purpose

Prototype

Parameters

Result

Comments

MemSet

Set a memory range in a dynamic heap to a specific value.

Err Mentet ( VoidPtr dstP,
ULong nunByt es,
Byt e val ue)

dstP Pointer to the destination.
numBytes  Number of bytes to set.

value Value to set.
Always returns 0.

For operations where the destination is in a data heap, see DnSet ,
DMV i t e, and related functions.

86 Developing Palm OS Applications



Memory Manager Functions

MemSetDebugMode
Purpose  Set the debugging mode of the memory manager.
Prototype Err Mentet DebugMbde (VWord fl ags)
Parameters  flags Debug flags.

Comments  Provide one (or none) of the following flags:
menDebugMydeCheckOnChange
menDebugModeCheckOnAl |
nmenDebugMbdeScr anbl eOnChange
menDebugModeScr anbl eOnAl |
menDebugModeFi | | Free
menDebugModeAl | Heaps
nmenDebugMdeAl | Heaps
menDebugMbdeRecor dM nDynHeapFr ee

Result Returns 0 if no error, or -1 if an error occurs.

MemPtrSize
Purpose  Return the size of a chunk.
Prototype ULong MenPtrSi ze (VoidPtr p)
Parameters ->p Pointer to the chunk.
Result  The requested size of the chunk.

Comments  Call this routine to get the original requested size of a chunk.

Developing Palm OS Applications 87



Memory Manager Functions

MemPtrUnlock
Purpose  Unlock a chunk given a pointer to the chunk.
Prototype Err MenPtrUnl ock (VoidPtr p)
Parameters p Pointer to a chunk.
Result  0if no error, or nenkr r | nval i dPar amif an error occurs.
Comments A chunk must not be unlocked more times than it was locked.

See Also  MenHandl eLock

88 Developing Palm OS Applications



Memory Manager Functions

Purpose

Prototype

Parameters

Result

MemStorelnfo

Return information on either the RAM store or the ROM store for a

memory card.

Err MentStorelnfo ( U nt cardNo,

-> cardNo

-> storeNumber

<-> versionP
<->flagsP
<->nameP

<-> crDatelP
<->bckUpDateP

<-> heapListOffsetP
<-> initCodeOffset1P

<-> initCodeOffset2P

<-> databaseDirIDP

U nt storeNunber,

U ntPtr versionP,

UntbPtr flagsP,

Char Ptr naneP,

ULongPtr cr Dat eP,

ULongPt r bckUpDat eP,
ULongPtr heapLi st O fset P,
ULongPtr init CodeOfset 1P,
ULongPtr i nitCodeO fset 2P,
Local | D* dat abaseDi r | DP)

Card number, either 0 or 1.

Store number; 0 for ROM, 1 for RAM.
Pointer to version variable, or 0.

Pointer to flags variable, or 0.

Pointer to character array (32 bytes) or 0.
Pointer to creation date variable, or 0.
Pointer to backup date variable, or 0.
Pointer to heapListOffset variable, or 0.

Pointer to i ni t Code f set 1 variable,
or 0.

Pointer to i ni t Code f set 2 variable,
or 0.

Pointer to database directory chunk ID
variable, or 0.

Returns 0 if no error, or nener r Car dNoPr esent,
mentr r RAMOnl yCar d, or nenkr r I nval i dSt or eHeader if an

error occurs.

Developing Palm OS Applications 89



Memory Manager Functions

Comments  Call this routine to retrieve any or all information on either the
RAM store or the ROM store for a card. Pass 0 for variables that
you don’t wish returned.

Functions for System Use Only

MemCardFormat

Prototype Err MenCardFormat (U nt car dNo,
Char Ptr car dNameP,
Char Pt r manuf NaneP,
Char Ptr rantt or eNaneP)

WARNING: This function for use by system software only.

MemChunkNew

Prototype  Voi dPtr MenChunkNew (Ul nt heapl D,
ULong si ze,
Unt attributes)

WARNING: This function for use by system software only.

MemHandleFlags

Prototype U nt MenHandl eFl ags (Voi dHand h)

WARNING: This function for use by system software only.

MemHandleLockCount

Prototype U nt MenHandl eLockCount (Voi dHand h)

WARNING: This function for use by system software only.

90 Developing Palm OS Applications



Memory Manager Functions

MemHandleOwner

Prototype U nt MenHandl eOmer (Voi dHand h)

WARNING: This function for use by system software only.

MemHandleResetLock

Prototype Err MenHandl eReset Lock (Voi dHand h)

WARNING: This function for use by system software only.

MemHandleSetOwner

Prototype Err MenHandl eSet Owner (Voi dHand h,
U nt owner)

WARNING: This function for use by system software only.

MemHeapFreeByOwnerID

Prototype Err MenHeapFreeByOmer | D ( U nt heapl D,
U nt ownerl D)

WARNING: This function for use by system software only.

MemHeaplInit

Prototype Err MenHeaplnit ( U nt heapl D,
I nt nunmHandl es,
Bool ean i nit Cont ents)

WARNING: This function for use by system software only.

Developing Palm OS Applications 91



Memory Manager Functions

Prototype

Prototype

Prototype

Prototype

Prototype

Prototype

Memlnit

Err Mem nit (void)

Warning: This function for use by system software only.

MemiInitHeapTable

Err Menml nit HeapTabl e (U nt car dNo)

WARNING: This function for use by system software only.

MemKernellnit

Err MenKernel I nit(void)

WARNING: This function for use by system software only.

MemPtrFlags

U nt MenPtrFl ags (Voi dPtr chunkDat aP)

WARNING: This function for use by system software only.

MemPtrOwner

U nt MenPtrOmer (VoidPtr chunkDat aP)

WARNING: This function for use by system software only.

MemPtrResetLock

Err MenPtrReset Lock (VoidPtr chunkP)

92 Developing Palm OS Applications



Memory Manager Functions

WARNING: This function for use by system software only.

MemPtrSetOwner

Prototype Err MenPtr Set Owmner (Voi dPtr chunkP, U nt owner)

WARNING: This function for use by system software only.

MemSemaphoreRelease

Prototype Err MenBenmaphor eRel ease (Bool ean witeAccess)

Warning: This function for use by system software only.

MemSemaphoreReserve

Prototype Err MenBemaphor eReserve (Bool ean witeAccess)

Warning: This function for use by system software only.

MemStoreSetinfo

Prototype Err MenttoreSetlnfo (U nt cardNo,
U nt storeNunber,
UntPtr versionP,
UntPtr flagsP,
Char Ptr naneP,
ULongPtr cr Dat eP,
ULongPt r bckUpDat eP,
ULongPtr heapLi st O f set P,
ULongPtr init CodeOrfset 1P,
ULongPtr init CodeO fset 2P,
Local | D* dat abaseDi r| DP)

Developing Palm OS Applications 93



Memory Manager Functions

94 Developing Palm OS Applications



A

Data and Resource Manager
Functions

DmArchiveRecord

Purpose  Mark a record as archived by leaving the record’s chunk around
and setting the delete bit for the next sync.

Prototype Err DmArchi veRecord (DnOpenRef dbR, Ul nt index)

Parameters  ->dbR DnOpenRef to open database.

->index Which record to archive.

Result  Returns 0 if no error or dnEr r | ndexQut O Range or
dnEr r ReadOnl y if an error occurs.

Comments  Marks the delete bit in the database header for the record but does
not dispose of the record’s data chunk.

See Also DnRenoveRecor d, DnDet achRecor d, DniNewRecor d,
DnDel et eRecord

Developing Palm OS Applications 95



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmAttachRecord

Attach an existing chunk ID handle to a database as a record.

Err DmAttachRecord ( DmOpenRef dbR
untPtr atP,
Handl e newH,
Handl e* ol dHP)

->dbR DrOpenRef to open database.
<->atP Pointer to index where new record should be placed.
->newH Handle of new record.

<->0ldHP Pointer to return old handle if replacing existing
record.

Returns 0 if no error, or dnEr r | ndexQut O Range,

dnEr r Mentr r or, dnkr r ReadOnl y, dnEr r Recor dl nW ongCar d,
mentr r ChunkLocked, mentr r | nval i dPar am or

menEr r Not EnoughSpace if an error occurs.

Given the handle of an existing chunk, this routine makes that
chunk a new record in a database and sets the dirty bit. The param-
eter at P points to an index variable. If ol dHP is nil, the new record
is inserted at index *at P and all following record indices are
shifted down. If *at P is greater than the number of records cur-
rently in the database, the new record is appended to the end and
the index of it returned in *at P. If ol dHP is not nil, the new record
replaces an existing record at index *at P and the handle of the old
record is returned in *ol dHP so that the application can free it or
attach it to another database.

Useful for cutting and pasting between databases.

DnDet achRecor d, DriNewRecor d, DniNewHand| e

96 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmAttachResource

Attach an existing chunk ID to a resource database as a new re-
source.

Err DmAtt achResource ( DrOpenRef dbR
Voi dHand newH,
ULong resType,

I nt resl D)
->dbR DOpenRef to open database.
->newH Handle of new resource’s data.
->resType Type of the new resource.
->reslD ID of the new resource.

Returns 0 if no error, or dnEr r | ndexQut O Range,

dnEr r Mentr r or, dnr r ReadOnl y, dnEr r Recor dl nW ongCar d,
mentr r ChunkLocked, mentr r | nval i dPar am or

menEr r Not EnoughSpace if an error occurs.

Given the handle of an existing chunk with resource data in it, this
routine makes that chunk a new resource in a resource database.
The new resource will have the given type and ID.

DnDet achResour ce, DnRenpveResour ce, DniNewHandl e,
DniNewResour ce

Developing Palm OS Applications 97



Data and Resource Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

DmCloseDatabase

Close a database.

Err Dnd oseDat abase (DmOpenRef dbR)

dbR Database access pointer.

Returns 0 if no error or dnEr r | nval i dPar amif an error occurs.
This routine doesn’t unlock any records in the database which
have been left locked, so the application should be careful not to
leave records locked. When performance is not an issue, call

DnReset Recor dSt at es before closing the database in order to
unlock all records and clear the busy bits.

DnOpenDat abase, DnDel et eDat abase,
DnOpenDat abaseByTypeCr eat or

DmCreateDatabase

Create a new database on the specified card with the given name,
creator, and type.

Err DnCreat eDat abase ( U nt cardNo,
Char Ptr naneP,
ULong creat or,
ULong type,
Bool ean resDB)

-> cardNo The card number to create the database on.

->nameP Name of new database, up to 31 ASCII bytes
long.

-> creator Creator of the database.

-> type Type of the database.

->resDB If true, create a resource database.

98 Developing Palm OS Applications



Data and Resource Manager Functions

Result

Comments

See Also

Purpose

Prototype
Parameters
Result
Comments

See Also

Returns 0 if no error, or dnEr r | nval i dDat abaseNang,

dnErr Al r eadyExi st s, mentr r Car dNot Pr esent,

dnEr r Mentr r or, nenkr r ChunkLocked, nener r |1 nval i dPar am
mentr r 1 nval i dSt or eHeader, mentr r Not EnoughSpace, or
nmentr r RAMOnl yCar d if an error occurs.

Call this routine to create a new database on a specific card. This
routine doesn’t check for a database with the same name, so check
for it yourself. Once created, the database ID can be retrieved by
calling DnFi ndDat abase and the database opened using the data-
base ID. To create a resource database instead of a record-based da-
tabase, set the r esDB boolean to TRUE.

DnCr eat eDat abaseFr onl nage, DnOpenDat abase,
DnDel et eDat abase

DmCreateDatabaseFromimage

Call to create an entire database from a single resource that con-
tains an image of the database; usually, make this call from an ap-
plication’s reset action code during boot.

Err DMCr eat eDat abaseFrom nage (Ptr bufferP)

bufferP Pointer to locked resource containing database image.
Returns 0 if no error

Use this function to create the default database for an application.

DnCr eat eDat abase, DnpenDat abase

Developing Palm OS Applications 99



Data and Resource Manager Functions

DmDatabaselnfo

Purpose  Retrieve information about a database.

Prototype Err DnDat abasel nfo (
U nt cardNo, Local |l D dblD,
CharPtr naneP, UntPtr attributesP,
U ntPtr versionP, ULongPtr crDateP,
ULongPtr nodDat eP, ULongPtr bckUpDat eP,
ULongPtr nmodNunP, Local | D* appl nf ol DP,
Local I D* sortlnfol DP, ULongPtr typeP,
ULongPtr creatorP)

Parameters  -> cardNo Which card number database resides on.
-> dbID Database ID of the database.
<->namel’ Pointer to 32-byte character array for

returning the name, or nil.

<-> attributesP Pointer to return attributes variable, or nil.
versionP Pointer to new version, or nil.
<-> crDatelP Pointer to return creation date variable, or nil.
<->modDatelP Pointer to return modification date variable, or

nil.
<->bckUpDateP  Pointer to return backup date variable, or nil.

<-> modNum?P Pointer to return modification number
variable, or nil.

<->applInfolDP Pointer to return appInfolD variable, or nil.
<-> sortInfolDP Pointer to return sortInfolD variable, or nil.
<->typeP Pointer to return type variable, or nil.

<-> creatorl? Pointer to return creator variable, or nil.

Result Returns 0 if no error, or dnEr r | nval i dPar amif an error occurs.

100 Developing Palm OS Applications



Data and Resource Manager Functions

Comments  Call this routine to retrieve any or all information about a data-
base. This routine accepts nil for any return variable parameter
pointer you don’t want returned.

See Also Dntet Dat abasel nf o, DnDat abaseSi ze,
DnOpenDbDat abasel nf o, DnFi ndDat abase,
DnGet Next Dat abaseByTypeCr eat or

DmDatabaseSize
Purpose Retrieve size information on a database.

Prototype Err DnDat abaseSi ze ( U nt cardNo,
Chunkl D dbl D,
ULongPt r nunRecor dsP,
ULongPtr total Byt esP,
ULongPt r dat aByt esP)

Parameters  -> cardNo Which card number database resides on.
-> dbID Database ID of the database.
<->numRecordsP Pointer to return nunRecor ds variable, or nil.
<-> totalBytesP Pointer to return t ot al Byt es variable, or nil.
<-> dataBytesP Pointer to return dat aByt es variable, or nil.

Result Returns 0 if no error, or drEr r Mentr r or if an error occurs.

Comments  Call this routine to retrieve the size of a database. Any of the return
data variable pointers can be nil.

¢ The total number of records is returned in * nunRecor dsP.

 The total number of bytes used by the database
including the overhead is returned in *t ot al Byt esP.

* The total number of bytes used to store just each record’s
data, not including overhead, is returned in
*dat aByt esP.

See Also DnDat abasel nf o, DnDpenDat abasel nf o, DnFi ndDat abase,
DnGet Next Dat abaseByTypeCr eat or

Developing Palm OS Applications 101



Data and Resource Manager Functions

DmDeleteDatabase
Purpose Delete a database and all its records.
Prototype Err DmDel et eDat abase (Ul nt cardNo, Local I D dbl D)

Parameters --> cardNo Card number the database resides on.
-->dbID Database ID.

Result  Returns 0 if no error, or dner r Cant Fi nd, dner r Cant Qpen,
menEr r ChunkLocked, dner r Dat abaseQpen, dnEr r ROVBased,
menEr r | nval i dPar am or menEr r Not EnoughSpace if an error
occurs.

Comments  Call this routine to delete a database. This routine accepts a data-
base ID as a parameter. To determine the database ID, call either
Dnti ndDat abase or DnGet Dat abase with a database index.

SeeAlso DnDel et eRecor d, DnRenoveRecor d, DnRenoveResour ce,
DnCr eat eDat abase, Dnzet Next Dat abaseByTypeCr eat or,
DnfFi ndDat abase

102 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmDeleteRecord

Delete a record’s chunk from a database but leave the record entry
in the header and set the delete bit for the next sync.

Err DnDel et eRecord (DmOpenRef dbR, Ul nt index)

->dbR DrOpenRef to open database.
->index Which record to delete.

Returns 0 if no error, or dnEr r | ndexQut O Range,
dnEr r ReadOnl y, or menEr r | nval i dPar amif an error occurs.

Marks the delete bit in the database header for the record and dis-
poses of the record’s data chunk. Does not remove the record entry
from the database header, but simply sets the localChunkID of the
record entry to nil.

DnDet achRecor d, DnRenoveRecor d, DmAr chi veRecor d,
DnmiNewRecor d

Developing Palm OS Applications 103



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmDetachRecord

Detach and orphan a record from a database but don’t delete the
record’s chunk.

Err DnDet achRecord ( DnOpenRef dbR
U nt i ndex,
Handl e* ol dHP)

->dbR DrOpenRef to open.
->index Index of the record to detach.

<->0ldHP Pointer to return handle of the detached record.

Returns 0 if no error or dnEr r ReadOnl y (database is marked read
only), dnEr r | ndexQut Of Range (index out of range),

mentr r ChunkLocked, nenErrlnval i dParam or

mentr r Not EnoughSpace if an error occurs.

This routine detaches a record from a database by removing its
entry from the database header and returns the handle of the
record’s data chunk in * ol dHP. Unlike DnDel et eRecor d, this rou-
tine removes any traces of the record including its entry in the data-
base header.

DnAt t achRecor d, DnRenoveRecor d, DnAr chi veRecor d,
DnDel et eRecord

104 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

DmDetachResource

Detach a resource from a database and return the handle of the re-
source’s data.

Err DnDet achResource ( DrOpenRef dbR
I nt i ndex,
Voi dHand* ol dHP)

->dbR DrOpenRef to open database.

->index Index of resource to detach.

<->0ldHP Pointer to return handle of the detached record.

Returns 0 if no error, or dnEr r Cor r upt Dat abase,
dnEr r I ndexQut O Range, dner r ReadOnl y,
menEer r ChunkLocked, menEr r | nval i dPar am or
menEer r Not EnoughSpace if an error occurs.

This routine detaches a resource from a database by removing its
entry from the database header and returns the handle of the re-

source’s data chunk in *ol dHP.

DmAt t achResour ce, DnRenpbveResour ce

DmFindDatabase

Return the database ID of a database by card number and name.

Local | D DnFi ndDat abase ( U nt car dNo,
Char Ptr nanmeP)

->cardNo  Number of card to search.

->nameP Name of the database to look for.
Returns the database ID, or 0 if not found.

Dntzet Next Dat abaseByTypeCr eat or, DnDat abasel nf o,
DnOpenDat abase

Developing Palm OS Applications 105



Data and Resource Manager Functions

DmFindRecordByID

Purpose  Return the index of the record with the given unique ID.

Prototype Err DnFi ndRecor dByl D ( DrpenRef dbR,
ULong uni quel D,
UntPtr indexP)

Parameters  dbR Database access pointer.
uniquelD Unique ID to search for.
indexP Return index.

Result  Returns 0 if found, otherwise dnEr r Uni quel DNot Found.

SeeAlso DnQuer yRecor d, DniGet Recor d, DnRecor dl nf o

106 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmFindResource

Search the given database for a resource by type and ID, or by
pointer if it is non-nil.

I nt DnFi ndResour ce ( DnOpenRef dbR
ULong resType,
Int resli D,
Voi dHand fi ndResH)

->dbR Open resource database access pointer.
->resType Type of resource to search for.

->resID ID of resource to search for.
->findResH Pointer to locked resource, or nil.

Returns index of resource in resource database, or -1 if not found.

Use this routine to find a resource in a particular resource database
by type and ID or by pointer. It is particularly useful when you
want to search only one database for a resource and that database
is not the topmost one.

If f i ndResHis nil, the resource is searched for by type and ID.

If f i ndResHis not nil, r esType and r es| Dare ignored and the
index of the given locked resource is returned.

Once the index of a resource is determined, it can be locked down
and accessed by calling DnfGet Resour cel ndex.

DntGet Resour ce, Dnbear chResour ce, DnResour cel nf o,
DnGet Resour cel ndex, DnFi ndResour ceType

Developing Palm OS Applications 107



Data and Resource Manager Functions

DmFindResourceType
Purpose  Search the given database for a resource by type and type index.

Prototype I nt DnFi ndResour ceType ( DrOpenRef dbR
ULong resType,
I nt typel ndex)

Parameters  ->dbR Open resource database access pointer.
->resType Type of resource to search for.
-> typelndex Index of given resource type.

Result Index of resource in resource database, or -1 if not found.

Comments  Use this routine to retrieve all the resources of a given type in a re-
source database. By starting at t ypel ndex 0 and incrementing
until an error is returned, the total number of resources of a given
type and the index of each of these resources can be determined.
Once the index of a resource is determined, it can be locked down
and accessed by calling DnfGet Resour cel ndex.

See Also DntGet Resour ce, DnSear chResour ce, DnResour cel nf o,
DnGet Resour cel ndex, DnFi ndResour ce

108 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmFindSortPosition

Return where a record is or should be.

Useful to find an existing record or find where to insert a record.
Uses a binary search.

U nt DnFi ndSort Posi ti on( DrOpenRef dbR,
Voi dPtr newRecord,
DnConpar F *conpar,
I nt ot her)

dbR Database access pointer.
newRecord Pointer to the new record.
compar Comparison function (see Comments).

other Any value the application wants to pass to the
comparison function.

Returns the position where the record should be inserted. The posi-
tion should be viewed as between the record returned and the
record before it. Note that the return value may be one greater than
the number of records.

conpar, the comparison function, accepts two arguments, elem1
and elem?2, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result of the compar-
ison.

If the items conpar returns
*elem1 < *elem?2 an integer <0
*elem1 == *elem?2 0

*elem1 > *elem2 an integer >0

DnQui ckSort, DM nserti onSort

Developing Palm OS Applications 109



Data and Resource Manager Functions

Purpose
Prototype
Parameters
Result

SeeAlso

Purpose

Prototype

Parameters

Result

Comments

See Also

DmGetAppInfolD

Return the Local ID of the application info block.
Local | D DnGet Appl nf ol D ( DnOpenRef dbR)
dbR Database access pointer.

Returns Local ID of the application info block

DnDat abasel nf o, DnOpenDat abase

DmGetDatabase

Return the database header ID of a database by index and card
number.

Local | D Dnteet Dat abase (Ul nt cardNo, U nt index)
->cardNo  Which card number.
->index Index of database.

Returns the database ID, or 0 if an invalid parameter passed.

Call this routine to retrieve the database ID of a database by index.
The index should range from 0 to DriNunDat abases-1. This rou-
tine is useful for getting a directory of all databases on a card.

DnDpenDat abase, DriNunDat abases, DnDat abasel nf o,
DnDat abaseSi ze

110 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose
Prototype
Parameters
Result

Comments

DmGetLastErr

Return error code from last data manager call.

Err DnCGetlLastErr (void)

None

Error code from last unsuccessful data manager call.

Use this routine to determine why a data manager call failed. In
particular, calls like DniGet Recor d return 0 only if unsuccessful, so
calling DnCet Last Er r is the only way to determine why they
failed.

Note that DnCet Last Er r does not always reflect the error status
of the last data manager call. Rather, it reflects the error status of
data manager calls that don’t return an error code. For some of
those calls, the saved error code value is not set to 0 when the call
is successful.

For example, if a call to DnOpenDat abaseBy TypeCr eat or returns
null for database reference (that is, it fails), DnGet Last Er r returns
something meaningful; otherwise, it returns the error value of
some previous data manager call.

Only the following data manager functions currently affect the
value returned by DnGet Last Err:

Dnfi ndDat abase, DnOpenDat abaseByTypeCr eat or,
DrOpenDat abase, DnNewRecord, DmQueryRecord,
DnGet Record, DmQuer yNext | nCat egory,

DnPosi ti onl nCat egory, DnBeekRecordl nCat egory,
DnResi zeRecord, Dntet Resource, Dnet 1Resour ce,
DmNewResour ce, Dnet Resour cel ndex.

Developing Palm OS Applications 111



Data and Resource Manager Functions

DmGetNextDatabaseByTypeCreator

Purpose  Return a database header ID and card number given the type and/
or creator. This routine searches all memory cards for a match.

Prototype Err DntGet Next Dat abaseByTypeCr eat or
(Bool ean newSear ch,
DnSear chSt at ePtr st at el nf oP,
ULong type,
ULong creat or,
Bool ean onl yLat est Ver s,
U ntPtr cardNoP,
Local | D* dbl DP)

Parameters  ->newSearch True if starting a new search.
-> stateInfoP If newSearch is false, this must point to the
same data used for the previous invocation.
-> type Type of database to search for, pass 0 as a
wildcard.
-> creator Creator of database to search for, pass 0 as
a wildcard.

->onlyLatestVers If true, only latest version of each database
with a given type and creator is returned.

<- cardNoP On exit, the cardNo of the found database.
<- dbIDP Database Local ID of the found database.
Result 0 No error.

dmErrCantFind No matches found.

Comments  To start the search, pass TRUE for newSear ch. To continue a
search where the previous one left off, pass FALSE for newSear ch.
When continuing a search, st at el nf oP must point to the same
structure passed during the previous invocation.

If the t ype parameter is nil, this routine can be called successively
to return all databases of the given creator. If the cr eat or param-

112 Developing Palm OS Applications



Data and Resource Manager Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

SeeAlso

eter is nil, this routine can be called successively to return all data-
bases of the given type.

If the onl yLat est Ver s parameter is set, only the latest version of
each database with a given creator/type pair is returned.

If you're searching for the latest version and either t ype or

cr eat or is nil (wildcard), this routine returns the index of the next
database which matches the search criteria. This database can’t
have been superseded by a newer version of that database with the
same type and creator.

DntGet Dat abase, DnfFi ndDat abase, DnDat abasel nf o,
DnpenDat abaseByTypeCr eat or, DnDat abaseSi ze

DmGetRecord

Return a handle to a record by index and mark the record busy.

Voi dHand Dntcet Record ( DnOpenRef dbR

U nt index)
->dbR DmOpenRef to open database.
->index Which record to retrieve.

Handle to record data.

Returns handle to given record and sets the busy bit for the record.
If another call to DnGet Recor d for the same record is attempted
before the record is released, an error is returned.

If the record is ROM-based (pointer accessed), this routine makes a
fake handle to it and store this handle in the DmAccessType struc-
ture.

DnRel easeRecor d should be called as soon as the caller is done
viewing or editing the record.

DntSear chRecor d, DnFi ndRecor dByl D, DnRecor dl nf o,
DnRel easeRecor d, DQuer yRecor d

Developing Palm OS Applications 113



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

DmGetResource

Search all open resource databases and return a handle to a re-
source given the resource type and ID.

Voi dHand Dntet Resource (ULong type, Int 1D

-> type The resource type.
->ID The resource ID.

Returns pointer to resource data, or nil if unsuccessful.

Searches all open resource databases starting with the most re-
cently opened one for a resource of the given type and ID. If found,
the resource handle is returned. The application should call

DnRel easeRecor d as soon as it’s done accessing the resource data
to avoid fragmenting the heap.

DnGet 1Resour ce, DnRel easeResour ce

DmGetResourcelndex
Return a handle to a resource by index.

Voi dHand DnGet Resour cel ndex (  DmOpenRef dbR,

I nt i ndex)
->dbR Access pointer to open database.
->index Index of resource to lock down.

Handle to resource data, or nil if unsuccessful.

Dnfti ndResour ce, Dnfi ndResour ceType, DnSear chResour ce

114 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmGetlResource

Search the most recently opened resource database and return a
handle to a resource given the resource type and ID.

Voi dHand Dntet 1Resource (ULong type, Int ID)

-> type The resource type.
->1D The resource ID.

Returns a pointer to resource data, or nil if unsuccessful.

Searches the most recently opened resource database for a resource
of the given type and ID. If found, the resource handle is returned.

The application should call DnRRel easeRecor d as soon as it’s done
accessing the resource data in order to avoid fragmenting the heap.

DnGet Resour ce, DnRel easeResour ce

Developing Palm OS Applications 115



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

Result

DmIinsertionSort
Sort records in a database.

Err DM nsertionSort ( DrOpenRef dbR
DConpar F *conpar,

I nt ot her)
dbR Database access pointer.
compar Comparison function (see below).
other Any value the application wants to pass to the

comparison function.
Returns 0 if no error or dnEr r ReadOnl y if read only database.

Deleted records are placed last in any order. All others are sorted
according to the passed comparison function. Only records which
are out of order move. Moved records are moved to the end of the
range of equal records. If a large amount of records are being
sorted, try to use the quick sort.

The following insertion sort algorithm is used: Starting with the
second record, each record is compared to the preceding record.
Each record not greater than the last is inserted into sorted position
within those already sorted. A binary insertion is performed. A
moved record is inserted after any other equal records.

conpar , the comparison function, accepts two arguments, “elem1
and * elem2, each a pointer to an entry in the table. The compar-
ison function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result * of the compar-
ison.

If the items conpar returns
*elem1 < *elem2 an integer <0
*elem1 == *elem?2 0

*elem1 > *elem2 an integer >0

Returns 0 if no error or dmErrInvalidParam.

116 Developing Palm OS Applications



Data and Resource Manager Functions

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

Called by SysAppLaunch (see Part 1) to move an application data-
base is launching out of the system list and into the application’s
list.

Dnfi ndSor t Posi ti on, DnQui ckSor t

DmMoveCategory
Move all records in a category to another category.

Err DmvoveCat egory ( DnOpenRef dbR,
U nt toCategory,
U nt fronCategory,
Bool ean dirty)

->dbR DrOpenRef to open database.

<- toCategory Category to which to retrieve records.

-> fromCategory  Category from which to retrieve records.
-> dirty If TRUE, set the dirty bit.

Returns 0 if successful, or dnEr r ReadOnl y if read-only database.

If di rty is TRUE, the moved records are marked as dirty.

Developing Palm OS Applications 117



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

Result

Comments

DmMoveRecord
Move a record from one index to another.

Err DrmivbveRecord ( DrOpenRef dbR,
Unt from Unt to)

->dbR DrOpenRef to open database.
-> from Index of record to move.
->to Where to move the record.

Returns 0 if no error or one of dnkr r | ndexQut O Range,
dnErr ReadOnl y, mentr r ChunkLocked, mentrr | nval i dPar am
or menEr r Not EnoughSpace if an error occurs.

Insert the record at the “to” index and move other records down.
The “to” position should be viewed as an insertion position. Note
that this value may be one greater than the index of the last record
in the database.

DmNewHandle

Attempt to allocate a new chunk in the same data heap or card as
the database header of the passed database access pointer. If there
is not enough space in that data heap, tries other heaps.

Voi dHand DmNewHandl e ( DnOpenRef dbR, ULong si ze)

->dbR DmOpenRef to open database.

-> size Size of new handle.
Returns the chunkID of new chunk, or 0 if not enough space.

Allocates a new handle of the given size. Ensures that the new
handle is in the same memory card as the given database. This
guarantees that you can attach the handle to the database as a
record obtain and save its LocalID in the appInfolD or sortInfolD
fields of the header.

118 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype
Parameters
Result

Comments

DmNextOpenDatabase

Return DnOpenRef to next open database for the current task.
DrOpenRef DmiNext QpenDat abase ( DnOQpenRef current P)
-> currentP Current database access pointer or nil.
DmOpenRef to next open database, or nil if there are no more.

Call this routine successively to get the DnQpenRef s of all open da-
tabases. Pass nil for cur r ent P to get the first one. This routine
would not normally be called by applications but is useful for

system information.

DnOpenDat abasel nf o, DnDat abasel nf o

DmNextOpenResDatabase

Return access pointer to next open resource database in the search
chain.

DrOpenRef DmiNext QpenResDat abase (DnOpenRef dbR)
dbR Database reference, or 0 to start search from the top.
Pointer to next open resource database.

Returns pointer to next open resource database. To get a pointer to

the first one in the search chain, pass nil for dbR This first database
is the first and only one searched when DnGet 1Resour ce is called.

Developing Palm OS Applications 119



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmNewRecord

Return a handle to a new record in the database and mark the
record busy.

Voi dHand DmNewRecord ( DrOpenRef dbR

UntPtr atP,

ULong si ze)
->dbR DrOpenRef to open database.
<->atP Pointer to index where new record should be placed.
-> size Size of new record.

Pointer to record data, or 0 if error.

Allocates a new record of the given size, and returns a handle to
the record data. The parameter at P points to an index variable.

The new record is inserted at index *atP and all following record in-
dices are shifted down. If *atP is greater than the number of

records currently in the database, the new record is appended to
the end and its index is returned in *atP.

Both the busy and dirty bits are set for the new record and a
unique ID is automatically created.

DAt t achRecor d, DnRenoveRecor d, DnDel et eRecord

120 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

DmNewResource

Allocate and add a new resource to a resource database.

Voi dHand DmNewResour ce ( DnOpenRef dbR,
ULong resType,
Int reslD,
ULong si ze)

->dbR DrOpenRef to open database.

->resType Type of the new resource.

->resID ID of the new resource.

-> size Desired size of the new resource.

Returns a handle to new resource, or nil if unsuccessful.

Allocates a memory chunk for a new resource and adds it to the
given resource database. The new resource has the given type and
ID. If successful, the application should call DnRel easeResour ce
as soon as it finishes initializing the resource.

DAt t achResour ce, DrRenbveResour ce

DmNumDatabases

Determine how many databases reside on a memory card.
U nt DmNunDat abases (Ul nt car dNo)

-> cardNo Number of the card to check.

Returns the number of databases found.

This routine is helpful for getting a directory of all databases on a

card. The routine DnCet Dat abase accepts an index from 0 to
Dri\unDat abases -1 and returns a database ID by index.

DnGet Dat abase

Developing Palm OS Applications 121



Data and Resource Manager Functions

Purpose
Prototype
Parameters
Result

SeeAlso

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters

Result

DmNumRecords

Return the number of records in a database.
U nt DmNunRecords (DrOpenRef dbR)
->dbR DnOpenRef to open database.

Returns the number of records in a database.

DmiNunRecor dsl nCat eqgor y, DnRecor dl nf o, Dnset Recor dl nf o

DmNumRecordsinCategory
Return the number of records of a specified category in a database.

U nt DnNunRecor dsl nCat egory (DnOpenRef dbR,
U nt category)

dbr

category

DrOpenRef to open database.
Category.

Returns the number of records.

DmiNunRecor ds, DrQuer yNext | nCat egory,
DnPosi ti onl nCat egor y, DnbeekRecor dl nCat egory,
DmvbveCat egor y

DmNumResources

Return the total number of resources in a given resource database.
U nt DmNunResour ces (DnmOpenRef dbR)

->dbR DrOpenRef to open database.

Returns the total number of resources in the given database.

122 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmOpenDatabase

Open a database and return a reference to it.

DrOpenRef DnOpenDat abase ( U nt car dNo,
Local I D dbl D,
U nt node)

->cardNo  Which card number database resides on.
-> dbID The database ID of the database.

->mode Which mode to open database in (see below).
Returns DnOpenRef to open database, or 0 if unsuccessful.

Call this routine to open a database for reading or writing. The
mode parameter can be one or more of the following constants
ORed together:

dmvbdeReadWi t e Read-write access.
dmvbdeReadOnl y Read-only access.

dmvbdeLeaveQpen  Leave database open even after
application quits.

dmvbdeExcl usi ve  Don’t let anyone else open it.
This routine returns a DnOpenRef which must be used to access

particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling DnGet Last Err .

DnC oseDat abase, DnCr eat eDat abase, DnFi ndDat abase,
DnOpenDat abaseByTypeCr eat or , DnDel et eDat abase

Developing Palm OS Applications 123



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

See Also

DmOpenDatabaseByTypeCreator

Open the most recent revision of a database with the given type
and creator.

DrOpenRef DnOpenDat abaseByTypeCr eat or (

ULong type,
ULong creat or,
U nt node)
type Type of database.
creator Creator of database.
mode Open mode (see Comments for DrOpenDat abase).

DnOpenRef to open database, or 0 if unsuccessful.

DnCr eat eDat abase, DnOpenDat abase, DnlOpenDat abasel nf o,
DnC oseDat abase

124 Developing Palm OS Applications



Data and Resource Manager Functions

DmOpenDatabaselnfo
Purpose Retrieve information about an open database.

Prototype Err DnOpenDat abasel nfo ( DrOpenRef dbR,
Local | DPtr dbl DP,
U ntPtr openCount P,
U ntPtr nodeP,
U ntPtr cardNoP,
Bool eanPtr resDBP)

Parameters  ->dbR DrOpenRef to open database.
<-> dbIDP Pointer to return dbID variable, or nil.
<->openCountP  Pointer to return openCount variable, or nil.
<->modeP Pointer to return mode variable, or nil.
<-> cardNoP Pointer to return card number, or nil.
<->resDBP Pointer to return resDB Boolean, or nil.
Result 0 No error.

dnErrinval i dParam  Invalid parameter passed.

Comments  This routine retrieves information about an open database. Any nil
return parameter pointers are ignored.

See Also DnDat abasel nf o

Developing Palm OS Applications 125



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

DmPositioninCategory
Return a position of a record within the specified category.

U nt DnPositionlnCategory (DrOpenRef dbR
U nt index, Unt category)

dbR DrOpenRef to open database.
index Index of the record.
category Category to search.

Returns the position (zero-based).

If the record is ROM-based (pointer accessed) this routine makes a
fake handle to it and stores this handle in the DmAccessType struc-
ture.

DnQuer yNext | nCat egor y, DnfSeekRecor dl nCat egory,
DmivbveCat eqgory

DmQueryNextinCategory

Return a handle to the next record in the specified category for
reading only (does not set the busy bit).

Voi dHand DmQuer yNext | nCat egory ( DmOpenRef dbR,
UntPtr indexP,
U nt category)

dbR DrOpenRef to open database.

indexP Index of a known record (often retrieved with
DnPosi ti onl nCat egory).

category Which category to query.
Returns a handle to the record following a known record.

DmNunRecor dsl nCat egor y, DnPosi ti onl nCat egory,
DnSeekRecor dl nCat egory,

126 Developing Palm OS Applications



Data and Resource Manager Functions

DmQueryRecord
Purpose  Return a handle to a record for reading only (does not set the busy
bit).
Prototype  Voi dHand DmQuer yRecord ( DrOpenRef dbR,
U nt i ndex)
Parameters  ->dbR DOpenRef to open database.
->index Which record to retrieve.

Result  Returns record handle, or 0 if record is out of range or deleted.

Comments  Returns handle to given record. Use this routine only when
viewing the record. This routine successfully returns a handle to
the record even if the record is busy.

If the record is ROM-based (pointer accessed) this routine returns
the fake handle to it.

Developing Palm OS Applications 127



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmQuickSort

Sort records in a database.

Err DmQui ckSort ( const DntOpenRef dbR
DConpar F *conpar,

I nt ot her)
dbR Database access pointer
compar Comparison function (see Comments)
other Any value the application wants to pass to the

comparison function.
Returns 0 if no error or DEr r ReadOnl vy if an error occurred.

Deleted records are placed last in any order. All others are sorted
according to the passed comparison function.

conpar, the comparison function, accepts two arguments, elem1
and elem?2, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result of the compar-
ison.

If the items conpar returns
*elem1 < *elem2 an integer <0
*elem1 == *elem?2 0

*elem1 > *elem?2 an integer >0

Dnfi ndSort Posi ti on, DMl nserti onSort

128 Developing Palm OS Applications



Data and Resource Manager Functions

DmRecordInfo

Purpose Retrieve the record information as stored in the database header.

Prototype Err DnRecordl nfo ( DnOpenRef dbR
U nt index,
UBytePtr attrP,
ULongPt r uni quel DP,
Local I D* chunkl DP)

Parameters  ->dbR DnOpenRef to open database.
-> index Index of record.
<-> attrP Pointer to return attribute variable, or nil.
<->uniquelDP Pointer to return unique ID variable, or nil.
<-> chunkIDP Pointer to return Local ID variable, or nil.

Result  Returns 0 if no error or dnEr r I ndexQut O Range if an error oc-
curred.

Comments  Retrieves information about a record. Any of the return variable
pointers can be nil.

See Also DniNunRecor ds, DnSet Recor dl nf o, DrQuer yNext | nCat egory

Developing Palm OS Applications 129



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmResourcelnfo
Retrieve information on a given resource.

Err DnResourcelnfo ( DrpenRef dbR,
I nt index,
ULongPtr resTypeP,
IntPtr resl DP,
Local I D* chunkLocal | DP)

->dbR DnOpenRef to open database.

->index Index of resource to get info on.
<->resTypeP Pointer to return resType variable, or nil.
<-> res]DP Pointer to return resID variable, or nil.

<-> chunkLocallDP Pointer to return chunkID variable, or nil.

Returns 0 if no error or dnEr r I ndexQut O Range if an error oc-
curred.

Use this routine to retrieve all or a portion of the information on a
particular resource. Any or all of the return variable pointers can
be nil. The type and ID of the resource are returned in *r esTypeP
and *r es| DP. The Memory Manager Local ID of the resource data
is returned in *chunkLocal | DP.

Dntzet Resour ce, Dntzet 1Resour ce, DnSet Resour cel nf o,
Dnti ndResour ce, Dnti ndResour ceType

130 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

DmReleaseRecord

Clear the busy bit for the given record and set the dirty bit if dirty
is true.

Err DnRel easeRecord ( DmOpenRef dbR
U nt i ndex,

Bool ean dirty)

->dbR DrOpenRef to open database.
->index Which record to unlock.
-> dirty If TRUE, set the dirty bit.

Returns 0 if no error or dnEr r | ndexQut O Range if an error oc-
curred.

Call this routine when you finished modifying or reading a record
that you've called DnGet Recor d on. It sets the dirty bit for the
record if the dirty parameter is set.

DnGet Record

DmReleaseResource

Release a resource acquired with DnGet Resour ce.

Err DnRel easeResour ce (Voi dHand resourceH)
-> resourceH Handle to resource.
Returns 0 if no error.

Marks a resource as being no longer needed by the application.

Dnzet 1Resour ce, Dnzet Resour ce

Developing Palm OS Applications 131



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype

Parameters

Result

Comments

See Also

DmRemoveRecord

Remove a record from a database and dispose of its data chunk.

Err DnRenoveRecord ( DrpenRef dbR,

U nt index)
->dbR DrOpenRef to open database.
-> index Index of the record to remove.

Returns 0 if no error, or dnEr r Cor r upt Dat abase,
dnEr r I ndexQut O Range, dner r ReadOnl y,
mentr r ChunkLocked, mentr r | nval i dPar am or
menEr r Not EnoughSpace if an error occurs.

Disposes of a the record’s data chunk and removes the record’s
entry from the database header.

DnDet achRecor d, DnDel et eRecor d, DmAr chi veRecor d,
DnmiNewRecor d

DmRemoveResource
Delete a resource from a resource database.

Err DnRenoveResource ( DnOpenRef dbR, Int index)

-> dbR

->index

DrOpenRef to open database.

Index of resource to delete.
Returns 0 if no error or dnEr r Cor r upt Dat abase,
dnEr r I ndexQut O Range, dnEr r ReadOnl y,

mentr r ChunkLocked, mentrrl nval i dPar am or
menkr r Not EnoughSpace if an error occurs.

This routine disposes of the memory manager chunk that holds the
given resource and removes its entry from the database header.

DnDet achResour ce, DnRenoveResour ce, DmAL t achResour ce

132 Developing Palm OS Applications



Data and Resource Manager Functions

DmRemoveSecretRecords
Purpose  Remove all secret records.
Prototype Err DrRenoveSecr et Records ( DmOpenRef dbR)
Parameters dbR DnOpenRef to open database.

Result  Returns 0 if no error or dnEr r ReadOnl y (read-only database) if an
error occurred.

See Also DnRenoveRecor d, DnRecor dl nf o, DnSet Recor dl nf o

DmResetRecordStates
Purpose  Unlock all records in a database and clear all busy bits.
Prototype Err DnReset RecordSt ates (DmOpenRef dbR)
Parameters  ->dbR DrOpenRef to open database.
Result  Returns 0 if no error or dnEr r ROVBased if an error occurred.

Comments  This routine unlocks all records in a database and clears all busy
bits. It can optionally be called before closing a database to ensure
that the records are all unlocked. For performance reasons, the
data manager does not call DrReset Recor dSt at es automatically
when closing a database.

This routine automatically allocates the record in another data
heap if the current heap is too full.

Developing Palm OS Applications 133



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

Result

Comments

DmResizeRecord
Resize a record by index.

Voi dHand DnResi zeRecord (DnOpenRef dbR
U nt i ndex,
ULong newSi ze)

->dbR DnOpenRef to open database.
->index Which record to retrieve.
->newSize New size of record.

Pointer to resized record, or nil if unsuccessful.

This routine reallocates the record in another heap of the same
memory card if the current heap is not big enough. If this happens,
the handle changes, so be sure to use the return handle to access
the resized resource.

DmResizeResource
Resize a resource and return the new handle.

Voi dHand DrResi zeResource ( Voi dHand resour ceH,
ULong newSi ze)

-> resourceH Handle to resource.

->newSize Desired new size of resource.
Returns a handle to newly-sized resource or nil if unsuccessful.

Resizes the resource and returns new handle. If necessary in order
to grow the resource, this routine will reallocate it in another heap
on the same memory card that it is currently in.

The handle may change if the resource had to be reallocated in a
different data heap because there was not enough space in its
present data heap.

134 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

See Also

DmSearchRecord

Search all open record databases for a record with the handle
passed.

I nt Dnear chRecord ( Voi dHand recH,
DnOpenRef * dbRP)

recH Record handle.
dbRP Pointer to return variable of type DnQpenRef .

Returns the index of the record and database access pointer; if not
found, index will be -1 and *dbRP will be 0.

DnGet Recor d, DnFi ndRecor dByl D, DnRecor dl nf o

Developing Palm OS Applications 135



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SeeAlso

DmSearchResource

Search all open resource databases for a resource by type and ID,
or by pointer if it is non-nil.

I nt DnBear chResource ( ULong resType,
Int resl D,
Voi dHand resH,
DrOpenRef * dbRP)

->resType Type of resource to search for.

->resID ID of resource to search for.

->resH Pointer to locked resource, or nil.

-> dbRP Pointer to return variable of type DnmOpenRef .

Returns the index of the resource, stores DnOpenRef in dbRP.

This routine can be used to find a resource in all open resource da-
tabases by type and ID or by pointer. If resH is nil, the resource is
searched for by type and ID. If resH is not nil, resType and resID is
ignored and the index of the resource handle is returned. On
return *dbRP contains the access pointer of the resource database
that the resource was eventually found in. Once the index of a re-
source is determined, it can be locked down and accessed by
calling DnGet Resour ceByl ndex.

Dntzet Resour ce, DnFi ndResour ceType, DnResour cel nf o,
DntGet Resour cel ndex, DnFi ndResour ce

136 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

See Also

DmSeekRecordInCategory

Return the index of the record at the offset from the passed record
index. (The of f set parameter indicates the number of records to
move forward or backward; the value for backward is negative.)

Err DnBeekRecordl nCat egory ( DmOpenRef dbR,

dbR
index
offset
direction

category

UntPtr indexP,
I nt of fset,

Int direction,
U nt category)

DOpenRef to open database.

Pointer to the returned index.

Offset of the passed record index.
dnBSeekFor war d or dnSeekBackwar d.
Category ID.

Returns 0 if no error or dnEr r | ndexQut O Range or
dnEr r SeekFai | ed if an error occurred.

DniNunRecor dsl nCat egor y, DnQuer yNext | nCat egor y,

DnPosi ti onl nCat egory, DrivbveCat egor y

Developing Palm OS Applications 137



Data and Resource Manager Functions

DmSet

Purpose  Check the validity of the chunk pointer for a record and makes
sure that writing the record does not exceed the chunk bounds.

Prototype Err DnBSet ( VoidPtr recordP,
ULong of f set,
ULong bytes,
Byt e val ue)

Parameters  recordP Pointer to locked data record (chunk pointer).
offset Offset within record to start writing.
bytes Number of bytes to write.
value Byte value to write.

Result Returns 0 if no error or dnEr r Not Val i dRecor d or
dnErr Wit eQut O Bounds if an error occurred.

Comments  Must be used to write to data manager records because the data
storage area is write-protected.

See Also DNite

DmSetDatabaselnfo
Purpose  Set information about a database.

Prototype Err DnSet Dat abaselnfo (U nt cardNo,
Local I D dbl D, CharPtr naneP,
UntPtr attributesP, UntPtr versionP
ULongPtr crDateP, ULongPtr nodDat eP,
ULongPtr bckUpDat eP, ULongPtr nodNunP,
Local | D* appl nfol DP, Local I D* sort | nf ol DP,
ULongPtr typeP, ULongPtr creatorP)

Parameters  -> cardNo Card number the database resides on.
-> dbID Database ID of the database.

138 Developing Palm OS Applications



Data and Resource Manager Functions

Result

Comments

See Also

->nameP

-> attributesP
versionP

-> crDateP

-> modDateP

->bckUpDateP

-> modNumDP?

-> applnfolDP
-> sortInfolDP
-> typel

-> creatorP

Pointer to 32-byte character array for new
name, or nil.

Pointer to new attributes variable, or nil.
Pointer to new version, or nil.
Pointer to new creation date variable, or nil.

Pointer to new modification date variable, or
nil.

Pointer to new backup date variable, or nil.

Pointer to new modification number variable,
or nil.

Pointer to new appInfolD variable, or nil.
Pointer to new sortInfolD variable, or nil.
Pointer to new type variable, or nil.

Pointer to new creator variable, or nil.

Returns 0 if no error or dnEr r | nval i dPar amif an error occurred.

When this call changes appl nf ol Dor sor t | nf ol D, the old
chunkID (if any) is marked as an orphan chunk and the new chunk
ID is unorphaned. Consequently, you shouldn’t replace an existing
appl nf ol Dor sor t | nf ol Dif that chunk has already been at-
tached to another database.

Call this routine to set any or all information about a database
except for the card number and database ID. This routine sets the
new value for any non-nil parameter.

DnDat abasel nf o, DnDpenDat abasel nf o, DnFi ndDat abase,

DnGet Next Dat abaseByTypeCr eat or

Developing Palm OS Applications 139



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmSetRecordInfo

Set record information stored in the database header.

Err Dntet Recordinfo ( DnOpenRef dbR
U nt i ndex,
UBytePtr attrP,
ULongPt r uni quel DP)

->dbR DrOpenRef to open database.

-> index Index of record.

-> attrP Pointer to new attribute variable, or nil.
-> uniquelDP Pointer to new unique ID variable, or nil.

Returns 0 if no error or dnEr r | ndexQut O Range or
dnEr r ReadOnl y if an error occurred.

Set information about a record.

DmiNunRecor ds, DnRecor dl nf o

140 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Comments

DmSetResourcelnfo
Set information on a given resource.

Err Dntet Resourcelnfo ( DrOpenRef dbR,
I nt i ndex,
ULongPtr resTypeP,
IntPtr reslDP)

->dbR DrOpenRef to open database.
-> index Index of resource to set info for.
<->resTypeP Pointer to new resType, or nil.
<->resIDP Pointer to new reslD, or nil.

Returns 0 if no error or dnEr r | ndexQut O Range or
dnEr r ReadOnl y if an error occurred.

Use this routine to set all, or a portion of the information on a par-
ticular resource. Any or all of the new info pointers can be nil. If
not nil, the type and ID of the resource are changed to *r esTypeP
and *r es| DP.

Normally, the unique ID for a record is automatically created by
the Data Manager when a record is created using DnNewRecor d,
so an application would not typically change the unique ID.

Developing Palm OS Applications 141



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

DmStrCopy

Check the validity of the chunk pointer for the record and make
sure that writing the record will not exceed the chunk bounds.

Err DnStrCopy ( VoidPtr recordP,
ULong of f set,
CharPtr srcP)

recordP Pointer to Data Record (chunk pointer).
offset Offset within record to start writing.
srcP Pointer to O-terminated string.

Returns 0 if no error or dEr r Not Val | dRecor d or
dnErr Wit eQut O Bounds if an error occurred.

DV t e, Dnfet

DmWrite

Must be used to write to data manager records because the data
storage area is write-protected. This routine checks the validity of

the chunk pointer for the record and makes sure that the write will

not exceed the chunk bounds.

Err DnWite ( VoidPtr recordP, ULong offset,
Voi dPtr srcP, ULong bytes)

recordP Pointer to locked data record (chunk pointer).
offset Offset within record to start writing.

srcP Pointer to data to copy into record.

bytes Number of bytes to write.

Returns 0 if no error or diEr r Not Val i dRecor d or
dnErr Wit eQut O Bounds if an error occurred.

Dntet

142 Developing Palm OS Applications



Data and Resource Manager Functions

Purpose

Prototype

Parameters

Result

Prototype

DmWriteCheck

Check the parameters of a write operation to a data storage chunk
before actually performing the write.

Err DWWViteCheck( VoidPtr recordP,
ULong of f set,
ULong byt es)

recordP Locked pointer to recordH.
offset Offset into record to start writing.
bytes Number of bytes to write.

Returns 0 if no error or dEr r Not Val | dRecor d or
dnErr Wit eQut O Bounds if an error occurred.

System Use Only

DmMoveOpenDBContext

Err DmvbveQpenDBCont ext ( DmOpenRef * dst HeadP,
DrOpenRef dbR)

Warning: System Use Only!

Developing Palm OS Applications 143



Data and Resource Manager Functions

144 Developing Palm OS Applications



5

Communications Functions

Serial Manager

Purpose
Prototype
Parameters
Result

Comments

SerClearkrr

Reset the serial port’s line error status.

Err SerCearErr (Unt refNum

->refNum The serial library reference number.

0 No error.

Other serial manager functions, such as Ser Recei ve, immediately
return with the error code ser Err Li neEr r if any line errors are
pending. It is therefore important to check the result of serial man-

ager function calls and call Ser O ear Er r in acknowledgment if
line error(s) occur.

Developing Palm OS Applications, Part Il 145



Communications Functions

Serial Manager

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

SerClose
Release the serial port previously acquired by Ser Cpen.

Err Serd ose (U nt refNum

->refNum Serial library reference number.

0 No error.
ser Err Not Open  The port wasn’t open.
serErr Stil | Open The port is still held open by someone else.

Releases the serial port and shuts down serial port hardware if the
open count has reached 0. Ser O ose may be called only if the re-
turn value fromSer Qpen was 0 (zero) or ser Er r Al r eadyQpen.
Open serial ports consume more energy from the device’s batteries;
it's therefore essential to keep a port open only as long as necessary.

Ser Qpen

SerGetSettings

Fill in Ser Set t i ngsType structure with current serial port at-
tributes.

Err SerCGetSettings ( Unt refNum
SerSettingsPtr settingsP)

->refNum Serial library reference number.

<-> settingsP’ Pointer to Ser Set t i ngsType structure to be filled in.

0 No error.
ser ErrNot Open  The port wasn’t open.

The information returned by this call includes the current baud rate,
CTS timeout, handshaking options, data format options. See the
definition of the Ser Set t i ngsType structure for more details.

Ser Send

146 Developing Palm OS Applications, Part Il



Communications Functions
Serial Manager

Purpose

Prototype

Parameters

Result

Comments

SerGetStatus

Return the pending line error status for errors which have been de-
tected since the last time Ser d ear Err was called.

Wrd SerGetStatus (U nt refNum
Bool eanPtr ctsOnP,
Bool eanPtr dsr OnP)

->refNum  The serial library reference number.
->ctsOnP  Pointer to location for storing a Boolean value.

->dsrOnP  Pointer to location for storing a Boolean value.

Any combination of the following constants bitwise or’ed together:

serLineErrorParity Parity error.

ser Li neError HWOver r un Hardware overrun.
ser Li neError Fram ng Framing error.

ser Li neErr or Br eak Break signal detected.
ser Li neEr r or HShake Line hand-shake error.
ser Li neError SWoOverrun Software overrun.

When another serial manager function returns an error code of

ser ErrLi neErr, Ser Get St at us can be used to find out the spe-
cific nature of the line error(s). The values returned via ct sOnP and
dsr OnP are not meaningful in the present version of the software.
See also Serd ear Err.

Developing Palm OS Applications, Part Il 147



Communications Functions

Serial Manager

Purpose

Prototype

Parameters

Result

Comments

See Also

SerOpen

Acquire and open a serial port with given baud rate and default set-
tings.

Err SerQpen (U nt refNum U nt port, ULong baud)

->refNum Serial library reference number.

-> port Port number.
->baud Baud rate.
0 No error.

ser Err Al readyQpen Port was open. Enables port sharing by
“friendly” clients (not recommended).
ser Er r BadPar am Invalid parameter.

menEr r Not EnoughSpace Insufficient memory.

Acquires the serial port, powers it up, and prepares it for operation.
To obtain the serial library reference number, call SysLi bFi nd with
“Serial Library” as the library name. This reference number must be
passed as a parameter to all serial manager functions. The device
currently contains only one serial port with port number 0 (zero).

The baud rate is an integral baud value (for example - 300, 1200,
2400, 9600, 19200, 38400, 57600, etc.). The Palm OS device has been
tested at the standard baud rates in the range of 300 - 57600 baud.
Baud rates through 1 Mbit are theoretically possible. Use CTS hand-
shaking at baud rates above 19200 (see Ser Set Set ti ngs).

An error code of 0 (zero) or ser Er r Al r eadyQpen indicates that the
port was successfully opened. If the port is already open when

Ser Open is called, the port’s open count is incremented and an
error code of ser Er r Al r eadyQpen is returned. This ability to open
the serial port multiple times is provided for use by cooperating
tasks which need to share the serial port. Other tasks must refrain
from using the port if ser Er r Al r eady Open is returned and close it
by calling Ser d ose.

Ser d ose

148 Developing Palm OS Applications, Part Il



Communications Functions
Serial Manager

Purpose

Prototype

Parameters

Result

Comments

SerReceive
Receive a stream of bytes.

Err SerReceive (U nt ref Num VoidPtr bufP,
ULong bytes, Long tineout)

->refNum The serial library reference number.
-> bufP Pointer to the buffer for receiving data.
-> bytes Number of bytes desired.

->timeout Interbyte time out in system ticks (-1 = forever)

0 No error. Requested number of bytes
was received.

serErrTimeQut  Interbyte time out exceeded while waiting for
the next byte to arrive.

serErrLi neErr  Line error occurred (see Ser d ear Er r
and Ser Get St at us).

Ser Recei ve blocks until all the requested data has been received or
an error occurs. Because this call returns immediately without any
data if line errors are pending, it is important to acknowledge the
detection of line errors by calling Ser d ear Er r . If you just need to
retrieve all or some of the bytes which are already in the receive
queue, call Ser Recei veCheck first to get the count of bytes pres-
ently in the receive queue.

Developing Palm OS Applications, Part Il 149



Communications Functions

Serial Manager

Purpose

Prototype

Parameters

Result

Comments

Seealso

Purpose

Prototype

Parameters

Result

Comments

SerReceiveCheck
Return the count of bytes presently in the receive queue.

Err Ser Recei veCheck( U nt ref Num
ULongPt r nunByt esP)

-> refNum Serial library reference number.

<->numbBytesP Pointer to location for returning the byte count.

0 No error.

serErrLineErr  Line error pending (see Ser d ear Err and

Ser Cet St at us).

Because this call does not return the byte count if line errors are
pending, it is important to acknowledge the detection of line errors
by calling Serd ear Err.

Ser Recei veWi t

SerReceiveFlush

Discard all data presently in the receive queue and flush bytes com-
ing into the serial port. Clear the saved error status.
void SerReceiveFlush (Unt refNum Long timeout)

->refNum Serial library reference number.

->timeout Interbyte time out in system ticks (-1 = forever).
Returns nothing.

Ser Recei veFl ush blocks until a time out occurs while waiting for
the next byte to arrive.

150 Developing Palm OS Applications, Part Il



Communications Functions
Serial Manager

Purpose

Prototype

Parameters

Result

Comments

Seealso

SerReceiveWalit

Wait for at least byt es bytes of data to accumulate in the receive
queue.

Err SerReceiveWait ( U nt refNum
ULong byt es,
Long ti nmeout)

->refNum Serial library reference number.
-> bytes Number of bytes desired.

->timeout  Interbyte time out in system ticks (-1 = forever).

0 No error.

serErrTimeQut  Interbyte time out exceeded while waiting for
next byte to arrive.

serErrLi neErr  Line error occurred (see Serd ear Errr
and Ser CGet St at us).

This is the preferred method of waiting for serial input, since it
blocks the current task and allows switching the processor into a
more energy-efficient state.

Ser Recei veWai t blocks until the desired number of bytes accu-
mulate in the receive queue or an error occurs. The desired number
of bytes must be less than the current receive queue size. The default
queue size is 512 bytes. Because this call returns immediately if line
errors are pending, it is important to acknowledge the detection of
line errors by calling Ser J ear Err .

Ser Recei veCheck, Ser Set Recei veBuf f er

Developing Palm OS Applications, Part Il 151



Communications Functions

Serial Manager

Purpose
Prototype

Parameters

Result

Comments

SerSend

Send a stream of bytes to the serial port.
Err SerSend (Unt refNum VoidPtr bufP, ULong size)

->refNum The serial library reference number.

->bufP Pointer to the data to send.

-> size Size (in number of bytes) of the data to send.

0 No error.

serErrTimeOut Handshake time out (such as waiting for CTS

to become asserted.)

In the present implementation, Ser Send blocks until all data is
transferred to the UART or a time out error (if CTS handshaking is
enabled) occurs. Future implementations may queue up the request
and return immediately, performing transmission in the back-
ground. If your software needs to detect when all data has been
transmitted, see Ser SendWai t .

This routine observes the current CTS time out setting if CTS hand-
shaking is enabled (see Ser Get Set t i ngs and Ser Send).

152 Developing Palm OS Applications, Part I



Communications Functions
Serial Manager

Purpose
Prototype

Parameters

Result

Comments

SerSendWait

Wait until the serial transmit buffer empties.
Err SerSendWait (U nt refNum Long timeout)

->refNum The serial library reference number.

->timeout Reserved for future enhancements.
Set to (-1) for compatibility.

0 No error.

serErrTineQut  Handshake time out (such as waiting for CTS
to become asserted).

Ser SendWai t blocks until all data is transferred or a time-out error
(if CTS handshaking is enabled) occurs. This routine observes the
current CTS timeout setting if CTS handshaking is enabled (see

Ser Get Setti ngs and Ser Send).

Developing Palm OS Applications, Part Il 153



Communications Functions

Serial Manager

Purpose

Prototype

Parameters

Result

Comments

SerSetReceiveBuffer

Replace the default receive queue. To restore the original buffer,
pass bufSize = 0.

Err Ser Set Recei veBuffer( Unt ref Num VoidPtr bufP,
U nt bufSize)

->refNum Serial library reference number.
-> bufP Pointer to buffer to be used as the new receive queue.

->bufSize  Size of buffer, or 0 to restore the default receive queue.
Returns 0 if successful.

The specified buffer needs to contain 32 extra bytes for serial man-
ager overhead (its size should be your application’s requirement
plus 32 bytes). The default receive queue must be restored before
the serial port is closed. To restore the default receive queue, call
Ser Set Recei veBuf f er passing 0 (zero) for the buffer size. The se-
rial manager does not free the custom receive queue.

154 Developing Palm OS Applications, Part I



Communications Functions
Serial Manager

Purpose

Prototype

Parameters

Result

Comments

See Also

SerSetSettings
Set the serial port settings; that is, change its attributes.

Err SerSetSettings ( Unt refNum
SerSettingsPtr settingsP)

->refNum Serial library reference number.

<-> settingsP Pointer to the filled in Ser Set t i ngsType structure.

0 No error.

ser ErrNot Open  The port wasn’t open.

ser Err BadPar am Invalid parameter.

The attributes set by this call include the current baud rate, CTS
time out, handshaking options, and data format options. See the

definition of the Ser Set t i ngsType structure for more details.

Ser Get Setti ngs

Developing Palm OS Applications, Part Il 155



Communications Functions

Serial Manager

Prototype

Prototype

Prototype

Functions Used Only by System Software

These routines are for use by the system software only and should
not be called by the applications under any circumstances.

SerSleep

Err SerSleep (Unt refNum

WARNING: This function for use by system software only.

SerWake

Err SerWake (U nt refNum

WARNING: This function for use by system software only.

SerReceivelSP

Bool ean Ser Recei vel SP (voi d)

WARNING: This function for use by system software only.

156 Developing Palm OS Applications, Part I



Communications Functions
Serial Link Manager Functions

Serial Link Manager Functions

Purpose
Prototype
Parameters

Result

Comments

SlkClose

Close down the serial link manager.
Err Sl kd ose (void)

None.

0 No error.

sl kErr Not Open  The serial link manager was not open.

When the open count reaches zero, this routine frees resources allo-
cated by serial link manager.

Developing Palm OS Applications, Part Il 157



Communications Functions
Serial Link Manager Functions

Purpose

Prototype
Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

SlkCloseSocket

Closes a socket previously opened with SI kOpenSocket .

WARNING: The caller is responsible for closing the communica-
tions library used by this socket, if necessary.

Err Sl kA oseSocket (U nt socket)
socket The socket ID to close.

0 No error.

sl kErr Socket Not Open The socket was not open.

Sl kO oseSocket frees system resources the serial link manager al-
located for the socket. It does not free resources allocated and
passed by the client, such as the buffers passed to

Sl kSet Socket Li st ener ; this is the client’s responsibility. The
caller is also responsible for closing the communications library
used by this socket.

S| kOpenSocket, Sl kSocket Ref Num

SlkFlushSocket

Flush the receive queue of the communications library associated
with the given socket.

Err Sl kFl ushSocket (U nt socket, Long timeout)

-> socket Socket ID.
-> timeout Interbyte time out in system ticks.
0 No error.

sl KErr Socket Not Open The socket was not open.

158 Developing Palm OS Applications, Part Il



Communications Functions
Serial Link Manager Functions

Purpose
Prototype
Parameters

Result

Comments

SlkOpen

Initialize the serial link manager.
Err Sl kQpen (voi d)
None.

0 No error.

sl KErr Al r eadyQpen No error.

Initializes the serial link manager, allocating necessary resources.
Return codes of 0 (zero) and sl kEr r Al r eadyQpen both indicate
success. Any other return code indicates failure.

sl kEr r Al r eadyQpen informs the client that someone else is also
using the serial link manager. If the serial link manager was success-
fully opened by the client, the client needs to call S| kO ose when it
finishes using the serial link manager.

Developing Palm OS Applications, Part Il 159



Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SlkOpenSocket

Open a serial link socket and associate it with a communications li-
brary. The socket may be a known static socket or a dynamically as-
signed socket.

Err Sl kOQpenSocket ( U nt |ibRefNum
UntPtr socketP,
Bool ean st ati cSocket)

libRefNum Communications library reference number for socket.
socketP Pointer to location for returning the socket ID.

staticSocket If true, *socketP contains the desired static socket
number to open. If false, any free socket number is
assigned dynamically and opened.

0 No error.

sl kErr Qut O Sockets  No more sockets can be opened.

The communications library must already be initialized and opened
(see Ser Open). When finished using the socket, the caller must call
Sl kA oseSocket to free system resources allocated for the socket.
For information about well-known static socket ID’s, see The Se-
rial Link Protocol.

160 Developing Palm OS Applications, Part Il



Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

SlkReceivePacket

Receive and validate a packet for a particular socket or for any
socket. Check for format and checksum errors.

Err Sl kRecei vePacket( U nt socket,
Bool ean andQ her Socket s,
S| kPkt Header Pt r header P,
voi d* bodyP,
U nt bodySi ze,
Long ti nmeout)

-> socket The socket ID.

->andOtherSockets If true, ignore actual dest in packet header.
<->headerP Pointer to the packet header buffer (size of
S| kPkt Header Type).
<->bodyP Pointer to the packet client data bulffer.
->bodySize Size of the client data buffer (maximum

client data size which may be accommodated).

-> timeout Maximum number of system ticks to wait for
beginning of a packet (-1) means wait forever.

0 No error.
slkErrSocketNotOpen The socket was not open.
slkErrTimeOut Timed out waiting for a packet.

slkErrWrongDestSocket ~ The packet being received had an
unexpected destination.

slkErrChecksum Invalid header checksum or packet
CRC-16.
slkErrBuffer Client data buffer was too small for

packet’s client data.

If andQt her Socket s is FALSE, this routine returns with an error
code unless it gets a packet for the specific socket.

Developing Palm OS Applications, Part Il 161



Communications Functions
Serial Link Manager Functions

Comments

Purpose

Prototype

Parameters

Result

Comments

If andQt her Socket s is TRUE, this routine returns successfully if it
sees any incoming packet from the communications library used by
socket .

You may request to receive a packet for the passed socket ID only, or
for any open socket which does not have a socket listener. The pa-
rameters also specify buffers for the packet header and client data,
and a timeout. The time out indicates how long the receiver should
wait for a packet to begin arriving before timing out. If a packet is
received for a socket with a registered socket listener, it will be dis-
patched via its socket listener procedure. On success, the packet
header buffer and packet client data buffer is filled in with the actual
size of the packet’s client data in the packet header’s bodySi ze
field.

SlkSendPacket

Send a serial link packet via the serial output driver.

Err Sl kSendPacket ( S| kPkt Header Pt r header P,
SlkWiteDataPtr witeList)

<->headerP Pointer to the packet header structure with
client information filled in (see comments).

->writeList List of packet client data blocks (see comments).

0 No error.
sl KErr Socket Not Open The socket was not open.
sl KErr Ti meQut Handshake time out.

Sl kSendPacket stuffs the signature, client data size, and the
checksum fields of the packet header. The caller must fill in all other
packet header fields. If the transaction ID field is set to 0 (zero), the
serial link manager automatically generates and stuffs a new non-
zero transaction ID. The array of S| kW i t eDat aType structures en-
ables the caller to specify the client data part of the packet as a list of
non-contiguous blocks. The end of list is indicated by an array ele-
ment with the si ze field set to 0 (zero). This call blocks until the en-
tire packet is sent out or until an error occurs.

162 Developing Palm OS Applications, Part I



Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SlkSetSocketListener

Register a socket listener for a particular socket.

Err Sl kSet Socket Li stener (U nt socket,
Sl kSocket Li stenPtr socket P)

->socket Socket ID.

->socketP Pointer to a SI kSocket Li st enType structure.
0 No error.

slkErrBadParam Invalid parameter.

slkErrSocketNotOpen The socket was not open.

Called by applications to set up a socket listener.

Since the serial link manager does not make a copy of the

Sl kSocket Li st enType structure, but instead saves the passed
pointer to it, the structure may not be an automatic variable (that is,
local variable allocated on the stack). The S| kSocket Li st enType
structure may be a global variable in an application or a locked
chunk allocated from the dynamic heap. The

Sl kSocket Li st enType structure specifies pointers to the socket
listener procedure and the data buffers for dispatching packets des-
tined for this socket. Pointers to two buffers must be specified: the
packet header buffer (size of SI kPkt Header Type), and the packet
body (client data) buffer. The packet body buffer must be large
enough for the largest expected client data size. Both buffers may be
application global variables or locked chunks allocated from the dy-
namic heap. The socket listener procedure is called when a valid
packet is received for the socket. Pointers to the packet header
buffer and the packet body buffer are passed as parameters to the
socket listener procedure.

Note: The application is responsible for freeing the
Sl kSocket Li st enType structure or the allocated buffers when
the socket is closed. The serial link manager doesn’t do it.

Developing Palm OS Applications, Part Il 163



Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

Prototype

SlkSocketRefNum

Get the reference number of the communications library associated
with a particular socket.

Err Sl kSocket Ref Num (U nt socket, U ntPtr refNunP)

->socket The socket ID.

<->refNumP Pointer to location for returning the
communications library reference number.

0 No error.

sl KErr Socket Not Open The socket was not open.

SlkSocketSetTimeout
Set the interbyte packet receive time out for a particular socket.
Err Sl kSocket Set Ti neout (U nt socket, Long tineout)

-> socket Socket ID.

->timeout Interbyte packet receive time out in system ticks.
0 No error.

sl KErr Socket Not Open The socket was not open.

Functions for Use By System Software Only

SIkSysPktDefaultResponse

Err Sl kSysPkt Def aul t Response(
Sl kPkt Header Pt r header P,
voi d* bodyP)

WARNING: This function for use by system software only.

164 Developing Palm OS Applications, Part I



Communications Functions
PAD Server Functions

Prototype

SlkProcessRPC

Err Sl kProcessRPC( S| kPkt Header Pt r header P,
voi d* bodyP)

WARNING: This function for use by system software only.

PAD Server Functions

Purpose
Prototype
Parameters
Result

Comments

PsrClose

Close the PAD server.

Err Psrd ose(voi d)

None.

0 No error.

This routine frees resources allocated by the PAD server. It should

be called when the PAD server client is finished using PAD server
and only if the call to Psr | ni t was successful.

The routine must be called by the client when finished with the ses-
sion if the call to Psr | ni t was successful.

Developing Palm OS Applications, Part Il 165



Communications Functions
PAD Server Functions

Purpose

Prototype

Parameters

Result

Comments

PsrGetCommand

Receive a command.

Err Psr Get Command(
DrOpenRef ref DBP, Voi dPtr* cndPP,
Voi dHand* cndBuf HP, WordPtr rcvdCrdLenP,
BytePtr tidP, BytePtr renoteSocketP)

-> refDBP

<-> cmdPP

<-> cmdBufHP

<->rcvdCmdLenP?

<> tidP

<-> remoteSocketP

0
psr ErrUser Can

psr Err Param

Database reference for allocating a command
buffer, or 0 (zero) for none.

Pointer to location for storing a pointer
to the internal command buffer.

Pointer to location for storing a handle of the
command buffer allocated from a data storage

heap.

Pointer to location for storing the size (in
number of bytes) of the received command.

Pointer to location for storing the
transaction ID of the command.

Pointer to location for storing the
remote socket ID (the source socket).

No error.

Cancelled by user (Cancel callback
returned non-zero).

Invalid parameter.

psr Er r Bl ockFor mat Invalid command data format detected

psr Err Ti meQut

(severe protocol error).

Timed out waiting for command.

Psr Get Conmmand blocks until a command is received, a time-out
error occurs, or the Cancel callback (see Psr | ni t ) returns non-zero.
On success, the command is in the buffer, referenced either by *cm
dPP or by *cndBuf HP. In the first case (cnmdPP), the command will be
in a Pad Server internal buffer in the dynamic heap. This buffer

166 Developing Palm OS Applications, Part Il



Communications Functions
PAD Server Functions

Purpose

Prototype

Parameters

Result

Comments

must be treated as read-only. In the second case (cndBuf HP), the in-
ternal buffer was not big enough to contain the entire command
(such as when writing a large record), and a data heap chunk was
allocated by PAD server via DiNewHandl e (provided that a valid
refDBP was specified). The caller inherits ownership of this chunk
and is responsible for freeing it if it is not needed (it can be resized,
attached to a database, deleted, etc.).

Psrinit
Initialize the PAD server.

Err Psrinit ( Byte server Socket,
Psr User CanProcPtr canProcP,
DWr d user Ref,
I nt cndWai t Sec)

-> serverSocket Socket ID of an open Serial Link socket.

-> canl’rocP’ Pointer to the Cancel callback procedure or
0 (zero) if none.

-> userRef Any DWord(32-bit) parameter to be passed to
the Cancel callback procedure.

-> cmd WaitSec Number of seconds to wait for command,;
0 = default; -1 = forever.

0 No error.
psrErrinUse PAD server is in use.

psr Err Menory Insufficient memory to initialize PAD server.

This routine initializes the PAD server, allocating any necessary re-
sources. Return code of 0 (zero) indicates success; any other return
code indicates failure. If the PAD server was successfully opened by
the client, the client needs to call Psr O ose when it has finished
using the PAD server. If specified, the cancel callback procedure is
called periodically. If the cancel callback procedure returns non-
zero, the current PAD server request aborts and returns immedi-
ately with an error code of psr Er r User Can.

Developing Palm OS Applications, Part Il 167



Communications Functions
PAD Server Functions

Purpose

Prototype

Parameters

Result

Comments

PsrSendReply

Send a response to the workstation.

Err PsrSendReply ( Byte renoteSocket,
Byte ref TI D,
PnSegnent Pt r segP,
I nt segCount)

-> remoteSocket Remote socket ID.

-> refTID Transaction ID of the response (should be
same as that returned by the matching
Psr Get Cormand call).

-> segP Pointer to array of response data segments.
->segCount Number of reply data segments in the array.
0 No error.

psr Err Par am Invalid ID parameter(s).

psrErrSi zeErr Sum of the response data segments

exceeded PADP block size limit.

psr Err TooManyRet ri es Maximum retry count was exceeded
but acknowledgment wasn’t received.
(connection is presumed lost).

psr Err Ti neCut Transmission handshake time out
(connection is presumed lost).

psrErrUser Can Cancelled by user (cancel callback
returned non-zero).

Psr SendRepl y blocks until the entire response data block is suc-
cessfully delivered to the workstation, lost connection is detected, or
the cancel callback (see Psr | ni t ) returns non-zero. For conve-
nience, the response data block is specified as a list of data segments
via an array of PmSegnent Type structures. The PnSegrent Type
structure allows selective specification of word alignment for each
data segment. Any bytes inserted as the result of word alignment
are set to 0 (zero) in the resulting response block.

168 Developing Palm OS Applications, Part I



Communications Functions
Miscellaneous Communications Functions

Miscellaneous Communications Functions

Purpose

Prototype

Parameters

Result

Crcl6CalcBlock

Calculate the 16-bit CRC of a data block using the table lookup
method.

Wrd Ccl6Cal cBl ock (Voi dPtr bufP,

U nt count,

Wrd crc)
bufP Pointer to the data buffer.
count Number of bytes in the buffer.
cre Seed crc value.

A 16-bit CRC for the data buffer.

Developing Palm OS Applications, Part Il 169



	Table of Contents
	Palm OS Memory Management
	Introduction to Memory Use on Palm OS
	RAM and ROM Use
	PC Connectivity

	Memory Architecture
	Data Storage
	Accessing Data
	Memory Structure Overview
	How Applications Access Data

	Locating Storage Data With Local IDs

	The Memory Manager
	Memory Hierarchy: RAM Store and ROM Store
	Heap Overview
	Memory Manager Structures
	Heap Structures
	Chunk Structures
	Local ID Structures

	Using the Memory Manager
	Memory Manager Function Summary

	The Data Manager
	Records and Databases
	Accessing Data with Local IDs
	Using Presorted Lists

	Structure of a Database Header
	Database Header Fields
	Structure of a Record Entry in a Database Header

	Using the Data Manager
	Data Manager Function Summary

	The Resource Manager
	Structure of a Resource Database Header
	Using the Resource Manager
	Resource Manager Functions


	Palm OS Communications
	Byte Ordering
	Communications Architecture Hierarchy
	The Serial Manager
	Using the Serial Manager
	Serial Manager Function Summary

	The Serial Link Protocol
	SLP Packet Structures
	SLP Packet Format
	Packet Type Assignment
	Socket ID Assignment
	Transaction ID Assignment

	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager
	Serial Link Manager Function Summary

	The Packet Assembly/Disassembly Protocol
	PADP Packet Structures
	PADP Header
	PADP padData Packet
	PADP padAck Packet
	PADP padTickle Packet

	PADP Algorithms
	Sending a Client Data Block
	Receiving a Client Data Block


	The PAD Server
	Using the PAD Server
	PAD Server Function Summary


	Memory Manager Functions
	MemCardInfo
	MemChunkFree
	MemDebugMode
	MemHandleDataStorage
	MemHandleCardNo
	MemHandleFree
	MemHandleHeapID
	MemHandleLock
	MemHandleNew
	MemHandleResize
	MemHandleSize
	MemHandleToLocalID
	MemHandleUnlock
	MemHeapCheck
	MemHeapCompact
	MemHeapDynamic
	MemHeapFlags
	MemHeapFreeBytes
	MemHeapID
	MemHeapScramble
	MemHeapSize
	MemLocalIDKind
	MemLocalIDToGlobal
	MemLocalIDToLockedPtr
	MemLocalIDToPtr
	MemMove
	MemNumCards
	MemNumHeaps
	MemNumRAMHeaps
	MemPtrCardNo
	MemPtrDataStorage
	MemPtrFree
	MemPtrHeapID
	MemPtrToLocalID
	MemPtrNew
	MemPtrRecoverHandle
	MemPtrResize
	MemSet
	MemSetDebugMode
	MemPtrSize
	MemPtrUnlock
	MemStoreInfo
	Functions for System Use Only
	MemCardFormat
	MemChunkNew
	MemHandleFlags
	MemHandleLockCount
	MemHandleOwner
	MemHandleResetLock
	MemHandleSetOwner
	MemHeapFreeByOwnerID
	MemHeapInit
	MemInit
	MemInitHeapTable
	MemKernelInit
	MemPtrFlags
	MemPtrOwner
	MemPtrResetLock
	MemPtrSetOwner
	MemSemaphoreRelease
	MemSemaphoreReserve
	MemStoreSetInfo


	Data and Resource Manager Functions
	DmArchiveRecord
	DmAttachRecord
	DmAttachResource
	DmCloseDatabase
	DmCreateDatabase
	DmCreateDatabaseFromImage
	DmDatabaseInfo
	DmDatabaseSize
	DmDeleteDatabase
	DmDeleteRecord
	DmDetachRecord
	DmDetachResource
	DmFindDatabase
	DmFindRecordByID
	DmFindResource
	DmFindResourceType
	DmFindSortPosition
	DmGetAppInfoID
	DmGetDatabase
	DmGetLastErr
	DmGetNextDatabaseByTypeCreator
	DmGetRecord
	DmGetResource
	DmGetResourceIndex
	DmGet1Resource
	DmInsertionSort
	DmMoveCategory
	DmMoveRecord
	DmNewHandle
	DmNextOpenDatabase
	DmNextOpenResDatabase
	DmNewRecord
	DmNewResource
	DmNumDatabases
	DmNumRecords
	DmNumRecordsInCategory
	DmNumResources
	DmOpenDatabase
	DmOpenDatabaseByTypeCreator
	DmOpenDatabaseInfo
	DmPositionInCategory
	DmQueryNextInCategory
	DmQueryRecord
	DmQuickSort
	DmRecordInfo
	DmResourceInfo
	DmReleaseRecord
	DmReleaseResource
	DmRemoveRecord
	DmRemoveResource
	DmRemoveSecretRecords
	DmResetRecordStates
	DmResizeRecord
	DmResizeResource
	DmSearchRecord
	DmSearchResource
	DmSeekRecordInCategory
	DmSet
	DmSetDatabaseInfo
	DmSetRecordInfo
	DmSetResourceInfo
	DmStrCopy
	DmWrite
	DmWriteCheck
	System Use Only
	DmMoveOpenDBContext


	Communications Functions
	Serial Manager
	SerClearErr
	SerClose
	SerGetSettings
	SerGetStatus
	SerOpen
	SerReceive
	SerReceiveCheck
	SerReceiveFlush
	SerReceiveWait
	SerSend
	SerSendWait
	SerSetReceiveBuffer
	SerSetSettings
	Functions Used Only by System Software
	SerSleep
	SerWake
	SerReceiveISP


	Serial Link Manager Functions
	SlkClose
	SlkCloseSocket
	SlkFlushSocket
	SlkOpen
	SlkOpenSocket
	SlkReceivePacket
	SlkSendPacket
	SlkSetSocketListener
	SlkSocketRefNum
	SlkSocketSetTimeout
	Functions for Use By System Software Only
	SlkSysPktDefaultResponse
	SlkProcessRPC


	PAD Server Functions
	PsrClose
	PsrGetCommand
	PsrInit
	PsrSendReply

	Miscellaneous Communications Functions
	Crc16CalcBlock



