

Palm OS
Programmer’s

Companion

(Preliminary)

Navigate this online document as follows:

To see bookmarks,
type:

Command-7 (Mac OS)
Ctrl-7 (Windows)

To navigate,
click on:

any blue hypertext link
any Table of Contents entry
any Index entry
arrows in the toolbar

Palm OS
Programmer’s

Companion

(Preliminary)

Copyright © 1996 - 1999, 3Com Corporation or its subsidiaries (“3Com”). All rights reserved. This docu-
mentation may be printed and copied solely for use in developing products for the Palm Computing plat-
form. In addition, two (2) copies of this documentation may be made for archival and backup purposes.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or
by any means or used to make any derivative work (such as translation, transformation or adaptation)
without express written consent from 3Com.

3Com reserves the right to revise this documentation and to make changes in content from time to time
without obligation on the part of 3Com to provide notification of such revision or changes. 3COM MAKES
NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR
THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMENTATION IS PROVIDED
ON AN “AS IS” BASIS. 3COM MAKES NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IM-
PLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING
WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, 3COM ALSO EXCLUDES FOR ITSELF AND ITS SUPPLI-
ERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR
DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY
KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION OR
DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF 3COM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3Com, the 3Com logo, HotSync, Palm Computing, and Graffiti are registered trademarks, and iMessenger,
Palm III, Palm IIIx, Palm V, Palm VII, Palm.Net, Palm OS, and the Palm Computing Platform logo are
trademarks of 3Com Corporation or its subsidiaries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brand and product
names may be registered trademarks or trademarks of their respective holders.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Contact Information:

3Com (Palm Computing Subsidiary)

5400 Bayfront Plaza
P.O. Box 58007
Santa Clara, CA. 95052-8007
U.S.A.

3Com (Palm Computing Subsidiary)
Mail Order

U.S.A.: 1-800-881-7256
Canada: 1-800-891-6342
elsewhere: 801-431-1536
Web:

http://www.palm.com

Palm Computing World Wide Web

Web:

http://www.palm.com

Developer Technical support

Web:

http://www.palm.com/devzone/

Developer Mailing Lists

Web:

http://LS.palm.com

Solution Provider Program
(developer services and hardware
discounts)

Web:

http://www.palm.com/spp/

Metrowerks World Wide Web

Web:

http://www.metrowerks.com

Palm OS Programmer’s Companion (Preliminary)

 5

Table of Contents

About This Document 13

Palm OS SDK Documentation 13
What This Volume Contains 13
Conventions Used in This Guide 15

1 Programming Palm OS in a Nutshell 17

Why Programming for Palm OS Is Different 17
Screen Size . 17
Quick Turnaround Expected 18
PC Connectivity . 18
Input Methods . 19
Power . 19
Memory . 19
File System . 20
Backward Compatibility 20

Palm OS Programming Concepts 20
Programming Tools . 22
Where to Go From Here 22

2 Good Design Practices 25

Designing Your Application 26
Integrating Programs With the Palm OS Environment 26
Naming Conventions 29
Achieving Optimum Performance 30
Assigning a Creator ID 31
Working With Databases 31
Writing Robust Code 32
Avoiding Potential Pitfalls 34

User Interface Guidelines 35
Understanding the Palm OS UI Design Philosophy 35
Creating a Palm OS User Interface 38
Palm OS Resource Selection: List or Table?. 46

Localization Guidelines 46
Making Your Application Run on Different Devices 47

6

 Palm OS Programmer’s Companion (Preliminary)

Running New Applications on an Older Device 48
Compiling Older Applications With The Latest SDK 49

3 Application Startup and Stop 51

Launch Codes and Launching an Application 51
Responding to Launch Codes 52

Responding to Normal Launch. 55
Responding to Other Launch Codes 58

Launching Applications Programmatically 59
Creating Your Own Launch Codes 60
Stopping an Application 60
Launch Code Summary 62

4 Event Loop 65

The Application Event Loop 67
Low-Level Event Management 71

Event Translation: Pen Strokes to Key Events. 71
Pen Queue Management 72
Key Queue Management 73
Auto-Off Control . 74
System Event Manager Summary 74

5 User Interface 77

Palm OS Resource Summary 78
Drawing on the Palm OS Device 79
Forms, Windows, and Dialogs 79

Alert Dialogs . 81
Progress Dialogs . 82

Controls . 84
Buttons . 84
Popup Trigger . 85
Selector Trigger . 86
Repeating Button. 87
Push Buttons . 88
Check Boxes . 89

Fields . 90

Palm OS Programmer’s Companion (Preliminary)

7

Menus . 93
Tables . 95

Table Event . 95
Lists . 96
Labels . 98
Scroll Bars . 98
Custom UI Objects . 100
Dynamic UI . 100

Dynamic User Interface Functions 101
Insertion Point . 102
Text . . 102

Working With Text As Strings 102
Fonts in Palm OS 3.0 and Later 104

Receiving User Input 105
The Graffiti Manager 105
The Key Manager 107
The Pen Manager. 108

Application Launcher 108
Summary of User Interface API 110

6 Memory 123

Introduction to Memory Use on Palm OS 123
Hardware Architecture 123
PC Connectivity . 124

Memory Architecture 125
Heap Overview . 129

The Memory Manager. 131
Memory Manager Structures. 132
Using the Memory Manager 135

Summary of Memory Management 138

7 Files and Databases 141

The Data Manager . 141
Records and Databases 142
Structure of a Database Header. 143
Using the Data Manager 145

8

 Palm OS Programmer’s Companion (Preliminary)

The Resource Manager 148
Structure of a Resource Database Header 148
Using the Resource Manager. 149

File Streaming Application Program Interface 151
Using the File Streaming API 151

Summary of Files and Databases 153

8 Palm System Features 157

Alarms . 157
Setting an Alarm 158
Alarm Scenario . 160
Setting a Procedure Alarm 161

Features . . 163
The System Version Feature 164
Application-Defined Features 165
Using the Feature Manager 165
Feature Memory . 166

Sound . . 167
Synchronous and Asynchronous Sound 169
Using the Sound Manager 169
Sound Preferences Compatibility Information 174

System Boot and Reset 178
Soft Reset . 178
Soft Reset + Up Arrow 178
Hard Reset . 179
System Reset Calls 179

Hardware Interaction 180
Palm OS Power Modes 180
Guidelines for Application Developers 181
Power Management Calls 182

The Microkernel . 183
Retrieving the ROM Serial Number 184
Time . 185

Using Real-Time Clock Functions. 186
Using System Ticks Functions 186

Palm OS Programmer’s Companion (Preliminary)

9

Floating-Point . 187
Using Floating Point Arithmetic 187
Using 1.0 Floating-Point Functionality 188

Summary of System Features. 188

9 Serial Communication 191

Serial Hardware . 191
Byte Ordering . 192
Serial Communications Architecture Hierarchy 192
The Serial Manager . 194

Using the Serial Manager 195
The New Serial Manager 198

Checking for the New Serial Manager 199
What's New About the New Serial Manager 200
About the New Serial Manager. 200
Using the New Serial Manager 202
New Serial Manager Example 205
Writing a Serial or Virtual Device Driver. 208

The Connection Manager 211
The Serial Link Protocol 212

SLP Packet Structures 212
Transmitting an SLP Packet 215
Receiving an SLP Packet 215

The Serial Link Manager. 215
Using the Serial Link Manager 216

Summary of Serial Communications 220

10 Beaming (Infrared Communication) 223

Exchange Manager . 223
Overview . 224
Exchange Manager and Launch Codes 225

IR Library . 226
IrDA Stack . 227
Accessing the IR Library 228

Summary of Beaming 229

10

 Palm OS Programmer’s Companion (Preliminary)

11 Network Communication 231

Net Library . 231
About the Net Library 232
Net Library Usage Steps. 235
Obtaining the Net Library’s Reference Number 236
Setting Up Berkeley Socket API 236
Setup and Configuration Calls 237
Opening the Net Library 241
Closing the Net Library 242
Version Checking. 243
Network I/O and Utility Calls 244
Berkeley Sockets API Functions 245

Summary of Network Communication 252

12 Internet and Messaging Applications 255

Overview of the Palm.Net System 256
Palm Query Applications 257
Palm.Net System Overview 258

System Version Checking 261
Using Clipper to Display Information 261
Launching Other Applications from Clipper 263
Sending Messages . 264
New keyDownEvent Key Codes 265
Over the Air Characters 265

13 Localized Applications 267

Localization Guidelines 267
Text Manager and International Manager 268
Characters . . 270

Declaring Character Variables 271
Using Character Constants 271
Missing and Invalid Characters 272
Retrieving a Character’s Attributes 273
Virtual Characters 273
Retrieving the Character Encoding 274

Palm OS Programmer’s Companion (Preliminary)

11

Strings . 275
Manipulating Strings 276
Performing String Pointer Manipulation. 277
Truncating Displayed Text 278
Searching and Comparing Strings 278
Global Find . 279
Dynamically Determining a String’s Contents 282

Dates . 284
Numbers . 285
Compatibility Information 286
Notes on the Japanese Implementation 287

Japanese Character Encoding 288
Japanese Character Input 288
Displaying Error Messages 289

Summary of Localization 289

14 Debugging Strategies 291

Displaying Development Errors 291
Using the Error Manager Macros 292
Understanding the Try-and-Catch Mechanism 293
Using the Try and Catch Mechanism 294
Summary of Debugging API 295

15 Standard IO Applications 297

Creating a Standard IO Application 298
Creating a Standard IO Provider Application 298
Summary of Standard IO 301

Index 303

12

 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary)

13

About This

Document

Palm OS Programmer’s Companion

is part of the Palm OS Software
Development Kit. This introduction provides an overview of SDK
documentation, discusses what materials are included in this
document and what conventions are used.

Palm OS SDK Documentation

The following documents are part of the SDK:

What This Volume Contains

This volume is designed for random access. That is, you can read
any chapter in any order. You don’t necessarily have to read some
before others, though the first few chapters are designed for
programmers who are new to the Palm OS. The first four chapters

Document Description

Palm OS SDK
Reference

An API reference document that contains descriptions of all
Palm OS function calls and important data structures.

Palm OS Programmer’s
Companion

A guide to application programming for the Palm OS. This
volume contains conceptual and “how-to” information that
compliments the Reference.

Palm OS 3.0 Tutorial A number of phases step developers through using the
different parts of the system. Example applications for each
phase are part of the SDK.

Debugging Palm OS
Applications

A guide to debugging Palm OS applications with the
various debugging tools available.

About This Document

What This Volume Contains

14

 Palm OS Programmer’s Companion (Preliminary)

help you learn necessary tasks and possible features for your
application.

Note that each chapter ends with a list of hypertext links into the
relevant function descriptions in the Reference book.

Here is an overview of this volume:

• Chapter 1, “Programming Palm OS in a Nutshell.” Provides
new Palm OS programmers with a summary of what tasks
and tools are involved in writing a Palm application and
provides pointers to where to look for more information.

• Chapter 2, “Good Design Practices.” Provides new Palm OS
programmers with guidelines for creating a well-designed
Palm application with a well-designed user interface.

• Chapter 3, “Application Startup and Stop.” Describes how to
use and respond to launch codes to start and stop an
application and perform other actions. Describes how to
implement the PilotMain function, the entry point for all
applications.

• Chapter 4, “Event Loop.” Describes the event manager,
events, the event loop, and how to implement the event loop
in your application. Discusses how your application and the
system interact to handle events.

• Chapter 5, “User Interface.” Describes the user interface
elements that you can use in your application, and how to
use them. Also covers related topics such as drawing,
dynamic UI, receiving user input, and the application
launcher.

• Chapter 6, “Memory.” Describes the memory architecture,
memory use on the Palm devices, and the memory manager.

• Chapter 7, “Files and Databases.” Describes the data storage
system, the data manager, resource manager, and the file
streaming API.

• Chapter 8, “Palm System Features.” Describes features
unique to the Palm hardware and OS such as alarms, the
feature manager, preferences, the sound manager, system
boot and reset, the microkernal, time, and floating point
arithmetic.

• Chapter 9, “Serial Communication.” Describes the serial port
hardware, the serial communications architecture, the serial

About This Document

Conventions Used in This Guide

Palm OS Programmer’s Companion (Preliminary)

15

link protocol, and the various serial communication
managers.

• Chapter 10, “Beaming (Infrared Communication).” Describes
the two facilities for beaming, or IR communication: the
exchange manager and the IR library.

• Chapter 11, “Network Communication.” Describes the net
library and Internet library and how to perform
communications with networking protocols such as TCP/IP
and UDP. The net library API maps very closely to the
Berkeley UNIX sockets API.

• Chapter 12, “Internet and Messaging Applications.”
Describes the Palm.Net system and how to use the Clipper
and iMessenger applications to access and send information
using the wireless capabilities of the Eleven device.

• Chapter 13, “Localized Applications.” Discusses how to
make your application localizable. Includes information on
the text and international managers, as well as dealing with
alternative character encodings, strings, numbers, and dates.

• Chapter 14, “Debugging Strategies.” Describes
programmatic approaches to debugging your application;
that is, using the error manager and the Palm OS try and
catch mechanism for debugging.

Conventions Used in This Guide

This guide uses the following typographical conventions:

This style... Is used for...

fixed width font

Code elements such as function,
structure, field, bitfield.

fixed width underline

Emphasis (for code elements).

bold

Emphasis (for other elements).

blue and underlined Hot links.

About This Document

Conventions Used in This Guide

16

 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary)

17

1

Programming Palm

OS in a Nutshell

This chapter is the place to start if you’re new to Palm
programming. It summarizes what’s unique about writing
applications for Palm Computing platform devices and tells you
where to go for more in-depth information. It covers:

• Why Programming for Palm OS Is Different

• Palm OS Programming Concepts

• Programming Tools

• Where to Go From Here

Read this chapter for a high-level introduction to Palm
programming. The rest of this book provides the details.

Why Programming for Palm OS Is Different

Like most programmers, you have probably written a desktop
application—an application that is run on a desktop computer such
as a PC or a Macintosh computer. Writing applications for
handhelds, specifically Palm Computing platform devices, is a bit
different from writing desktop applications because the Palm
Computing platform device is designed differently than a desktop
computer. Also, users simply interact with the device differently
than they do desktop computers.

This section describes how these differences affect the design of a
Palm OS application.

Screen Size

The Palm OS device’s screen is only 160x160 pixels, so the amount
of information you can display at one time is limited.

Programming Palm OS in a Nutshell

Why Programming for Palm OS Is Different

18

 Palm OS Programmer’s Companion (Preliminary)

For this reason, you must design your user interface carefully with
different priorities and goals than are used for large screens. Strive
for a balance between providing enough information and
overcrowding the screen. See the section “User Interface
Guidelines” in the chapter “Good Design Practices” for more
detailed guidelines on designing the user interface.

Note that screen sizes of future Palm OS devices may vary.

Quick Turnaround Expected

On a PC, users don’t mind waiting a few seconds while an
application loads because they plan to use the application for an
extended amount of time.

By contrast, the average Palm user uses a Palm application 15 to 20
times per day for much briefer periods of time, usually just a few
seconds. Speed is therefore a critical design objective for hand-held
organizers and is not limited to execution speed of the code. The
total time needed to navigate, select, and execute commands can
have a big impact on overall efficiency. (Also consider that the Palm
OS does not provide a wait cursor.)

To maximize performance, the user interface should minimize
navigation between windows, opening of dialog boxes, and so on.
The layout of application screens needs to be simple so that the user
can pick up the product and use it effectively after a short time. It’s
especially helpful if the user interface of your application is
consistent with other applications on the device so users work with
familiar patterns.

The Palm OS development team has put together a set of design
guidelines that were used as the basis for the applications resident
on the device (MemoPad, Address Book, etc.). These guidelines are
summarized in the chapter “Good Design Practices” in this book.

PC Connectivity

PC connectivity is an integral component of the Palm Computing
platform device. The device comes with a cradle that connects to a
desktop PC and with software for the PC that provides “one-
button” backup and synchronization of all data on the device with
the user’s PC.

Programming Palm OS in a Nutshell

Why Programming for Palm OS Is Different

Palm OS Programmer’s Companion (Preliminary)

19

Many Palm OS applications have a corresponding application on
the desktop. To share data between the device’s application and the
desktop’s application, you must write a

conduit

. A conduit is a
plug-in to the HotSync technology that runs when you press the
HotSync button. A conduit synchronizes data between the
application on the desktop and the application on the hand-held
device. To write a conduit, you use the Conduit SDK, which
provides its own documentation.

Input Methods

Handheld users don’t have a keyboard or mouse. Users enter data
into the device using a pen. They can either write Graffiti strokes or
use the keyboard dialog provided on the device.

While Graffiti strokes and the keyboard dialog are useful ways of
entering data, they are not as convenient as using the full-sized
desktop computer with its keyboard and mouse. Therefore, you
should not require users to enter a lot of data on the device itself.

Power

The Palm Computing platform device runs on batteries and thus
does not have the same processing power as a desktop PC. It is
intended as a satellite viewer for corresponding desktop
applications.

If your application needs to perform a computationally intensive
task, you should implement that task in the desktop application
instead of the device application.

Memory

The Palm OS device has limited heap space and storage space.
Different versions of the device have between 512K and 2MB total of
dynamic memory and storage available. The device does not have a
disk drive or PCMCIA support.

Because of the limited space and power, optimization is critical. To
make your application as fast and efficient as possible, optimize for
heap space first, speed second, code size third.

Programming Palm OS in a Nutshell

Palm OS Programming Concepts

20

 Palm OS Programmer’s Companion (Preliminary)

File System

Because of the limited storage space, and to make synchronization
with the desktop computer more efficient, Palm OS does not use a
traditional file system. You store data in memory chunks called

records

, which are grouped into

databases

. A database is analogous
to a file. The difference is that data is broken down into multiple
records instead of being stored in one contiguous chunk. To save
space, you edit a database in place in memory instead of creating it
in RAM and then writing it out to storage.

Backward Compatibility

Different versions of the Palm Computing platform device are
available, and each runs a different version of the Palm OS. Users
are not expected to upgrade their versions of the Palm OS as rapidly
as they would an operating system on a desktop computer. Updates
to the OS are designed in such a way that you can easily maintain
backward compatibility with previous versions of the OS, and thus,
your application is available to more users. See “Making Your
Application Run on Different Devices” in the chapter “Good Design
Practices” for details.

Palm OS Programming Concepts

Palm OS applications are generally single-threaded, event-driven
programs. Only one program runs at a time. To successfully build a
Palm OS application, you have to understand how the system itself
is structured and how to structure your application.

• Each application has a

PilotMain

 function that is
equivalent to

main

 in C programs. To launch an application,
the system calls

PilotMain

 and sends it a

launch code

. The
launch code may specify that the application is to become
active and display its user interface (called a normal launch),
or it may specify that the application should simply perform
a small task and exit without displaying its user interface.

The sole purpose of the

PilotMain

 function is to receive
launch codes and respond to them. (See Chapter 3,
“Application Startup and Stop.”)

Programming Palm OS in a Nutshell

Palm OS Programming Concepts

Palm OS Programmer’s Companion (Preliminary)

21

• Palm OS is an event-based operating system, so Palm OS
applications contain an event loop; however, this event loop
is only started in response to the normal launch. Your
application may perform work outside the event loop in
response to other launch codes. Chapter 4, “Event Loop,”
describes the main event loop.

• Most Palm OS applications contain a user interface made up
of

forms

, which are analogous to windows in a desktop
application. The user interface may contain both predefined
UI elements (sometimes referred to as

UI objects

), and
custom UI elements. (See Chapter 5, “User Interface.”)

• All applications should use the memory and data
management facilities provided by the system. (See Chapter
6, “Memory.” and Chapter 7, “Files and Databases.”)

• You implement an application’s features by calling Palm OS
functions. Palm OS consists of several managers, which are
groups of functions that work together to implement a
feature. As a rule, all functions that belong to one manager
use the same prefix and work together to implement a certain
aspect of functionality.

Managers are available to, for example, generate sounds,
send alarms, perform network communication, and beam
information through an infrared port. A good way to find out
the capabilities of the Palm OS is to scan the Table of
Contents of this guide.

IMPORTANT:

The ANSI C libraries are not part of the Palm
development platform. In many cases, you can perform the same
function using a Palm OS API call as you can with a call to a
ANSI C function. For example, the Palm OS provides a string
manager that performs many of the string functions you’d expect
to be able to perform in an ANSI C program. If you do use a
standard C function, the code for the function is linked into your

application and results in a bigger executable.

Programming Palm OS in a Nutshell

Programming Tools

22

 Palm OS Programmer’s Companion (Preliminary)

Programming Tools

Several tools are available that help you build, test, and debug Palm
OS applications. The most widely used tool is the CodeWarrior
Interactive Development Environment (IDE) from 3Com
Corporation. Documentation for the CodeWarrior IDE is provided
with CodeWarrior. (See

http://www.palm.com

 for information
about other development tools.)

As with most applications, the user interface is generally stored in
one or more resource files. You use the Palm OS Constructor to
create these resources. To learn how, refer to the

Palm OS Tutorial

 or
the Constructor documentation.

To debug and test your application, there are several tools available:

• The CodeWarrior Debugger handles source-level debugging.
You can use it with an application running on the Palm OS
device, or you can use it in conjunction with one of the other
debugging tools below.

• The Palm OS Emulator (POSE) tests your application on the
desktop computer before downloading it onto the device.

• On the Macintosh, you can build a Simulator version of your
application to test it. This is a standalone Mac OS application
that runs your Palm OS application on a Macintosh
computer.

• The Palm Debugger is an assembly-level tool. You can also
use it to enter commands directly to the Palm device.

The book

Debugging Palm OS Applications

 describes the Palm-
provided debugging tools available on your development platform.
For CodeWarrior Debugger documentation, refer to the
CodeWarrior CD.

Where to Go From Here

This chapter provided you only with a general outline of the issues
involved in writing a Palm OS application. To learn the specifics,
refer to the following resources:

Programming Palm OS in a Nutshell

Where to Go From Here

Palm OS Programmer’s Companion (Preliminary)

 23

• This book

The rest of this book provides details on how to implement
common application features using the Palm OS SDK. If
you’re new to Palm OS programming, you need to read the
next three chapters to learn the principles of Palm OS
application and UI design, how to implement the main
function, and how to implement the standard event loop. The
remaining chapters you can read on an as-needed basis.

• Example applications

The actual source code for the applications on the Palm OS
device is included as examples on your SDK CD. The code
can be a valuable aid when you develop your own program.
The software development kit provides a royalty-free license
that permits you to use any or all of the source code from the
examples in your application.

• Tutorial

The tutorial provides step-by-step, interactive examples of
developing an application from start to finish in multiple
phases.

• Debugging Palm OS Applications

The Debugging Palm OS Applications book provides more
details on using the tools to debug programs. (You might
also be interested in the “Debugging Strategies” chapter in
this book, which describes programmatic debugging
solutions.)

• Palm OS SDK Reference

The reference book provides the details on all of the public
data structures and API calls.

• Conduit Development Kits and documentation

If you need to write a conduit for your application, see the
documentation provided with the Conduit Development
Kits.

Programming Palm OS in a Nutshell
Where to Go From Here

24 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 25

2
Good Design
Practices
This chapter helps you design an application that’s fast, robust, and
consistent with other applications on the device. The previous
chapter described at a very high level the sorts of issues involved
with writing a Palm OS application. This chapter goes into much
more detail about what is appropriate application design and user
interface design. Its focus is how to:

• Avoid potential problems

• Make your application integrate well with others

• Achieve the best performance possible

• Localize with the minimum amount of work

• Maintain backward compatibility

The information was collected from engineers, testers, and other
experts who designed, developed, and tested the four applications
shipped with the first Palm OS device.

Paying attention to user interface guidelines and, if applicable, to
localization guidelines early in your development cycle will save
you time and trouble later. However, there’s a lot to digest here. You
may want to revisit this chapter from time to time to make sure you
haven’t forgotten anything.

This chapter discusses these topics:

• Designing Your Application

• User Interface Guidelines

• Localization Guidelines

• Making Your Application Run on Different Devices

Good Design Practices
Designing Your Application

26 Palm OS Programmer’s Companion (Preliminary)

NOTE: Be sure to read the “Avoiding Potential Pitfalls” and
“Writing Robust Code” sections for information on the problems
developers encounter most frequently.

Designing Your Application
This section provides Palm OS application design guidelines. It
discusses these topics:

• Integrating Programs With the Palm OS Environment

• Naming Conventions

• Achieving Optimum Performance

• Assigning a Creator ID

• Working With Databases

• Writing Robust Code

• Avoiding Potential Pitfalls

Integrating Programs With the Palm OS
Environment
When users work with a Palm OS application, they expect to be able
to switch to other applications, have access to Graffiti and the on-
screen keyboard, access information with the global find, receive
alarms, and so on. Your application will integrate well with others if
you follow the guidelines in this section. Integrate with the system
software as follows:

• Handle sysAppLaunchCmdNormalLaunch

• Handle or ignore other application launch codes as
appropriate. For more information, see the next chapter,
Chapter 3, “Application Startup and Stop.”

• Handle system preferences properly. System preferences
determine the display of

– Date formats

– Time formats

Good Design Practices
Designing Your Application

Palm OS Programmer’s Companion (Preliminary) 27

– Number formats

– First day of week (Sunday or Monday)

Be sure your application uses the system preferences for
numeric formats, date, time, and start day of week.

• Allow the system to post these messages:

– alarms

– low-battery warnings

– system messages during synchronization

• Be sure your application does not obscure or change the
Graffiti area, silk-screened buttons, and power button.

• Don’t obscure Graffiti shift indicators.

In addition, follow these rules:

• Store state information in the application preferences
database, not in the application record database. Call
PrefGetAppPreferences and
PrefSetAppPreferences to save and restore preferences.
This is important if your application returns to the last
displayed view by default.

• If your application uses the serial port, be sure to free the port
when you no longer need it so that the HotSync application
can use it.

• Ensure that your application properly handles the global
find. Generally, searches and sorts aren’t case sensitive.

• If your application supports private records, be sure they are
unavailable to the global find when they should be hidden.

• The application name is defined in two ways:

The application name (required) is specified in the PalmRez
panel of your CodeWarrior project and used by HotSync, the
About box, the Memory display, and the database header.

– The application icon name (optional) is a string resource
in the application’s resource file. It is used by the launcher
screen and in the Button Assignment preferences panel

Good Design Practices
Designing Your Application

28 Palm OS Programmer’s Companion (Preliminary)

(available in OS versions 2.0 and later). You assign the
name using the Constructor Project Settings panel.

Using the icon name is useful if you plan to localize your
application.

Note: If you use an application icon name, make it short!

• Together with the application name, each application
displays a application icon in the launcher.

Your application should have two icons: one for the main
view of the launcher and a smaller version for the list view.
The first icon should be 22 x 22 pixels. It should be numbered
1000 and have the type tAIN. The smaller icon should be 9 x
15 pixels, should be numbered 1001 and have the type tAIB.

• Follow the guidelines listed in User Interface Guidelines and
pay special attention to these points:

– Ensure that the different user input modes (e.g., Graffiti
and keyboard) are available for each field.

– Ensure that menu items work with shortcuts as
advertised.

– Put limits on the length of fields and test them.

– Ensure that any growable control, such as the launcher
window or the menus, scrolls correctly.

• Ensure that your application properly handles system
messages during and after synchronization.

• Ensure that deleted records are not displayed.

• Ensure that your application doesn’t exceed the maximum
number of categories: 15 categories and the obligatory
category “Unfiled” for a total of 16.

• Ensure that your application uses a consistent default state
when the user enters it:

– Some applications have a fixed default; for example, the
Date Book always displays the current day when
launched.

– Other applications return to the place the user exited last.
In that case, remember to provide a default if that place is
no longer available. Because of HotSync and Preferences,

Good Design Practices
Designing Your Application

Palm OS Programmer’s Companion (Preliminary) 29

don’t assume the application data is the same as it was
when the user looked at it last.

• If your application uses sounds, be sure it uses the Warning
and Confirmation sounds properly.

Naming Conventions
The following conventions are used throughout the Palm OS API:

• Functions start with a capital letter.

• All functions belonging to a particular manager start with a
two- or three-letter prefix, such as “Ctl” for control functions
or “Ftr” for functions that are part of the feature manager.

• Events and other constants start with a lowercase letter.

• Structure elements start with a lowercase letter.

• Global variables start with a capital letter.

• Typedefs start with a capital letter and end with “type” (for
example, DateFormatType, found in DateTime.h).

• Macintosh ResEdit resource types usually start with a
lowercase letter followed by three capital letters, for example
tSTR or tTBL. (Customized Macintosh resources provided
with your developer package are all uppercase, for example,
MENU. Some resources, such as Talt, don’t follow the
conventions.)

• Members of an enumerated type start with a lowercase prefix
followed by a name starting with a capital letter, as follows:

enum formObjects {
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,
frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObj,
frmGraffitiStateObj,

Good Design Practices
Designing Your Application

30 Palm OS Programmer’s Companion (Preliminary)

frmGadgetObj};
typedef enum formObjects FormObjectKind;

Achieving Optimum Performance
Because the Palm OS device has limited heap space and storage,
optimization is critical. The Palm OS device currently has no wait
cursor, so users will expect rapid response. Test for performance.
Launching, switching, and finding should be fast.

To make your application as fast and efficient as possible, optimize
for heap space first, speed second, code size third.

Follow these guidelines to optimize memory use:

• Allocate handles for your memory to avoid heap
fragmentation.

• Sort on demand; don’t keep different sort lists around. This
makes your program simpler and requires less storage.

• Dynamic memory is a potential bottleneck. Don’t put large
structures on the stack.

• Arrange subroutines within the application to avoid 32K
jumps.

• To have your application run well within the constraints of
the limited dynamic heap, follow these guidelines:

– Allocate memory chunks instead of using global variables
where possible.

– Switch from one UI form to another instead of stacking
up dialog boxes.

– Edit database records in place; don’t make extra copies on
the dynamic heap.

• Avoid placing large amounts of data on the stack. Heap
corruption is hard to debug. Global variables are preferable
to local variables (however, chunks are preferable to global
variables). Your application only has from 2K or 4K of stack
space depending on the system software version.

Good Design Practices
Designing Your Application

Palm OS Programmer’s Companion (Preliminary) 31

Assigning a Creator ID
Each Palm OS application has a distinct creator ID. A creator ID is a
4-byte value used to tie together all the databases related to the
application.

Creator IDs are unique to the application, not the creator of the
application. Each database on the Palm device has an application
value and a type. The type value should be set to
sysFileTApplication for the executable’s database and can be
set to any value for other databases associated with an application.

Creator IDs need to be either all caps or mixed case. The Palm OS
creator IDs differ from the creator ID and type that appear in the
CodeWarrior Project Settings dialog boxes.

The creator ID for a Palm OS application is assigned in the PalmRez
Project Settings panel.

• The Type should be set to APPL. Type is a 4-byte value.

• For information about creator IDs, and to register a creator
ID, see this web page:

http://www.palm.com/devzone/crid/cridsub.html

The system uses the creator ID in various ways:

• Creator ID and type is used by the system launcher window
to determine which databases are applications that should be
displayed for selection.

• The memory application uses a creator ID and type to
determine names of applications for display and to calculate
total memory used by an application.

Working With Databases
Working properly with databases makes your application run faster
and synchronize without problems. Follow these suggestions:

• When the user deletes a record, call DmRemoveRecord to
remove all data from the record, not DmDeleteRecord to
remove the record itself. That way, the desktop application

Good Design Practices
Designing Your Application

32 Palm OS Programmer’s Companion (Preliminary)

can retrieve the information that the record is deleted the
next time there is a HotSync.

Note: If your application doesn’t have an associated conduit,
call DmDeleteRecord to completely remove the record.

• Keep data in database records compact. To avoid
performance problems, Palm OS databases are not
compressed, but all data are tightly packed. This pays off for
storage and during HotSync.

• All records in a database should be of the same type and
format. This is not a requirement, but is highly recommended
to avoid processing overhead.

• Be sure your application modifies the flags in the database
header appropriately when the user deletes or otherwise
modifies information. This flag modification is only required
if you’re synchronizing with the Palm PIM applications.

• Don’t display deleted records.

• Call DmSetDatabaseInfo when creating a database to
assign a version number to your application. Databases
default to version 0 if the version isn’t explicitly set.

• Call DmDatabaseInfo to check the database version at
application start-up.

Writing Robust Code
To make your programs more robust and to increase their
compatibility with the next generation of Palm Computing
products, it is strongly recommended that you follow the guidelines
and practices outlined in this section.

• Check assumptions

You can write defensive code by adding frequent calls to the
ErrNonFatalDisplayIf function, which enables your
debug builds to check assumptions. Many bugs are caught in
this way, and these “extra” calls don’t weigh down your
shipping application. You can keep more important checks in
the release builds by using the ErrFatalDisplayIf
function.

Good Design Practices
Designing Your Application

Palm OS Programmer’s Companion (Preliminary) 33

• Avoid continual polling

To conserve the battery, avoid continual polling. If your
application is in a wait loop, poll at short intervals (for
example, every tenth of a second) instead. The event loop of
the Hardball example application included with your Palm
OS SDK illustrates how to do this.

• Avoid reading and writing to NULL (or low memory)

When calling functions that allocate memory (MemSet,
MemMove and similar functions) make sure that the pointers
they return are non-NULL. (If you can do better validation
than that, so much the better.) Also check that pointers your
code obtains from structures or other function calls are not
NULL. Consider adding to your debug build a #define that
overrides MemMove (and similar functions) with a version
that validates the arguments passed to it.

• Use dynamic heap space frugally

It is important not to use the extra dynamic heap space
available on Palm units running 2.0 and higher unless it is
truly necessary to do so. Wasteful use of heap space may
limit your application to running only on the latest devices—
which prevents it from running on the very large number of
units already in the marketplace.

Note that some system services, such as the IrDA stack or the
Find window, can require additional memory while your
application is running; for example, if the unit starts to
receive a beam or other external input, the system may need
to allocate additional heap space for the incoming data. Don’t
use all available dynamic memory just because it’s there;
instead, consider using the storage heap for working with
large amounts of temporary data.

• Check result codes when allocating memory

Because future devices may have larger or smaller amounts
of available memory, it is always a good idea to check result
codes carefully when allocating memory. It’s also good
practice to use the storage heap (and possibly file streams) to
work with large objects.

• Avoid allocating zero-length objects

It’s not valid to allocate a zero-byte buffer, or to resize a
buffer to zero bytes. Palm OS 2.0 and previous releases

Good Design Practices
Designing Your Application

34 Palm OS Programmer’s Companion (Preliminary)

allowed this practice, but future revisions of the OS may not
permit zero-length objects.

• Avoid making assumptions about the screen

The location of the screen buffer, its size, and the number of
pixels per bit aren’t set in stone—they might well change.
Don’t hack around the windowing and drawing functions. If
you are going to hack the hardware to circumvent the APIs,
save the state and return the system to that saved state when
you quit.

• Don’t access globals or hardware directly

Global variables and their locations can change; to avoid
mishaps, use the documented API functions and disable your
application if it is run on anything but a tested version of the
OS. Future devices might run on a different processor than
the current one.

Similarly, don’t hardcode references to cards. Although
current Palm OS hardware provides only a single card slot,
this may not always be the case. Thus, when calling functions
that manipulate cards, such as database manager and file
streaming functions, pass a variable that references the target
card, rather than passing a hardcoded reference to card 0.

• Built-in applications can change

The format and size of the preferences (and data) for the
built-in applications is subject to change. Write your code
defensively, and consider disabling your application if it is
run on an untested version of the OS.

Avoiding Potential Pitfalls
Certain problems are encountered by application developers again
and again. To avoid them, ask yourself these questions:

• Do you have a Creator ID for your application?

Each application (not just each company) has to have a
Creator ID. Note that the Creator ID is only needed for the
application (database of type APPL) not for all other
databases.

Good Design Practices
User Interface Guidelines

Palm OS Programmer’s Companion (Preliminary) 35

• Did you base your application on Phase 20 of the tutorial?
That phase has the most extensive functionality and is
therefore your best choice for starting your own application.

• Did you use C library calls in your application? If you did,
change them to corresponding Palm OS calls.

User Interface Guidelines
The Palm OS device is designed for rapid entry and quick retrieval
of information. To maximize performance, the UI should minimize
navigation between windows, opening of dialog boxes, and so on.
The layout of application screens needs to be simple so that the user
can pick up the product and use it effectively after a short time. It’s
especially helpful if the UI of your application is consistent with
other applications on the device so users work with familiar
patterns.

This section helps you design a user interface that’s intuitive, easy to
use, and consistent with other applications on the device. You learn
about these issues:

• Understanding the Palm OS UI Design Philosophy

• Creating a Palm OS User Interface

• Palm OS Resource Selection: List or Table?

NOTE: Guidelines for implementing specific user-interface
objects, such as information on the size of buttons or the font for
labels, is provided in “Palm OS Resources” in the Palm OS SDK
Reference. Also see the chapter “User Interface” in this book.

Understanding the Palm OS UI Design
Philosophy
This section considers some issues that underlie the design of a user
interface for the Palm OS device. It discusses these topics:

• Creating Fast Applications

• Matching Use Frequency and Accessibility

Good Design Practices
User Interface Guidelines

36 Palm OS Programmer’s Companion (Preliminary)

• Creating Easy-to-Use Applications

Creating Fast Applications

On a PC, users don’t mind waiting a few seconds while an
application loads because they plan to use the application for a
certain amount of time.

The Palm OS paradigm, in contrast, resembles that of a watch:
People want instant access to information. Speed is therefore a
critical design objective for hand-held organizers and is not limited
to execution speed of the code. The total time needed to navigate,
select, and execute commands can have a big impact on overall
efficiency.

The user should be able to keep up with someone on the telephone
when setting up appointments, looking up phone numbers, and so
on. Priorities include the ability to:

• Execute key commands quickly

• Navigate to key screens quickly

• Find key data quickly (for example, phone numbers)

Matching Use Frequency and Accessibility

PC user interfaces are typically designed to display commands as if
they were used equally. In reality, some commands are used very
frequently while most are used only rarely. Similarly, some settings
are more likely to be used than others. For example, a 3 p.m.- 4 p.m.
meeting occurs much more frequently than a 3:25 to 4:15 meeting.

More frequently used commands and settings should be easier to
find and faster to execute.

• Frequently executed software commands should be
accessible by one tap.

• Infrequently used commands may require more user action.

Frequency Example Accessibility

Several times
per hour.

Checking today’s
schedule or to-do items.

One tap.

Good Design Practices
User Interface Guidelines

Palm OS Programmer’s Companion (Preliminary) 37

To make your application easily accessible, follow these guidelines:

• Minimize the number of taps to execute a function or change
a setting.

• Provide command buttons for commonly executed multistep
operations. Command buttons streamline execution.

• Minimize the need to change screens.

• Minimize the number of dialogs users have to open and
close.

• Avoid dialogs within dialogs unless it’s an infrequently used
feature.

Choose the appropriate UI object when making a speed versus
screen layout decision:

• Buttons on the screen provide instant access but take up
valuable screen space.

• Push buttons are faster than popup lists and should be used
if they fit on the screen reasonably.

• Popup lists are faster than manual input or increment/
decrement buttons

• Popup lists can be cumbersome if there are too many items
on the list or if the list needs to scroll.

Creating Easy-to-Use Applications

Users must be able to pick up a Palm device and, with no training or
instruction, navigate between applications (without getting stuck)
and execute basic commands within five minutes. Advanced
commands should be easily accessible but should not be in the way.

The design must therefore fit the following criteria:

• Indicate clearly where in an application the user is. The PIM
applications and modal dialog boxes have black title bars
that usually indicate the application name and view.

Several times
per day.

One hour meeting
starting at the top of the
hour.

One tap, write in
place.

Several times
per week.

Setting a weekly meeting
(repeating event).

Several taps,
second dialog box.

Good Design Practices
User Interface Guidelines

38 Palm OS Programmer’s Companion (Preliminary)

• Make it obvious to the user how to get to different views. The
command buttons provide the best example of achieving
this.

• Use buttons for important commands.

• Accomplishing common tasks should be fast and easy.
Minimizing steps helps not only speed but ease of use.

Ease of use amounts to a series of trade-offs. Striking the best
balance for the most people is the biggest challenge of UI design.
For example:

• Consistency reduces the time needed to learn an application
by limiting the number of things that people need to keep in
their heads at once. The user should not have to memorize an
entire set of rules to use the device easily, for example, the up
arrow key should not do different things on different screens.

• Choose the number of buttons on the screen diligently:

– The fewer buttons on the screen, the less time it takes to
learn how to use the product.

– However, keeping a few frequently used buttons on
screen helps reduce the time spent learning basic
functionality.

• Advanced features should not be in the way for beginners,
but should not require multiple-step searching.

• If possible, make your application consistent with the Palm
OS device’s native applications; users are used to interacting
with them and will easily get used to your application if you
follow these rules.

Creating a Palm OS User Interface
The small screen and pen-based user interaction require a different
UI paradigm than a desktop computer. Here are some guidelines for
making your application’s interface consistent with other
applications, including the PIM applications.

• Provide an application icon for the Launcher. To launch an
application, users navigate to the launcher screen and tap on

Good Design Practices
User Interface Guidelines

Palm OS Programmer’s Companion (Preliminary) 39

an icon. Choose a short icon name and an easy to recognize
icon.

Specify the Application Icon Name and Application Icon
using the Project Settings panel in Constructor.

• Provide a base screen that offers an overview of all available
information. This screen is typically a list view. Not all
applications need a base screen.

• Allow users to view most record information by pressing the
navigation keys. Each event, to-do item, address, memo
page, and so on is called a record.

• Organize records into user-defined categories if that makes
sense. Categories usually result in more efficient screen use.
Users can switch between categories using a popup menu or
can display all records at once.

• Detailed information and advanced navigation require the
use of a stylus. See Data Entry Guidelines for different data
entry modes.

• Don’t require double taps.

• Don’t gray out menu commands or other UI elements;
instead, remove an element when it’s not available.

• If you can, allow finger navigation. For finger navigation,
buttons need to be big enough for the system to recognize
which button has been pushed. This is done by the Palm OS
system software.

• Consider overloading the buttons. If you do overload, release
the buttons at every possible opportunity. This is useful only
for certain applications, such as games.

This section provides information on a variety of UI design issues:

• Navigation Guidelines

• Preferences Guidelines

• Data Entry Guidelines

• Command Execution Guidelines

• Guidelines for Screen Layout

• Guidelines for Dialog Box Layout

Good Design Practices
User Interface Guidelines

40 Palm OS Programmer’s Companion (Preliminary)

Navigation Guidelines

Users can move through applications by the following methods:

• Switching applications. Users press the physical buttons
representing the PIM applications or access a launcher to
switch applications.

On Palm OS 2.0 or later devices, users can assign each button
to the application of their choice using a Preferences panel.

When switching to an application, the user is either
presented with a standard first screen or returned to the last
place in that application.

• Switching views. Each PIM application has two or more
views (or modes) typically

– a list view (or view mode)

– an edit view (or edit mode)

The user taps on records or uses command buttons to toggle
between these views.

Edit mode gives users access to the Details button for settings
that affect the entire record. They can also access specific
menu commands for records. In many applications, tapping
on a record switches the application to edit mode and
displays an input cursor.

• Switching categories of records. A popup menu in the top
right corner lets users switch between categories. The popup
menu is found in the list view of applications that support
categories.

• Switching records in applications. Depending on the
application, the user can scroll through lists of records, then
tap on a record or a Details button for further information.

• Graffiti navigation. Support Graffiti navigation:

– Left-right-forward-backward movement as part of a
field’s behavior.

– Getting to next and previous screen using the down/up
and up/down keystrokes.

• Cycling through categories. Holding the button on the hard
case cycles through all categories.

Good Design Practices
User Interface Guidelines

Palm OS Programmer’s Companion (Preliminary) 41

• Scrolling. Records too long to display in one screen are
scrollable. On-screen scroll buttons allow users to move up
or down one line at a time. The physical arrow buttons allow
users to move up and down one page at a time.

Scrollbars were introduced in OS 2.0. Scrollbars are optional.
Developers have to consider the trade-off between taking up
7 pixels of horizontal space (the width of the scroll bar) vs.
providing convenient scrolling for long lists of records.

Preferences Guidelines

Palm OS 2.0 and later has improved preferences facilities. They are
available through launch codes, discussed in the chapter
“Application Launch Codes” in the Palm OS SDK Reference.

The system now offers application-specific panels, sticky panels,
and quick switch, as follows:

• Application-specific panels. Applications can add
application-specific preferences panels to follow the system
panels when the user cycles though the preferences. To do so,
use the common code provided in the Formats example
application to make the pull-down menu available. If the
application uses the common code, a Done button inserts
itself if the panel was called from the application, not
sequentially following another panel.

• Sticky panels. When users bring up a preference panel from
the launcher, exit the panel, then bring it up again, the
system returns to the last panel used.

• Quick switch. Applications can now use the launch codes
sysAppLaunchCmdPanelCalledFromApp and
sysAppLaunchCmdReturnFromPanel, which allow an
application to let users change preferences without first
selecting the launcher, then selecting the application again.

Data Entry Guidelines

Users can enter data by the following methods:

• Graffiti. Graffiti characters are written in the text area on the
digitizer and appear on the screen at the cursor location. The

Good Design Practices
User Interface Guidelines

42 Palm OS Programmer’s Companion (Preliminary)

user specifies the cursor location by tapping directly on the
screen with the stylus.

Some controls accept input from Graffiti: For example, in the
time selector dialog, you can write the time into the Graffiti
area and it appears as start time or end time. The “next field”
stroke switches between start and end time. The “Return”
stroke dismisses the dialog.

For 2.0 and later applications, users expect that your
application includes the Graffiti Reference option. You can
include this option by calling
SysGraffitiReferenceDialog.

• On-screen keyboard. In place of using Graffiti, the user can
tap an on-screen keyboard with the stylus. Any text is
entered into a temporary window. When the user dismisses
the keyboard, the system inserts that text at the cursor
location.

• Controls. Buttons, check boxes, and popup lists provide a
quick way to enter settings and select options.

• HotSync. The user can type data on the PC and download it
to the Palm OS device.

• Auto-creation. Many applications, such as the DateBook or
the Memo Pad provide an auto-create feature. If the user
starts to write in a list view with no record selected, a new
record is created with no additional interaction.

To provide a consistent interface, follow these guidelines when
designing the data entry interface for your application:

• Let users perform basic data entry in place.

• Have the cursor ready and visible if there’s only one field for
text entry (saves one tap).

• Provide a Details dialog for more elaborate data entry.

• Use the following format in the Details dialog:

Item (right-justified): Value(left-justified)

for example:

Set Date: 4-1-96

Auto-off after: 2 minutes

Good Design Practices
User Interface Guidelines

Palm OS Programmer’s Companion (Preliminary) 43

• Don’t nest dialog boxes too deeply.

• Provide only one interface per function, that is, allow users to
interact with an application through either a button, menu,
or popup list. Don’t provide both a button and a menu for
the same actions.

NOTE: All developers are urged to include the rules listed below
in their test plan. Applications that don’t follow these rules may
cause problems for other applications on the device.

• Whenever a field for user input is available, make sure that:

– System keyboard is available via shortcut

– System keyboard is available via menu

– Graffiti input is possible (regular strokes and shortcuts)

– Cut, copy, paste, and undo are possible

• Be sure to handle the clipboard correctly. If you use it, allow
users to copy and paste between applications; if you don’t,
make sure it’s intact when you exit.

Command Execution Guidelines

Users can execute commands by the following methods:

• Command buttons. Users execute common commands by
tapping on command buttons at the bottom of the screen.

• Menus. Commands not represented by command buttons
can be accessed via a simple menu system. The user taps on a
menu hard icon in the digitizer area to invoke a menu bar.
Provide menu shortcuts if possible.

NOTE: If you provide shortcuts, make sure that each shortcut is
unique among all commands available at that time.

• Graffiti menu command shortcuts. Users can write a special
Graffiti stroke and a command keystroke to execute a menu
command. This is analogous to keyboard shortcuts on a

Good Design Practices
User Interface Guidelines

44 Palm OS Programmer’s Companion (Preliminary)

personal computer. For example, writing the command
stroke symbol (a bottom-left to top-right line) and “C” allows
the user to copy the selected text.

Guidelines for Screen Layout

The illustration below provides some interface guidelines. Each
guideline is numbered and explained in more detail below.

1. In the title bar for each screen, provide both the application
name and the name of the screen, if possible. Otherwise,
provide the most relevant information.

2. Always go to the edge of the screen; that is, don’t use
borders. This practice maximizes screen real estate available
to the application. The non-active area of the LCD and the
case provide a natural margin.

3. Use the resources provided with the development
environment and use the recommended values for width,
height, and so on, provided in “Palm OS Resources” in the
Palm OS SDK Reference.

4. Align buttons with the bottom edge of the screen.

5. For text surrounded by borders, leave one pixel above and
below the font height.

2. Go to the edge of the screen.

1. Provide a title bar.

4. Align buttons at the bottom of the screen.

5. Leave one pixel above and below font height

3. Use resources provided with environment.

• repeating buttons
• push buttons
• fields
• buttons

This example uses

Good Design Practices
User Interface Guidelines

Palm OS Programmer’s Companion (Preliminary) 45

6. For controls that can be displayed in groups, have at least
two pixels to the left and right of the text label. The exception
is command buttons, which require wider margins to
accommodate the rounded border.

7. Don’t change or obscure the Graffiti status indicator area.

8. Don’t change or obscure the silk-screened icons.

Guidelines for Dialog Box Layout

The illustration below provides some guidelines for dialog box
interfaces. Each guideline is numbered and explained in more detail
below under the same number.

1. Provide online help for dialogs. If you associate a Help ID
with a form in Constructor, the system will add the “i” icon
and handle presentation of the dialog.

2. Use bold face for labels, nonbold for editable items.

3. In the details dialog, right-align the label and left align the
editable field.

4. When using buttons in dialogs, leave a space of 3 pixels
between the edge of the dialog and the buttons.

4. Leave 3 pixels between edge of dialog and buttons.

5. Align dialog with bottom of screen.

2. Use bold for labels.
Use non-bold for editable items.

3. Use right align:Left align in Details dialog.

1. Provide online help for dialogs.

Good Design Practices
Localization Guidelines

46 Palm OS Programmer’s Companion (Preliminary)

5. Align dialogs with the bottom of the screen. Leave the screen
title bar visible if possible.

Palm OS Resource Selection: List or Table?
Many developers find it difficult to decide whether to choose a list
or a table for certain components of their application.

Use tables when you need quality text handling (including editing
in place). Be careful if you work with non-text items in some of the
columns, the selection region may be smaller than you need.

Use lists when users select from a predefined list (e.g. categories) or
if the application determines the information to be displayed on the
fly (based on previous user selections). Remember that you are
responsible for scroll button handling and that editing can be
non-trivial.

Localization Guidelines
If you’re planning to localize the Palm OS software that you’re
developing, start by looking at the localized versions of the four
PIM applications on the device. Then plan your application’s
interface, keeping in mind localization issues listed below. Also see
the chapter “Localized Applications”, which describes guidelines
for writing code in a localized application.

• If you use the English language version of the software as a
guide when designing the layout of the screen, try to allow:

– extra space for strings

– larger dialogs than the English version requires

• Abbreviations may be the best way to accommodate the
particularly scarce screen real estate on the Palm OS device.

• Don’t put language-dependent strings in code. If you have to
display text directly on the screen, remember that a one-line
warning or message in one language may need more than
one line in another language.

• Don’t depend on the physical characteristics of a string, such
as the number of characters, the fact that it contains a

Good Design Practices
Making Your Application Run on Different Devices

Palm OS Programmer’s Companion (Preliminary) 47

particular substring, or any other attribute that might
disappear in translation.

• Consider using string templates. For example, the MemoPad
application uses the template: Memo # of %. The application
can replace # and % to change the text.

• Using a fine granularity is usually helpful. You can then
concatenate strings as needed (and in the order needed,
which often differs from language to language) to arrive at a
correct translation.

• Remember that most resources, for example, lists, fields, and
tips, scroll if you need more space.

Making Your Application Run on Different
Devices

There are many different devices that run Palm OS, and each may
have a different version of the OS installed on it (see Table 2.1).
Users are not expected to upgrade the Palm OS as frequently as they
would an OS on a desktop computer. This fact makes backward
compatibility more crucial for Palm applications.

Table 2.1 Some Palm Computing platform devices

Name Palm OS Version

Pilot 1000a 1.0

Pilot 5000a 1.0

PalmPilota 2.0

PalmPilot Professional 2.0

Palm III 3.0

IBM Workpad 2.0 or 3.0

Symbol SPT 1500 3.0

Qualcomm pdQb 3.0

Good Design Practices
Making Your Application Run on Different Devices

48 Palm OS Programmer’s Companion (Preliminary)

This section describes how to make sure your application runs on as
many devices as possible by discussing:

• Running New Applications on an Older Device

• Compiling Older Applications With The Latest SDK

Running New Applications on an Older Device
Releases of the Palm OS are binary compatible with each other. If
you write a brand new application today, it can run on all versions
of the operating system provided the application doesn’t use any
new features. In other words, if you write your application using
only features available in Palm OS 1.0, then your application runs
on all devices. If you use 2.0 features, your application won’t run on
the earliest Palm Computing platform devices, but it will run on all
others, and so on.

How can you tell which features are available in each version of the
operating system? There are a couple of way to do so:

• The Palm OS SDK Reference has a “Compatibility Guide”
appendix. This guide lists the feature and functions
introduced in each operating system version greater than 1.0.

• The header file SysTraps.h lists all of the system traps
available. Traps are listed in the order in which they were
introduced to the system, and comments in the file clearly
mark where each operating system version begins.

Programmatically, you can use the feature manager to determine
which features are available on the system the application is
running on. Note that you can’t always rely on the operating system
version number to guarantee that a feature exists. For example,
Palm OS version 3.2 introduces wireless support, but not all Palm

Palm IIIx 3.1

Palm V 3.1

Palm VIIb 3.2
a.No longer available.
b.Available sometime in 1999.

Name Palm OS Version

Good Design Practices
Making Your Application Run on Different Devices

Palm OS Programmer’s Companion (Preliminary) 49

OS devices have that capability. Thus, checking that the system
version is 3.2 does not guarantee that wireless support exists.
Consult the “Compatibility Guide” in the Palm OS SDK Reference to
learn how to check for the existence of each specific feature.

Compiling Older Applications With The Latest
SDK
As a rule, all Palm OS applications developed with an earlier
version of the Palm Computing platform SDK should run error-free
on the latest release.

If you want to compile your older application under the latest
release, you need to look out for functions with a changed API. For
any of these functions, the old function still exists with an extension
noting the release that supports it, such as V10 or V20.

You can choose one of two options:

• Change the function name to keep using the old API. Your
application will then run error free on the newer devices.

• Update your application to use the new API. The application
will then run error free and have access to some new
functionality; however, it will no longer run on older devices
that use prior releases of the OS.

Good Design Practices
Making Your Application Run on Different Devices

50 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 51

3
Application Startup
and Stop
On desktop computers, an application starts up when a user
launches it and exits when the user chooses the Exit or Quit
command. These things occur a little bit differently on the Palm OS
hand-held device. A Palm OS application does launch when the
user requests it, but it may also launch in response to some other
user action, such as a request for the global find facility. Palm OS
applications don’t have an Exit command; instead they exit when a
user requests another application.

This chapter describes how an application launches, how an
application stops, and the code you must write to perform these
tasks properly. It covers:

• Launch Codes and Launching an Application

• Responding to Launch Codes

• Launching Applications Programmatically

• Creating Your Own Launch Codes

• Stopping an Application

• Launch Code Summary

This chapter does not cover the main application event loop. The
event loop is covered in Chapter 4, “Event Loop.”

Launch Codes and Launching an Application
An application launches when it receives a launch code. Launch
codes are a means of communication between the Palm OS and the
application (or between two applications).

For example, an application typically launches when a user presses
one of the buttons on the device or selects an application icon from

Application Startup and Stop
Responding to Launch Codes

52 Palm OS Programmer’s Companion (Preliminary)

the application launcher screen. When this happens, the system
generates the launch code
sysAppLaunchCommandNormalLaunch, which tells the
application to perform a full launch and display its user interface.

Other launch codes specify that the application should perform
some action but not necessarily become the current application (the
application the user sees). A good example of this is the launch code
used by the global find facility. The global find facility allows users
to search all databases for a certain record, such as a name. In this
case, it would be very wasteful to do a full launch—including the
user interface—of each application only to access the application’s
databases in search of that item. Using a launch code avoids this
overhead.

Each launch code may be accompanied by two types of information:

• A parameter block, a pointer to a structure that contains
several parameters. These parameters contain information
necessary to handle the associated launch code.

• Launch flags indicate how the application should behave.
For example, a flag could be used to specify whether the
application should display UI or not. (See “Launch Flags” in
the Palm OS SDK Reference.)

A complete list of all launch codes is provided at the end of this
chapter in the section “Launch Code Summary.” That section
contains links into where each launch code is described in the Palm
OS SDK Reference.

Responding to Launch Codes
Your application should respond to launch codes in a function
named PilotMain. PilotMain is the entry point for all
applications.

When an application receives a launch code, it must first check
whether it can handle this particular code. For example, only
applications that have text data should respond to a launch code
requesting a string search. If an application can’t handle a launch
code, it exits without failure. Otherwise, it performs the action
immediately and returns.

Application Startup and Stop
Responding to Launch Codes

Palm OS Programmer’s Companion (Preliminary) 53

Listing 3.1 shows parts of PilotMain from the Datebook
application as an example. To see the complete example, go to the
examples folder in the Palm OS SDK and look at the file
Datebook.c.

Listing 3.1 PilotMain in Datebook.c

DWord PilotMain (Word cmd, Ptr cmdPBP, Word launchFlags)
{
return DBPilotMain(cmd, cmdPBP, launchFlags);

}

static DWord DBPilotMain (Word cmd, Ptr cmdPBP, Word launchFlags)
{
Word error;
Boolean launched;

// This app makes use of PalmOS 2.0 features.It will crash if
// run on an earlier version of PalmOS. Detect and warn if this
// happens, then exit.
error = RomVersionCompatible (version20, launchFlags);
if (error)
return error;

// Launch code sent by the launcher or the datebook button.
if (cmd == sysAppLaunchCmdNormalLaunch)
{
error = StartApplication ();
if (error) return (error);

FrmGotoForm (DayView);
EventLoop ();
StopApplication ();
}

// Launch code sent by text search.
else if (cmd == sysAppLaunchCmdFind)
{
Search ((FindParamsPtr)cmdPBP);

Application Startup and Stop
Responding to Launch Codes

54 Palm OS Programmer’s Companion (Preliminary)

}

// This launch code might be sent to the app when it's already
// running if the user hits the "Go To" button in the Find
// Results dialog box.
else if (cmd == sysAppLaunchCmdGoTo)
{
launched = launchFlags & sysAppLaunchFlagNewGlobals;
if (launched)
{
error = StartApplication ();
if (error) return (error);

GoToItem ((GoToParamsPtr) cmdPBP, launched);

EventLoop ();
StopApplication ();
}

else
GoToItem ((GoToParamsPtr) cmdPBP, launched);

}

// Launch code sent by sync application to notify the datebook
// application that its database was been synced.
// ...
// Launch code sent by Alarm Manager to notify the datebook
// application that an alarm has triggered.
// ...
// Launch code sent by Alarm Manager to notify the datebook
// application that is should display its alarm dialog.
// ...
// Launch code sent when the system time is changed.
// ...
// Launch code sent after the system is reset. We use this time
// to create our default database if this is a hard reset
// ...
// Launch code sent by the DesktopLink server when it create
// a new database. We will initialize the new database.

Application Startup and Stop
Responding to Launch Codes

Palm OS Programmer’s Companion (Preliminary) 55

return (0);
}

Responding to Normal Launch
When an application receives the launch code
sysAppLaunchCommandNormalLaunch, it begins with a startup
routine, then goes into an event loop, and finally exits with a stop
routine. (The event loop is described in Chapter 4, “Event Loop.”
The stop routine is shown in the section “Stopping an Application”
at the end of this chapter.)

During the startup routine, your application should perform these
actions:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global
variables that will be referenced throughout the application.

2. Find the application database by creator type. If none exists,
create it and initialize it.

3. Get application-specific preferences and initialize related
global variables.

4. Initialize any other global variables.

As you saw in Listing 3.1, the Datebook application example
responds to sysAppLaunchCommandNormalLaunch by calling a
function named StartApplication. Listing 3.2 shows the
StartApplication function.

Listing 3.2 StartApplication from Datebook.c

static Word StartApplication (void)
{
Word error = 0;
Err err = 0;
UInt mode;
DateTimeType dateTime;
DatebookPreferenceType prefs;
SystemPreferencesType sysPrefs;
Word prefsSize;

Application Startup and Stop
Responding to Launch Codes

56 Palm OS Programmer’s Companion (Preliminary)

// Step 1: Get system-wide preferences.
PrefGetPreferences (&sysPrefs);
// Determime if secret records should be displayed.
HideSecretRecords = sysPrefs.hideSecretRecords;

if (HideSecretRecords)
mode = dmModeReadWrite;

else
mode = dmModeReadWrite | dmModeShowSecret;

// Get the time formats from the system preferences.
TimeFormat = sysPrefs.timeFormat;

// Get the date formats from the system preferences.
LongDateFormat = sysPrefs.longDateFormat;
ShortDateFormat = sysPrefs.dateFormat;

// Get the starting day of the week from the
// system preferences.
StartDayOfWeek = sysPrefs.weekStartDay;

// Get today's date.
TimSecondsToDateTime (TimGetSeconds (), &dateTime);
Date.year = dateTime.year - firstYear;
Date.month = dateTime.month;
Date.day = dateTime.day;

// Step 2. Find the application's data file. If it doesn't
// exist, create it.
ApptDB = DmOpenDatabaseByTypeCreator(datebookDBType,

sysFileCDatebook, mode);
if (! ApptDB)
{
error = DmCreateDatabase (0, datebookDBName,

sysFileCDatebook,
datebookDBType, false);

if (error) return error;

Application Startup and Stop
Responding to Launch Codes

Palm OS Programmer’s Companion (Preliminary) 57

ApptDB = DmOpenDatabaseByTypeCreator(datebookDBType,
sysFileCDatebook, mode);

if (! ApptDB) return (1);

error = ApptAppInfoInit (ApptDB);
if (error) return error;
}

// Step 3. Get application-specific preferences.
// Read the preferences / saved-state information. There is
// only one version of the DateBook preferences so don't worry
// about multiple versions.
prefsSize = sizeof (DatebookPreferenceType);
if (PrefGetAppPreferences (sysFileCDatebook, datebookPrefID,

&prefs, &prefsSize,
true) != noPreferenceFound)
{
DayStartHour = prefs.dayStartHour;
DayEndHour = prefs.dayEndHour;
AlarmPreset = prefs.alarmPreset;
NoteFont = prefs.noteFont;
SaveBackup = prefs.saveBackup;
ShowTimeBars = prefs.showTimeBars;
CompressDayView = prefs.compressDayView;
ShowTimedAppts = prefs.showTimedAppts;
ShowUntimedAppts = prefs.showUntimedAppts;
ShowDailyRepeatingAppts = prefs.showDailyRepeatingAppts;
}

// Step 4. Initialize any other global variables.
TopVisibleAppt = 0;
CurrentRecord = noRecordSelected;

// Load the far call jump table.
FarCalls.apptGetAppointments = ApptGetAppointments;
FarCalls.apptGetRecord = ApptGetRecord;
FarCalls.apptFindFirst = ApptFindFirst;
FarCalls.apptNextRepeat = ApptNextRepeat;

Application Startup and Stop
Responding to Launch Codes

58 Palm OS Programmer’s Companion (Preliminary)

FarCalls.apptNewRecord = ApptNewRecord;
FarCalls.moveEvent = MoveEvent;

return (error);
}

Responding to Other Launch Codes
If an application receives a launch code other than
sysAppLaunchCmdNormalLaunch, it decides if it should respond
to that launch code. If it responds to the launch code, it does so by
implementing a launch code handler, which is invoked from its
PilotMain function.

In most cases, when you respond to a launch code, you are not able
to access global variables. Global variables are only initialized after
the application received sysAppLaunchCmdNormalLaunch (see
Listing 3.2), so if the application hasn’t received the normal launch
code, its global variables are not initialized and not accessible.

NOTE: Static local variables are stored with the global variables
on the system’s dynamic heap. They are not accessible when
executing launch codes other than normal launch.

On the other hand, if the application is the current application, the
launch code handler can access global variables after all. If the
application is current, it has already responded to
sysAppLaunchCmdNormalLaunch and initialized its global
variables.

Your application can find out whether it’s current by checking the
launch flags that are sent with the launch code. If the application is
the currently running application, the
sysAppLaunchFlagSubCall flag is set. This flag is set by the
system and isn’t (and shouldn’t be) set by the sender of a launch
code.

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;

Application Startup and Stop
Launching Applications Programmatically

Palm OS Programmer’s Companion (Preliminary) 59

Launching Applications Programmatically
Applications can send launch codes to each other, so your
application might be launched from another application or it might
be launched from the system. An application can use a launch code
to request that another application perform an action or modify its
data. For example, a data collection application could instruct an
email application to queue up a particular message to be sent.

Sending a launch code to another application is like calling a
specific subroutine in that application: the application responding to
the launch code is responsible for determining what to do given the
launch code constant passed on the stack as a parameter.

To send a launch code to another application, use the System
Manager function SysAppLaunch. Use this routine when you want
to make use of another application’s functionality and eventually
return control of the system to your application. Usually,
applications use it only for sending launch codes to other user-
interface applications.

SysAppLaunch has numerous options, including whether to
launch the application as a separate task, whether to allocate a
globals world, and whether or not to give the called application its
own stack. For example, you would use this function to request that
the built in Address List application search its databases for a
specified phone number and return the results of the search to your
application. You could then call SysAppLaunch again to use the
modem handle to dial the number. (In fact, this is how the built-in
applications perform this task.) When calling SysAppLaunch do
not set launch flags yourself—the SysAppLaunch function sets
launch flags appropriately for you.

An alternative, simpler method of sending launch codes is the
SysBroadcastActionCode call. This routine automatically finds
all other user-interface applications and calls SysAppLaunch to
send the launch code to each of them.

If your application is called to process a launch code, it is called as a
subroutine from the current user-interface application. Use the
routine SysCurAppDatabase to get the card number and database
ID of the currently running user-interface application. This routine

Application Startup and Stop
Creating Your Own Launch Codes

60 Palm OS Programmer’s Companion (Preliminary)

doesn’t return your application’s database ID but the database ID of
the application that initiated the launch code.

If you want to actually close your application and open another
application use SysUIAppSwitch instead of SysAppLaunch. This
routine notifies the system which application to launch next and
feeds an application-quit event into the event queue. If and when
the current application responds to the quit event and returns, the
system launches the new application.

In Palm OS 3.0 and higher, you can also use the Application
Launcher to launch any application. For more information, see the
section “Application Launcher” in the “User Interface” chapter.

WARNING! Do not use the SysUIAppSwitch or
SysAppLaunch functions to open the Application Launcher
application.

Creating Your Own Launch Codes
The Palm OS contains predefined launch codes, which are listed in
Table 3.1 at the end of this chapter. In addition, developers can
create their own launch codes to implement specific functionality.
Both the sending and the receiving application must know about
and handle any developer-defined launch codes.

The launch code parameter is a 16-bit word value. All launch codes
with values 0–32767 are reserved for use by the system and for
future enhancements. Launch codes 32768–65535 are available for
private use by applications.

Stopping an Application
An application shuts itself down when it receives the event
appStopEvent. Note that this is an event, not a launch code. The
application must detect this event and terminate. (You’ll learn more
about events in the next chapter.)

Application Startup and Stop
Stopping an Application

Palm OS Programmer’s Companion (Preliminary) 61

When an application stops, it is given an opportunity to perform
cleanup activities including closing databases and saving state
information.

In the stop routine, an application should first flush all active
records, then close the application’s database, and finally save those
aspects of the current state needed for startup. Listing 3.3 is an
example of a StopApplication routine from Datebook.c.

Listing 3.3 StopApplication from Datebook.c

static void StopApplication (void)
{
DatebookPreferenceType prefs;

// Write the preferences / saved-state information.
prefs.noteFont = NoteFont;
prefs.dayStartHour = DayStartHour;
prefs.dayEndHour = DayEndHour;
prefs.alarmPreset = AlarmPreset;
prefs.saveBackup = SaveBackup;
prefs.showTimeBars = ShowTimeBars;
prefs.compressDayView = CompressDayView;
prefs.showTimedAppts = ShowTimedAppts;
prefs.showUntimedAppts = ShowUntimedAppts;
prefs.showDailyRepeatingAppts = ShowDailyRepeatingAppts;

// Write the state information.
PrefSetAppPreferences (sysFileCDatebook, datebookPrefID,
datebookVersionNum, &prefs, sizeof (DatebookPreferenceType),
true);

// Send a frmSave event to all the open forms.
FrmSaveAllForms ();

// Close all the open forms.
FrmCloseAllForms ();

// Close the application's data file.

Application Startup and Stop
Launch Code Summary

62 Palm OS Programmer’s Companion (Preliminary)

DmCloseDatabase (ApptDB);
}

Launch Code Summary
Table 3.1 lists all Palm OS standard launch codes. These launch
codes are declared in the header SystemMgr.h. All the parameters
for a launch code are passed in a single parameter block, and the
results are returned in the same parameter block.

Table 3.1 Palm OS Launch Codes

Code Request

sysAppLaunchCmdAddRecord Add a record to a database.

sysAppLaunchCmdAlarmTriggered Schedule next alarm or perform quick
actions such as sounding alarm tones.

sysAppLaunchCmdCountryChange Respond to country change.

sysAppLaunchCmdDisplayAlarm Display specified alarm dialog or
perform time-consuming alarm-related
actions.

sysAppLaunchCmdExgAskUser Let application override display of
dialog asking user if they want to
receive incoming data via the exchange
manager.

sysAppLaunchCmdExgReceiveData Notify application that it should receive
incoming data via the exchange
manager.

sysAppLaunchCmdFind Find a text string.

sysAppLaunchCmdGoto Go to a particular record, display it, and
optionally select the specified text.

sysAppLaunchCmdGoToURL Launch Clipper application and open a
URL. (Palm VIII system only.)

sysAppLaunchCmdInitDatabase Initialize database.

Application Startup and Stop
Launch Code Summary

Palm OS Programmer’s Companion (Preliminary) 63

sysAppLaunchCmdLookup Look up data. In contrast to
sysAppLaunchCmdFind, a level of
indirection is implied. For example, look
up a phone number associated with a
name.

sysAppLaunchCmdNormalLaunch Launch normally.

sysAppLaunchCmdOpenDB Launch application and open a
database. (Palm VIII system only.)

sysAppLaunchCmdPanelCalledFromAp
p

Tell preferences panel that it was
invoked from an application, not the
Preferences application.

sysAppLaunchCmdReturnFromPanel Tell an application that it’s restarting
after preferences panel had been called.

sysAppLaunchCmdSaveData Save data. Often sent before find
operations.

sysAppLaunchCmdSyncNotify Notify applications that a HotSync has
been completed.

sysAppLaunchCmdSystemLock Sent to the Security application to
request that the system be locked down.

sysAppLaunchCmdSystemReset Respond to system reset. No UI is
allowed during this launch code.

sysAppLaunchCmdTimeChange Respond to system time change.

sysAppLaunchCmdURLParams Launch an application with parameters
from Clipper. (Palm VIII system only.)

Code Request

Application Startup and Stop
Launch Code Summary

64 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 65

4
Event Loop
This chapter discusses the event manager, the main interface
between the Palm OS system software and the application. It
discusses in some detail what an application does in response to
user input, providing code fragments as examples where needed.
The topics covered are:

• The Application Event Loop

• Low-Level Event Management

This chapter’s focus is on how to write your applications main
event loop. For more detailed information on events, consult the
Palm OS SDK Reference. Details for each event are given in Chapter
3, “Palm OS Events.” In addition to the reference material, consult
the chapter “User Interface” in this book. It provides the event flow
for each user interface element.

Figure 4.1 illustrates control flow in a typical application.

Event Loop

66 Palm OS Programmer’s Companion (Preliminary)

Figure 4.1 Control Flow in a Typical Application

EvtGetEvent

SysHandleEvent

MenuHandleEvent

FormDispatchEvent

Is there an event?

yes

no

Is this a system function?
Process event,
generate other events
as necessary, return. (e.g., power-off, Graffiti input)

Handle menu interface,

Remain in loop until
there is an event.

then go on.

ApplicationHandleEvent

yes

no

Is this a menu?

Load from resources, set event
handler for form loaded.

FrmHandleEvent

yes

no

Is this a frmLoadEvent?

Did application handler
complete event processing?

Provide default processing
for event.

yes

no

no

yes

Dispatch event to application’s
handler for form.

Event Loop
The Application Event Loop

Palm OS Programmer’s Companion (Preliminary) 67

The Application Event Loop
As described in the previous chapter, “Application Startup and
Stop,” an application performs a full startup when it receives the
launch code sysAppLauchCommandNormalLaunch. It begins
with a startup routine, then goes into an event loop, and finally exits
with a stop routine.

In the event loop, the application fetches events from the queue and
dispatches them, taking advantage of the default system
functionality as appropriate.

While in the loop, the application continuously checks for events on
the event queue. If there are events on the queue, the application has
to process them as determined in the event loop. As a rule, the
events are passed on to the system, which knows how to handle
them. For example, the system knows how to respond to pen taps
on forms or menus.

The application typically remains in the event loop until the system
tells it to shut itself down by sending an appStopEvent (not a
launch code) through the event queue. The application must detect
this event and terminate.

Listing 4.1 Top-Level Event Loop Example from Datebook.c

static void EventLoop (void)
{
Word error;
EventType event;
do
{
EvtGetEvent (&event, evtWaitForever);

PreprocessEvent (&event);

if (! SysHandleEvent (&event))

if (! MenuHandleEvent (NULL, &event, &error))

if (! ApplicationHandleEvent (&event))
FrmDispatchEvent (&event);

Event Loop
The Application Event Loop

68 Palm OS Programmer’s Companion (Preliminary)

#if EMULATION_LEVEL != EMULATION_NONE
ECApptDBValidate (ApptDB);

#endif
}

while (event.eType != appStopEvent);
}

In the event loop, the application iterates through these steps (see
Figure 4.1 and Listing 4.1)

1. Fetch an event from the event queue.

2. Call PreprocessEvent to allow the datebook event
handler to see the command keys before any other event
handler gets them. Some of the datebook views display UI
that disappears automatically; this UI needs to be dismissed
before the system event handler or the menu event handler
display any UI objects.

Note that not all applications need a PreprocessEvent
function. It may be appropriate to call SysHandleEvent
right away.

3. Call SysHandleEvent to give the system an opportunity to
handle the event.

The system handles events like power on/power off, Graffiti
input, tapping silk-screened icons, or pressing buttons.
During the call to SysHandleEvent, the user may also be
informed about low-battery warnings or may find and search
another application.

Note that in the process of handling an event,
SysHandleEvent may generate new events and put them
on the queue. For example, the system handles Graffiti input
by translating the pen events to key events. Those, in turn,
are put on the event queue and are eventually handled by the
application.

SysHandleEvent returns true if the event was completely
handled, that is, no further processing of the event is
required. The application can then pick up the next event
from the queue.

Event Loop
The Application Event Loop

Palm OS Programmer’s Companion (Preliminary) 69

4. If SysHandleEvent did not completely handle the event,
the application calls MenuHandleEvent.
MenuHandleEvent handles two types of events:

– If the user has tapped in the area that invokes a menu,
MenuHandleEvent brings up the menu.

– If the user has tapped inside a menu to invoke a menu
command, MenuHandleEvent removes the menu from
the screen and puts the events that result from the
command onto the event queue.

MenuHandleEvent returns TRUE if the event was
completely handled.

5. If MenuHandleEvent did not completely handle the event,
the application calls ApplicationHandleEvent, a
function your application has to provide itself.
ApplicationHandleEvent handles only the
frmLoadEvent for that event; it loads and activates
application form resources and sets the event handler for the
active form.

6. If ApplicationHandleEvent did not completely handle
the event, the application calls FrmDispatchEvent.
FrmDispatchEvent first sends the event to the
application’s event handler for the active form. This is the
event handler routine that was established in
ApplicationHandleEvent. Thus the application’s code is
given the first opportunity to process events that pertain to
the current form. The application’s event handler may
completely handle the event and return true to calls from
FrmDispatchEvent.In that case, FrmDispatchEvent
returns to the application’s event loop. Otherwise,
FrmDispatchEvent calls FrmHandleEvent to provide the
system’s default processing for the event.

For example, in the process of handling an event, an
application frequently has to first close the current form and
then open another one, as follows:

– The application calls FrmGotoForm to bring up another
form. FrmGotoForm queues a frmCloseEvent for the
currently active form, then queues frmLoadEvent and
frmOpenEvent for the new form.

– When the application gets the frmCloseEvent, it closes
and erases the currently active form.

Event Loop
The Application Event Loop

70 Palm OS Programmer’s Companion (Preliminary)

– When the application gets the frmLoadEvent, it loads
and then activates the new form. Normally, the form
remains active until it’s closed. (Note that this wouldn’t
work if you preload all forms, but preloading is really
discouraged. Applications don’t need to be concerned
with the overhead of loading forms; loading is so fast that
applications can do it when they need it.) The
application’s event handler for the new form is also
established.

– When the application gets the frmOpenEvent, it
performs any required initialization of the form, then
draws the form on the display.

After FrmGotoForm has been called, any further events that
come through the main event loop and to
FrmDispatchEvent are dispatched to the event handler for
the form that’s currently active. For each dialog box or form,
the event handler knows how it should respond to events, for
example, it may open, close, highlight, or perform other
actions in response to the event. FrmHandleEvent invokes
this default UI functionality.

After the system has done all it can to handle the event for
the specified form, the application finally calls the active
form’s own event handling function. For example, in the
datebook application, it may call DayViewHandleEvent or
WeekViewHandleEvent.

Notice how the event flow allows your application to rely on system
functionality as much as it wants. If your application wants to know
whether a button is pressed, it has only to wait for
ctlSelectEvent. All the details of the event queue are handled
by the system.

Some events are actually requests for the application to do
something, for example, frmOpenEvent. Typically, all the
application does is draw its own interface, using the functions
provided by the system, and then waits for events it can handle to
arrive from the queue.

Only the active form should process events.

Event Loop
Low-Level Event Management

Palm OS Programmer’s Companion (Preliminary) 71

Low-Level Event Management
You can perform low-level event management using System Event
Manager functions. The system event manager:

• manages the low-level pen and key event queues.

• translates taps on silk-screened icons into key events.

• sends pen strokes in the Graffiti area to the Graffiti
recognizer.

• puts the system into low-power doze mode when there is no
user activity.

Most applications have no need to call the system event manager
directly because most of the functionality they need comes from the
higher-level event manager or is automatically handled by the
system.

Applications that do use the system event manager directly might
do so to enqueue key events into the key queue or to retrieve each of
the pen points that comprise a pen stroke from the pen queue.

This section provides information about the system event manager
by discussing these topics:

• Event Translation: Pen Strokes to Key Events

• Pen Queue Management

• Auto-Off Control

• System Event Manager Summary

Event Translation: Pen Strokes to Key Events
One of the higher-level functions provided by the system event
manager is conversion of pen strokes on the digitizer to key events.
For example, the system event manager sends any stroke in the
Graffiti area of the digitizer automatically to the Graffiti recognizer
for conversion to a key event. Taps on silk-screened icons, such as
the application launcher, Menu button, and Find button, are also
intercepted by the system event manager and converted into the
appropriate key events.

When the system converts a pen stroke to a key event, it:

Event Loop
Low-Level Event Management

72 Palm OS Programmer’s Companion (Preliminary)

• Retrieves all pen points that comprise the stroke from the pen
queue

• Converts the stroke into the matching key event

• Enqueues that key event into the key queue

Eventually, the system returns the key event to the application as a
normal result of calling EvtGetEvent.

Most applications rely on the following default behavior of the
system event manager:

• All strokes in the predefined Graffiti area of the digitizer are
converted to key events

• All taps on the silk-screened icons are convert to key events

• All other strokes are passed on to the application for
processing

Pen Queue Management
The pen queue is a preallocated area of system memory used for
capturing the most recent pen strokes on the digitizer. It is a circular
queue with a first-in, first-out method of storing and retrieving pen
points. Points are usually enqueued by a low-level interrupt routine
and dequeued by the system event manager or application.

Table 4.1 summarizes pen management.

Table 4.1 Pen Queue Management

The system event manager provides an API for initializing and
flushing the pen queue and for queuing and dequeueing points.
Some state information is stored in the queue itself: to dequeue a
stroke, the caller must first make a call to dequeue the stroke

The user... The system...

Brings the pen down
on the digitizer.

Stores a pen-down sequence in the pen
queue and starts the stroke capture.

Draws a character. Stores additional points in the pen queue
periodically.

Lifts the pen. Stores a pen-up sequence in the pen
queue and turns off stroke capture.

Event Loop
Low-Level Event Management

Palm OS Programmer’s Companion (Preliminary) 73

information (EvtDequeuePenStrokeInfo) before the points for
the stroke can be dequeued. Once the last point is dequeued,
another EvtDequeuePenStrokeInfo call must be made to get the
next stroke.

Applications usually don’t need to call
EvtDequeuePenStrokeInfo because the event manager calls
this function automatically when it detects a complete pen stroke in
the pen queue. After calling EvtDequeuePenStrokeInfo, the
system event manager stores the stroke bounds into the event
record and returns the pen-up event to the application. The
application is then free to dequeue the stroke points from the pen
queue, or to ignore them altogether. If the points for that stroke are
not dequeued by the time EvtGetEvent is called again, the system
event manager automatically flushes them.

Key Queue Management
The key queue is an area of system memory preallocated for
capturing key events. Key events come from one of two
occurrences:

• As a direct result of the user pressing one of the buttons on
the case

• As a side effect of the user drawing a Graffiti stroke on the
digitizer, which is converted in software to a key event

Table 4.2 summarizes key management.

Table 4.2 Key Queue Management

User action System response

Hardware button
press.

Interrupt routine enqueues the appropriate key event into
the key queue, temporarily disables further hardware button
interrupts, and sets up a timer task to run every 10 ms.

Hold down key for
extended time period.

Timer task to supports auto-repeat of the key (timer task is
also used to debounce the hardware).

Release key for certain
amount of time.

Timer task reenables the hardware button interrupts.

Event Loop
Low-Level Event Management

74 Palm OS Programmer’s Companion (Preliminary)

The system event manager provides an API for initializing and
flushing the key queue and for enqueuing and dequeuing key
events. Usually, applications have no need to dequeue key events;
the event manager does this automatically if it detects a key in the
queue and returns a keyDownEvent to the application through the
EvtGetEvent call.

Auto-Off Control
Because the system event manager manages hardware events like
pen taps and hardware button presses, it’s responsible for resetting
the auto-off timer on the device. Whenever the system detects a
hardware event, it automatically resets the auto-off timer to 0. If an
application needs to reset the auto-off timer manually, it can do so
through the system event manager call EvtResetAutoOffTimer.

System Event Manager Summary

Pen stroke in Graffiti
area of digitizer.

System manager calls the Graffiti recognizer, which then
removes the stroke from the pen queue, converts the stroke
into one or more key events, and finally enqueues these key
events into the key queue.

Pen stroke on silk-
screened icons.

System event manager converts the stroke into the
appropriate key event and enqueues it into the key queue.

User action System response

System Event Manager Functions

Main Event Queue Management

EvtGetEvent EvtEventAvail

EvtSysEventAvail EvtAddEventToQueue

EvtAddUniqueEventToQueue EvtCopyEvent

Pen Queue Management

EvtPenQueueSize EvtDequeuePenPoint

EvtDequeuePenStrokeInfo EvtFlushNextPenStroke

Event Loop
Low-Level Event Management

Palm OS Programmer’s Companion (Preliminary) 75

EvtFlushPenQueue EvtGetPen

EvtGetPenBtnList

Key Queue Management

EvtKeyQueueSize EvtEnqueueKey

EvtFlushKeyQueue EvtKeyQueueEmpty

Handling pen strokes and key strokes

EvtEnableGraffiti EvtProcessSoftKeyStroke

Handling power on and off events

EvtResetAutoOffTimer EvtWakeup

System Event Manager Functions

Event Loop
Low-Level Event Management

76 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 77

5
User Interface
This chapter describes the user interface elements that you can use
in your application. To create a user interface element, you create a
resource that defines what that element looks like and where it is
displayed. You interact with the element programmatically as a UI
object. A Palm OS UI object is a C structure that’s linked with one or
more items on the screen. Note that Palm UI objects are just
structures, not the more elaborate objects found in some systems.
This is useful because a C structure is more compact than other
objects could be.

This chapter introduces each of the user interface objects. It also
describes Palm system managers that aid in working with the user
interface. It covers:

• Palm OS Resource Summary

• Drawing on the Palm OS Device

• Forms, Windows, and Dialogs

• Controls

• Fields

• Menus

• Tables

• Lists

• Labels

• Scroll Bars

• Custom UI Objects

• Dynamic UI

• Insertion Point

• Text

• Receiving User Input

• Application Launcher

User Interface
Palm OS Resource Summary

78 Palm OS Programmer’s Companion (Preliminary)

For guidelines on creating a user interface, see the chapter “Good
Design Practices” earlier in this book.

Palm OS Resource Summary
The Palm OS development environment provides a set of resource
templates that application developers use to implement the buttons,
dialogs, and other UI elements. Table 5.1 maps user interface
elements to resources. The ResEdit name is included for developers
using that tool. It’s not relevant for Metrowerks Constructor users.

All resources are discussed in detail in the chapter “Palm OS
Resources” of the Palm OS SDK Reference. Specific design
recommendations for some of the elements are provided in the
chapter “Good Design Practices” in “User Interface Guidelines.”

Table 5.1 UI Resource Summary

UI Element and Functionality Example Resource(s)

Command button—
Execute command.

Button (tBTN)

Push button (also called radio
button)—
Select a value

Push button (tPBN)

Hot text entry—
Invoke dialog that changes text
of the button.

Selector trigger (tSLT)

Increment arrow—
Increment/decrement values, or
scroll.

Button (tBTN) or
repeating button
(tREP)

Check box—
Toggle on or off.

Checkbox (tCBX)

User Interface
Drawing on the Palm OS Device

Palm OS Programmer’s Companion (Preliminary) 79

Drawing on the Palm OS Device
The first version of the Palm Computing Platform device has an
LCD screen of 160x160 pixels. The LCD controller built into the
68328 maps a portion of system memory to the LCD. Currently, the
software only supports 1 bit/pixel monochrome graphics, although
the controller can support 2 bits/pixel gray scale.

Forms, Windows, and Dialogs
A form is the GUI area for each view of your application. For
example the Address Book offers an Address List view, Address
Edit view, and so on. Each application has to have one form, and
most applications have more than one. To actually create the view,
you have to add other UI elements to the form; either by dragging

Popup list—
Choose a setting from a list.

Popup trigger (tPUT)
Popup list (tPUL)
List (tLST)

Menu—
Execute commands not found
on screen as buttons and so on.

Menu Bar (MBAR)
Menu (MENU)

Text field—
Display text (single or multiple
lines).

Field (tFLD)

Scroll bar—
Use together with fields or
tables.

Scrollbar

UI Element and Functionality Example Resource(s)

User Interface
Forms, Windows, and Dialogs

80 Palm OS Programmer’s Companion (Preliminary)

them onto the form from the catalog or by providing their ID as the
value of some of the form’s fields.

Figure 5.1 shows an example of a form. Typical forms are as large as
the screen, as shown here. Other forms are modal dialogs, which are
shorter than the screen but just as wide.

Figure 5.1 Form

A window defines a drawing region. This region may be on the
display or in a memory buffer (an off-screen window). Off-screen
windows are useful for saving and restoring regions of the display
that are obscured by other UI objects. All forms are windows, but
not all windows are forms.

The window object is the portion of the form object that determines
how the form’s window looks and behaves. A window object
contains viewing coordinates of the window and clipping bounds.

When a form is opened, a frmOpenEvent is triggered and the
form’s ID is stored. A winEnterEvent is triggered whenever a
form is opened, and a winExitEvent is triggered whenever a form
is closed. the winEnterEvent usually follows right after a
winExitEvent; an old window is deactivated just before a new
window is activated.

This section lists API you can use to manipulate forms, windows,
and the objects within a form. The following two sections describe
special types of forms:

• Alert Dialogs

User Interface
Forms, Windows, and Dialogs

Palm OS Programmer’s Companion (Preliminary) 81

• Progress Dialogs

Alert Dialogs
If you want to display an alert dialog (see Figure 5.2) or prompt the
user for a response to a question, use the alert manager. The alert
manager defines the following functions:

• FrmAlert

• FrmCustomAlert

Figure 5.2 Alert Dialog

Given a resource ID that defines an alert, the alert manager creates
and displays a modal dialog box. When the user taps one of the
buttons in the dialog, the alert manager disposes of the dialog box
and returns to the caller the item number of the button the user
tapped.

There are four types of system-defined alerts:

• Question

• Warning

• Notification

• Error

The alert type determines which icon is drawn in the alert window
and which sound plays when the alert is displayed.

When the alert manager is invoked, it’s passed an alert resource (see
the chapter “Palm OS Resources” in the Palm OS SDK Reference) that
contains the following information:

• The rectangle that specifies the size and position of the alert
window

• The alert type (question, warning, notification, or error)

User Interface
Forms, Windows, and Dialogs

82 Palm OS Programmer’s Companion (Preliminary)

• The null-terminated text string; that is, the message the alert
displays

• The text labels for one or more buttons

Progress Dialogs
If your application performs a lengthy process, such as data transfer
during a communications session, consider displaying a progress
dialog to inform the user of the status of the process. The progress
manager provides the mechanism to display progress dialogs.

You display a progress dialog by calling PrgStartDialog. Then,
as your process progresses, you call PrgUpdateDialog to update
the dialog with new information for the user. In your event loop you
call PrgHandleEvent to handle the progress dialog update events
queued by PrgUpdateDialog. The PrgHandleEvent function
makes a callback to a textCallback function that you supply to
get the latest progress information.

Note that whatever operation you are doing that is the lengthy
process, you do the work inside your normal event loop, not in the
callback function. That is, you call EvtGetEvent and do work
when you get a nilEvent. Each time you get a nilEvent, do a
chunk of work, but be sure to continue to call EvtGetEvent
frequently (like every half second), so that pen taps and other events
get noticed quickly enough.

The dialog can display a few lines of text that are automatically
centered and formatted. You can also specify an icon that identifies
the operation in progress. The dialog has one optional button that
can be a cancel or an OK button. The type of the button is
automatically controlled by the progress manager and depends on
the current progress state (no error, error, or user canceled
operation).

Progress textCallback Function

When you want to update the progress dialog with new
information, you call the function PrgUpdateDialog. To get the
current progress information to display in the progress dialog,
PrgHandleEvent makes a callback to a function, textCallback,
that you supplied in your call to PrgStartDialog.

User Interface
Forms, Windows, and Dialogs

Palm OS Programmer’s Companion (Preliminary) 83

The system passes the textCallback function one parameter, a
pointer to a PrgCallbackData structure. To learn what type of
information is passed in this structure, see the chapter “Progress
Manager” in the Palm OS SDK Reference.

Your textCallback function should return a Boolean. Return
true if the progress dialog should be updated using the values you
specified in the PrgCallbackData structure. If you specify false,
the dialog is still updated, but with default status messages.
(Returning false is not recommended.)

In the textCallback function, you should set the value of the
textP buffer to the string you want to display in the progress
dialog when it is updated. You can use the value in the stage field
to look up a message in a string resource. You also might want to
append the text in the message field to your base string. Typically,
the message field would contain more dynamic information that
depends on a user selection, such as a phone number, device name,
or network identifier, etc.

For example, the PrgUpdateDialog function might have been
called with a stage of 1 and a messageP parameter value of a
phone number string, “555-1212”. Based on the stage, you might
find the string “Dialing” in a string resource, and append the phone
number, to form the final text “Dialing 555-1212” that you place in
the text buffer textP.

Keeping the static strings corresponding to various stages in a
resource makes it easier to localize your application. More dynamic
information can be passed in via the messageP parameter to
PrgUpdateDialog.

NOTE: The textCallback function is called only if the
parameters passed to PrgUpdateDialog have changed from
the last time it was called. If PrgUpdateDialog is called twice
with exactly the same parameters, the textCallback function is
called only once.

User Interface
Controls

84 Palm OS Programmer’s Companion (Preliminary)

Controls
Control objects allow for user interaction when you add them to the
forms in your application. Events in control objects are handled by
CtlHandleEvent. There are several types of control objects, which
are all described in this section.

Buttons
Buttons (see Figure 5.3) display a text label in a box. The default
style for a button is a text string centered within a rounded
rectangle. Buttons have rounded corners unless a rectangular frame
is specified. A button without a frame inverts a rounded rectangular
region when pressed.

When the user taps a button with the pen, the button highlights
until the user releases the pen or drags it outside the bounds of the
button.

Table 5.2 shows the system events generated when the user interacts
with the button and CtlHandleEvent’s response to the events.

Figure 5.3 Buttons

Table 5.2 Event Flow for Buttons

User Action System Response CtlHandleEvent Response

Pen goes down on a
button.

penDownEvent with the x
and y coordinates stored in
EventType.

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent with
button’s ID number.

Inverts the button’s display.

Pen is lifted from
button.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the ctlSelectEvent
to the event queue.

User Interface
Controls

Palm OS Programmer’s Companion (Preliminary) 85

Popup Trigger
A popup trigger (see Figure 5.4) displays a text label and a graphic
element (always on the left) that signifies the control initiates a
popup list. If the text label changes, the width of the control expands
or contracts to the width of the new label plus the graphic element.

Table 5.3 shows the system events generated when the user interacts
with the popup trigger and CtlHandleEvent’s response to the
events. Because popup triggers are used to display list objects, also
see the section “Lists” in this chapter.

Figure 5.4 Popup Trigger

Table 5.3 Event Flow for Popup Triggers

Pen is lifted outside
button.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the ctlExitEvent to
the event queue.

ctlExitEvent with
button’s ID number.

Nothing happens.

User Action System Response CtlHandleEvent Response

User Action System Response CtlHandleEvent Response

Pen goes down on the
popup trigger.

penDownEvent with the x
and y coordinates stored in
EventType.

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent with popup
trigger’s ID number.

Inverts the trigger’s display.

Pen is lifted from
button.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the ctlSelectEvent
to the event queue.

User Interface
Controls

86 Palm OS Programmer’s Companion (Preliminary)

Selector Trigger
A selector trigger (see Figure 5.5) displays a text label surrounded
by a gray rectangular frame. If the text label changes, the width of
the control expands or contracts to the width of the new label.

Table 5.4 shows the system events generated when the user interacts
with the selector trigger and CtlHandleEvent’s response to the
events.

Figure 5.5 Selector Trigger

Table 5.4 Event Flow for Selector Triggers

ctlSelectEvent with
popup trigger’s ID number.

Adds a winEnterEvent for
the list object’s window to the
event queue. Controls passes
to FrmHandleEvent, which
displays the list. Control then
passes to LstHandleEvent.

Pen is lifted outside
button.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the ctlExitEvent to
the event queue.

ctlExitEvent with popup
trigger’s ID number.

Nothing happens.

User Action System Response CtlHandleEvent Response

User Action System Response CtlHandleEvent Response

Pen goes down on a
selector trigger.

penDownEvent with the x
and y coordinates stored in
EventType.

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent with
selector trigger’s ID number.

Inverts the button’s display.

User Interface
Controls

Palm OS Programmer’s Companion (Preliminary) 87

Repeating Button
A repeat control looks like a button. In contrast to buttons, however,
users can repeatedly select repeat controls if they don’t lift the pen
when the control has been selected. The object is selected repeatedly
until the pen is lifted.

Table 5.5 shows the system events generated when the user interacts
with the selector trigger and CtlHandleEvent’s response to the
events.

Table 5.5 Event Flow for Repeating Buttons

Pen is lifted from the
selector trigger.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the ctlSelectEvent
to the event queue.

ctlSelectEvent with
selector trigger’s ID number.

Adds a frmOpenEvent
followed by a
winExitEvent to the event
queue. Control is passed to
the form object.

User Action System Response CtlHandleEvent Response

User Action System Response CtlHandleEvent Response

Pen goes down on a
repeating button.

penDownEvent with the x
and y coordinates stored in
EventType.

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent with
button’s ID number.

Adds the ctlRepeatEvent
to the event queue.

Pen remains on
repeating button.

ctlRepeatEvent Tracks the pen for a period of
time, then sends another
ctlRepeatEvent if the pen
is still within the bounds of
the control.

Pen is dragged off the
repeating button.

No ctlRepeatEvent
occurs.

User Interface
Controls

88 Palm OS Programmer’s Companion (Preliminary)

Push Buttons
Push buttons (see Figure 5.6) look like buttons, but the frame always
has square corners. Touching a push button with the pen inverts the
bounds. If the pen is released within the bounds, the button remains
inverted.

Table 5.6 shows the system events generated when the user interacts
with the push button and CtlHandleEvent’s response to the
events.

Figure 5.6 Push Buttons
.

Table 5.6 Event Flow for Push Buttons

Pen is dragged back
onto the button.

ctlRepeatEvent See above.

Pen is lifted from
button.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the ctlExitEvent to
the event queue.

ctlExitEvent with
button’s ID number.

Nothing happens.

User Action System Response CtlHandleEvent Response

User Action System Response CtlHandleEvent Response

Pen goes down on a
push button.

penDownEvent with the x
and y coordinates stored in
EventType.

Adds the ctlEnterEvent to
the event queue.

ctlEnterEvent with push
button’s ID number.

If push button is grouped and
highlighted, no change. If
push button is ungrouped
and highlighted, it becomes
unhighlighted.

User Interface
Controls

Palm OS Programmer’s Companion (Preliminary) 89

Check Boxes
Check boxes (see Figure 5.7) display a setting, either on (checked) or
off (unchecked). Touching a check box with the pen toggles the
setting. The check box appears as a square, which contains a check
mark if the check box’s setting is on. A check box can have a text
label attached to it; selecting the label also toggles the check box.

Push buttons and check boxes can be arranged into exclusive
groups; one and only one control in a group can be on at a time.

Table 5.7 shows the system events generated when the user interacts
with the check box and CtlHandleEvent’s response to the events.

Figure 5.7 Check Boxes

Table 5.7 Event Flow for Check Boxes

Pen is lifted from
push button.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the ctlSelectEvent
to the event queue.

ctlSelectEvent with
button’s ID number.

Store button ID number and
its current state.

User Action System Response CtlHandleEvent Response

User Action Event Generated CtlHandleEvent Response

Pen goes down
on check box.

penDownEvent with the x
and y coordinates stored in
EventType.

Adds the ctlEnterEvent to the
event queue.

ctlEnterEvent with check
box’s ID number.

Tracks the pen until the user lifts
it.

Pen is lifted from
check box.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the ctlSelectEvent to
the event queue.

User Interface
Fields

90 Palm OS Programmer’s Companion (Preliminary)

Fields
A field object displays one or more lines of editable text. Figure 5.8 is
an underlined, left-justified field containing data.

Figure 5.8 Field

The field object supports these features:

• Proportional fonts (only one font per field)

• Drag-selection

• Scrolling for multiline fields

• Cut, copy, and paste

• Left and right text justification

• Tab stops

• Editable/noneditable attribute

ctlSelectEvent with
check box’s ID number.

• If the check box is
unchecked, a check
appears.

• If the check box is already
checked and is grouped,
there is no change in
appearance.

• If the check box is already
checked and is ungrouped,
the check disappears.

Pen is lifted
outside box.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the ctlExitEvent to the
event queue.

ctlExitEvent with check
box’s ID number.

Nothing happens.

User Action Event Generated CtlHandleEvent Response

User Interface
Fields

Palm OS Programmer’s Companion (Preliminary) 91

• Expandable field height (the height of the field expands as
more text is entered)

• Underlined text (each line of the field is underlined)

• Maximum character limit (the field stops accepting
characters when the maximum is reached)

• Special keys (Graffiti strokes) to support cut, copy, and paste

• Insertion point positioning with pen (the insertion point is
positioned by touching the pen between characters)

• Scroll bars

The field object does not support overstrike input mode; horizontal
scrolling; word selection; character filters (for example, only
numeric characters accepted); numeric formatting; or special keys
for page up, page down, left word, right word, home, end, left
margin, right margin, and backspace.

NOTE: Field objects can handle line feeds—\0A—but not
carriage returns—\0D. PalmRez translates any carriage returns it
finds in any Palm OS resources into line feeds, but doesn’t touch
static data.

Events in field objects are handled by FldHandleEvent. Table 5.8
provides an overview of how FldHandleEvent deals with the
different events

User Interface
Fields

92 Palm OS Programmer’s Companion (Preliminary)

Table 5.8 Event Flow for Fields

User Action Event Generated FldHandleEvent Response

Pen goes down on a
field.

penDownEvent with the x
and y coordinates stored in
EventType.

Adds the fldEnterEvent to
the event queue.

fldEnterEvent with the
field’s ID number.

Sets the insertion point
position to the position of the
pen and tracks the pen until it
is released. Drag-selection and
drag-scrolling are supported.

Pen is lifted. penUpEvent with the x and y
coordinates.

Nothing happens; a field
remains selected until another
field is selected or the form
that contains the field is
closed.

Enters characters
into selected field.

keyDownEvent with
character value in
EventType.

Character added to field’s text
pointer.

Presses up arrow
key

keyDownEvent Moves insertion point up a
line.

Presses down arrow keyDownEvent Moves insertion point down a
line; the insertion point
doesn’t move beyond the last
line that contains text.

Presses left arrow keyDownEvent Moves insertion point one
character position to the left.
When the left margin is
reached, move to the end of
the previous line.

Presses right arrow keyDownEvent Moves insertion point one
character position to the right.
When the right margin is
reached, move to the start of
the next line.

User Interface
Menus

Palm OS Programmer’s Companion (Preliminary) 93

Menus
A menu bar is displayed whenever the user taps a menu icon. The
menu bar, a horizontal list of menu titles, appears at the top of the
screen in its own window, above all application windows. Pressing
a menu title highlights the title and “pulls down” the menu below
the title (see Figure 5.9).

Figure 5.9 Menu

User actions have the following effect on a menu:

Cut command keyDownEvent Cuts the current selection to
the text clipboard.

Copy command keyDownEvent Copies the current selection to
the text clipboard.

Paste command keyDownEvent Inserts clipboard text into the
field at insertion point.

User Action Event Generated FldHandleEvent Response

menu

menu item

separator

shortcut

menu bar name

User Interface
Menus

94 Palm OS Programmer’s Companion (Preliminary)

A menu has the following features:

• Item separators, which are lines to group menu items.

• Keyboard shortcuts; the shortcut labels are right justified in
menu items.

• A menu remembers its last selection; the next time a menu is
displayed the prior selection appears highlighted.

• The bits behind the menu bar and the menus are saved and
restored by the menu routines.

• When the menu is visible, the insertion point is turned off.

Menu events are handled by MenuHandleEvent. Table 5.9
describes how user actions get translated into events and what
MenuHandleEvent does in response.

When... Then...

User drags the pen
through the menu.

Command under the pen is highlighted.

Pen is released over a
menu item.

That item is selected and the menu bar
and menu disappear.

Pen is released
outside both the
menu bar and the
menu.

Both menu and menu bar disappear and
no selection is made.

Pen is released in a
menu title.

Menu bar and Menu remain displayed
until a selection is made from the menu.

Pen is tapped outside
menu and menu bar.

Both menu and menu bar are dismissed.

User selects a
separator with the
pen.

Menu is dismissed but no event is posted.

User Interface
Tables

Palm OS Programmer’s Companion (Preliminary) 95

Table 5.9 Event Flow for Menus

Tables
Tables support multi-column displays. Examples are:

• the List view of the ToDo application

• the Day view in the Datebook

The table object is used to organize several types of UI objects. The
number of rows and the number of columns must be specified for
each table object. A UI object can be placed inside a cell of a table.
Tables often consist of rows or columns of the same object. For
example, a table might have one column of labels and another
column of fields. Tables can only be scrolled vertically. Tables can’t
include bitmaps.

A problem may arise if non-text elements are used in the table. For
example, assume you have a table with two columns. In the first
column is an icon that displays information, the second column is a
text column. The table only allows users to select elements in the
first column that are as high as one row of text. If the icon is larger,
only a narrow strip at the top of the column can be selected.

Table Event
The table object generates the event tblSelectEvent. This event
contains:

• The table’s ID number

• The row of the selected table

• The column of the selected table

User Action Event Generated MenuHandleEvent
Response

Pen enters menu
bar.

winEnterEvent identifying
menu’s window.

Tracks the pen.

User selects a menu
item.

penUpEvent with the x and y
coordinates.

Adds a menuEvent with the
item’s ID to the event queue.

User Interface
Lists

96 Palm OS Programmer’s Companion (Preliminary)

When tblSelectEvent is sent to a table, the table generates an
event to handle any possible events within the item’s UI object.

Lists
The list object appears as a vertical list of choices in a box. The
current selection of the list is inverted.

A list is meant for static data. Users can choose from a
predetermined number of items. Examples include:

• the time list in the time edit window of the datebook

• the Category pull-down

If there are more choices than can be displayed, the system draws
small arrows (scroll indicators) in the right margin next to the first
and last visible choice. When the pen comes down and up on a
scroll indicator, the list is scrolled. When the user scrolls down, the
last visible item becomes the first visible item if there are enough
items to fill the list. If not, the list is scrolled so that the last item of
the list appears at the bottom of the list. The reverse is true for
scrolling up. Scrolling doesn’t change the current selection.

Bringing the pen down on a list item unhighlights the current
selection and highlights the item under the pen. Dragging the pen
through the list highlights the item under the pen. Dragging the pen
above or below the list causes the list to scroll if it contains more
choices than are visible.

When the pen is released over an item, that item becomes the
current selection. When the pen is dragged outside the list, the item
that was highlighted before the penDownEvent is highlighted
again if it’s visible. If it’s not, no item is highlighted.

An application can use a list in two ways:

• Initialize a structure with all data for all entries in the list and
let the list manage its own data.

• Provide list drawing functions but don’t keep any data in
memory. The list picks up the data as it’s drawing.

Not keeping data in memory avoids unacceptable memory
overhead if the list is large and the contents of the list
depends on choices made by the user. An example would be

User Interface
Lists

Palm OS Programmer’s Companion (Preliminary) 97

a time conversion application that provides a list of clock
times for a number of cities based on a city the user selects.
Note that only lists can pick up the display information on
the fly like this; tables cannot.

Formatting can be an issue for lists: While it’s possible to imitate a
multi-column display, lists really consist of rows of text.

The LstHandleEvent function handles list events. Table 5.10
provides an overview of how LstHandleEvent deals with the
different events.

Table 5.10 Event Flow for Lists

User Action System Response LstHandleEvent Response

Pen goes down on
popup trigger button.

winEnterEvent identifying
list’s window.

Adds the lstEnterEvent to
the event queue.

lstEnterEvent with list’s
ID number and selected item.

Tracks the pen.

Pen goes down on a
list box.

penDownEvent with the x
and y coordinates stored in
EventType.

Highlights the selection
underneath the pen.

Pen is lifted from the
list box.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds the lstSelectEvent
to the event queue.

lstSelectEvent with list’s
ID number and number of
selected item.

Stores the new selection. If
the list is associated with a
popup trigger, adds a
popSelectEvent is added
to the event queue. with the
popup trigger ID, the popup
list ID, and the item number
selected in EventType.
Control passes to
FrmHandleEvent.

Pen is lifted outside
the list box.

penUpEvent with the x and
y coordinates stored in
EventType.

Adds winExitEvent to
event queue.

User Interface
Labels

98 Palm OS Programmer’s Companion (Preliminary)

Labels
You can create a label in a form by creating a label resource.

The label resource displays noneditable text or labels on a form
(dialog box or full-screen). It’s used, for example, to have text
appear to the left of a checkbox instead of the right.

You don’t interact with a label as a programmatic entity; however,
you can use Form and Control API to create new labels or to change
labels dynamically. See the “Summary of User Interface API” at the
end of this chapter.

Scroll Bars
Palm 0S 2.0 and later provides vertical scroll bar support. As a
result, developers can include scroll bars in forms or tables and the
system sends the appropriate events when the end-user interacts
with the scroll bar (see Figure 5.10).

Figure 5.10 Scroll Bar

Here’s what you have to do to include a scroll bar in your user
interface:

1. Create a scroll bar (tSCL) UI resource.

Provide the ID, the bounds for the scroll bar rectangle. The height
has to match the object you want to attach it to (normally a text
field). The width should be 7.

scroll car

User Interface
Scroll Bars

Palm OS Programmer’s Companion (Preliminary) 99

2. Provide a minimum and maximum value as well as a page size.

• Minimum is usually 0.

• Maximum is usually 0 and set programmatically.

• The page size determines by how many lines the system
moves when the text scrolls.

3. Make the scroll bar part of the form (for tables, place the scroll bar
next to the table field programmatically).

When you compile your application, the system creates the
appropriate scroll bar UI object. (See the chapter “Scrollbars” in the
Palm OS SDK Reference for more information on the scrollbar UI
object.)

There are two ways in which the scroll bar and the field (or table
field) that it’s attached to need to interact:

• When the user adds or removes text, the scroll bar needs to
know about the change in size.

To get this functionality, call TblHasScrollBar
programmatically. The table or field will then send events
whenever the size changes. Your application can catch the
events and process them appropriately.

• When the user moves the scroll bar, the text needs to move
accordingly. This can either happen dynamically (as the user
moves the scroll bar) or statically (after the user has released
the scroll bar).

As a rule, the scroll bar appears on screen as part of the form
and is updated appropriately by the system. Applications
therefore rarely have to call SclDrawScrollBar,
SclGetScrollBar, or SclSetScrollBar. The application
usually does call SclSetScrollBar at initialization time to
set the initial position of the scroll bar.

The system sends the following scroll bar events:

• sclEnterEvent is sent when a penDownEvent occurs
within the bounds of the scroll bar.

• sclRepeatEvent is sent when the user drags the scroll bar.

• sclExitEvent is sent when the user lifts the pen. This
event is sent regardless of previous sclRepeatEvents.

User Interface
Custom UI Objects

100 Palm OS Programmer’s Companion (Preliminary)

Applications that want to support immediate-mode scrolling (that
is, scrolling happens as the user drags the pen) need to watch for
occurrences of sclRepeatEvent.

Application that don’t support immediate-mode scrolling should
ignore occurrences of sclRepeatEvent and wait only for the
sclExitEvent.

Custom UI Objects
A gadget resource lets you implement a custom UI object. The
gadget resource contains basic information about the custom
gadget, which is useful to the gadget writer for drawing and
processing user input.

You interact with gadgets programmatically using Form API. See
the “Summary of User Interface API” at the end of this chapter.

Dynamic UI
Palm OS 3.0 and later provides functions that can be used to create
forms and form elements at runtime. Most applications will never
need to change any user interface elements at runtime—the built-in
applications don’t do so, and the Palm user interface guidelines
discourage it. However, some applications, such as forms packages,
must create their displays at runtime—it is for applications such as
these that the Dynamic UI API is provided. If you’re not absolutely
sure that you need to change your UI dynamically, don’t do it—
unexpected changes to an application’s interface are likely to
confuse or frustrate the end user.

Dynamic user interface objects are subject to the following
limitations:

• You cannot create tables or Graffiti Shift indicators.

• You cannot create buttons (or repeating buttons) having
frames or non-bold frames.

• You cannot move user interface objects after they have been
created.

User Interface
Dynamic UI

Palm OS Programmer’s Companion (Preliminary) 101

You can use the FrmNewForm function to create new forms
dynamically. Palm’s UI guidelines encourage you to keep popup
dialogs at the bottom of the screen, using the entire screen width.
This isn’t enforced by the routine, but is strongly encouraged in
order to maintain a look and feel that is consistent with the built-in
applications.

The FrmNewLabel, FrmNewBitmap, FrmNewGadget,
LstNewList, FldNewField and CtlNewControl functions can
be used to create new objects on forms.

It is fine to add new items to an active form, but doing so is very
likely to move the form structure in memory; therefore, any pointers
to the form or to controls on the form might change. Make sure to
update any variables or pointers that you are using so that they refer
to the form’s new memory location, which is returned when you
create the object.

The FrmRemoveObject function removes an object from a form.
This function doesn’t free memory referenced by the object (if any)
but it does shrink the form chunk. For best efficiency when
removing items from forms, remove items in order of decreasing
index values, beginning with the item having the highest index
value. When removing items from a form, you need to be mindful of
the same concerns as when adding items: the form pointer and
pointers to controls on the form may change as a result of any call
that moves the form structure in memory.

When creating forms dynamically, or just to make your application
more robust, use the FrmValidatePtr function to ensure that
your form pointer is valid and the form it points to is valid. This
routine can catch lots of bugs for you—use it!

Dynamic User Interface Functions
The following API can be used to create forms dynamically:

• CtlNewControl

• CtlValidatePointer

• FldNewField

• FrmNewBitmap

• FrmNewForm

User Interface
Insertion Point

102 Palm OS Programmer’s Companion (Preliminary)

• FrmNewGadget

• FrmNewLabel

• FrmRemoveObject

• FrmValidatePtr

• LstNewList

• WinValidateHandle

Insertion Point
The insertion point is a blinking indicator that shows where text is
inserted when users write Graffiti characters or paste clipboard text.

In general, an application doesn’t need to be concerned with the
insertion point; the Palm OS UI manages the insertion point.

Text
This section describes how to work with text in the user interface—
whether it’s text the user has entered or text that your application
has created to display on the screen.

NOTE: If you application is going to be localized, you must take
special care when working with text. See the chapter “Localized
Applications” for more information.

Working With Text As Strings
The string manager provides a set of string manipulation functions.
The string manager API is closely modeled after the standard C
string-manipulation functions like strcpy, strcat, etc.

Applications should use the functions built into the string manager
instead of the standard C functions because doing so makes the
application smaller:

• When your application uses the string manager functions,
the actual code that implements the function is not linked

User Interface
Text

Palm OS Programmer’s Companion (Preliminary) 103

into your application but is already part of the operating
system.

• When you use the standard C functions, the code for each
function you use is linked into your application and results
in a bigger executable.

In addition, many standard C functions don’t work on the Palm OS
device at all because the OS doesn’t provide all basic system
functions (such as malloc) and doesn’t support the subroutine calls
used by most standard C functions.

NOTE: If your application is going to be localized, be careful
when using string functions. Where possible, use the functions
described in the chapter “Localized Applications” instead.

Using the StrVPrintF Function

Like the C vsprintf function, the StrVPrintF function is
designed to be called by your own function that takes a variable
number of arguments and passes them to StrVPrintF for
formatting. This section gives a brief overview of how to use
StrVPrintF. For more details, refer to vsprintf and the use of the
stdarg.h macros in a standard C reference book.

When you call StrVPrintF, you must use the special macros from
stdarg.h to access the optional arguments (those specified after
the fixed arguments) passed to your function. This is necessary,
because when you declare your function that takes an optional
number of arguments, you declare it using an ellipsis at the end of
the argument list:

MyPrintF(CharPtr s, CharPtr formatStr, ...);

The ellipsis indicates that zero or more optional arguments may be
passed to the function following the formatStr argument. Since
these optional arguments don’t have names, the stdarg.h macros
must be used to access them before they can be passed to
StrVPrintF.

To use these macros in your function, first declare an args variable
as type va_list:

User Interface
Text

104 Palm OS Programmer’s Companion (Preliminary)

va_list args;

Next, initialize the args variable to point to the optional argument
list by using va_start:

va_start(args, formatStr);

Note that the second argument to the va_start macro is the last
required argument to your function (last before the optional
arguments begin). Now you can pass the args variable as the last
parameter to the StrVPrintF function:

StrVPrintF(text, formatStr, args);

When you are finished, invoke the macro va_end before returning
from your function:

va_end(args);

Note that the StrPrintF and StrVPrintF functions implement
only a subset of the conversion specifications allowed by the ANSI
C function vsprintf. See the StrVPrintF function reference for
details.

Fonts in Palm OS 3.0 and Later
Palm OS 3.0 and later provides a new font (largeBoldFont), two
new font manipulation routines (FontSelect and
FntDefineFont), and support for the use of custom fonts.

To use the large, bold font, pass the largeBoldFont selector to the
FntSetFont function. Under Palm OS 3.0 and later, if you try to
draw with a font that isn’t installed, the system uses the standard
font by default. Previous versions of Palm OS can crash if told to use
a nonexistent font.

The FontSelect function displays a dialog box in which the user
can specify the use of one of the three primary fonts stdFont,
boldFont, or largeBoldFont. For more information, see the
description of FontSelect in the Palm OS SDK Reference.

The FntDefineFont function makes a custom font available to
your application. For more information, see the description of
FntDefineFont in the Palm OS SDK Reference.

Currently, Palm has not made available any tools or specifications to
convert desktop fonts for use on Palm OS 3.0 or later. If you have an

User Interface
Receiving User Input

Palm OS Programmer’s Companion (Preliminary) 105

urgent need for such support, send email to devsupp@palm.com
for updated information.

Receiving User Input
The three main ways that a user interacts with an application are:

• by entering Graffiti

• by pressing a hardware button on the device

• by tapping the pen on a control in a form or dialog

The Palm OS provides three managers that control these three types
of input: The Graffiti Manager, The Key Manager, and The Pen
Manager, respectively.

Most applications do not need to access these managers directly;
instead, applications receive events from these managers and
respond to the events. There are cases, however, where you might
need to interact with one of these managers. This section describes
the three input managers and when you might need to use them.
(To learn how to obtain user input from a UI object, refer to the
section in this chapter that covers that object.)

The Graffiti Manager
The Graffiti manager provides an API to the Palm OS Graffiti
recognizer. The recognizer converts pen strokes into key events,
which are then fed to an application through the event manager.

Most applications never need to call the Graffiti manager directly
because it’s automatically called by the event manager whenever it
detects pen strokes in the Graffiti area of the digitizer.

Special-purpose applications, such as a Graffiti tutorial, may want
to call the Graffiti manager directly to recognize strokes in other
areas of the screen or to customize the Graffiti behavior.

Using GrfProcessStroke

GrfProcessStroke is a high-level Graffiti manager call used by
the event manager for converting pen strokes into key events. The
call

User Interface
Receiving User Input

106 Palm OS Programmer’s Companion (Preliminary)

• Removes pen points from the pen queue

• Recognizes the stroke

• Puts one or more key events into the key queue

GrfProcessStroke automatically handles Graffiti ShortCuts and
calls the user interface as appropriate to display shift indicators in
the current window.

An application can call GrfProcessStroke when it receives a
penUpEvent from the event manager if it wants to recognize
strokes entered into its application area (in addition to the Graffiti
area).

Using Other High-Level Graffiti Manager Calls

Other high-level calls provided by the Graffiti manager include
routines for

• Getting and setting the current Graffiti shift state (caps lock
on/off, temporary shift state, etc.)

• Notifying Graffiti when the user selects a different field.
Graffiti needs to be notified when a field change occurs so
that it can cancel out of any partially entered shortcut and
clear its temporary shift state if it’s showing a potentially
accented character.

Special-Purpose Graffiti Manager Calls

The remainder of Graffiti manager API routines are for special-
purpose use. They are basically all the entry points into the Graffiti
recognizer engine and are usually called only by
GrfProcessStroke. These special-purpose uses include calls to
add pen points to the Graffiti recognizer’s stroke buffer, to convert
the stroke buffer into a Graffiti glyph ID, and to map a glyph into a
string of one or more key strokes.

Accessing Graffiti ShortCuts

Other routines provide access to the Graffiti ShortCuts database.
This is a separate database owned and maintained by the Graffiti
manager that contains all of the shortcuts. This database is opened
by the Graffiti manager when it initializes and stays open even after
applications quit.

User Interface
Receiving User Input

Palm OS Programmer’s Companion (Preliminary) 107

The only way to modify this database is through the Graffiti
manager API. It provides calls for getting a list of all shortcuts, and
for adding, editing, and removing shortcuts. The ShortCuts screen
of the Preferences application provides a user-interface for
modifying this database.

Note on Auto Shifting

The Palm OS 2.0 and later automatically uses an upper-case letter
under the following conditions:

• Period and space or Return.

• Other sentence terminator (such as ? or !) and space

This functionality requires no changes by the developer, but should
be welcome to the end user.

Note on Graffiti Help

In Palm OS 2.0 and later, applications can pop up Graffiti help by
calling SysGraffitiReferenceDialog or by putting a virtual
character—graffitiReferenceChr from Chars.h—on the
queue.

Graffiti help is also available through the system Edit menu. As a
result, any application that includes the system Edit menu allows
users to access Graffiti Help that way.

The Key Manager
The key manager manages the hardware buttons on the Palm OS
device. It converts hardware button presses into key events and
implements auto-repeat of the buttons. Most applications never
need to call the key manager directly except to change the key
repeat rate or to poll the current state of the keys.

The event manager is the main interface to the keys; it returns a
keyDownEvent to an application whenever a button is pressed.
Normally, applications are notified of key presses through the event
manager. Whenever a hardware button is pressed, the application
receives an event through the event manager with the appropriate
key code stored in the event record. The state of the hardware
buttons can also be queried by applications at any time through the
KeyCurrentState function call.

User Interface
Application Launcher

108 Palm OS Programmer’s Companion (Preliminary)

The KeyRates call changes the auto-repeat rate of the hardware
buttons. This might be useful to game applications that want to use
the hardware buttons for control. The current key repeat rates are
stored in the key manager globals and should be restored before the
application exits.

The Pen Manager
The pen manager manages the digitizer hardware and converts
input from the digitizer into pen coordinates. The Palm Computing
Platform device has a built-in digitizer overlaid onto the LCD screen
and extending about an inch below the screen. This digitizer is
capable of sampling accurately to within 0.35 mm (.0138 in) with up
to 50 accurate points/second. When the device is in doze mode, an
interrupt is generated when the pen is first brought down on the
screen. After a pen down is detected, the system software polls the
pen location periodically (every 20 ms) until the pen is again raised.

Most applications never need to call the pen manager directly
because any pen activity is automatically returned to the application
in the form of events.

Pen coordinates are stored in the pen queue as raw, uncalibrated
coordinates. When the system event manager routine for removing
pen coordinates from the pen queue is called, it converts the pen
coordinate into screen coordinates before returning.

The Preferences application provides a user interface for calibrating
the digitizer. It uses the pen manager API to set up the calibration
which is then saved into the Preferences database. The pen manager
assumes that the digitizer is linear in both the x and y directions; the
calibration is therefore a simple matter of adding an offset and
scaling the x and y coordinates appropriately.

Application Launcher
The Application Launcher (accessed via the silkscreen
“Applications” button) presents a window or menu from which the
user can open other applications present on the Palm device.
Applications installed on the Palm device (resource databases of
type APPL) appear in the Application Launcher automatically.

User Interface
Application Launcher

Palm OS Programmer’s Companion (Preliminary) 109

NOTE: Versions of Palm OS prior to 3.0 implemented the
Launcher as a popup. The SysAppLauncherDialog function,
which provides the API to the old popup launcher, is still present
in Palm OS 3.0 for compatibility purposes, but it has not been
updated and, in most cases, should not be used.

The Launcher application can beam applications to other Palm
devices. Only the application itself is beamed; associated storage
databases and preferences are not transmitted. To suppress the
beaming of your application by the Launcher, you can set the
dmHdrAttrCopyPrevention bit in your database header. (For a
runtime code example, see the “Dr McCoy” sample application.
Note that you can also use compile-time code to suppress beaming.)

Normally, the Launcher represents installed applications
graphically as icons that appear in the Launcher window. The
Launcher application also provides a list mode that allows the user
to see more applications at once than are normally visible in its
default viewing mode. You can use the Constructor tool to provide a
small icon for the list mode—you’ll need to create a tAIB resource
having 1001 as the value of its ID.

The Launcher displays a version string from each application’s
tver resource, ID 1000. This short string (usually 3 to 6 characters)
is displayed in the “Info” dialog.

Situations in which you need to open the Application Launcher
programmatically are rare, but the system does provide an API for
doing so. To activate the Launcher from within your application,
enqueue a keyDownEvent that contains a launchChr, as shown in
Listing 5.1.

WARNING! Do not use the SysUIAppSwitch or
SysAppLaunch functions to open the Application Launcher
application.

User Interface
Summary of User Interface API

110 Palm OS Programmer’s Companion (Preliminary)

Listing 5.1 Opening the Launcher

EventType newEvent;
newEvent.eType = keyDownEvent;
newEvent.data.keyDown.chr = launchChr;
newEvent.data.keyDown.modifiers = commandKeyMask;
EvtAddEventToQueue (&newEvent);

For information on launching other applications programmatically,
see “Launching Applications Programmatically” in the chapter
“Application Startup and Stop.”

Summary of User Interface API
Progress Manager Functions

PrgHandleEvent
PrgStopDialog
PrgUserCancel

PrgStartDialog
PrgUpdateDialog

Form Functions

Initialization

FrmInitForm

Event Handling

FrmSetEventHandler
FrmHandleEvent

FrmDispatchEvent

Displaying a Form

FrmGotoForm
FrmDrawForm
FrmSetActiveForm

FrmPopupForm
FrmNewForm

Displaying a Modal Dialog

FrmCustomAlert
FrmAlert

FrmDoDialog
FrmHelp

User Interface
Summary of User Interface API

Palm OS Programmer’s Companion (Preliminary) 111

Updating the Display

FrmUpdateForm
FrmShowObject
FrmRemoveObject

FrmReturnToForm
FrmHideObject
FrmUpdateScrollers

Form Attributes

FrmVisible
FrmSaveAllForms

FrmGetUserModifiedState
FrmSetNotUserModified

Accessing a Form Programmatically

FrmGetActiveForm
FrmGetFirstForm
FrmGetFormPtr
FrmValidatePtr

FrmGetActiveFormID
FrmGetFormId
FrmGetWindowHandle

Accessing Objects Within a Form

FrmGetFocus
FrmGetObjectId
FrmGetObjectType
FrmGetObjectPtr

FrmSetFocus
FrmGetObjectIndex
FrmGetObjectPosition
FrmGetNumberOfObjects

Title and Menu

FrmCopyTitle
FrmPointInTitle
FrmSetMenu

FrmGetTitle
FrmSetTitle

Labels

FrmCopyLabel
FrmGetLabel

FrmSetCategoryLabel
FrmNewLabel

Controls

FrmGetControlValue
FrmGetControlGroupSelec
tion

FrmSetControlValue
FrmSetControlGroupSelec
tion

Form Functions

User Interface
Summary of User Interface API

112 Palm OS Programmer’s Companion (Preliminary)

Gadgets

FrmGetGadgetData
FrmNewGadget

FrmSetGadgetData

Bitmaps

FrmNewBitmap

Coordinates and Boundaries

FrmGetObjectBounds
FrmSetObjectPosition

FrmSetObjectBounds
FrmGetFormBounds

Removing a Form From the Display

FrmCloseAllForms FrmEraseForm

Releasing a Form’s Memory

FrmDeleteForm

Window Functions

Initialization

WinInitializeWindow WinCreateWindow

Making a Window Active

WinAddWindow
WinSetActiveWindow

WinEnableWindow
WinSetDrawWindow

Accessing a Window Programmatically

WinGetActiveWindow
WinGetDisplayWindow
WinGetWindowPointer

WinGetDrawWindow
WinGetFirstWindow
WinValidateHandle

Offscreen Windows

WinRestoreBits
WinCreateOffscreenWindo
w

WinSaveBits

Form Functions

User Interface
Summary of User Interface API

Palm OS Programmer’s Companion (Preliminary) 113

Displaying Characters

WinDrawChar
WinInvertChars
WinDrawTruncChars

WinDrawChars
WinDrawInvertedChars
WinEraseChars

Bitmaps

WinDrawBitmap

Lines

WinDrawLine
WinFillLine
WinEraseLine

WinDrawGrayLine
WinInvertLine

Rectangles

WinDrawRectangle
WinDrawWindowFrame
WinInvertRectangle
WinFillRectangle
WinEraseRectangle
WinDrawGrayRectangleFra
me

WinCopyRectangle
WinDrawRectangleFrame
WinInvertRectangleFrame
WinScrollRectangle
WinEraseRectangleFrame

Clipping Rectangle

WinGetClip
WinResetClip

WinSetClip
WinClipRectangle

Controlling the Display

ScrDisplayMode
WinSetPattern
WinModal

WinGetPattern
WinSetUnderlineMode

Coordinates and Boundaries

WinDisplayToWindowPt
WinGetDisplayExtent
WinSetWindowBounds
WinGetFramesRectangle

WinWindowToDisplayPt
WinGetWindowExtent
WinGetWindowBounds
WinGetWindowFrameRect

Window Functions

User Interface
Summary of User Interface API

114 Palm OS Programmer’s Companion (Preliminary)

Removing a Window From the Display

WinEraseWindow
WinDisableWindow

WinRemoveWindow

Releasing a Window’s Memory

WinDeleteWindow

Control Functions

Displaying a Control

CtlShowControl
CtlSetUsable

CtlDrawControl
CtlNewControl

Control’s Value

CtlGetValue CtlSetValue

Label

CtlSetLabel CtlGetLabel

Enabling/Disabling

CtlSetEnabled
CtlHideControl

CtlEnabled
CtlEraseControl

Event Handling

CtlHandleEvent

Debugging

CtlHitControl CtlValidatePointer

Field Functions

Displaying a Field

FldDrawField FldNewField

Window Functions

User Interface
Summary of User Interface API

Palm OS Programmer’s Companion (Preliminary) 115

Obtaining User Input

FldGetSelection
FldGetTextPtr
FldSetDirty

FldGetTextHandle
FldDirty

Updating the Display

FldSetSelection
FldRecalculateField

FldMakeFullyVisible
FldSetBounds

Displaying Text

FldSetText
FldSetTextPtr
FldInsert

FldSetTextHandle
FldCalcFieldHeight

Deleting Text

FldDelete FldEraseField

Cut/Copy/Paste

FldCopy
FldPaste

FldCut
FldUndo

Scrolling

FldScrollField
FldGetScrollValues
FldGetScrollPosition
FldGetVisibleLines

FldScrollable
FldSetScrollPosition
FldGetNumberOfBlankLine
s

Field Attributes

FldGetAttributes
FldGetFont
FldGetMaxChars
FldGetBounds

FldSetAttributes
FldSetFont
FldSetMaxChars
FldSetTextAllocatedSize

Text Attributes

FldGetTextHeight
FldWordWrap

FldGetTextLength
FldGetTextAllocatedSize

Field Functions

User Interface
Summary of User Interface API

116 Palm OS Programmer’s Companion (Preliminary)

Working With the Insertion Point

FldGrabFocus
FldGetInsPtPosition
FldSetInsertionPoint

FldReleaseFocus
FldSetInsPtPosition

Releasing Memory

FldCompactText FldFreeMemory

Event Handling

FldHandleEvent
FldSendHeightChangeNoti
fication

FldSendChangeNotificati
on

Menu Functions

MenuDispose
MenuEraseStatus
MenuHandleEvent
MenuSetActiveMenu

MenuDrawMenu
MenuInit
MenuGetActiveMenu

Table Functions

Drawing Tables

TblDrawTable
TblSetLoadDataProcedure

TblSetCustomDrawProcedu
re

Updating the Display

TblRedrawTable
TblReleaseFocus
TblRemoveRow
TblMarkTableInvalid
TblUnhighlightSelection

TblGrabFocus
TblUnhighlightSelection
TblMarkRowInvalid
TblSelectItem

Field Functions

User Interface
Summary of User Interface API

Palm OS Programmer’s Companion (Preliminary) 117

Retrieving Data

TblFindRowData
TblGetSelection
TblSetSaveDataProcedure

TblGetRowData
TblGetItemInt
TblGetCurrentField

Displaying Data

TblSetItemInt
TblSetItemPtr
TblSetRowData

TblSetItemStyle
TblSetRowID

Retrieving a Row

TblFindRowID TblGetRowID

Table Information

TblEditing
TblGetItemBounds
TblGetNumberOfRows
TblHasScrollBar

TblGetBounds
TblGetLastUsableRow
TblSetBounds

Row Information

TblGetRowHeight
TblRowSelectable
TblRowUsable
TblSetRowStaticHeight

TblSetRowHeight
TblSetRowSelectable
TblSetRowUsable
TblRowInvalid

Column Information

TblGetColumnSpacing
TblGetColumnWidth
TblSetColumnUsable

TblSetColumnSpacing
TblSetColumnWidth
TblSetColumnEditIndicat
or

Removing a Table From the Display

TblEraseTable

Event Handling

TblHandleEvent

Table Functions

User Interface
Summary of User Interface API

118 Palm OS Programmer’s Companion (Preliminary)

List Functions

Displaying a List

LstDrawList
LstPopupList

LstSetDrawFunction
LstNewList

Updating the Display

LstMakeItemVisible
LstSetListChoices
LstSetSelection
LstScrollList

LstSetHeight
LstSetTopItem
LstSetPosition

List Data and Attributes

LstGetNumberOfItems
LstGetSelection

LstGetVisibleItems
LstGetSelectionText

Removing a List From the Display

LstEraseList

Event Handling

LstHandleEvent

Scroll Bar Functions

SclDrawScrollBar
SclHandleEvent

SclGetScrollBar
SclSetScrollBar

Insertion Point Functions

InsPtEnable
InsPtGetHeight
InsPtGetLocation

InsPtEnabled
InsPtSetHeight
InsPtSetLocation

User Interface
Summary of User Interface API

Palm OS Programmer’s Companion (Preliminary) 119

String Manager Functions

Length of a String

StrLen

Comparing Strings

StrCompare
StrCaselessCompare

StrNCompare
StrNCaselessCompare

Changing Strings

StrPrintF
StrCat
StrCopy
StrToLower

StrVPrintF
StrNCat
StrNCopy

Searching Strings

StrStr StrChr

Converting

StrAToI
StrIToH

StrIToA

Localized Numbers

StrDelocalizeNumber StrLocalizeNumber

Font Functions

Changing the Font

FontSelect FntSetFont

Accessing the Font Programmatically

FntGetFont FntGetFontPtr

Wrapping Text

FntWordWrap FntWordWrapReverseNLines

User Interface
Summary of User Interface API

120 Palm OS Programmer’s Companion (Preliminary)

String Width

FntCharsInWidth
FntLineWidth

FntCharsWidth
FntWidthToOffset

Character Width

FntAverageCharWidth FntCharWidth

Height

FntCharHeight
FntBaseLine

FntLineHeight
FntDescenderHeight

Scrolling

FntGetScrollValues

Creating a Font

FntDefineFont

Graffiti Manager Functions

Translate a Stroke into Keyboard Events

GrfProcessStroke

Shift State

GrfInitState
GrfCleanState
GrfFindBranch

GrfGetState
GrfSetState

Point Buffer

GrfGetNumPoints
GrfAddPoint
GrfFlushPoints
GrfMatch

GrfGetPoint
GrfFilterPoints
GrfGetGlyphMapping
GrfMatchGlyph

Font Functions

User Interface
Summary of User Interface API

Palm OS Programmer’s Companion (Preliminary) 121

Working with Macros

GrfGetAndExpandMacro
GrfDeleteMacro
GrfGetMacroName

GrfAddMacro
GrfGetMacro

Ken Manager Functions

KeyCurrentState
KeySetMask

KeyRates

Pen Manager Functions

PenCalibrate PenResetCalibration

Graffiti Manager Functions

User Interface
Summary of User Interface API

122 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 123

6
Memory
This chapter helps you understand memory use on Palm OS.

• Introduction to Memory Use on Palm OS provides
information about Palm OS hardware relevant to memory
management.

• Memory Architecture discusses in detail how memory is
structured on Palm OS. It also examines the structure of the
basic building blocks of Palm OS memory: heaps, chunks,
and records.

• The Memory Manager discusses how to use the Palm OS
memory manager in your applications. The memory
manager maintains the location and size of each memory
chunk in nonvolatile storage, volatile storage, and ROM. It
provides functions for allocating chunks, disposing of
chunks, resizing chunks, locking and unlocking chunks, and
compacting the heap when it becomes fragmented.

Introduction to Memory Use on Palm OS
The Palm OS system software supports applications on low-cost,
low-power, handheld devices. Given these constraints, Palm OS is
efficient in its use of both memory and processing resources. This
section presents two aspects of Palm OS devices that contribute to
this efficiency: Hardware Architecture and PC Connectivity.

Hardware Architecture
The first implementation of Palm OS provides nearly instantaneous
response to user input while running on a 16 MHz Motorola® 68000
type processor with a minimum of 128K of nonvolatile storage
memory and 512 KB of ROM. Subsequent Palm OS devices provide
additional RAM and ROM in varying amounts.

The ROM and RAM for each Palm OS device resides on a memory
module known as a card. Each memory card can contain ROM,

Memory
Introduction to Memory Use on Palm OS

124 Palm OS Programmer’s Companion (Preliminary)

RAM, or both. There is no RAM or ROM storage on the
motherboard of the device.

Though all previous and current Palm OS devices hold one card in a
user-accessible hardware slot, it is unwise to assume that any Palm
OS device has a memory module that can be removed physically. A
“card” is simply a logical construct used by the operating system—
Palm OS devices can have one card, multiple cards, or no cards. For
example, the Simulator provided by the Palm OS SDK on Macintosh
can simulate a device that has two cards.

The ROM and RAM on each card is divided into one or more heaps.
All the RAM-based heaps on a memory card are treated as the RAM
store, and all the ROM-based heaps are treated as the ROM store.
The heaps for a store do not have to be adjacent to each other in
address space—they can be scattered throughout the memory space
on the card—but they must all reside on the same card.

The main suite of applications provided with each Palm OS device
is built into ROM. This design permits the user to replace the
operating system and the entire applications suite simply by
installing a single replacement module. Additional or replacement
applications and system extensions can be loaded into RAM, but
doing so is not always practical in this RAM-constrained
environment.

PC Connectivity
PC connectivity is an integral component of the Palm OS device.
The device comes with a cradle that connects to a desktop PC and
with software for the PC that provides “one-button” backup and
synchronization of all data on the device with the user’s PC.

Because all user data can be backed up on the PC, replacement of
the nonvolatile storage area of the Palm OS device becomes a simple
matter of installing the new module in place of the old one and
resynchronizing with the PC. The format of the user’s data in
storage RAM can change with a new version of the ROM; the
connectivity software on the PC is responsible for translating the
data into the correct format when downloading it onto a device with
a new ROM.

Memory
Memory Architecture

Palm OS Programmer’s Companion (Preliminary) 125

Memory Architecture

IMPORTANT: This section describes the current (3.X)
implementation of Palm OS memory architecture. This
implementation may change as the Palm OS evolves. Do not rely
on implementation-specific information described here; instead,
always use the API provided to manipulate memory.

The Palm OS system software is designed around a 32-bit
architecture. The system uses 32-bit addresses, and its basic data
types are 8, 16, and 32 bits long.

The 32-bit addresses available to software provide a total of 4 GB of
address space for storing code and data. This address space affords
a large growth potential for future revisions of both the hardware
and software without affecting the execution model. Although a
large memory space is available, Palm OS was designed to work
efficiently with small amounts of RAM. For example, the first
commercial Palm OS device has less than 1 MB of memory, or .025%
of this address space.

The Motorola 68328 processor’s 32-bit registers and 32 internal
address lines support a 32-bit execution model as well, although the
external data bus is only 16 bits wide. This design reduces cost
without impacting the software model. The processor’s bus
controller automatically breaks down 32-bit reads and writes into
multiple 16-bit reads and writes externally.

Each memory card in the Palm OS device has 256 MB of address
space reserved for it. Memory card 0 starts at address $1000000,
memory card 1 starts at address $2000000, and so on.

The Palm OS divides the total available RAM store into two logical
areas: dynamic RAM and storage RAM. Dynamic RAM is used as
working space for temporary allocations, and is analogous to the
RAM installed in a typical desktop system. The remainder of the
available RAM on the card is designated as storage RAM and is
analogous to disk storage on a typical desktop system.

Memory
Memory Architecture

126 Palm OS Programmer’s Companion (Preliminary)

Because power is always applied to the memory system, both areas
of RAM preserve their contents when the device is turned “off” (i.e.,
is in low-power sleep mode.) See “Palm OS Power Modes” in the
chapter “Palm System Features” in this book. All of storage memory
is preserved even when the device is reset explicitly. As part of the
boot sequence, the system software reinitializes the dynamic area,
and leaves the storage area intact.

The entire dynamic area of RAM is used to implement a single heap
that provides memory for dynamic allocations. From this dynamic
heap, the system provides memory for dynamic data such as global
variables, system dynamic allocations (TCP/IP, IrDA, and so on, as
applicable), application stacks, temporary memory allocations, and
application dynamic allocations (such as those performed when the
application calls the MemHandleNew function).

The entire amount of RAM reserved for the dynamic heap is always
dedicated to this use, regardless of whether it is actually used for
allocations. The size of the dynamic area of RAM on a particular
device varies according to the OS version running, the amount of
physical RAM available, and the requirements of pre-installed
software such as the TCP/IP stack or IrDA stack. Table 6.1 provides
more information about the dynamic heap space that currently
available combinations of OS and hardware provide.

Table 6.1 Dynamic Heap Space

RAM Usage OS 3.X
> 1 MB
TCP/IP & IrDA
(Palm III)

OS 2.0
1 MB
TCP/IP only
(Professional)

OS 2.0/1.0
512 KB
no TCP/IP or
IrDA (Personal)

Total dynamic area 96 KB 64 KB 32 KB

System Globals
(screen buffer, UI globals,
database references, etc.)

~2.5 KB ~2.5 KB ~2.5 KB

TCP/IP stack 32 KB 32 KB 0 KB

Memory
Memory Architecture

Palm OS Programmer’s Companion (Preliminary) 127

The remaining portion of RAM not dedicated to the dynamic heap
is configured as one or more storage heaps used to hold nonvolatile
user data such as appointments, to do lists, memos, address lists,
and so on. An application accesses a storage heap by calling the
database manager or resource manager, according to whether it
needs to manipulate user data or resources.

The size and number of storage heaps available on a particular
device varies according to the OS version that is running; the
amount of physical RAM that is available; and the storage
requirements of end-user application software such as the Address
List, Date Book, or third-party applications.

Versions 1.0 and 2.0 of Palm OS subdivide storage RAM into
multiple storage heaps of 64 KB each. Palm OS 3.X configures all
storage RAM on a card as a single storage heap. Under all versions
of Palm OS, system overhead limits the maximum usable data
storage available in a single chunk to slightly less than 64 KB.

In the Palm OS environment, all data are stored in memory manager
chunks. A chunk is an area of contiguous memory between 1 byte
and slightly less than 64 KB in size that has been allocated by the
Palm OS memory manager. (Because system overhead requirements
may vary, an exact figure for the maximum amount of usable data
storage for all chunks cannot be specified.) Currently, all Palm OS

System dynamic allocation
(IrDA, “Find” window,
temporary allocations)

variable
amount

~15 KB
(no IrDA in
this OS)

~15 KB

Application stack
(call stack and local vars)

4 KB
(default)

2.5 KB 2.5 KB

Remaining dynamic space
(dynamic allocations,
application global variables,
and static variables)

≤ 36 KB ≤ 12 KB ≤ 12 KB

RAM Usage OS 3.X
> 1 MB
TCP/IP & IrDA
(Palm III)

OS 2.0
1 MB
TCP/IP only
(Professional)

OS 2.0/1.0
512 KB
no TCP/IP or
IrDA (Personal)

Memory
Memory Architecture

128 Palm OS Programmer’s Companion (Preliminary)

implementations limit the maximum size of any chunk to slightly
less than 64 KB; however, the API does not have this constraint, and
it may be relaxed in the future.

Each chunk resides in a heap. Some heaps are ROM-based and
contain only nonmovable chunks; some are RAM-based and may
contain movable or nonmovable chunks. A RAM-based heap may
be a dynamic heap or a storage heap. The Palm OS memory
manager allocates memory in the dynamic heap (for dynamic
allocations, stacks, global variables, and so on). The Palm OS data
manager allocates memory in one or more storage heaps (for
nonvolatile user data).

Every memory chunk used to hold storage data (as opposed to
memory chunks that store dynamic data) is a record in a database
implemented by the Palm OS data manager. In the Palm OS
environment, a database is simply a list of memory chunks and
associated database header information. Normally, the items in a
database share some logical association; for example, a database
may hold a collection of all address book entries, all datebook
entries, and so on.

A database is analogous to a file in a desktop system. Just as a
traditional file system can create, delete, open, and close files, Palm
OS applications can create, delete, open, and close databases as
necessary. There is no restriction on where the records for a
particular database reside as long as they are all on the same
memory card. The records from one database can be interspersed
with the records from one or more other databases in memory.

Storing data by database fits nicely with the Palm OS memory
manager design. Each record in a database is in fact a memory
manager chunk. The data manager can use memory manager calls
to allocate, delete, and resize database records. All heaps except for
the dynamic heap are nonvolatile, so database records can be stored
in any heap except the dynamic heap. Because records can be stored
anywhere on the memory card, databases can be distributed over
multiple discontiguous areas of physical RAM, but all records
belonging to a particular database must reside on the same card.

To understand how database records are manipulated, it helps to
know something about the way the memory manager allocates and
tracks memory chunks, as the next section describes.

Memory
Memory Architecture

Palm OS Programmer’s Companion (Preliminary) 129

Heap Overview

IMPORTANT: This section describes the current (3.X)
implementation of Palm OS memory architecture. This
implementation may change as the Palm OS evolves. Do not rely
on implementation-specific information described here; instead,
always use the API provided to manipulate memory.

Recall that a heap is a contiguous area of memory used to contain
and manage one or more smaller chunks of memory. When
applications work with memory (allocate, resize, lock, etc.) they
usually work with chunks of memory. An application can specify
whether to allocate a new chunk of memory in the storage heap or
the dynamic heap. The memory manager manages each heap
independently and rearranges chunks as necessary to defragment
heaps and merge free space.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a unique 16-bit value that the memory manager
uses to identify a heap within the Palm OS address space. Heap IDs
start at 0 and increment sequentially by units of 1. Values are
assigned beginning with the RAM heaps on card 0, continuing with
the ROM heaps on card 0, and then continuing through RAM and
ROM heaps on subsequent cards. The sequence of heap IDs is
continuous; that is, no values in the sequence are skipped.

The first heap (heap 0) on card 0 is the dynamic heap. This heap is
reinitialized every time the Palm OS device is reset. When an
application quits, the system frees any chunks allocated by that
application in the dynamic heap. All other heaps are nonvolatile
storage heaps that retain their contents through soft reset cycles.

When a Palm OS device is presented with multiple dynamic heaps,
the first heap (heap 0) on card 0 is the active dynamic heap. All other
potential dynamic heaps are ignored. For example, it is possible that
a future Palm OS device supporting multiple cards might be
presented with two cards, each having its own dynamic heap; if so,
only the dynamic heap residing on card 0 would be active—the
system would not treat any heaps on other cards as dynamic heaps,

Memory
Memory Architecture

130 Palm OS Programmer’s Companion (Preliminary)

nor would heap IDs be assigned to these heaps. Subsequent storage
heaps would be assigned IDs in sequential order, as always
beginning with RAM heaps, followed by ROM heaps.

Overview of Memory Chunk Structure

Memory chunks can be movable or nonmovable. Applications need
to store data in movable chunks whenever feasible, thereby
enabling the memory manager to move chunks as necessary to
create contiguous free space in memory for allocation requests.

When the memory manager allocates a nonmovable chunk it
returns a pointer to that chunk. The pointer is simply that chunk’s
address in memory. Because the chunk cannot move, its pointer
remains valid for the chunk’s lifetime; thus, the pointer can be
passed “as is” to the caller that requested the allocation.

When the memory manager allocates a moveable chunk, it
generates a pointer to that chunk, just as it did for the nonmovable
chunk, but it does not return the pointer to the caller. Instead, it
stores the pointer to the chunk, called the master chunk pointer, in a
master pointer table that is used to track all of the moveable chunks
in the heap, and returns a reference to the master chunk pointer.
This reference to the master chunk pointer is known as a handle. It
is this handle that the memory manager returns to the caller that
requested the allocation of a moveable chunk.

Using handles imposes a slight performance penalty over direct
pointer access but permits the memory manager to move chunks
around in the heap without invalidating any chunk references that
an application might have stored away. As long as an application
uses handles to reference data, only the master pointer to a chunk
needs to be updated by the memory manager when it moves a
chunk during defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the memory manager to mark that data
chunk as immobile. When an application no longer needs the data
chunk, it should unlock the handle immediately to keep heap
fragmentation to a minimum.

Note that any handle is good only until the system is reset. When
the system resets, it reinitializes all dynamic memory areas and

Memory
The Memory Manager

Palm OS Programmer’s Companion (Preliminary) 131

relaunches applications. Therefore, you must not store a handle in a
database record or a resource.

Each chunk on a memory card is actually located by means of a
card–relative reference called a local ID. A local ID is a reference to a
data chunk that the system computes from the base address of the
card. The local ID of a nonmovable chunk is simply the offset of the
chunk from the base address of the card. The local ID of a movable
chunk is the offset of the master pointer to the chunk from the base
address of the card, but with the low-order bit set. Since chunks are
always aligned on word boundaries, only local IDs of movable
chunks have the low-order bit set. Once the base address of the card
is determined at runtime, a local ID can be converted quickly to a
pointer or handle.

For example, when an application needs the handle to a particular
data record, it calls the data manager to retrieve the record by index
from the appropriate database. The data manager fetches the local
ID of the record out of the database header and uses it to compute
the handle to the record. The handle to the record is never actually
stored in the database itself.

Although currently available Palm OS devices do not provide
hardware support for multiple cards, the use of local IDs provides
support in software for future devices that may allow the user to
remove or insert memory cards. If the user moves a memory card to
a slot having a different base address, the handle to a memory
chunk on that card is likely to change, but the local ID associated
with that chunk does not change.

The Memory Manager
The Palm OS memory manager is responsible for maintaining the
location and size of every memory chunk in nonvolatile storage,
volatile storage, and ROM. It provides an API for allocating new
chunks, disposing of chunks, resizing chunks, locking and
unlocking chunks, and compacting heaps when they become
fragmented. Because of the limited RAM and processor resources of
the Palm OS device, the memory manager is efficient in its use of
processing power and memory.

Memory
The Memory Manager

132 Palm OS Programmer’s Companion (Preliminary)

This section provides background information on the organization
of memory in Palm OS and provides an overview of the memory
manager API, discussing these topics:

• Memory Manager Structures

• Using the Memory Manager

Memory Manager Structures
This section discusses the different structures the memory manager
uses:

• Heap Structures

• Chunk Structures

• Local ID Structures

Heap Structures

IMPORTANT: Expect the heap structure to change in the future.
Use the API to work with heaps.

A heap consists of the heap header, master pointer table, and the
heap chunks.

• Heap header. The heap header is located at the beginning of
the heap. It holds the size of the heap and contains flags for
the heap that provide certain information to the memory
manager; for example, whether the heap is ROM-based.

• Master pointer table. Following the heap header is a master
pointer table. It is used to store 32-bit pointers to movable
chunks in the heap.

– When the memory manager moves a chunk to compact
the heap, the pointer for that chunk in the master pointer
table is updated to the chunk’s new location. The handles
an application uses to track movable chunks reference the
address of the master pointer to the chunk, not the chunk
itself. In this way, handles remain valid even after a
chunk is moved. The OS compacts the heap automatically
when available contiguous space is not sufficient to fulfill
an allocation request.

Memory
The Memory Manager

Palm OS Programmer’s Companion (Preliminary) 133

– If the master pointer table becomes full, another is
allocated and its offset is stored in the
nextMstrPtrTable field of the previous master pointer
table. Any number of master pointer tables can be linked
in this way. Because additional master pointer chunks are
nonmovable, they are allocated at the end of the heap,
according to the guidelines described in the “Heap
chunks” section following immediately.

• Heap chunks. Following the master pointer table are the
actual chunks in the heap.

– Movable chunks are generally allocated at the beginning
of the heap, and nonmovable chunks at the end of the
heap.

– Nonmovable chunks do not need an entry in the master
pointer table since they are never relocated by the
memory manager.

– Applications can easily walk the heap by hopping from
chunk to chunk because each chunk header contains the
size of the chunk. All free and nonmovable chunks can be
found in this manner by checking the flags in each chunk
header.

Because heaps can be ROM-based, there is no information in
the header that must be changed when using a heap. Also,
ROM-based heaps contain only nonmovable chunks and
have a master pointer table with 0 entries.

Chunk Structures

IMPORTANT: Expect the chunk structure to change in the
future. Use the API to work with chunks.

Each chunk begins with an 8-byte header followed by that chunk’s
data. The chunk header consists of a Flags:size adjustment byte,
3 bytes of size information, a lock:owner byte, and 3 bytes of
hOffset information.

• Flags:sizeAdj byte.This byte contains flags in the high
nibble and a size adjustment in the low nibble.

Memory
The Memory Manager

134 Palm OS Programmer’s Companion (Preliminary)

– The flags nibble has 1 bit currently defined, which is set
for free chunks.

– The size adjustment nibble can be used to calculate the
requested size of the chunk, given the actual size. The
requested size is computed by taking the size as stored in
the chunk header and subtracting the size of the header
and the size adjustment field. The actual size of a chunk is
always a multiple of two so that chunks always start on a
word boundary.

• size field (3 bytes). This three-byte value describes the size
of the chunk, which is larger than the size requested by the
application and includes the size of the chunk header itself.
The maximum data size for a chunk is slightly less than 64
KB.

• Lock:owner byte. Following the size information is a byte
that holds the lock count in the high nibble and the owner ID
in the low nibble.

– The lock count is incremented every time a chunk is
locked and decremented every time a chunk is unlocked.
A movable chunk can be locked a maximum of 14 times
before being unlocked. Nonmovable chunks always have
15 in the lock field.

– The owner ID determines the owner of a memory chunk
and is set by the memory manager when allocating a new
chunk. Owner ID is information is useful for debugging
and for garbage collection when an application
terminates abnormally.

• hOffset field (3 bytes). The last three bytes in the chunk
header is the distance from the master pointer for the chunk
to the chunk’s header, divided by two. Note that this offset
could be a negative value if the master pointer table is at a
higher address than the chunk itself. For nonmovable chunks
that do not need an entry in the master pointer table, this
field is 0.

Memory
The Memory Manager

Palm OS Programmer’s Companion (Preliminary) 135

Local ID Structures

IMPORTANT: Expect the local ID structure to change in the
future. Use the API to work with chunks.

Chunks that contain database records or other database information
are tracked by the data manager through local IDs. A local ID is card
relative and is always valid no matter what memory slot the card
resides in. A local ID can be easily converted to a pointer or the
handle to a chunk once the base address of the card is known.

The upper 31 bits of a local ID contain the offset of the chunk or
master pointer to the chunk from the beginning of the card. The
low-order bit is set for local IDs of handles and clear for local IDs of
pointers.

The MemLocalIDToGlobal function converts a local ID and card
number (either 0 or 1) to a pointer or handle. It looks at the card
number and adds the appropriate card base address to convert the
local ID to a pointer or handle for that card.

Using the Memory Manager
Use the memory manager API to allocate memory in the dynamic
heap (for dynamic allocations, stacks, global variables, and so on)
and use the data manager API to allocate memory in one or more
storage heaps (for user data). The data manager calls the memory
manager as appropriate to perform low-level allocations. (See The
Data Manager for more information.)

Overview of the Memory Manager API

To allocate a movable chunk, call MemHandleNew and pass the
desired chunk size. Before you can read or write data to this chunk,
you must call MemHandleLock to lock it and get a pointer to it.
Every time you lock a chunk, its lock count is incremented. You can
lock a chunk a maximum of 14 times before an error is returned.
(Recall that unmovable chunks hold the value 15 in the lock field.)
MemHandleUnlock reverses the effect of MemHandleLock—it

Memory
The Memory Manager

136 Palm OS Programmer’s Companion (Preliminary)

decrements the value of the lock field by 1. When the lock count is
reduced to 0, the chunk is free to be moved by the memory manager.

When an application allocates memory in the dynamic heap, the
memory manager uses an owner ID to associate that chunk with the
application. The system further distinguishes chunks belonging to
the currently active allocation by setting a special bit in the owner
ID information. When the application quits, all chunks in the
dynamic heap having this bit set are freed automatically.

If the system needs to allocate a chunk that is not disposed of when
an application quits, it changes the chunk’s owner ID to 0 by calling
the system function MemHandleSetOwner. This function is not
used by applications, except in special circumstances. For example,
when passing a parameter block to an application that is being
launched, the owner of the block must be set to the system;
otherwise, when the application exits, the system deletes the block
when it frees all memory allocated by the application.

To determine the size of a movable chunk, pass its handle to
MemHandleSize. To resize it, call MemHandleResize. You
generally cannot increase the size of a chunk if it’s locked unless
there happens to be free space in the heap immediately following
the chunk. If the chunk is unlocked, the memory manager is
allowed to move it to another area of the heap to increase its
size.When you no longer need the chunk, call MemHandleFree,
which releases the chunk even if it is locked.

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MemPtrRecoverHandle. In fact, all of the
MemPtrXxx calls, including MemPtrSize, also work on pointers to
locked, movable chunks.

To allocate a nonmovable chunk, call MemPtrNew and pass the
desired size of the chunk. This call returns a pointer to the chunk,
which can be used directly to read or write to it.

To determine the size of a nonmovable chunk, call MemPtrSize.
To resize it, call MemPtrResize. You generally can’t increase the
size of a nonmovable chunk unless there is free space in the heap
immediately following the chunk. When you no longer need the
chunk, call MemPtrFree, which releases the chunk even if it’s
locked.

Memory
The Memory Manager

Palm OS Programmer’s Companion (Preliminary) 137

Use the memory manager utility routines MemMove and MemSet to
move memory from one place to another or to fill memory with a
specific value.

In most situations, the proper way to free memory is by calling one
of the MemPtrFree or MemHandleFree functions.

NOTE: For important cautions and practical advice regarding
the proper use of memory on Palm OS devices, be sure to read
“Writing Robust Code” in the chapter “Good Design Practices” in
this book.

Storage Heap Sizes and Memory Management Schemes

In Palm OS version 1.0, individual storage heaps were limited to a
maximum size of 64 KB each and the memory manager moved
objects automatically among multiple storage heaps to prevent any
of them from becoming too full. This strategy tended to decrease the
availability of contiguous space for large objects. The version 2.0
memory manager abandoned this approach, increasing the
availability of contiguous heap space; however, it still limited the
maximum size of individual heaps to 64 KB each. Palm OS version
3.X removes the 64 KB maximum size restriction on individual
heaps and creates just two heaps: one 96K dynamic heap and one
storage heap that is the size of all remaining RAM on the card.

Optimizing Memory Manager Performance

Because Palm OS applications must perform well in a RAM-
constrained environment, proper code segmentation is critical to
achieving optimum performance.

If your application segments are too large, your application may not
perform well (or to run at all) when large contiguous blocks of
memory are not available. Conversely, if your application segments
are too small, performance may be hindered by the overhead
required to find and load resources too frequently.

Unfortunately, it impossible to specify a single size for memory
chunks that will perform optimally for all applications.You will
need to experiment with segmenting your code in different ways

Memory
Summary of Memory Management

138 Palm OS Programmer’s Companion (Preliminary)

while measuring your application’s performance in order to
discover the size and arrangement of resource chunks that will
optimize your particular application’s responsiveness and overall
performance. The Metrowerks CodeWarrior Debugger, Palm OS
Debugger, and the Simulator provide tools for examining the
internal structure of heaps, viewing the amount of free space
available, manipulating blocks, and so on.

Summary of Memory Management
Memory Manager Functions

Allocating and Freeing Memory

MemHandleNew
MemHandleLock
MemLocalIDToLockedPtr
MemHandleFree

MemPtrNew
MemHandleUnlock
MemPtrUnlock
MemPtrFree

Resizing Chunks

MemHandleResize
MemPtrResize
MemHeapFreeBytes

MemHandleSize
MemPtrSize
MemHeapSize

Working With Memory

MemMove
MemCmp

MemSet
MemHeapCompact

Converting Pointers

MemPtrRecoverHandle
MemLocalIDKind
MemPtrToLocalID

MemHandleToLocalID
MemLocalIDToGlobal
MemLocalIDToPtr

Chunk Information

MemHandleCardNo
MemHandleHeapID
MemPtrCardNo

MemHandleDataStorage
MemPtrDataStorage

Memory
Summary of Memory Management

Palm OS Programmer’s Companion (Preliminary) 139

Heap Information

MemPtrHeapID
MemHeapDynamic
MemHeapFlags

MemHeapID
MemHeapCheck

Card Information

MemCardInfo
MemNumHeaps
MemStoreInfo

MemNumCards
MemNumRAMHeaps

Debugging

MemDebugMode
MemSetDebugMode

MemHeapScramble

Memory Manager Functions

Memory
Summary of Memory Management

140 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 141

7
Files and Databases
This chapter describes how to work with databases using Palm OS
managers.

• The Data Manager manages user data, which is stored in
databases for convenient access.

• The Resource Manager can be used by applications to
conveniently retrieve and save chunks of data. It’s similar to
the data manager, but has the added capability of tagging
each chunk with a unique resource type and ID. These
tagged data chunks, called resources, are stored in resource
databases. Resources are typically used to store the
application’s user interface elements, such as images, fonts,
or dialog layouts.

• File Streaming Application Program Interface can be used by
applications to handle large blocks of data.

The Data Manager
A traditional file system first reads all or a portion of a file into a
memory buffer from disk, using and/or updating the information
in the memory buffer, and then writes the updated memory buffer
back to disk. Because Palm OS devices have limited amounts of
dynamic RAM and use nonvolatile RAM instead of disk storage, a
traditional file system is not optimal for storing and retrieving Palm
OS user data.

Palm OS accesses and updates all information in place. This works
well because it reduces dynamic memory requirements and
eliminates the overhead of transferring the data to and from another
memory buffer involved in a file system.

As a further enhancement, data in the Palm OS device is broken
down into multiple, finite-size records that can be left scattered
throughout the memory space; thus, adding, deleting, or resizing a
record does not require moving other records around in memory.

Files and Databases
The Data Manager

142 Palm OS Programmer’s Companion (Preliminary)

Each record in a database is in fact a memory manager chunk. The
data manager uses memory manager functions to allocate, delete,
and resize database records.

This section explains how to use the database manager by
discussing these topics:

• Records and Databases

• Structure of a Database Header

• Using the Data Manager

Records and Databases
Databases organize related records; every record belongs to one and
only one database. A database may be a collection of all address
book entries, all datebook entries, and so on. A Palm OS application
can create, delete, open, and close databases as necessary, just as a
traditional file system can create, delete, open, and close a
traditional file. There is no restriction on where the records for a
particular database reside as long as they all reside on the same
memory card. The records from one database can be interspersed
with the records from one or more other databases in memory.

Storing data by database fits nicely with the Palm OS memory
manager design. All heaps except for the dynamic heap(s) are
nonvolatile, so database records can be stored in any heap except
the dynamic heap(s) (see “Heap Overview” in the “Memory”
chapter). Because records can be stored anywhere on the memory
card, databases can be distributed over multiple discontiguous
areas of physical RAM.

Accessing Data With Local IDs

A database maintains a list of all records that belong to it by storing
the local ID of each record in the database header. Because local IDs
are used, the memory card can be placed into any memory slot of a
Palm OS device. An application finds a particular record in a
database by index. When an application requests a particular
record, the data manager fetches the local ID of the record from the
database header by index, converts the local ID to a handle using
the card number that contains the database header, and returns the
handle to the record.

Files and Databases
The Data Manager

Palm OS Programmer’s Companion (Preliminary) 143

Structure of a Database Header
A database header consists of some basic database information and
a list of records in the database. Each record entry in the header has
the local ID of the record, 8 attribute bits, and a 3-byte unique ID for
the record.

This section provides information about database headers,
discussing these topics:

• Database Header Fields

• Structure of a Record Entry in a Database Header

IMPORTANT: Expect the database header structure to change
in the future. Use the API to work with database structures.

Database Header Fields

The database header has the following fields:

• The name field holds the name of the database.

• The attributes field has flags for the database.

• The version field holds an application-specific version
number for that database.

• The modificationNumber is incremented every time a
record in the database is deleted, added, or modified. Thus
applications can quickly determine if a shared database has
been modified by another process.

• The appInfoID is an optional field that an application can
use to store application-specific information about the
database. For example, it might be used to store user display
preferences for a particular database.

• The sortInfoID is another optional field an application can
use for storing the local ID of a sort table for the database.

• The type and creator fields are each 4 bytes and hold the
database type and creator. The system uses these fields to
distinguish application databases from data databases and to
associate data databases with the appropriate application.

Files and Databases
The Data Manager

144 Palm OS Programmer’s Companion (Preliminary)

• The numRecords field holds the number of record entries
stored in the database header itself. If all the record entries
cannot fit in the header, then nextRecordList has the local
ID of a recordList that contains the next set of records.

Each record entry stored in a record list has three fields and is
8 bytes in length. Each entry has the local ID of the record
which takes up 4 bytes: 1 byte of attributes and a 3-byte
unique ID for the record. The attribute field, shown in
Figure 7.1, is 8 bits long and contains 4 flags and a 4-bit
category number. The category number is used to place
records into user-defined categories like “business” or
“personal.”

Figure 7.1 Record Attributes

Structure of a Record Entry in a Database Header

Each record entry has the local ID of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

• Local IDs make the database slot-independent. Since all
records for a database reside on the same memory card as the
header, the handle of any record in the database can be
quickly calculated. When an application requests a specific
record from a database, the data manager returns a handle to
the record that it determines from the stored local ID.

A special situation occurs with ROM-based databases.
Because ROM-based heaps use nonmovable chunks
exclusively, the local IDs to records in a ROM-based database
are local IDs of pointers, not handles. So, when an
application opens a ROM-based database, the data manager
allocates and initializes a fake handle for each record and

Category (4)

secret bit
busy bit

dirty bit

delete bit

Files and Databases
The Data Manager

Palm OS Programmer’s Companion (Preliminary) 145

returns the appropriate fake handle when the application
requests a record. Because of this, applications can use
handles to access both RAM- and ROM-based database
records.

• The unique ID must be unique for each record within a
database. It remains the same for a particular record no
matter how many times the record is modified. It is used
during synchronization with the desktop to track records on
the Palm OS device with the same records on the desktop
system.

When the user deletes or archives a record on Palm OS:

• The delete bit is set in the attributes flags, but its entry
in the database header remains until the next
synchronization with the PC.

• The dirty bit is set whenever a record is updated.

• The busy bit is set when an application currently has a
record locked for reading or writing.

• The secret bit is set for records that should not be
displayed before the user password has been entered on the
device.

When a user “deletes” a record on the Palm OS device, the record’s
data chunk is freed, the local ID stored in the record entry is set to 0,
and the delete bit is set in the attributes. When the user archives a
record, the deleted bit is also set but the chunk is not freed and the
local ID is preserved. This way, the next time the user synchronizes
with the desktop system, the desktop can quickly determine which
records to delete (since their record entries are still around on the
Palm OS device). In the case of archived records, the desktop can
save the record data on the PC before it permanently removes the
record entry and data from the Palm OS device. For deleted records,
the PC just has to delete the same record from the PC before
permanently removing the record entry from the Palm OS device.

Using the Data Manager
Using the data manager is similar to using a traditional file
manager, except that the data is broken down into multiple records
instead of being stored in one contiguous chunk. To create or delete
a database, call DmCreateDatabase and DmDeleteDatabase.

Files and Databases
The Data Manager

146 Palm OS Programmer’s Companion (Preliminary)

Each memory card is akin to a disk drive and can contain multiple
databases. To open a database for reading or writing, you must first
get the database ID, which is simply the local ID of the database
header. Calling DmFindDatabase searches a particular memory
card for a database by name and returns the local ID of the database
header. Alternatively, calling DmGetDatabase returns the database
ID for each database on a card by index.

After determining the database ID, you can open the database for
read-only or read/write access. When you open a database, the
system locks down the database header and returns a reference to a
database access structure, which tracks information about the open
database and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DmDatabaseInfo, DmSetDatabaseInfo, and
DmDatabaseSize to query or set information about a database,
such as its name, size, creation and modification dates, attributes,
type, and creator.

Call DmGetRecord, DmQueryRecord, and DmReleaseRecord
when viewing or updating a database.

• DmGetRecord takes a record index as a parameter, marks
the record busy, and returns a handle to the record. If a
record is already busy when DmGetRecord is called, an
error is returned.

• DmQueryRecord is faster if the application only needs to
view the record; it doesn’t check or set the busy bit, so it’s not
necessary to call DmReleaseRecord when finished viewing
the record.

• DmReleaseRecord clears the busy bit, and updates the
modification number of the database and marks the record
dirty if the dirty parameter is true.

To resize a record to grow or shrink its contents, call
DmResizeRecord. This routine automatically reallocates the
record in another heap of the same card if the current heap does not
have enough space for it. Note that if the data manager needs to
move the record into another heap to resize it, the handle to the

Files and Databases
The Data Manager

Palm OS Programmer’s Companion (Preliminary) 147

record changes. DmResizeRecord returns the new handle to the
record.

To add a new record to a database, call DmNewRecord. This routine
can insert the new record at any index position, append it to the
end, or replace an existing record by index. It returns a handle to the
new record.

There are three methods for removing a record: DmRemoveRecord,
DmDeleteRecord, and DmArchiveRecord.

• DmRemoveRecord removes the record’s entry from the
database header and disposes of the record data.

• DmDeleteRecord also disposes of the record data, but
instead of removing the record’s entry from the database
header, it sets the deleted bit in the record entry attributes
field and clears the local chunk ID.

• DmArchiveRecord does not dispose of the record’s data; it
just sets the deleted bit in the record entry.

Both DmDeleteRecord and DmArchiveRecord are useful for
synchronizing information with a desktop PC. Since the unique ID
of the deleted or archived record is still kept in the database header,
the desktop PC can perform the necessary operations on its own
copy of the database before permanently removing the record from
the Palm OS database.

Call DmRecordInfo and DmSetRecordInfo to retrieve or set the
record information stored in the database header, such as the
attributes, unique ID, and local ID of the record. Typically, these
routines are used to set or retrieve the category of a record that is
stored in the lower four bits of the record’s attribute field.

To move records from one index to another or from one database to
another, call DmMoveRecord, DmAttachRecord, and
DmDetachRecord. DmDetachRecord removes a record entry from
the database header and returns the record handle. Given the
handle of a new record, DmAttachRecord inserts or appends that
new record to a database or replaces an existing record with the new
record. DmMoveRecord is an optimized way to move a record from
one index to another in the same database.

Files and Databases
The Resource Manager

148 Palm OS Programmer’s Companion (Preliminary)

The Resource Manager
Applications can use the resource manager much like the data
manager to retrieve and save chunks of data conveniently. The
resource manager has the added capability of tagging each chunk of
data with a unique resource type and resource ID. These tagged
data chunks, called resources, are stored in resource databases.
Resource databases are almost identical in structure to normal
databases except for a slight amount of increased storage overhead
per resource record (two extra bytes). In fact, the resource manager
is nothing more than a subset of routines in the data manager that
are broken out here for conceptual reasons only.

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, and so forth.
Part of building an application involves creating these resources and
merging them with the actual executable code. In the Palm OS
environment, an application is, in fact, simply a resource database
with the executable code stored as one or more code resources and
the graphics elements and other miscellaneous data stored in the
same database as other resource types.

Applications may also find the resource manager useful for storing
and retrieving application preferences, saved window positions,
state information, and so forth. These preferences settings can be
stored in a separate resource database.

This section explains how to work with the resource manager and
discusses these topics:

• Structure of a Resource Database Header

• Using the Resource Manager

• Resource Manager Functions

Structure of a Resource Database Header
A resource database header consists of some general database
information followed by a list of resources in the database. The first
portion of the header is identical in structure to a normal database
header. Resource database headers are distinguished from normal
database headers by the dmHdrAttrResDB bit in the attributes
field.

Files and Databases
The Resource Manager

Palm OS Programmer’s Companion (Preliminary) 149

IMPORTANT: Expect the resource database header structure to
change in the future. Use the API to work with resource database
structures.

• The name field holds the name of the resource database.

• The attributes field has flags for the database and always
has the dmHdrAttrResDB bit set.

• The modificationNumber is incremented every time a
resource in the database is deleted, added, or modified. Thus,
applications can quickly determine if a shared resource
database has been modified by another process.

• The appInfoID and sortInfoID fields are not normally
needed for a resource database but are included to match the
structure of a regular database. An application may
optionally use these fields for its own purposes.

• The type and creator fields hold 4-byte signatures of the
database type and creator as defined by the application
that created the database.

• The numResources field holds the number of resource info
entries that are stored in the header itself. In most cases, this
is the total number of resources. If all the resource info
entries cannot fit in the header, however, then
nextResourceList has the chunkID of a resourceList
that contains the next set of resource info entries.

Each 10-byte resource info entry in the header has the resource type,
the resource ID, and the local ID of the memory manager chunk that
contains the resource data.

Using the Resource Manager
You can create, delete, open, and close resource databases with the
routines used to create normal record-based databases (see Using
the Data Manager). This includes all database-level (not record-
level) routines in the data manager such as DmCreateDatabase,
DmDeleteDatabase, DmDatabaseInfo, and so on.

When you create a new database using DmCreateDatabase, the
type of database created (record or resource) depends on the value

Files and Databases
The Resource Manager

150 Palm OS Programmer’s Companion (Preliminary)

of the resDB parameter. If set, a resource database is created and the
dmHdrAttrResDB bit is set in the attributes field of the
database header. Given a database header ID, an application can
determine which type of database it is by calling DmDatabaseInfo
and examining the dmHdrAttrResDB bit in the returned
attributes field.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
routines of the resource manager. Generally, applications use the
DmGetResource and DmReleaseResource routines.

DmGetResource returns a handle to a resource, given the type
and ID. This routine searches all open resource databases for a
resource of the given type and ID, and returns a handle to it. The
search starts with the most recently opened database. To search only
the most recently opened resource database for a resource instead of
all open resource databases, call DmGet1Resource.

DmReleaseResource should be called as soon as an application
finishes reading or writing the resource data. To resize a resource,
call DmResizeResource, which accepts a handle to a resource and
reallocates the resource in another heap of the same card if
necessary. It returns the handle of the resource, which might have
been changed if the resource had to be moved to another heap to be
resized.

The remaining resource manager routines are usually not required
for most applications. These include functions to get and set
resource attributes, move resources from one database to another,
get resources by index, and create new resources. Most of these
functions reference resources by index to optimize performance.
When referencing a resource by index, the DmOpenRef of the open
resource database that the resource belongs to must also be
specified. Call DmSearchResource to find a resource by type and
ID or by pointer by searching in all open resource databases.

To get the DmOpenRef of the topmost open resource database, call
DmNextOpenResDatabase and pass nil as the current
DmOpenRef. To find out the DmOpenRef of each successive
database, call DmNextOpenResDatabase repeatedly with each
successive DmOpenRef.

Files and Databases
File Streaming Application Program Interface

Palm OS Programmer’s Companion (Preliminary) 151

Given the access pointer of a specific open resource database,
DmFindResource can be used to return the index of a resource,
given its type and ID. DmFindResourceType can be used to get
the index of every resource of a given type. To get a resource handle
by index, call DmGetResourceIndex.

To determine how many resources are in a given database, call
DmNumResources. To get and set attributes of a resource including
its type and ID, call DmResourceInfo and DmSetResourceInfo.
To attach an existing data chunk to a resource database as a new
resource, call DmAttachResource. To detach a resource from a
database, call DmDetachResource.

To create a new resource, call DmNewResource and pass the desired
size, type, and ID of the new resource. To delete a resource, call
DmRemoveResource. Removing a resource disposes of its data
chunk and removes its entry from the database header.

File Streaming Application Program Interface
The file streaming functions in Palm OS 3.0 and later let you work
with large blocks of data. File streams can be arbitrarily large—they
are not subject to the 64 KB maximum size limit imposed by the
memory manager on allocated objects. File streams can be used for
permanent data storage; in Palm OS 3.0, their underlying
implementation is a Palm OS database. You can read, write, seek to
a specified offset, truncate, and do everything else you'd expect to
do with a desktop-style file.

Other than backup/restore, Palm OS does not provide direct Hot
Sync support for file streams, and none is planned at this time.

The use of double-buffering imposes a performance penalty on file
streams that may make them unsuitable for certain applications.
Record-intensive applications tend to obtain better performance
from the Data Manager.

Using the File Streaming API
The File Streaming API is derived from the C programming
language’s <stdio.h> interface. Any C book that explains the
<stdio.h> interface should serve as a suitable introduction to the

Files and Databases
File Streaming Application Program Interface

152 Palm OS Programmer’s Companion (Preliminary)

concepts underlying the Palm OS File Streaming API. This section
provides only a brief overview of the most commonly used file
streaming functions.

The FileOpen function opens a file, and the FileRead function
reads it. The semantics of FileRead and FileWrite are just like
their <stdio.h> equivalents, the fread and fwrite functions.
The other <stdio.h> routines have obvious analogs in the File
Streaming API as well.

For example,

theStream =
FileOpen(cardId,"KillerAppDataFile",

'KILR', 'KILD', fileModeReadOnly,
&err);

As on a desktop, the filename is the unique item. The creator ID and
filetype are for informational purposes and your code may require
that an opened file have the correct type and creator.

Normally, the FileOpen function returns an error when it attempts
to open or replace an existing stream having a type and creator that
do not match those specified. To suppress this error, pass the
fileModeAnyTypeCreator selector as a flag in the openMode
parameter to the FileOpen function.

To read data, use the FileRead function as in the following
example:

FileRead(theStream, &buf, objSize, numObjs,
&err);

To free the memory used to store stream data as the data is read, you
can use the FileControl function to switch the stream to
destructive read mode. This mode is useful for manipulating
temporary data; for example, destructive read mode would be ideal
for adding the objects in a large data stream to a database when
sufficient memory for duplicating the entire file stream is not
available. You can switch a stream to destructive read mode by
passing the fileOpDestructiveReadMode selector as the value
of the op parameter to the FileControl function.

The FileDmRead function can read data directly into a Database
Manager chunk for immediate addition to a Palm OS database.

Files and Databases
Summary of Files and Databases

Palm OS Programmer’s Companion (Preliminary) 153

Summary of Files and Databases
Data Manager Functions

Creating Databases

DmCreateDatabase DmCreateDatabaseFromImage

Opening and Closing Databases

DmOpenDatabase
DmOpenDatabaseByTypeCreat
or
DmWrite

DmCloseDatabase
DmDatabaseProtect
DmWriteCheck

Creating Records

DmNewHandle DmNewRecord

Accessing Records

DmGetRecord
DmFindRecordByID

DmQueryRecord
DmSearchRecord

Adding Records

DmAttachRecord

Changing Records

DmMoveRecord
DmSet

DmResizeRecord
DmStrCopy

Deleting Records

DmArchiveRecord
DmDeleteRecord
DmRemoveRecord
DmReleaseRecord

DmDeleteDatabase
DmDetachRecord
DmRemoveSecretRecords

Sorting

DmInsertionSort
DmFindSortPosition

DmFindSortPositionV10
DmQuickSort

Files and Databases
Summary of Files and Databases

154 Palm OS Programmer’s Companion (Preliminary)

Categories

DmMoveCategory
DmNumRecordsInCategory
DmQueryNextInCategory

DmDeleteCategory
DmPositionInCategory
DmSeekRecordInCategory

Locating Databases

DmFindDatabase
DmGetDatabase
DmNextOpenDatabase

DmGetNextDatabaseByTypeCr
eator

Database Information

DmDatabaseInfo
DmRecordInfo
DmOpenDatabaseInfo
DmNumDatabases

DmSetDatabaseInfo
DmSetRecordInfo
DmDatabaseSize
DmNumRecords

Application Information

DmGetAppInfoID

Error Handling

DmGetLastErr

Resource Manager Functions

DmNewResource
DmReleaseResource
DmDetachResource
DmSearchResource
DmFindResourceType
DmGetResource
DmNumResources
DmResourceInfo

DmAttachResource
DmRemoveResource
DmGetResourceIndex
DmFindResource
DmGet1Resource
DmNextOpenResDatabase
DmResizeResource
DmSetResourceInfo

Data Manager Functions

Files and Databases
Summary of Files and Databases

Palm OS Programmer’s Companion (Preliminary) 155

File Streaming Function Summary

Opening and Closing

FileOpen
FileSeek

FileClose

Reading Files

FileRead
FileRewind

FileDmRead
FileControl

Writing to Files

FileWrite FileTruncate

File Information

FileEOF FileTell

Deleting Files

FileDelete FileFlush

Error Handling

FileError
FileClearerr

FileGetLastError

Files and Databases
Summary of Files and Databases

156 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 157

8
Palm System
Features
In this chapter, you learn how to work with the features that the
Palm OS system provides, such as sound, alarms, and floating-point
operations. Most parts of the Palm OS are controlled by a manager,
which is a group of functions that work together to implement a
certain functionality. As a rule, all functions that belong to one
manager use the same prefix and work together to implement a
certain aspect of functionality.

This chapter discusses these topics:

• Alarms

• Features

• Sound

• System Boot and Reset

• Hardware Interaction

• The Microkernel

• Retrieving the ROM Serial Number

• Time

• Floating-Point

• Summary of System Features

Alarms
The Palm OS alarm manager provides support for setting real-time
alarms, for performing some periodic activity, or for displaying a
reminder. The alarm manager:

• Works closely with the time manager to handle real-time
alarms.

Palm System Features
Alarms

158 Palm OS Programmer’s Companion (Preliminary)

• Sends launch codes to applications that set a specific time
alarm to inform the application the alarm is due.

• Handles alarms by application in a two cycle operation

– First, it notifies each application that the alarm has
occurred.

– Second, it allows each application to display some UI.

• Allows only one alarm to be set per application.

However, the alarm manager:

• Doesn’t provide reminder dialog boxes.

• Doesn’t play the alarm sound.

This section looks in some detail at how the alarm manager and
applications interact when processing an alarm. It covers:

• Setting an Alarm

• Alarm Scenario

• Setting a Procedure Alarm

Setting an Alarm
The most common use of the alarm manager is to set a real-time
alarm within an application. Often, you set this type of alarm
because you want to inform the user of an event. For example, the
Datebook application sets alarms to inform users of their
appointments.

Implementing such an alarm is a two step process. First, use the
function AlmSetAlarm to set the alarm. Specify when the alarm
should trigger and which application should be informed at that
time.

Listing 8.1 shows how the Datebook application sets an alarm.

Listing 8.1 Setting an Alarm

static void SetTimeOfNextAlarm (ULong alarmTime, DWord ref)
{
UInt cardNo;
LocalID dbID;
DmSearchStateType searchInfo;

Palm System Features
Alarms

Palm OS Programmer’s Companion (Preliminary) 159

DmGetNextDatabaseByTypeCreator (true, &searchInfo,
sysFileTApplication, sysFileCDatebook, true, &cardNo, &dbID);

AlmSetAlarm (cardNo, dbID, ref, alarmTime, true);
}

Second, have your PilotMain function respond to the launch
codes sysAppLaunchCmdAlarmTriggered and
sysAppLaunchCmdDisplayAlarm.

When an alarm is triggered, the alarm manager notifies each
application that set an alarm for that time via the
sysAppLaunchCmdAlarmTriggered launch code. After each
application has processed this launch code, the alarm manager
sends each application sysAppLaunchCmdDisplayAlarm so that
the application can display the alarm. The section “Alarm Scenario”
gives more information about when these launch codes are received
and what actions your application might take. For a specific
example of responding to these launch codes, see the Datebook
sample code.

It’s important to note the following:

• An application can have only one alarm pending at a time. If
you call AlmSetAlarm and then call it again before the first
alarm has triggered, the alarm manager replaces the first
alarm with the second alarm. You can use the AlmGetAlarm
function to find out if the application has any alarms
pending.

• You do not have access to global variables when you respond
to the launch codes. AlmSetAlarm takes a DWord parameter
that you can use to pass a specific value so that you have
access to it when the alarm triggers. (This is the ref
parameter shown in Listing 8.1.) The parameter blocks for
both launch codes provide access to this reference parameter.
If the reference parameter isn’t sufficient, you can define an
application feature. See the section “Features” in this chapter.

• The database ID that you pass to AlmSetAlarm is the local
ID of the application (the prc file), not of the record database
that the application accesses. You use record database’s local

Palm System Features
Alarms

160 Palm OS Programmer’s Companion (Preliminary)

ID more frequently than you do the application’s local ID, so
this is a common mistake to make.

• In AlmSetAlarm, the alarm time is given as the number of
seconds since 1/1/1904. If you need to convert a
conventional date and time value to the number of seconds
since 1/1/1904, use TimDateTimeToSeconds.

• If you want to clear a pending alarm, call AlmSetAlarm
with 0 specified for the alarm seconds parameter.

Alarm Scenario
Here’s how an application and the alarm manager typically interact
when processing an alarm:

1. The application sets an alarm using AlmSetAlarm.

The alarm manager adds the new alarm to its alarm queue.
The alarm queue contains all alarm requests. Triggered
alarms are queued up until the alarm manager can send the
launch code to the application that created the alarm.
However, if the alarm queue becomes full, the oldest entry
that has been both triggered and notified is deleted to make
room for a new alarm.

2. When the alarm time is reached, the alarm manager searches
the alarm queue for the first application that set an alarm for
this alarm time.

3. The alarm manager sends this application the
sysAppLaunchCmdAlarmTriggered launch code.

4. The application can now:

– Set the next alarm.

– Play a short sound.

– Perform some quick maintenance activity.

The application should not perform any lengthy tasks in
response to sysAppLaunchCmdAlarmTriggered because
doing so will delay other applications from receiving alarms
that are set to trigger at the same time.

If this alarm requires no further processing, the application
should set the purgeAlarm field in the launch code’s
parameter block to true before returning. Doing so removes

Palm System Features
Alarms

Palm OS Programmer’s Companion (Preliminary) 161

the alarm from the queue, which means it won’t receive the
sysAppLaunchCmdDisplayAlarm launch code.

5. The alarm manager finds in the alarm queue the next
application that set an alarm and repeats steps 2 and 3.

6. This process is repeated until no more applications are found
with this alarm time.

7. The alarm manager then finds once again the first application
in the alarm queue who set an alarm for this alarm time and
sends this application the launch code
sysAppLaunchCmdDisplayAlarm.

8. The application can now:

– Display a dialog box.

– Display some other type of reminder.

9. The alarm manager processes the alarm queue for the next
application that set an alarm for the alarm being triggered
and step 6 and 7 are repeated.

10.This process is repeated until no more applications are found
with this alarm time.

If a new alarm time is triggered while an older alarm is still
being displayed, all applications with alarms scheduled for
this second alarm time are sent the
sysAppLaunchCmdAlarmTriggered launch code, but the
display cycle for the second set of alarms is postponed until
all earlier alarms have finished displaying.

Setting a Procedure Alarm
Beginning with Palm OS version 3.2, the system supports setting
procedure alarms in addition to the application-based alarms
described in the previous sections. The differences between a
procedure alarm and an application-based alarm are:

• When you set a procedure alarm, you specify a pointer to a
function that should be called when the alarm triggers
instead of an application that should be notified.

• When the alarm triggers, the alarm manager calls the
specified procedure directly instead of using launch codes.

Palm System Features
Alarms

162 Palm OS Programmer’s Companion (Preliminary)

• If the system is in sleep mode, the alarm triggers without
causing the LCD to light up.

You might use procedure alarms if:

• You want to perform a background task that is completely
hidden from the user.

• You are writing a shared library and want to implement an
alarm within that library.

To set a procedure alarm, you call AlmSetProcAlarm instead of
AlmSetAlarm. (Similarly, you use the AlmGetProcAlarm function
instead of AlmGetAlarm to see if any alarms are pending for this
procedure.)

AlmSetProcAlarm is currently implemented as a macro that calls
AlmSetAlarm using a special value for the card number parameter
to notify the alarm manager that this is a procedure alarm. Instead
of specifying the application’s local ID and card number, you
specify a function pointer. The other rules for AlmSetAlarm still
apply. Notably, a given function can only have one alarm pending at
a time, and you can clear any pending alarm by passing 0 for the
alarm time.

When the alarm triggers, the alarm manager calls the function you
specified. The function should have the prototype:

void myAlarmFunc (Word almProcCmd,
SysAlarmTriggeredParamType *paramP)

IMPORTANT: The function pointer must remain valid from the
time AlmSetProcAlarm is called to the time the alarm is
triggered. If the procedure is in a shared library, you must keep
the library open. If the procedure is in a separately loaded code
resource, the resource must remain locked until the alarm fires.
When you close a library or unlock a resource, you must remove
any pending alarms. If you don’t, the system will crash when the
alarm is triggered.

Palm System Features
Features

Palm OS Programmer’s Companion (Preliminary) 163

The first parameter to your function specifies why the alarm
manager has called the function. Currently, the alarm manager calls
the function in two instances:

• The alarm has triggered.

• The user has changed the system time, so the alarm time
should be adjusted.

The second parameter is the same structure that is passed with the
sysAppLaunchCmdAlarmTriggered launch code. It provides
access to the reference parameter specified when the alarm was set,
the time specified when the alarm was set, and the purgeAlarm
field, which specifies if the alarm should be removed from the
queue. In the case of procedure alarms, the alarm should always be
removed from the queue. The system sets the purgeAlarm value to
true after calling your function.

Features
A feature is a 32-bit value that has special meaning to both the
feature publisher and to users of that feature. Features can be
published by the system or by applications.

Each feature is identified by a feature creator and a feature number:

• The feature creator is a unique creator registered with Palm
Computing. You usually use the creator type of the
application that publishes the feature.

• The feature number is any 16-bit value used to distinguish
between different features of a particular creator.

Once a feature is published, it remains present until it is explicitly
unregistered or the device is reset. A feature published by an
application sticks around even after the application quits.

This section introduces the feature manager by discussing these
topics:

• The System Version Feature

• Application-Defined Features

• Using the Feature Manager

• Feature Memory

Palm System Features
Features

164 Palm OS Programmer’s Companion (Preliminary)

The System Version Feature
An example for a feature is the system version. This feature is
published by the system and contains a 32-bit representation of the
system version. The system version has a feature creator of
sysFtrCreator and a feature number of
sysFtrNumROMVersion). Currently, the different versions of the
system software have the following numbers:

Any application can find out the system version by looking for this
feature. For example:

// See if we're on ROM version 2.0 or later.
FtrGet(sysFtrCreator, sysFtrNumROMVersion,

&romVersion);
if (romVersion >= 0x02000000) {
....

}

Other system features are defined in SystemMgr.h. System
features are stored in a feature table in the ROM. (In Palm OS 3.1
and higher, the contents of this table are copied into the RAM
feature table at system startup.) Checking for the presence of system
features allows an application to be compatible with multiple
versions of the system by refining its behavior depending on which
capabilities are present or not. Future hardware platforms may lack
some capabilities present in the first platform, so checking the
system version feature is important.

0x01003001 Pilot 1000 and Pilot 5000 (Palm OS 1.0)

0x02003000 PalmPilot and PalmPilot Professional (Palm OS 2.0)

0x03003000 Palm III Connected Organizer (Palm OS 3.0)

0x03103000 Palm III X Connected Organizer (Palm OS 3.1)

0x03103000 Palm V Connected Organizer (Palm OS 3.1)

0x03203000 Palm VII Connected Organizer (Palm OS 3.2)

Palm System Features
Features

Palm OS Programmer’s Companion (Preliminary) 165

IMPORTANT: For best results, we recommend that you check
for specific features rather than relying on the system version
number to determine if a specific API is available. For more
details on checking for features, see the appendix Compatibility
Guide in Palm OS SDK Reference.

Application-Defined Features
Applications may find the feature manager useful for their own
private use. For example, an application may want to publish a
feature that contains a pointer to some private data it needs for
processing launch codes. Because an application’s global data is not
generally available while it processes launch codes, using the
feature manager is usually the easiest way for an application to get
to its data.

The feature manager maintains one feature table in the RAM as well
as the feature table in the ROM. Application-defined features are
stored in the RAM feature table.

Using the Feature Manager
To check whether a particular feature is present, call FtrGet and
pass it the feature creator and feature number. If the feature exists,
FtrGet returns the 32-bit value of the feature. If the feature doesn’t
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call
FtrSet and pass the feature creator, number, and the 32-bit value
of the feature. A published feature remains available until it is
explicitly removed by a call to FtrUnregister or until the system
resets; simply quitting an application doesn’t remove a feature
published by that application.

Call FtrUnregister to remove features that were created by
calling FtrSet.

You can get a complete list of all published features by calling
FtrGetByIndex repeatedly. Passing an index value starting at 0 to
FtrGetByIndex and incrementing repeatedly by 1 eventually
returns all available features. FtrGetByIndex accepts a parameter

Palm System Features
Features

166 Palm OS Programmer’s Companion (Preliminary)

that specifies whether to search the ROM feature table or RAM
feature table. Note that in Palm OS version 3.1 and higher, the
contents of the ROM table are copied into the RAM table at system
startup; thus the RAM table serves the entire system.

Feature Memory
Palm OS 3.1 adds support for feature memory. Feature memory
provides quick, efficient access to data that persists between
invocations of an application. The values stored in feature memory
persist until the device is reset or until you explicitly free the
memory. Feature memory is memory allocated from the storage
heap. Thus, you write to feature memory using DmWrite, which
means that writing to feature memory is no faster than writing to a
database. However, feature memory can provide more efficient
access to that data in certain circumstances.

To allocate a chunk of feature memory, call FtrPtrNew, specifying
a feature creator, a feature number, the number of bytes to allocate,
and a location where the feature manager can return a pointer to the
newly allocated memory chunk. For example:

FtrPtrNew(appCreator,
myFtrMemFtr, 32, &ftrMem);

Elsewhere in your application, you can obtain the pointer to the
feature memory chunk using FtrGet.

Feature memory is considered a performance optimization. The
conditions under which you'd use it are not common, and you
probably won't find them in a typical application. You use feature
memory in code that:

• Is executed infrequently

• Does not have access to global variables

• Needs access to data whose contents change infrequently
and that cannot be stored in a 32-bit feature value

For example, suppose you've written a function that is called in
response to a launch code, and you expect to receive this launch
code frequently. Suppose that function needs access to the
application's preferences database. At the start of the function, you'd
need to open the database and read the data from it. If the function

Palm System Features
Sound

Palm OS Programmer’s Companion (Preliminary) 167

is called frequently, opening the database each time can be a drain
on performance. Instead, you can allocate a chunk of feature
memory and write the values you need to that chunk. Because the
chunk persists until the device is reset, you only need to open the
database once. Listing 8.2 illustrates this example.

Listing 8.2 Using Feature Memory

MyAppPreferencesType prefs;

if (FtrGet(appCreator, myPrefFtr, (DWordPtr)&prefs) != 0) {

// Feature memory doesn't exist, so allocate it.
FtrPtrNew(appCreator, myPrefFtr, 32, &thePref);

// Load the preferences database.
PrefGetAppPreferences (appCreator, prefID, &prefs,
sizeof(prefs), true);

// Write it to feature memory.
DmWrite(thePref, 0, &prefs, sizeof(prefs));

}
// Now prefs is guaranteed to be defined.

Another potential use of feature memory is to “publish” data from
your application or library to other applications when that data
doesn’t fit in a normal 32-bit feature value. For example, suppose
you are writing a communications library and you want to publish
an icon that client applications can use to draw the current
connection state. The library can use FtrPtrNew to allocate a
feature memory chunk and store an icon representing the current
state in that location. Applications can then use FtrGet to access
the icon and pass the result to WinDrawBitmap to display the
connection state on the screen.

Sound
The Palm Computing platform device has primitive sound
generation. A square wave is generated directly from the 68328’s

Palm System Features
Sound

168 Palm OS Programmer’s Companion (Preliminary)

PWM circuitry. There is frequency, duration, and volume control.
Additionally, Palm OS 3.0 and higher support creating and playing
standard MIDI sounds.

The Palm OS sound manager provides an extendable API for
playing custom sounds and system sounds, and for controlling
default sound settings. Although the sound API accommodates
multichannel design, the system provides only a single sound
channel at present.

The sound hardware can play only one simple tone at a time
through an onboard piezoelectric speaker. Note that for a particular
amplitude level, the Palm III device is slightly louder than its
predecessors.

Single tones can be played by the SndDoCmd function and system
sounds are played by the SndPlaySystemSound function. The
end-user can control the amplitude of alarm sounds, game sounds,
and system sounds by means of the Preferences application.
System-supplied sounds include the Information, Warning, Error,
Startup, Alarm, Confirmation, and Click sounds.

Palm OS 3.0 introduces support for Standard MIDI Files (SMFs),
format 0. An SMF is a note-by-note description of a tune—Palm OS
doesn't support sampled sound, multiple voices, or complex
“instruments.” You can download the SMF format specification
from the http://www.midi.org Web site.

The alarm sounds used in the built-in Date Book application are
SMFs stored in the System MIDI Sounds database and can be
played by the SndPlaySMF function.

All SMF records in the System MIDI Sounds database are available
to the user. Developers can add their own alarm SMFs to this
database as a way to add variety and personalization to their
devices. You can use the sysFileTMidi filetype and
sysFileCSystem creator to open this database.

Each record in the database is a single SMF, with a header structure
containing the user-visible name. The record includes a song header,
then a track header, followed by any number of events. The system
only recognizes the keyDown, keyUp and tempo events in a single
track; other commands which might be in the SMF are ignored. For
more information, see the following:

Palm System Features
Sound

Palm OS Programmer’s Companion (Preliminary) 169

• Adding a Standard MIDI File to a Database in this chapter.

• SndMidiRecType Structure in the Palm OS SDK Reference.

• SndMidiRecHdrType Structure in the Palm OS SDK
Reference.

You can use standard MIDI tools to create SMF blocks on desktop
computers, or you can write code to create them on the Palm OS
device. The sample code project “RockMusic,” particularly the
routines in the MakeSMF.c file, can be helpful to see how to create
an SMF programmatically.

Previous versions of Palm OS don't support SMFs or asynchronous
notes; don't use the new routines or commands when the FtrGet
function returns a system version of less than 0x03000000. Doing
so will crash your application. See the section “The System Version
Feature” for more information.

Synchronous and Asynchronous Sound
The SndDoCmd function executes synchronously or asynchronously
according to the operation it is to perform. The cmdNoteOn and
cmdFreqOn operations execute asynchronously; that is, they are
non-blocking and can be interrupted by another sound command.
In contrast, the cmdFreqDurationAmp operation is synchronous
and blocking (it cannot be interrupted).

The SndPlaySMF function is also synchronous and blocking;
however, the Sound Manager polls the key queue periodically
during playback and halts playback in progress if it finds events
generated by user interaction with the screen, digitizer, or
hardware-based buttons. Optionally, the caller can override this
default behavior to specify that the SndPlaySMF function play the
SMF to completion without being interrupted by user events.

Using the Sound Manager
Before playing custom sounds that require a volume (amplitude)
setting, your code needs to discover the user’s current volume
settings. To do so in Palm OS 3.X, pass one of the
prefSysSoundVolume, prefGameSoundVolume, or
prefAlarmSoundVolume selectors to the PrefGetPreference
function.

Palm System Features
Sound

170 Palm OS Programmer’s Companion (Preliminary)

NOTE: See “Sound Preferences Compatibility Information” for
important information regarding the correct use of sound
preferences in various versions of Palm OS.

You can pass the returned amplitude information to the
SndPlaySMF function as one element of a SndSmfOptionsType
Structure parameter block. Alternatively, you can pass
amplitude information to the SndDoCmd function as an element of a
SndCommandType Structure parameter block.

To execute a sound manager command, pass to the SndDoCmd
function a sound channel pointer (presently, only NULL is supported
and maps to the shared channel), a pointer to a structure of
SndCommandType, and a flag indicating whether the command
should be performed asynchronously.

To play SMFs, call the SndPlaySMF function. This function, which
is new in Palm OS 3.0, is used by the built in Date Book application
to play alarm sounds.

To play single notes, you can use either of the SndPlaySMF or
SndDoCmd functions. Of course, you can use the SndPlaySMF
function to play a single MIDI note from an SMF. You can also use
the SndDoCmd function to play a single MIDI note by passing the
sndCmdNoteOn command selector to this function. To specify by
frequency the note to be played, pass the sndCmdFreqOn command
selector to the SndDoCmd function.You can pass the sndCmdQuiet
selector to this function to stop playback of the current note.

The system provides no specialized API for playing game sounds or
alarm sounds. When an alarm triggers, the application that set the
alarm must use the standard Sound Manager API to play the sound
associated with that alarm. Similarly, game sounds are implemented
by the game developer using any appropriate element of the Sound
Manager API. Games should observe the prefGameSoundVolume
setting, as described in the section “Sound Preferences
Compatibility Information.”

To play a default system sound, such as a click or an error beep, pass
the appropriate system sound ID to the SndPlaySystemSound
function, which will play that sound at the volume level specified
by the user’s system sound preference. For the complete list of

Palm System Features
Sound

Palm OS Programmer’s Companion (Preliminary) 171

system sound IDs, see the SoundMgr.h file provided by the Palm
OS SDK.

Adding a Standard MIDI File to a Database

To add a format 0 standard MIDI file to the system MIDI database,
you can use code similar to the AddSmfToDatabase example
function shown in the following code listing. This function returns 0
if successful, and returns a non-zero value otherwise. To use a
different database, pass different creator and type values to the
DmOpenDatabaseByTypeCreator function.

Listing 8.3 AddSmfToDatabase

// Useful structure field offset macro
#define prvFieldOffset(type, field) ((DWord)(&((type*)0)->field))

// returns 0 for success, nonzero for error
int AddSmfToDatabase(Handle smfH, CharPtr trackName)
{
Err err = 0;
DmOpenRef dbP;
UInt recIndex;
VoidHand recH;
Byte* recP;
Byte* smfP;
Byte bMidiOffset;
ULong dwSmfSize;
SndMidiRecHdrType recHdr;

bMidiOffset = sizeof(SndMidiRecHdrType) +
StrLen(trackName) + 1;

dwSmfSize = MemHandleSize(smfH);

recHdr.signature = sndMidiRecSignature;
recHdr.reserved = 0;
recHdr.bDataOffset = bMidiOffset;

dbP = DmOpenDatabaseByTypeCreator(sysFileTMidi, sysFileCSystem,
dmModeReadWrite | dmModeExclusive);

if (!dbP)

Palm System Features
Sound

172 Palm OS Programmer’s Companion (Preliminary)

return 1;

// Allocate a new record for the midi resource
recIndex = dmMaxRecordIndex;
recH = DmNewRecord(dbP, &recIndex, dwSmfSize + bMidiOffset);
if (!recH)
return 2;

// Lock down the source SMF and target record and copy the data
smfP = MemHandleLock(smfH);
recP = MemHandleLock(recH);

err = DmWrite(recP, 0, &recHdr, sizeof(recHdr));
if (!err) err = DmStrCopy(recP, prvFieldOffset(SndMidiRecType,

name), trackName);
if (!err) err = DmWrite(recP, bMidiOffset, smfP, dwSmfSize);

// Unlock the pointers
MemHandleUnlock(smfH);
MemHandleUnlock(recH);

//Because DmNewRecord marks the new record as busy,
// we must call DmReleaseRecord before closing the database
DmReleaseRecord(dbP, recIndex, 1);

DmCloseDatabase(dbP);

return err;
}

Saving References to Standard MIDI Files

To save a reference to a SMF stored in a particular database, save its
record ID and the name of the database in which it is stored. Do not
store the database ID between invocations of your application,
because various events, such as a HotSync, can invalidate database
IDs. Using an invalid database ID can crash your application.

Palm System Features
Sound

Palm OS Programmer’s Companion (Preliminary) 173

Retrieving a Standard MIDI File From a Database

Standard MIDI Files (SMFs) are stored as individual records in a
MIDI record database—one SMF per record. Palm OS defines the
database type sysFileTMidi for MIDI record databases. The
system MIDI database, with type sysFileTMidi and creator
sysFileCSystem, holds multiple system alarm sounds. In
addition, your applications can create their own private MIDI
databases of type sysFileTMidi and your own creator.

To obtain a particular SMF, you need to identify the database in
which it resides and the specific database record which holds the
SMF data. The database record itself is always identified by record
ID. The MIDI database in which it resides may be identified by
name or by database ID. If you know the creator of the SMF, you can
use the SndCreateMidiList utility function to retrieve this
information. Alternatively, you can use the Data Manager record
API functions to iterate through MIDI database records manually in
search of this information.

The SndCreateMidiList utility function retrieves information
about Standard Midi Files from one or more MIDI databases. This
information is returned as a table of entries. Each entry contains the
name of an SMF; its unique record ID; and the database ID and card
number of the record database in which it resides.

Once you have the appropriate identifiers for the record and the
database in which it resides, you need to open the MIDI database. If
you have identified the database by type and creator, pass the
sysFileTMidi type and an appropriate creator value to the
DmOpenDatabaseByTypeCreator function. For example, to
retrieve a SMF from the system MIDI database, pass type
sysFileTMidi and creator sysFileCSystem. The
DmOpenDatabaseByTypeCreator function returns a reference to
the open database.

If you have identified the database by name, rather than by creator,
you’ll need to discover its database ID in order to open it. The
DmFindDatabase function returns the database ID for a database
specified by name and card number. You can pass the returned ID to
the DmOpenDatabase function to open the database and obtain a
reference to it.

Palm System Features
Sound

174 Palm OS Programmer’s Companion (Preliminary)

Once you have opened the MIDI database, call
DmFindRecordByID to get the index of the SMF record. To retrieve
the record itself, pass this index value to either of the functions
DmQueryRecord or DmGetRecord. When you intend to modify
the record, use the DmGetRecord function—it marks the record as
busy. When you intend to use the record in read-only fashion, use
the DmQueryRecord function —it does not mark the record as
busy. You must lock the handle returned by either of these functions
before making further use of it.

To lock the database record’s handle, pass it to the MemHandleLock
function, which returns a pointer to the locked record holding the
SMF data. You can pass this pointer to the SndPlaySMF function in
the smfP parameter to play the MIDI file.

When you’ve finished using the record, unlock the pointer to it by
calling the MemPtrUnlock function. If you’ve used DmGetRecord
to open the record for editing, you must call DmReleaseRecord to
make the record available once again to other callers. If you used
DmQueryRecord to open the record for read-only use, you need
not call DmReleaseRecord.

Finally, close the database by calling the DmCloseDatabase
function.

Sound Preferences Compatibility Information
The sound preferences implementation and API varies slightly
among versions 1.0, 2.0, and 3.X of Palm OS. This section describes
how to use sound preferences correctly for various versions of Palm
OS.

Because versions 2.0 and 3.X of Palm OS provide backward
compatibility with previous sound preference mechanisms,
applications written for an earlier version of the sound preferences
API will get correct sound preference information from newer
versions of Palm OS. However, it is strongly recommended that new
applications use the latest API.

Palm System Features
Sound

Palm OS Programmer’s Companion (Preliminary) 175

Using Sound Preferences on All Palm OS Devices

Because the user chooses sound preference settings, your
application should respect them and adhere to their values. Further,
you should always treat sound preferences as read-only values.

At reset time, the sound manager reads stored preference values
and caches them for use at run time. The user interface controls
update both the stored preference values and the sound manager’s
cached values.

The PrefSetPreference function writes to stored preference
values without affecting cached values. New values are read at the
next system reset. The system-use-only SndSetDefaultVolume
function updates cached values but not stored preferences.
Applications should avoid modifying stored preferences or cached
values in favor of respecting the user’s choices for preferences.

Using Palm OS 1.0 Sound Preferences

To read sound preference values in version 1.0 of Palm OS, call the
PrefGetPreferences function to obtain the data structure
shown in Listing 8.4. This SystemPreferencesTypeV10
structure holds the current values of all system-wide
preferences.You must extract from this structure the values of the
sysSoundLevel and alarmSoundLevel fields. These values are
the only sound preference information that Palm OS version 1.0
provides.

Each of these fields holds a value of either slOn (on) or slOff (off).
Your code must interpret the values read from these fields as an
indication of whether those volumes should be on or off, then map
them to appropriate amplitude values to pass to Sound Manager
functions: map the slOn selector to the sndMaxAmp constant
(defined in SoundMgr.h) and map the slOff selector to the value
0 (zero).

Listing 8.4 SystemPreferencesTypeV10 data structure

typedef struct {
Word version; // Version of preference info

// International preferences

Palm System Features
Sound

176 Palm OS Programmer’s Companion (Preliminary)

CountryType country;// Country the device is in
DateFormatType dateFormat;// Format to display date in
DateFormatType longDateFormat;// Format to display date in
Byte weekStartDay;// Sunday or Monday
TimeFormatType timeFormat;// Format to display time in
NumberFormatType numberFormat;// Format to display numbers in

// system preferences
Byte autoOffDuration;// Time period before shutting off
SoundLevelTypeV20 sysSoundLevel;//error beeps
SoundLevelTypeV20 alarmSoundLevel;//alarm only
Boolean hideSecretRecords;// True to not display records with

// their secret bit attribute set
Boolean deviceLocked; // Device locked until the system

// password is entered
WordsysPrefFlags;// Miscellaneous system pref flags copied into

 // the global GSysPrefFlags at boot time.
SysBatteryKind sysBatteryKind;

// The type of batteries installed.
// This is copied into the globals
// GSysbatteryKind at boot time.

} SystemPreferencesTypeV10;

Using Palm OS 2.0 Sound Preferences

Version 2.0 of Palm OS introduces a new API for retrieving
individual preference values from the system. You can pass any of
the selectors prefSysSoundLevelV20,
prefGameSoundLevelV20, or prefAlarmSoundLevelV20 to
the PrefGetPreference function to retrieve individual
amplitude preference values for alarm sounds, game sounds, or for
overall (system) sound amplitude. As in Palm OS 1.0, each of these
settings holds values of either slOn (on) or slOff (off), as defined
in the Preferences.h file. Your code must interpret the values read
from these fields as an indication of whether those volumes should
be on or off, then map them to appropriate amplitude values to pass
to Sound Manager functions: map the slOn selector to the
sndMaxAmp constant (defined in SoundMgr.h file) and map the
slOff selector to the value 0 (zero).

Palm System Features
Sound

Palm OS Programmer’s Companion (Preliminary) 177

For a complete listing of selectors you can pass to the
PrefGetPreference function, see the Preferences.h file.

Using Palm OS 3.X Sound Preferences

Palm OS version 3.X enhances the resolution of sound preference
settings by providing discrete amplitude levels for games, alarms,
and the system overall. As usual, do not set preferences yourself,
but treat them as read-only values indicating the proper volume
level for your application to use.

Palm OS 3.X defines the new sound amplitude selectors
prefSysSoundVolume, prefGameSoundVolume, and
prefAlarmSoundVolume for use with the PrefGetPreference
function. The values this function returns for these selectors are
actual amplitude settings that may be passed directly to Sound
Manager functions.

NOTE: The amplitude selectors used in previous versions of
Palm OS (all ending with the Level suffix, such as
prefsGameSoundLevel) are obsoleted in version 3.0 of Palm
OS and replaced by new selectors. The old selectors remain
available in Palm OS 3.X to ensure backward compatibility and
are suffixed V20 (for example, prefsGameSoundLevelV20).

Ensuring Sound Preferences Compatibility

For greatest compatibility with multiple versions of the sound
preferences mechanism, your application should condition its
sound preference code according to the version of Palm OS on
which it is running. See “The System Version Feature” for more
information.

When your application is launched, it should retrieve the system
version number and save the results in its global variables (or
equivalent structure) for use elsewhere. If the major version number
is 3 (three) or greater, then use the 3.0 mechanism for obtaining
sound amplitude preferences, since this reflects the user’s selection
most accurately. If the major version number is 2 (two), then use the
2.0 mechanism described in “Using Palm OS 2.0 Sound

Palm System Features
System Boot and Reset

178 Palm OS Programmer’s Companion (Preliminary)

Preferences.” If it is 1 (one), then use the 1.0 mechanism described in
“Using Palm OS 1.0 Sound Preferences.”

Avoid calling new APIs (including new selectors) when running on
older versions of Palm OS that do not implement them. In
particular, note that violating any of the following conditions will
cause your application to crash:

• Do not call either of the SndPlaySMF or
SndCreateMidiList functions on versions of Palm OS
prior to 3.0.

• Do not pass any selector other than
sndCmdFreqDurationAmp to the SndDoCmd function on
versions of Palm OS prior to 3.0.

System Boot and Reset
Any reset is normally performed by sticking a bent-open paper clip
or a large embroidery needle into the small hole in the back of the
device. This hole, known as the “reset switch” is above and to the
right of the serial number sticker (on Palm III devices). Depending
on additional keys held down, the reset behavior varies, as follows:

Soft Reset
A soft reset clears all of the dynamic heap (Heap 0, Card 0). The
storage heaps remain untouched. The operating system restarts
from scratch with a new stack, new global variables, restarted
drivers, and a reset communication port. All applications on the
device receive a sysAppLaunchCmdSystemReset message.

Soft Reset + Up Arrow
Holding the up-arrow down while pressing the reset switch with a
paper clip causes the same soft reset logic with the following two
exceptions:

• The sysAppLaunchCmdSystemReset message is not sent
to applications. This is useful if there is an application on the
device that crashes upon receiving this message (not
uncommon) and therefore prevents the system from booting.

Palm System Features
System Boot and Reset

Palm OS Programmer’s Companion (Preliminary) 179

• The OS won’t load any system patches during startup. This is
useful if you have to delete or replace a system patch
database. If the system patches are loaded and therefore
open, they cannot be replaced or deleted from the system.

Hard Reset
A hard reset is performed by pressing the reset switch with a paper
clip while holding down the power key. This has all the effects of the
soft reset. In addition, the storage heaps are erased. As a result, all
programs, data, patches, user information, etc. are lost. A
confirmation message is displayed asking the user to confirm the
deletion of all data.

The sysAppLaunchCmdSystemReset message is sent to the
applications at this time. If the user selected the “Delete all data”
option, the digitizer calibration screen comes up first. The default
databases for the four main applications is copied out of the ROM.

If you hold down the up arrow key when the “Delete all data”
message is displayed, and then press the other four application
buttons while still holding the up arrow key, the system is booted
without reading the default databases for the four main applications
out of ROM.

System Reset Calls
The system manager provides support for booting the Palm OS
device. It calls SysReset to reset the device. This call does a soft
reset and has the same effect as pressing the reset switch on the unit.
Normally applications should not use this call.

SysReset is used, for example, by the Sync application. When the
user copies an extension onto the Palm OS device, the Sync
application automatically resets the device after the sync is
completed to allow the extension to install itself.

The SysColdBoot call is similar, but even more dangerous. It
performs a hard reset that clears all user storage RAM on the device,
destroying all user data.

Palm System Features
Hardware Interaction

180 Palm OS Programmer’s Companion (Preliminary)

Hardware Interaction
Palm OS differs from a traditional desktop system in that it’s never
really turned off. Power is constantly supplied to essential
subsystems and the on/off key is merely a way of bringing the
device in or out of low-power mode. The obvious effect of pressing
the on/off key is that the LCD turns on or off. When the user presses
the power key to turn the device off, the LCD is disabled, which
makes it appear as if power to the entire unit is turned off. In fact,
the memory system, real-time clock, and the interrupt generation
circuitry are still running, though they are consuming little current.

This section looks at Palm OS power management, discussing the
following topics:

• Palm OS Power Modes

• Guidelines for Application Developers

• Power Management Calls

Palm OS Power Modes
To minimize power consumption, the operating system
dynamically switches between three different modes of operation:
sleep mode, doze mode, and running mode. The system manager
controls transitions between different power modes and provides
an API for controlling some aspects of the power management.

• In sleep mode, the device looks like it’s turned off: the
display is blank, the digitizer is inactive, and the main clock
is stopped. The only circuits still active are the real-time clock
and interrupt generation circuitry.

The device enters this mode when there is no user activity for
a number of minutes or when the user presses the off button.
The device comes out of sleep mode only when there is an
interrupt, for example, when the user presses a button.

To enter sleep mode, the system puts as many peripherals as
possible into low-power mode and sets up the hardware so
that an interrupt from any hard key or the real-time clock
wakes up the system. When the system gets one of these
interrupts while in sleep mode, it quickly checks that the
battery is strong enough to complete the wake-up and then

Palm System Features
Hardware Interaction

Palm OS Programmer’s Companion (Preliminary) 181

takes each of the peripherals, for example, the LCD, serial
port, and timers, out of low-power mode.

• In doze mode, the main clock is running, the device appears
to be turned on, the LCD is on, and the processor’s clock is
running but it’s not executing instructions (that is, it’s
halted). When the processor receives an interrupt, it comes
out of halt and starts processing the interrupt.

The device enters this mode whenever it’s on but has no user
input to process.

The system can come out of doze mode much faster than it
can come out of sleep mode since none of the peripherals
need to be woken up. In fact, it takes no longer to come out of
doze mode than to process an interrupt. Usually, when the
system appears on, it is actually in doze mode and goes into
running mode only for short periods of time to process an
interrupt or respond to user input like a pen tap or key press.

• In running mode, the processor is actually executing
instructions.

The device enters this mode when it detects user input (like a
tap on the screen) while in doze mode or when it detects an
interrupt while in doze or sleep mode. The device stays in
running mode only as long as it takes to process the user
input (most likely less than a second), then it immediately
reenters doze mode. A typical application puts the system
into running mode only about 5% of the time.

To maximize battery life, the processor on the Palm Computing
platform device is kept out of running mode as much as possible.
Any interrupt generated on the device must therefore be capable of
“waking” up the processor. The processor can receive interrupts
from the serial port, the hard buttons on the case, the button on the
cradle, the programmable timer, the memory module slot, the
real-time clock (for alarms), the low-battery detector, and any
built-in peripherals such as a pager or modem.

Guidelines for Application Developers
Normally, applications don’t need to be aware of power
management except for a few simple guidelines. When an
application calls EvtGetEvent to ask the system for the next event
to process, the system automatically puts itself into doze mode until

Palm System Features
Hardware Interaction

182 Palm OS Programmer’s Companion (Preliminary)

there is an event to process. As long as an application uses
EvtGetEvent, power management occurs automatically. If there
has been no user input for the amount of time determined by the
current setting of the auto-off preference, the system automatically
enters sleep mode without intervention from the application.

Applications should avoid providing their own delay loops.
Instead, they should use SysTaskDelay, which puts the system
into doze mode during the delay to conserve as much power as
possible. If an application needs to perform periodic work, it can
pass a time out to EvtGetEvent; this forces the unit to wake up out
of doze mode and to return to the application when the time out
expires, even if there is no event to process. Using these mechanisms
provides the longest possible battery life.

Power Management Calls
The system calls SysSleep to put itself immediately into
low-power sleep mode. Normally, the system puts itself to sleep
when there has been no user activity for the minimum auto-off time
or when the user presses the power key.

The SysSetAutoOffTime routine changes the auto-off time value.
This routine is normally used by the system only during boot, and
by the Preferences application. The Preferences application saves
the user preference for the auto-off time in a preferences database,
and the system initializes the auto-off time to the value saved in the
preferences database during boot. While the auto-off feature can be
disabled entirely by calling SysSetAutoOffTime with a time-out
of 0, doing this depletes the battery.

The current battery level and other information can be obtained
through the SysBatteryInfo routine. This call returns
information about the battery, including the current battery voltage
in hundredths of a volt, the warning thresholds for the low-battery
alerts, the battery type, and whether external power is applied to
the unit. This call can also change the battery warning thresholds
and battery type.

Palm System Features
The Microkernel

Palm OS Programmer’s Companion (Preliminary) 183

The Microkernel
Palm OS has a preemptive multitasking kernel that provides basic
task management.

Most applications don’t need the microkernel services because they
are handled automatically by the system. This functionality is
provided mainly for internal use by the system software or for
certain special purpose applications.

In this version of the Palm OS, there is only one user interface
application running at a time. The User Interface Application Shell
(UIAS) is responsible for managing the current user-interface
application. The UIAS launches the current user-interface
application as a subroutine and doesn’t get control back until that
application quits. When control returns to the UIAS, the UIAS
immediately launches the next application as another subroutine.
See “Power Management Calls” for more information.

Usually, the UIAS is the only task running. Occasionally though, an
application launches another task as a part of its normal operation.
One example of this is the Sync application, which launches a
second task to handle the serial communication with the desktop.
The Sync application creates a second task dedicated to the serial
communication and gives this task a lower priority than the main
user-interface task. The result is optimal performance over the serial
port without a delay in response to the user-interface controls.

Normally, there is no user interaction during a sync, so that the
serial communication task gets all of the processor’s time. However,
if the user does tap on the screen, for example, to cancel the sync,
the user-interface task immediately processes the tap, since it has a
higher priority. Alternatively, the Sync application could have been
written to use just one task, but then it would have to periodically
poll for user input during the serial communication, which would
hamper performance and user-interface response time.

NOTE: Only system software can launch a separate task. The
multi-tasking API is not available to developer applications.

Palm System Features
Retrieving the ROM Serial Number

184 Palm OS Programmer’s Companion (Preliminary)

Retrieving the ROM Serial Number
Some Palm devices, beginning with the Palm III product, hold a
12-digit serial number that identifies the device uniquely. (Earlier
devices do not have this identifier.) The serial number is held in a
displayable text buffer with no null terminator. The user can view
the serial number in the Application Launcher application. (The
pop-up version of the Launcher does not display the serial number.)
The Application Launcher also displays to the user a checksum digit
that you can use to validate user entry of the serial number.

To retrieve the ROM serial number programmatically, pass the
sysROMTokenSnum selector to the SysGetRomToken function. If
the SysGetRomToken function returns an error, or if the returned
pointer to the buffer is NULL, or if the first byte of the text buffer is
0xFF, then no serial number is available.

The DrawSerialNumOrMessage function shown in Listing 8.5
retrieves the ROM serial number, calculates the checksum, and
draws both on the screen at a specified location. If the device has no
serial number, this function draws a message you specify. This
function accepts as its input a pair of coordinates at which it draws
output, and a pointer to the message it draws when a serial number
is not available.

Listing 8.5 DrawSerialNumOrMessage

static void DrawSerialNumOrMessage(int x, int y,
CharPtr noNumberMessage)

{
 CharPtr bufP;
 Word bufLen;
 Word retval;
 Short count;
 Byte checkSum;
 char checksumStr[2];

// holds the dash and the checksum digit

 retval = SysGetROMToken (0, sysROMTokenSnum,
(BytePtr*) &bufP, &bufLen);

Palm System Features
Time

Palm OS Programmer’s Companion (Preliminary) 185

 if ((!retval) && (bufP) && ((Byte) *bufP != 0xFF)) {
// there's a valid serial number!
// Calculate the checksum: Start with zero, add each digit,
// then rotate the result one bit to the left and repeat.

 checkSum = 0;
 for (count=0; count<bufLen; count++) {
 checkSum += bufP[count];
 checkSum = (checkSum<<1) | ((checkSum & 0x80) >> 7);
 }

// Add the two hex digits (nibbles) together, +2
// (range: 2 - 31 ==> 2-9, A-W)
// By adding 2 to the result before converting to ascii,
// we eliminate the numbers 0 and 1, which can be
// difficult to distinguish from the letters O and I.
checkSum = ((checkSum>>4) & 0x0F) + (checkSum & 0x0F) + 2;

// draw the serial number and find out how wide it was
WinDrawChars(bufP, bufLen, x, y);
x += FntCharsWidth(bufP, bufLen);

// draw the dash and the checksum digit right after it
checksumStr[0] = '-';
checksumStr[1] =

((checkSum < 10) ? (checkSum +'0'):(checkSum -10 +'A'));
WinDrawChars (checksumStr, 2, x, y);
}

 else // there's no serial number
// draw a status message if the caller provided one
if (noNumberMessage)
WinDrawChars(noNumberMessage, StrLen(noNumberMessage),x,

y);
}

Time
The Palm Computing platform device has a real-time clock and
programmable timer as part of the 68328 processor. The real-time
clock maintains the current time even when the system is in sleep
mode (turned off). It’s capable of generating an interrupt to wake

Palm System Features
Time

186 Palm OS Programmer’s Companion (Preliminary)

the device when an alarm is set by the user. The programmable
timer is used to generate the system tick count interrupts (100
times/second) while the processor is in doze or running mode. The
system tick interrupts are required for periodic activity such as
polling the digitizer for user input, key debouncing, etc.

The date and time manager (called time manager in this chapter)
provides access to both the 1-second and 0.01-second timing
resources on the Palm OS device.

• The 1-second timer keeps track of the real-time clock (date
and time), even when the unit is in sleep mode.

• The 0.01-second timer, also referred to as the system ticks,
can be used for finer timing tasks. This timer is not updated
when the unit is in sleep mode and is reset to 0 each time the
unit resets.

The basic time-manager API provides support for setting and
getting the real-time clock in seconds and for getting the current
system ticks value (but not for setting it). The system manager
provides more advanced functionality for setting up a timer task
that executes periodically or in a given number of system ticks.

This section discusses the following topics:

• Using Real-Time Clock Functions

• Using System Ticks Functions

Using Real-Time Clock Functions
The real-time clock functions of the time manager include
TimSetSeconds and TimGetSeconds. Real time on the Palm OS
device is measured in seconds from midnight, Jan 1, 1904. Call
TimSecondsToDateTime and TimDateTimeToSeconds to
convert between seconds and a structure specifying year, month,
day, hour, minute, and second.

Using System Ticks Functions
The Palm OS device maintains a tick count that starts at 0 when the
device is reset. This tick increments

• 100 times per second when running on the Palm OS device

Palm System Features
Floating-Point

Palm OS Programmer’s Companion (Preliminary) 187

• 60 times per second when running on the Macintosh under
the Simulator

For tick-based timing purposes, applications should use the macro
SysTicksPerSecond, which is conditionally compiled for
different platforms. Use the function TimGetTicks to read the
current tick count.

Although the TimGetTicks function could be used in a loop to
implement a delay, it is recommended that applications use the
SysTaskDelay function instead. The SysTaskDelay function
automatically puts the unit into low-power mode during the delay.
Using TimGetTicks in a loop consumes much more current.

Floating-Point
Palm OS 1.0 provided 16-bit floating point arithmetic. Instead of
using standard mathematical symbols, you called functions like
FplAdd, FplSub, and so on.

Palm OS 2.0 and later implements floating point arithmetic
differently than Palm OS 1.0 did. The floating-point library in OS
versions 2.0 and later provides 32-bit and 64-bit floating point
arithmetic.

Using Floating Point Arithmetic
To take advantage of the floating-point library, applications can now
use the mathematical symbols + – * /instead of using functions like
FplAdd, FplSub, etc.

When compiling the application, you have to link in the floating
point library under certain circumstances. Choose from one of these
options:

• Simulator application or application for 1.0 device — link in
the floating point library explicitly.

This library adds approximately 8KB to the size of your prc
file. The library provides 32-bit and 64-bit floating-point
arithmetic. The original Palm OS Fpl functions provided
only 16-bit floating-point arithmetic. Linking in the library
explicitly won’t cause problems when you compile for a 2.0
or later device.

Palm System Features
Summary of System Features

188 Palm OS Programmer’s Companion (Preliminary)

• 2.0 or later Palm OS device—It’s not necessary to link in the
library.

The compiler generates trap calls to equivalent floating-point
functionality in the system ROM.

There are control panel settings in the IDE which let you select the
appropriate floating-point model.

Floating-point functionality is identical in either method.

Using 1.0 Floating-Point Functionality
The original Fpl calls (documented in the chapter “Float Manager”
in the Palm OS SDK Reference) are still available. They may be useful
for applications that don’t need high precision, don’t want to incur
the size penalty of the float library, and want to run on 1.0 devices
only. To get 1.0 behavior, use the 1.0 calls (FplAdd, etc.) and don’t
link in the library.

Summary of System Features
Alarm Manager Functions

AlmSetAlarm
AlmSetProcAlarm

AlmGetAlarm
AlmGetProcAlarm

Feature Manager Functions

FtrGet
FtrSet
FtrPtrNew
FtrPtrResize

FtrGetByIndex
FtrUnregister
FtrPtrFree

Sound Manager Functions

SndCreateMidiList
SndGetDefaultVolume
SndPlaySystemSound

SndDoCmd
SndPlaySMF
SndPlaySmfResource

Palm System Features
Summary of System Features

Palm OS Programmer’s Companion (Preliminary) 189

System Manager Functions

Launching Applications

SysAppLaunch
SysBroadcastActionCode

SysAppLauncherDialog
SysUIAppSwitch

System Dialogs

SysGraffitiReferenceDialog
SysKeyboardDialogV10

SysKeyboardDialog

Power Management

SysBatteryInfo
SysSetAutoOffTime

SysBatteryInfoV20
SysTaskDelay

System Management

SysLibFind
SysRandom
SysGremlins

SysLibLoad
SysReset

Working With Strings and Resources

SysBinarySearch
SysQSort
SysCreatePanelList
SysFormPointerArrayToStrings

SysInsertionSort
SysCopyStringResource
SysInstall
SysStringByIndex

Database Support

SysCreateDataBaseList SysCurAppDatabase

Error Handling

SysErrString SysFatalAlert

Event Handling

SysHandleEvent

System Information

SysGetOSVersionString
SysGetRomToken

SysGetStackInfo
SysTicksPerSecond

Palm System Features
Summary of System Features

190 Palm OS Programmer’s Companion (Preliminary)

Time Manager Functions

Allowing User to Change Date and Time

DayHandleEvent
SelectDay

SelectTime
SelectDayV10

Changing the Date

DateAdjust
TimSetSeconds

TimAdjust

Converting to Date Format

DateDaysToDate
TimSecondsToDateTime

DateSecondsToDate

Converting Dates to Other Formats

DateToAscii
DateToDays
TimGetSeconds
TimGetTicks

TimeToAscii
DateToDOWDMFormat
TimDateTimeToSeconds

Date Information

DayOfMonth
DaysInMonth

DayOfWeek

Float Manager Functions

FplAdd
FplBase10Info
FplFloatToLong
FplFree
FplInit
FplMul

FplAToF
FplDiv
FplFloatToULong
FplFToA
FplLongToFloat
FplSub

Palm OS Programmer’s Companion (Preliminary) 191

9
Serial
Communication
The Palm OS serial communications software provides high-
performance serial communications capabilities, including byte-
level serial I/O, best-effort packet-based I/O with CRC-16, reliable
data transport with retries and acknowledgments, connection
management, and modem dialing capabilities.

This chapter helps you understand the different parts of the serial
communications system and explains how to use them, discussing
these topics:

• Serial Hardware describes the serial port hardware.

• Byte Ordering briefly explains the byte order used for all
data.

• Serial Communications Architecture Hierarchy provides an
overview of the hierarchy, including an illustration.

• The Serial Manager and the The New Serial Manager are
responsible for byte-level serial I/O and control of the RS232
signals.

• The Connection Manager allows other applications to access,
add, and delete connection profiles contained in the
Connection preferences panel.

• The Serial Link Protocol provides an efficient mechanism for
sending and receiving packets.

• The Serial Link Manager is the Palm OS implementation of
the serial link protocol.

Serial Hardware
The Palm Computing Platform device serial port is used for
implementing desktop PC connectivity or other external
communication. The serial communication is fully interrupt-driven

Serial Communication
Byte Ordering

192 Palm OS Programmer’s Companion (Preliminary)

for receiving data. Currently, interrupt-driven transmission of data
is not implemented in software, but the hardware does support it.
Five external signals are used for this communication:

• SG (signal ground)

• TxD (transmit data)

• RxD (receive data)

• CTS (clear to send)

• RTS (request to send)

The Palm Computing Platform device has an external connector
that provides:

• Five serial communication signals

• General-purpose output

• General-purpose input

• Cradle button input

Palm Computing publishes a hardware development kit designed
to assist developers in creating devices to interface with the serial
communications port on Palm Computing Platform Device
products. This kit is known as the Hardware Developer Kit - Serial
Communications. For more information about the serial port
hardware and obtaining this kit, see the Palm developer web page
for this kit at:
http://www.palm.com/devzone/hdk/dzhdkser.html.

Byte Ordering
By convention, all data coming from and going to the Palm OS
device use Motorola byte ordering. That is, data of compound types
such as Word (2 bytes) and DWord (4 bytes), as well as their integral
counterparts, are packaged with the most-significant byte at the
lowest address. This contrasts with Intel byte ordering.

Serial Communications Architecture Hierarchy
The serial communications software has multiple layers. Higher
layers depend on more primitive functionality provided by lower

http://www.palm.com/devzone/hdk/dzhdkser.html

Serial Communication
Serial Communications Architecture Hierarchy

Palm OS Programmer’s Companion (Preliminary) 193

layers. Applications can use functionality of all layers. The software
consists of the following layers, described in more detail below:

• The serial manager, at the lowest layer, deals with the Palm
device serial port and control of the RS232 signals, providing
byte-level serial I/O. See The Serial Manager.

• The modem manager provides modem dialing capabilities.

• The Serial Link Protocol (SLP) provides best-effort packet
send and receive capabilities with CRC-16. Packet delivery is
left to the higher-level protocols; SLP does not guarantee it.
See The Serial Link Protocol.

• The Packet Assembly/Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efficient protocol
featuring variable-size block transfers with robust error
checking and automatic retries. Applications don’t need
access to this part of the system.

• The Connection Management Protocol (CMP) provides
connection-establishment capabilities featuring baud rate
arbitration and exchange of communications software
version numbers.

• The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other subsystems.

DLP facilitates efficient data synchronization between
desktop (PC, Macintosh, etc.) and Palm OS applications,
database backup, installation of code patches, extensions,
applications, and other databases, as well as Remote
Interapplication Communication (RIAC) and Remote
Procedure Calls (RPC).

Figure 9.1 illustrates the communications layers.

Serial Communication
The Serial Manager

194 Palm OS Programmer’s Companion (Preliminary)

Figure 9.1 Palm OS Serial Communications Architecture

The Serial Manager
The Palm OS serial manager is responsible for byte-level serial I/O
and control of the RS232 signals.

In order to prolong battery life, the serial manager must be very
efficient in its use of processing power. To reach this goal, the serial
manager receiver is interrupt-driven. In the present
implementation, the serial manager uses the polling mode to send
data.

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion (Preliminary) 195

Using the Serial Manager
Before using the serial manager, call SysLibFind, passing
“Serial Library” for the library name to get the serial library
reference number. This reference number is used with all
subsequent serial manager calls. The system software automatically
installs the serial library during system initialization.

To open the serial port, call SerOpen, passing the serial library
reference number (returned by SysLibFind), 0 (zero) for the port
number, and the desired baud rate. An error code of 0 (zero) or
serErrAlreadyOpen indicates that the port was successfully
opened.

If the serial port is already open when SerOpen is called, the port’s
open count is incremented and an error code of
serErrAlreadyOpen is returned. This ability to open the serial
port multiple times allows cooperating tasks to share the serial port.

All other applications must refrain from sharing the serial port and
close it by calling SerClose when serErrAlreadyOpen is
returned. Error codes other than 0 (zero) or serErrAlreadyOpen
indicate failure. The application must open the serial port before
making other serial manager calls.

To close the serial port, call SerClose. Every successful call to
SerOpen must eventually be paired with a call to SerClose.
Because an open serial port consumes more energy from the
device’s batteries, it is essential not to keep the port open any longer
than necessary.

To change serial port settings, such as the baud rate, CTS timeout,
number of data and stop bits, parity options, and handshaking
options, call SerSetSettings. For baud rates above 19200, use of
hardware handshaking is advised.

To retrieve the current serial port settings, call SerGetStatus.

To retrieve the current line error status, call SerGetStatus, which
returns the cumulative status of all line errors being monitored. This
includes parity, hardware and software overrun, framing, break
detection, and handshake errors.

To reset the serial port error status, call SerClearErr, which resets
the serial port’s line error status. Other serial manager functions,

Serial Communication
The Serial Manager

196 Palm OS Programmer’s Companion (Preliminary)

such as SerReceive, immediately return with the error code
serErrLineErr if any line errors are pending. Applications
should therefore check the result of serial manager function calls
and call SerClearErr if line error(s) occurred.

To send a stream of bytes, call SerSend. In the present
implementation, SerSend blocks until all data are transferred to the
UART or a timeout error (if CTS handshaking is enabled) occurs. If
your software needs to detect when all data has been transmitted,
consider calling SerSendWait.

NOTE: Both SerSend and SerReceive were enhanced in
version 2.0 of the system. See the function descriptions for more
information. The older versions are still available as SerSend10
and SerReceive10.

To wait until all data queued up for transmission has been
transmitted, call SerSendWait. SerSendWait blocks until all
pending data is transmitted or a CTS timeout error occurs (if CTS
handshaking is enabled).

To flush all bytes from the transmission queue, call SerSendFlush.
This routine discards any data not yet transferred to the UART for
transmission.

To receive a stream of bytes from the serial port, call SerReceive,
specifying a buffer, the number of bytes desired, and the interbyte
time out. This call blocks until all the requested data have been
received or an error occurs.

To read bytes already in the receive queue, call SerReceiveCheck
(see below) to get the number of bytes presently in the receive queue
and then call SerReceive, specifying the number of bytes desired.
Because SerReceive returns immediately without any data if line
errors are pending, it is important to acknowledge the detection of
line errors by calling SerClearErr.

To wait for a specific number of bytes to be queued up in the receive
queue, call SerReceiveWait, passing the desired number of bytes
and an interbyte timeout. This call blocks until the desired number
of bytes have accumulated in the receive queue or an error occurs.
The desired number of bytes must be less than the current receive

Serial Communication
The Serial Manager

Palm OS Programmer’s Companion (Preliminary) 197

queue size. The default queue size is 512 bytes. Because this call
returns immediately if line errors are pending, applications have to
call SerClearErr to detect any line errors. See also
SerReceiveCheck and SerSetReceiveBuffer.

To check how many bytes are presently in the receive queue, call
SerReceiveCheck.

To discard all data presently in the receive queue and to flush bytes
coming into the serial port, call SerReceiveFlush, specifying the
interbyte timeout. This call blocks until a time out occurs waiting for
the next byte to arrive.

To replace the default receive queue, call SerSetReceiveBuffer,
specifying the pointer to the buffer to be used for the receive queue
and its size. The default receive queue must be restored before the
serial port is closed. To restore the default receive queue, call
SerSetReceiveBuffer, passing 0 (zero) for the buffer size. The
serial manager does not free the custom receive queue.

To avoid having the system go to sleep while it’s waiting to receive
data, an application should call EvtResetAutoOffTimer periodically.
For example, the serial link manager automatically calls
EvtResetAutoOffTimer each time a new packet is received. Note
that this facility is not part of the serial manager but part of the
event manager. For more information, see “Auto-Off Control” on
page 74.

To perform a control function, applications can call SerControl.
This function performs one of the control operations specified by
SerCtlEnum, whose elements are described in Table 9.1.

Table 9.1 SerCtlEnum Elements

Element Description

serCtlFirstReserved = 0 Reserve 0

serCtlStartBreak Turn RS232 break signal on. Applications have to
make sure that the break is set long enough to
generate a value BREAK!
valueP = 0; valueLenP = 0

Serial Communication
The New Serial Manager

198 Palm OS Programmer’s Companion (Preliminary)

The New Serial Manager
The new serial manager is capable of managing multiple serial
connections within a Palm device.

serCtlStopBreak Turn RS232 break signal off:
valueP = 0; valueLenP = 0

serCtlBreakStatus Get RS232 break signal status (on or off):
valueP = ptr to Word for returning status

(0 = off, !0 = on)

*valueLenP = sizeof(Word)

serCtlStartLocalLoopback Start local loopback test;
valueP = 0, valueLenP = 0

serCtlStopLocalLoopback Stop local loopback test
valueP = 0, valueLenP = 0

serCtlMaxBaud valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)

serCtlHandshakeThreshold Retrieve HW handshake threshold; this is the
maximum baud rate that does not require
hardware handshaking
valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)

serCtlEmuSetBlockingHook Set a blocking hook routine.

WARNING! For use with the Simulator on Mac
OS only. NOT SUPPORTED ON THE PALM
DEVICE.

valueP = ptr to SerCallbackEntryType
*valueLenP=sizeof(SerCallbackEntryType
)
Returns the old settings in the first argument.

Element Description

Serial Communication
The New Serial Manager

Palm OS Programmer’s Companion (Preliminary) 199

This section describes the new serial manager and the new
capability to write serial drivers that it can use.

The new serial manager is the preferred serial manager API and the
Palm OS will eventually phase out support for the original serial
manager API.

NOTE: The new serial manager is not available on all Palm
devices. It is available by flash ROM update on Palm III and
upgraded PalmPilot devices and some later devices. Before
making any new serial manager calls, you must ensure that it is
present.

Checking for the New Serial Manager
Because not all Palm devices will (or even can) have the new serial
manager installed, it’s important that you check for its existence
before making any new serial manager calls. You can check by
calling FtrGet as follows:

err = FtrGet(sysFileCSerialMgr,
sysFtrNewSerialPresent, &value);

If the new serial manager is installed, the value parameter will be
non-zero and the returned error should also be zero (for no error).

If the new serial manager is installed, it replaces the original serial
manager. However, it includes a compatibility layer so that
applications that use the original serial manager functions will
continue to operate as expected. The compatibility layer simply
translates the original serial manager calls into equivalent new
serial manager functions.

If you are writing new application code, best performance is
achieved by using the new serial library functions directly,
assuming the new serial manager is installed on the unit on which
your code is executing.

Serial Communication
The New Serial Manager

200 Palm OS Programmer’s Companion (Preliminary)

What's New About the New Serial Manager
The main difference between the new serial manager and previous
versions is that the new serial manager supports multiple physical
serial hardware devices and virtual serial devices, the detailed
operation of which is abstracted from the main serial management
code. Physical serial drivers manage communication with the
hardware as needed, and virtual drivers manage blocks of data to
be sent to some sort of block-based serial code.

In addition to this big change, a few new functions have been added
and there are widespread, minor changes to data structures and API
details.

About the New Serial Manager
The new serial manager manages multiple serial devices with
minimal duplication of hardware drivers and data structures. In
older Palm systems, the serial library managed any and all
connections to the serial hardware in the 68328 (Dragonball)
processor, which was the only serial device in the system. Newer
systems contain additional serial devices, such as an IR port.

The figure below shows the layering of communication software
with the new serial manager and hardware drivers.

Serial Communication
The New Serial Manager

Palm OS Programmer’s Companion (Preliminary) 201

Figure 9.2 Serial Communications Architecture with New Serial Manager

The new serial manager maintains a database of installed hardware
and currently open connections. Applications, libraries, or other
serial communication tasks open different pieces of serial hardware
by specifying a logical port number or a four-character code
identifying the exact piece of serial hardware that a task wishes to
open a connection with. The new serial manager then performs the
proper actions on the hardware via small hardware drivers that are
opened dynamically when the port is needed. One hardware driver
is needed for each serial communication hardware device available
to the Palm unit.

At system restart, the new serial manager searches for all serial
drivers on the Palm device. Serial drivers are independent .prc files
with a code resource and a version resource and are of type ‘sdrv’ or
‘vdrv’. Once a driver is found, it is asked to locate its associated
hardware and provide information on the capabilities of that
hardware. This is done for each driver found and the new serial
manager always maintains a list of hardware currently on the
device.

Once a port is opened, the new serial manager allocates a structure
for maintaining the current information and settings of the
particular port. The task or application that opens the port is

Serial Communication
The New Serial Manager

202 Palm OS Programmer’s Companion (Preliminary)

returned a port ID and must supply the port ID to refer to this port
when other new serial manager functions are called.

Upon closing the port, the new serial manager deallocates the open
port structure and unlocks the driver code resource to prevent
memory fragmentation.

Note that applications can use the connection manager to obtain the
proper port ID and other serial port parameters that the user has
stored in connection profiles for different connection types. For
more information, see the section “The Connection Manager” on
page 211.

Using the New Serial Manager
The new serial manager is installed when the device is booted.
Upon opening a new serial manager connection, the calling
application receives a unique ID that must be used to refer to this
specific connection for all subsequent calls to the new serial
manager.

Opening a Connection

Opening a serial connection requires that the application enable the
serial hardware by calling the SrmOpen function and specifying the
port ID (logical number or port name) and the initial baud rate of
the UART.

The SrmOpen call returns a unique port ID for the open port. This
port ID is required to perform any other new serial manager
functions. If the returned port ID is NULL or an error is returned by
the SrmOpen function, the returned port ID should be considered
invalid. Once the SrmOpen call is made successfully, it indicates that
the new serial manager has successfully allocated internal structures
to maintain the port and has successfully loaded the serial driver for
this port.

A port may be opened with either a foreground connection
(SrmOpen) or background connection (SrmOpenBackground). A
foreground connection makes an active connection to the port and
controls usage of the port until the connection is closed. A
background connection opens the port but relinquishes control to
any other task requesting a foreground connection. Background

Serial Communication
The New Serial Manager

Palm OS Programmer’s Companion (Preliminary) 203

connections are provided to support tasks (such as a keyboard
driver) that want to use a serial device to receive data only when no
other task is using the port.

Note that background ports have limited functionality: they can
only receive data and notify owning clients of what data has been
received.

Specifying the portID Parameter

With the new serial manager, ports must be specified using one of
the following two methods:

• Logical port ID's (for physical ports only):

$8000 = Cradle Port, RS-232 serial

$8001 = IR Port

$800n = reserved for future types of ports

• A four-character string specifying the port name:

‘u328’ specifies the cradle port using the 68328 UART

‘u650’ specifies the IR port on an upgraded Palm III
device

‘ircm’ specifies the IRComm virtual port

Note that other four-character codes will be added in the
future

Generally, it is best to use logical port ID’s rather than specifying the
port hardware directly. When you specify a logical port ID, the
device selects the appropriate hardware.

Closing a Connection

Once an application is finished with the serial port, it must close it
using the SrmClose function. If SrmClose returns no error, it
indicates that the new serial manager has successfully closed the
driver and deallocated the data structures used for maintaining the
port.

Sending and Receiving Data

Sending data is performed synchronously (for example, the process
of writing bytes to the serial hardware’s transmit FIFO). To send

Serial Communication
The New Serial Manager

204 Palm OS Programmer’s Companion (Preliminary)

data, the application only needs to have an open connection with a
port that has been configured properly and then specify a buffer to
send. The larger the buffer to send, the longer the send function
operates before returning to the calling application. The SrmSend
function returns the actual number of bytes that were sent.

The SrmSendCheck function can be used to check and determine if
the FIFO is empty. The SrmSendWait function can be used to wait
for the UART to send the contents of its FIFO. The SrmSendFlush
function can be used to flush remaining bytes in the FIFO that have
not been sent.

Receiving data is a more involved process because it depends on the
receiving application actually listening for data from the port. The
SrmReceiveWait function allows the application to periodically
check the serial port to see if data has been received. In this function,
you specify a number of bytes to wait for and a timeout value (in
ticks). When SrmReceiveWait returns, you can call SrmReceive
to receive the data.

Applications should not loop indefinitely on the
SrmReceiveCheck and SrmReceiveWait functions, waiting for
serial data to arrive on the port, without allowing the Palm OS to
obtain time to execute other tasks running in the same thread (by
calling EvtGetEvent and SysHandleEvent). Virtual devices
often run in the same thread as applications and this can prevent
virtual devices and other serial related code from properly handling
received data.

Receive Buffer Handling

Functions are provided to support directly changing or accessing
the new serial manager’s receive queue. This allows substitution of
a larger receive buffer to replace the 512-byte default buffer and
allows fast access to this buffer to reduce buffer copying. These
functions include SrmSetReceiveBuffer,
SrmReceiveWindowOpen, and SrmReceiveWindowClose.

Receive Data Notification

The SrmSetWakeupHandler and SrmPrimeWakeupHandler
functions are used to install a notification function

Serial Communication
The New Serial Manager

Palm OS Programmer’s Companion (Preliminary) 205

(WakeupHandlerProc) that gets called after some number of bytes
are received by the new serial manager’s interrupt function.

Because wakeup handlers are called during interrupt time, they
cannot call any Palm OS system functions that may block the system
in any way. Wakeup handlers should also be very short so as to
reduce interrupt latency.

Obtaining Information about Serial Hardware

The SrmGetDeviceCount and SrmGetDeviceInfo functions can
be used by applications to obtain information about all serial
devices currently available to the OS. Applications can obtain the
number of available serial hardware devices and then get
information for those devices by iterating through the list using the
SrmGetDeviceInfo call, until an error is returned.

The SrmGetStatus function can be used to get status information
about the current hardware and return line errors. Typically,
SrmGetStatus is called to retrieve the line errors for the port if
some of the send and receive functions return a serErrLineErr
error code. SrmClearErr clears line errors.

Handling Custom Operations

The new serial manager handles custom operations via the
SrmControl function. To extend this functionality to the serial
drivers, an additional set of control functions has been added (see
the SdrvControl and VdrvControl functions). These are unique
to the serial driver and should be called only by the new serial
manager itself. This allows functions that access the hardware
directly to go through the same switching mechanism in the driver
for both public and private control function operation codes.

New Serial Manager Example
The example code in this section shows how to receive (Listing 9.1)
large blocks of data using the new serial manager.

Listing 9.1 Receiving Data Using the New Serial Manager

#include <Pilot.h> // all the system toolbox headers
#include <SerialMgrNew.h>

Serial Communication
The New Serial Manager

206 Palm OS Programmer’s Companion (Preliminary)

#define k2KBytes 2048
/**
*
* FUNCTION: RcvSerialData
*
* DESCRIPTION: An example of how to receive a large chunk of data
* from the Serial Manager. This function is useful if the app
* knows it must receive all this data before moving on. The
* YourDrainEventQueue() function is a chance for the application
* to call EvtGetEvent and handle other application events.
* Receiving data whenever it's available during idle events
* might be done differently than this sample.
*
* PARAMETERS:
* thePort -> valid portID for an open serial port.
* rcvDataP -> pointer to a buffer to put the received data.
* bufSize <-> pointer to the size of rcvBuffer and returns
* the number of bytes read.
*
 ***/
Err RcvSerialData(UInt16 thePort, BytePtr rcvDataP, UInt32
*bufSizeP)
{
UInt32 bytesLeft, maxRcvBlkSize, bytesRcvd, waitTime,
totalRcvBytes = 0;
BytePtr newRcvBuffer;
UInt16 dataLen = sizeof(UInt32);
Err error;

// The default receive buffer is only 512 bytes; increase it if
// necessary. The following lines are just an example of how to
// do it, but its necessity depends on the ability of the code
// to retrieve data in a timely manner.
newRcvBuffer = MemPtrNew(k2KBytes); // Allocate new rcv buffer.
if (newRcvBuffer)
// Set new rcv buffer.
error = SrmSetReceiveBuffer(thePort, newRcvBuffer, k2KBytes);
if (error)
goto Exit;

else

Serial Communication
The New Serial Manager

Palm OS Programmer’s Companion (Preliminary) 207

return memErrNotEnoughSpace;

// Initialize the maximum bytes to receive at one time.
maxRcvBlkSize = k2KBytes;
// Remember how many bytes are left to receive.
bytesLeft = *bufSizeP;
// Only wait 1/5 of a second for bytes to arrive.
waitTime = SysTicksPerSecond() / 5;

// Now loop while getting blocks of data and filling the
buffer.
do {
// Is the max size larger then the number of bytes left?
if (bytesLeft < maxRcvBlkSize)
// Yes, so change the rcv block amount.
maxRcvBlkSize = bytesLeft;

// Try to receive as much data as possible,
// but wait only one second for it.
bytesRcvd = SrmReceive(thePort, rcvDataP, maxRcvBlkSize,

waitTime, &error);
// Remember the total number of bytes received.
totalRcvBytes += bytesRcvd;
// Figure how many bytes are left to receive.
bytesLeft -= bytesRcvd;
rcvDataP += bytesRcvd; // Advance the rcvDataP.
// If there was a timeout and no data came through...
if ((error == serErrTimeOut) && (bytesRcvd == 0))
goto Exit; // ...bail out and report the error.

// If there's some other error, bail out.
if ((error) && (error != serErrTimeOut))
goto Exit;

// Call a function to handle any pending events because
// someone might press the cancel button.
// YourDrainEventQueue();

// Continue receiving data until all data has been received.
} while (bytesLeft);

// Clearing the receive buffer can also be done right before
// the port is to be closed.

Serial Communication
The New Serial Manager

208 Palm OS Programmer’s Companion (Preliminary)

// Set back the default buffer when we're done.
SrmSetReceiveBuffer(thePort, 0L, 0);
MemPtrFree(newRcvBuffer); // Free the space.

Exit:
*bufSizeP = totalRcvBytes;
return error;

}

Writing a Serial or Virtual Device Driver
The new serial manager supports the ability to add other serial
hardware device drivers to the system. It also supports adding
virtual device drivers, which transmit and receive data in blocks,
instead of a byte at a time. The following sections discuss writing
serial and virtual device drivers, which are installed as code
resources on the Palm device.

Serial Driver (sdrv) Code Resources

A serial driver (sdrv) is a code resource (ID = 0) that is
independently compiled and installed on a Palm device. It provides
a hardware abstraction layer (HAL) for the serial hardware (the
UART). Serial driver .prc files are of file type ‘sdrv’ and their creator
type is chosen by the developer (and must be registered with Palm
Computing) to denote the type of hardware (for example, the 68328
UART driver has creator ‘u328’). When the new serial manager is
installed, it searches the database manager for code resources of the
‘sdrv’ file type and then calls the driver’s entry point function to
determine if the hardware that the driver supports is present and, if
so, to get information about the features and capabilities of the
hardware.

NOTE: Creator types with all lowercase letters are reserved by
Palm Computing. For more information about assigning and
registering creator types, see “Assigning a Creator ID” on page
31.

Serial Communication
The New Serial Manager

Palm OS Programmer’s Companion (Preliminary) 209

Serial drivers are responsible for installing and removing their
interrupt handlers. In addition, they must be aware of other
hardware that may share the IRQ line and be sure to pass along the
interrupt to other installed handlers, if required. See the SdrvOpen
function for details.

Serial Driver Functions

There are eight functions that each serial driver must minimally
support in order to work with the new serial manager. These
functions are briefly described in this section. For details on the
exact operations each function must perform, see the function
descriptions in the Palm OS SDK Reference.

The functions a serial driver must implement include:

• DrvEntryPoint must be the first function defined in a
serial driver code resource and must be marked as the
__Startup__ function of the code resource. When the code
resource is loaded, the new serial manager jumps to the
beginning of the code resource and begins execution at
DrvEntryPoint. This function is called at system restart,
when the new serial manager is building a database of
installed drivers and their capabilities, and when a serial port
is opened.

• The SdrvOpen function is responsible for initializing the
serial hardware to send and receive data, and installing an
interrupt handler.

• The SdrvClose function must handle all activities needed to
power-down the UART and remove the interrupt handler.

• SdrvControl extends the SrmControl function to the
level of the hardware.

• SdrvStatus returns a bitfield that describes the current
state of the UART.

• SdrvWriteChar writes a byte to the appropriate UART
register for transmission.

• SdrvReadChar reads a byte (if available) from the receive
FIFO of the UART. It’s best to implement the
SdrvrReadChar function in assembly language.

• The SdrvISP function is called when a hardware interrupt is
generated on the IRQ line associated with the serial

Serial Communication
The New Serial Manager

210 Palm OS Programmer’s Companion (Preliminary)

hardware. It determines if the interrupt is for this particular
serial hardware. If so, it calls the saveDataProc function
(passed to SdrvOpen), which handles reading the data from
the UART by calling the SdrvReadChar function. It’s best to
implement the SdrvISP function in assembly language.

Virtual Driver (vdrv) Code Resources

A Virtual Driver is a code resource (ID=0) that is independently
compiled and installed on a Palm device. Virtual driver .prc files are
of file type ‘vdrv’ and their creator type is chosen by the developer
(and must be registered with Palm Computing). When the new
serial manager is installed, it searches the database manager for
code resources of the ‘vdrv’ type and then calls the driver’s entry
point function to get information about the features and capabilities
of this virtual device. Unlike serial device drivers, virtual device
drivers send and receive data in blocks instead of transferring one
byte at a time. Their purpose is to abstract a level of communication
protocol away from serial devices without forcing applications to
work through a different API than the serial manager that may
already be used for normal RS-232 serial communication.

Virtual Driver Functions

There are six functions that each virtual driver must minimally
support in order to work with the new serial manager. These
functions are briefly described in this section. For details on the
exact operations each function must perform, see the function
descriptions in the Palm OS SDK Reference.

The functions a virtual driver must implement include:

• DrvEntryPoint must be the first function defined in a
virtual driver code resource and must be marked as the
__Startup__ function of the code resource. When the code
resource is loaded, the new serial manager jumps to the
beginning of the code resource and begins execution at
DrvEntryPoint. This function is called at system restart,
when the new serial manager is building a database of
installed drivers and their capabilities, and when a virtual
port is opened.

• The VdrvOpen function is responsible for initializing the
virtual device to begin communication.

Serial Communication
The Connection Manager

Palm OS Programmer’s Companion (Preliminary) 211

• The VdrvClose function must handle all activities needed to
close the virtual device.

• VdrvControl extends the SrmControl function to the
level of the virtual device.

• VdrvStatus returns a bitfield that describes the current
state of the virtual device.

• VdrvWrite writes a block of bytes to the virtual device.

Note that there is no virtual read function in the current
implementation. Virtual devices must save received data by using
the functions provided in the DrvrRcvQType Structure when they
are notified that data is available via some callback mechanism.

The Connection Manager
The connection manager allows other applications to access, add,
and delete connection profiles contained in the Connection
preferences panel. The Connection panel replaces the original
Modem panel on the Palm device. A connection profile includes
information on the hardware port to be used for a particular
connection and the port details (speed, flow control, modem
initialization string, etc.).

Because there are many more connection choices available to users
(serial cable, IR, modem, network, etc.), the connection manager
was developed to manage connection profiles that save preferences
for various connection types.

The connection manager provides functions that list the saved
connection profiles (CncGetProfileList), return details for a
specific profile (CncGetProfileInfo), add a profile
(CncAddProfile), and delete a profile (CncDeleteProfile).

NOTE: The connection manager is not available on all Palm
devices. It is available by flash ROM update on Palm III and
upgraded PalmPilot devices and some later devices. Before
making any connection manager calls, you must ensure that it is
present.

Serial Communication
The Serial Link Protocol

212 Palm OS Programmer’s Companion (Preliminary)

Because not all Palm devices will (or even can) have the connection
manager installed, it’s important that you check for its existence
before making any connection manager calls. You can check by
checking for the existence of the new serial manager, as described in
the section “Checking for the New Serial Manager” on page 199.
These managers work together and so are always installed together.

The Serial Link Protocol
The Serial Link Protocol (SLP) provides an efficient packet send and
receive mechanism that is used by the Palm desktop software and
debugger. SLP provides robust error detection with CRC-16. SLP is
a best-effort protocol; it does not guarantee packet delivery (packet
delivery is left to the higher-level protocols). For enhanced error
detection and implementation convenience of higher-level
protocols, SLP specifies packet type, source, destination, and
transaction ID information as an integral part of its data packet
structure.

SLP Packet Structures
The following sections describe:

• SLP Packet Format

• Packet Type Assignment

• Socket ID Assignment

• Transaction ID Assignment

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer, as shown in Figure 9.3.

Serial Communication
The Serial Link Protocol

Palm OS Programmer’s Companion (Preliminary) 213

Figure 9.3 Structure of a Serial Link Packet

• The packet header contains the packet signature, the
destination socket ID, the source socket ID, packet type,
client data size, transaction ID, and header checksum. The
packet signature is composed of the three bytes 0xBE, 0xEF,
0xED, in that order. The header checksum is an 8-bit
arithmetic checksum of the entire packet header, not
including the checksum field itself.

• The client data is a variable-size block of binary data
specified by the user and is not interpreted by the Serial Link
Protocol.

Serial Communication
The Serial Link Protocol

214 Palm OS Programmer’s Companion (Preliminary)

• The packet footer consists of the CRC-16 value computed
over the packet header and client data.

Packet Type Assignment

Packet type values in the range of 0x00 through 0x7F are reserved
for use by the system software. The following packet type
assignments are currently implemented:

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are “well-known” socket ID values that are
reserved by the components of the system software. The dynamic
socket IDs are assigned at runtime when requested by clients of SLP.
Static socket ID values in the ranges 0x00 through 0x03 and 0xE0
through 0xFF are reserved for use by the system software. The
following static socket IDs are currently implemented or reserved:

Transaction ID Assignment

Transaction ID values are not interpreted by the Serial Link Protocol
and are for the sole benefit of the higher-level protocols. The
following transaction ID values are currently reserved:

0x00 Remote Debugger, Remote Console, and System
Remote Procedure Call packets.

0x02 PADP packets.

0x03 Loop-back test packets.

0x00 Remote Debugger socket.

0x01 Remote Console socket.

0x02 Remote UI socket.

0x03 Desktop Link Server socket.

0x04 -0xCF Reserved for dynamic assignment.

0xD0 - 0xDF Reserved for testing.

Serial Communication
The Serial Link Manager

Palm OS Programmer’s Companion (Preliminary) 215

Transmitting an SLP Packet
This section provides an overview of the steps involved in
transmitting an SLP packet. The next section describes the
implementation.

Transmission of an SLP packet consists of these steps:

1. Fill in the packet header and compute its checksum.

2. Compute the CRC-16 of the packet header and client data.

3. Transmit the packet header, client data, and packet footer.

4. Return an error code to the client.

Receiving an SLP Packet
Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its
checksum.

3. Read in the client data.

4. Read in the packet footer and validate the packet CRC.

5. Dispatch/return an error code and the packet (if successful)
to the client.

The Serial Link Manager
The serial link manager is the Palm OS implementation of the Serial
Link Protocol.

0x00 and 0xFF Reserved for use by the system software.

0x00 Reserved by the Palm OS implementation of SLP
to request automatic transaction ID generation.

0xFF Reserved for the connection manager’s WakeUp
packets.

Serial Communication
The Serial Link Manager

216 Palm OS Programmer’s Companion (Preliminary)

Serial link manager provides the mechanisms for managing
multiple client sockets, sending packets, and receiving packets both
synchronously and asynchronously. It also provides support for the
Remote Debugger and Remote Procedure Calls (RPC).

Using the Serial Link Manager
Before an application can use the services of the serial link manager,
the application must open the manager by calling SlkOpen. Success
is indicated by error codes of 0 (zero) or slkErrAlreadyOpen. The
return value slkErrAlreadyOpen indicates that the serial link
manager has already been opened (most likely by another task).
Other error codes indicate failure.

When you finish using the serial link manager, call SlkClose.
SlkClose may be called only if SlkOpen returned 0 (zero) or
slkErrAlreadyOpen. When the open count reaches zero,
SlkClose frees resources allocated by SlkOpen.

To use the serial link manager socket services, open a Serial Link
socket by calling SlkOpenSocket. Pass a reference number or port
ID (for the new serial manager) of an opened and initialized
communications library (see SlkClose), a pointer to a memory
location for returning the socket ID, and a Boolean indicating
whether the socket is static or dynamic. If a static socket is being
opened, the memory location for the socket ID must contain the
desired socket number. If opening a dynamic socket, the new socket
ID is returned in the passed memory location. Sharing of sockets is
not supported. Success is indicated by an error code of 0 (zero). For
information about static and dynamic socket IDs, see “Socket ID
Assignment” on page 214.

When you have finished using a Serial Link socket, close it by
calling SlkCloseSocket. This releases system resources allocated
for this socket by the serial link manager.

To obtain the communications library reference number for a
particular socket, call SlkSocketRefNum. The socket must already
be open. To obtain the port ID for a socket, if you are using the new
serial manager, call SlkSocketPortID.

To set the interbyte packet receive timeout for a particular socket,
call SlkSocketSetTimeout.

Serial Communication
The Serial Link Manager

Palm OS Programmer’s Companion (Preliminary) 217

To flush the receive stream for a particular socket, call
SlkFlushSocket, passing the socket number and the interbyte
timeout.

To register a socket listener for a particular socket, call
SlkSetSocketListener, passing the socket number of an open
socket and a pointer to the SlkSocketListenType structure.
Because the serial link manager does not make a copy of the
SlkSocketListenType structure but instead saves the pointer
passed to it, the structure may not be an automatic variable (that is,
allocated on the stack). The SlkSocketListenType structure may
be a global variable in an application or a locked chunk allocated
from the dynamic heap. The SlkSocketListenType structure
specifies pointers to the socket listener procedure and the data
buffers for dispatching packets destined for this socket. Pointers to
two buffers must be specified:

• Packet header buffer (size of SlkPktHeaderType).

• Packet body buffer, which must be large enough for the
largest expected client data size.

Both buffers can be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is
received for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The serial link manager does not free the
SlkSocketListenType structure or the buffers when the socket is
closed; freeing them is the responsibility of the application. For this
mechanism to function, some task needs to assume the
responsibility to “drive” the serial link manager receiver by
periodically calling SlkReceivePacket.

To send a packet, call SlkSendPacket, passing a pointer to the
packet header (SlkPktHeaderType) and a pointer to an array of
SlkWriteDataType structures. SlkSendPacket stuffs the
signature, client data size, and the checksum fields of the packet
header. The caller must fill in all other packet header fields. If the
transaction ID field is set to 0 (zero), the serial link manager
automatically generates and stuffs a new non-zero transaction ID.
The array of SlkWriteDataType structures enables the caller to
specify the client data part of the packet as a list of noncontiguous

Serial Communication
The Serial Link Manager

218 Palm OS Programmer’s Companion (Preliminary)

blocks. The end of list is indicated by an array element with the
size field set to 0 (zero). Listing 3.1 incorporates the processes
described in this section.

Listing 9.2 Sending a Serial Link Packet

Err err;
SlkPktHeaderType sendHdr;

//serial link packet header
SlkWriteDataType writeList[2];

//serial link write data segments
Byte body[20];

//packet body(example packet body)

// Initialize packet body
...

// Compose the packet header
sendHdr.dest = slkSocketDLP;
sendHdr.src = slkSocketDLP;
sendHdr.type = slkPktTypeSystem;
sendHdr.transId = 0;

// let Serial Link Manager set the transId
// Specify packet body
writeList[0].size = sizeof(body);

// first data block size
writeList[0].dataP = body;

// first data block pointer
writeList[1].size = 0;

// no more data blocks

// Send the packet
err = SlkSendPacket(&sendHdr, writeList);
...

}

Serial Communication
The Serial Link Manager

Palm OS Programmer’s Companion (Preliminary) 219

Listing 9.3 Generating a New Transaction ID

//
// Example: Generating a new transaction ID given the previous
// transaction ID. Can start with any seed value.
//

Byte NextTransactionID (Byte previousTransactionID)
{
Byte nextTransactionID;

// Generate a new transaction id, avoid the
// reserved values (0x00 and 0xFF)
if (previousTransactionID >= (Byte)0xFE)
nextTransactionID = 1; // wrap around

else
nextTransactionID = previousTransactionID + 1;

// increment

return nextTransactionID;
}

To receive a packet, call SlkReceivePacket. You may request a
packet for the passed socket ID only, or for any open socket that
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a timeout. The timeout
indicates how long the receiver should wait for a packet to begin
arriving before timing out. A timeout value of (-1) means “wait
forever.” If a packet is received for a socket with a registered socket
listener, the packet is dispatched via its socket listener procedure.

Serial Communication
Summary of Serial Communications

220 Palm OS Programmer’s Companion (Preliminary)

Summary of Serial Communications
Serial Manager Functions New Serial Manager Functions

SerClearErr
SerClose
SerControl
SerGetSettings
SerGetStatus
SerOpen
SerReceive
SerReceiveCheck
SerReceiveFlush
SerReceiveWait
SerSend
SerSendFlush
SerSendWait
SerSetReceiveBuffer
SerSetSettings

SrmClearErr
SrmClose
SrmControl
SrmGetDeviceCount
SrmGetDeviceInfo
SrmGetStatus
SrmOpen
SrmOpenBackground
SrmPrimeWakeupHandler
SrmReceive
SrmReceiveCheck
SrmReceiveFlush
SrmReceiveWait
SrmReceiveWindowClose
SrmReceiveWindowOpen
SrmSend
SrmSendCheck
SrmSendFlush
SrmSendWait
SrmSetReceiveBuffer
SrmSetWakeupHandler
WakeupHandlerProc

Serial Driver Functions Virtual Driver Functions

DrvEntryPoint
SdrvClose
SdrvControl
SdrvISP
SdrvOpen
SdrvReadChar
SdrvStatus
SdrvWriteChar

DrvEntryPoint
GetSize
GetSpace
VdrvControl
VdrvOpen
VdrvStatus
VdrvWrite
WriteBlock
WriteByte

Serial Communication
Summary of Serial Communications

Palm OS Programmer’s Companion (Preliminary) 221

Connection Manager Functions Serial Link Manager Functions

CncAddProfile
CncDeleteProfile
CncGetProfileInfo
CncGetProfileList

SlkClose
SlkCloseSocket
SlkFlushSocket
SlkOpen
SlkOpenSocket
SlkReceivePacket
SlkSendPacket
SlkSetSocketListener
SlkSocketPortID
SlkSocketRefNum
SlkSocketSetTimeout

Serial Communication
Summary of Serial Communications

222 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 223

10
Beaming (Infrared
Communication)
The Palm OS provides two levels of support for beaming, or
infrared communication (IR):

• The Exchange Manager provides a high-level interface that
handles all of the communication details transparently.

• The IR Library provides a low-level, direct interface to the IR
communications capabilities of the Palm OS. It is designed
for applications that want more direct access to the IR
capabilities than the exchange manager provides.

This chapter discusses these two facilities for IR communication.

Exchange Manager
The Palm OS exchange manager provides a simple interface for
Palm OS applications to send and receive typed data from any
number of remote devices and protocols. The device at the remote
end of a connection does not need to know it is talking to a Palm OS
device. The exchange manager can be used with industry standard
protocols and data formats. The burden of understanding the
protocols and data formats is on the Palm OS application using the
exchange manager.

The exchange manager was developed to provide a facility by
which Palm OS applications could communicate directly with
external devices and foreign data formats, without having to be tied
to the HotSync mechanism and conduits. In the increasingly
complex world of the Internet, wireless communications, and
infrared communications, it cannot be expected that all these modes
of communication must support HotSync and provide the
appropriate conduits on the other end. The Palm OS device must be
able to deal directly with foreign data formats since there will not be
conduits on the remote end to prepare the data. The data may also

Beaming (Infrared Communication)
Exchange Manager

224 Palm OS Programmer’s Companion (Preliminary)

be sent without regard to the version or even the existence of
particular software on the device.

Overview
The exchange manager is designed as a generic communications
facility by which typed data objects can be sent and received. It is
designed to support a variety of underlying transport mechanisms.
Currently, the exchange manager supports only the IR (beaming)
capability of the Palm III and later devices (and upgraded PalmPilot
devices).

NOTE: When used for IR communication, the exchange
manager uses the OBEX IrDA protocol. The only level of OBEX
supported currently is for the Put operation. The Palm III can act
as both a client and a server.

The exchange manager API provides a mechanism for exchanging
typed data objects between applications. An object is a stream of
bytes with some information about its contents attached. The
content information includes a creator ID, a MIME data type and an
optional filename. An application that wants to send data using the
exchange manager must provide at least one of these pieces of
information. An application that is able to receive an object registers
itself with the exchange manager (ExgRegisterData) and
specifies what data types and file extensions it can accept.

A key data structure used by the exchange manager is the
ExgSocketType data type. This exchange socket structure defines
information about the connection and the type of data to be
exchanged. When you are sending data, you must supply this
structure with the appropriate information filled in. When you are
receiving, this structure gives you information about the connection
and the incoming data. (Note that the use of the term “socket” in the
exchange manager API is not related to the term “socket” as used in
sockets communication programming.)

Beaming (Infrared Communication)
Exchange Manager

Palm OS Programmer’s Companion (Preliminary) 225

Exchange Manager and Launch Codes
When receiving incoming data, the exchange manager
communicates with applications via launch codes. The exchange
manager sends an application a series of three launch codes when it
receives data for it. These are:

• sysAppLaunchCmdExgAskUser

• sysAppLaunchCmdExgReceiveData

• sysAppLaunchCmdGoto

The exchange manager sends the first launch code,
sysAppLaunchCmdExgAskUser, when it has determined that
incoming data is destined for a particular application (based on
which application has registered to receive data of that type). This
launch code lets the application tell the exchange manager whether
or not to display a dialog asking the user if they want to accept the
data. If the application chooses not to handle this launch command,
the default course of action is that the exchange manager displays a
dialog asking the user if they want to accept the incoming data. In
most cases, applications won’t need to handle this launch code,
since the default action is the preferred alternative.

The application can respond to this launch code by setting the
result field in the parameter block to the appropriate value. If it
wants to allow the exchange manager to display a dialog, it should
leave the result field set to exgAskDialog (the default value). To
disable display of the dialog and to automatically accept the
incoming data (as if the user had pressed OK in the dialog), set the
result field to exgAskOk. To disable display of the dialog and to
automatically reject the incoming data (as if the user had pressed
Cancel in the dialog), set the result field to exgAskCancel. In the
later case, the data is discarded and no further action is taken by the
exchange manager.

If the application sets the result field to exgAskOk, or the dialog is
displayed and the user presses the OK button, then the exchange
manager sends the application the next launch code,
sysAppLaunchCmdExgReceiveData, so that it can actually
receive the data. This launch code notifies the application that it
should receive the data.

Beaming (Infrared Communication)
IR Library

226 Palm OS Programmer’s Companion (Preliminary)

The application should use the exchange manager functions
ExgAccept, ExgReceive, and ExgDisconnect to receive the
data and store it or do whatever it needs to with the data.

The parameter block sent with this launch code is of the
ExgSocketPtr data type. It is a pointer to the ExgSocketType
structure corresponding to the exchange manager connection via
which the data is arriving. You will need to pass this pointer to the
ExgAccept function to begin receiving the data. Note that in the
socket structure, the length field may not be accurate, so in your
receive loop you should be flexible in handling more or less data
than length specifies.

After you have finished receiving the data and before you return
from the PilotMain routine, you must set up the goToCreator
and goToParams fields in the socket structure. Set in the
goToCreator field the creator ID of the application that should be
launched to view the received data (normally the same application
that received the data). If no application should be launched, then
set this to NULL. Set in the goToParams structure information that
identifies the record to go to when the application is launched. It is
recommended that you use a unique ID to identify the record,
rather than the record index, since indexes might change. You can
put unique ID information into the goToParams.matchCustom
field.

Note that the application may not be the active application, and
thus may not have globals available when it is launched with this
launch code. Be sure to check if you have globals available and don’t
try to access them if they are not available.

Assuming that everything has proceeded normally, the exchange
manager again launches the application identified in the
goToCreator field of the socket structure with the
sysAppLaunchCmdGoto launch code. This allows the user to view
the received item.

IR Library
The IR (InfraRed) library is a shared library that provides a direct
interface to the IR communications capabilities of the Palm OS. It is

Beaming (Infrared Communication)
IR Library

Palm OS Programmer’s Companion (Preliminary) 227

designed for applications that want more direct access to the IR
capabilities than the exchange manager provides.

The IR support provided by the Palm OS is compliant with the IrDA
specifications. IrDA (Infrared Data Association), is an industry body
consisting of representatives from a number of companies involved
in IR development. For a good introduction to the IrDA standards,
see the IrDA web site at:

http://www.IrDA.org.

IrDA Stack
The IrDA stack comprises a number of protocol layers, of which
some are required and some are optional. The complete stack looks
something like Figure 10.1.

Figure 10.1 IrDA Protocol Stack

The SIR/FIR layer is purely hardware. The SIR (Serial IR) layer
supports speeds up to 115k bps while the FIR (Fast IR) layer
supports speeds up to 4M bps. IrLAP is the IR Link Access Protocol
that provides a data pipe between IrDA devices. IrLMP, the IR Link
Management Protocol, manages multiple sessions using the IrLAP.
Tiny TP is a lightweight transfer protocol on which some higher-
level IrDA layers are built.

One or more of SIR/FIR must be implemented, and Tiny TP, IrLMP
and IrLAP must also be implemented. IrComm provides serial and

Beaming (Infrared Communication)
IR Library

228 Palm OS Programmer’s Companion (Preliminary)

parallel port emulation over an IR link and is optional (it is not
currently supported in the Palm OS). IrLAN provides an access
point to Local Area Network protocol adapters. It too is optional
(and is not supported in the Palm OS).

OBEX is an object exchange protocol that can be used (for instance)
to transfer business cards, calendar entries or other objects between
devices. It too is optional and is supported in the Palm OS. The
capabilities of OBEX are made available through the exchange
manager; there is no direct API for it.

The Palm OS implements all the required protocol layers (SIR,
IrLAP, IrLMP, and Tiny TP), as well as the OBEX layer, to support
the Exchange Manager. Palm III devices provide SIR (Serial IR)
hardware supporting the following speeds: 2400, 9600, 19200, 38400,
57600, and 115200 bps. The software (IrOpen) currently limits
bandwidth to 57600 bps by default, but you can specify a connection
speed of up to 115200 bps if desired.

The stack is capable of connection-based or connectionless sessions.

IrLMP Information Access Service (IAS) is a component of the
IrLMP protocol that you will see mentioned in the interface. IAS
provides a database service through which devices can register
information about themselves and retrieve information about other
devices and the services they offer.

Accessing the IR Library
Before you can use the IR library, you must obtain a reference
number for it by calling the function SysLibFind, as in this
example:

err = SysLibFind(irLibName, &refNum);

This function returns the library reference number in the refNum
parameter. This parameter is passed to most of the other functions
in the IR library.

Beaming (Infrared Communication)
Summary of Beaming

Palm OS Programmer’s Companion (Preliminary) 229

Summary of Beaming
Exchange Manager Functions

ExgAccept ExgPut

ExgDBRead ExgReceive

ExgDBWrite ExgRegisterData

ExgDisconnect ExgSend

IR Library Functions

IrAdvanceCredit IrIsNoProgress

IrBind IrIsRemoteBusy

IrClose IrLocalBusy

IrConnectIrLap IrMaxRxSize

IrConnectReq IrMaxTxSize

IrConnectRsp IrOpen

IrDataReq IrSetConTypeLMP

IrDisconnectIrLap IrSetConTypeTTP

IrDiscoverReq IrSetDeviceInfo

IrIsIrLapConnected IrTestReq

IrIsMediaBusy IrUnbind

Beaming (Infrared Communication)
Summary of Beaming

230 Palm OS Programmer’s Companion (Preliminary)

IR Library IAS Database Functions

IrIAS_Add IrIAS_GetUserString

IrIAS_GetInteger IrIAS_GetUserStringCharSet

IrIAS_GetIntLsap IrIAS_GetUserStringLen

IrIAS_GetObjectID IrIAS_Next

IrIAS_GetOctetString IrIAS_Query

IrIAS_GetOctetStringLen IrIAS_SetDeviceName

IrIAS_GetType IrIAS_StartResult

Palm OS Programmer’s Companion (Preliminary) 231

11
Network
Communication

Net Library
The net library allows Palm OS applications to easily establish a
connection with any other machine on the Internet and transfer data
to and from that machine using the standard TCP/IP protocols.

The basic network services provided by the net library include:

• Stream-based, guaranteed delivery of data using TCP
(Transmission Control Protocol).

• Datagram-based, best-effort delivery of data using UDP
(User Datagram Protocol).

You can implement higher-level Internet-based services (file
transfer, e-mail, web browsing, etc.) on top of these basic delivery
services.

IMPORTANT: Applications cannot directly use the net library to
make wireless connections. Use the INetLib for wireless
connections.

This section describes how to use the net library in your application.
It covers:

• About the Net Library

• Net Library Usage Steps

• Obtaining the Net Library’s Reference Number

• Setting Up Berkeley Socket API

• Setup and Configuration Calls

Network Communication
Net Library

232 Palm OS Programmer’s Companion (Preliminary)

• Opening the Net Library

• Closing the Net Library

• Version Checking

• Network I/O and Utility Calls

• Berkeley Sockets API Functions

About the Net Library
The net library consists of two parts: a netlib interface and a net
protocol stack.

The netlib interface is the set of routines that an application calls
directly when it makes a net library call. These routines execute in
the caller’s task like subroutines of the application. They are not
linked in with the application, however, but are called through the
library dispatch mechanism.

With the exception of functions that open, close, and set up the net
library, the net library’s API maps almost directly to the Berkeley
UNIX sockets API, the de facto standard API for Internet
applications. You can compile an application written to use the
Berkeley sockets API for the Palm OS with only slight changes to the
source code.

The net protocol stack runs as a separate task in the operating
system. Inside this task, the TCP/IP protocol stack runs, and
received packets are processed from the network device drivers.
The netlib interface communicates with the net protocol stack
through an operating system mailbox queue. It posts requests from
applications into the queue and blocks until the net protocol stack
processes the requests.

Having the net protocol stack run as a separate task has two big
advantages:

• The operating system can switch in the net protocol stack to
process incoming packets from the network even if the
application is currently busy.

• Even if an application is blocked waiting for some data to
arrive off the network, the net protocol stack can continue to
process requests for other applications.

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 233

One or more network interfaces run inside the net protocol stack
task. A network interface is a separately linked database containing
code necessary to abstract link-level protocols. For example, there
are separate network interface databases for PPP and SLIP. A
network interface is generally specified by the user in the Network
preference panel. In rare circumstances, interfaces can also be
attached and detached from the net library at runtime as described
in the section “Settings for Interface Selection” later in this chapter.

Constraints

Because it’s unclear whether all future platforms will need or want
network support (especially devices with very limited amounts of
memory), network support is an optional part of the operating
system. For this reason, the net library is implemented as a system
library that is installed at runtime and doesn’t have to be present for
the system to work properly.

When the net library is present and running, it requires an estimated
additional 32 KB of RAM. This in effect doubles the overall system
RAM requirements, currently 32 KB without the net library. It’s
therefore not practical to run the net library on any platform that has
128 KB or less of total RAM available since the system itself will
consume 64 KB of RAM (leaving only 64 KB for user storage in a 128
KB system).

Because of the RAM requirements, the net library is supported only
on PalmPilot Professional and newer devices running Palm OS 2.0
and later.

All applications written for Palm OS must pay special attention to
memory and CPU usage because Palm OS runs on small devices
with limited amounts of memory and other hardware resources.
Applications that use the net library, therefore, must pay even more
attention to memory usage. After opening the net library, the total
remaining amount of RAM available to an application is
approximately 12 KB on a PalmPilot Professional and 36KB on a
Palm III.

The Programmer’s Interface

There are essentially two sets of API into the net library: the net
library’s native API, and the Berkeley sockets API. The two APIs

Network Communication
Net Library

234 Palm OS Programmer’s Companion (Preliminary)

map almost directly to each other. You can use the Berkeley sockets
API with no performance penalty and little or no modifications to
any existing code that you have.

The header file <unix/sys_socket.h> contains a set of macros
that map Berkeley sockets calls directly to net library calls. The main
difference between the net library API and the Berkeley sockets API
is that most net library API calls accept additional parameters for:

• A reference number. All library calls in the Palm OS must
have the library reference number as the first parameter.

• A timeout. In consumer systems such as the Palm OS device,
infinite timeouts don’t work well because the end user can’t
“kill” a process that’s stuck. The timeout allows the
application to gracefully recover from hung connections. The
default timeout is 2 seconds.

• An error code. The sockets API by convention returns error
codes in the application’s global variable errno. The net
library API doesn’t rely on any application global variables.
This allows system code (which cannot have global
variables) to use the net library API.

The macros in sys_socket.h do the following:

For example, consider the Berkeley sockets call socket, which is
declared as:

int socket(int domain, int type, int protocol);

The equivalent net library call is NetLibSocketOpen, which is
declared as:

NetSocketRef NetLibSocketOpen(Word libRefnum,
NetSocketAddrEnum domain,

For... The macros pass...

reference
number

AppNetRefnum (application global variable).

timeout AppNetTimeout (application global variable).

error code Address of the application global errno.

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 235

NetSocketTypeEnum type, SWord protocol,
SDWord timeout, Err* errP)

The macro for socket is:

#define socket(domain,type,protocol) \
NetLibSocketOpen(AppNetRefnum, domain, type,
protocol, AppNetTimeout, &errno)

Net Library Usage Steps
In general, using the net library involves the steps listed below. The
next several sections describe some of the steps in more detail.

For an example of using the net library, see the example application
NetSample in the Palm OS Examples directory. It exercises many
of the net library calls.

1. Obtain the net library’s reference number.

Because the net library is a system library, all net library calls take
the library’s reference number as the first parameter. For this
reason, your first step is to obtain the reference number and save it.
See “Obtaining the Net Library’s Reference Number.”

2. Set up for using Berkeley sockets API.

You can either use the net library’s native API or the Berkeley
sockets API for the majority of what you do with the net library. If
you’re already familiar with Berkeley sockets API, you’ll probably
want to use it instead of the native API. If so, follow the steps in
“Setting Up Berkeley Socket API.”

3. If necessary, configure the net library the way you want it.

Typically, users set up their networking services by using the
Network preferences panel. Most applications don’t set up the
networking services themselves; they simply access them through
the net library preferences database. In rare instances, your
application might need to perform some network configuration,
and it usually should do so before the net library is open. See “Setup
and Configuration Calls.”

4. Open the net library right before the first network access.

Because of the limited resources in the Palm OS environment, the
net library was designed so that it only takes up extra memory from

Network Communication
Net Library

236 Palm OS Programmer’s Companion (Preliminary)

the system when an application actually needs to use its services.
An Internet application must therefore inform the system when it
needs to use the net library by opening the net library when it starts
up and by closing it when it exits. See “Opening the Net Library.”

5. Make calls to access the network.

Once the net library has been opened, sockets can be opened and
data sent to and received from remote hosts using either the
Berkeley sockets API or the native net library API. See “Network
I/O and Utility Calls.”

6. Close the net library when you’re finished with it.

Closing the net library frees up the resources. See “Closing the Net
Library.”

Obtaining the Net Library’s Reference Number
To determine the reference number, call SysLibFind, passing the
name of the net library, "Net.lib". In addition, if you intend to use
Berkeley sockets API, save the reference number in the application
global variable AppNetRefnum.

err = SysLibFind("Net.lib", &AppNetRefnum);
if (err) {/* error handling here */}

Remember that the net library requires Palm OS version 2.0 or later.
If the SysLibFind call can’t find the net library, it returns an error
code.

Setting Up Berkeley Socket API
To set up the use of Berkeley sockets API, do the following:

• Include the header file <unix/sys_socket.h>, provided
with the Palm OS SDK.

• Link your project with the module NetSocket.c, which
declares and initializes three required global variables:
AppNetTimeout, AppNetRefnum, and errno.
NetLibSocket.c also contains the glue code necessary for
a few of the Berkeley sockets functions.

• As described in the previous section, assign the net library’s
reference number to the variable AppNetRefnum.

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 237

• Adjust AppNetTimeout’s value if necessary.

This value represents the maximum number of system ticks
to wait before a net library call expires. Most applications
should adjust this timeout value and possibly adjust it for
different sections of code. The following example sets the
timeout value to 10 seconds.

AppNetTimeout = SysTicksPerSecond() * 10;

Setup and Configuration Calls
The setup and configuration API calls of the net library are normally
only used by the Network preferences panel. This includes calls to
set IP addresses, host name, domain name, login script, interface
settings, and so on. Each setup and configuration call saves its
settings in the net library preferences database in nonvolatile
storage for later retrieval by the runtime calls.

In rare instances, an application might need to perform setup and
configuration itself. For example, some applications might allow
users to select a particular “service” before trying to establish a
connection. Such applications present a pick list of service names
and allow the user to select a service name. This functionality is
provided via the Network preferences panel. The panel provides
launch codes (defined in SystemMgr.h) that allow an application
to present a list of possible service names to let the end user pick
one. The preferences panel then makes the necessary net library
setup and configuration calls to set up for that particular service.

Usually, the setup and configuration calls are made while the library
is closed. A subset of the calls can also be issued while the library is
open and will have real-time effects on the behavior of the library.
Chapter 48, “Net Library” in Palm OS SDK Reference, describes the
behavior of each call in more detail.

Settings for Interface Selection

As you learned in the section “About the Net Library,” the net
library uses one or more network interfaces to abstract low-level
networking protocols. The user specifies which network interface to
use in the Network preference panel.

Network Communication
Net Library

238 Palm OS Programmer’s Companion (Preliminary)

You can also use net library calls to specify which interface(s)
should be used:

• NetLibIFAttach attaches an interface to the library so that
it will be used when and if the library is open.

• NetLibIFDetach detaches an interfaces from the library.

• NetLibIFGet returns an interface’s creator and instance
number.

Unlike most net library functions, these functions can be called
while the library is open or closed. If the library is open, the specific
interface is attached or detached in real time. If the library is closed,
the information is saved in preferences and used the next time the
library is opened.

Each interface is identified by a creator and an instance number. You
need these values if you want to attach or detach an interface or to
query or set interface settings. You use NetLibIFGet to obtain this
information. NetLibIFGet takes four parameters: the net library’s
reference number, an index into the library’s interface list, and
addresses of two variables where the creator and instance number
are returned.

The creator is one of the following values:

• netIFCreatorLoop (Loopback network)

• netIFCreatorSLIP (SLIP network)

• netIFCreatorPPP (PPP network)

If you know which interface you want to obtain information about,
you can iterate through the network interface list, calling
NetLibIFGet with successive index values until the interface with
the creator value you need is returned.

Interface Specific Settings

The net library configuration is structured so that network interface-
specific settings can be specified for each network interface
independently. These interface specific settings are called IF settings
and are set and retrieved through the NetLibIFSettingGet and
NetLibIFSettingSet calls.

• The NetLibIFSettingGet call takes a setting ID as a parameter
along with a buffer pointer and buffer size for the return

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 239

value of the setting. Some settings, like login script, are of
variable size so the caller must be prepared to allocate a
buffer large enough to retrieve the entire setting.
(NetLibIFSettingGet returns the required size if you
pass NULL for the buffer. See the NetLibIFSettingGet
description in the reference documentation for more
information.)

• The NetLibIFSettingSet call also takes a setting ID as a
parameter along with a pointer to the new setting value and
the size of the new setting.

If you’re using NetLibIFSettingSet to set the login
script, see the next section.

For an example of using these functions, see the NetSample
example application in the Palm OS Examples directory. The
function CmdSettings in the file CmdInfo.c, for example, shows
how to loop through and obtain information about all of the
network interfaces.

Setting an Interface’s Login Script

The netIFSettingLoginScript setting is used to store the login
script for an interface. The login script is generated from the script
that the user enters in the Network preferences panel. The format of
the script is rigid; if a syntactically incorrect login script is presented
to the net library, the results will be unpredictable. The basic format
is a series of null-terminated command lines followed by a null byte
at the end of the script. Each command line has the format:

<command-byte> [<parameter>]

where the command byte is the first character in the line and there is
1 and only 1 space between the command byte and the parameter
string. Table 11.1 lists the possible commands.

Table 11.1 Login Script Commands

 Function Command Parameter Example

send s string s go PPP

wait w string w password:

Network Communication
Net Library

240 Palm OS Programmer’s Companion (Preliminary)

The parameter string to the send (s) command can contain the
escape sequences shown in Table 11.2.

Table 11.2 Send Command Escape Sequences

General Settings

In addition to the interface-specific settings, there’s a class of
settings that don’t apply to any one particular interface. These
general settings are set and retrieved through the
NetLibSettingGet and NetLibSettingSet calls. These calls
take setting ID, buffer pointer, and buffer size parameters.

delay d seconds d 1

getIPAddr g g

ask a string a Enter Name:

 Function Command Parameter Example

$USERID substitutes user name

$PASSWORD substitutes password

$DBUSERID substitutes dialback user name

$DBPASSWORD substitutes dialback password

 ^c if c is ‘@’ -> ‘_’, then byte value 0 -> 31
else if c is ‘a’ -> ‘z’, then byte value 1 -> 26
else c

<cr> carriage return (0x0D)

<lf> line feed (0x0A)

\" "

 \^ ^

 \< <

 \\ \

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 241

Opening the Net Library
Call NetLibOpen to open the net library, passing the reference
number you retrieved through SysLibFind. Before the net library
is opened, most calls issued to it fail with a netErrNotOpen error
code.

err = NetLibOpen(AppNetRefnum, &ifErrs);
if (err || ifErrs) {/* error handling here */}

Multiple applications can have the library open at a time, so the net
library may already be open when NetLibOpen is called. If so, the
function increments the library’s open count, which keeps track of
how many applications are accessing it, and returns immediately.
(You can retrieve the open count with the function
NetLibOpenCount.)

If the net library is not already open, NetLibOpen starts up the net
protocol stack task, allocates memory for internal use by the net
library, and brings up the network connection. Most likely, the user
has configured the Palm OS device to establish a SLIP or PPP
connection through a modem and in this type of setup,
NetLibOpen dials up the modem and establishes the connection
before returning.

If any of the attached network interfaces (such as SLIP or PPP) fail to
come up, the final parameter (ifErrs in the example above)
contains the error number of the first interface that encountered a
problem.

It’s possible, and quite likely, that the net library will be able to open
even though one or more interfaces failed to come up (due to bad
modem settings, service down, etc.). Some applications may
therefore wish to close the net library using NetLibClose if the
interface error parameter is non-zero and display an appropriate
message for the user. If an application needs more detailed
information, e.g. which interface(s) in particular failed to come up, it
can loop through each of the attached interfaces and ask each one if
it is up or not. For example:

Word index, ifInstance;
DWord ifCreator;
Err err;
Byte up;

Network Communication
Net Library

242 Palm OS Programmer’s Companion (Preliminary)

Char ifName[32];
...
for (index = 0; 1; index++) {
err = NetLibIFGet(AppNetRefnum, index,
&ifCreator, &ifInstance);

if (err) break;

settingSize = sizeof(up);
err = NetLibIFSettingGet(AppNetRefnum,
ifCreator, ifInstance, netIFSettingUp, &up,
&settingSize);

if (err || up) continue;
settingSize = 32;
err = NetLibIFSettingGet(AppNetRefnum,
ifCreator, ifInstance, netIFSettingName,
ifName, &settingSize);

if (err) continue;

//display interface didn’t come up message
}
NetLibClose(AppNetRefnum, true);

Closing the Net Library
Before an application quits, or if it no longer needs to do network
I/O, it should call NetLibClose.

err = NetLibClose(AppNetRefnum, false);

NetLibClose simply decrements the open count. The false
parameter specifies that if the open count has reached 0, the net
library should not immediately close. Instead, NetLibClose
schedules a timer to shut down the net library unless another
NetLibOpen is issued before the timer expires. When the net
library’s open count is 0 but its timer hasn’t yet expired, it’s referred
to as being in the close-wait state.

Just how long the net library waits before closing is set by the user
in the Network preferences panel. This timeout value allows users
to quit from one network application and launch another
application within a certain time period without having to wait for
another network connection establishment.

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 243

If NetLibOpen is called before the close timer expires, it simply
cancels the timer and marks the library as fully open with an open
count of 1 before returning. If the timer expires before another
NetLibOpen is issued, all existing network connections are brought
down, the net protocol stack task is terminated, and all memory
allocated for internal use by the net library is freed.

It’s recommended that you allow the net library to enter the close-
wait state. However, if you do need the net library to close
immediately, you can do one of two things:

• Set NetLibClose’s second parameter to true. This
parameter specifies whether the library should close
immediately or not.

• Call NetLibFinishCloseWait. This function checks the
net library to see if it’s in the close-wait state and if so,
performs an immediate close.

Version Checking
Besides using SysLibFind to determine if the net library is
installed, an application can also look for the net library version
feature. This feature is only present if the net library is installed.
This feature can be used to get the version number of the net library
as follows:

DWord version;
err = FtrGet(netFtrCreator, netFtrNumVersion,

&version);

If the net library is not installed, FtrGet returns a non-zero result
code.

The version number is encoded in the format 0xMMmfsbbb, where:

MM major version

m minor version

 f bug fix level

 s stage: 3-release, 2-beta, 1-alpha, 0-development

bbb build number for non-releases

Network Communication
Net Library

244 Palm OS Programmer’s Companion (Preliminary)

For example:

V1.1.2b3 would be encoded as 0x01122003

V2.0a2 would be encoded as 0x02001002

V1.0.1 would be encoded as 0x01013000

This document describes version 2.01 of the net library
(0x02013000).

Network I/O and Utility Calls
For the network I/O and utility calls, you can either make calls
using Berkeley sockets API or using the net library’s native API.

Several books have been published that describe how to use
Berkeley sockets API to perform network communication. Net
library API closely mirrors Berkeley sockets API in this regard.
However, you should keep in mind these important differences
between using networking I/O on a typical computer and using net
library on a Palm OS device:

• You can open a maximum of four open sockets at once in the
net library. This is to keep net library’s memory requirements
to a minimum.

• When you try to send a large block of data, the net library
automatically buffers only a portion of that block because of
the limited available dynamic memory. The function call
returns the number of bytes of data that it actually
transmitted. You must check the return value and if there’s
more data to send, call the function again until the
transmission is finished.

• If you expect to also receive data during a large transmission,
you should send a smaller block, then read back whatever is
available to read before sending the next block. In this way,
the amount of memory in the dynamic heap that must be
used to buffer data waiting to send out and data waiting to
be read back in by the application is kept to a minimum.

For more information, see the following:

• The next section, “Berkeley Sockets API Functions,” provides
tables that list the supported Berkeley sockets calls, the

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 245

corresponding native net library call, and gives a brief
description of what each call does.

• Chapter 48, “Net Library” of the Palm OS SDK Reference
provides detailed descriptions of each net library call. Where
applicable, it gives the equivalent sockets API call for each
net library native call.

• The NetSample example application in the Palm OS
Examples directory shows how to use the Berkeley sockets
API in Palm OS applications.

Berkeley Sockets API Functions
This section provides tables that list the functions in the Berkeley
sockets API that are supported by the net library. In some cases, the
calls have limited functionality from what’s found in a full
implementation of the sockets API and these limitations are
described here.

Socket Functions

Berkeley
Sockets
Function

Net Library Function Description

accept NetLibSocketAccept Accepts a connection from a stream-
based socket.

bind NetLibSocketBind Binds a socket to a local address.

close NetLibSocketClose Closes a socket.

connect NetLibSocketConnect Connects a socket to a remote
endpoint to establish a connection.

Network Communication
Net Library

246 Palm OS Programmer’s Companion (Preliminary)

fcntl NetLibSocketOptionSet
NetLibSocketOptionGet
(...,netSocketOptSock
NonBlocking,...)

Supported only for socket refnums
and the only commands it supports
are F_SETFL and F_GETFL. The
commands can be used to put a
socket into non-blocking mode by
setting the FNDELAY flag in the
argument parameter appropriately
— all other flags are ignored. The
F_SETFL, F_GETFL, and FNDELAY
constants are defined in
<unix/unix_fcntl.h>.

getpeername NetLibSocketAddr Gets the remote socket address for a
connection.

getsockname NetLibSocketAddr Gets the local socket address of a
connection.

getsockopt NetLibSocketOptionGet Gets a socket’s control options. Only
the following options are
implemented:

• TCP_NODELAY

Allows the application to
disable the TCP output
buffering algorithm so that
TCP sends small packets as
soon as possible. This
constant is defined in
<unix/netinet_tcp.h>.

• TCP_MAXSEG

Get the TCP maximum
segment size. This constant is
defined in
<unix/netinet_tcp.h>.

Berkeley
Sockets
Function

Net Library Function Description

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 247

• SO_KEEPALIVE

Enables periodic transmission
of probe segments when there
is no data exchanged on a
connection. If the remote
endpoint doesn’t respond, the
connection is considered
broken, and so_error is set
to ETIMEOUT.

• SO_LINGER

Specifies what to do with the
unsent data when a socket is
closed. It uses the linger
structure defined in
<unix/sys_socket.h>.

• SO_ERROR

Returns the current value of
the variable so_error,
defined in
<unix/sys_socketvar.h>

• SO_TYPE

Returns the socket type to the
caller.

listen NetLibSocketListen Sets up the socket to listen for
incoming connection requests. The
queue size is quietly limited to 1.
(Higher values are ignored.)

read, recv,
recvmsg,
recvfrom

NetLibReceive
NetLibReceivePB

Read data from a socket. The recv,
recvmsg, and recvfrom calls
support the MSG_PEEK flag but not
the MSG_OOB or MSG_DONTROUTE
flags.

Berkeley
Sockets
Function

Net Library Function Description

Network Communication
Net Library

248 Palm OS Programmer’s Companion (Preliminary)

select NetLibSelect Allows the application to block on
multiple I/O events. The system will
wake up the application process
when any of the multiple I/O events
occurs.

This function uses the timeval
structure defined in
<unix/sys_time.h> and the
fd_set structure defined in
sys/types.h.

Also associated with this function
are the following four macros
defined in <unix/sys_types.h>:

• FD_ZERO

• FD_SET

• FD_CLR

• FD_ISSET

Besides socket descriptors, this
function also works with the “stdin”
descriptor, sysFileDescStdIn.
This descriptor is marked as ready
for input whenever a user or system
event is available in the event queue.
This includes any event that would
be returned by EvtGetEvent. No
other descriptors besides
sysFileDescStdIn and socket
refnums are allowed.

Berkeley
Sockets
Function

Net Library Function Description

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 249

send,
sendmsg,
sendto

NetLibSend
NetLibSendPB

These functions write data to a
socket. These calls, unlike the recv
calls, do support the MSG_OOB flag.
The MSG_PEEK flag is not applicable
and the MSG_DONTROUTE flag is not
supported.

setsockopt NetLibSocketOptionSet This function sets control options of
a socket. Only the following options
are allowed:

• TCP_NODELAY

• SO_KEEPALIVE

• SO_LINGER

shutdown NetLibSocketShutdown Similar to close(); however, it
gives the caller more control over a
full-duplex connection.

socket NetLibSocketOpen Creates a socket for
communication.The only valid
address family is AF_INET. The only
valid socket types are
SOCK_STREAM, SOCK_DGRAM, and
in Palm OS version 3.0 and higher,
SOCK_RAW. The protocol parameter
should be set to 0.

write NetLibSend Writes data to a socket.

Berkeley
Sockets
Function

Net Library Function Description

Network Communication
Net Library

250 Palm OS Programmer’s Companion (Preliminary)

Supported Network Utility Functions

Berkeley
Sockets
Function

Net Library Function Description

getdomainname NetLibSocketOptionGet
(..,netSettingDomainN
ame,...)

Returns the domain name of the
local host

gethostbyaddr NetLibGetHostByAddr Looks up host information given
the host’s IP address. It returns a
hostent structure, as defined in
<netdb.h>.

gethostbyname NetLibGetHostByName Looks up host information given
the host’s name. It returns a
hostent structure which is
defined in <netdb.h>.

gethostname NetLibSettingGet(..,
netSettingHostName,
...)

Returns the name of the local host.

getservbyname NetLibGetServByName Returns a servent structure,
defined in <netdb.h> given a
service name.

gettimeofday glue code using
TimGetSeconds

Returns the current date and time.

setdomainname NetLibSettingSet(..,
netSettingDomainName,
...)

Sets the domain name of the local
host.

sethostname NetLibSettingSet(..,
netSettingHostName,
...)

Sets the name of the local host.

settimeofday glue code using
TimSetSeconds

Sets the current date and time.

Network Communication
Net Library

Palm OS Programmer’s Companion (Preliminary) 251

Supported Byte Ordering Macros

The byte ordering macros are defined in <unix/netinet_in.h>.
They convert and integer between network byte order and the host
byte order.

Supported Network Address Conversion Functions

The network address conversion functions are declared in the
<unix/arpa_inet.h> header file. They convert a network
address from one format to another, or manipulate parts of a
network address.

Berkeley
Sockets
Macro

Description

htonl Converts a 32-bit integer from host byte order to network byte order.

htons Converts a 16-bit integer from host byte order to network byte order.

ntohl Converts a 32-bit integer from network byte order to host byte order.

ntohs Converts a 16-bit integer from network byte order to host byte order.

Berkeley
Sockets
Function

Net Library
Function

Description

inet_addr NetLibAddrAToIN Converts an IP address from dotted
decimal format to 32-bit binary format.

inet_network glue code Converts an IP network number from a
dotted decimal format to a 32-bit binary
format.

inet_makeaddr glue code Returns an IP address in an in_addr
structure given an IP network number and
an IP host number in 32-bit binary format.

inet_lnaof glue code Returns the host number part of an IP
address.

Network Communication
Summary of Network Communication

252 Palm OS Programmer’s Companion (Preliminary)

Summary of Network Communication

inet_netof glue code Returns the network number part of an IP
address.

inet_ntoa NetLibAddrINToA Converts an IP address from 32-bit format
to dotted decimal format.

Berkeley
Sockets
Function

Net Library
Function

Description

Net Library Functions

Library Open and Close

NetLibClose
NetLibConnectionRefresh
NetLibFinishCloseWait

NetLibOpen
NetLibOpenCount

Socket Creation and Deletion

NetLibSocketClose NetLibSocketOpen

Socket Options

NetLibSocketOptionGet NetLibSocketOptionSet

Socket Connections

NetLibSocketAccept
NetLibSocketAddr
NetLibSocketBind

NetLibSocketConnect
NetLibSocketListen
NetLibSocketShutdown

Send and Receive Routines

NetLibDmReceive
NetLibReceive
NetLibReceivePB

NetLibSend
NetLibSendPB

Network Communication
Summary of Network Communication

Palm OS Programmer’s Companion (Preliminary) 253

Utilities

NetHToNL
NetHToNS
NetLibAddrAToIN
NetLibAddrINToA
NetLibGetHostByAddr
NetLibGetHostByName
NetLibGetMailExchangeByName

NetLibGetServByName
NetLibMaster
NetLibSelect
NetLibTracePrintF
NetLibTracePutS
NetNToHL
NetNToHS

Setup

NetLibIFAttach
NetLibIFDetach
NetLibIFDown
NetLibIFGet
NetLibIFSettingGet

NetLibIFSettingSet
NetLibIFUp
NetLibSettingGet
NetLibSettingSet

Network Utilities

NetUReadN NetUTCPOpen
NetUWriteN

Net Library Functions

Network Communication
Summary of Network Communication

254 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 255

12
Internet and
Messaging
Applications

NOTE: The information in this chapter currently applies only to
the system software installed on the Palm VII device.

The Palm OS version 3.2 provides support for wireless Internet
access and messaging via the Palm.Net wireless network. This
chapter discusses the following topics:

• Overview of the Palm.Net System

• System Version Checking

• Using Clipper to Display Information

• Launching Other Applications from Clipper

• Sending Messages

• New keyDownEvent Key Codes

• Over the Air Characters

Most of the information in this chapter applies to wireline connects
as well as wireless connections. It is possible for developers to
connect to the Palm.Net network via a wired modem through an
Internet Service Provider for testing, though normal users will
access Palm.Net via the built-in wireless modem.

For more information about Palm query applications and content
style guidelines for the Palm VII device, refer to the Palm VII
Connected Organizer Content Style Guide.

Internet and Messaging Applications
Overview of the Palm.Net System

256 Palm OS Programmer’s Companion (Preliminary)

Overview of the Palm.Net System
Before developing content and applications for the Palm VII device,
it’s useful to understand the whole Palm.Net system. The Palm VII
device is just one part of a system that delivers data wirelessly from
the Internet to the Palm device.

The system is designed to work differently from a web browser
application running on a desktop computer. The Palm.Net system is
designed to best support access to real-time data, not casual
browsing. Browsing is possible, but the increased cost and volume
of data involved with visiting most standard web sites makes it
impractical over a wireless network.

Typical scenarios involve users accessing the following kinds of
information on the Internet: news, sports scores, weather, traffic
reports, driving directions, airline schedules and flight information,
stock quotes, hotel and restaurant information, email, etc.

Constraints on Palm wireless applications include the high cost to
users of radio usage, low bandwidth, and increased battery
consumption when the radio is on. Palm designed the system to
make the best use of resources given these constraints. You must
also keep these constraints in mind when designing applications
that use the wireless capabilities of the unit.

In particular, note the pricing model for the wireless service. Users
are charged a flat monthly fee for a modest number of bytes
transmitted and received. Once the limit is exceeded, users are
charged for each additional byte sent or received by their Palm
device. It’s imperative that applications using the wireless services
minimize the number of bytes sent and received, to avoid
contributing to large airtime charges for users.

Content developers wishing to customize web pages for optimal
display on Palm VII devices should follow the design guidelines
described in Palm VII Connected Organizer Content Style Guide. A web
site that conforms to these style guidelines and contains the
<META NAME="PalmComputingPlatform" CONTENT="True">
HTML tag is considered Palm friendly.

Internet and Messaging Applications
Overview of the Palm.Net System

Palm OS Programmer’s Companion (Preliminary) 257

NOTE: The Internet applications described in this chapter rely
on the Internet library (INetLib) for wireless connectivity functions,
and the Internet library uses the net library (NetLib). Applications
cannot directly use the net library to make wireless connections.

Palm Query Applications
The primary mechanism that Palm has provided for users to
interact with the WWW (World Wide Web) is the Palm query
application (PQA). Palm query applications encapsulate locally
stored HTML content, possibly including one or more query forms,
through which the user can submit requests for information from
the WWW. Returned data, called web clippings, are displayed by
the web clipping viewer application (called Clipper here) that runs
on the Palm device.

Note that Clipper does not appear as a separate application in the
Launcher; it is invoked automatically when a query application is
launched. End users don’t see the term “Clipper” anywhere in the
user interface or user documentation, so you should not confuse
them by using this term in your application documentation, readme
files, or help screens.

Palm query applications are created by the Query Application
Builder program that runs on a desktop computer. This program
translates one or more pages of HTML content into a single compact
database (.pqa file) that the user installs on the Palm device.

When creating the .pqa file, the Query Application Builder
translates HTML into a compressed format. The Clipper application
works with this compressed format, rather than HTML directly. The
reason for this is that HTML is an inefficient format for the
transmission of data over the network and storage of information.
Compression minimizes the amount of information sent over the
radio and reduces the size of query applications stored on the Palm
device.

GIF and JPEG images incorporated into source HTML files are
converted to the Palm bitmap format (2-bit graphics) before being
stored in the query application file.

Internet and Messaging Applications
Overview of the Palm.Net System

258 Palm OS Programmer’s Companion (Preliminary)

Palm.Net System Overview
The physical Palm.Net network is illustrated in Figure 12.1.

Figure 12.1 Palm.Net Network

The Palm VII device communicates via radio modem to a nearby
BellSouth Wireless Data network base station. From there, data is
sent over a private link to the Palm Web Clipping Proxy server in
the Palm data center. The proxy server interprets user requests and
passes them to other computers on the Internet, using standard
HTTP protocols, to handle as appropriate.

Responses are sent back to the proxy server, which communicates
them to the Bell South wireless network and back to the Palm VII
device via radio modem.

Internet and Messaging Applications
Overview of the Palm.Net System

Palm OS Programmer’s Companion (Preliminary) 259

The wireless radio link operates at approximately 8 kbps, so is best
suited for exchanging small amounts of information. After
accounting for headers, error correction, and other overhead, the
effective data throughput is roughly 2 kbps, so compactness is
critical.

Palm Web Clipping Proxy Server

The Palm Web Clipping Proxy server is a key part of the system.
This server is responsible for accepting and responding to queries
sent by the Palm VII device.

The server supports three high-level protocols: HTTP, HTTPS, and
the Palm messaging protocol (used by the iMessenger application).
Requests using HTTP and HTTPS are forwarded to the Internet.
Requests using the messaging protocol are forwarded to the Palm
messaging server, which handles email communication to the
Internet.

UDP

One way that Palm optimizes the limited network bandwidth is to
use UDP (User Datagram Protocol). All communications between
the Palm VII device and the wireless network use UDP. This
transmission protocol is extremely efficient and lightweight,
resulting in the exchange of the fewest packets possible over the
wireless network. Often requests and responses require just a single
packet of data each. This is much more efficient than the relatively
verbose TCP (Transmission Control Protocol). Using UDP decreases
user airtime costs because fewer packets are required for each
request and response.

UDP does not normally function as a reliable protocol, however, the
wireless connection between the Palm device and the BellSouth
Wireless Data network has guaranteed delivery and reliability built
into it via other mechanisms, so there is no need for the extra
overhead of a full connection-oriented protocol such as TCP.

WWW requests that are passed to the Internet by the proxy server
use TCP to guarantee reliability over the Internet.

Note that in a debugging wired connection scenario, TCP is used
instead of UDP between the Palm device and the proxy server.

Internet and Messaging Applications
Overview of the Palm.Net System

260 Palm OS Programmer’s Companion (Preliminary)

Compressed HTML

Another way that Palm efficiently uses the limited bandwidth of the
Palm.Net system is to compress HTML.

Web clippings are rendered on the Palm VII device by the Clipper
application. Clipper renders compressed HTML data. Both the
query applications and WWW data returned from the Internet are
compressed.

• When creating Palm query applications, the Query
Application Builder program compresses HTML content and
combines multiple HTML pages and images into a single
query application.

• All HTML information returned to the Palm device from the
Internet is dynamically compressed by the Palm Web
Clipping Proxy server before transmission through the
wireless network to the Palm device.

It’s important to note that the Palm device accesses standard HTML
data that resides on standard HTML web servers on the Internet.
The compression by the proxy server is transparent to the user and
the web server on the Internet.

If a web page that is not Palm-friendly is browsed, the proxy server
removes images, scripting code, Java code, frames, and other non-
supported elements before sending the content to the Palm device.
Additionally, the content is truncated to prevent large amounts of
unexpected data from being transmitted. The user can request more
data as desired.

Security

All wired parts of the network support security via the SSL (Secure
Sockets Layer) protocol widely used by servers and browsers on the
Internet. However, SSL is impractical to run over a low bandwidth
wireless network because it is quite verbose.

Palm implemented a level of security for the wireless portion of the
network that is equivalent to the 128-bit SSL encryption algorithms,
but optimized for use on a wireless network. The wireless part of
the network is protected by a security system that includes
encryption, message integrity checking, and server authentication.

Internet and Messaging Applications
System Version Checking

Palm OS Programmer’s Companion (Preliminary) 261

Message encryption is done via an elliptic curve cryptography
engine supplied by Certicom Corporation. Message integrity
checking protects against transmission errors or message
manipulation. Server authentication prevents the wireless session
between the Palm device and the proxy server from being hijacked
or spoofed.

Note that despite the optimized security scheme, secure
transmissions inherently increase the size of the data packet,
slowing its transmission over the network relative to unsecure
transmissions.

System Version Checking
Before using any special features of the operating system for the
Palm VII device, you must check to ensure they are present. You can
ensure that you are running on a device that supports the wireless
internet access features by checking for the existence of the Clipper
and iMessenger applications. Here’s an example of how to check for
Clipper:

DmSearchStateType searchState;
UInt cardNo;
LocalID dbID;
err = DmGetNextDatabaseByTypeCreator(true,
&searchState, sysFileTApplication,
sysFileCClipper, true, &cardNo, &dbID);

If Clipper is not present, the
DmGetNextDatabaseByTypeCreator routine returns an error.
To check for iMessenger, you can use the creator type
sysFileCMessaging.

For more information on checking system compatibility, see the
appendix “Compatibility Guide” starting on page 905.

Using Clipper to Display Information
You can use launch codes to open Clipper and display content.

Internet and Messaging Applications
Using Clipper to Display Information

262 Palm OS Programmer’s Companion (Preliminary)

To launch Clipper and display a PQA, use the launch code
sysAppLaunchCmdOpenDB. You pass as parameters the database
id and card number of the PQA to display. This is the same
mechanism used by the Launcher to “launch” data files.

To launch Clipper and display any URL, use the launch code
sysAppLaunchCmdGoToURL. You pass as a parameter a pointer to
the URL string. An example of how to use this launch code is shown
in Listing 12.1.

IMPORTANT: Keep in mind that browsing web sites that are
complex or not Palm-friendly may possibly result in higher latency
and airtime charges for the user. If a web page that is not Palm-
friendly is browsed, the proxy server removes images, scripting
code, Java code, frames, and other non-supported elements
before sending the content to the Palm device.

Listing 12.1 Launching Clipper with a URL

Err GoToURL(CharPtr origurl)
{ // parameter is ptr to URL string
Err err;
CharPtr url;
DmSearchStateType searchState;
UInt cardNo;
LocalID dbID;

// make a copy of the URL, since the OS will free
// the parameter once Clipper quits
url = MemPtrNew(StrLen(origurl));
if (!url) return sysErrNoFreeRAM;
StrCopy(url, origurl);
MemPtrSetOwner(url, 0);

// find clipper and launch it
err = DmGetNextDatabaseByTypeCreator (true, &searchState,

sysFileTApplication, sysFileCClipper, true, &cardNo, &dbID);
if (err) { // Clipper is not present

Internet and Messaging Applications
Launching Other Applications from Clipper

Palm OS Programmer’s Companion (Preliminary) 263

FrmAlert(NoClipperAlert);
MemPtrFree(url);

}
else
err = SysUIAppSwitch(cardNo,dbID,sysAppLaunchCmdGoToURL,url);

return err; // 0 means no error
}

Launching Other Applications from Clipper
Clipper can launch other applications via two special types of URLs:
palm and palmcall. In a query application, you might want to use
the palmcall URL to hand some data to a different application to
process and/or display while Clipper is running. This would be
useful for graphing a set of numbers, for example.

Both of these URL types take a URL string in the following form:

palm:cccc.tttt?params

or

palmcall:cccc.tttt?params

cccc is a four character creator name and tttt is a four character
database type. These parts identify the application to launch. After
the question mark (?), the params portion of the string can be any
text you want. The entire URL string is passed to the application to
use in any manner.

Here’s an example of an HTML anchor that uses the palm URL type
to link to the Memo Pad application:

Memo Pad

Use the palm URL to cause Clipper to launch another application
with the SysUIAppSwitch routine. This causes Clipper to quit
before the other application is launched.

Use the palmcall URL to cause Clipper to sublaunch another
application with the SysAppLaunch routine. Clipper stays in the
background and resumes execution when the other application

Internet and Messaging Applications
Sending Messages

264 Palm OS Programmer’s Companion (Preliminary)

quits. It’s important to note that in this situation, the sublaunched
application does not have access to its global variables.

The Clipper application handles these URLs by sending the
sysAppLaunchCmdURLParams launch code to the specified
application. The parameter block for this launch code is a pointer to
the URL string.

Sending Messages
You can send messages via the built-in iMessenger application in 3
ways:

• Use the standard mailto URL in Clipper, passing an email
address, for example, “mailto:info@palm.com”. This
launches iMessenger, passing the email address for the “To”
field. Optionally, you can include the subject
(“mailto:info@palm.com?subject=foo”) and/or body
(“mailto:info@palm.com?subject=foo&body=bar”)
text in the URL. Internally, this launches iMessenger using
the next method.

• Use the sysAppLaunchCmdAddRecord launch code to
launch iMessenger with its editor open (optionally filling in
some of the fields via the passed parameter block). This
allows the user to edit the email. To make iMessenger display
the message in its editor, set the edit field in the parameter
block to true.

• Use the sysAppLaunchCmdAddRecord launch code to
silently add an item (the email) to the iMessenger outbox
database. You must pass all the needed information in the
parameter block. To prevent iMessenger from displaying the
message in its editor, set the edit field in the parameter
block to false.

When launched via the sysAppLaunchCmdAddRecord launch
code, the iMessenger application returns an error code, or 0 if there
was no error.

To send a launch code to the iMessenger application, you will need
obtain its database id. You can use
DmGetNextDatabaseByTypeCreator and pass the constant
sysFileCMessaging for the creator parameter.

Internet and Messaging Applications
New keyDownEvent Key Codes

Palm OS Programmer’s Companion (Preliminary) 265

Note that adding an item to the iMessenger outbox does not
actually send the message over the radio. It simply stores the
message in the outbox until the user later opens iMessenger and
chooses to send queued messages. This always gives the user
control over when the radio is used.

New keyDownEvent Key Codes
The OS on the Palm VII device provides special keyDownEvent
virtual key codes to support the wireless capabilities. These include:

• vchrHardAntenna, which signals that the user has raised
the antenna, activating the radio

• vchrRadioCoverageOK, which signals that the unit is
within radio coverage following a coverage check

• vchrRadioCoverageFail, which signals that the unit is
outside radio coverage following a coverage check, and thus
cannot communicate with the Palm.Net system

Virtual key codes are passed in the keyCode field of a
keyDownEvent data block, as described in the section
“keyDownEvent” on page 103.

Normally, you ignore these events in your application event
handler, and let the system event handler handle them. For
example, the vchrHardAntenna event causes the system to invoke
the Launcher and switch to the Palm.Net category. If you want to do
something different in your application, you must trap and handle
the event in your application event handler.

Over the Air Characters
One of the overriding user interface design goals of the Palm VII
system is to always give the user control when making a wireless
transaction, partly because of the costs associated with doing so. In
order that the user can recognize when an action causes a wireless
transaction, you must use a special character in user interface
buttons that cause wireless transactions. This alerts the user that
tapping the button will result in a wireless transaction and its
associated cost and latency. The user must never be surprised that a

Internet and Messaging Applications
Over the Air Characters

266 Palm OS Programmer’s Companion (Preliminary)

wireless transaction has occurred as a result of an action they
initiated.

Applications that cause data to be transmitted from the Palm VII
device must use two special characters in their user interface
buttons, as shown in Figure 12.2.

Figure 12.2 Over the Air Characters

If you have a button, that when tapped, causes data to be
transmitted, the button text must end with the “Over the air”
character (chrOta). This alerts the user that tapping the button will
cause data transmission and incur possible airtime charges.

If you have a button, that when tapped, causes data to be
transmitted securely, the button text must end with the “Over the air
secure” character (chrOtaSecure). This alerts the user that
tapping the button will cause secure data transmission and incur
possible airtime charges.

Note that the Clipper application automatically adds these special
characters when rendering remote hyperlinks or buttons. You only
need to explicitly add these characters if you are building an
application that doesn’t use this capability of Clipper.

Palm OS Programmer’s Companion (Preliminary) 267

13
Localized
Applications
When you write an application (or any other type of software) that
is going to be localized, you need to take special care when working
with characters, strings, numbers, and dates as different countries
represent these items different ways. This chapter describes how to
write code for localized applications, focusing on the text manager
and international manager, which are new in Palm OS version 3.1.
The chapter covers:

• Localization Guidelines

• Text Manager and International Manager

• Characters

• Strings

• Dates

• Numbers

• Compatibility Information

• Notes on the Japanese Implementation

• Summary of Localization

This chapter does not cover how to actually perform localization of
resources. For more information on this subject, see your tools
documentation.

Localization Guidelines
When you start planning for the localized version of your
application, follow these guidelines:

• If you use the English language version of the software as a
guide when designing the layout of the screen, try to allow:

– extra space for strings

Localized Applications
Text Manager and International Manager

268 Palm OS Programmer’s Companion (Preliminary)

– larger dialogs than the English version requires

• Don’t put language-dependent strings in code. If you have to
display text directly on the screen, remember that a one-line
warning or message in one language may need more than
one line in another language. See the section “Strings” in this
chapter for further discussion.

• Don’t depend on the physical characteristics of a string, such
as the number of characters, the fact that it contains a
particular substring, or any other attribute that might
disappear in translation.

• Use the functions described in this chapter when working
with characters, strings, numbers, and dates.

• Consider using string templates as described in the section
“Dynamically Determining a String’s Contents” in this
chapter. Using a fine granularity is usually helpful. You can
then concatenate strings as needed (and in the order needed,
which often differs from language to language) to arrive at a
correct translation.

• Abbreviations may be the best way to accommodate the
particularly scarce screen real estate on the Palm OS device.

• Remember that most resources, for example, lists, fields, and
tips, scroll if you need more space.

The chapter “Good Design Practices” provides further user
interface guidelines.

Text Manager and International Manager
The Palm OS provides two managers that help you work with
localized strings and characters. These managers are called the text
manager and the international manager.

Computers represent the characters in an alphabet with a numeric
code. The set of numeric codes for a given alphabet is called a
character encoding. Of course, a character encoding contains more
than codes for the letters of an alphabet. It also encodes
punctuation, numbers, control characters, and any other characters
deemed necessary. The set of characters that a character encoding
represents is called, appropriately enough, a character set.

Localized Applications
Text Manager and International Manager

Palm OS Programmer’s Companion (Preliminary) 269

As you know, different languages use different alphabets. Most
European languages use the Roman alphabet. The Roman alphabet
is relatively small, so its characters can be represented using a
single-byte encoding ranging from 32 to 255. On the other hand,
Asian languages such as Chinese, Korean, and Japanese require
their own alphabets, which are much larger. These larger character
sets are represented by a combination of single-byte and double-
byte numeric codes ranging from 32 to 65,535.

A given Palm OS device supports one language and one character
encoding to represent the characters required by that language.
Although the Palm OS supports multiple character encodings, a
given device uses only one of those encodings. For example, a
French device would probably use the Microsoft® Windows® code
page 1252 character encoding (an extension of ISO Latin 1), while a
Japanese device would use Microsoft Windows code page 932 (an
extension of Shift JIS). Code page 932 is not supported on the French
device, and code page 1252 is not supported on the Japanese device
even though they both use the same version of Palm OS. No matter
what the encoding is on a device, Palm guarantees that the low
ASCII characters (0 to 0x7F) are the same. (The exception to this rule
is 0x5C, which is either the backslash or the yen symbol.)

The text manager allows you to work with text, strings, and
characters independent of the character encoding. If you use text
manager routines and don’t work directly with string data, your
code should work on any system, regardless of which language and
character encoding the device supports (as long as it supports the
text manager).

The international manager’s job is to detect which character
encoding a device uses and initialize the corresponding version of
the text manager. The international manager also sets system
features that identify which encoding and fonts are used. For the
most part, you don’t work with the international manager directly.

The text manager and international manager are supported starting
in Palm OS version 3.1. If your application should work on older
systems, you should test for the presence of these managers before
using text manager calls. Listing 13.1 shows how.

Localized Applications
Characters

270 Palm OS Programmer’s Companion (Preliminary)

Listing 13.1 Testing for text and international managers

DWord intlMgrExists;
if (FtrGet(sysFtrCreator, sysFtrNumIntlMgr, &intlMgrExists) != 0)
intlMgrExists = 0;

if (intlMgrExists) {
// If international manager exists, so does the text manager.
// Use text manager calls.

}

NOTE: You can still use the text manager and be compatible
with earlier releases if you link your application with the
IntlGlue.lib library. See the section “Compatibility
Information” for more information.

Characters
Depending on the device’s supported language, the Palm OS may
encode characters using either a single-byte encoding or a multi-
byte encoding. Because you do not know which character encoding
is used until runtime, you should never make an assumption about
the size of a character.

For the most part, your application does not need to know which
character encoding is used, and in fact, it should make no
assumptions about the encoding or about the size of characters.
Instead, your code should use text manager functions to manipulate
characters. This section describes how to use characters in a
localized application. It covers:

• Declaring Character Variables

• Using Character Constants

• Missing and Invalid Characters

• Retrieving a Character’s Attributes

• Virtual Characters

• Retrieving the Character Encoding

Localized Applications
Characters

Palm OS Programmer’s Companion (Preliminary) 271

Declaring Character Variables
Declare all character variables to be of type WChar. WChar is a 16-bit
unsigned type that can accommodate characters of any encoding.
Don’t use Char. Char is an 8-bit variable that cannot accommodate
larger character encodings. The only time you should ever use Char
is to pass a parameter to an older Palm OS function.

WChar ch; // Right. 16-bit character.
Char ch; // Wrong. 8-bit character.

When you receive input characters through the keyDownEvent,
you’ll receive a WChar value.

Even though character variables are now declared as WChar, string
variables are still declared as Char *, even though they may
contain multi-byte characters. See the section “Strings” for more
information on strings.

Using Character Constants
Character constants are defined in several header files. The header
file Chars.h contains characters that are guaranteed to be
supported on all systems regardless of the encoding. Other header
files exist for each supported character encoding and contain
characters specific to that encoding. The character encoding-specific
header files are not included in the Palm OS precompiled header set
because they define characters that are not available on every
system.

To make it easier for the compiler to find character encoding
problems with your project, make a practice of using the character
constants defined in these header files rather than directly assigning
a character variable to a value. For example, suppose your code
contained this statement:

WChar ch = 'å'; // WRONG! Don’t use.

This statement may work on a Roman system, but it would cause
problems on an Asian-language system because the å character does
not exist. If you instead assign the value this way:

Localized Applications
Characters

272 Palm OS Programmer’s Companion (Preliminary)

WChar ch = chrSmall_A_RingAbove;

you’ll find the problem at compile time because the
chrSmall_A_RingAbove constant is defined in CharLatin.h,
which is not included by default.

Missing and Invalid Characters
If during application testing, you see an open rectangle, a shaded
rectangle, or a gray square displayed on the screen, you have a
missing character.

A missing character is one that is valid within the character
encoding but the current font is not able to display it. In this case,
nothing is wrong with your code other than you have chosen the
wrong font. The system displays a gray square in place of a missing
double-byte character and an open rectangle in place of a missing
single-byte rectangle (see Figure 13.1).

Figure 13.1 Missing/invalid characters

In multi-byte character encodings, a character may be missing as
described above, or it may be invalid. In single-byte character
encodings, there’s a one-to-one correspondence between numeric
values and characters to represent. This is not the case with multi-
byte character encodings. In multi-byte character encodings, there
are more possible values than there are characters to represent.
Thus, a character variable could end up containing an invalid
character—a value that doesn’t actually represent a character.

If the system is asked to display an invalid character, it prints an
open rectangle for the first invalid byte. Then it starts over at the
next byte. Thus, the next character displayed and possibly even the
remaining text displayed is probably not what you want. Check
your code for the following:

• Truncating strings. You might have truncated a string in the
middle of a multi-byte character.

Localized Applications
Characters

Palm OS Programmer’s Companion (Preliminary) 273

• Appending characters from one encoding set to a string in a
different encoding. For example, you might have code that
appends an ellipses to a menu command. This code fails on a
Asian-language system because the ellipses is not included in
the Asian character encodings.

• Arithmetic on character variables that could result in an
invalid character value.

• Arithmetic on a string pointer that could result in pointing to
an intra-character boundary. See “Performing String Pointer
Manipulation” for more information.

• Assumptions that a character is always a single byte long.

Use the text manager function TxtIsValidChar to determine
whether a character is valid or not.

Retrieving a Character’s Attributes
The text manager defines certain functions that retrieve a
character’s attributes, such whether the character is alphanumeric,
etc. You can use these functions on any character, regardless of its
size and encoding.

A character also has attributes unique to its encoding. Functions to
retrieve those attributes are defined in the header files specific to the
encoding.

WARNING! In previous versions of the Palm OS, the header file
CharAttr.h defined character attribute macros such as
IsAscii. Using these macros on double-byte characters
produces incorrect results. Use the text manager macros instead
of the CharAttr.h macros.

Virtual Characters
Virtual characters are nondisplayable characters that trigger special
events in the operating system, such as displaying low battery
warnings or displaying the keyboard dialog. Virtual characters

Localized Applications
Characters

274 Palm OS Programmer’s Companion (Preliminary)

should never occur in any data and should never appear on the
screen.

The Palm OS uses character codes 256 through 4096 decimal for
virtual characters. The range for these characters may actually
overlap the range for “real” characters (characters that should
appear on the screen).

Therefore, when you check for a virtual character, first check the
command bit in the event record. If the command bit is set, then the
character is virtual. See Listing 13.2.

Listing 13.2 Checking for virtual characters

if ((event->eType == keyDownEvent) &&
(event->data.keyDown.modifiers & commandKeyMask)) {
// character is virtual.
if (ch == nextFieldChr)
...

}

As a special case, you can use the ChrIsHardKey macro to
determine if the character represents one of the hard keys on the
device. See Listing 13.3.

Listing 13.3 Checking for hard keys

if (ChrIsHardKey(event->data.keyDown.modifiers,
event->data.keyDown.chr)) {

// character is a hard key
} else {
// character is not a hard key

}

Retrieving the Character Encoding
Occasionally, you may need to determine which character encoding
is being used. For example, your application may need to do some
unique text manipulation if it is being run on a European device.

Localized Applications
Strings

Palm OS Programmer’s Companion (Preliminary) 275

You can retrieve the character encoding from the system feature set
using the FtrGet function as shown in Listing 13.4.

Listing 13.4 Retrieving the character encoding

Word encoding;
CharPtr encodingName;
if (FtrGet(sysFtrCreator, sysFtrNumEncoding, &encoding) != 0)

encoding = charEncodingCP1252; //default encoding
if (encoding == charEncodingUTF8) {
// encoding for Unicode.

} else if (encoding == charEncodingCP1252) {
// extension of ISO Latin 1

}

// The following text manager function returns the official name
// of the encoding as required by Internet applications.
encodingName = TxtEncodingName(encoding);

Strings
On systems that support the international manager and the text
manager, strings are made up of characters that are either a single-
byte long or multiple bytes long, up to three bytes. As stated
previously, character variables are always two bytes long. However,
when you add a character to a string, the operating system may
shrink it down to a single byte if it’s a low ASCII character. Thus,
any string that you work with may contain a mix of single-byte and
multi-byte characters.

Using characters of different sizes in a string has implications for
manipulating strings, searching strings, and implementing the
global find facility in your application. This section describes how to
perform all of these tasks using text manager functions. It also
describes how to create and display dynamically computed strings
and how to display error messages.

• Manipulating Strings

• Performing String Pointer Manipulation

Localized Applications
Strings

276 Palm OS Programmer’s Companion (Preliminary)

• Truncating Displayed Text

• Searching and Comparing Strings

• Global Find

• Dynamically Determining a String’s Contents

TIP: Many of the existing Palm OS functions have been
modified to work with strings containing multi-byte characters. All
Palm OS functions that return the length of a string, such as
FldGetTxtLength and StrLen, always return the size of the
string in bytes, not the number of characters in the string.

Manipulating Strings
Any time that you want to work with character pointers, you need
to be careful not to point to an intra- character boundary (a middle
or end byte of a multi-byte character). For example, any time that
you want to set the insertion point position in a text field or set the
text field’s selection, you must make sure that you use byte offsets
that point to inter-character boundaries. (The inter-character
boundary is both the start of one character and the end of the
previous character, except when the offset points to the very
beginning or very end of a string.)

Suppose you want to iterate through a string character by character.
Traditionally, C code uses a character pointer or byte counter to
iterate through a string a character at a time. Such code will not
work properly on systems with multi-byte characters. Instead, if
you want to iterate through a string a character at a time, use text
manager functions:

• TxtGetNextChar retrieves the next character in a string.

• TxtGetPreviousChar retrieves the previous character in a
string.

• TxtSetNextChar changes the next character in a string and
can be used to fill a string buffer.

Each of these three functions returns the size of the character in
question, so you can use it to determine the offset to use for the next

Localized Applications
Strings

Palm OS Programmer’s Companion (Preliminary) 277

character. For example, Listing 13.5 shows how to iterate through a
string character by character until a particular character is found.

Listing 13.5 Iterating through a string or text

CharPtr buffer; // assume this exists
Word bufLen = StrLen(buffer); // Length of the input text.
WChar ch = 0;
Word i = 0;
while ((i < bufLen) && (ch != chrAsterisk))
i+= TxtGetNextChar(buffer, i, &ch));

The text manager also contains functions that let you determine the
size of a character without iterating through the string:

• TxtCharSize returns how much space a given character
will take up inside of a string.

• TxtCharBounds determines the boundaries of a given
character within a given string.

Listing 13.6 Working with arbitrary limits

ULong charStart, charEnd;
CharPtr fldTextP = FldGetTextPtr(fld);
TxtCharBounds(fldTextP, min(kMaxBytesToProcess,
FldGetTextLength(fld)), &charStart, &charEnd);

// process only the first charStart bytes of text.

Performing String Pointer Manipulation
Never perform any pointer manipulation on strings you pass to the
text manager unless you use text manager calls to do the
manipulation. For text manager functions to work properly, the
string pointer must point to the first byte of a character. If you use
text manager functions when manipulating a string pointer, you can
be certain that your pointer always points to the beginning of a
character. Otherwise, you run the risk of pointing to an inter-
character boundary.

Localized Applications
Strings

278 Palm OS Programmer’s Companion (Preliminary)

// WRONG! buffer is not guaranteed to
// point to start of character.
offset = MyFunction();
TxtGetNextChar(buffer + offset, 0, NULL);

// Right. TxtGetNextChar returns size of
// char, so buffer is guaranteed to point
// to start of char.
bufPos = buffer;
while (*bufPos)
bufPos += TxtGetNextChar(bufPos, 0, NULL);

Truncating Displayed Text
If you’re performing drawing operations, you often have to
determine where to truncate a string if it’s too long to fit in the
available space. Two functions help you perform this task on strings
with multi-byte characters:

• WinDrawTruncChars - This function draws a string within a
specified width, determining automatically where to
truncate the string. If it can, it draws the entire string. If the
string doesn’t fit in the space, it draws one less than the
number of characters that fit and then ends the string with an
ellipsis (...).

• FntWidthToOffset - This function returns the byte offset of
the character displayed at a given pixel position. It can also
return the width of the text up to that offset.

Searching and Comparing Strings
Use the text manager functions TxtCompare and
TxtCaselessCompare to perform comparisons of strings or to
search for one string inside of another.

In character encodings that use multi-byte characters, some
characters are accurately represented as either single-byte characters
or multi-byte characters. That is, a character might have both a
single-byte representation and a double-byte representation. One
string might use the single-byte representation and another might
use the multi-byte representation. Users expect the characters to

Localized Applications
Strings

Palm OS Programmer’s Companion (Preliminary) 279

match regardless of how many bytes a string uses to store that
character. TxtCompare and TxtCaselessCompare can accurately
match single-byte characters with their multi-byte equivalents.

Because a single-byte character might be matched with a multi-byte
character, two strings might be considered equal even though they
have different lengths. For this reason, TxtCompare and
TxtCaselessCompare take two parameters in which they pass
back the length of matching text in each of the two strings. See the
function descriptions in the Palm OS SDK Reference for more
information.

Global Find
A special case of performing string comparison is implementing the
global system find facility. To implement this facility, you should
call TxtFindString. As with TxtCompare and
TxtCaselessCompare, TxtFindString accurately matches
single-byte characters with their corresponding multi-byte
characters. Plus, it passes back the length of the matched text. You’ll
need this value to highlight the matching text when the system
requests that you display the matching record.

Older versions of Palm OS use the function FindStrInStr.
FindStrInStr is not able to return the length of the matching text.
Instead, it assumes that characters within the string are always one
byte long.

Listing 13.7 and Listing 13.8 show how to implement a global find
facility on all systems (whether the text manager exists or not), and
how to implement a response to sysAppLaunchCmdGoto, which is
the system’s request that the matching record be displayed. These
two listings are only code excerpts. For the complete
implementation of these two functions, see the example code in
your development environment.

Note that if you want to use TxtFindString to implement a
search within your application (as opposed to the global find
facility), you need to call TxtPrepFindString before you call
TxtFindString to ensure that the string is in the proper format.
(In the global find facility, the system has already made the call to
TxtPrepFindString before your code is executed.)

Localized Applications
Strings

280 Palm OS Programmer’s Companion (Preliminary)

Listing 13.7 Implementing global find

static void Search (FindParamsPtr findParams)
{
Word pos;
UInt recordNum;
VoidHand recordH;
Boolean done;
Boolean match;
DmOpenRef dbP;
UInt cardNo = 0;
LocalID dbID;
FindParamsPtr params;
MemoDBRecordPtr memoPadRecP;
ULong longPos;
Word matchLen;
Word intlMgr;

//See if international manager exists.
if (FtrGet(sysFtrCreator, sysFtrNumIntlMgr, &intlMgr) != 0)
intlMgr = 0;

params = (FindParamsPtr)findParams;
// Find the application's data file.
dbP = DmOpenDatabaseByTypeCreator(memoDBType, sysFileCMemo,
params->dbAccesMode);

...
DmOpenDatabaseInfo(dbP, &dbID, 0, 0, &cardNo, 0);

...
recordNum = params->recordNum;
while (true) {
...
// Get the next record. Skip private records if neccessary.
recordH = DmQueryNextInCategory (dbP, &recordNum,
dmAllCategories);

// Have we run out of records?
if (! recordH) {
params->more = false;
break;

Localized Applications
Strings

Palm OS Programmer’s Companion (Preliminary) 281

}
memoRecP = MemHandleLock (recordH);

// Search for the string passed.
// If it's found display the title of the memo.
// Use TxtFindString on International Manager systems,
// else use FindStrInStr.

if (intlMgr) {
match = TxtFindString (&(memoRecP->note),
params->strToFind, &longPos, &matchLength);

pos = longPos;
if (match)
done = FindSaveMatch (findParams, recordNum, pos, 0,
matchLength, cardNo, dbID);

} else { //international manager doesn't exist.
match = FindStrInStr (&(memoRecP->note),
params->strToFind, &pos);

if (match)
done = FindSaveMatch (findParams, recordNum, pos, 0, 0,
cardNo, dbID);

}
MemHandleUnlock (recordH);

if (done) break;
recordNum++;

}
DmCloseDatabase (dbP);

}

Listing 13.8 Displaying the matching record

static void GoToRecord (GoToParamsPtr goToParams, Boolean
launchingApp)
{
Word recordNum;
EventType event;
UInt attr;

Localized Applications
Strings

282 Palm OS Programmer’s Companion (Preliminary)

ULong uniqueID;
DWord intlMgr;

if (FtrGet(sysFtrCreator, sysFtrNumIntlMgr, &intlMgr) != 0)
intlMgr = 0;

recordNum = goToParams->recordNum;
DmRecordInfo (MemoDB, recordNum, &attr, &uniqueID, NULL);
...

// Send an event to goto a form and select the matching text.
MemSet (&event, sizeof(EventType), 0);

event.eType = frmLoadEvent;
event.data.frmLoad.formID = EditView;
EvtAddEventToQueue (&event);

event.eType = frmGotoEvent;
event.data.frmGoto.recordNum = recordNum;
event.data.frmGoto.matchPos = goToParams->matchPos;

event.data.formGoto.matchLen =
(intlMgr)
? goToParams->matchCustom
: goToParams->searchStrLen;

event.data.frmGoto.matchFieldNum = goToParams->matchFieldNum;
event.data.frmGoto.formID = EditView;
EvtAddEventToQueue (&event);
...

}

Dynamically Determining a String’s Contents
When working with strings in a localized application, you never
hard code them. Instead, you store strings in a resource and use the
resource to display the text. If you need to create the contents of the
string at runtime, store a template for the string as a resource and
then substitute values as needed.

Localized Applications
Strings

Palm OS Programmer’s Companion (Preliminary) 283

For example, consider the Edit view of the Memo application. Its
title bar contains a string such as “Memo 3 of 10.” The number of the
memo being displayed and the total number of memos cannot be
determined until runtime.

To create such a string, use a template resource and the text manager
function TxtReplaceStr. TxtReplaceStr allows you to search a
string for the sequence ^0, ^1, up to ^9 and replace each of these
with a different string. In the Memo title bar example, you’d create a
string resource that looks like this:

Memo ^0 of ^1

And your code might look like this:

Listing 13.9 Using TxtReplaceStr

static void EditViewSetTitle (void)
{
CharPtr titleTemplateP;
FormPtr frm;
Char posStr [digitsForRecordPosition + 1];
Char totalStr [digitsForRecordPosition + 1];
UInt pos;
UInt length;

// Format as strings, the memo's postion within its category,
// and the total number of memos in the category.
pos = DmPositionInCategory (MemoPadDB, CurrentRecord,
RecordCategory);

StrIToA (posStr, pos+1);

if (MemosInCategory == memosInCategoryUnknown)
MemosInCategory = DmNumRecordsInCategory (MemoPadDB,
RecordCategory);

StrIToA (totalStr, MemosInCategory);

// Get the title template string. It contains '^0' and '^1'
// chars which we replace with the position of CurrentRecord
// within CurrentCategory and with the total count of records
// in CurrentCategory ().

Localized Applications
Dates

284 Palm OS Programmer’s Companion (Preliminary)

titleTemplateP = MemHandleLock (DmGetResource (strRsc,
EditViewTitleTemplateStringString));

if (EditViewTitlePtr)
MemPtrFree(EditViewTitlePtr);

// Calculate the space required, with is the template, plus the
// inserted pos & total strings, plus the terminating null.
length = StrLen (posStr) + StrLen (totalStr) +
StrLen (titleTemplateP) + 1;

// Reduce the new length because we're getting rid of ^0 and ^1
// in the template. When TxtReplaceStr is called w/a null
// replacement string ptr, it doesn't change the destination
// string, but it still returns the number of occurences.
length -= 2 * (TxtReplaceStr(titleTemplateP, length, NULL, 0)

+ TxtReplaceStr(titleTemplateP, length, NULL, 1));

// Allocate the string space.
EditViewTitlePtr = MemPtrNew (length);
ErrFatalDisplayIf (!EditViewTitlePtr, "Out of memory");
StrCopy(EditViewTitlePtr, titleTemplateP);

// Substitute <posStr> and <totalStr> for ^0 and ^1
TxtReplaceStr(EditViewTitlePtr, length, posStr, 0);
TxtReplaceStr(EditViewTitlePtr, length, totalStr, 1);

// Now set the title to use the new title string.
frm = FrmGetFormPtr (MemoPadEditForm);
FrmSetTitle (frm, EditViewTitlePtr);
MemPtrUnlock(titleTemplateP);

}

Dates
If your application deals with dates and times, it should abide by
the values the user has set in the system preference for date and

Localized Applications
Numbers

Palm OS Programmer’s Companion (Preliminary) 285

time display. The default preferences at startup are different for the
different languages, though they can be overridden.

To check the system preferences call PrefGetPreference with
one of the values listed in the second column of Table 13.1. The third
column lists an enumerated type that helps you interpret the value.

Table 13.1 Date and time preferences

To work with dates in your code, use the Date and Time Manager
API. It contains functions such as DayOfMonth, DayOfWeek, and
DaysInMonth, which allow you to work with dates independent of
the user’s preference settings.

Numbers
If your application displays large numbers or floating-point
numbers, you must check and make sure you are using the
appropriate thousands separator and decimal separator for the
device’s country by doing the following (see Listing 13.10):

1. Store numbers using US conventions, which means using a
“,” as the thousands separator and a decimal point (.) as the
decimal separator.

Preference Name Returns a value
of type

Date formats (i.e.,
month first or day
first)

prefDateFormat DateFormatType

Time formats (i.e.,
use a 12-hour clock
or use a 24-hour
clock)

prefTimeFormat TimeFormatType

Start day of week
(i.e., Sunday or
Monday)

prefWeekStartDay 0 (Sunday) or
1 (Monday)

Localized Applications
Compatibility Information

286 Palm OS Programmer’s Companion (Preliminary)

2. Use PrefGetPreference and
LocGetNumberSeparators to retrieve information about
how the number should be displayed.

3. Use StrLocalizeNumber to perform the localization.

4. If a user enters a number that you need to manipulate in
some way, convert it to the US conventions using
StrDelocalizeNumber.

Listing 13.10 Working with numbers

// store numbers using US conventions.
CharPtr jackpot = "20,000,000.00";
Char thou; // thousand separator
Char dp; // decimal separator

// Retrieve current country’s preferences.
LocGetNumberSeparators((NumberFormatType)PrefGetPreference
(prefNumberFormat), &thou, &dp);

// Localize jackpot number. Converts "," to thou and "." to dp.
StrLocalizeNumber(jackpot, thou, dp);
// Display string.
// Assume inputString is a number user entered,
// convert it to US conventions this way. Converts thou to ","
and dp to "."
StrDelocalizeNumber(inputNumber, thou, dp);

Compatibility Information
If you want to maintain backward compatibility with earlier
releases but you still want to use the international manager and the
text manager, you can link your application with the library
IntlGlue.lib. This library provides the international manager
and the text manager for versions 3.0 and earlier.

Each time you make a call to the text manager or international
manager, the code in IntlGlue.lib either uses the text manager
or international manager on the ROM or, if the managers don’t exist,
executes a simple Latin equivalent of the function. Using the library
is slower than making the calls directly, so performance is crucial. To

Localized Applications
Notes on the Japanese Implementation

Palm OS Programmer’s Companion (Preliminary) 287

improve performance, you might use IntlGetRoutineAddress
to store the address of a frequently called routine.

Palm OS version 3.1 contains the following changes from previous
releases that affect strings, text, and localization. These changes may
affect you if you’re updating an application written to run on a prior
release or if you want to maintain backward compatibility with
prior releases:

• The keyDownEvent structure’s chr field (which contains
the input character) has been changed from a Word to a
WChar. The chr field may contain a multi-byte character, so
you should never copy the chr field into a Char variable or
pass it to a function using a Char parameter. Always use
WChar.

• Some of the special Palm OS glyphs in the high ASCII range
(such as the shortcut stroke and the command stroke) have
been moved down into the control code range, and other
characters (such as the numeric space and horizontal ellipsis)
have been copied into the control range so that they’re
guaranteed to exist in every encoding. For the numeric space
and horizontal ellipsis, you can use the macros
ChrNumericSpace and ChrHorizEllipsis to return the
appropriate character regardless of the operating system
version.

• The four playing-card characters have been moved from the
high ASCII range in the standard four fonts to the 9-point
Symbol font.

• Character attribute functions and macros are now obsolete
and have been replaced by functions and macros in the text
manager.

• The String Manager functions StrChr and StrStr now
treat buffers as characters, not arbitrary byte arrays. If you
previously used these functions to search data buffers, your
code may no longer work.

Notes on the Japanese Implementation
This section describes programming practices for applications that
are to be localized for Japanese use. It covers:

Localized Applications
Notes on the Japanese Implementation

288 Palm OS Programmer’s Companion (Preliminary)

• Japanese Character Encoding

• Japanese Character Input

• Displaying Error Messages

Japanese Character Encoding
The character encoding used on Japanese systems is based on
Microsoft code page 932. The complete 932 character set (JIS level 1
and 2) is supported in both the standard and large font sizes. The
bold versions of these two fonts contain bolded versions of the
glyphs found in the 7-bit ASCII range, but the single-byte Katakana
characters and the multi-byte characters are not bolded.

Japanese Character Input
On current Japanese devices, users enter Japanese text using Latin
(ASCII) characters, and special software called a front-end processor
(FEP) transliterates this text into Hiragana or Katakana characters.
The user can then ask the FEP to phonetically convert Hiragana
characters into a mixture of Hiragana and Kanji (Kana-Kanji
conversion).

Four silkscreen buttons added to the Japanese device control the
FEP transliteration and conversion process. These four FEP buttons
are arranged vertically between the current left-most silkscreen
buttons and the Graffiti area. The top-most FEP button tells the FEP
to attempt Kana-Kanji conversion on the inline text. The next button
confirms the inline text and terminates the inline conversion session.
The third button toggles the transliteration mode between Hiragana
and Katakana. The last button toggles the FEP on and off.

When any of these four FEP buttons are tapped, it posts a
keyDownEvent with the chr value set to vchrTsm1 through
vchrTsm4, respectively. When SysHandleEvent is passed this
event, it posts a tsmFepButtonEvent and returns true to
indicate that it handled the event.

Japanese text entry is always inline, which means that
transliteration and conversion happen directly inside of a field. The
field code passes events to the FEP, which then returns information
about the appropriate text to display.

Localized Applications
Summary of Localization

Palm OS Programmer’s Companion (Preliminary) 289

During inline conversion, the Graffiti space stroke acts as a shortcut
for the conversion FEP button and the Graffiti return stroke acts as a
shortcut for the confirm FEP button. If inline conversion is in
process, when SysHandleEvent receives a space or return
character in a keyDownEvent, it generates the
tsmFepButtonEvent.

Displaying Error Messages
You may have code that uses the macros ErrFatalDisplayIf
and ErrNonFatalDisplayIf to determine error conditions. If the
error condition occurs, the system displays the file name and line
number at which the error occurred along with the message that
you passed to the macro. Often these messages are hard-coded
strings. On Japanese systems, the Palm OS traps the messages
passed to these two macros and displays a generic message
explaining that an error has occurred.

You should only use ErrFatalDisplayIf and
ErrNonFatalDisplayIf for totally unexpected errors. Do not use
them for errors that you believe your end users will see. If you wish
to inform your users of an error, use a localizable resource to display
the error message instead of ErrFatalDisplayIf or
ErrNonFatalDisplayIf.

Summary of Localization
Text Manager

Working With Multi-Byte Characters

TxtCharBounds
TxtPreviousCharSize

TxtCharSize
TxtNextCharSize

TxtByteAttr

Changing Text

TxtReplaceStr
TxtTruncate

TxtSetNextChar TxtTransliterate

Accessing Text

Localized Applications
Summary of Localization

290 Palm OS Programmer’s Companion (Preliminary)

 TxtGetNextChar
TxtGetChar

TxtGetPreviousChar TxtWordBounds

Searching/Comparing Text

TxtFindString
TxtCaselessCompare

TxtPrepFindString TxtCompare

Obtaining a Character’s Attributes

TxtCharIsAlNum
TxtCharIsDigit
TxtCharIsLower
TxtCharIsSpace
TxtIsValidChar

TxtCharIsAlpha
TxtCharIsGraph
TxtCharIsPrint
TxtCharIsUpper
TxtCharXAttr

TxtCharIsCntrl
TxtCharIsHex
TxtCharIsPunct
TxtCharAttr
TxtCharWidth

Obtaining Character Encoding information

TxtStrEncoding
TxtMaxEncoding

TxtEncodingName TxtCharEncoding

Localizing Numbers

StrLocalizeNumber
LocGetNumberSeparators

StrDelocalizeNumber

International Manager

IntlGetRoutineAddress

Text Manager

Palm OS Programmer’s Companion (Preliminary) 291

14
Debugging
Strategies
You can use a Palm OS system manager called the error manager to
display unexpected runtime errors such as those that typically show
up during program development. Final versions of applications or
system software won’t use the error manager.

The error manager API consists of a set of functions for displaying
an alert with an error message, file name, and the line number
where the error occurred. If a debugger is connected, it is entered
when the error occurs.

The error manager also provides a “try and catch” mechanism that
applications can use for handling such runtime errors as out of
memory conditions, user input errors, etc.

This section helps you understand and use the error manager,
discussing the following topics:

• Displaying Development Errors

• Understanding the Try-and-Catch Mechanism

• Using the Error Manager Macros

• Summary of Debugging API

This chapter only describes programmatic debugging strategies; to
learn how to use the available tools to debug your application, see
the book Debugging Palm OS Applications.

Displaying Development Errors
The error manager provides some compiler macros that can be used
in source code. These macros display a fatal alert dialog on the
screen and provide buttons to reset the device or enter the debugger
after the error is displayed. There are three macros: ErrDisplay,
ErrFatalDisplayIf, and ErrNonFatalDisplayIf.

Debugging Strategies

292 Palm OS Programmer’s Companion (Preliminary)

• ErrDisplay always displays the error message on the
screen.

• ErrFatalDisplayIf and ErrNonFatalDisplayIf
display the error message only if their first argument is
TRUE.

The error manager uses the compiler define ERROR_CHECK_LEVEL
to control the level of error messages displayed. You can set the
value of the compiler define to control which level of error checking
and display is compiled into the application. Three levels of error
checking are supported: none, partial, and full.

During development, it makes sense to set full error checking for
early development, partial error checking during alpha and beta test
periods, and no error checking for the final product. At partial error
checking, only fatal errors are displayed; error conditions that are
only possible are ignored under the assumption that the application
developer is already aware of the condition and designed the
software to operate that way.

Using the Error Manager Macros
Calls to the error manager to display errors are actually compiler
macros that are conditionally compiled into your program. Most of
the calls take a boolean parameter, which should be set to true to
display the error, and a pointer to a text message to display if the
condition is true.

Typically, the boolean parameter is an in-line expression that
evaluates to true if there is an error condition. As a result, both the
expression that evaluates the error condition and the message text
are left out of the compiled code when error checking is turned off.

If you set
ERR_CHECK_LEVEL to...

The compiler...

ERROR_CHECK_NONE (0) Doesn’t compile in any error calls.

ERROR_CHECK_PARTIAL
(1)

Compiles in only ErrDisplay
and ErrFatalDisplayIf calls.

ERROR_CHECK_FULL (2) Compiles in all three calls.

Debugging Strategies

Palm OS Programmer’s Companion (Preliminary) 293

You can call ErrFatalDisplayIf, or ErrDisplay, but using
ErrFatalDisplayIf makes your source code look neater.

For example, assume your source code looks like this:

result = DoSomething();
ErrFatalDisplayIf (result < 0,
"unexpected result from DoSomething");

With error checking turned on, this code displays an error alert
dialog if the result from DoSomething() is less than 0. Besides the
error message itself, this alert also shows the file name and line
number of the source code that called the error manager. With error
checking turned off, both the expression evaluation err < 0 and
the error message text are left out of the compiled code.

The same net result can be achieved by the following code:

result = DoSomething();
#if ERROR_CHECK_LEVEL != ERROR_CHECK_NONE
if (result < 0)
ErrDisplay ("unexpected result from

DoSomething");
#endif

However, this solution is longer and requires more work than
simply calling ErrFatalDisplayIf. It also makes the source code
harder to follow.

Understanding the Try-and-Catch Mechanism
The error manager is aware of the machine state of the Palm OS
device and can therefore correctly save and restore this state. The
built-in try and catch of the compiler can’t be used because it’s
machine dependent.

Try and catch is basically a neater way of implementing a goto if an
error occurs. A typical way of handling errors in the middle of a
routine is to go to the end of the routine as soon as an error occurs
and have some general-purpose cleanup code at the end of every
routine. Errors in nested routines are even trickier because the result
code from every subroutine call must be checked before continuing.

When you set up a try/catch, you are providing the compiler with a
place to jump to when an error occurs. You can go to that error

Debugging Strategies

294 Palm OS Programmer’s Companion (Preliminary)

handling routine at any time by calling ErrThrow. When the
compiler sees the ErrThrow call, it performs a goto to your error
handling code. The greatest advantage to calling ErrThrow,
however, is for handling errors in nested subroutine calls.

Even if ErrThrow is called from a nested subroutine, execution
immediately goes to the same error handling code in the higher-
level call. The compiler and runtime environment automatically
strip off the stack frames that were pushed onto the stack during the
nesting process and go to the error handling section of the higher-
level call. You no longer have to check for result codes after calling
every subroutine; this greatly simplifies your source code and
reduces its size.

Using the Try and Catch Mechanism
The following example illustrates the possible layout for a a typical
routine using the error manager’s try and catch mechanism.

Listing 14.1 Try and Catch Mechanism Example

ErrTry {
 p = MemPtrNew(1000);

if (!p) ErrThrow(errNoMemory);
MemSet(p, 1000, 0);
CreateTable(p);
PrintTable(p);

 }

 ErrCatch(err) {
 // Recover or clean up after a failure in the
 // above Try block."err" is an int
 // identifying the reason for the failure.

 // You may call ErrThrow() if you want to
 // jump out to the next Catch block.

 // The code in this Catch block doesn’t
 // execute if the above Try block completes

// without a Throw.

Debugging Strategies

Palm OS Programmer’s Companion (Preliminary) 295

if (err == errNoMemory)
ErrDisplay("Out of Memory");

else
ErrDisplay("Some other error");

 } ErrEndCatch
// You must structure your code exactly as

 //above. You can’t have an ErrTry without an
//ErrCatch { } ErrEndCatch, or vice versa.

Any call to ErrThrow within the ErrTry block results in control
passing immediately to the ErrCatch block. Even if the subroutine
CreateTable called ErrThrow, control would pass directly to the
ErrCatch block. If the ErrTry block completes without calling
ErrThrow, the ErrCatch block is not executed.

You can nest multiple ErrTry blocks. For example, if you wanted to
perform some cleanup at the end of CreateTable in case of error,

• Put ErrTry/ErrCatch blocks in CreateTable

• Clean up in the ErrCatch block first

• Call ErrThrow to jump to the top-level ErrCatch

Summary of Debugging API

Error Manager Functions

ErrDisplay ErrDisplayFileLineMsg

ErrFatalDisplayIf ErrNonFatalDisplayIf

ErrThrow

Debugging Strategies

296 Palm OS Programmer’s Companion (Preliminary)

Palm OS Programmer’s Companion (Preliminary) 297

15
Standard IO
Applications
The Palm OS supports command line (UNIX style) applications for
debugging and special purposes such as communications utilities.
This capability is not intended for general users, but for developers.
This feature is not implemented in the Palm OS, but rather by
additional C modules that you must link with your application.

NOTE: Don’t confuse this standard IO functionality with the file
streaming API. They are unrelated.

There are two parts necessary for a standard IO application:

• The standard IO application itself.

A standard IO application is not like a normal Palm
application. It is executed by a command line and has
minimal user interface. It can take character input from the
stdin device (the keyboard) and write character output to the
stdout window.

• The standard IO provider application.

A standard IO provider application is necessary to execute
and see output from a standard IO application. The standard
IO provider application is a normal Palm application that
provides a field in which you can enter commands to execute
standard IO applications. The field also serves as a stdout
window where output from the executing application is
written.

The details of creating these two different applications are described
in the following sections.

Standard IO Applications
Creating a Standard IO Application

298 Palm OS Programmer’s Companion (Preliminary)

Creating a Standard IO Application
To create a standard IO application, you must include the header file
StdIOPalm.h. In addition to including this header, you must link
the application with the module StdIOPalm.c. This module
provides a PilotMain routine that extracts the command line
arguments from the cmd and cmdPBP parameters and the glue code
necessary for executing the appropriate callbacks supplied by the
standard IO provider application.

You build the application normally, but give it a database type of
sioDBType ('sdio') instead of 'appl'. In addition, it must be named
“Cmd-cmdname” where cmdname is the name of the command used
to execute the application. For example, the ping command would
be placed in a database named “Cmd-ping“.

In the Palm VII device, the Network panel, whose log window is a
standard IO provider application, has two standard IO commands
built-in: info and finger. The ROM has two additional ones: ping
and nettrace.

When compiling for the Palm device, the entry point must be
named SioMain and must accept two parameters: arc and argv.
Here’s the simplest possible example of a standard IO application.

#include <StdIOPalm.h>
SWord SioMain(Word argc, char* argv[])
{ printf(“Hello World\n”);
}

Standard IO applications can use several input and output functions
that mimic their similarly named UNIX counterparts. These are
listed in the summary table at the end of this chapter.

Your standard IO application can accept input from stdin and write
output to stdout. The stdin device corresponds to the text field in
the standard IO provider application that is used for input and
output. The stdout device corresponds to that same text field.

Creating a Standard IO Provider Application
In order for a standard IO application to be invoked and able to
provide results, you need a standard IO provider application. This

Standard IO Applications
Creating a Standard IO Provider Application

Palm OS Programmer’s Companion (Preliminary) 299

application provides the user interface support; that is, the stdin
device support and the stdout window that the standard IO
application reads from and writes to.

The standard IO provider sublaunches the standard IO application
when the user types in a command line and Return (using Graffiti).
The provider application passes a structure pointer that contains the
callbacks necessary for performing IO to the standard IO
application through the cmdPBP parameter of PilotMain.

To create a standard IO provider application, you must link the
application with the module StdIOProvider.c.

To handle input and output, the standard IO provider application
must provide a form with a text field and a scroll bar. The standard
IO provider application must do the following:

1. Call SioInit during application initialization. SioInit
saves the object ID of the form that contains the input/output
field, the field itself, and the scroll bar.

2. Call SioHandleEvent from the form's event handler before
doing application specific processing of the event. In other
words, the form event handler that the application installs
with FrmSetEventHandler should call SioHandleEvent
before it does anything else with the event.

3. Call SioFree during application shutdown.

The application is free to call any of the standard IO macros and
functions between the SioInit and SioFree calls. If the current
form is not the standard IO form when these calls are made, they
will record changes to the active text and display it the next time the
form becomes active.

A typical standard IO provider application will have a routine
called ApplicationHandleEvent, which gets called from its
main event loop after SysHandleEvent and MenuHandleEvent.
An example is shown in Listing 15.1.

Listing 15.1 Standard IO Provider ApplicationHandleEvent Routine

static Boolean ApplicationHandleEvent (EventPtr event)
{
FormPtr frm;

Standard IO Applications
Creating a Standard IO Provider Application

300 Palm OS Programmer’s Companion (Preliminary)

Word formId;

if (event->eType == frmLoadEvent) {
formId = event->data.frmLoad.formID;
frm = FrmInitForm (formId);
FrmSetActiveForm (frm);

switch (formId) {
.....
case myViewWithStdIO:
FrmSetEventHandler (frm, MyViewHandleEvent);
break;

}
return (true);
}

return (false);
}

A typical application form event handler is shown in Listing 15.2.

Listing 15.2 Standard IO Provider Form Event Handler

static Boolean MyViewHandleEvent (EventPtr event)
{
FormPtr frm;
Boolean handled = false;

// Let StdIO handler do its thing first.
if (SioHandleEvent(event)) return true;

// If StdIO did not completely handle the event...
if (event->eType == ctlSelectEvent) {
switch (event->data.ctlSelect.controlID) {
case myViewDoneButtonID:
FrmGotoForm (networkFormID);
handled = true;
break;

}
}

Standard IO Applications
Summary of Standard IO

Palm OS Programmer’s Companion (Preliminary) 301

else if (event->eType == menuEvent)
return MyMenuDoCommand(event->data.menu.itemID);

else if (event->eType == frmUpdateEvent) {
MyViewDraw(FrmGetActiveForm());
handled = true;
}

else if (event->eType == frmOpenEvent) {
frm = FrmGetActiveForm();
MyViewInit(frm);
MyViewDraw(frm);
handled = true;
}

else if (event->eType == frmCloseEvent) {
frm = FrmGetActiveForm();
MyViewClose(frm);
}

return (handled);
}

Summary of Standard IO
Standard IO Macros and Functions

fgetc
fgets
fprintf
fputc
fputs
getchar
gets
printf
putc

putchar
puts
SioAddCommand
SioMain
sprintf
system
vfprintf
vsprintf

Standard IO Applications
Summary of Standard IO

302 Palm OS Programmer’s Companion (Preliminary)

Standard IO Provider Functions

SioClearScreen
SioExecCommand
SioFree

SioHandleEvent
SioInit

Palm OS Programmer’s Companion (Preliminary) 303

Index

Numerics
0.01-second timer 186
1.0 heaps 137
1-second timer 186
2.0 heaps 137
3.0 heaps 137
32K jumps 30
68328 processor 125

A
alarm manager 157–163

and alarm sound 158
procedure alarms 161
reminder dialog boxes 158

alarm sound 158, 168
alarms 27
alert manager 81
alerts, system-defined 81
allocating handles 30
AlmGetAlarm 159
AlmGetProcAlarm 162
AlmSetAlarm 158, 159
AlmSetProcAlarm 162
ANSI C libraries 21
APPL database 31
application design

accessibility 37
assigning version number 32
base tutorial phase 35
buttons 38
command buttons 37
data entry 41
dialogs 37
ease of use 37
handling system messages 28
minimizing taps 37
removing deleted records 32
switching applications 40
using lists 96

application icon 28, 38
name 27
size 28

application launcher 52
application name 27

application preferences database 27
application record database 27
application startup 51–63
application-defined features 165
applications

control flow 20
event driven 20

AppNetRefnum 236
AppNetTimeout 236
architecture of memory 125
auto-off 182

timer 74
auto-repeat 73

B
back-up of data to PC 124
battery 182

conservation using modes 181
life, maximizing 181

battery life and serial manager 194
baud rate, parity options 195
beaming 223
Berkeley Sockets API 232

mapping example 234
bind (Berkeley Sockets API) 245
bits behind menu bar 94
booting 178
button objects 84
Button resource 37, 78

highlighting 84
buttons

assignment by end-user 40
choosing number 38
in dialog 45
position 44
traversing categories 40

byte ordering 192

C
C library

and float manager 187
and string manager 103

C library calls 35
calibrating digitizer 108

Index

304 Palm OS Programmer’s Companion (Preliminary)

carriage returns 91
categories 39, 40

maximum number 28
traversing with button 40

changing serial port settings 195
Char 271
Chars.h 271
check box object 89
Checkbox 78
ChrHorizEllipsis 287
ChrIsHardKey 274
ChrNumericSpace 287
chunks 133

resizing 136
size 136

Click sound 168
clipboard 43
clock, real-time 185
close (Berkeley Sockets API) 245
close-wait state 242
closing net library 242
closing serial link manager 216
closing serial port 195
CMP 193
CodeWarrior IDE 22
command buttons 37
command line applications 297
conduit 19
configuration, net library 237
Confirmation sound 168
connect (Berkeley Sockets API) 245
connection management protocol 193
connection manager 211
connectivity 191
connector (external) 192
conserving battery using modes 181
Constructor 22
control flow 20
control objects 84
conventions for naming 29
CRC-16 212
creating a chunk 135
creating database 145
creating resources 151

creator ID 31
ctlEnterEvent 84, 85, 86, 87, 88, 89
ctlExitEvent 85, 86, 88, 90
CtlHandleEvent 84
CtlNewControl 101
ctlRepeatEvent 87, 88
ctlSelectEvent 86, 87, 89, 90
CTS timeout 195
custom UI element 100

D
data entry, Graffiti 41
data manager 141

using 145
database headers 143

fields 143
database ID

and launch codes 60
database version number 32
databases 20, 128, 142

getting and setting information 146
date and time manager 186
DateFormatType 285
default receive queue, restoring 197
deleted records 28, 32
deleting database 145
deleting records 31
desktop link protocol 193
Desktop Link Server 214
Details button 40
Details dialog format 42
dialog boxes (reminder) 158
dialogs 30

design 45
online help 45

digitizer 105
after reset 179
and pen manager 108
and pen queue 72
calibrating 108
dimensions 108
pen stroke to key event 72
polling 186
sampling accuracy 108

Index

Palm OS Programmer’s Companion (Preliminary) 305

DLP 193
DmCloseDatabase 174
DmCreateDatabase 145, 149
DmDatabaseInfo 32, 146, 149
DmDatabaseSize 146
DmDeleteDatabase 145, 149
DmDeleteRecord 31
DmFindDatabase 146, 173
DmFindRecordByID 174
DmGetDatabase 146
DmGetRecord 146, 174
DmNewResource 151
DmOpenDatabase 173
DmOpenDatabaseByTypeCreator 171
DmQueryRecord 146, 174
DmReleaseRecord 146, 174
DmReleaseResource 150
DmRemoveRecord 31
DmResizeRecord 146
DmSetDatabaseInfo 32, 146
DmWrite 166
double taps 39
down arrow 92
doze mode 181
drivers, restarting 178
dynamic heap

soft reset 178
dynamic memory 30
dynamic RAM 125

E
editable items

labels 45
edit-in-place 30
ErrDisplay 291, 293
ErrFatalDisplayIf 289, 292, 293
errno 236
ErrNonFatalDisplayIf 289
error manager 291–295

try-and-catch mechanism 293
Error sound 168
ERROR_CHECK_LEVEL 292, 293
ErrThrow 294

event loop 67–70
example 67
example program 33

event-driven applications 20
events

naming conventions 29
overview 65–75

EvtGetEvent 82, 181
EvtResetAutoOffTimer 74, 197
examples

event loop 67
startup routine 55
stop routine 61

exchange manager 223
launch codes sent by 225

F
fcntl 246
feature manager 163–167
feature memory 166
features

application-defined 165
feature memory 166
system version 164

Field 79
field objects 90

events 91
line feeds vs. carriage returns 91

file streaming functions 155
finding database 146
FindStrInStr 279
finger navigation 39
FIR 227
flags, launch flags 52
fldEnterEvent 92
FldHandleEvent 91
FldNewField 101
float manager overview 187
flushing serial port 197
FntDefineFont 104
FntSetFont 104
font labels 45
FontSelect 104

Index

306 Palm OS Programmer’s Companion (Preliminary)

form objects 79
event flow 80

forms 21
FrmAlert 81
FrmCustomAlert 81
FrmNewBitmap 101
FrmNewForm 101
FrmNewGadget 101
FrmNewLabel 101
frmOpenEvent 80, 87
FrmRemoveObject 101
FrmValidatePtr 101
FtrGet 165, 166, 275
FtrPtrNew 166
FtrSet 165
FtrUnregister 165
function naming conventions 29

G
gadget resource 100
getdomainname (Berkeley Sockets API) 250
gethostbyaddr (Berkeley Sockets API) 250
gethostbyname (Berkeley Sockets API) 250
gethostname (Berkeley Sockets API) 250
getpeername (Berkeley Sockets API) 246
getservbyname (Berkeley Sockets API) 250
getsockname (Berkeley Sockets API) 246
getsockopt (Berkeley Sockets API) 246
gettimeofday() (Berkeley Sockets API) 250
global find 27

and private records 27
global variables 30

erasing 178
Graffiti 41, 43

customizing behavior 105
Help 107
Help character 107

Graffiti manager 105
Graffiti navigation 40
Graffiti recognizer 71
Graffiti reference 42
Graffiti Shift

getting and setting state 106
Graffiti ShortCuts database 106

Graffiti status indicator area
not obscuring 45

graffitiReferenceChr 107
GrfProcessStroke 105, 106

H
handles, allocation 30
handshaking options 195
hard reset 178, 179
hardware button presses and key manager 107
heap fragmentation 30
heap header 132
heap space 30
heaps

and soft reset 129
in Palm OS 1.0 137
in Palm OS 2.0 137
in Palm OS 3.0 137
overview 129
RAM and ROM based 123
structure 132

Help ID 45
highlighting button objects 84
HotSync 32
htonl (Berkeley Sockets API) 251
htons (Berkeley Sockets API) 251

I
icons, application 28
ID

local 131
See Also creator ID

IDE 22
inet_addr (Berkeley Sockets API) 251
inet_lnaof (Berkeley Sockets API) 251
inet_makeaddr (Berkeley Sockets API) 251
inet_netof (Berkeley Sockets API) 252
inet_network (Berkeley Sockets API) 251
inet_ntoa (Berkeley Sockets API) 252
infrared library 226
initialization

global variables 55
input devices 19
insertion point object 102

Index

Palm OS Programmer’s Companion (Preliminary) 307

interface(s) used by net library 238
Internet 236
Internet applications 232
interrupting Sync application 183
IntlGlue.lib 286
IR library 226

accessing 228
IrDA stack 227
IrLAP 227
IrLMP 227

K
kernel 183
key events

from pen strokes 71
key manager 107
key queue 73
keyboard 42
KeyCurrentState 107
keyDownEvent 92, 93, 107, 109, 271, 287
KeyRates 108

L
label resource 98
labels, font 45
launch codes 20, 51–63

and returned database ID 60
code example 53
creating 60
handling 26
launch flags 52
parameter blocks 52
predefined 62
sent by exchange manager 225
summary 62
SysBroadcastActionCode 59
use by application 59

launch flags 52
launcher 38

application icon name 27
launching applications 52
LCD screen 79
left arrow 92
line feeds 91

list objects 96
List resource 79
listen (Berkeley Sockets API) 247
local IDs 131, 142
localization

general guidelines 267
LocGetNumberSeparators 286
locking a chunk 135
Loop-back Test 214
low-battery warnings 27
lstEnterEvent 97
LstHandleEvent 97
LstNewList 101
lstSelectEvent 97

M
mailbox queue 232
managers

naming convention 157
overview 21

master pointer table 132
maximizing battery life 181
MemHandleFree 136
MemHandleLock 135, 174
MemHandleNew 135
MemHandleResize 136
MemHandleSize 136
MemHandleUnlock 135
MemMove 137
memory architecture 125
memory management

architecture 125
Introduction 123

memory manager
chunks 127

memory manager See Also data manager
memory manager See Also resource manager
MemPtrNew 136
MemPtrRecoverHandle 136
MemPtrUnlock 174
MemSet 137
menu bar objects 93
Menu Bar resource 79

Index

308 Palm OS Programmer’s Companion (Preliminary)

menu bars
and user actions 93
bits behind 94

Menu Resource 79
menuEvent 95
MenuHandleEvent 94
menus 43
MIME data type 224
Modem Manager 193
modes 40, 180

efficient use 181
modifying Graffiti shortcuts 107
Motorola byte ordering 192
moving memory 137
multitasking kernel 183

N
naming conventions 29
navigation 40
net library

closing 242
open sockets maximum 244
opening and closing 241
OS requirement 233
overview 232–235
preferences 237
RAM requirement 233
setup and configuration 237
version checking 243

net protocol stack 232
as separate task 232

netIFCreatorLoop 238
netIFCreatorPPP 238
netIFCreatorSLIP 238
netlib interface introduction 232
NetLibIFAttach 238
NetLibIFDetach 238
NetLibIFGet 238
NetLibIFSettingGet 238
NetLibIFSettingSet 239
NetLibSettingGet 240
NetLibSettingSet 240
NetSocket.c 236
network device drivers 232

network interface 233
network services 231
new serial manager 198
nilEvent 82
ntohl (Berkeley Sockets API) 251
ntohs (Berkeley Sockets API) 251

O
OBEX 228
online help 45
on-screen keyboard 42
open sockets maximum (net library) 244
opening net library 241
opening serial link manager 216
opening serial port 195
optimization 30

dynamic memory 30
sorting 30

over the air characters 265
overloading buttons 39
overview of net library 232–235

P
packet assembly/disassembly protocol 193
packet footer, SLP 214
packet header, SLP 213
packet receive timeout 216
PADP 193, 214
parameter blocks 52
patches, loading during reset 179
PC connectivity 18, 124
pen location polling 108
pen manager 108
pen queue 72, 108
pen strokes and key events 71
penDownEvent 84, 85, 86, 87, 88, 89, 92, 96, 97
penUpEvent 84, 85, 86, 87, 88, 89, 90, 92, 95, 97, 106
performance 30
physical scrolling 41
PilotMain 52

code example 53
popSelectEvent 97
Popup list 37, 79

Index

Palm OS Programmer’s Companion (Preliminary) 309

Popup trigger 79
popup trigger object 85
port ID for socket 216
power 19
power modes 180
predefined launch codes 62
prefAlarmSoundLevelV20 176
prefAlarmSoundVolume 169, 177
prefDateFormat 285
preferences 41

application-specific 55
auto-off 182
quick switch 41
restoring 27
saving 27
short cuts 107
system 55

preferences database
net library 237

prefGameSoundLevelV20 176
prefGameSoundVolume 169, 177
PrefGetAppPreferences 27
PrefGetPreference 169, 176, 177, 285, 286
PrefGetPreferences 175
PrefSetAppPreferences 27
PrefSetPreference 175
prefSysSoundLevelV20 176
prefSysSoundVolume 169, 177
prefTimeFormat 285
prefWeekStartDay 285
PrgHandleEvent 82
PrgStartDialog 82
PrgUpdateDialog 82
private records 27
procedure alarms 161
progress manager 82
Push button 37, 78
push button objects 88

event flow 88

Q
quick switch, preferences 41

R
RAM 19
RAM store 123
RAM use 124
read (Berkeley Sockets API) 247
real-time clock 185, 186
receive queue, restoring 197
receiving SLP packet 215
records 20, 141
recv (Berkeley Sockets API) 247
recvfrom (Berkeley Sockets API) 247
recvmsg (Berkeley Sockets API) 247
reference number for socket 216
reminder dialog boxes 158
Remote Console 214
Remote Console packets 214
Remote Debugger 214, 216
remote inter-application communication 193
Remote Procedure Call packets 214
remote procedure calls 193, 216
Remote UI 214
repeat control objects 87
Repeating button 78
ResEdit

resource naming conventions 29
reset 178

digitizer screen 179
hard reset 179
loading patches 179
soft reset 178

resource database header 148
resource manager 148

using 149
resources

gadget 100
label 98
storing 148

response time 183
restoring default receive queue 197
restoring preferences 27
RIAC 193
right arrow 92
ROM store 123
ROM use 124

Index

310 Palm OS Programmer’s Companion (Preliminary)

ROM, retrieving serial number 184
RPC 193, 216
RS232 signals 194
running mode 181

S
saving preferences 27
SclDrawScrollBar 99
sclEnterEvent 99
sclExitEvent 99
SclGetScrollBar 99
sclRepeatEvent 99
SclSetScrollBar 99
screen layout 44
screen size 17, 79
scrollbar objects 98
scrolling 41
select (Berkeley Sockets API) 248
Selector trigger 78
selector trigger object 86
send (Berkeley Sockets API) 249
sending stream of bytes 196
sendmsg (Berkeley Sockets API) 249
sendto (Berkeley Sockets API) 249
SerClearErr 195
serCtlBreakStatus (in SerCtlEnum) 198
serCtlEmuSetBlockingHook (in SerCtlEnum) 198
SerCtlEnum 197
serCtlFirstReserved (in SerCtlEnum) 197
serCtlHandshakeThreshold (in SerCtlEnum) 198
serCtlMaxBaud (in SerCtlEnum) 198
serCtlStartBreak (in SerCtlEnum) 197
serCtlStartLocalLoopback (in SerCtlEnum) 198
serCtlStopBreak (in SerCtlEnum) 198
serCtlStopLocalLoopback (in SerCtlEnum) 198
serErrAlreadyOpen 195
serErrLineErr 196
serial communication 191
serial link manager 215

opening 216
serial link protocol 193, 212, 213, 215
serial manager 193, 194, 198

prolonging battery life 194

serial number, retrieving 184
serial port 27

changing settings 195
closing 195
flushing 197
opening 195

SerOpen 195
SerReceive 196
SerReceiveCheck 196
SerReceiveFlush 197
SerReceiveWait 196
SerSend 196
SerSendWait 196
SerSetReceiveBuffer 197
SerSetSettings 195
setdomainname (Berkeley Sockets API) 250
sethostname (Berkeley Sockets API) 250
setsockopt (Berkeley Sockets API) 249
settimeofday (Berkeley Sockets API) 250
setup, net library 237
shortcuts 43
shortcuts, Graffiti 106
shutdown (Berkeley Sockets API) 249
silk-screened icons, not obscuring 45
SIR 227
sleep mode 180

and current time 185
and real-time clock 186

SlkClose 216
SlkCloseSocket 216
slkErrAlreadyOpen 216
SlkOpen 216
SlkOpenSocket 216
SlkPktHeaderType 217
SlkReceivePacket 217, 219
SlkSendPacket 217
SlkSocketListenType 217
SlkSocketPortID 216
SlkSocketRefNum 216
SlkSocketSetTimeout 216
SlkWriteDataType 217
SLP 193, 212

Index

Palm OS Programmer’s Companion (Preliminary) 311

SLP packet 212
footer 214
header 213
receiving 215
transmitting 215

SMF 169
SMFs in databases 172
SndCommandType 170
SndCreateMidiList 173, 178
SndDoCmd 168, 169, 170, 178
SndPlaySMF 168, 169, 170, 174, 178
SndPlaySystemSound 168, 170
SndSetDefaultVolume 175
SndSmfOptionsType 170
SO_ERROR (Berkeley Sockets API) 247
SO_KEEPALIVE (Berkeley Sockets API) 247, 249
SO_LINGER (Berkeley Sockets API) 247, 249
SO_TYPE (Berkeley Sockets API) 247
socket (Berkeley Sockets API) 249
socket listener 217, 219
socket listener procedure 217, 219
sockets, opening serial link socket 216
soft reset 129, 178

dynamic heap 178
sorting 30
sound manager 167–178
stack space 30
standard IO applications 297
startup 51–63
startup routine, example 55
Startup sound 168
state information, storing 27
stop routine example 61
storage heaps, erasing 179
storage RAM 125
StrDelocalizeNumber 286
string manager 102
StrLocalizeNumber 286
strokes

capturing 72
structure elements, naming convention 29
summary of launch codes 62
switching applications 40
switching categories 40

switching views 40
Sync application 183
synchronization messages 27, 28
sys_socket.h 234, 236
SysAppLaunch 59, 109
sysAppLaunchCmdAddRecord 62
sysAppLaunchCmdAlarmTriggered 62, 159, 160
sysAppLaunchCmdCountryChange 62
sysAppLaunchCmdDisplayAlarm 62, 159, 161
sysAppLaunchCmdExgAskUser 62, 225
sysAppLaunchCmdExgReceiveData 62, 225
sysAppLaunchCmdFind 62
sysAppLaunchCmdGoto 62, 226, 279
sysAppLaunchCmdGoToURL 62
sysAppLaunchCmdInitDatabase 62
sysAppLaunchCmdLookup 63
sysAppLaunchCmdNormalLaunch 26
sysAppLaunchCmdOpenDB 63
sysAppLaunchCmdPanelCalledFromApp 41, 63
SysAppLaunchCmdReset 178
sysAppLaunchCmdReturnFromPanel 41, 63
sysAppLaunchCmdSaveData 63
sysAppLaunchCmdSyncNotify 63
sysAppLaunchCmdSystemLock 63
sysAppLaunchCmdSystemReset 63, 178
sysAppLaunchCmdTimeChange 63
sysAppLaunchCmdURLParams 63
sysAppLaunchCommandNormalLaunch 52, 55
SysAppLauncherDialog 109
SysBatteryInfo 182
SysBroadcastActionCode 59
SysCurAppDatabase 59
sysFileDescStdIn 248
sysFtrCreator 164
sysFtrNumROMVersion 164
SysGraffitiReferenceDialog 107
SysLibFind 195, 228
SysReset 179
SysSetAutoOffTime 182
SysTaskDelay 182, 187
system event manager 71–75
system keyboard 43
system messages 27, 28

Index

312 Palm OS Programmer’s Companion (Preliminary)

system preferences 26, 55
system tick interrupts 186
system ticks 186

and Simulator 187
on Palm OS device 186

system version feature 164
SystemMgr.h 62, 164, 237
SystemPreferencesTypeV10 175
SysTicksPerSecond 187
SysTraps.h 48
SysUIAppSwitch 60, 109

T
table objects 95
tAIN resource 28
taps

double taps 39
minimizing 37

TblHasScrollBar 99
tblSelectEvent 95, 96
TCP/IP 231
TCP_MAXSEG (Berkeley Sockets API) 246
TCP_NODELAY (Berkeley Sockets API) 246, 249
TimDateTimeToSeconds 160, 186
time manager 186
TimeFormatType 285
timeout

serial link socket 216
timer 185
TimGetSeconds 186
TimGetTicks 187
timing 187
TimSecondsToDateTime 186
TimSetSeconds 186
Tiny TP 227
title bar 44
transmitting SLP packet 215
try-and-catch mechanism 293

example 294
tutorial (use for application design) 35
TxtCaselessCompare 278
TxtCharBounds 277
TxtCharSize 277
TxtCompare 278

TxtFindString 279
TxtGetNextChar 276
TxtGetPrevChar 276
TxtIsValidChar 273
TxtPrepFindString 279
TxtReplaceStr 283
TxtSetNextChar 276

U
UDP 231
UI design 18, 35

avoiding dialog box stacking 30
button alignment 44
design elements 78
design philosophy 18, 35
dialogs 45
screen layout 44
title bar 44

UI design rules
clipboard 43
finger navigation 39
Graffiti navigation 40
Graffiti status indicator area 45
overloading buttons 39
ready cursor 42
silk-screened icons 45

UI objects 21
buttons 84
check box 89
control objects 84
field 90
form 79
insertion point 102
list 96
menu bars 93
popup trigger 85
push button 88
repeat control 87
scrollbar 98
selector trigger 86
table 95
windows 80

UI resources
custom 100

UI resources, storing 148

Index

Palm OS Programmer’s Companion (Preliminary) 313

UIAS 183
unlocking a chunk 135
up arrow 92
user input 43

cut, copy, paste, undo 43
User Interface Application Shell 183
user interface elements

storing (resource manager) 148

V
vchrHardAntenna 265
vchrRadioCoverageFail 265
vchrRadioCoverageOK 265
vchrTsm1 288

vchrTsm4 288
version checking, net library 243
version number 32

W
wait cursor 30
Warning sound 168
WChar 271
window objects 80

off-screen 80
winEnterEvent 80, 86, 95, 97
winExitEvent 80, 87, 97
write (Berkeley Sockets API) 249

Index

314 Palm OS Programmer’s Companion (Preliminary)

	About This Document
	Palm OS SDK Documentation
	What This Volume Contains
	Conventions Used in This Guide

	Programming Palm OS in a Nutshell
	Why Programming for Palm OS Is Different
	Screen Size
	Quick Turnaround Expected
	PC Connectivity
	Input Methods
	Power
	Memory
	File System
	Backward Compatibility

	Palm OS Programming Concepts
	Programming Tools
	Where to Go From Here

	Good Design Practices
	Designing Your Application
	Integrating Programs With the Palm OS Environment
	Naming Conventions
	Achieving Optimum Performance
	Assigning a Creator ID
	Working With Databases
	Writing Robust Code
	Avoiding Potential Pitfalls

	User Interface Guidelines
	Understanding the Palm OS UI Design Philosophy
	Creating a Palm OS User Interface
	Palm OS Resource Selection: List or Table?

	Localization Guidelines
	Making Your Application Run on Different Devices
	Running New Applications on an Older Device
	Compiling Older Applications With The Latest SDK

	Application Startup and Stop
	Launch Codes and Launching an Application
	Responding to Launch Codes
	Responding to Normal Launch
	Responding to Other Launch Codes

	Launching Applications Programmatically
	Creating Your Own Launch Codes
	Stopping an Application
	Launch Code Summary

	Event Loop
	The Application Event Loop
	Low-Level Event Management
	Event Translation: Pen Strokes to Key Events
	Pen Queue Management
	Key Queue Management
	Auto-Off Control
	System Event Manager Summary

	User Interface
	Palm OS Resource Summary
	Drawing on the Palm OS Device
	Forms, Windows, and Dialogs
	Alert Dialogs
	Progress Dialogs

	Controls
	Buttons
	Popup Trigger
	Selector Trigger
	Repeating Button
	Push Buttons
	Check Boxes

	Fields
	Menus
	Tables
	Table Event

	Lists
	Labels
	Scroll Bars
	Custom UI Objects
	Dynamic UI
	Dynamic User Interface Functions

	Insertion Point
	Text
	Working With Text As Strings
	Fonts in Palm OS 3.0 and Later

	Receiving User Input
	The Graffiti Manager
	The Key Manager
	The Pen Manager

	Application Launcher
	Summary of User Interface API

	Memory
	Introduction to Memory Use on Palm OS
	Hardware Architecture
	PC Connectivity

	Memory Architecture
	Heap Overview

	The Memory Manager
	Memory Manager Structures
	Using the Memory Manager

	Summary of Memory Management

	Files and Databases
	The Data Manager
	Records and Databases
	Structure of a Database Header
	Using the Data Manager

	The Resource Manager
	Structure of a Resource Database Header
	Using the Resource Manager

	File Streaming Application Program Interface
	Using the File Streaming API

	Summary of Files and Databases

	Palm System Features
	Alarms
	Setting an Alarm
	Alarm Scenario
	Setting a Procedure Alarm

	Features
	The System Version Feature
	Application-Defined Features
	Using the Feature Manager
	Feature Memory

	Sound
	Synchronous and Asynchronous Sound
	Using the Sound Manager
	Sound Preferences Compatibility Information

	System Boot and Reset
	Soft Reset
	Soft Reset + Up Arrow
	Hard Reset
	System Reset Calls

	Hardware Interaction
	Palm OS Power Modes
	Guidelines for Application Developers
	Power Management Calls

	The Microkernel
	Retrieving the ROM Serial Number
	Time
	Using Real-Time Clock Functions
	Using System Ticks Functions

	Floating-Point
	Using Floating Point Arithmetic
	Using 1.0 Floating-Point Functionality

	Summary of System Features

	Serial Communication
	Serial Hardware
	Byte Ordering
	Serial Communications Architecture Hierarchy
	The Serial Manager
	Using the Serial Manager

	The New Serial Manager
	Checking for the New Serial Manager
	What's New About the New Serial Manager
	About the New Serial Manager
	Using the New Serial Manager
	New Serial Manager Example
	Writing a Serial or Virtual Device Driver

	The Connection Manager
	The Serial Link Protocol
	SLP Packet Structures
	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager

	Summary of Serial Communications

	Beaming (Infrared Communication)
	Exchange Manager
	Overview
	Exchange Manager and Launch Codes

	IR Library
	IrDA Stack
	Accessing the IR Library

	Summary of Beaming

	Network Communication
	Net Library
	About the Net Library
	Net Library Usage Steps
	Obtaining the Net Library’s Reference Number
	Setting Up Berkeley Socket API
	Setup and Configuration Calls
	Opening the Net Library
	Closing the Net Library
	Version Checking
	Network I/O and Utility Calls
	Berkeley Sockets API Functions

	Summary of Network Communication

	Internet and Messaging Applications
	Overview of the Palm.Net System
	Palm Query Applications
	Palm.Net System Overview

	System Version Checking
	Using Clipper to Display Information
	Launching Other Applications from Clipper
	Sending Messages
	New keyDownEvent Key Codes
	Over the Air Characters

	Localized Applications
	Localization Guidelines
	Text Manager and International Manager
	Characters
	Declaring Character Variables
	Using Character Constants
	Missing and Invalid Characters
	Retrieving a Character’s Attributes
	Virtual Characters
	Retrieving the Character Encoding

	Strings
	Manipulating Strings
	Performing String Pointer Manipulation
	Truncating Displayed Text
	Searching and Comparing Strings
	Global Find
	Dynamically Determining a String’s Contents

	Dates
	Numbers
	Compatibility Information
	Notes on the Japanese Implementation
	Japanese Character Encoding
	Japanese Character Input
	Displaying Error Messages

	Summary of Localization

	Debugging Strategies
	Displaying Development Errors
	Using the Error Manager Macros
	Understanding the Try-and-Catch Mechanism
	Using the Try and Catch Mechanism
	Summary of Debugging API

	Standard IO Applications
	Creating a Standard IO Application
	Creating a Standard IO Provider Application
	Summary of Standard IO

	Index

