PALM
COMAPUTING.
PLATFORM

Palm OS
Programmer’s
Companion

(Preliminary)

Navigate this online document as follows:

To see bookmarks, Command-7 (Mac OS)

type: Ctrl-7 (Windows)
To navigate, any blue hypertext link
click on: any Table of Contents entry

any Index entry
arrows in the toolbar

Y 7 7 7 777777777777 4

Palm OS
Programmer’s
Companion

(Preliminary)

Copyright © 1996 - 1999, 3Com Corporation or its subsidiaries (“3Com?”). All rights reserved. This docu-
mentation may be printed and copied solely for use in developing products for the Palm Computing plat-
form. In addition, two (2) copies of this documentation may be made for archival and backup purposes.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or
by any means or used to make any derivative work (such as translation, transformation or adaptation)
without express written consent from 3Com.

3Com reserves the right to revise this documentation and to make changes in content from time to time
without obligation on the part of 3Com to provide notification of such revision or changes. 3COM MAKES
NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR
THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMENTATION IS PROVIDED
ON AN “AS IS” BASIS. 3COM MAKES NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IM-
PLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING
WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, 3COM ALSO EXCLUDES FOR ITSELF AND ITS SUPPLI-
ERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR
DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY
KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION OR
DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF 3COM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3Com, the 3Com logo, HotSync, Palm Computing, and Graffiti are registered trademarks, and iMessenger,
Palm 111, Palm llIx, Palm V, Palm VII, Palm.Net, Palm OS, and the Palm Computing Platform logo are
trademarks of 3Com Corporation or its subsidiaries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brand and product
names may be registered trademarks or trademarks of their respective holders.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Contact Information:

3Com (Palm Computing Subsidiary) 5400 Bayfront Plaza
P.O. Box 58007
Santa Clara, CA. 95052-8007

US.A.
3Com (Palm Computing Subsidiary) US.A. 1-800-881-7256
Mail Order Canada: 1-800-891-6342

elsewhere: 801-431-1536

Web: http://ww. pal m com
Palm Computing World Wide Web Web: http://ww. pal mcom
Developer Technical support Web: http://ww. pal m coni devzone/
Developer Mailing Lists Web: http://LS. pal mcom
Solution Provider Program Web: http://ww. pal m cont spp/
(developer services and hardware
discounts)

Metrowerks World Wide Web Web: http://ww. nmet rower ks. com

Table of Contents

About This Document 13
Palm OS SDK Documentation 13
What This Volume Contains13
ConventionsUsed in ThisGuide15

1 Programming Palm OS in a Nutshell 17
Why Programming for Palm OS Is Different 17

Screen Size eV 4
Quick Turnaround Expected N £
PC Connectivity18
Input Methods.19
Power 019
Memory 019
File System e e e e oo 20
Backward Compatlblllty A |
Palm OS Programming Concepts 20
Programming Tools. 22
Whereto GoFromHere22

2 Good Design Practices 25

Designing Your Application 26
Integrating Programs With the Palm OS Envwonment. . . . 26
Naming Conventions. A |
Achieving Optimum Performance < (0]
AssigningaCreatorID 31
Working With Databases31
Writing RobustCode 32
Avoiding Potential Pitfalls. 34

User Interface Guidelines 3
Understanding the Palm OS UIDeS|gn Phllosophy 3
Creating a Palm OS User Interface 38
Palm OS Resource Selection: Listor Table?. 46

Localization Guidelines 46

Making Your Application Run on leferent DeV|ces R ¥ {

Palm OS Programmer’s Companion (Preliminary) 5

Running New Applications on an Older Device
Compiling Older Applications With The Latest SDK

3 Application Startup and Stop
Launch Codes and Launching an Application

Responding to Launch Codes
Responding to Normal Launch.
Responding to Other Launch Codes
Launching Applications Programmatically .
Creating Your Own Launch Codes
Stopping an Application .
Launch Code Summary .

4 Event Loop
The Application Event Loop .

Low-Level Event Management .
Event Translation: Pen Strokes to Key Events
Pen Queue Management
Key Queue Management .
Auto-Off Control . . .
System Event Manager Summary

5 User Interface
Palm OS Resource Summary .
Drawing on the Palm OS Device .
Forms, Windows, and Dialogs .
Alert Dialogs
Progress Dialogs .
Controls.
Buttons .
Popup Trigger .
Selector Trigger
Repeating Button.
Push Buttons
Check Boxes .
Fields .

. 48
. 49

51

. 51
. 52
. 55
. 58
. 59
. 60
. 60
. 62

65

. 67
.71
.71
. 12
. 13
. 14
. 74

77

. 18
.19
. 19
. 81
. 82
. 84
. 84
. 85
. 86
. 87
. 88
. 89
. 90

6 Palm OS Programmer’s Companion (Preliminary)

6 Memory

Menus

Tables .

Table Event .

Lists

Labels.

Scroll Bars . .

Custom Ul Objects .

DynamicUl
Dynamic User Interface Functions .

Insertion Point .

Text.
Working With Text As Strings .
Fonts in Palm OS 3.0 and Later.

Receiving User Input .

The Graffiti Manager .

The Key Manager

The Pen Manager.
Application Launcher . .
Summary of User Interface API.

Introduction to Memory Use on Palm OS
Hardware Architecture .
PC Connectivity .
Memory Architecture .
Heap Overview .
The Memory Manager.
Memory Manager Structures.
Using the Memory Manager .
Summary of Memory Management .

7 Files and Databases

The Data Manager .
Records and Databases .
Structure of a Database Header.
Using the Data Manager

. 93
. 95
. 95
. 96
. 98
. 98
. 100
. 100
.101
. 102
. 102
. 102
. 104
. 105
. 105
. 107
. 108
. 108
. 110

123

. 123
.123
124
. 125
. 129
131
. 132
. 135
. 138

141

141
. 142
. 143
. 145

Palm OS Programmer’s Companion (Preliminary) 7

The Resource Manager e

Structure of a Resource Database Header .o148
Using the Resource Manager. A 3¢
File Streaming Application Programlnterface I X
Using the File StreamingAPI151
Summary of Files and Databases153
8 Palm System Features 157
Alarms 157
SettinganAlarm.158
Alarm Scenario160
Setting a Procedure Alarm.161
Features. . . . Y 6 X
TheSystemVersron Feature. o
Application-Defined Features165
Using the Feature Manager165
FeatureMemory166
Sound. R X Y4
Synchronous andAsynchronous Sound e 1)
Using the Sound Manager. e 1)
Sound Preferences Compatlbllltylnformatlon Ty 4}
SystemBootandReset178
SoftReset178
Soft Reset+ Up Arrow178
HardReset179
SystemResetCalls179
Hardware Interaction180
Palm OS Power Modes N R 10
Guidelines for Application Developers RS
Power ManagementCalls182
The Microkernel N K <
Retrieving the ROM Serial Number N £ 721
Time C e e e oo.o.185
Using Real- TlmeCIockFunctlons C e e e186
Using System Ticks Functions186

8 Palm OS Programmer’s Companion (Preliminary)

Floating-Point N kS 4

Using Floating PomtArlthmetlc N k<
Using 1.0 Floating-Point Functionality188
Summary of System Features.188
9 Serial Communication 191
Serial Hardware19
Byte Ordering Coe e o192
Serial CommunlcatlonsArchltecture H|erarchy. coe e 192
The Serial Manager19
Using the Serial Manager19
The New Serial Manager coe e o o ... 198
Checking for the New Serial Manager C e e e o199
What's New About the New Serial Manager200
About the New Serial Manager.200
Using the New Serial Manager.202
New Serial Manager Example205
Writing a Serial or Virtual Device Driver.208
The Connection Manager21
The Serial Link Protocol212
SLP Packet Structures.212
Transmittingan SLPPacket215
ReceivinganSLPPacket215
The Serial Link Manager.215
Using the Serial Link Manager216
Summary of Serial Communications220
10 Beaming (Infrared Communication) 223
Exchange Manager223
Overview e e e e 224
Exchange Managerand Launch Codes C e e e o o225
IRLibrary22
IrDA Stack . . . C e e e e e e 227
AccessmgtheIRlerary 4
SummaryofBeaming229

Palm OS Programmer’s Companion (Preliminary) 9

11 Network Communication
Net Library

About the Net L|brary

Net Library Usage Steps.

Obtaining the Net Library’s Reference Number

Setting Up Berkeley Socket API

Setup and Configuration Calls .

Opening the Net Library

Closing the Net Library .

Version Checking. .

Network I/0 and Utility Calls

Berkeley Sockets APl Functions
Summary of Network Communication

12 Internet and Messaging Applications
Overview of the Palm.Net System
Palm Query Applications .
Palm.Net System Overview .
System Version Checking . .
Using Clipper to Display Informatlon .
Launching Other Applications from Clipper .
Sending Messages . .
New keyDownEvent Key Codes .
Over the Air Characters .

13 Localized Applications
Localization Guidelines .

Text Manager and International Manager
Characters . :
Declaring Character Varlables .
Using Character Constants
Missing and Invalid Characters
Retrieving a Character’s Attributes .
Virtual Characters . .
Retrieving the Character Encodlng

231
.231
. 232
. 235
. 236
. 236
. 237
241
. 242
. 243
. 244
. 245
. 252

255
. 256

. 257
. 258
. 261
. 261
. 263
. 264
. 265
. 265

267
. 267
. 268
. 270
.271
.271
.212
. 273
. 273
274

10 Palm OS Programmer’s Companion (Preliminary)

Strings 275

Manipulating Strings 276

Performing String Pointer Manipulation. 277

Truncating Displayed Text. 278

Searching and Comparing Strings 278

GlobalFind219

Dynamically Determining a String’s Contents 282

Dates 284

Numbers28

Compatibility Information. 286

Notes on the Japanese Implementation 287

Japanese Character Encoding 288

Japanese Character Input 288

Displaying Error Messages 289

Summary of Localization 289

14 Debugging Strategies 291
Displaying Development Errors 291

Using the Error Manager Macros. 292

Understanding the Try-and-Catch Mechanism 293

Using the Try and Catch Mechanism 294

Summary of Debugging API. 295

15 Standard IO Applications 297
Creating a Standard 10 Application. 298

Creating a Standard 10 Provider Application. 298

Summary of Standard 1O 301

Index 303

Palm OS Programmer’s Companion (Preliminary) 11

12 Palm OS Programmer’s Companion (Preliminary)

it

About This
Document

Palm OS Programmer’s Companion is part of the Palm OS Software
Development Kit. This introduction provides an overview of SDK
documentation, discusses what materials are included in this
document and what conventions are used.

Palm OS SDK Documentation

The following documents are part of the SDK:

Document Description
Palm OS SDK An API reference document that contains descriptions of all
Reference Palm OS function calls and important data structures.

Palm OS Programmer’s A guide to application programming for the Palm OS. This
Companion volume contains conceptual and “how-to” information that
compliments the Reference.

Palm OS 3.0 Tutorial A number of phases step developers through using the
different parts of the system. Example applications for each
phase are part of the SDK.

Debugging Palm OS A guide to debugging Palm OS applications with the
Applications various debugging tools available.

What This Volume Contains

This volume is designed for random access. That is, you can read
any chapter in any order. You don’t necessarily have to read some
before others, though the first few chapters are designed for
programmers who are new to the Palm OS. The first four chapters

Palm OS Programmer’s Companion (Preliminary) 13

About This Document
What This Volume Contains

help you learn necessary tasks and possible features for your
application.

Note that each chapter ends with a list of hypertext links into the
relevant function descriptions in the Reference book.

Here is an overview of this volume:

Chapter 1, “Programming Palm OS in a Nutshell.” Provides
new Palm OS programmers with a summary of what tasks
and tools are involved in writing a Palm application and
provides pointers to where to look for more information.

Chapter 2, ““Good Design Practices.” Provides new Palm OS
programmers with guidelines for creating a well-designed
Palm application with a well-designed user interface.

Chapter 3, “Application Startup and Stop.” Describes how to
use and respond to launch codes to start and stop an
application and perform other actions. Describes how to
implement the PilotMain function, the entry point for all
applications.

Chapter 4, “Event Loop.” Describes the event manager,
events, the event loop, and how to implement the event loop
in your application. Discusses how your application and the
system interact to handle events.

Chapter 5, ““User Interface.” Describes the user interface
elements that you can use in your application, and how to
use them. Also covers related topics such as drawing,
dynamic Ul, receiving user input, and the application
launcher.

Chapter 6, “Memory.” Describes the memory architecture,
memory use on the Palm devices, and the memory manager.

Chapter 7, “Files and Databases.” Describes the data storage
system, the data manager, resource manager, and the file
streaming API.

Chapter 8, ““Palm System Features.” Describes features
unique to the Palm hardware and OS such as alarms, the
feature manager, preferences, the sound manager, system
boot and reset, the microkernal, time, and floating point
arithmetic.

Chapter 9, “Serial Communication.” Describes the serial port
hardware, the serial communications architecture, the serial

14 Palm OS Programmer’s Companion (Preliminary)

About This Document
Conventions Used in This Guide

link protocol, and the various serial communication
managers.

= Chapter 10, “Beaming (Infrared Communication).” Describes
the two facilities for beaming, or IR communication: the
exchange manager and the IR library.

= Chapter 11, “Network Communication.” Describes the net
library and Internet library and how to perform
communications with networking protocols such as TCP/IP
and UDP. The net library APl maps very closely to the
Berkeley UNIX sockets API.

e Chapter 12, “Internet and Messaging Applications.”
Describes the Palm.Net system and how to use the Clipper
and iMessenger applications to access and send information
using the wireless capabilities of the Eleven device.

= Chapter 13, “Localized Applications.” Discusses how to
make your application localizable. Includes information on
the text and international managers, as well as dealing with
alternative character encodings, strings, numbers, and dates.

= Chapter 14, “Debugging Strategies.” Describes
programmatic approaches to debugging your application;
that is, using the error manager and the Palm OS try and
catch mechanism for debugging.

Conventions Used in This Guide

This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, field, bitfield.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).

blue and underlined Hot links.

Palm OS Programmer’s Companion (Preliminary) 15

About This Document
Conventions Used in This Guide

16 Palm OS Programmer’s Companion (Preliminary)

1

2= Programming Palm
OS in a Nutshell

This chapter is the place to start if you’re new to Palm
programming. It summarizes what’s unique about writing
applications for Palm Computing platform devices and tells you
where to go for more in-depth information. It covers:

< \Why Programming for Palm OS Is Different
e Palm OS Programming Concepts

e Programming Tools
e \Where to Go From Here

Read this chapter for a high-level introduction to Palm
programming. The rest of this book provides the details.

Why Programming for Palm OS Is Different

Like most programmers, you have probably written a desktop
application—an application that is run on a desktop computer such
as a PC or a Macintosh computer. Writing applications for
handhelds, specifically Palm Computing platform devices, is a bit
different from writing desktop applications because the Palm
Computing platform device is designed differently than a desktop
computer. Also, users simply interact with the device differently
than they do desktop computers.

This section describes how these differences affect the design of a
Palm OS application.

Screen Size

The Palm OS device’s screen is only 160x160 pixels, so the amount
of information you can display at one time is limited.

Palm OS Programmer’s Companion (Preliminary) 17

Programming Palm OS in a Nutshell
Why Programming for Palm OS Is Different

For this reason, you must design your user interface carefully with
different priorities and goals than are used for large screens. Strive
for a balance between providing enough information and
overcrowding the screen. See the section “User Interface
Guidelines” in the chapter “Good Design Practices” for more
detailed guidelines on designing the user interface.

Note that screen sizes of future Palm OS devices may vary.

Quick Turnaround Expected

On a PC, users don’t mind waiting a few seconds while an
application loads because they plan to use the application for an
extended amount of time.

By contrast, the average Palm user uses a Palm application 15 to 20
times per day for much briefer periods of time, usually just a few
seconds. Speed is therefore a critical design objective for hand-held
organizers and is not limited to execution speed of the code. The
total time needed to navigate, select, and execute commands can
have a big impact on overall efficiency. (Also consider that the Palm
OS does not provide a wait cursor.)

To maximize performance, the user interface should minimize
navigation between windows, opening of dialog boxes, and so on.
The layout of application screens needs to be simple so that the user
can pick up the product and use it effectively after a short time. It’s
especially helpful if the user interface of your application is
consistent with other applications on the device so users work with
familiar patterns.

The Palm OS development team has put together a set of design
guidelines that were used as the basis for the applications resident
on the device (MemoPad, Address Book, etc.). These guidelines are
summarized in the chapter “Good Design Practices” in this book.

PC Connectivity

PC connectivity is an integral component of the Palm Computing
platform device. The device comes with a cradle that connects to a
desktop PC and with software for the PC that provides “one-
button” backup and synchronization of all data on the device with
the user’s PC.

18 Palm OS Programmer’s Companion (Preliminary)

Programming Palm OS in a Nutshell
Why Programming for Palm OS Is Different

Many Palm OS applications have a corresponding application on
the desktop. To share data between the device’s application and the
desktop’s application, you must write a conduit. A conduit is a
plug-in to the HotSync technology that runs when you press the
HotSync button. A conduit synchronizes data between the
application on the desktop and the application on the hand-held
device. To write a conduit, you use the Conduit SDK, which
provides its own documentation.

Input Methods

Handheld users don’t have a keyboard or mouse. Users enter data
into the device using a pen. They can either write Graffiti strokes or
use the keyboard dialog provided on the device.

While Graffiti strokes and the keyboard dialog are useful ways of
entering data, they are not as convenient as using the full-sized
desktop computer with its keyboard and mouse. Therefore, you
should not require users to enter a lot of data on the device itself.

Power

The Palm Computing platform device runs on batteries and thus
does not have the same processing power as a desktop PC. It is
intended as a satellite viewer for corresponding desktop
applications.

If your application needs to perform a computationally intensive
task, you should implement that task in the desktop application
instead of the device application.

Memory

The Palm OS device has limited heap space and storage space.
Different versions of the device have between 512K and 2MB total of
dynamic memory and storage available. The device does not have a
disk drive or PCMCIA support.

Because of the limited space and power, optimization is critical. To
make your application as fast and efficient as possible, optimize for
heap space first, speed second, code size third.

Palm OS Programmer’s Companion (Preliminary) 19

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

File System

Because of the limited storage space, and to make synchronization
with the desktop computer more efficient, Palm OS does not use a
traditional file system. You store data in memory chunks called
records, which are grouped into databases. A database is analogous
to a file. The difference is that data is broken down into multiple
records instead of being stored in one contiguous chunk. To save
space, you edit a database in place in memory instead of creating it
in RAM and then writing it out to storage.

Backward Compatibility

Different versions of the Palm Computing platform device are
available, and each runs a different version of the Palm OS. Users
are not expected to upgrade their versions of the Palm OS as rapidly
as they would an operating system on a desktop computer. Updates
to the OS are designed in such a way that you can easily maintain
backward compatibility with previous versions of the OS, and thus,
your application is available to more users. See “Making Your
Application Run on Different Devices” in the chapter “Good Design
Practices” for details.

Palm OS Programming Concepts

Palm OS applications are generally single-threaded, event-driven
programs. Only one program runs at a time. To successfully build a
Palm OS application, you have to understand how the system itself
is structured and how to structure your application.

= Each application has a Pi | ot Mai n function that is
equivalent to mai n in C programs. To launch an application,
the system calls Pi | ot Mai n and sends it a launch code. The
launch code may specify that the application is to become
active and display its user interface (called a normal launch),
or it may specify that the application should simply perform
a small task and exit without displaying its user interface.

The sole purpose of the Pi | ot Mai n function is to receive
launch codes and respond to them. (See Chapter 3,
“Application Startup and Stop.”)

20 Palm OS Programmer’s Companion (Preliminary)

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

= Palm OS is an event-based operating system, so Palm OS
applications contain an event loop; however, this event loop
is only started in response to the normal launch. Your
application may perform work outside the event loop in
response to other launch codes. Chapter 4, “Event Loop,”
describes the main event loop.

= Most Palm OS applications contain a user interface made up
of forms, which are analogous to windows in a desktop
application. The user interface may contain both predefined
Ul elements (sometimes referred to as Ul objects), and
custom Ul elements. (See Chapter 5, “User Interface.”)

= All applications should use the memory and data
management facilities provided by the system. (See Chapter
6, “Memory.” and Chapter 7, “Files and Databases.”)

= You implement an application’s features by calling Palm OS
functions. Palm OS consists of several managers, which are
groups of functions that work together to implement a
feature. As a rule, all functions that belong to one manager
use the same prefix and work together to implement a certain
aspect of functionality.

Managers are available to, for example, generate sounds,
send alarms, perform network communication, and beam
information through an infrared port. A good way to find out
the capabilities of the Palm OS is to scan the Table of
Contents of this guide.

IMPORTANT: The ANSI C libraries are not part of the Palm
development platform. In many cases, you can perform the same
function using a Palm OS API call as you can with a call to a
ANSI C function. For example, the Palm OS provides a string
manager that performs many of the string functions you'd expect
to be able to perform in an ANSI C program. If you do use a
standard C function, the code for the function is linked into your
application and results in a bigger executable.

Palm OS Programmer’s Companion (Preliminary) 21

Programming Palm OS in a Nutshell
Programming Tools

Programming Tools

Several tools are available that help you build, test, and debug Palm
OS applications. The most widely used tool is the CodeWarrior
Interactive Development Environment (IDE) from 3Com
Corporation. Documentation for the CodeWarrior IDE is provided
with CodeWarrior. (See ht t p: / / wwww. pal m comfor information
about other development tools.)

As with most applications, the user interface is generally stored in
one or more resource files. You use the Palm OS Constructor to
create these resources. To learn how, refer to the Palm OS Tutorial or
the Constructor documentation.

To debug and test your application, there are several tools available:

= The CodeWarrior Debugger handles source-level debugging.
You can use it with an application running on the Palm OS
device, or you can use it in conjunction with one of the other
debugging tools below.

= The Palm OS Emulator (POSE) tests your application on the
desktop computer before downloading it onto the device.

= On the Macintosh, you can build a Simulator version of your
application to test it. This is a standalone Mac OS application
that runs your Palm OS application on a Macintosh
computer.

= The Palm Debugger is an assembly-level tool. You can also
use it to enter commands directly to the Palm device.

The book Debugging Palm OS Applications describes the Palm-
provided debugging tools available on your development platform.
For CodeWarrior Debugger documentation, refer to the
CodeWarrior CD.

Where to Go From Here

This chapter provided you only with a general outline of the issues
involved in writing a Palm OS application. To learn the specifics,
refer to the following resources:

22 Palm OS Programmer’s Companion (Preliminary)

Programming Palm OS in a Nutshell
Where to Go From Here

This book

The rest of this book provides details on how to implement
common application features using the Palm OS SDK. If
you’re new to Palm OS programming, you need to read the
next three chapters to learn the principles of Palm OS
application and Ul design, how to implement the main
function, and how to implement the standard event loop. The
remaining chapters you can read on an as-needed basis.

Example applications

The actual source code for the applications on the Palm OS
device is included as examples on your SDK CD. The code
can be a valuable aid when you develop your own program.
The software development kit provides a royalty-free license
that permits you to use any or all of the source code from the
examples in your application.

Tutorial

The tutorial provides step-by-step, interactive examples of
developing an application from start to finish in multiple
phases.

Debugging Palm OS Applications

The Debugging Palm OS Applications book provides more
details on using the tools to debug programs. (You might
also be interested in the “Debugging Strategies” chapter in
this book, which describes programmatic debugging
solutions.)

Palm OS SDK Reference

The reference book provides the details on all of the public
data structures and API calls.

Conduit Development Kits and documentation

If you need to write a conduit for your application, see the
documentation provided with the Conduit Development
Kits.

Palm OS Programmer’s Companion (Preliminary) 23

Programming Palm OS in a Nutshell
Where to Go From Here

24 Palm OS Programmer’s Companion (Preliminary)

Good Design
Practices

This chapter helps you design an application that’s fast, robust, and
consistent with other applications on the device. The previous
chapter described at a very high level the sorts of issues involved
with writing a Palm OS application. This chapter goes into much
more detail about what is appropriate application design and user
interface design. Its focus is how to:

= Avoid potential problems

Make your application integrate well with others

Achieve the best performance possible
Localize with the minimum amount of work

Maintain backward compatibility

The information was collected from engineers, testers, and other
experts who designed, developed, and tested the four applications
shipped with the first Palm OS device.

Paying attention to user interface guidelines and, if applicable, to
localization guidelines early in your development cycle will save
you time and trouble later. However, there’s a lot to digest here. You
may want to revisit this chapter from time to time to make sure you
haven’t forgotten anything.

This chapter discusses these topics:
= Designing Your Application

User Interface Guidelines

Localization Guidelines

Making Your Application Run on Different Devices

Palm OS Programmer’s Companion (Preliminary) 25

Good Design Practices
Designing Your Application

NOTE: Be sure to read the “Avoiding Potential Pitfalls” and
“Writing Robust Code” sections for information on the problems
developers encounter most frequently.

Designing Your Application

This section provides Palm OS application design guidelines. It
discusses these topics:

= Integrating Programs With the Palm OS Environment

= Naming Conventions

Achieving Optimum Performance
Assigning a Creator 1D

Working With Databases

Writing Robust Code

Avoiding Potential Pitfalls

Integrating Programs With the Palm OS
Environment

When users work with a Palm OS application, they expect to be able
to switch to other applications, have access to Graffiti and the on-
screen keyboard, access information with the global find, receive
alarms, and so on. Your application will integrate well with others if
you follow the guidelines in this section. Integrate with the system
software as follows:

e Handle sysAppLaunchCndNor nal Launch

= Handle or ignore other application launch codes as
appropriate. For more information, see the next chapter,
Chapter 3, “Application Startup and Stop.”

= Handle system preferences properly. System preferences
determine the display of

— Date formats
— Time formats

26 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
Designing Your Application

— Number formats
— First day of week (Sunday or Monday)

Be sure your application uses the system preferences for
numeric formats, date, time, and start day of week.

= Allow the system to post these messages:

— alarms
— low-battery warnings
— system messages during synchronization

= Be sure your application does not obscure or change the
Graffiti area, silk-screened buttons, and power button.

< Don’t obscure Graffiti shift indicators.
In addition, follow these rules:

= Store state information in the application preferences
database, not in the application record database. Call
Pr ef Get AppPr ef er ences and
Pr ef Set AppPr ef er ences to save and restore preferences.
This is important if your application returns to the last
displayed view by default.

If your application uses the serial port, be sure to free the port
when you no longer need it so that the HotSync application
can use it.

Ensure that your application properly handles the global
find. Generally, searches and sorts aren’t case sensitive.

If your application supports private records, be sure they are
unavailable to the global find when they should be hidden.

The application name is defined in two ways:

The application name (required) is specified in the PalmRez
panel of your CodeWarrior project and used by HotSync, the
About box, the Memory display, and the database header.

— The application icon name (optional) is a string resource
in the application’s resource file. It is used by the launcher
screen and in the Button Assignment preferences panel

Palm OS Programmer’s Companion (Preliminary) 27

Good Design Practices

Designing Your Application

(available in OS versions 2.0 and later). You assign the
name using the Constructor Project Settings panel.

Using the icon name is useful if you plan to localize your
application.

Note: If you use an application icon name, make it short!

= Together with the application name, each application
displays a application icon in the launcher.

Your application should have two icons: one for the main
view of the launcher and a smaller version for the list view.
The first icon should be 22 x 22 pixels. It should be numbered
1000 and have the type tAIN. The smaller icon should be 9 x
15 pixels, should be numbered 1001 and have the type tAIB.

= Follow the guidelines listed in User Interface Guidelines and
pay special attention to these points:

Ensure that the different user input modes (e.g., Graffiti
and keyboard) are available for each field.

Ensure that menu items work with shortcuts as
advertised.

Put limits on the length of fields and test them.

Ensure that any growable control, such as the launcher
window or the menus, scrolls correctly.

Ensure that your application properly handles system

messages during and after synchronization.

Ensure that deleted records are not displayed.
Ensure that your application doesn’t exceed the maximum

number of categories: 15 categories and the obligatory
category “Unfiled” for a total of 16.

Ensure that your application uses a consistent default state

when the user enters it;

Some applications have a fixed default; for example, the
Date Book always displays the current day when
launched.

Other applications return to the place the user exited last.
In that case, remember to provide a default if that place is
no longer available. Because of HotSync and Preferences,

28 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
Designing Your Application

don’t assume the application data is the same as it was
when the user looked at it last.

If your application uses sounds, be sure it uses the Warning
and Confirmation sounds properly.

Naming Conventions
The following conventions are used throughout the Palm OS API:

Functions start with a capital letter.

All functions belonging to a particular manager start with a
two- or three-letter prefix, such as “Ctl” for control functions
or “Ftr” for functions that are part of the feature manager.

Events and other constants start with a lowercase letter.
Structure elements start with a lowercase letter.
Global variables start with a capital letter.

Typedefs start with a capital letter and end with “type” (for
example, Dat eFor mat Type, found in Dat eTi ne. h).

Macintosh ResEdit resource types usually start with a
lowercase letter followed by three capital letters, for example
tSTR or tTBL. (Customized Macintosh resources provided
with your developer package are all uppercase, for example,
MENU. Some resources, such as Talt, don’t follow the
conventions.)

Members of an enumerated type start with a lowercase prefix
followed by a name starting with a capital letter, as follows:

enum f or nCbj ects {
frnFi el dQbj,
frmCont r ol Qoj
frmLi st Qoj,
frmrabl eQoj
frmBi t mpQbj ,
frmLi neCoj,
frmFrameQoj
frmRect angl eQoj
frmLabel Qoj ,
frmlitl eQoj,
fr mPopupQbj
frmnGraffiti StateQbj,

Palm OS Programmer’s Companion (Preliminary) 29

Good Design Practices
Designing Your Application

fr mGadget Qbj };
t ypedef enum fornmObj ects For nbj ect Ki nd;

Achieving Optimum Performance

Because the Palm OS device has limited heap space and storage,
optimization is critical. The Palm OS device currently has no wait
cursor, so users will expect rapid response. Test for performance.
Launching, switching, and finding should be fast.

To make your application as fast and efficient as possible, optimize
for heap space first, speed second, code size third.

Follow these guidelines to optimize memory use:

= Allocate handles for your memory to avoid heap
fragmentation.

= Sort on demand; don’t keep different sort lists around. This
makes your program simpler and requires less storage.

= Dynamic memory is a potential bottleneck. Don’t put large
structures on the stack.

= Arrange subroutines within the application to avoid 32K
jumps.

= To have your application run well within the constraints of
the limited dynamic heap, follow these guidelines:

— Allocate memory chunks instead of using global variables
where possible.

— Switch from one Ul form to another instead of stacking
up dialog boxes.

— Edit database records in place; don’t make extra copies on
the dynamic heap.

= Avoid placing large amounts of data on the stack. Heap
corruption is hard to debug. Global variables are preferable
to local variables (however, chunks are preferable to global
variables). Your application only has from 2K or 4K of stack
space depending on the system software version.

30 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
Designing Your Application

Assigning a Creator ID

Each Palm OS application has a distinct creator ID. A creator ID is a
4-byte value used to tie together all the databases related to the
application.

Creator IDs are unique to the application, not the creator of the
application. Each database on the Palm device has an application
value and a type. The type value should be set to

sysFi | eTAppl i cat i on for the executable’s database and can be
set to any value for other databases associated with an application.

Creator IDs need to be either all caps or mixed case. The Palm OS
creator IDs differ from the creator ID and type that appear in the
CodeWarrior Project Settings dialog boxes.

The creator ID for a Palm OS application is assigned in the PalmRez
Project Settings panel.

= The Type should be set to APPL. Type is a 4-byte value.

= For information about creator IDs, and to register a creator
ID, see this web page:

http://ww. pal m conf devzone/crid/cridsub. htn
The system uses the creator ID in various ways:

= Creator ID and type is used by the system launcher window
to determine which databases are applications that should be
displayed for selection.

= The memory application uses a creator ID and type to
determine names of applications for display and to calculate
total memory used by an application.

Working With Databases

Working properly with databases makes your application run faster
and synchronize without problems. Follow these suggestions:

< \When the user deletes a record, call DnRenbveRecor d to
remove all data from the record, not DnDel et eRecor d to
remove the record itself. That way, the desktop application

Palm OS Programmer’s Companion (Preliminary) 31

Good Design Practices
Designing Your Application

can retrieve the information that the record is deleted the
next time there is a HotSync.

Note: If your application doesn’t have an associated conduit,
call DnDel et eRecor d to completely remove the record.

= Keep data in database records compact. To avoid
performance problems, Palm OS databases are not
compressed, but all data are tightly packed. This pays off for
storage and during HotSync.

= All records in a database should be of the same type and
format. This is not a requirement, but is highly recommended
to avoid processing overhead.

= Be sure your application modifies the flags in the database
header appropriately when the user deletes or otherwise
modifies information. This flag modification is only required
if you’re synchronizing with the Palm PIM applications.

= Don’t display deleted records.

= Call DntSet Dat abasel nf 0 when creating a database to
assign a version number to your application. Databases
default to version 0 if the version isn’t explicitly set.

« Call DnDat abasel nf o to check the database version at
application start-up.

Writing Robust Code

To make your programs more robust and to increase their
compatibility with the next generation of Palm Computing
products, it is strongly recommended that you follow the guidelines
and practices outlined in this section.

= Check assumptions

You can write defensive code by adding frequent calls to the
Err NonFat al Di spl ayl f function, which enables your
debug builds to check assumptions. Many bugs are caught in
this way, and these “extra” calls don’t weigh down your
shipping application. You can keep more important checks in
the release builds by using the Er r Fat al Di spl ayl f
function.

32 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
Designing Your Application

= Avoid continual polling

To conserve the battery, avoid continual polling. If your
application is in a wait loop, poll at short intervals (for
example, every tenth of a second) instead. The event loop of
the Hardball example application included with your Palm
OS SDK illustrates how to do this.

= Avoid reading and writing to NULL (or low memory)

When calling functions that allocate memory (Menfet ,
MeniVbve and similar functions) make sure that the pointers
they return are non-NULL. (If you can do better validation
than that, so much the better.) Also check that pointers your
code obtains from structures or other function calls are not
NULL. Consider adding to your debug build a #def i ne that
overrides Memvbve (and similar functions) with a version
that validates the arguments passed to it.

= Use dynamic heap space frugally

It is important not to use the extra dynamic heap space
available on Palm units running 2.0 and higher unless it is
truly necessary to do so. Wasteful use of heap space may
limit your application to running only on the latest devices—
which prevents it from running on the very large number of
units already in the marketplace.

Note that some system services, such as the IrDA stack or the
Find window, can require additional memory while your
application is running; for example, if the unit starts to
receive a beam or other external input, the system may need
to allocate additional heap space for the incoming data. Don’t
use all available dynamic memory just because it’s there;
instead, consider using the storage heap for working with
large amounts of temporary data.

= Check result codes when allocating memory

Because future devices may have larger or smaller amounts
of available memory, it is always a good idea to check result
codes carefully when allocating memory. It’s also good
practice to use the storage heap (and possibly file streams) to
work with large objects.

= Avoid allocating zero-length objects

It’s not valid to allocate a zero-byte buffer, or to resize a
buffer to zero bytes. Palm OS 2.0 and previous releases

Palm OS Programmer’s Companion (Preliminary) 33

Good Design Practices
Designing Your Application

allowed this practice, but future revisions of the OS may not
permit zero-length objects.

= Avoid making assumptions about the screen

The location of the screen buffer, its size, and the number of
pixels per bit aren’t set in stone—they might well change.
Don’t hack around the windowing and drawing functions. If
you are going to hack the hardware to circumvent the APIs,
save the state and return the system to that saved state when
you quit.

= Don’t access globals or hardware directly

Global variables and their locations can change; to avoid
mishaps, use the documented API functions and disable your
application if it is run on anything but a tested version of the
OS. Future devices might run on a different processor than
the current one.

Similarly, don’t hardcode references to cards. Although
current Palm OS hardware provides only a single card slot,
this may not always be the case. Thus, when calling functions
that manipulate cards, such as database manager and file
streaming functions, pass a variable that references the target
card, rather than passing a hardcoded reference to card 0.

= Built-in applications can change

The format and size of the preferences (and data) for the
built-in applications is subject to change. Write your code
defensively, and consider disabling your application if it is
run on an untested version of the OS.

Avoiding Potential Pitfalls

Certain problems are encountered by application developers again
and again. To avoid them, ask yourself these questions:

= Do you have a Creator ID for your application?

Each application (not just each company) has to have a
Creator ID. Note that the Creator ID is only needed for the
application (database of type APPL) not for all other
databases.

34 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
User Interface Guidelines

= Did you base your application on Phase 20 of the tutorial?
That phase has the most extensive functionality and is
therefore your best choice for starting your own application.

= Did you use C library calls in your application? If you did,
change them to corresponding Palm OS calls.

User Interface Guidelines

The Palm OS device is designed for rapid entry and quick retrieval
of information. To maximize performance, the Ul should minimize
navigation between windows, opening of dialog boxes, and so on.
The layout of application screens needs to be simple so that the user
can pick up the product and use it effectively after a short time. It’s
especially helpful if the Ul of your application is consistent with
other applications on the device so users work with familiar
patterns.

This section helps you design a user interface that’s intuitive, easy to
use, and consistent with other applications on the device. You learn
about these issues:

« Understanding the Palm OS Ul Design Philosophy

e Creating a Palm OS User Interface

« Palm OS Resource Selection: List or Table?

NOTE: Guidelines for implementing specific user-interface
objects, such as information on the size of buttons or the font for
labels, is provided in “Palm OS Resources” in the Palm OS SDK
Reference. Also see the chapter “User Interface” in this book.

Understanding the Palm OS Ul Design
Philosophy

This section considers some issues that underlie the design of a user
interface for the Palm OS device. It discusses these topics:

« Creating Fast Applications

= Matching Use Frequency and Accessibility

Palm OS Programmer’s Companion (Preliminary) 35

Good Design Practices
User Interface Guidelines

« Creating Easy-to-Use Applications

Creating Fast Applications

On a PC, users don’t mind waiting a few seconds while an
application loads because they plan to use the application for a
certain amount of time.

The Palm OS paradigm, in contrast, resembles that of a watch:
People want instant access to information. Speed is therefore a
critical design objective for hand-held organizers and is not limited
to execution speed of the code. The total time needed to navigate,
select, and execute commands can have a big impact on overall
efficiency.

The user should be able to keep up with someone on the telephone
when setting up appointments, looking up phone numbers, and so
on. Priorities include the ability to:

= Execute key commands quickly
= Navigate to key screens quickly
= Find key data quickly (for example, phone numbers)

Matching Use Frequency and Accessibility

PC user interfaces are typically designed to display commands as if
they were used equally. In reality, some commands are used very
frequently while most are used only rarely. Similarly, some settings
are more likely to be used than others. For example, a 3 p.m.- 4 p.m.
meeting occurs much more frequently than a 3:25 to 4:15 meeting.

More frequently used commands and settings should be easier to
find and faster to execute.

= Frequently executed software commands should be
accessible by one tap.

= Infrequently used commands may require more user action.

Frequency Example Accessibility
Several times Checking today’s One tap.
per hour. schedule or to-do items.

36 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
User Interface Guidelines

Several times One hour meeting One tap, write in
per day. starting at the top of the place.
hour.
Several times Setting a weekly meeting Several taps,
per week. (repeating event). second dialog box.

To make your application easily accessible, follow these guidelines:

= Minimize the number of taps to execute a function or change
a setting.

= Provide command buttons for commonly executed multistep
operations. Command buttons streamline execution.

= Minimize the need to change screens.

= Minimize the number of dialogs users have to open and
close.

= Avoid dialogs within dialogs unless it’s an infrequently used
feature.

Choose the appropriate Ul object when making a speed versus
screen layout decision:

= Buttons on the screen provide instant access but take up
valuable screen space.

= Push buttons are faster than popup lists and should be used
if they fit on the screen reasonably.

= Popup lists are faster than manual input or increment/
decrement buttons

= Popup lists can be cumbersome if there are too many items
on the list or if the list needs to scroll.

Creating Easy-to-Use Applications

Users must be able to pick up a Palm device and, with no training or
instruction, navigate between applications (without getting stuck)
and execute basic commands within five minutes. Advanced
commands should be easily accessible but should not be in the way.

The design must therefore fit the following criteria:

= Indicate clearly where in an application the user is. The PIM
applications and modal dialog boxes have black title bars
that usually indicate the application name and view.

Palm OS Programmer’s Companion (Preliminary) 37

Good Design Practices
User Interface Guidelines

= Make it obvious to the user how to get to different views. The
command buttons provide the best example of achieving
this.

= Use buttons for important commands.

= Accomplishing common tasks should be fast and easy.
Minimizing steps helps not only speed but ease of use.

Ease of use amounts to a series of trade-offs. Striking the best
balance for the most people is the biggest challenge of Ul design.
For example:

= Consistency reduces the time needed to learn an application
by limiting the number of things that people need to keep in
their heads at once. The user should not have to memorize an
entire set of rules to use the device easily, for example, the up
arrow key should not do different things on different screens.

= Choose the number of buttons on the screen diligently:

— The fewer buttons on the screen, the less time it takes to
learn how to use the product.

— However, keeping a few frequently used buttons on
screen helps reduce the time spent learning basic
functionality.

= Advanced features should not be in the way for beginners,
but should not require multiple-step searching.

= |If possible, make your application consistent with the Palm
OS device’s native applications; users are used to interacting
with them and will easily get used to your application if you
follow these rules.

Creating a Palm OS User Interface

The small screen and pen-based user interaction require a different
Ul paradigm than a desktop computer. Here are some guidelines for
making your application’s interface consistent with other
applications, including the PIM applications.

= Provide an application icon for the Launcher. To launch an
application, users navigate to the launcher screen and tap on

38 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
User Interface Guidelines

an icon. Choose a short icon name and an easy to recognize
icon.

Specify the Application Icon Name and Application Icon
using the Project Settings panel in Constructor.

Provide a base screen that offers an overview of all available
information. This screen is typically a list view. Not all
applications need a base screen.

Allow users to view most record information by pressing the
navigation keys. Each event, to-do item, address, memo

page, and so on is called a record.

Organize records into user-defined categories if that makes
sense. Categories usually result in more efficient screen use.
Users can switch between categories using a popup menu or
can display all records at once.

Detailed information and advanced navigation require the
use of a stylus. See Data Entry Guidelines for different data
entry modes.

Don’t require double taps.

Don’t gray out menu commands or other Ul elements;
instead, remove an element when it’s not available.

If you can, allow finger navigation. For finger navigation,
buttons need to be big enough for the system to recognize
which button has been pushed. This is done by the Palm OS
system software.

Consider overloading the buttons. If you do overload, release
the buttons at every possible opportunity. This is useful only
for certain applications, such as games.

This section provides information on a variety of Ul design issues:

Navigation Guidelines

Preferences Guidelines

Data Entry Guidelines

Command Execution Guidelines

Guidelines for Screen Layout

Guidelines for Dialog Box Layout

Palm OS Programmer’s Companion (Preliminary) 39

Good Design Practices
User Interface Guidelines

Navigation Guidelines
Users can move through applications by the following methods:

= Switching applications. Users press the physical buttons
representing the PIM applications or access a launcher to
switch applications.

On Palm OS 2.0 or later devices, users can assign each button
to the application of their choice using a Preferences panel.

When switching to an application, the user is either
presented with a standard first screen or returned to the last
place in that application.

= Switching views. Each PIM application has two or more
views (or modes) typically

— alist view (or view mode)
— an edit view (or edit mode)

The user taps on records or uses command buttons to toggle
between these views.

Edit mode gives users access to the Details button for settings
that affect the entire record. They can also access specific
menu commands for records. In many applications, tapping
on a record switches the application to edit mode and
displays an input cursor.

= Switching categories of records. A popup menu in the top
right corner lets users switch between categories. The popup
menu is found in the list view of applications that support
categories.

= Switching records in applications. Depending on the
application, the user can scroll through lists of records, then
tap on a record or a Details button for further information.

= Graffiti navigation. Support Graffiti navigation:

— Left-right-forward-backward movement as part of a
field’s behavior.

— Getting to next and previous screen using the down/up
and up/down keystrokes.

= Cycling through categories. Holding the button on the hard
case cycles through all categories.

40 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
User Interface Guidelines

= Scrolling. Records too long to display in one screen are
scrollable. On-screen scroll buttons allow users to move up
or down one line at a time. The physical arrow buttons allow
users to move up and down one page at a time.

Scrollbars were introduced in OS 2.0. Scrollbars are optional.
Developers have to consider the trade-off between taking up
7 pixels of horizontal space (the width of the scroll bar) vs.
providing convenient scrolling for long lists of records.

Preferences Guidelines

Palm OS 2.0 and later has improved preferences facilities. They are
available through launch codes, discussed in the chapter
“Application Launch Codes” in the Palm OS SDK Reference.

The system now offers application-specific panels, sticky panels,
and quick switch, as follows:

= Application-specific panels. Applications can add
application-specific preferences panels to follow the system
panels when the user cycles though the preferences. To do so,
use the common code provided in the For mat s example
application to make the pull-down menu available. If the
application uses the common code, a Done button inserts
itself if the panel was called from the application, not
sequentially following another panel.

= Sticky panels. When users bring up a preference panel from
the launcher, exit the panel, then bring it up again, the
system returns to the last panel used.

= Quick switch. Applications can now use the launch codes
sysAppLaunchCrdPanel Cal | edFr omApp and
sysAppLaunchCndRet ur nFr onPanel , which allow an
application to let users change preferences without first
selecting the launcher, then selecting the application again.

Data Entry Guidelines
Users can enter data by the following methods:

= Graffiti. Graffiti characters are written in the text area on the
digitizer and appear on the screen at the cursor location. The

Palm OS Programmer’s Companion (Preliminary) 41

Good Design Practices

User Interface Guidelines

user specifies the cursor location by tapping directly on the
screen with the stylus.

Some controls accept input from Graffiti: For example, in the
time selector dialog, you can write the time into the Graffiti
area and it appears as start time or end time. The “next field”
stroke switches between start and end time. The “Return”
stroke dismisses the dialog.

For 2.0 and later applications, users expect that your
application includes the Graffiti Reference option. You can
include this option by calling

SysG affiti ReferenceDi al og.

On-screen keyboard. In place of using Graffiti, the user can
tap an on-screen keyboard with the stylus. Any text is
entered into a temporary window. When the user dismisses
the keyboard, the system inserts that text at the cursor
location.

Controls. Buttons, check boxes, and popup lists provide a
quick way to enter settings and select options.

HotSync. The user can type data on the PC and download it
to the Palm OS device.

Auto-creation. Many applications, such as the DateBook or
the Memo Pad provide an auto-create feature. If the user
starts to write in a list view with no record selected, a new
record is created with no additional interaction.

To provide a consistent interface, follow these guidelines when
designing the data entry interface for your application:

Let users perform basic data entry in place.

Have the cursor ready and visible if there’s only one field for
text entry (saves one tap).

Provide a Details dialog for more elaborate data entry.
Use the following format in the Details dialog:
Item (right-justified): Value(left-justified)
for example:
Set Date: 4-1-96

Aut o-of f after: 2 m nutes

42 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
User Interface Guidelines

= Don’t nest dialog boxes too deeply.

= Provide only one interface per function, that is, allow users to
interact with an application through either a button, menu,
or popup list. Don’t provide both a button and a menu for
the same actions.

NOTE: All developers are urged to include the rules listed below
in their test plan. Applications that don’t follow these rules may
cause problems for other applications on the device.

= Whenever a field for user input is available, make sure that:
— System keyboard is available via shortcut

System keyboard is available via menu
— Graffiti input is possible (regular strokes and shortcuts)
— Cut, copy, paste, and undo are possible

= Be sure to handle the clipboard correctly. If you use it, allow
users to copy and paste between applications; if you don’t,
make sure it’s intact when you exit.

Command Execution Guidelines

Users can execute commands by the following methods:

= Command buttons. Users execute common commands by
tapping on command buttons at the bottom of the screen.

= Menus. Commands not represented by command buttons
can be accessed via a simple menu system. The user taps on a
menu hard icon in the digitizer area to invoke a menu bar.
Provide menu shortcuts if possible.

NOTE: If you provide shortcuts, make sure that each shortcut is
unique among all commands available at that time.

= Graffiti menu command shortcuts. Users can write a special
Graffiti stroke and a command keystroke to execute a menu
command. This is analogous to keyboard shortcuts on a

Palm OS Programmer’s Companion (Preliminary) 43

Good Design Practices
User Interface Guidelines

personal computer. For example, writing the command
stroke symbol (a bottom-left to top-right line) and “C” allows
the user to copy the selected text.

Guidelines for Screen Layout

The illustration below provides some interface guidelines. Each
guideline is numbered and explained in more detail below.

1. Provide atitle bar. |k A[STMITEITIFIs1M
2. Go to the edge of the screen. ﬁ;gg— -
1000
1:00 _
3. Use resources provided with environment. [1&00__ S R ,
This example uses :
= repeating buttons
= push buttons
« fields
= buttons

4. Align buttons at the bottom of the screen——
5. Leave one pixel above and below font height -

1. In the title bar for each screen, provide both the application
name and the name of the screen, if possible. Otherwise,
provide the most relevant information.

2. Always go to the edge of the screen; that is, don’t use
borders. This practice maximizes screen real estate available
to the application. The non-active area of the LCD and the
case provide a natural margin.

3. Use the resources provided with the development
environment and use the recommended values for width,
height, and so on, provided in “Palm OS Resources” in the
Palm OS SDK Reference.

4. Align buttons with the bottom edge of the screen.

5. For text surrounded by borders, leave one pixel above and
below the font height.

44 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
User Interface Guidelines

6. For controls that can be displayed in groups, have at least
two pixels to the left and right of the text label. The exception
is command buttons, which require wider margins to
accommodate the rounded border.

7. Don’t change or obscure the Graffiti status indicator area.

8. Don’t change or obscure the silk-screened icons.

Guidelines for Dialog Box Layout

The illustration below provides some guidelines for dialog box
interfaces. Each guideline is numbered and explained in more detail
below under the same number.

Apr 30,97 KD WEBL

1. Provide online help for dialogs.

2. Use bold for labels.
Use non-bold for editable items.

3. Use right align:Left align in Details dialog.

Primate: [

4. Leave 3 pixels between edge of dialog and buttons.

| [ok) [Concel] [Dedete._ | [Mote

5. Align dialog with bottom of screen.

1. Provide online help for dialogs. If you associate a Help ID
with a form in Constructor, the system will add the “i”” icon
and handle presentation of the dialog.

2. Use bold face for labels, nonbold for editable items.

3. In the details dialog, right-align the label and left align the
editable field.

4. When using buttons in dialogs, leave a space of 3 pixels
between the edge of the dialog and the buttons.

Palm OS Programmer’s Companion (Preliminary) 45

Good Design Practices
Localization Guidelines

5. Align dialogs with the bottom of the screen. Leave the screen
title bar visible if possible.

Palm OS Resource Selection: List or Table?

Many developers find it difficult to decide whether to choose a list
or a table for certain components of their application.

Use tables when you need quality text handling (including editing
in place). Be careful if you work with non-text items in some of the
columns, the selection region may be smaller than you need.

Use lists when users select from a predefined list (e.g. categories) or
if the application determines the information to be displayed on the
fly (based on previous user selections). Remember that you are
responsible for scroll button handling and that editing can be
non-trivial.

Localization Guidelines

If you’re planning to localize the Palm OS software that you’re
developing, start by looking at the localized versions of the four
PIM applications on the device. Then plan your application’s
interface, keeping in mind localization issues listed below. Also see
the chapter “Localized Applications”, which describes guidelines
for writing code in a localized application.

= If you use the English language version of the software as a
guide when designing the layout of the screen, try to allow:

— extra space for strings
— larger dialogs than the English version requires

= Abbreviations may be the best way to accommodate the
particularly scarce screen real estate on the Palm OS device.

= Don’t put language-dependent strings in code. If you have to
display text directly on the screen, remember that a one-line
warning or message in one language may need more than
one line in another language.

= Don’t depend on the physical characteristics of a string, such
as the number of characters, the fact that it contains a

46

Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
Making Your Application Run on Different Devices

particular substring, or any other attribute that might
disappear in translation.

= Consider using string templates. For example, the MemoPad
application uses the template: Memo # of %. The application
can replace # and % to change the text.

= Using a fine granularity is usually helpful. You can then
concatenate strings as needed (and in the order needed,
which often differs from language to language) to arrive at a
correct translation.

= Remember that most resources, for example, lists, fields, and
tips, scroll if you need more space.

Making Your Application Run on Different
Devices

There are many different devices that run Palm OS, and each may
have a different version of the OS installed on it (see Table 2.1).
Users are not expected to upgrade the Palm OS as frequently as they
would an OS on a desktop computer. This fact makes backward
compatibility more crucial for Palm applications.

Table 2.1 Some Palm Computing platform devices

Name Palm OS Version
Pilot 10002 1.0
Pilot 50002 1.0
PalmPilot? 2.0

PalmPilot Professional 2.0

Palm 111 3.0
IBM Workpad 2.00r 3.0
Symbol SPT 1500 3.0
Qualcomm pdQP 3.0

Palm OS Programmer’s Companion (Preliminary) 47

Good Design Practices
Making Your Application Run on Different Devices

Name Palm OS Version
Palm I11x 3.1
Palm Vv 3.1
Palm VI1I° 3.2

aNo longer available.
b.Available sometime in 1999.

This section describes how to make sure your application runs on as
many devices as possible by discussing:

< Running New Applications on an Older Device
e Compiling Older Applications With The Latest SDK

Running New Applications on an Older Device

Releases of the Palm OS are binary compatible with each other. If
you write a brand new application today, it can run on all versions
of the operating system provided the application doesn’t use any
new features. In other words, if you write your application using
only features available in Palm OS 1.0, then your application runs
on all devices. If you use 2.0 features, your application won’t run on
the earliest Palm Computing platform devices, but it will run on all
others, and so on.

How can you tell which features are available in each version of the
operating system? There are a couple of way to do so:

= The Palm OS SDK Reference has a “Compatibility Guide”
appendix. This guide lists the feature and functions
introduced in each operating system version greater than 1.0.

= The header file SysTr aps. h lists all of the system traps
available. Traps are listed in the order in which they were
introduced to the system, and comments in the file clearly
mark where each operating system version begins.

Programmatically, you can use the feature manager to determine
which features are available on the system the application is
running on. Note that you can’t always rely on the operating system
version number to guarantee that a feature exists. For example,
Palm OS version 3.2 introduces wireless support, but not all Palm

48 Palm OS Programmer’s Companion (Preliminary)

Good Design Practices
Making Your Application Run on Different Devices

OS devices have that capability. Thus, checking that the system
version is 3.2 does not guarantee that wireless support exists.
Consult the “Compatibility Guide in the Palm OS SDK Reference to
learn how to check for the existence of each specific feature.

Compiling Older Applications With The Latest
SDK

As a rule, all Palm OS applications developed with an earlier
version of the Palm Computing platform SDK should run error-free
on the latest release.

If you want to compile your older application under the latest
release, you need to look out for functions with a changed API. For
any of these functions, the old function still exists with an extension
noting the release that supports it, such as V10 or V20.

You can choose one of two options:

= Change the function name to keep using the old API. Your
application will then run error free on the newer devices.

= Update your application to use the new API. The application
will then run error free and have access to some new
functionality; however, it will no longer run on older devices
that use prior releases of the OS.

Palm OS Programmer’s Companion (Preliminary) 49

Good Design Practices
Making Your Application Run on Different Devices

50 Palm OS Programmer’s Companion (Preliminary)

3

3= Application Startup
and Stop

On desktop computers, an application starts up when a user
launches it and exits when the user chooses the Exit or Quit
command. These things occur a little bit differently on the Palm OS
hand-held device. A Palm OS application does launch when the
user requests it, but it may also launch in response to some other
user action, such as a request for the global find facility. Palm OS
applications don’t have an Exit command; instead they exit when a
user requests another application.

This chapter describes how an application launches, how an
application stops, and the code you must write to perform these
tasks properly. It covers:

e | aunch Codes and Launching an Application

Responding to Launch Codes

Launching Applications Programmatically

Creating Your Own Launch Codes

Stopping an Application

Launch Code Summary

This chapter does not cover the main application event loop. The
event loop is covered in Chapter 4, “Event Loop.”

Launch Codes and Launching an Application

An application launches when it receives a launch code. Launch
codes are a means of communication between the Palm OS and the
application (or between two applications).

For example, an application typically launches when a user presses
one of the buttons on the device or selects an application icon from

Palm OS Programmer’s Companion (Preliminary) 51

Application Startup and Stop
Responding to Launch Codes

the application launcher screen. When this happens, the system
generates the launch code

sysAppLaunchComrandNor mal Launch, which tells the
application to perform a full launch and display its user interface.

Other launch codes specify that the application should perform
some action but not necessarily become the current application (the
application the user sees). A good example of this is the launch code
used by the global find facility. The global find facility allows users
to search all databases for a certain record, such as a name. In this
case, it would be very wasteful to do a full launch—including the
user interface—of each application only to access the application’s
databases in search of that item. Using a launch code avoids this
overhead.

Each launch code may be accompanied by two types of information:

= A parameter block, a pointer to a structure that contains
several parameters. These parameters contain information
necessary to handle the associated launch code.

= Launch flags indicate how the application should behave.
For example, a flag could be used to specify whether the
application should display Ul or not. (See “Launch Flags” in
the Palm OS SDK Reference.)

A complete list of all launch codes is provided at the end of this
chapter in the section “Launch Code Summary.” That section
contains links into where each launch code is described in the Palm
OS SDK Reference.

Responding to Launch Codes

Your application should respond to launch codes in a function
named Pi | ot Mai n. Pi | ot Mai n is the entry point for all
applications.

When an application receives a launch code, it must first check
whether it can handle this particular code. For example, only
applications that have text data should respond to a launch code
requesting a string search. If an application can’t handle a launch
code, it exits without failure. Otherwise, it performs the action
immediately and returns.

52 Palm OS Programmer’s Companion (Preliminary)

Application Startup and Stop
Responding to Launch Codes

Listing 3.1 shows parts of Pi | ot Mai n from the Datebook
application as an example. To see the complete example, go to the
examples folder in the Palm OS SDK and look at the file

Dat ebook. c.

Listing 3.1 PilotMain in Datebook.c

DWord PilotMain (Word cnd, Ptr cnmdPBP, Word | aunchFl ags)

{
}

return DBPi | ot Mai n(cnd, cndPBP, | aunchFl ags);

static DwWrd DBPilotMain (Wrd cnd, Ptr cndPBP, Word | aunchFl ags)

{

Wrd error;
Bool ean | aunched;

[l This app nmakes use of Paln0S 2.0 features.It wll crash if
/1l run on an earlier version of Paln(OS. Detect and warn if this
/'l happens, then exit.
error = RonWVersi onConpati bl e (version20, |aunchFl ags);
if (error)

return error;

/'l Launch code sent by the |launcher or the datebook button.
if (cnmd == sysAppLaunchCrdNor nal Launch)

{

error = StartApplication ();

if (error) return (error);

Fr nGot oFor m (DayVi ew) ;
Event Loop ();
St opApplication ();

}

/'l Launch code sent by text search.
else if (cnmd == sysAppLaunchCndFi nd)
{
Search ((Fi ndParansPtr) cndPBP) ;

Palm OS Programmer’s Companion (Preliminary) 53

Application Startup and Stop
Responding to Launch Codes

/1 This launch code m ght be sent to the app when it's already
/1 running if the user hits the "Go To" button in the Find
/'l Results dial og box.
else if (cnmd == sysAppLaunchCndGoTo)
{
| aunched = | aunchFl ags & sysAppLaunchFl agNewd obal s;
i f (launched)
{
error = StartApplication ();
if (error) return (error);

GoToltem ((GoToParansPtr) cndPBP, | aunched);

Event Loop ();

St opApplication ();

}
el se

GoToltem ((GoToParansPtr) cndPBP, | aunched);
}

/1 Launch code sent by sync application to notify the datebook
/1l application that its database was been synced.

...

/1 Launch code sent by Al arm Manager to notify the datebook

/'l application that an alarm has triggered.

...

/'l Launch code sent by Al arm Manager to notify the datebook

/1l application that is should display its al arm di al og.

...

/| Launch code sent when the systemtine is changed.

...

/1 Launch code sent after the systemis reset. W use this tine
/[l to create our default database if this is a hard reset
...

/'l Launch code sent by the DesktopLink server when it create
/1 a new database. W w Il initialize the new database.

54 Palm OS Programmer’s Companion (Preliminary)

Application Startup and Stop
Responding to Launch Codes

}

return (0);

Responding to Normal Launch

When an application receives the launch code
sysAppLaunchConmandNor mal Launch, it begins with a startup
routine, then goes into an event loop, and finally exits with a stop
routine. (The event loop is described in Chapter 4, “Event Loop.”
The stop routine is shown in the section “Stopping an Application”
at the end of this chapter.)

During the startup routine, your application should perform these
actions:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global
variables that will be referenced throughout the application.

2. Find the application database by creator type. If none exists,
create it and initialize it.

3. Get application-specific preferences and initialize related
global variables.

4. Initialize any other global variables.

As you saw in Listing 3.1, the Datebook application example
responds to sysAppLaunchComandNor mal Launch by calling a
function named St ar t Appl i cat i on. Listing 3.2 shows the

St art Appl i cati on function.

Listing 3.2 StartApplication from Datebook.c

static Word Start Application (void)

{

Wrd error = 0;

Err err = 0;

U nt node;

Dat eTi meType dat eTi ne;

Dat ebookPr ef er enceType prefs;
Syst enPref erencesType sysPrefs;
Word prefsSi ze;

Palm OS Programmer’s Companion (Preliminary) 55

Application Startup and Stop
Responding to Launch Codes

/1 Step 1: Get systemw de preferences.

Pref Get Preferences (&sysPrefs);

/] Determme if secret records should be displayed.
Hi deSecr et Records = sysPrefs. hi deSecr et Recor ds;

i f (H deSecretRecords)
node = dmvbdeReadWit e;
el se
node = dmvbdeReadWite | dmvbdeShowSecr et ;

I/l Get the tinme formats fromthe system preferences.
Ti meFormat = sysPrefs.tinmeFormat;

/'l Get the date formats fromthe system preferences.
LongDat eFormat = sysPrefs. | ongDat eFor mat ;
Short Dat eFor mat = sysPrefs. dat eFor mat ;

/'l CGet the starting day of the week fromthe
/'l system preferences.
Start DayOf Week = sysPrefs. weekSt art Day;

/'l Get today's date.

Ti nSecondsToDat eTi nme (Ti ncet Seconds (), &dateTine);
Dat e. year = dateTine.year - firstYear;

Dat e. ront h = dat eTi me. nont h;

Dat e. day = dat eTi ne. day;

/[l Step 2. Find the application's data file. |If it doesn't
/]l exist, create it.
Appt DB = DnmOpenDat abaseByTypeCr eat or (dat ebookDBType,
sysFi | eCDat ebook, node);
if (! ApptDB)
{
error = DnCreat eDat abase (0, dat ebookDBNane,
sysFi | eCDat ebook,
dat ebookDBType, fal se);
if (error) return error;

56 Palm OS Programmer’s Companion (Preliminary)

Application Startup and Stop
Responding to Launch Codes

Appt DB = DnmOpenDat abaseByTypeCr eat or (dat ebookDBType,
sysFi | eCDat ebook, node);
if (! ApptDB) return (1);

error = Appt Appl nfolnit (ApptDB);
if (error) return error;

}

/1 Step 3. Get application-specific preferences.
/'l Read the preferences / saved-state information. There is
/1 only one version of the DateBook preferences so don't worry
/1 about multiple versions.
prefsSi ze = sizeof (DatebookPreferenceType);
i f (Pref Get AppPreferences (sysFil eCDat ebook, datebookPrefl D,
&prefs, &prefsSize,

true) != noPreferenceFound)

{

DaySt art Hour = prefs.dayStartHour;

DayEndHour = prefs. dayEndHour;

Al arnPreset = prefs. al arnPreset;

Not eFont = prefs. noteFont;

SaveBackup = prefs. saveBackup;

ShowTi neBars = prefs. showTli neBars;

Conpr essDayVi ew = prefs. conpressbDayVi ew,

ShowTi medAppt s = prefs. showTi nedAppt s;

ShowUnt i nedAppts = prefs. showunti nedAppts;

ShowDai | yRepeat i ngAppt s = prefs. showbDai | yRepeat i ngAppt s;

}

/Il Step 4. Initialize any other global variables.
TopVi si bl eAppt = 0;
Current Record = noRecor dSel ect ed;

/1l Load the far call junp table.

Far Cal | s. appt Get Appoi nt nents = Appt Get Appoi nt nent s;
Far Cal | s. appt Get Record = Appt Get Recor d;

Far Cal | s. appt Fi ndFi rst = Appt Fi ndFirst;

Far Cal | s. appt Next Repeat = Appt Next Repeat ;

Palm OS Programmer’s Companion (Preliminary) 57

Application Startup and Stop
Responding to Launch Codes

Far Cal | s. appt NewRecord = Appt NewRecor d;
Far Cal | s. noveEvent = MveEvent;

return (error);

}

Responding to Other Launch Codes

If an application receives a launch code other than
sysAppLaunchCrdNor mal Launch, it decides if it should respond
to that launch code. If it responds to the launch code, it does so by
implementing a launch code handler, which is invoked from its

Pi | ot Mai n function.

In most cases, when you respond to a launch code, you are not able
to access global variables. Global variables are only initialized after
the application received sysAppLaunchCndNor mal Launch (see
Listing 3.2), so if the application hasn’t received the normal launch
code, its global variables are not initialized and not accessible.

NOTE: Static local variables are stored with the global variables
on the system’s dynamic heap. They are not accessible when
executing launch codes other than normal launch.

On the other hand, if the application is the current application, the
launch code handler can access global variables after all. If the
application is current, it has already responded to
sysAppLaunchCndNor mal Launch and initialized its global
variables.

Your application can find out whether it’s current by checking the
launch flags that are sent with the launch code. If the application is
the currently running application, the

sysAppLaunchFl agSubCal | flag is set. This flag is set by the
system and isn’t (and shouldn’t be) set by the sender of a launch
code.

Bool ean appl sActive = | aunchFl ags & sysAppLaunchFl agSubCal | ;

58 Palm OS Programmer’s Companion (Preliminary)

Application Startup and Stop
Launching Applications Programmatically

Launching Applications Programmatically

Applications can send launch codes to each other, so your
application might be launched from another application or it might
be launched from the system. An application can use a launch code
to request that another application perform an action or modify its
data. For example, a data collection application could instruct an
email application to queue up a particular message to be sent.

Sending a launch code to another application is like calling a
specific subroutine in that application: the application responding to
the launch code is responsible for determining what to do given the
launch code constant passed on the stack as a parameter.

To send a launch code to another application, use the System
Manager function Sys AppLaunch. Use this routine when you want
to make use of another application’s functionality and eventually
return control of the system to your application. Usually,
applications use it only for sending launch codes to other user-
interface applications.

SysAppLaunch has numerous options, including whether to
launch the application as a separate task, whether to allocate a
globals world, and whether or not to give the called application its
own stack. For example, you would use this function to request that
the built in Address List application search its databases for a
specified phone number and return the results of the search to your
application. You could then call SysAppLaunch again to use the
modem handle to dial the number. (In fact, this is how the built-in
applications perform this task.) When calling SysAppLaunch do
not set launch flags yourself—the SysAppLaunch function sets
launch flags appropriately for you.

An alternative, simpler method of sending launch codes is the
SysBr oadcast Act i onCode call. This routine automatically finds
all other user-interface applications and calls SysAppLaunch to
send the launch code to each of them.

If your application is called to process a launch code, it is called as a
subroutine from the current user-interface application. Use the
routine SysCur AppDat abase to get the card number and database
ID of the currently running user-interface application. This routine

Palm OS Programmer’s Companion (Preliminary) 59

Application Startup and Stop
Creating Your Own Launch Codes

doesn’t return your application’s database ID but the database ID of
the application that initiated the launch code.

If you want to actually close your application and open another
application use SysUl AppSwi t ch instead of SysAppLaunch. This
routine notifies the system which application to launch next and
feeds an application-quit event into the event queue. If and when
the current application responds to the quit event and returns, the
system launches the new application.

In Palm OS 3.0 and higher, you can also use the Application
Launcher to launch any application. For more information, see the
section “Application Launcher” in the “User Interface” chapter.

WARNING! Do not use the SysUl AppSwi t ch or
SysAppLaunch functions to open the Application Launcher
application.

Creating Your Own Launch Codes

The Palm OS contains predefined launch codes, which are listed in
Table 3.1 at the end of this chapter. In addition, developers can
create their own launch codes to implement specific functionality.
Both the sending and the receiving application must know about
and handle any developer-defined launch codes.

The launch code parameter is a 16-bit word value. All launch codes
with values 0-32767 are reserved for use by the system and for
future enhancements. Launch codes 32768-65535 are available for
private use by applications.

Stopping an Application

An application shuts itself down when it receives the event

appSt opEvent . Note that this is an event, not a launch code. The
application must detect this event and terminate. (You’ll learn more
about events in the next chapter.)

60 Palm OS Programmer’s Companion (Preliminary)

Application Startup and Stop
Stopping an Application

When an application stops, it is given an opportunity to perform
cleanup activities including closing databases and saving state
information.

In the stop routine, an application should first flush all active
records, then close the application’s database, and finally save those
aspects of the current state needed for startup. Listing 3.3 is an
example of a St opAppl i cat i on routine from Dat ebook. c.

Listing 3.3 StopApplication from Datebook.c

static void StopApplication (void)

{

Dat ebookPr ef erenceType prefs;

/1 Wite the preferences / saved-state information.
prefs. noteFont = NoteFont;

prefs.dayStart Hour = DayStart Hour;

prefs. dayEndHour = DayEndHour ;

prefs.al arnPreset = Al arnPreset;

prefs. saveBackup = SaveBackup;

prefs. showTi mneBars = ShowTi neBar s;

prefs. conpressDayVi ew = Conpr essDayVi ew,

pref s. showTi medAppts = ShowTi nedAppt s;

prefs. showunti medAppts = Showunt i nedAppt s;

prefs. showbDai | yRepeat i ngAppt s = ShowDai | yRepeat i ngAppt s;

/1 Wite the state information.

Pr ef Set AppPr ef erences (sysFi | eCDat ebook, dat ebookPrefl D,
dat ebookVer si onNum &prefs, sizeof (DatebookPreferenceType),
true);

/'l Send a frnBave event to all the open forns.
FrmSaveAl | Forns ();

/1 Cose all the open forns.
FrnCl oseAl | Fornms ();

/1 Close the application's data file.

Palm OS Programmer’s Companion (Preliminary) 61

Application Startup and Stop
Launch Code Summary

DnCl oseDat abase (Appt DB);
}

Launch Code Summary

Table 3.1 lists all Palm OS standard launch codes. These launch
codes are declared in the header Syst emMgr . h. All the parameters
for a launch code are passed in a single parameter block, and the
results are returned in the same parameter block.

Table 3.1

Palm OS Launch Codes

Code

Request

sysAppLaunchChrdAddRecord
sysAppLaunchCndAl ar mlri gger ed

sysAppLaunchCndCount r yChange
sysAppLaunchCndDi spl ayAl arm

sysAppLaunchChrdExgAskUser

sysAppLaunchCrdExgRecei veDat a

sysAppLaunchCndFi nd
sysAppLaunchCmdGot o

sysAppLaunchCndGoToURL

sysAppLaunchCmdl ni t Dat abase

Add a record to a database.

Schedule next alarm or perform quick
actions such as sounding alarm tones.

Respond to country change.

Display specified alarm dialog or
perform time-consuming alarm-related
actions.

Let application override display of
dialog asking user if they want to
receive incoming data via the exchange
manager.

Notify application that it should receive
incoming data via the exchange
manager.

Find a text string.

Go to a particular record, display it, and
optionally select the specified text.

Launch Clipper application and open a
URL. (Palm VIII system only.)

Initialize database.

62 Palm OS Programmer’s Companion (Preliminary)

Application Startup and Stop
Launch Code Summary

Code

Request

sysAppLaunchCndLookup

sysAppLaunchCndNor mal Launch
sysAppLaunchCndOpenDB

sysAppLaunchCnrdPanel Cal | edFr omAp

b

sysAppLaunchCndRet ur nFr onPanel

sysAppLaunchCrdSaveDat a

sysAppLaunchCnrdSyncNotify

sysAppLaunchCndSyst enlock

sysAppLaunchCmdSyst enReset

sysAppLaunchCndTi neChange
sysAppLaunchCrdURLPar ans

Look up data. In contrast to
sysAppLaunchCndFi nd, a level of
indirection is implied. For example, look
up a phone number associated with a
name.

Launch normally.

Launch application and open a
database. (Palm VIII system only.)

Tell preferences panel that it was
invoked from an application, not the
Preferences application.

Tell an application that it’s restarting
after preferences panel had been called.

Save data. Often sent before find
operations.

Notify applications that a HotSync has
been completed.

Sent to the Security application to
request that the system be locked down.

Respond to system reset. No Ul is
allowed during this launch code.

Respond to system time change.

Launch an application with parameters
from Clipper. (Palm VIII system only.)

Palm OS Programmer’s Companion (Preliminary) 63

Application Startup and Stop
Launch Code Summary

64 Palm OS Programmer’s Companion (Preliminary)

Event Loop

This chapter discusses the event manager, the main interface
between the Palm OS system software and the application. It
discusses in some detail what an application does in response to
user input, providing code fragments as examples where needed.
The topics covered are:

e The Application Event Loop

= | ow-Level Event Management

This chapter’s focus is on how to write your applications main
event loop. For more detailed information on events, consult the
Palm OS SDK Reference. Details for each event are given in Chapter
3, “Palm OS Events.” In addition to the reference material, consult
the chapter “User Interface” in this book. It provides the event flow
for each user interface element.

Figure 4.1 illustrates control flow in a typical application.

Palm OS Programmer’s Companion (Preliminary) 65

Event Loop

Figure 4.1 Control Flow in a Typical Application

> > EvtGetEvent |

Remain in loop until no
. «——||sthere an event?
thereis an event.
Y ves
SysHandleEvent

Process event,

—| generate other events | Y&

Is this a system function?
as necessary, return.

(e.g., power-off, Graffiti input)

*no

@enuHandl eEvenD

Handle menu interface, yes : Y
A then go on. - Is this amenu?

*no

<Appl icationHand| eEveD

|| Load from resources, set event| yes - -
" handler for form loaded. J Isthis afrmLoadEvent~

y no
|| Dispatch event to application's @rmDispatchEvent >
A .

'

Did application handler
complete event processing?

*no

@mHandl eEvent >

Y

Provide default processing
for event.

YESs

66 Palm OS Programmer’s Companion (Preliminary)

Event Loop
The Application Event Loop

The Application Event Loop

Listing 4.1

As described in the previous chapter, “Application Startup and
Stop,” an application performs a full startup when it receives the
launch code sysAppLauchConmandNor mal Launch. It begins
with a startup routine, then goes into an event loop, and finally exits
with a stop routine.

In the event loop, the application fetches events from the queue and
dispatches them, taking advantage of the default system
functionality as appropriate.

While in the loop, the application continuously checks for events on
the event queue. If there are events on the queue, the application has
to process them as determined in the event loop. As a rule, the
events are passed on to the system, which knows how to handle
them. For example, the system knows how to respond to pen taps
on forms or menus.

The application typically remains in the event loop until the system
tells it to shut itself down by sending an appSt opEvent (nota
launch code) through the event queue. The application must detect
this event and terminate.

Top-Level Event Loop Example from Datebook.c

static void EventLoop (void)

{

Word error;
Event Type event;
do

vat CGet Event (&event, evt Wit Forever);
PreprocessEvent (&event);
if (! SysHandl eEvent (&event))

if (! MenuHandl eEvent (NULL, &event, &error))

if (! ApplicationHandl eEvent (&event))
Fr nDi spat chEvent (&event);

Palm OS Programmer’s Companion (Preliminary) 67

Event Loop
The Application Event Loop

#i f EMULATI ON_LEVEL != EMULATI ON_NONE
ECAppt DBVal i dat e (Appt DB) ;
#endi f

}
while (event.eType ! = appStopEvent);

}

In the event loop, the application iterates through these steps (see
Figure 4.1 and Listing 4.1)

1. Fetch an event from the event queue.

2. Call PreprocessEvent to allow the datebook event
handler to see the command keys before any other event
handler gets them. Some of the datebook views display Ul
that disappears automatically; this Ul needs to be dismissed
before the system event handler or the menu event handler
display any Ul objects.

Note that not all applications need a Pr epr ocessEvent
function. It may be appropriate to call SysHandl eEvent
right away.

3. Call SysHandl eEvent to give the system an opportunity to
handle the event.

The system handles events like power on/power off, Graffiti
input, tapping silk-screened icons, or pressing buttons.
During the call to SysHandl eEvent , the user may also be
informed about low-battery warnings or may find and search
another application.

Note that in the process of handling an event,

SysHandl eEvent may generate new events and put them
on the queue. For example, the system handles Graffiti input
by translating the pen events to key events. Those, in turn,
are put on the event queue and are eventually handled by the
application.

SysHandl eEvent returnst r ue if the event was completely
handled, that is, no further processing of the event is
required. The application can then pick up the next event
from the queue.

68 Palm OS Programmer’s Companion (Preliminary)

Event Loop
The Application Event Loop

4. If SysHandl eEvent did not completely handle the event,
the application calls MenuHand| eEvent .
MenuHandl eEvent handles two types of events:

— If the user has tapped in the area that invokes a menu,
MenuHandl eEvent brings up the menu.

— If the user has tapped inside a menu to invoke a menu
command, MenuHandl eEvent removes the menu from
the screen and puts the events that result from the
command onto the event queue.

MenuHandl eEvent returns TRUE if the event was
completely handled.

5. If MenuHandl eEvent did not completely handle the event,
the application calls Appl i cati onHandl eEvent , a
function your application has to provide itself.

Appl i cati onHandl eEvent handles only the
frm_oadEvent for that event; it loads and activates
application form resources and sets the event handler for the
active form.

6. If Appl i cat i onHandl eEvent did not completely handle
the event, the application calls Fr nDi spat chEvent .
Fr nDi spat chEvent first sends the event to the
application’s event handler for the active form. This is the
event handler routine that was established in
Appl i cati onHandl eEvent . Thus the application’s code is
given the first opportunity to process events that pertain to
the current form. The application’s event handler may
completely handle the event and returnt r ue to calls from
FrnDi spat chEvent . In that case, Fr nDi spat chEvent
returns to the application’s event loop. Otherwise,
Fr mDi spat chEvent calls Fr nHandl eEvent to provide the
system’s default processing for the event.

For example, in the process of handling an event, an
application frequently has to first close the current form and
then open another one, as follows:

— The application calls Fr nGot oFor mto bring up another
form. Fr nGot oFor mqueues afr nCl oseEvent for the
currently active form, then queues f r rLoadEvent and
f r mMOpenEvent for the new form.

— When the application gets the f r nCl oseEvent , itcloses
and erases the currently active form.

Palm OS Programmer’s Companion (Preliminary) 69

Event Loop
The Application Event Loop

— When the application gets the f r rLoadEvent , it loads
and then activates the new form. Normally, the form
remains active until it’s closed. (Note that this wouldn’t
work if you preload all forms, but preloading is really
discouraged. Applications don’t need to be concerned
with the overhead of loading forms; loading is so fast that
applications can do it when they need it.) The
application’s event handler for the new form is also
established.

— When the application gets the f r mOpenEvent , it
performs any required initialization of the form, then
draws the form on the display.

After Fr ncot oFor mhas been called, any further events that
come through the main event loop and to

Fr nDi spat chEvent are dispatched to the event handler for
the form that’s currently active. For each dialog box or form,
the event handler knows how it should respond to events, for
example, it may open, close, highlight, or perform other
actions in response to the event. Fr nHand|l eEvent invokes
this default Ul functionality.

After the system has done all it can to handle the event for
the specified form, the application finally calls the active
form’s own event handling function. For example, in the
datebook application, it may call DayVi ewHandl eEvent or
WeekVi ewHandl eEvent .

Notice how the event flow allows your application to rely on system
functionality as much as it wants. If your application wants to know
whether a button is pressed, it has only to wait for

ct | Sel ect Event . All the details of the event queue are handled
by the system.

Some events are actually requests for the application to do
something, for example, f r mMOpenEvent . Typically, all the
application does is draw its own interface, using the functions
provided by the system, and then waits for events it can handle to
arrive from the queue.

Only the active form should process events.

70 Palm OS Programmer’s Companion (Preliminary)

Event Loop
Low-Level Event Management

Low-Level Event Management

You can perform low-level event management using System Event
Manager functions. The system event manager:

= manages the low-level pen and key event queues.
= translates taps on silk-screened icons into key events.

= sends pen strokes in the Graffiti area to the Graffiti
recognizer.

= puts the system into low-power doze mode when there is no
user activity.

Most applications have no need to call the system event manager
directly because most of the functionality they need comes from the
higher-level event manager or is automatically handled by the
system.

Applications that do use the system event manager directly might
do so to enqueue key events into the key queue or to retrieve each of
the pen points that comprise a pen stroke from the pen queue.

This section provides information about the system event manager
by discussing these topics:

= Event Translation: Pen Strokes to Key Events

e Pen Queue Management
= Auto-Off Control
« System Event Manager Summary

Event Translation: Pen Strokes to Key Events

One of the higher-level functions provided by the system event
manager is conversion of pen strokes on the digitizer to key events.
For example, the system event manager sends any stroke in the
Graffiti area of the digitizer automatically to the Graffiti recognizer
for conversion to a key event. Taps on silk-screened icons, such as
the application launcher, Menu button, and Find button, are also
intercepted by the system event manager and converted into the
appropriate key events.

When the system converts a pen stroke to a key event, it:

Palm OS Programmer’s Companion (Preliminary) 71

Event Loop

Low-Level Event Management

Table 4.1

= Retrieves all pen points that comprise the stroke from the pen
queue

= Converts the stroke into the matching key event
= Enqueues that key event into the key queue

Eventually, the system returns the key event to the application as a
normal result of calling Evt Get Event .

Most applications rely on the following default behavior of the
system event manager:

= All strokes in the predefined Graffiti area of the digitizer are
converted to key events

= All taps on the silk-screened icons are convert to key events

= All other strokes are passed on to the application for
processing

Pen Queue Management

The pen queue is a preallocated area of system memory used for
capturing the most recent pen strokes on the digitizer. It is a circular
gueue with a first-in, first-out method of storing and retrieving pen
points. Points are usually enqueued by a low-level interrupt routine
and dequeued by the system event manager or application.

Table 4.1 summarizes pen management.

Pen Queue Management

The user... The system...

Brings the pen down Stores a pen-down sequence in the pen

on the digitizer. gueue and starts the stroke capture.

Draws a character. Stores additional points in the pen queue
periodically.

Lifts the pen. Stores a pen-up sequence in the pen

gueue and turns off stroke capture.

The system event manager provides an API for initializing and
flushing the pen queue and for queuing and dequeueing points.
Some state information is stored in the queue itself: to dequeue a
stroke, the caller must first make a call to dequeue the stroke

72 Palm OS Programmer’s Companion (Preliminary)

Event Loop
Low-Level Event Management

Table 4.2
User action

Hardware button
press.

Hold down key for

information (Evt DequeuePensSt r okel nf 0) before the points for
the stroke can be dequeued. Once the last point is dequeued,
another Evt DequeuePenSt r okel nf o call must be made to get the
next stroke.

Applications usually don’t need to call

Evt DequeuePenSt r okel nf o because the event manager calls
this function automatically when it detects a complete pen stroke in
the pen queue. After calling Evt DequeuePensSt r okel nf o, the
system event manager stores the stroke bounds into the event
record and returns the pen-up event to the application. The
application is then free to dequeue the stroke points from the pen
gueue, or to ignore them altogether. If the points for that stroke are
not dequeued by the time Evt Get Event is called again, the system
event manager automatically flushes them.

Key Queue Management

The key queue is an area of system memory preallocated for
capturing key events. Key events come from one of two
occurrences:

= As adirect result of the user pressing one of the buttons on
the case

= As aside effect of the user drawing a Graffiti stroke on the
digitizer, which is converted in software to a key event

Table 4.2 summarizes key management.

Key Queue Management
System response

Interrupt routine enqueues the appropriate key event into
the key queue, temporarily disables further hardware button
interrupts, and sets up a timer task to run every 10 ms.

Timer task to supports auto-repeat of the key (timer task is

extended time period. also used to debounce the hardware).

Release key for certain Timer task reenables the hardware button interrupts.

amount of time.

Palm OS Programmer’s Companion (Preliminary) 73

Event Loop
Low-Level Event Management

User action System response
Pen stroke in Graffiti System manager calls the Graffiti recognizer, which then
area of digitizer. removes the stroke from the pen queue, converts the stroke

into one or more key events, and finally enqueues these key
events into the key queue.

Pen stroke on silk- System event manager converts the stroke into the
screened icons. appropriate key event and enqueues it into the key queue.

The system event manager provides an API for initializing and
flushing the key queue and for enqueuing and dequeuing key
events. Usually, applications have no need to dequeue key events;
the event manager does this automatically if it detects a key in the
gueue and returns a keyDownEvent to the application through the
Evt Get Event call.

Auto-Off Control

Because the system event manager manages hardware events like
pen taps and hardware button presses, it’s responsible for resetting
the auto-off timer on the device. Whenever the system detects a
hardware event, it automatically resets the auto-off timer to 0. If an
application needs to reset the auto-off timer manually, it can do so
through the system event manager call Evt Reset Aut oOf f Ti ner .

System Event Manager Summary

System Event Manager Functions

Main Event Queue Management
EvtGetEvent EvtEventAvail
EvtSysEventAvail EvtAddEventToQueue

EvtAddUniqueEventToQueue EviCopyEvent

Pen Queue Management

EvtPenQueueSize EvtDequeuePenPoint

EvtDequeuePenStrokelnfo EvtFlushNextPenStroke

74 Palm OS Programmer’s Companion (Preliminary)

Event Loop
Low-Level Event Management

System Event Manager Functions

EvtFlushPenQueue EvtGetPen

EvtGetPenBtnList

Key Queue Management

EvtKeyQueueSize EvtEngueueKey

EvtFlushKeyQueue EvtKeyQueueEmpty

Handling pen strokes and key strokes

EvtEnableGraffiti EvtProcessSoftKeyStroke

Handling power on and off events

EvitResetAutoOffTimer EvtWakeup

Palm OS Programmer’s Companion (Preliminary) 75

Event Loop
Low-Level Event Management

76 Palm OS Programmer’s Companion (Preliminary)

5

User Interface

This chapter describes the user interface elements that you can use
in your application. To create a user interface element, you create a
resource that defines what that element looks like and where it is
displayed. You interact with the element programmatically as a Ul
object. APalm OS Ul object is a C structure that’s linked with one or
more items on the screen. Note that Palm Ul objects are just
structures, not the more elaborate objects found in some systems.
This is useful because a C structure is more compact than other
objects could be.

This chapter introduces each of the user interface objects. It also
describes Palm system managers that aid in working with the user
interface. It covers:

e Palm OS Resource Summary

< Drawing on the Palm OS Device

= Forms, Windows, and Dialogs

= Controls

= Fields

= Menus

= Tables

= Lists

= Labels

= Scroll Bars

e Custom Ul Objects

= Dynamic Ul
e |nsertion Point

e Text
= Receiving User Input

= Application Launcher

Palm OS Programmer’s Companion (Preliminary) 77

User Interface
Palm OS Resource Summary

For guidelines on creating a user interface, see the chapter “Good

Design Practices” earlier in this book.

Palm OS Resource Summary

The Palm OS development environment provides a set of resource
templates that application developers use to implement the buttons,
dialogs, and other Ul elements. Table 5.1 maps user interface
elements to resources. The ResEdit name is included for developers
using that tool. It’s not relevant for Metrowerks Constructor users.

All resources are discussed in detail in the chapter “Palm OS
Resources” of the Palm OS SDK Reference. Specific design
recommendations for some of the elements are provided in the
chapter “Good Design Practices” in “User Interface Guidelines.”

Table 5.1 Ul Resource Summary

Ul Element and Functionality

Command button—
Execute command.

Push button (also called radio
button)—
Select a value

Hot text entry—
Invoke dialog that changes text
of the button.

Increment arrow—
Increment/decrement values, or
scroll.

Check box—
Toggle on or off.

Example

Dhetailz

S—

H2r11,94

Resource(s)
Button (tBTN)

Push button (tPBN)

Selector trigger (tSLT)

Button (tBTN) or
repeating button
(tREP)

Checkbox (tCBX)

78 Palm OS Programmer’s Companion (Preliminary)

User Interface
Drawing on the Palm OS Device

Ul Element and Functionality = Example Resource(s)
Popup list— Popup trigger (tPUT)
Choose a setting from a list. - Uil Popup list (tPUL)
= List (tLST)
Edit Categaries._
Menu— Menu Bar (MBAR)
Execute commands not found Menu (MENU
on screen as buttons and so on. Edit Page (:
et Info 1
iza to top of poge "
>0 o bottomn of page B
Text field— Staff meeting Field (tFLD)
Display text (single or multiple
lines).
Scroll bar— Scrollbar
Use together with fields or
tables.

Drawing on the Palm OS Device

The first version of the Palm Computing Platform device has an
LCD screen of 160x160 pixels. The LCD controller built into the
68328 maps a portion of system memory to the LCD. Currently, the
software only supports 1 bit/pixel monochrome graphics, although
the controller can support 2 bits/pixel gray scale.

Forms, Windows, and Dialogs

Aform is the GUI area for each view of your application. For
example the Address Book offers an Address List view, Address
Edit view, and so on. Each application has to have one form, and
most applications have more than one. To actually create the view,
you have to add other Ul elements to the form; either by dragging

Palm OS Programmer’s Companion (Preliminary) 79

User Interface

Forms, Windows, and Dialogs

Figure 5.1

them onto the form from the catalog or by providing their ID as the
value of some of the form’s fields.

Figure 5.1 shows an example of a form. Typical forms are as large as
the screen, as shown here. Other forms are modal dialogs, which are
shorter than the screen but just as wide.

Form

[Ediv Memo

Horse of different color

Ruby slippers .
ellow brick: r-:-u-:[

A window defines a drawing region. This region may be on the
display or in a memory buffer (an off-screen window). Off-screen
windows are useful for saving and restoring regions of the display
that are obscured by other Ul objects. All forms are windows, but
not all windows are forms.

The window obiject is the portion of the form object that determines
how the form’s window looks and behaves. A window object
contains viewing coordinates of the window and clipping bounds.

When a form is opened, af r nOpenEvent is triggered and the
form’s ID is stored. Awi nEnt er Event is triggered whenever a
formis opened, and awi nExi t Event istriggered whenever a form
is closed. the wi nEnt er Event usually follows right after a

wi nExi t Event ; an old window is deactivated just before a new
window is activated.

This section lists APl you can use to manipulate forms, windows,
and the objects within a form. The following two sections describe
special types of forms:

= Alert Dialogs

80 Palm OS Programmer’s Companion (Preliminary)

User Interface
Forms, Windows, and Dialogs

Figure 5.2

= Progress Dialogs

Alert Dialogs

If you want to display an alert dialog (see Figure 5.2) or prompt the
user for a response to a question, use the alert manager. The alert
manager defines the following functions:

e FrmAl ert
e FrnCust omAl ert

Alert Dialog

fMemo Delete

@ Do you really want to
delete this memo #

[oK) ([Concel)

Given a resource ID that defines an alert, the alert manager creates
and displays a modal dialog box. When the user taps one of the
buttons in the dialog, the alert manager disposes of the dialog box
and returns to the caller the item number of the button the user
tapped.

There are four types of system-defined alerts:
e Question
= Warning
= Notification
= Error

The alert type determines which icon is drawn in the alert window
and which sound plays when the alert is displayed.

When the alert manager is invoked, it’s passed an alert resource (see
the chapter “Palm OS Resources” in the Palm OS SDK Reference) that
contains the following information:

= The rectangle that specifies the size and position of the alert
window

= The alert type (question, warning, notification, or error)

Palm OS Programmer’s Companion (Preliminary) 81

User Interface

Forms, Windows, and Dialogs

= The null-terminated text string; that is, the message the alert
displays

= The text labels for one or more buttons

Progress Dialogs

If your application performs a lengthy process, such as data transfer
during a communications session, consider displaying a progress
dialog to inform the user of the status of the process. The progress
manager provides the mechanism to display progress dialogs.

You display a progress dialog by calling PrgSt art Di al 0g. Then,
as your process progresses, you call Pr gUpdat eDi al og to update
the dialog with new information for the user. In your event loop you
call Pr gHandl eEvent to handle the progress dialog update events
gueued by Pr gUpdat eDi al og. The Pr gHandl eEvent function
makes a callback to at ext Cal | back function that you supply to
get the latest progress information.

Note that whatever operation you are doing that is the lengthy
process, you do the work inside your normal event loop, not in the
callback function. That is, you call Evt Get Event and do work
when you geta ni | Event . Each time you getani | Event,do a
chunk of work, but be sure to continue to call Evt Get Event
frequently (like every half second), so that pen taps and other events
get noticed quickly enough.

The dialog can display a few lines of text that are automatically
centered and formatted. You can also specify an icon that identifies
the operation in progress. The dialog has one optional button that
can be a cancel or an OK button. The type of the button is
automatically controlled by the progress manager and depends on
the current progress state (no error, error, or user canceled
operation).

Progress textCallback Function

When you want to update the progress dialog with new
information, you call the function Pr gUpdat eDi al og. To get the
current progress information to display in the progress dialog,

Pr gHandl eEvent makes a callback to a function, t ext Cal | back,
that you supplied in your call to Pr gSt ar t Di al og.

82 Palm OS Programmer’s Companion (Preliminary)

User Interface
Forms, Windows, and Dialogs

The system passes the t ext Cal | back function one parameter, a
pointer to a Pr gCal | backDat a structure. To learn what type of

information is passed in this structure, see the chapter “Progress

Manager” in the Palm OS SDK Reference.

Your t ext Cal | back function should return a Boolean. Return

t r ue if the progress dialog should be updated using the values you
specified in the Pr gCal | backDat a structure. If you specify f al se,
the dialog is still updated, but with default status messages.
(Returning f al se is not recommended.)

In the t ext Cal | back function, you should set the value of the

t ext P buffer to the string you want to display in the progress
dialog when it is updated. You can use the value in the st age field
to look up a message in a string resource. You also might want to
append the text in the message field to your base string. Typically,
the message field would contain more dynamic information that
depends on a user selection, such as a phone number, device name,
or network identifier, etc.

For example, the Pr gUpdat eDi al og function might have been
called with a st age of 1 and a nessageP parameter value of a
phone number string, “555-1212”. Based on the stage, you might
find the string “Dialing” in a string resource, and append the phone
number, to form the final text “Dialing 555-1212” that you place in
the text buffer t ext P.

Keeping the static strings corresponding to various stages in a
resource makes it easier to localize your application. More dynamic
information can be passed in via the nessageP parameter to

Pr gUpdat eDi al og.

NOTE: Thet ext Cal | back function is called only if the
parameters passed to Pr gUpdat eDi al og have changed from
the last time it was called. If Pr gUpdat eDi al og is called twice
with exactly the same parameters, the t ext Cal | back function is
called only once.

Palm OS Programmer’s Companion (Preliminary) 83

User Interface
Controls

Controls

Control objects allow for user interaction when you add them to the
forms in your application. Events in control objects are handled by
Ct | Handl eEvent . There are several types of control objects, which
are all described in this section.

Buttons

Buttons (see Figure 5.3) display a text label in a box. The default
style for a button is a text string centered within a rounded
rectangle. Buttons have rounded corners unless a rectangular frame
is specified. A button without a frame inverts a rounded rectangular
region when pressed.

When the user taps a button with the pen, the button highlights
until the user releases the pen or drags it outside the bounds of the
button.

Table 5.2 shows the system events generated when the user interacts
with the button and Ct | Handl eEvent ’s response to the events.

Buttons

[ok][Cancel] [Delete.. | [Mote |

Figure 5.3

Table 5.2 Event Flow for Buttons

User Action

System Response

CtlHandleEvent Response

Pen goes down on a
button.

Pen is lifted from
button.

penDownEvent with the x
and y coordinates stored in
Event Type.

ctl Ent er Event with
button’s ID number.

penUpEvent with the x and
y coordinates stored in
Event Type.

Addsthect| Ent er Event to
the event queue.

Inverts the button’s display.

Adds the ct | Sel ect Event
to the event queue.

84 Palm OS Programmer’s Companion (Preliminary)

User Interface
Controls

User Action

System Response

CtIHandleEvent Response

Pen is lifted outside
button.

penUpEvent with the x and
y coordinates stored in
Event Type.

ctl Exi t Event with
button’s ID number.

Adds the ct | Exi t Event to
the event queue.

Nothing happens.

Popup Trigger
A popup trigger (see Figure 5.4) displays a text label and a graphic
element (always on the left) that signifies the control initiates a

popup list. If the text label changes, the width of the control expands
or contracts to the width of the new label plus the graphic element.

Table 5.3 shows the system events generated when the user interacts
with the popup trigger and Ct | Handl eEvent ’s response to the
events. Because popup triggers are used to display list objects, also

see the section “Lists” in this chapter.

Figure 5.4 Popup Trigger
= Mork
Table 5.3 Event Flow for Popup Triggers
User Action System Response CtIHandleEvent Response

Pen goes down on the
popup trigger.

Pen is lifted from
button.

penDownEvent with the x
and y coordinates stored in
Event Type.

ct | Ent er Event with popup
trigger’s ID number.

penUpEvent with the x and
y coordinates stored in
Event Type.

Addsthect | Ent er Event to
the event queue.

Inverts the trigger’s display.

Adds the ct | Sel ect Event
to the event queue.

Palm OS Programmer’s Companion (Preliminary) 85

User Interface
Controls

User Action

System Response

CtlHandleEvent Response

Pen is lifted outside
button.

ctl Sel ect Event with
popup trigger’s ID number.

penUpEvent with the x and
y coordinates stored in
Event Type.

ct | Exi t Event with popup
trigger’s ID number.

Adds awi nEnt er Event for
the list object’s window to the
event queue. Controls passes
to Fr nHandl eEvent , which
displays the list. Control then
passes to Lst Handl eEvent .

Adds the ct | Exi t Event to
the event queue.

Nothing happens.

Selector Trigger

A selector trigger (see Figure 5.5) displays a text label surrounded
by a gray rectangular frame. If the text label changes, the width of
the control expands or contracts to the width of the new label.

Table 5.4 shows the system events generated when the user interacts
with the selector trigger and Ct | Handl eEvent ’s response to the

events.
Figure 5.5 Selector Trigger
5eh=.-'i:tm*
Table 5.4 Event Flow for Selector Triggers
User Action System Response CtIHandleEvent Response

Pen goes down on a
selector trigger.

penDownEvent with the x
and y coordinates stored in
Event Type.

ct | Ent er Event with
selector trigger’s ID number.

Addsthect | Ent er Event to
the event queue.

Inverts the button’s display.

86 Palm OS Programmer’s Companion (Preliminary)

User Interface
Controls

User Action

System Response

CtIHandleEvent Response

Pen is lifted from the
selector trigger.

penUpEvent with the x and
y coordinates stored in
Event Type.

ctl Sel ect Event with

selector trigger’s ID number.

Adds the ct | Sel ect Event
to the event queue.

Adds afrnOpenEvent
followed by a

wi nExi t Event to the event
queue. Control is passed to
the form object.

Repeating Button

A repeat control looks like a button. In contrast to buttons, however,
users can repeatedly select repeat controls if they don’t lift the pen

when the control has been selected. The object is selected repeatedly
until the pen is lifted.

Table 5.5 shows the system events generated when the user interacts
with the selector trigger and Ct | Handl eEvent ’s response to the

events.
Table 5.5 Event Flow for Repeating Buttons
User Action System Response CtlHandleEvent Response

Pen goes down on a
repeating button.

Pen remains on
repeating button.

Pen is dragged off the
repeating button.

penDownEvent with the x
and y coordinates stored in
Event Type.

ctl Ent er Event with
button’s ID number.

ctl Repeat Event

Addsthect | Ent er Event to
the event queue.

Adds the ct | Repeat Event
to the event queue.

Tracks the pen for a period of
time, then sends another

ct | Repeat Event if the pen
is still within the bounds of
the control.

No ct | Repeat Event
occurs.

Palm OS Programmer’s Companion (Preliminary) 87

User Interface
Controls

User Action

System Response

CtIHandleEvent Response

Pen is dragged back
onto the button.

Pen is lifted from
button.

ctl Repeat Event

penUpEvent with the x and
y coordinates stored in
Event Type.

ctl Exi t Event with
button’s ID number.

See above.

Adds the ct | Exi t Event to
the event queue.

Nothing happens.

Push Buttons

Push buttons (see Figure 5.6) look like buttons, but the frame always
has square corners. Touching a push button with the pen inverts the
bounds. If the pen is released within the bounds, the button remains
inverted.

Table 5.6 shows the system events generated when the user interacts
with the push button and Ct | Handl eEvent ’s response to the

events.
Figure 5.6 Push Buttons
Prinrity:
Sort by: EENLTEY
Table 5.6 Event Flow for Push Buttons
User Action System Response CtlHandleEvent Response

Pen goes down on a
push button.

penDownEvent with the x
and y coordinates stored in
Event Type.

ct | Ent er Event with push
button’s ID number.

Addsthect | Ent er Event to
the event queue.

If push button is grouped and
highlighted, no change. If
push button is ungrouped
and highlighted, it becomes
unhighlighted.

88 Palm OS Programmer’s Companion (Preliminary)

User Interface
Controls

User Action

System Response

CtIHandleEvent Response

Pen is lifted from
push button.

penUpEvent with the x and Adds the ct | Sel ect Event

y coordinates stored in
Event Type.

ctl Sel ect Event with
button’s ID number.

to the event queue.

Store button ID number and
its current state.

Check Boxes

Check boxes (see Figure 5.7) display a setting, either on (checked) or
off (unchecked). Touching a check box with the pen toggles the
setting. The check box appears as a square, which contains a check
mark if the check box’s setting is on. A check box can have a text
label attached to it; selecting the label also toggles the check box.

Push buttons and check boxes can be arranged into exclusive
groups; one and only one control in a group can be on at a time.

Table 5.7 shows the system events generated when the user interacts
with the check box and Ct | Handl eEvent ’s response to the events.

Figure 5.7 Check Boxes
& Show Due Dates.
00 Show Priorities
Table 5.7 Event Flow for Check Boxes
User Action Event Generated CtIHandleEvent Response

Pen goes down
on check box.

Pen is lifted from
check box.

penDownEvent with the x
and y coordinates stored in
Event Type.

ct | Ent er Event with check
box’s ID number.

penUpEvent with the x and
y coordinates stored in
Event Type.

Adds thect | Ent er Event to the
event queue.

Tracks the pen until the user lifts
it.

Adds the ct | Sel ect Event to
the event queue.

Palm OS Programmer’s Companion (Preliminary) 89

User Interface

Fields
User Action Event Generated CtlIHandleEvent Response
ctl Sel ect Event with = |f the check box is
check box’s ID number. unchecked, a check
appears.
= |f the check box is already
checked and is grouped,
there is no change in
appearance.
= |f the check box is already
checked and is ungrouped,
the check disappears.
Pen is lifted penUpEvent withthexand Addsthect!| Exit Event to the
outside box. y coordinates stored in event queue.
Event Type.
ct | Exi t Event with check Nothing happens.
box’s ID number.
Fields

A field object displays one or more lines of editable text. Figure 5.8 is
an underlined, left-justified field containing data.

Figure 5.8 Field

The field object supports these features:
= Proportional fonts (only one font per field)

Drag-selection

Scrolling for multiline fields

Cut, copy, and paste
Left and right text justification

Tab stops
Editable/noneditable attribute

90 Palm OS Programmer’s Companion (Preliminary)

User Interface
Fields

= Expandable field height (the height of the field expands as
more text is entered)

= Underlined text (each line of the field is underlined)

= Maximum character limit (the field stops accepting
characters when the maximum is reached)

= Special keys (Graffiti strokes) to support cut, copy, and paste

= |Insertion point positioning with pen (the insertion point is
positioned by touching the pen between characters)

< Scroll bars

The field object does not support overstrike input mode; horizontal
scrolling; word selection; character filters (for example, only
numeric characters accepted); numeric formatting; or special keys
for page up, page down, left word, right word, home, end, left
margin, right margin, and backspace.

NOTE: Field objects can handle line feeds—\OA—Dbut not
carriage returns—\0D. PalmRez translates any carriage returns it
finds in any Palm OS resources into line feeds, but doesn’t touch
static data.

Events in field objects are handled by Fl dHandl| eEvent . Table 5.8
provides an overview of how FI dHandl eEvent deals with the
different events

Palm OS Programmer’s Companion (Preliminary) 91

User Interface
Fields

Table 5.8

Event Flow for Fields

User Action

Event Generated

FldHandleEvent Response

Pen goes down on a
field.

Pen is lifted.

Enters characters
into selected field.

Presses up arrow
key

Presses down arrow

Presses left arrow

Presses right arrow

penDownEvent with the x
and y coordinates stored in
Event Type.

f | dEnt er Event with the
field’s ID number.

penUpEvent with the xandy
coordinates.

keyDownEvent with
character value in
Event Type.

keyDownEvent

keyDownEvent

keyDownEvent

keyDownEvent

Adds the f | dEnt er Event to
the event queue.

Sets the insertion point
position to the position of the
pen and tracks the pen until it
is released. Drag-selection and
drag-scrolling are supported.

Nothing happens; a field
remains selected until another
field is selected or the form
that contains the field is
closed.

Character added to field’s text
pointer.

Moves insertion point up a
line.

Moves insertion point down a
line; the insertion point
doesn’t move beyond the last
line that contains text.

Moves insertion point one
character position to the left.
When the left margin is
reached, move to the end of
the previous line.

Moves insertion point one
character position to the right.
When the right margin is
reached, move to the start of
the next line.

92 Palm OS Programmer’s Companion (Preliminary)

User Interface
Menus

User Action Event Generated FlIdHandleEvent Response

Cut command keyDownEvent Cuts the current selection to
the text clipboard.

Copy command keyDownEvent Copies the current selection to
the text clipboard.

Paste command keyDownEvent Inserts clipboard text into the
field at insertion point.

Menus

A menu bar is displayed whenever the user taps a menu icon. The
menu bar, a horizontal list of menu titles, appears at the top of the
screen in its own window, above all application windows. Pressing
a menu title highlights the title and “pulls down” the menu below

the title (see Figure 5.9).

Figure 5.9 Menu

menu name4m

menu bar

Cut

menu item< Copy
Paste

Undo

Select AN
separator

shortcut

L — T~ I B

Keyboard
Graffiti

K
b

User actions have the following effect on a menu:

Palm OS Programmer’s Companion (Preliminary) 93

User Interface
Menus

When... Then...

User drags the pen Command under the pen is highlighted.
through the menu.

Penisreleased overa That item is selected and the menu bar

menu item. and menu disappear.

Pen is released Both menu and menu bar disappear and
outside both the no selection is made.

menu bar and the

menu.

Penis released in a Menu bar and Menu remain displayed
menu title. until a selection is made from the menu.

Pen is tapped outside Both menu and menu bar are dismissed.
menu and menu bar.

User selects a Menu is dismissed but no event is posted.
separator with the
pen.

A menu has the following features:
= |tem separators, which are lines to group menu items.

Keyboard shortcuts; the shortcut labels are right justified in
menu items.

A menu remembers its last selection; the next time a menu is
displayed the prior selection appears highlighted.

The bits behind the menu bar and the menus are saved and
restored by the menu routines.

= When the menu is visible, the insertion point is turned off.

Menu events are handled by MenuHand| eEvent . Table 5.9
describes how user actions get translated into events and what
MenuHandl eEvent does in response.

94 Palm OS Programmer’s Companion (Preliminary)

User Interface
Tables

Table 5.9

Event Flow for Menus

User Action

Event Generated MenuHandleEvent
Response

Pen enters menu
bar.

wi nEnt er Event identifying Tracks the pen.
menu’s window.

User selectsa menu penUpEvent withthexandy AddsanenuEvent with the

item.

coordinates. item’s ID to the event queue.

Tables

Tables support multi-column displays. Examples are:
= the List view of the ToDo application
= the Day view in the Datebook

The table object is used to organize several types of Ul objects. The
number of rows and the number of columns must be specified for
each table object. A Ul object can be placed inside a cell of a table.
Tables often consist of rows or columns of the same object. For
example, a table might have one column of labels and another
column of fields. Tables can only be scrolled vertically. Tables can’t
include bitmaps.

A problem may arise if non-text elements are used in the table. For
example, assume you have a table with two columns. In the first
column is an icon that displays information, the second column is a
text column. The table only allows users to select elements in the
first column that are as high as one row of text. If the icon is larger,
only a narrow strip at the top of the column can be selected.

Table Event

The table object generates the eventt bl Sel ect Event . This event
contains:

e The table’s ID number
< The row of the selected table
= The column of the selected table

Palm OS Programmer’s Companion (Preliminary) 95

User Interface
Lists

Lists

Whent bl Sel ect Event is sent to a table, the table generates an
event to handle any possible events within the item’s Ul object.

The list object appears as a vertical list of choices in a box. The
current selection of the list is inverted.

A list is meant for static data. Users can choose from a
predetermined number of items. Examples include:

« the time list in the time edit window of the datebook
= the Category pull-down

If there are more choices than can be displayed, the system draws
small arrows (scroll indicators) in the right margin next to the first
and last visible choice. When the pen comes down and up on a
scroll indicator, the list is scrolled. When the user scrolls down, the
last visible item becomes the first visible item if there are enough
items to fill the list. If not, the list is scrolled so that the last item of
the list appears at the bottom of the list. The reverse is true for
scrolling up. Scrolling doesn’t change the current selection.

Bringing the pen down on a list item unhighlights the current
selection and highlights the item under the pen. Dragging the pen
through the list highlights the item under the pen. Dragging the pen
above or below the list causes the list to scroll if it contains more
choices than are visible.

When the pen is released over an item, that item becomes the
current selection. When the pen is dragged outside the list, the item
that was highlighted before the penDownEvent is highlighted
again if it’s visible. If it’s not, no item is highlighted.

An application can use a list in two ways:

< |nitialize a structure with all data for all entries in the list and
let the list manage its own data.

= Provide list drawing functions but don’t keep any data in
memory. The list picks up the data as it’s drawing.

Not keeping data in memory avoids unacceptable memory
overhead if the list is large and the contents of the list
depends on choices made by the user. An example would be

96 Palm OS Programmer’s Companion (Preliminary)

User Interface
Lists

a time conversion application that provides a list of clock
times for a number of cities based on a city the user selects.
Note that only lists can pick up the display information on

the fly like this; tables cannot.

Formatting can be an issue for lists: While it’s possible to imitate a
multi-column display, lists really consist of rows of text.

The Lst Handl eEvent function handles list events. Table 5.10
provides an overview of how Lst Handl eEvent deals with the
different events.

Table 5.10

Event Flow for Lists

User Action

System Response

LstHandleEvent Response

Pen goes down on

popup trigger button.

Pen goes down on a
list box.

Pen is lifted from the
list box.

Pen is lifted outside
the list box.

wi nEnt er Event identifying
list’s window.

| st Ent er Event with list’s
ID number and selected item.

penDownEvent with the x
and y coordinates stored in
Event Type.

penUpEvent with the x and
y coordinates stored in
Event Type.

| st Sel ect Event with list’s
ID number and number of
selected item.

penUpEvent with the x and
y coordinates stored in
Event Type.

Addsthel st Ent er Event to
the event queue.

Tracks the pen.

Highlights the selection
underneath the pen.

Adds the | st Sel ect Event
to the event queue.

Stores the new selection. If
the list is associated with a
popup trigger, adds a
popSel ect Event is added
to the event queue. with the
popup trigger ID, the popup
list ID, and the item number
selected in Event Type.
Control passes to

Fr nHandl eEvent .

Adds wi nExi t Event to
event queue.

Palm OS Programmer’s Companion (Preliminary) 97

User Interface
Labels

Labels

You can create a label in a form by creating a label resource.

The label resource displays noneditable text or labels on a form
(dialog box or full-screen). It’s used, for example, to have text
appear to the left of a checkbox instead of the right.

You don’t interact with a label as a programmatic entity; however,
you can use Form and Control API to create new labels or to change
labels dynamically. See the “Summary of User Interface AP1” at the
end of this chapter.

Scroll Bars

Palm 0S 2.0 and later provides vertical scroll bar support. As a
result, developers can include scroll bars in forms or tables and the
system sends the appropriate events when the end-user interacts
with the scroll bar (see Figure 5.10).

Figure 5.10 Scroll Bar

Edit Memmo LUnfiled

I scroll car

[Done :I[Detuis... :I

Here’s what you have to do to include a scroll bar in your user
interface:

1. Create a scroll bar (tSCL) Ul resource.

Provide the ID, the bounds for the scroll bar rectangle. The height
has to match the object you want to attach it to (normally a text
field). The width should be 7.

98 Palm OS Programmer’s Companion (Preliminary)

User Interface
Scroll Bars

Provide a minimum and maximum value as well as a page size.
e Minimum is usually 0.
= Maximum is usually 0 and set programmatically.

= The page size determines by how many lines the system
moves when the text scrolls.

Make the scroll bar part of the form (for tables, place the scroll bar
next to the table field programmatically).

When you compile your application, the system creates the
appropriate scroll bar Ul object. (See the chapter “Scrollbars™ in the
Palm OS SDK Reference for more information on the scrollbar Ul
object.)

There are two ways in which the scroll bar and the field (or table
field) that it’s attached to need to interact:

= \When the user adds or removes text, the scroll bar needs to
know about the change in size.

To get this functionality, call Tbl HasScr ol | Bar
programmatically. The table or field will then send events
whenever the size changes. Your application can catch the
events and process them appropriately.

= When the user moves the scroll bar, the text needs to move
accordingly. This can either happen dynamically (as the user
moves the scroll bar) or statically (after the user has released
the scroll bar).

As arule, the scroll bar appears on screen as part of the form
and is updated appropriately by the system. Applications
therefore rarely have to call Scl Dr awScr ol | Bar

Scl Get Scrol | Bar,or Scl Set Scr ol | Bar . The application
usually does call Scl Set Scr ol | Bar at initialization time to
set the initial position of the scroll bar.

The system sends the following scroll bar events:

= scl Ent er Event is sent when a penDownEvent occurs
within the bounds of the scroll bar.

= scl Repeat Event is sent when the user drags the scroll bar.

e scl Exi t Event is sent when the user lifts the pen. This
event is sent regardless of previous scl Repeat Event s.

Palm OS Programmer’s Companion (Preliminary) 99

User Interface
Custom Ul Objects

Applications that want to support immediate-mode scrolling (that
is, scrolling happens as the user drags the pen) need to watch for
occurrences of scl Repeat Event .

Application that don’t support immediate-mode scrolling should
ignore occurrences of scl Repeat Event and wait only for the
scl Exi t Event.

Custom Ul Objects

A gadget resource lets you implement a custom Ul object. The
gadget resource contains basic information about the custom
gadget, which is useful to the gadget writer for drawing and
processing user input.

You interact with gadgets programmatically using Form API. See
the “Summary of User Interface API” at the end of this chapter.

Dynamic Ul

Palm OS 3.0 and later provides functions that can be used to create
forms and form elements at runtime. Most applications will never
need to change any user interface elements at runtime—the built-in
applications don’t do so, and the Palm user interface guidelines
discourage it. However, some applications, such as forms packages,
must create their displays at runtime—it is for applications such as
these that the Dynamic Ul APl is provided. If you’re not absolutely
sure that you need to change your Ul dynamically, don’t do it—
unexpected changes to an application’s interface are likely to
confuse or frustrate the end user.

Dynamic user interface objects are subject to the following
limitations:

« You cannot create tables or Graffiti Shift indicators.

= You cannot create buttons (or repeating buttons) having
frames or non-bold frames.

= You cannot move user interface objects after they have been
created.

100 Palm OS Programmer’s Companion (Preliminary)

User Interface
Dynamic Ul

You can use the Fr mNewFor mfunction to create new forms
dynamically. Palm’s Ul guidelines encourage you to keep popup
dialogs at the bottom of the screen, using the entire screen width.
This isn’t enforced by the routine, but is strongly encouraged in
order to maintain a look and feel that is consistent with the built-in
applications.

The Fr nNewlLabel , Fr niNewBi t map, Fr mMNewGadget ,
Lst NewlLi st , Fl dNewFi el d and Ct | NewCont r ol functions can
be used to create new objects on forms.

It is fine to add new items to an active form, but doing so is very
likely to move the form structure in memory; therefore, any pointers
to the form or to controls on the form might change. Make sure to
update any variables or pointers that you are using so that they refer
to the form’s new memory location, which is returned when you
create the object.

The Fr nRenovebj ect function removes an object from a form.
This function doesn’t free memory referenced by the object (if any)
but it does shrink the form chunk. For best efficiency when
removing items from forms, remove items in order of decreasing
index values, beginning with the item having the highest index
value. When removing items from a form, you need to be mindful of
the same concerns as when adding items: the form pointer and
pointers to controls on the form may change as a result of any call
that moves the form structure in memory.

When creating forms dynamically, or just to make your application
more robust, use the Fr nVal i dat ePt r function to ensure that
your form pointer is valid and the form it points to is valid. This
routine can catch lots of bugs for you—use it!

Dynamic User Interface Functions

The following API can be used to create forms dynamically:
e O | NewCont r ol

Ct | Val i dat ePoi nt er

FI dNewFi el d

Fr nNewBi t map

Fr mNewlor m

Palm OS Programmer’s Companion (Preliminary) 101

User Interface
Insertion Point

Fr nNewGadget

Fr nNewlabel

Fr nRenovebj ect
Frmval i dat ePt r

Lst NewLi st

W nVal i dat eHandl| e

Insertion Point

Text

The insertion point is a blinking indicator that shows where text is
inserted when users write Graffiti characters or paste clipboard text.

In general, an application doesn’t need to be concerned with the
insertion point; the Palm OS Ul manages the insertion point.

This section describes how to work with text in the user interface—
whether it’s text the user has entered or text that your application
has created to display on the screen.

NOTE: If you application is going to be localized, you must take
special care when working with text. See the chapter “Localized
Applications” for more information.

Working With Text As Strings

The string manager provides a set of string manipulation functions.
The string manager APl is closely modeled after the standard C
string-manipulation functions like st r cpy, str cat, etc.

Applications should use the functions built into the string manager
instead of the standard C functions because doing so makes the
application smaller:

= When your application uses the string manager functions,
the actual code that implements the function is not linked

102 Palm OS Programmer’s Companion (Preliminary)

User Interface
Text

into your application but is already part of the operating
system.

= When you use the standard C functions, the code for each
function you use is linked into your application and results
in a bigger executable.

In addition, many standard C functions don’t work on the Palm OS
device at all because the OS doesn’t provide all basic system
functions (such as mal | oc) and doesn’t support the subroutine calls
used by most standard C functions.

NOTE: If your application is going to be localized, be careful
when using string functions. Where possible, use the functions
described in the chapter “Localized Applications” instead.

Using the StrVPrintF Function

Like the C vspri ntf function, the St r VPr i nt F function is
designed to be called by your own function that takes a variable
number of arguments and passes them to St r VPr i nt F for
formatting. This section gives a brief overview of how to use
StrVPrintF. For more details, refer to vspri nt f and the use of the
stdarg.h macros in a standard C reference book.

When you call St r VPr i nt F, you must use the special macros from
st dar g. h to access the optional arguments (those specified after
the fixed arguments) passed to your function. This is necessary,
because when you declare your function that takes an optional
number of arguments, you declare it using an ellipsis at the end of
the argument list:

MyPrintF(CharPtr s, CharPtr formatStr, ...);

The ellipsis indicates that zero or more optional arguments may be
passed to the function following the f or mat St r argument. Since
these optional arguments don’t have names, the st dar g. h macros
must be used to access them before they can be passed to
StrVPrintF.

To use these macros in your function, first declare an ar gs variable
astypeva_list:

Palm OS Programmer’s Companion (Preliminary) 103

User Interface
Text

va_list args;
Next, initialize the ar gs variable to point to the optional argument
list by usingva_start:

va_start(args, formatStr);

Note that the second argument to the va_st art macro is the last
required argument to your function (last before the optional
arguments begin). Now you can pass the ar gs variable as the last
parameter to the St r VPr i nt F function:

StrVPrintF(text, formatStr, args);

When you are finished, invoke the macro va_end before returning
from your function:

va_end(args);

Note that the St r Pri nt F and St r VPr i nt F functions implement
only a subset of the conversion specifications allowed by the ANSI
C function vspri nt f. See the St r VPr i nt F function reference for
details.

Fonts in Palm OS 3.0 and Later

Palm OS 3.0 and later provides a new font (I ar geBol dFont), two
new font manipulation routines (Font Sel ect and
Ent Def i neFont), and support for the use of custom fonts.

To use the large, bold font, pass the | ar geBol dFont selector to the
Fnt Set Font function. Under Palm OS 3.0 and later, if you try to
draw with a font that isn’t installed, the system uses the standard
font by default. Previous versions of Palm OS can crash if told to use
a nonexistent font.

The Font Sel ect function displays a dialog box in which the user
can specify the use of one of the three primary fonts st dFont ,

bol dFont, or | ar geBol dFont . For more information, see the
description of Font Sel ect in the Palm OS SDK Reference.

The Ent Def i neFont function makes a custom font available to
your application. For more information, see the description of
Fnt Def i neFont in the Palm OS SDK Reference.

Currently, Palm has not made available any tools or specifications to
convert desktop fonts for use on Palm OS 3.0 or later. If you have an

104 Palm OS Programmer’s Companion (Preliminary)

User Interface
Receiving User Input

urgent need for such support, send email to devsupp@al m com
for updated information.

Receiving User Input

The three main ways that a user interacts with an application are:
= by entering Graffiti
= by pressing a hardware button on the device
= by tapping the pen on a control in a form or dialog

The Palm OS provides three managers that control these three types
of input: The Graffiti Manager, The Key Manager, and The Pen

Manager, respectively.

Most applications do not need to access these managers directly;
instead, applications receive events from these managers and
respond to the events. There are cases, however, where you might
need to interact with one of these managers. This section describes
the three input managers and when you might need to use them.
(To learn how to obtain user input from a Ul object, refer to the
section in this chapter that covers that object.)

The Graffiti Manager

The Graffiti manager provides an API to the Palm OS Graffiti
recognizer. The recognizer converts pen strokes into key events,
which are then fed to an application through the event manager.

Most applications never need to call the Graffiti manager directly
because it’s automatically called by the event manager whenever it
detects pen strokes in the Graffiti area of the digitizer.

Special-purpose applications, such as a Graffiti tutorial, may want
to call the Graffiti manager directly to recognize strokes in other
areas of the screen or to customize the Graffiti behavior.

Using GrfProcessStroke

G f ProcessSt r oke is a high-level Graffiti manager call used by
the event manager for converting pen strokes into key events. The
call

Palm OS Programmer’s Companion (Preliminary) 105

User Interface
Receiving User Input

= Removes pen points from the pen queue
= Recognizes the stroke
= Puts one or more key events into the key queue

G f ProcessSt r oke automatically handles Graffiti ShortCuts and
calls the user interface as appropriate to display shift indicators in
the current window.

An application can call G f Pr ocessSt r oke when it receives a
penUpEvent from the event manager if it wants to recognize
strokes entered into its application area (in addition to the Graffiti
area).

Using Other High-Level Graffiti Manager Calls

Other high-level calls provided by the Graffiti manager include
routines for

= Getting and setting the current Graffiti shift state (caps lock
on/off, temporary shift state, etc.)

= Notifying Graffiti when the user selects a different field.
Graffiti needs to be notified when a field change occurs so
that it can cancel out of any partially entered shortcut and
clear its temporary shift state if it’s showing a potentially
accented character.

Special-Purpose Graffiti Manager Calls

The remainder of Graffiti manager API routines are for special-
purpose use. They are basically all the entry points into the Graffiti
recognizer engine and are usually called only by

G f Pr ocessSt r oke. These special-purpose uses include calls to
add pen points to the Graffiti recognizer’s stroke buffer, to convert
the stroke buffer into a Graffiti glyph 1D, and to map a glyph into a
string of one or more key strokes.

Accessing Graffiti ShortCuts

Other routines provide access to the Graffiti ShortCuts database.
This is a separate database owned and maintained by the Graffiti
manager that contains all of the shortcuts. This database is opened
by the Graffiti manager when it initializes and stays open even after
applications quit.

106 Palm OS Programmer’s Companion (Preliminary)

User Interface
Receiving User Input

The only way to modify this database is through the Graffiti
manager APL. It provides calls for getting a list of all shortcuts, and
for adding, editing, and removing shortcuts. The ShortCuts screen
of the Preferences application provides a user-interface for
modifying this database.

Note on Auto Shifting

The Palm OS 2.0 and later automatically uses an upper-case letter
under the following conditions:

= Period and space or Return.

= Other sentence terminator (such as ? or !) and space
This functionality requires no changes by the developer, but should
be welcome to the end user.
Note on Graffiti Help

In Palm OS 2.0 and later, applications can pop up Graffiti help by
calling SysGraf fiti Ref erenceDi al og or by putting a virtual
character—qgr af fi ti Ref er enceChr from Char s. h—on the
gueue.

Graffiti help is also available through the system Edit menu. As a
result, any application that includes the system Edit menu allows
users to access Graffiti Help that way.

The Key Manager

The key manager manages the hardware buttons on the Palm OS
device. It converts hardware button presses into key events and
implements auto-repeat of the buttons. Most applications never
need to call the key manager directly except to change the key
repeat rate or to poll the current state of the keys.

The event manager is the main interface to the keys; it returns a
keyDownEvent to an application whenever a button is pressed.
Normally, applications are notified of key presses through the event
manager. Whenever a hardware button is pressed, the application
receives an event through the event manager with the appropriate
key code stored in the event record. The state of the hardware
buttons can also be queried by applications at any time through the
KeyCur r ent St at e function call.

Palm OS Programmer’s Companion (Preliminary) 107

User Interface
Application Launcher

The KeyRat es call changes the auto-repeat rate of the hardware
buttons. This might be useful to game applications that want to use
the hardware buttons for control. The current key repeat rates are
stored in the key manager globals and should be restored before the
application exits.

The Pen Manager

The pen manager manages the digitizer hardware and converts
input from the digitizer into pen coordinates. The Palm Computing
Platform device has a built-in digitizer overlaid onto the LCD screen
and extending about an inch below the screen. This digitizer is
capable of sampling accurately to within 0.35 mm (.0138 in) with up
to 50 accurate points/second. When the device is in doze mode, an
interrupt is generated when the pen is first brought down on the
screen. After a pen down is detected, the system software polls the
pen location periodically (every 20 ms) until the pen is again raised.

Most applications never need to call the pen manager directly
because any pen activity is automatically returned to the application
in the form of events.

Pen coordinates are stored in the pen queue as raw, uncalibrated
coordinates. When the system event manager routine for removing
pen coordinates from the pen queue is called, it converts the pen
coordinate into screen coordinates before returning.

The Preferences application provides a user interface for calibrating
the digitizer. It uses the pen manager API to set up the calibration
which is then saved into the Preferences database. The pen manager
assumes that the digitizer is linear in both the x and y directions; the
calibration is therefore a simple matter of adding an offset and
scaling the x and y coordinates appropriately.

Application Launcher

The Application Launcher (accessed via the silkscreen
“Applications” button) presents a window or menu from which the
user can open other applications present on the Palm device.
Applications installed on the Palm device (resource databases of
type APPL) appear in the Application Launcher automatically.

108 Palm OS Programmer’s Companion (Preliminary)

User Interface
Application Launcher

NOTE: Versions of Palm OS prior to 3.0 implemented the
Launcher as a popup. The SysAppLauncher Di al og function,
which provides the API to the old popup launcher, is still present
in Palm OS 3.0 for compatibility purposes, but it has not been
updated and, in most cases, should not be used.

The Launcher application can beam applications to other Palm
devices. Only the application itself is beamed; associated storage
databases and preferences are not transmitted. To suppress the
beaming of your application by the Launcher, you can set the
dmHdr At t r CopyPr event i on bit in your database header. (For a
runtime code example, see the “Dr McCoy” sample application.
Note that you can also use compile-time code to suppress beaming.)

Normally, the Launcher represents installed applications
graphically as icons that appear in the Launcher window. The
Launcher application also provides a list mode that allows the user
to see more applications at once than are normally visible in its
default viewing mode. You can use the Constructor tool to provide a
small icon for the list mode—you’ll need to create at Al B resource
having 1001 as the value of its ID.

The Launcher displays a version string from each application’s
t ver resource, ID 1000. This short string (usually 3 to 6 characters)
is displayed in the “Info” dialog.

Situations in which you need to open the Application Launcher
programmatically are rare, but the system does provide an API for
doing so. To activate the Launcher from within your application,
enqueue a keyDownEvent that containsal aunchChr, as shown in

Listing 5.1.

WARNING! Do not use the SysUl AppSwi t ch or
SysAppLaunch functions to open the Application Launcher
application.

Palm OS Programmer’s Companion (Preliminary) 109

User Interface
Summary of User Interface API

Listing 5.1 Opening the Launcher

Event Type newEvent;

newEvent . eType = keyDownEvent ;

newEvent . dat a. keyDown. chr = | aunchChr;

newkEvent . dat a. keyDown. nodi fi ers = comandKeyMask;
Evt AddEvent ToQueue (&newEvent);

For information on launching other applications programmatically,
see “Launching Applications Programmatically” in the chapter
“Application Startup and Stop.”

Summary of User Interface API

Progress Manager Functions

Pr gHandl eEvent PrgStart D al og
Pr gSt opDi al og Pr gUpdat eDi al og
Pr gUser Cancel

Form Functions

Initialization

Frm nit Form

Event Handling

Fr nSet Event Handl er Fr nDi spat chEvent
Fr nHandl eEvent

Displaying a Form

Fr nGot oFor m Fr nPopupFor m
Fr nDr awFor m Fr mNewFor m
Fr nSet Acti veForm

Displaying a Modal Dialog

Fr nCust omAl ert Fr nDoDi al og
Fr mAl ert FrnmHel p

110 Palm OS Programmer’s Companion (Preliminary)

User Interface
Summary of User Interface API

Form Functions

Updating the Display

Fr mpdat eFor m
Fr nBhowhj ect
Fr nRenovebj ect

Form Attributes

Fr nVi si bl e
Fr nSaveAl | For ns

Fr nRet ur nToFor m
Fr nHi dehj ect
Fr mpdat eScrol | ers

Fr nGet User Modi fi edSt at e
Fr nSet Not User Modi fi ed

Accessing a Form Programmatically

Fr nGet Acti veForm
Fr nGet Fi r st Form
Fr nGet FornPt r
Frnval i dat ePtr

Fr nGet Acti veForm D
Fr nGet Forml d
Fr nGet W ndowHandl e

Accessing Objects Within a Form

Fr nGet Focus
FrnGet Qbj ectl d
Fr mGet Qbj ect Type
FrmGet Qbj ect Pt r

Title and Menu

Fr nCopyTitle
FrnPointInTitl e
Fr nSet Menu

Labels

Fr nCopylLabel
Fr nGet Label

Controls

Fr nGet Cont r ol Val ue
Fr nGet Cont r ol G oupSel ec

Fr nSet Focus

Fr mGet Qbj ect | ndex

Fr nGet Obj ect Posi tion
Fr nGet Nunber & Qbj ect s

FrnGetTitle
FrnBetTitle

Fr nSet Cat egor yLabel
Fr mNewlLabel

Fr nSet Cont r ol Val ue
Fr nSet Cont r ol G oupSel ec

tion

tion

Palm OS Programmer’s Companion (Preliminary) 111

User Interface
Summary of User Interface API

Form Functions

Gadgets

Fr nGet Gadget Dat a Fr nSet Gadget Dat a
Fr mMNewGadget

Bitmaps

Fr mNewBi t map

Coordinates and Boundaries
Fr nGet Obj ect Bounds Fr nSet Obj ect Bounds

Fr nSet Obj ect Posi ti on Fr nGet For nBounds

Removing a Form From the Display

Fr nC oseAl | For ns Fr nEr aseFor m

Releasing a Form’s Memory
Fr mDel et eFor m

Window Functions

Initialization

WnlnitializeWndow W nCr eat eW ndow

Making a Window Active

W nAddW ndow W nEnabl eW ndow
W nSet Acti veW ndow W nSet Dr awW ndow

Accessing a Window Programmatically

W nGet Acti veW ndow W nGet Dr awW ndow
W nCet Di spl ayW ndow W nCet Fi r st Wndow
W nGet W ndowPoi nt er W nVal i dat eHandl e

Offscreen Windows

W nRestoreBits W nSaveBits
W nCr eat e’ f scr eenW ndo
w

112 Palm OS Programmer’s Companion (Preliminary)

User Interface
Summary of User Interface API

Window Functions

Displaying Characters

W nDr awChar
W nl nvert Chars
W nDr awTr uncChar s

Bitmaps
W nDr awBi t map

Lines
W nDr awLi ne
WnFillLine

W nEr aseli ne

Rectangles

W nDr awRect angl e

W nDr awW ndowFr ane

W nl nvert Rect angl e
WnFill Rectangl e

W nEr aseRect angl e

W nDr awG ayRect angl eFra

ne

Clipping Rectangle

WnGetdip
W nResetd ip

Controlling the Display

Scr Di spl ayMbde
W nSet Pattern
W nhbdal

Coordinates and Boundaries
W nDi spl ayToW ndowPt

W nDr awChar s
W nDr awl nvert edChar s
W nEr aseChar s

W nDr awG aylLi ne
W nl nvertLine

W nCopyRect angl e

W nDr awRect angl eFr ane
W nl nvert Rect angl eFr ane
W nScrol | Rect angl e

W nEr aseRect angl eFr ane

WnSetdip
W nd i pRect angl e

W nGet Pattern
W nSet Under | i neMode

W nW ndowToDi spl ayPt

W nCet Di spl ayExt ent
W nSet W ndowBounds
W nGet Fr anesRect angl e

W nCGet W ndowExt ent
W nGet W ndowBounds
W nGet W ndowFr aneRect

Palm OS Programmer’s Companion (Preliminary) 113

User Interface
Summary of User Interface API

Window Functions

Removing a Window From the Display

W nEr aseW ndow W nRenmoveW ndow
W nDi sabl eW ndow

Releasing a Window’s Memory

W nDel et eW ndow

Control Functions

Displaying a Control

Ct | ShowCont r ol Ct | Dr awCont r ol
Ctl Set Usabl e Ct | NewCont r ol

Control’s Value

Ctl Get Val ue Ct | Set Val ue
Label
Ct | Set Label Ct | Get Label

Enabling/Disabling

Ct | Set Enabl ed C | Enabl ed
C | H deContr ol C | Er aseContr ol

Event Handling
Ct | Handl eEvent

Debugging
C |l H tControl Ctl1Val i dat ePoi nt er

Field Functions

Displaying a Field
FI dDr awFi el d FI dNewFi el d

114 Palm OS Programmer’s Companion (Preliminary)

User Interface
Summary of User Interface API

Field Functions

Obtaining User Input

FI dGet Sel ecti on
FIl dGet Text Pt r
FldSetDirty

Updating the Display

FI dSet Sel ecti on
FI dRecal cul at eFi el d

Displaying Text

FI dSet Text
FIl dSet Text Ptr
Fl dl nsert

Deleting Text
Fl dDel et e
Cut/Copy/Paste

Fl dCopy
FlI dPast e

Scrolling

Fl dScroll Field
FI dGet Scr ol | Val ues
FIl dGet Scrol | Position

FI dGet Text Handl e
FldDirty

FI dvbakeFul | yVi si bl e
FI dSet Bounds

FI dSet Text Handl e
Fl dCal cFi el dHei ght

FI dEr aseFi el d

Fl dCut
FI dundo

FI dScr ol | abl e
FI dSet Scr ol | Posi ti on
FI dGet Nunber O Bl ankLi ne

FIl dGet Vi si bl eLi nes
Field Attributes

Fl dGet Attri butes
Fl dGet Font

Fl dGet MaxChar s

Fl dGet Bounds

Text Attributes

Fl dGet Text Hei ght
FI dWor dW ap

S

Fl dSet Attri but es

Fl dSet Font

Fl dSet MaxChar s

Fl dSet Text Al | ocat edSi ze

Fl dGet Text Lengt h
FI dGet Text Al | ocat edSi ze

Palm OS Programmer’s Companion (Preliminary) 115

User Interface
Summary of User Interface API

Field Functions

Working With the Insertion Point

FI dG abFocus
FIl dGet | nsPt Posi ti on
FI dSet | nserti onPoi nt

Releasing Memory
FI dConpact Text

Event Handling

FI dHandl eEvent
FI dSendHei ght ChangeNot i

FI dRel easeFocus

FI dSet | nsPt Posi ti on

FI dFr eeMenory

FI dSendChangeNoti fi cati

fication

on

Menu Functions

MenuDi spose
MenuEr aseSt at us
MenuHandl eEvent
MenuSet Act i veMenu

MenuDr awiVenu
Menul ni t
MenuCet Acti veMenu

Table Functions

Drawing Tables

Tbl Dr awTabl e
Tbl Set LoadDat aPr ocedur e

Updating the Display

Tbl Redr awTabl e

Tbl Rel easeFocus

Tbl RenoveRow

Tbl Mar kTabl el nval i d

Tbl Unhi ghl i ght Sel ecti on

Tbl Set Cust onDr awPr ocedu
re

Tbl GrabFocus

Tbl Unhi ghl i ght Sel ecti on
Tbl Mar kRowl nval i d

Tbl Sel ectltem

116 Palm OS Programmer’s Companion (Preliminary)

User Interface
Summary of User Interface API

Table Functions

Retrieving Data

Tbl Fi ndRowDat a
Tbl Get Sel ecti on
Tbl Set SaveDat aPr ocedur e

Tbl Get RowDat a

Tbl Getltenl nt

Tbl Get Current Fi el d

Displaying Data

Tbl Set |t em nt
Tbl SetltenPtr
Tbl Set RowDat a

Retrieving a Row
Tbl Fi ndRow D

Table Information

Tbl Edi ting

Tbl Get I t enBounds
Tbl Get Nunber & Rows
Tbl HasScrol | Bar

Row Information

Tbl Get RowHei ght

Tbl RowSel ect abl e

Tbl RowUsabl e

Tbl Set RowSt at i cHei ght

Tbl Setltenftyl e

Tbl Set Rowl D

Tbl Get Rowi D

Tbl Get Bounds

Tbl Get Last Usabl eRow

Tbl Set Bounds

Tbl Set RowHei ght

Tbl Set RowSel ect abl e

Tbl Set RowUsabl e

Tbl Rowi nval i d

Column Information

Tbl Get Col umSpaci ng
Tbl Get Col umW dt h
Tbl Set Col umUsabl e

Tbl Set Col umSpaci ng

Tbl Set Col umW dt h

Tbl Set Col utmEdi t | ndi cat

or

Removing a Table From the Display

Tbl Er aseTabl e

Event Handling
Tbl Handl eEvent

Palm OS Programmer’s Companion (Preliminary) 117

User Interface
Summary of User Interface API

List Functions

Displaying a List

Lst Dr awlLi st Lst Set Dr awFuncti on
Lst PopuplLi st Lst Newli st

Updating the Display

Lst Makel t enVi si bl e Lst Set Hei ght
Lst Set Li st Choi ces Lst Set Topl t em
Lst Set Sel ecti on Lst Set Posi ti on

Lst Scrol | Li st

List Data and Attributes

Lst Get Nunber O | t ens Lst Get Visibleltens
Lst Get Sel ecti on Lst Get Sel ecti onText

Removing a List From the Display

Lst Er aseli st

Event Handling
Lst Handl eEvent

Scroll Bar Functions

Scl Dr awScr ol | Bar Scl Get Scr ol | Bar
Scl Handl eEvent Scl Set Scr ol | Bar

Insertion Point Functions

| nsPt Enabl e | nsPt Enabl ed
| nsPt Get Hei ght | nsPt Set Hei ght
| nsPt Get Locati on | nsPt Set Locati on

118 Palm OS Programmer’s Companion (Preliminary)

User Interface
Summary of User Interface API

String Manager Functions

Length of a String
Strlen
Comparing Strings

St r Conpar e
St r Casel essConpar e

Changing Strings

StrPrintF
St r Cat

St r Copy
StrTolLower

Searching Strings
StrStr
Converting

St r ATol
Strl ToH

Localized Numbers

StrDel ocal i zeNunber

St r NConpar e
St r NCasel essConpar e

StrVPrintF
St r NCat

St r NCopy

StrChr

Strl ToA

StrLocal i zeNunber

Font Functions

Changing the Font

Font Sel ect

Fnt Set Font

Accessing the Font Programmatically

Fnt Get Font

Wrapping Text
Ent Wor dW ap

Fnt Get Font Pt r

Fnt Wor dW apRever seNLi nes

Palm OS Programmer’s Companion (Preliminary) 119

User Interface
Summary of User Interface API

Font Functions

String Width

Ent Char sl nW dt h Ent Char sW dt h
FntLi neWdth Ent W dt hToO f set
Character Width

Ent Aver ageChar W dt h Fnt Char W dt h
Height

Fnt Char Hei ght Fnt Li neHei ght

Fnt BaselLi ne Fnt Descender Hei ght
Scrolling

Fnt Get Scr ol | Val ues

Creating a Font
Fnt Def i neFont

Graffiti Manager Functions

Translate a Stroke into Keyboard Events

G fProcessStroke

Shift State
GflnitState GfGetState
G fd eanStat e G f Set St at e

G f Fi ndBr anch
Point Buffer

G f Get NunPoi nt s G f Get Poi nt

G f AddPoi nt GfFilterPoints

G f Fl ushPoi nt s G f Get d yphMappi ng
G f Mat ch G f Mat chd yph

120 Palm OS Programmer’s Companion (Preliminary)

User Interface
Summary of User Interface API

Graffiti Manager Functions

Working with Macros

G f Get AndExpandMacr o G f AddMacr o
G f Del et eMacr o G f Get Macro
G f Get Macr oNanme

Ken Manager Functions

KeyCurrent State KeyRat es
KeySet Mask

Pen Manager Functions

PenCal i brat e PenReset Cal i brati on

Palm OS Programmer’s Companion (Preliminary) 121

User Interface
Summary of User Interface API

122 Palm OS Programmer’s Companion (Preliminary)

3= Memory

This chapter helps you understand memory use on Palm OS.

= Introduction to Memory Use on Palm OS provides
information about Palm OS hardware relevant to memory
management.

= Memory Architecture discusses in detail how memory is
structured on Palm OS. It also examines the structure of the
basic building blocks of Palm OS memory: heaps, chunks,
and records.

= The Memory Manager discusses how to use the Palm OS
memory manager in your applications. The memory
manager maintains the location and size of each memory
chunk in nonvolatile storage, volatile storage, and ROM. It
provides functions for allocating chunks, disposing of
chunks, resizing chunks, locking and unlocking chunks, and
compacting the heap when it becomes fragmented.

Introduction to Memory Use on Palm OS

The Palm OS system software supports applications on low-cost,
low-power, handheld devices. Given these constraints, Palm OS is
efficient in its use of both memory and processing resources. This
section presents two aspects of Palm OS devices that contribute to
this efficiency: Hardware Architecture and PC Connectivity.

Hardware Architecture

The first implementation of Palm OS provides nearly instantaneous
response to user input while running on a 16 MHz Motorola® 68000
type processor with a minimum of 128K of nonvolatile storage
memory and 512 KB of ROM. Subsequent Palm OS devices provide
additional RAM and ROM in varying amounts.

The ROM and RAM for each Palm OS device resides on a memory
module known as a card. Each memory card can contain ROM,

Palm OS Programmer’s Companion (Preliminary) 123

Memory

Introduction to Memory Use on Palm OS

RAM, or both. There is no RAM or ROM storage on the
motherboard of the device.

Though all previous and current Palm OS devices hold one card in a
user-accessible hardware slot, it is unwise to assume that any Palm
OS device has a memory module that can be removed physically. A
“card” is simply a logical construct used by the operating system—
Palm OS devices can have one card, multiple cards, or no cards. For
example, the Simulator provided by the Palm OS SDK on Macintosh
can simulate a device that has two cards.

The ROM and RAM on each card is divided into one or more heaps.
All the RAM-based heaps on a memory card are treated as the RAM
store, and all the ROM-based heaps are treated as the ROM store.
The heaps for a store do not have to be adjacent to each other in
address space—they can be scattered throughout the memory space
on the card—but they must all reside on the same card.

The main suite of applications provided with each Palm OS device
is built into ROM. This design permits the user to replace the
operating system and the entire applications suite simply by
installing a single replacement module. Additional or replacement
applications and system extensions can be loaded into RAM, but
doing so is not always practical in this RAM-constrained
environment.

PC Connectivity

PC connectivity is an integral component of the Palm OS device.
The device comes with a cradle that connects to a desktop PC and
with software for the PC that provides “one-button” backup and
synchronization of all data on the device with the user’s PC.

Because all user data can be backed up on the PC, replacement of
the nonvolatile storage area of the Palm OS device becomes a simple
matter of installing the new module in place of the old one and
resynchronizing with the PC. The format of the user’s data in
storage RAM can change with a new version of the ROM; the
connectivity software on the PC is responsible for translating the
data into the correct format when downloading it onto a device with
a new ROM.

124 Palm OS Programmer’s Companion (Preliminary)

Memory
Memory Architecture

Memory Architecture

IMPORTANT: This section describes the current (3.X)
implementation of Palm OS memory architecture. This
implementation may change as the Palm OS evolves. Do not rely
on implementation-specific information described here; instead,
always use the API provided to manipulate memory.

The Palm OS system software is designed around a 32-bit
architecture. The system uses 32-bit addresses, and its basic data
types are 8, 16, and 32 bits long.

The 32-bit addresses available to software provide a total of 4 GB of
address space for storing code and data. This address space affords
a large growth potential for future revisions of both the hardware
and software without affecting the execution model. Although a
large memory space is available, Palm OS was designed to work
efficiently with small amounts of RAM. For example, the first
commercial Palm OS device has less than 1 MB of memory, or .025%
of this address space.

The Motorola 68328 processor’s 32-bit registers and 32 internal
address lines support a 32-bit execution model as well, although the
external data bus is only 16 bits wide. This design reduces cost
without impacting the software model. The processor’s bus
controller automatically breaks down 32-bit reads and writes into
multiple 16-bit reads and writes externally.

Each memory card in the Palm OS device has 256 MB of address
space reserved for it. Memory card 0 starts at address $1000000,
memory card 1 starts at address $2000000, and so on.

The Palm OS divides the total available RAM store into two logical
areas: dynamic RAM and storage RAM. Dynamic RAM is used as
working space for temporary allocations, and is analogous to the
RAM installed in a typical desktop system. The remainder of the
available RAM on the card is designated as storage RAM and is
analogous to disk storage on a typical desktop system.

Palm OS Programmer’s Companion (Preliminary) 125

Memory
Memory Architecture

Because power is always applied to the memory system, both areas
of RAM preserve their contents when the device is turned “off” (i.e.,
is in low-power sleep mode.) See “Palm OS Power Modes” in the
chapter “Palm System Features” in this book. All of storage memory
is preserved even when the device is reset explicitly. As part of the
boot sequence, the system software reinitializes the dynamic area,
and leaves the storage area intact.

The entire dynamic area of RAM is used to implement a single heap
that provides memory for dynamic allocations. From this dynamic

heap, the system provides memory for dynamic data such as global
variables, system dynamic allocations (TCP/IP, IrDA, and so on, as
applicable), application stacks, temporary memory allocations, and
application dynamic allocations (such as those performed when the
application calls the MenHand| eNew function).

The entire amount of RAM reserved for the dynamic heap is always
dedicated to this use, regardless of whether it is actually used for
allocations. The size of the dynamic area of RAM on a particular
device varies according to the OS version running, the amount of
physical RAM available, and the requirements of pre-installed
software such as the TCP/IP stack or IrDA stack. Table 6.1 provides
more information about the dynamic heap space that currently
available combinations of OS and hardware provide.

Table 6.1 Dynamic Heap Space

RAM Usage 0S 3.X 0S 2.0 0S 2.0/1.0
>1 MB 1 MB 512 KB
TCP/IP & IrDA TCP/IP only no TCP/IP or
(Palm 111) (Professional) IrDA (Personal)

Total dynamic area 96 KB 64 KB 32 KB

System Globals ~2.5 KB ~2.5 KB ~2.5 KB

(screen buffer, Ul globals,

database references, etc.)

TCP/IP stack 32 KB 32 KB 0 KB

126 Palm OS Programmer’s Companion (Preliminary)

Memory
Memory Architecture

RAM Usage 0S 3.X 0S 2.0 0S 2.0/1.0
>1MB 1 MB 512 KB
TCP/IP & IrDA TCP/IP only no TCP/IP or
(Palm 111) (Professional) IrDA (Personal)

System dynamic allocation variable ~15 KB ~15 KB

(IrDA, “Find” window, amount (no IrDA in

temporary allocations) this OS)

Application stack 4 KB 2.5 KB 2.5 KB

(call stack and local vars) (default)

Remaining dynamic space <36 KB <12 KB <12 KB

(dynamic allocations,
application global variables,
and static variables)

The remaining portion of RAM not dedicated to the dynamic heap
is configured as one or more storage heaps used to hold nonvolatile
user data such as appointments, to do lists, memos, address lists,
and so on. An application accesses a storage heap by calling the
database manager or resource manager, according to whether it
needs to manipulate user data or resources.

The size and number of storage heaps available on a particular
device varies according to the OS version that is running; the
amount of physical RAM that is available; and the storage
requirements of end-user application software such as the Address
List, Date Book, or third-party applications.

Versions 1.0 and 2.0 of Palm OS subdivide storage RAM into
multiple storage heaps of 64 KB each. Palm OS 3.X configures all
storage RAM on a card as a single storage heap. Under all versions
of Palm OS, system overhead limits the maximum usable data
storage available in a single chunk to slightly less than 64 KB.

In the Palm OS environment, all data are stored in memory manager
chunks. A chunk is an area of contiguous memory between 1 byte
and slightly less than 64 KB in size that has been allocated by the
Palm OS memory manager. (Because system overhead requirements
may vary, an exact figure for the maximum amount of usable data
storage for all chunks cannot be specified.) Currently, all Palm OS

Palm OS Programmer’s Companion (Preliminary) 127

Memory
Memory Architecture

implementations limit the maximum size of any chunk to slightly
less than 64 KB; however, the APl does not have this constraint, and
it may be relaxed in the future.

Each chunk resides in a heap. Some heaps are ROM-based and
contain only nonmovable chunks; some are RAM-based and may
contain movable or nonmovable chunks. A RAM-based heap may
be a dynamic heap or a storage heap. The Palm OS memory
manager allocates memory in the dynamic heap (for dynamic
allocations, stacks, global variables, and so on). The Palm OS data
manager allocates memory in one or more storage heaps (for
nonvolatile user data).

Every memory chunk used to hold storage data (as opposed to
memory chunks that store dynamic data) is a record in a database
implemented by the Palm OS data manager. In the Palm OS
environment, a database is simply a list of memory chunks and
associated database header information. Normally, the items in a
database share some logical association; for example, a database
may hold a collection of all address book entries, all datebook
entries, and so on.

A database is analogous to a file in a desktop system. Just as a
traditional file system can create, delete, open, and close files, Palm
OS applications can create, delete, open, and close databases as
necessary. There is no restriction on where the records for a
particular database reside as long as they are all on the same
memory card. The records from one database can be interspersed
with the records from one or more other databases in memory.

Storing data by database fits nicely with the Palm OS memory
manager design. Each record in a database is in fact a memory
manager chunk. The data manager can use memory manager calls
to allocate, delete, and resize database records. All heaps except for
the dynamic heap are nonvolatile, so database records can be stored
in any heap except the dynamic heap. Because records can be stored
anywhere on the memory card, databases can be distributed over
multiple discontiguous areas of physical RAM, but all records
belonging to a particular database must reside on the same card.

To understand how database records are manipulated, it helps to
know something about the way the memory manager allocates and
tracks memory chunks, as the next section describes.

128 Palm OS Programmer’s Companion (Preliminary)

Memory
Memory Architecture

Heap Overview

IMPORTANT: This section describes the current (3.X)
implementation of Palm OS memory architecture. This
implementation may change as the Palm OS evolves. Do not rely
on implementation-specific information described here; instead,
always use the API provided to manipulate memory.

Recall that a heap is a contiguous area of memory used to contain
and manage one or more smaller chunks of memory. When
applications work with memory (allocate, resize, lock, etc.) they
usually work with chunks of memory. An application can specify
whether to allocate a new chunk of memory in the storage heap or
the dynamic heap. The memory manager manages each heap
independently and rearranges chunks as necessary to defragment
heaps and merge free space.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a unique 16-bit value that the memory manager
uses to identify a heap within the Palm OS address space. Heap IDs
start at 0 and increment sequentially by units of 1. Values are
assigned beginning with the RAM heaps on card 0, continuing with
the ROM heaps on card 0, and then continuing through RAM and
ROM heaps on subsequent cards. The sequence of heap IDs is
continuous; that is, no values in the sequence are skipped.

The first heap (heap 0) on card 0 is the dynamic heap. This heap is
reinitialized every time the Palm OS device is reset. When an
application quits, the system frees any chunks allocated by that
application in the dynamic heap. All other heaps are nonvolatile
storage heaps that retain their contents through soft reset cycles.

When a Palm OS device is presented with multiple dynamic heaps,
the first heap (heap 0) on card 0 is the active dynamic heap. All other
potential dynamic heaps are ignored. For example, it is possible that
a future Palm OS device supporting multiple cards might be
presented with two cards, each having its own dynamic heap; if so,
only the dynamic heap residing on card 0 would be active—the
system would not treat any heaps on other cards as dynamic heaps,

Palm OS Programmer’s Companion (Preliminary) 129

Memory
Memory Architecture

nor would heap IDs be assigned to these heaps. Subsequent storage
heaps would be assigned IDs in sequential order, as always
beginning with RAM heaps, followed by ROM heaps.

Overview of Memory Chunk Structure

Memory chunks can be movable or nonmovable. Applications need
to store data in movable chunks whenever feasible, thereby
enabling the memory manager to move chunks as necessary to
create contiguous free space in memory for allocation requests.

When the memory manager allocates a nonmovable chunk it
returns a pointer to that chunk. The pointer is simply that chunk’s
address in memory. Because the chunk cannot move, its pointer
remains valid for the chunk’s lifetime; thus, the pointer can be
passed “as is” to the caller that requested the allocation.

When the memory manager allocates a moveable chunk, it
generates a pointer to that chunk, just as it did for the nonmovable
chunk, but it does not return the pointer to the caller. Instead, it
stores the pointer to the chunk, called the master chunk pointer, in a
master pointer table that is used to track all of the moveable chunks
in the heap, and returns a reference to the master chunk pointer.
This reference to the master chunk pointer is known as a handle. It
is this handle that the memory manager returns to the caller that
requested the allocation of a moveable chunk.

Using handles imposes a slight performance penalty over direct
pointer access but permits the memory manager to move chunks
around in the heap without invalidating any chunk references that
an application might have stored away. As long as an application
uses handles to reference data, only the master pointer to a chunk
needs to be updated by the memory manager when it moves a
chunk during defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the memory manager to mark that data
chunk as immobile. When an application no longer needs the data
chunk, it should unlock the handle immediately to keep heap
fragmentation to a minimum.

Note that any handle is good only until the system is reset. When
the system resets, it reinitializes all dynamic memory areas and

130 Palm OS Programmer’s Companion (Preliminary)

Memory
The Memory Manager

relaunches applications. Therefore, you must not store a handle in a
database record or a resource.

Each chunk on a memory card is actually located by means of a
card-relative reference called a local ID. A local ID is a reference to a
data chunk that the system computes from the base address of the
card. The local ID of a nonmovable chunk is simply the offset of the
chunk from the base address of the card. The local ID of a movable
chunk is the offset of the master pointer to the chunk from the base
address of the card, but with the low-order bit set. Since chunks are
always aligned on word boundaries, only local IDs of movable
chunks have the low-order bit set. Once the base address of the card
is determined at runtime, a local ID can be converted quickly to a
pointer or handle.

For example, when an application needs the handle to a particular
data record, it calls the data manager to retrieve the record by index
from the appropriate database. The data manager fetches the local
ID of the record out of the database header and uses it to compute
the handle to the record. The handle to the record is never actually
stored in the database itself.

Although currently available Palm OS devices do not provide
hardware support for multiple cards, the use of local IDs provides
support in software for future devices that may allow the user to
remove or insert memory cards. If the user moves a memory card to
a slot having a different base address, the handle to a memory
chunk on that card is likely to change, but the local ID associated
with that chunk does not change.

The Memory Manager

The Palm OS memory manager is responsible for maintaining the
location and size of every memory chunk in nonvolatile storage,
volatile storage, and ROM. It provides an API for allocating new
chunks, disposing of chunks, resizing chunks, locking and
unlocking chunks, and compacting heaps when they become
fragmented. Because of the limited RAM and processor resources of
the Palm OS device, the memory manager is efficient in its use of
processing power and memory.

Palm OS Programmer’s Companion (Preliminary) 131

Memory
The Memory Manager

This section provides background information on the organization
of memory in Palm OS and provides an overview of the memory
manager API, discussing these topics:

« Memory Manager Structures

e Using the Memory Manager

Memory Manager Structures

This section discusses the different structures the memory manager
uses:

e Heap Structures

e Chunk Structures

e | ocal ID Structures

Heap Structures

IMPORTANT: Expect the heap structure to change in the future.
Use the API to work with heaps.

A heap consists of the heap header, master pointer table, and the
heap chunks.

= Heap header. The heap header is located at the beginning of
the heap. It holds the size of the heap and contains flags for
the heap that provide certain information to the memory
manager; for example, whether the heap is ROM-based.

= Master pointer table. Following the heap header is a master
pointer table. It is used to store 32-bit pointers to movable
chunks in the heap.

— When the memory manager moves a chunk to compact
the heap, the pointer for that chunk in the master pointer
table is updated to the chunk’s new location. The handles
an application uses to track movable chunks reference the
address of the master pointer to the chunk, not the chunk
itself. In this way, handles remain valid even after a
chunk is moved. The OS compacts the heap automatically
when available contiguous space is not sufficient to fulfill
an allocation request.

132 Palm OS Programmer’s Companion (Preliminary)

Memory
The Memory Manager

— If the master pointer table becomes full, another is
allocated and its offset is stored in the
next Mst r Pt r Tabl e field of the previous master pointer
table. Any number of master pointer tables can be linked
in this way. Because additional master pointer chunks are
nonmovable, they are allocated at the end of the heap,
according to the guidelines described in the “Heap
chunks” section following immediately.

= Heap chunks. Following the master pointer table are the
actual chunks in the heap.

— Movable chunks are generally allocated at the beginning
of the heap, and nonmovable chunks at the end of the

heap.

— Nonmovable chunks do not need an entry in the master
pointer table since they are never relocated by the
memory manager.

— Applications can easily walk the heap by hopping from
chunk to chunk because each chunk header contains the
size of the chunk. All free and nonmovable chunks can be
found in this manner by checking the flags in each chunk
header.

Because heaps can be ROM-based, there is no information in
the header that must be changed when using a heap. Also,
ROM-based heaps contain only nonmovable chunks and
have a master pointer table with 0 entries.

Chunk Structures

IMPORTANT: Expect the chunk structure to change in the
future. Use the API to work with chunks.

Each chunk begins with an 8-byte header followed by that chunk’s
data. The chunk header consists of a Fl ags: si ze adjustment byte,
3 bytes of size information, al ock: owner byte, and 3 bytes of

hOf f set information.

= Fl ags: si zeAdj byte.This byte contains flags in the high
nibble and a size adjustment in the low nibble.

Palm OS Programmer’s Companion (Preliminary) 133

Memory
The Memory Manager

— The flags nibble has 1 bit currently defined, which is set
for free chunks.

— The size adjustment nibble can be used to calculate the
requested size of the chunk, given the actual size. The
requested size is computed by taking the size as stored in
the chunk header and subtracting the size of the header
and the size adjustment field. The actual size of a chunk is
always a multiple of two so that chunks always start on a
word boundary.

= si ze field (3 bytes). This three-byte value describes the size

of the chunk, which is larger than the size requested by the
application and includes the size of the chunk header itself.
The maximum data size for a chunk is slightly less than 64

KB.

Lock: owner byte. Following the size information is a byte
that holds the lock count in the high nibble and the owner ID
in the low nibble.

— The lock count is incremented every time a chunk is
locked and decremented every time a chunk is unlocked.
A movable chunk can be locked a maximum of 14 times
before being unlocked. Nonmovable chunks always have
15 in the lock field.

— The owner ID determines the owner of a memory chunk
and is set by the memory manager when allocating a new
chunk. Owner ID is information is useful for debugging
and for garbage collection when an application
terminates abnormally.

hOf f set field (3 bytes). The last three bytes in the chunk
header is the distance from the master pointer for the chunk
to the chunk’s header, divided by two. Note that this offset
could be a negative value if the master pointer table is at a
higher address than the chunk itself. For nonmovable chunks
that do not need an entry in the master pointer table, this
field is 0.

134 Palm OS Programmer’s Companion (Preliminary)

Memory
The Memory Manager

Local ID Structures

IMPORTANT: Expect the local ID structure to change in the
future. Use the API to work with chunks.

Chunks that contain database records or other database information
are tracked by the data manager through local IDs. A local ID is card
relative and is always valid no matter what memory slot the card
resides in. A local ID can be easily converted to a pointer or the
handle to a chunk once the base address of the card is known.

The upper 31 bits of a local ID contain the offset of the chunk or
master pointer to the chunk from the beginning of the card. The
low-order bit is set for local IDs of handles and clear for local IDs of
pointers.

The Menmiocal | DTo@ obal function converts a local ID and card
number (either 0 or 1) to a pointer or handle. It looks at the card
number and adds the appropriate card base address to convert the
local ID to a pointer or handle for that card.

Using the Memory Manager

Use the memory manager API to allocate memory in the dynamic
heap (for dynamic allocations, stacks, global variables, and so on)
and use the data manager API to allocate memory in one or more
storage heaps (for user data). The data manager calls the memory
manager as appropriate to perform low-level allocations. (See The
Data Manager for more information.)

Overview of the Memory Manager API

To allocate a movable chunk, call MenHandl eNewand pass the
desired chunk size. Before you can read or write data to this chunk,
you must call MenHandl eLock to lock it and get a pointer to it.
Every time you lock a chunk, its lock count is incremented. You can
lock a chunk a maximum of 14 times before an error is returned.
(Recall that unmovable chunks hold the value 15 in the lock field.)
MenHandl eUnl ock reverses the effect of MenHandl eLock—it

Palm OS Programmer’s Companion (Preliminary) 135

Memory
The Memory Manager

decrements the value of the lock field by 1. When the lock count is
reduced to 0, the chunk is free to be moved by the memory manager.

When an application allocates memory in the dynamic heap, the
memory manager uses an owner ID to associate that chunk with the
application. The system further distinguishes chunks belonging to
the currently active allocation by setting a special bit in the owner
ID information. When the application quits, all chunks in the
dynamic heap having this bit set are freed automatically.

If the system needs to allocate a chunk that is not disposed of when
an application quits, it changes the chunk’s owner ID to 0 by calling
the system function MenHand|l eSet Oaner . This function is not
used by applications, except in special circumstances. For example,
when passing a parameter block to an application that is being
launched, the owner of the block must be set to the system;
otherwise, when the application exits, the system deletes the block
when it frees all memory allocated by the application.

To determine the size of a movable chunk, pass its handle to
MenHandl eSi ze. To resize it, call MenHandl eResi ze. You
generally cannot increase the size of a chunk if it’s locked unless
there happens to be free space in the heap immediately following
the chunk. If the chunk is unlocked, the memory manager is
allowed to move it to another area of the heap to increase its
size.When you no longer need the chunk, call MenHand| eFr ee,
which releases the chunk even if it is locked.

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MenPt r Recover Handl e. In fact, all of the
MenPt r Xxx calls, including MenPt r Si ze, also work on pointers to
locked, movable chunks.

To allocate a nonmovable chunk, call MenPt r Newand pass the
desired size of the chunk. This call returns a pointer to the chunk,
which can be used directly to read or write to it.

To determine the size of a nonmovable chunk, call MenPt r Si ze.
To resize it, call MenPt r Resi ze. You generally can’t increase the
size of a nonmovable chunk unless there is free space in the heap
immediately following the chunk. When you no longer need the
chunk, call MenPt r Fr ee, which releases the chunk even if it’s
locked.

136 Palm OS Programmer’s Companion (Preliminary)

Memory
The Memory Manager

Use the memory manager utility routines Menivbve and MenfSet to
move memory from one place to another or to fill memory with a
specific value.

In most situations, the proper way to free memory is by calling one
of the MenPt r Fr ee or MenHandl eFr ee functions.

NOTE: Forimportant cautions and practical advice regarding
the proper use of memory on Palm OS devices, be sure to read
“Writing Robust Code” in the chapter “Good Design Practices” in
this book.

Storage Heap Sizes and Memory Management Schemes

In Palm OS version 1.0, individual storage heaps were limited to a
maximum size of 64 KB each and the memory manager moved
objects automatically among multiple storage heaps to prevent any
of them from becoming too full. This strategy tended to decrease the
availability of contiguous space for large objects. The version 2.0
memory manager abandoned this approach, increasing the
availability of contiguous heap space; however, it still limited the
maximum size of individual heaps to 64 KB each. Palm OS version
3.X removes the 64 KB maximum size restriction on individual
heaps and creates just two heaps: one 96K dynamic heap and one
storage heap that is the size of all remaining RAM on the card.

Optimizing Memory Manager Performance

Because Palm OS applications must perform well in a RAM-
constrained environment, proper code segmentation is critical to
achieving optimum performance.

If your application segments are too large, your application may not
perform well (or to run at all) when large contiguous blocks of
memory are not available. Conversely, if your application segments
are too small, performance may be hindered by the overhead
required to find and load resources too frequently.

Unfortunately, it impossible to specify a single size for memory
chunks that will perform optimally for all applications.You will
need to experiment with segmenting your code in different ways

Palm OS Programmer’s Companion (Preliminary) 137

Memory
Summary of Memory Management

while measuring your application’s performance in order to
discover the size and arrangement of resource chunks that will
optimize your particular application’s responsiveness and overall
performance. The Metrowerks CodeWarrior Debugger, Palm OS
Debugger, and the Simulator provide tools for examining the
internal structure of heaps, viewing the amount of free space
available, manipulating blocks, and so on.

Summary of Memory Management

Memory Manager Functions

Allocating and Freeing Memory

MemHandleNew
MemHandlel ock
MemlLocallDTol ockedPtr
MemHandleFree

MemPtrNew
MemHandleUnlock
MemPtrUnlock
MemPtrFree

Resizing Chunks

MemHandleSize
MemPtrSize
MemMHeapSize

MemHandleResize
MemPtrResize
MemHeapFreeBytes

Working With Memory

MemMove MemSet
MemCmp MemHeapCompact

Converting Pointers

MemPtrRecoverHandle
MemLocallIDKind
MemPtrToLocallD

Chunk Information

MemHandleCardNo
MemHandleHeaplD
MemPtrCardNo

MemHandleTolLocallD
MemLocallDToGlobal
MemLocallDToPtr

MemHandleDataStorage
MemPtrDataStorage

138 Palm OS Programmer’s Companion (Preliminary)

Memory
Summary of Memory Management

Memory Manager Functions

Heap Information

MemPtrHeaplD
MemHeapDynamic
MemHeapFlags

Card Information

MemcCardlnfo
MemNumHeaps
MemsStorelnfo

Debugging

MemDebugMode
MemSetDebugMode

MemHeaplD
MemHeapCheck

MemNumCards
MemNumRAMHeaps

MemHeapScramble

Palm OS Programmer’s Companion (Preliminary) 139

Memory
Summary of Memory Management

140 Palm OS Programmer’s Companion (Preliminary)

v

3= Files and Databases

This chapter describes how to work with databases using Palm OS
managers.

= The Data Manager manages user data, which is stored in
databases for convenient access.

= The Resource Manager can be used by applications to
conveniently retrieve and save chunks of data. It’s similar to
the data manager, but has the added capability of tagging
each chunk with a unique resource type and ID. These
tagged data chunks, called resources, are stored in resource
databases. Resources are typically used to store the
application’s user interface elements, such as images, fonts,
or dialog layouts.

= File Streaming Application Program Interface can be used by
applications to handle large blocks of data.

The Data Manager

A traditional file system first reads all or a portion of a file into a
memory buffer from disk, using and/or updating the information
in the memory buffer, and then writes the updated memory buffer
back to disk. Because Palm OS devices have limited amounts of
dynamic RAM and use nonvolatile RAM instead of disk storage, a
traditional file system is not optimal for storing and retrieving Palm
OS user data.

Palm OS accesses and updates all information in place. This works
well because it reduces dynamic memory requirements and
eliminates the overhead of transferring the data to and from another
memory buffer involved in a file system.

As a further enhancement, data in the Palm OS device is broken
down into multiple, finite-size records that can be left scattered
throughout the memory space; thus, adding, deleting, or resizing a
record does not require moving other records around in memory.

Palm OS Programmer’s Companion (Preliminary) 141

Files and Databases

The Data Manager

Each record in a database is in fact a memory manager chunk. The
data manager uses memory manager functions to allocate, delete,
and resize database records.

This section explains how to use the database manager by
discussing these topics:

e Records and Databases

= Structure of a Database Header
< Using the Data Manager

Records and Databases

Databases organize related records; every record belongs to one and
only one database. A database may be a collection of all address
book entries, all datebook entries, and so on. A Palm OS application
can create, delete, open, and close databases as necessary, just as a
traditional file system can create, delete, open, and close a
traditional file. There is no restriction on where the records for a
particular database reside as long as they all reside on the same
memory card. The records from one database can be interspersed
with the records from one or more other databases in memory:.

Storing data by database fits nicely with the Palm OS memory
manager design. All heaps except for the dynamic heap(s) are
nonvolatile, so database records can be stored in any heap except
the dynamic heap(s) (see “Heap Overview” in the “Memory”
chapter). Because records can be stored anywhere on the memory
card, databases can be distributed over multiple discontiguous
areas of physical RAM.

Accessing Data With Local IDs

A database maintains a list of all records that belong to it by storing
the local ID of each record in the database header. Because local IDs
are used, the memory card can be placed into any memory slot of a
Palm OS device. An application finds a particular record in a
database by index. When an application requests a particular
record, the data manager fetches the local ID of the record from the
database header by index, converts the local ID to a handle using
the card number that contains the database header, and returns the
handle to the record.

142 Palm OS Programmer’s Companion (Preliminary)

Files and Databases
The Data Manager

Structure of a Database Header

A database header consists of some basic database information and
a list of records in the database. Each record entry in the header has
the local ID of the record, 8 attribute bits, and a 3-byte unique ID for
the record.

This section provides information about database headers,
discussing these topics:

e Database Header Fields

= Structure of a Record Entry in a Database Header

IMPORTANT: Expect the database header structure to change
in the future. Use the API to work with database structures.

Database Header Fields
The database header has the following fields:
= The nane field holds the name of the database.
e Theattri but es field has flags for the database.

= The ver si on field holds an application-specific version
number for that database.

e The nodi fi cati onNunber isincremented every time a
record in the database is deleted, added, or modified. Thus
applications can quickly determine if a shared database has
been modified by another process.

= The appl nf ol Dis an optional field that an application can
use to store application-specific information about the
database. For example, it might be used to store user display
preferences for a particular database.

e Thesort | nf ol Disanother optional field an application can
use for storing the local ID of a sort table for the database.

= Thet ype and cr eat or fields are each 4 bytes and hold the
database type and creator. The system uses these fields to
distinguish application databases from data databases and to
associate data databases with the appropriate application.

Palm OS Programmer’s Companion (Preliminary) 143

Files and Databases
The Data Manager

e The nunmRecor ds field holds the number of record entries
stored in the database header itself. If all the record entries
cannot fit in the header, then next Recor dLi st has the local
ID of ar ecor dLi st that contains the next set of records.

Each record entry stored in a record list has three fields and is
8 bytes in length. Each entry has the local ID of the record
which takes up 4 bytes: 1 byte of attributes and a 3-byte
unique ID for the record. The at t ri but e field, shown in
Figure 7.1, is 8 bits long and contains 4 flags and a 4-bit
category number. The category number is used to place
records into user-defined categories like “business” or
“personal.”

Figure 7.1 Record Attributes

Category (4)

L secret bit
busy bit
di rty bit
del et e bit

Structure of a Record Entry in a Database Header

Each record entry has the local ID of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

= Local IDs make the database slot-independent. Since all
records for a database reside on the same memory card as the
header, the handle of any record in the database can be
quickly calculated. When an application requests a specific
record from a database, the data manager returns a handle to
the record that it determines from the stored local ID.

A special situation occurs with ROM-based databases.
Because ROM-based heaps use nonmovable chunks
exclusively, the local IDs to records in a ROM-based database
are local IDs of pointers, not handles. So, when an
application opens a ROM-based database, the data manager
allocates and initializes a fake handle for each record and

144 Palm OS Programmer’s Companion (Preliminary)

Files and Databases
The Data Manager

returns the appropriate fake handle when the application
requests a record. Because of this, applications can use
handles to access both RAM- and ROM-based database
records.

= The unique ID must be unique for each record within a
database. It remains the same for a particular record no
matter how many times the record is modified. It is used
during synchronization with the desktop to track records on
the Palm OS device with the same records on the desktop
system.

When the user deletes or archives a record on Palm OS:

e The del et e bitissetinthe at tri but es flags, but its entry
in the database header remains until the next
synchronization with the PC.

e Thedi rty bitis set whenever a record is updated.

= The busy bit is set when an application currently has a
record locked for reading or writing.

= The secr et bitis set for records that should not be
displayed before the user password has been entered on the
device.

When a user “deletes” a record on the Palm OS device, the record’s
data chunk is freed, the local ID stored in the record entry is set to O,
and the del et e bitis set in the attributes. When the user archives a
record, the deleted bit is also set but the chunk is not freed and the
local ID is preserved. This way, the next time the user synchronizes
with the desktop system, the desktop can quickly determine which
records to delete (since their record entries are still around on the
Palm OS device). In the case of archived records, the desktop can
save the record data on the PC before it permanently removes the
record entry and data from the Palm OS device. For deleted records,
the PC just has to delete the same record from the PC before
permanently removing the record entry from the Palm OS device.

Using the Data Manager

Using the data manager is similar to using a traditional file
manager, except that the data is broken down into multiple records
instead of being stored in one contiguous chunk. To create or delete
a database, call DnCr eat eDat abase and DnDel et eDat abase.

Palm OS Programmer’s Companion (Preliminary) 145

Files and Databases

The Data Manager

Each memory card is akin to a disk drive and can contain multiple
databases. To open a database for reading or writing, you must first
get the database ID, which is simply the local ID of the database
header. Calling Dnfi ndDat abase searches a particular memory
card for a database by name and returns the local ID of the database
header. Alternatively, calling DniGet Dat abase returns the database
ID for each database on a card by index.

After determining the database ID, you can open the database for
read-only or read/write access. When you open a database, the
system locks down the database header and returns a reference to a
database access structure, which tracks information about the open
database and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DnDat abasel nf o, DnSet Dat abasel nf o, and

DnDat abaseSi ze to query or set information about a database,
such as its name, size, creation and modification dates, attributes,
type, and creator.

Call DntGet Recor d, DrQuer yRecor d, and DnRel easeRecor d
when viewing or updating a database.

= Dntcet Recor d takes a record index as a parameter, marks
the record busy, and returns a handle to the record. If a
record is already busy when Dnizet Recor d is called, an
error is returned.

= Dnfuer yRecor d is faster if the application only needs to
view the record; it doesn’t check or set the busy bit, so it’s not
necessary to call DmRel easeRecor d when finished viewing
the record.

= DnRRel easeRecor d clears the busy bit, and updates the
modification number of the database and marks the record
dirty if the di r t y parameter is true.

To resize a record to grow or shrink its contents, call

DnResi zeRecor d. This routine automatically reallocates the
record in another heap of the same card if the current heap does not
have enough space for it. Note that if the data manager needs to
move the record into another heap to resize it, the handle to the

146 Palm OS Programmer’s Companion (Preliminary)

Files and Databases
The Data Manager

record changes. DnResi zeRecor d returns the new handle to the
record.

To add a new record to a database, call DriNewRecor d. This routine
can insert the new record at any index position, append it to the
end, or replace an existing record by index. It returns a handle to the
new record.

There are three methods for removing a record: DmRenoveRecor d,
DmDel et eRecor d, and DmAr chi veRecor d.

= DnRenpveRecor d removes the record’s entry from the
database header and disposes of the record data.

= DnDel et eRecor d also disposes of the record data, but
instead of removing the record’s entry from the database
header, it sets the deleted bit in the record entry attributes
field and clears the local chunk ID.

= DnAr chi veRecor d does not dispose of the record’s data; it
just sets the deleted bit in the record entry.

Both DnDel et eRecor d and DmAr chi veRecor d are useful for
synchronizing information with a desktop PC. Since the unique ID
of the deleted or archived record is still kept in the database header,
the desktop PC can perform the necessary operations on its own
copy of the database before permanently removing the record from
the Palm OS database.

Call DnRecor dI nf 0 and DnSet Recor dl nf o to retrieve or set the
record information stored in the database header, such as the
attributes, unique ID, and local ID of the record. Typically, these
routines are used to set or retrieve the category of a record that is
stored in the lower four bits of the record’s attribute field.

To move records from one index to another or from one database to
another, call DnivbveRecor d, DmAt t achRecor d, and

DDet achRecor d. DnDet achRecor d removes a record entry from
the database header and returns the record handle. Given the
handle of a new record, DmAt t achRecor d inserts or appends that
new record to a database or replaces an existing record with the new
record. DmvbveRecor d is an optimized way to move a record from
one index to another in the same database.

Palm OS Programmer’s Companion (Preliminary) 147

Files and Databases
The Resource Manager

The Resource Manager

Applications can use the resource manager much like the data
manager to retrieve and save chunks of data conveniently. The
resource manager has the added capability of tagging each chunk of
data with a unique resource type and resource ID. These tagged
data chunks, called resources, are stored in resource databases.
Resource databases are almost identical in structure to normal
databases except for a slight amount of increased storage overhead
per resource record (two extra bytes). In fact, the resource manager
is nothing more than a subset of routines in the data manager that
are broken out here for conceptual reasons only.

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, and so forth.
Part of building an application involves creating these resources and
merging them with the actual executable code. In the Palm OS
environment, an application is, in fact, simply a resource database
with the executable code stored as one or more code resources and
the graphics elements and other miscellaneous data stored in the
same database as other resource types.

Applications may also find the resource manager useful for storing
and retrieving application preferences, saved window positions,
state information, and so forth. These preferences settings can be
stored in a separate resource database.

This section explains how to work with the resource manager and
discusses these topics:

e Structure of a Resource Database Header

< Using the Resource Manager

= Resource Manager Functions

Structure of a Resource Database Header

A resource database header consists of some general database
information followed by a list of resources in the database. The first
portion of the header is identical in structure to a normal database
header. Resource database headers are distinguished from normal
database headers by the dnmHdr At t r ResDB bitinthe attri but es
field.

148 Palm OS Programmer’s Companion (Preliminary)

Files and Databases
The Resource Manager

IMPORTANT: Expect the resource database header structure to
change in the future. Use the API to work with resource database
structures.

< The nane field holds the name of the resource database.

e Theattri but es field has flags for the database and always
has the dmHdr At t r Res DB bit set.

= The nodi fi cati onNunber isincremented every time a
resource in the database is deleted, added, or modified. Thus,
applications can quickly determine if a shared resource
database has been modified by another process.

e The appl nf ol Dand sor t | nf ol Dfields are not normally
needed for a resource database but are included to match the
structure of a regular database. An application may
optionally use these fields for its own purposes.

e Thetype and cr eat or fields hold 4-byte signatures of the
database t ype and cr eat or as defined by the application
that created the database.

e The nunmResour ces field holds the number of resource info
entries that are stored in the header itself. In most cases, this
is the total number of resources. If all the resource info
entries cannot fit in the header, however, then
next Resour ceLi st has the chunkl Dof ar esour celLi st
that contains the next set of resource info entries.

Each 10-byte resource info entry in the header has the resource type,
the resource 1D, and the local ID of the memory manager chunk that
contains the resource data.

Using the Resource Manager

You can create, delete, open, and close resource databases with the
routines used to create normal record-based databases (see Using
the Data Manager). This includes all database-level (not record-
level) routines in the data manager such as DnCr eat eDat abase,
DnDel et eDat abase, DnDat abasel nf 0, and so on.

When you create a new database using DnCr eat eDat abase, the
type of database created (record or resource) depends on the value

Palm OS Programmer’s Companion (Preliminary) 149

Files and Databases
The Resource Manager

of the r es DB parameter. If set, a resource database is created and the
dnHdr At t r ResDB bit is setinthe at t ri but es field of the
database header. Given a database header ID, an application can
determine which type of database it is by calling DnDat abasel nf o
and examining the dnHdr At t r ResDB bit in the returned

attri but es field.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
routines of the resource manager. Generally, applications use the
Dntcet Resour ce and DnRel easeResour ce routines.

DmGet Resour ce returns a handle to a resource, given the type
and ID. This routine searches all open resource databases for a
resource of the given type and ID, and returns a handle to it. The
search starts with the most recently opened database. To search only
the most recently opened resource database for a resource instead of
all open resource databases, call DmGet 1Resour ce.

DnRel easeResour ce should be called as soon as an application
finishes reading or writing the resource data. To resize a resource,
call DnResi zeResour ce, which accepts a handle to a resource and
reallocates the resource in another heap of the same card if
necessary. It returns the handle of the resource, which might have
been changed if the resource had to be moved to another heap to be
resized.

The remaining resource manager routines are usually not required
for most applications. These include functions to get and set
resource attributes, move resources from one database to another,
get resources by index, and create new resources. Most of these
functions reference resources by index to optimize performance.
When referencing a resource by index, the DmOpenRef of the open
resource database that the resource belongs to must also be
specified. Call DnfSear chResour ce to find a resource by type and
ID or by pointer by searching in all open resource databases.

To get the DnOpenRef of the topmost open resource database, call
DmNext OpenResDat abase and pass nil as the current
DmOpenRef . To find out the DnOpenRef of each successive
database, call DiNext OpenResDat abase repeatedly with each
successive DmOpenRef .

150 Palm OS Programmer’s Companion (Preliminary)

Files and Databases
File Streaming Application Program Interface

Given the access pointer of a specific open resource database,

DnFi ndResour ce can be used to return the index of a resource,
given its type and ID. DnFi ndResour ceType can be used to get
the index of every resource of a given type. To get a resource handle
by index, call DnGet Resour cel ndex.

To determine how many resources are in a given database, call
DmNunResour ces. To get and set attributes of a resource including
its type and ID, call DniResour cel nf o and DnSet Resour cel nf o.
To attach an existing data chunk to a resource database as a new
resource, call DmAt t achResour ce. To detach a resource from a
database, call DnDet achResour ce.

To create a new resource, call DniNewResour ce and pass the desired
size, type, and ID of the new resource. To delete a resource, call
DrRenpveResour ce. Removing a resource disposes of its data
chunk and removes its entry from the database header.

File Streaming Application Program Interface

The file streaming functions in Palm OS 3.0 and later let you work
with large blocks of data. File streams can be arbitrarily large—they
are not subject to the 64 KB maximum size limit imposed by the
memory manager on allocated objects. File streams can be used for
permanent data storage; in Palm OS 3.0, their underlying
implementation is a Palm OS database. You can read, write, seek to
a specified offset, truncate, and do everything else you'd expect to
do with a desktop-style file.

Other than backup/restore, Palm OS does not provide direct Hot
Sync support for file streams, and none is planned at this time.

The use of double-buffering imposes a performance penalty on file
streams that may make them unsuitable for certain applications.
Record-intensive applications tend to obtain better performance
from the Data Manager.

Using the File Streaming API

The File Streaming API is derived from the C programming
language’s <st di 0. h> interface. Any C book that explains the
<st di 0. h> interface should serve as a suitable introduction to the

Palm OS Programmer’s Companion (Preliminary) 151

Files and Databases
File Streaming Application Program Interface

concepts underlying the Palm OS File Streaming API. This section
provides only a brief overview of the most commonly used file
streaming functions.

The Fi | eOpen function opens a file, and the Fi | eRead function
reads it. The semantics of Fi | eRead and Fi | eW i t e are just like
their <st di 0. h> equivalents, the f r ead and f wri t e functions.
The other <st di 0. h> routines have obvious analogs in the File
Streaming API as well.

For example,

theStream =

Fil eQpen(cardld,"Kill er AppDat aFi |l e",
"KILR, "KILD , fil eMddeReadOnly,
&err);

As on a desktop, the filename is the unique item. The creator ID and
filetype are for informational purposes and your code may require
that an opened file have the correct type and creator.

Normally, the Fi | eQpen function returns an error when it attempts
to open or replace an existing stream having a type and creator that
do not match those specified. To suppress this error, pass the

fil eMbdeAnyTypeCreat or selector as a flag in the openhMbde
parameter to the Fi | eOpen function.

To read data, use the Fi | eRead function as in the following
example:

Fi |l eRead(t heStream &buf, objSize, nuntbjs,
&err);

To free the memory used to store stream data as the data is read, you
can use the Fi | eCont r ol function to switch the stream to
destructive read mode. This mode is useful for manipulating
temporary data; for example, destructive read mode would be ideal
for adding the objects in a large data stream to a database when
sufficient memory for duplicating the entire file stream is not
available. You can switch a stream to destructive read mode by
passing the fi | eQpDest ruct i veReadMode selector as the value
of the op parameter to the Fi | eCont r ol function.

The Fi | eDnRead function can read data directly into a Database
Manager chunk for immediate addition to a Palm OS database.

152 Palm OS Programmer’s Companion (Preliminary)

Files and Databases
Summary of Files and Databases

Summary of Files and Databases

Data Manager Functions

Creating Databases

DmCreateDatabase

DmCreateDatabaseFromimage

Opening and Closing Databases

DmOpenDatabase DmCloseDatabase
DmOpenDatabaseByTypeCreat DmDatabaseProtect
or DmWriteCheck
DmWrite

Creating Records

DmNewHandle DmNewRecord
Accessing Records

DmGetRecord DmQueryRecord
DmFindRecordByID DmSearchRecord

Adding Records
DmAttachRecord

Changing Records

DmMoveRecord
DmSet

Deleting Records

DmArchiveRecord
DmDeleteRecord
DmRemoveRecord
DmReleaseRecord

Sorting

DmlnsertionSort
DmFindSortPosition

DmResizeRecord
DmStrCopy

DmDeleteDatabase
DmDetachRecord
DmRemoveSecretRecords

DmFindSortPosition\VV10
DmQuickSort

Palm OS Programmer’s Companion (Preliminary) 153

Files and Databases
Summary of Files and Databases

Data Manager Functions

Categories

DmMoveCategory
DmNumRecordsinCategory

DmDeleteCategory
DmPositionInCategory

DmQueryNextInCategory

Locating Databases

DmFindDatabase
DmGetDatabase
DmNextOpenDatabase

Database Information

DmDatabaselnfo
DmRecordIinfo
DmOpenDatabaselnfo

DmSeekRecordInCategory

DmGetNextDatabaseByTypeCr

eator

DmSetDatabaselnfo
DmSetRecordInfo
DmDatabaseSize

DmNumbDatabases DmNumRecords
Application Information

DmGetApplnfolD

Error Handling

DmGetLastErr

Resource Manager Functions

DmNewResource DmAttachResource
DmReleaseResource DmRemoveResource
DmDetachResource DmGetResourcelndex
DmSearchResource DmFindResource
DmFindResourceType DmGetlResource
DmGetResource DmNextOpenResDatabase
DmNumResources DmResizeResource

DmResourcelnfo

DmSetResourcelnfo

154 Palm OS Programmer’s Companion (Preliminary)

Files and Databases
Summary of Files and Databases

File Streaming Function Summary

Opening and Closing

FileOpen
FileSeek

Reading Files

FileRead
FileRewind

Writing to Files
FileWrite

File Information
FileEOF
Deleting Files
FileDelete

Error Handling

FileError
FileClearerr

FileClose

FileDmRead
FileControl

FileTruncate

FileTell

FileFlush

FileGetLastError

Palm OS Programmer’s Companion (Preliminary) 155

Files and Databases
Summary of Files and Databases

156 Palm OS Programmer’s Companion (Preliminary)

= Palm System
Features

In this chapter, you learn how to work with the features that the
Palm OS system provides, such as sound, alarms, and floating-point
operations. Most parts of the Palm OS are controlled by a manager,
which is a group of functions that work together to implement a
certain functionality. As a rule, all functions that belong to one
manager use the same prefix and work together to implement a
certain aspect of functionality.

This chapter discusses these topics:
e Alarms

= Features

= Sound

= System Boot and Reset

< Hardware Interaction
e The Microkernel
= Retrieving the ROM Serial Number

e Time
< Floating-Point

e Summary of System Features

Alarms

The Palm OS alarm manager provides support for setting real-time
alarms, for performing some periodic activity, or for displaying a
reminder. The alarm manager:

= Works closely with the time manager to handle real-time
alarms.

Palm OS Programmer’s Companion (Preliminary) 157

Palm System Features
Alarms

= Sends launch codes to applications that set a specific time
alarm to inform the application the alarm is due.

= Handles alarms by application in a two cycle operation

— First, it notifies each application that the alarm has
occurred.

— Second, it allows each application to display some UI.
= Allows only one alarm to be set per application.
However, the alarm manager:
= Doesn’t provide reminder dialog boxes.
= Doesn’t play the alarm sound.

This section looks in some detail at how the alarm manager and
applications interact when processing an alarm. It covers:

= Setting an Alarm

e Alarm Scenario

= Setting a Procedure Alarm

Setting an Alarm

The most common use of the alarm manager is to set a real-time
alarm within an application. Often, you set this type of alarm
because you want to inform the user of an event. For example, the
Datebook application sets alarms to inform users of their
appointments.

Implementing such an alarm is a two step process. First, use the
function Al nSet Al ar mto set the alarm. Specify when the alarm
should trigger and which application should be informed at that
time.

Listing 8.1 shows how the Datebook application sets an alarm.

Listing 8.1 Setting an Alarm

static void SetTi meOF Next Al arm (ULong al arnili ne, DWord ref)
{

U nt car dNo;

Local | D dbl D;

DnSear chSt at eType sear chl nf o;

158 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Alarms

DGet Next Dat abaseBy TypeCreator (true, &searchlnfo,
sysFi |l eTApplication, sysFil eCDatebook, true, &cardNo, &dblD);

Al nSet Al arm (cardNo, dblD, ref, alarmfline, true);
}

Second, have your Pi | ot Mai n function respond to the launch
codes sysAppLaunchCndAl ar nifr i gger ed and
sysAppLaunchCmdDi spl ayAl ar m

When an alarm is triggered, the alarm manager notifies each
application that set an alarm for that time via the
sysAppLaunchCndAl ar mTri gger ed launch code. After each
application has processed this launch code, the alarm manager
sends each application sysAppLaunchCndDi spl ayAl ar mso that
the application can display the alarm. The section “Alarm Scenario”
gives more information about when these launch codes are received
and what actions your application might take. For a specific
example of responding to these launch codes, see the Datebook
sample code.

It’s important to note the following:

= An application can have only one alarm pending at a time. If
you call Al nSet Al ar mand then call it again before the first
alarm has triggered, the alarm manager replaces the first
alarm with the second alarm. You can use the Al nGet Al ar m
function to find out if the application has any alarms
pending.

= You do not have access to global variables when you respond
to the launch codes. Al nSet Al ar mtakes a DWor d parameter
that you can use to pass a specific value so that you have
access to it when the alarm triggers. (This is the r ef
parameter shown in Listing 8.1.) The parameter blocks for
both launch codes provide access to this reference parameter.
If the reference parameter isn’t sufficient, you can define an
application feature. See the section “Features” in this chapter.

= The database ID that you pass to Al nSet Al ar mis the local
ID of the application (the pr c file), not of the record database
that the application accesses. You use record database’s local

Palm OS Programmer’s Companion (Preliminary) 159

Palm System Features
Alarms

ID more frequently than you do the application’s local ID, so
this is a common mistake to make.

e In Al nSet Al ar m the alarm time is given as the number of
seconds since 1/1/1904. If you need to convert a
conventional date and time value to the number of seconds
since 1/1/1904, use Ti nDat eTi neToSeconds.

= |f you want to clear a pending alarm, call Al nSet Al ar m
with 0 specified for the alarm seconds parameter.

Alarm Scenario

Here’s how an application and the alarm manager typically interact
when processing an alarm:

1. The application sets an alarm using Al nSet Al ar m

The alarm manager adds the new alarm to its alarm queue.
The alarm queue contains all alarm requests. Triggered
alarms are queued up until the alarm manager can send the
launch code to the application that created the alarm.
However, if the alarm queue becomes full, the oldest entry
that has been both triggered and notified is deleted to make
room for a new alarm.

2. When the alarm time is reached, the alarm manager searches
the alarm queue for the first application that set an alarm for
this alarm time.

3. The alarm manager sends this application the
sysAppLaunchCndAl ar milr i gger ed launch code.

4. The application can now:
— Set the next alarm.
— Play a short sound.
— Perform some quick maintenance activity.

The application should not perform any lengthy tasks in
response to sysAppLaunchCnhdAl ar mlri gger ed because
doing so will delay other applications from receiving alarms
that are set to trigger at the same time.

If this alarm requires no further processing, the application
should set the pur geAl ar mfield in the launch code’s
parameter block to t r ue before returning. Doing so removes

160 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Alarms

the alarm from the queue, which means it won’t receive the
sysAppLaunchCndDi spl ayAl ar mlaunch code.

5. The alarm manager finds in the alarm queue the next
application that set an alarm and repeats steps 2 and 3.

6. This process is repeated until no more applications are found
with this alarm time.

7. The alarm manager then finds once again the first application
in the alarm queue who set an alarm for this alarm time and
sends this application the launch code
sysAppLaunchCndDi spl ayAl arm

8. The application can now:
— Display a dialog box.
— Display some other type of reminder.

9. The alarm manager processes the alarm queue for the next
application that set an alarm for the alarm being triggered
and step 6 and 7 are repeated.

10.This process is repeated until no more applications are found
with this alarm time.

If a new alarm time is triggered while an older alarm is still

being displayed, all applications with alarms scheduled for

this second alarm time are sent the

sysAppLaunchCndAl ar nilr i gger ed launch code, but the
display cycle for the second set of alarms is postponed until
all earlier alarms have finished displaying.

Setting a Procedure Alarm

Beginning with Palm OS version 3.2, the system supports setting
procedure alarms in addition to the application-based alarms
described in the previous sections. The differences between a
procedure alarm and an application-based alarm are:

= When you set a procedure alarm, you specify a pointer to a
function that should be called when the alarm triggers
instead of an application that should be notified.

= When the alarm triggers, the alarm manager calls the
specified procedure directly instead of using launch codes.

Palm OS Programmer’s Companion (Preliminary) 161

Palm System Features

Alarms

= |f the system is in sleep mode, the alarm triggers without
causing the LCD to light up.

You might use procedure alarms if:

= You want to perform a background task that is completely
hidden from the user.

= You are writing a shared library and want to implement an
alarm within that library.

To set a procedure alarm, you call Al nSet Pr ocAl ar minstead of
Al nSet Al ar m (Similarly, you use the Al nzet Pr oc Al ar mfunction
instead of Al nGet Al ar mto see if any alarms are pending for this
procedure.)

Al nSet Pr ocAl ar mis currently implemented as a macro that calls
Al nSet Al ar musing a special value for the card number parameter
to notify the alarm manager that this is a procedure alarm. Instead
of specifying the application’s local ID and card number, you
specify a function pointer. The other rules for Al nSet Al ar mstill
apply. Notably, a given function can only have one alarm pending at
a time, and you can clear any pending alarm by passing 0 for the
alarm time.

When the alarm triggers, the alarm manager calls the function you
specified. The function should have the prototype:

voi d nyAl arnFunc (Word al nProcCnd,
SysAl ar nilr i gger edPar amlype *par anP)

IMPORTANT: The function pointer must remain valid from the
time Al nSet Pr ocAl ar mis called to the time the alarm is
triggered. If the procedure is in a shared library, you must keep
the library open. If the procedure is in a separately loaded code
resource, the resource must remain locked until the alarm fires.
When you close a library or unlock a resource, you must remove
any pending alarms. If you don’t, the system will crash when the
alarm is triggered.

162 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Features

Features

The first parameter to your function specifies why the alarm
manager has called the function. Currently, the alarm manager calls
the function in two instances:

= The alarm has triggered.

= The user has changed the system time, so the alarm time
should be adjusted.

The second parameter is the same structure that is passed with the
sysAppLaunchCndAl ar mlri gger ed launch code. It provides
access to the reference parameter specified when the alarm was set,
the time specified when the alarm was set, and the pur geAl arm
field, which specifies if the alarm should be removed from the
gueue. In the case of procedure alarms, the alarm should always be
removed from the queue. The system sets the pur geAl ar mvalue to
t r ue after calling your function.

A feature is a 32-bit value that has special meaning to both the
feature publisher and to users of that feature. Features can be
published by the system or by applications.

Each feature is identified by a feature creator and a feature number:

= The feature creator is a unique creator registered with Palm
Computing. You usually use the creator type of the
application that publishes the feature.

= The feature number is any 16-bit value used to distinguish
between different features of a particular creator.

Once a feature is published, it remains present until it is explicitly
unregistered or the device is reset. A feature published by an
application sticks around even after the application quits.

This section introduces the feature manager by discussing these
topics:

e The System Version Feature

< Application-Defined Features

e Using the Feature Manager

= Feature Memory

Palm OS Programmer’s Companion (Preliminary) 163

Palm System Features

Features

The System Version Feature

An example for a feature is the system version. This feature is
published by the system and contains a 32-bit representation of the
system version. The system version has a feature creator of

sysFt r Cr eat or and a feature number of

sysFt r NumROWer si on). Currently, the different versions of the
system software have the following numbers:

0x01003001 Pilot 1000 and Pilot 5000 (Palm OS 1.0)

0x02003000 PalmPilot and PalmPilot Professional (Palm OS 2.0)
0x03003000 Palm Il Connected Organizer (Palm OS 3.0)
0x03103000 Palm 111 X Connected Organizer (Palm OS 3.1)
0x03103000 Palm V Connected Organizer (Palm OS 3.1)

0x03203000 Palm VII Connected Organizer (Palm OS 3.2)

Any application can find out the system version by looking for this
feature. For example:

/Il See if we're on ROMversion 2.0 or later.

FtrGet (sysFtrCreator, sysFtrNunROWer si on,
& onVer si on) ;

i f (romVersion >= 0x02000000) {

}

Other system features are defined in Syst em\vgr . h. System
features are stored in a feature table in the ROM. (In Palm OS 3.1
and higher, the contents of this table are copied into the RAM
feature table at system startup.) Checking for the presence of system
features allows an application to be compatible with multiple
versions of the system by refining its behavior depending on which
capabilities are present or not. Future hardware platforms may lack
some capabilities present in the first platform, so checking the
system version feature is important.

164 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Features

IMPORTANT: For best results, we recommend that you check
for specific features rather than relying on the system version
number to determine if a specific API is available. For more
details on checking for features, see the appendix Compatibility
Guide in Palm OS SDK Reference.

Application-Defined Features

Applications may find the feature manager useful for their own
private use. For example, an application may want to publish a
feature that contains a pointer to some private data it needs for
processing launch codes. Because an application’s global data is not
generally available while it processes launch codes, using the
feature manager is usually the easiest way for an application to get
to its data.

The feature manager maintains one feature table in the RAM as well
as the feature table in the ROM. Application-defined features are
stored in the RAM feature table.

Using the Feature Manager

To check whether a particular feature is present, call Ft r Get and
pass it the feature creator and feature number. If the feature exists,
Ft r Get returns the 32-bit value of the feature. If the feature doesn’t
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call
Ft r Set and pass the feature creator, number, and the 32-bit value
of the feature. A published feature remains available until it is
explicitly removed by a call to Ft r Unr eqgi st er or until the system
resets; simply quitting an application doesn’t remove a feature
published by that application.

Call Ft r Unr egi st er to remove features that were created by
calling Ftr Set .

You can get a complete list of all published features by calling

Ft r Get Byl ndex repeatedly. Passing an index value starting at 0 to
Ft r Get Byl ndex and incrementing repeatedly by 1 eventually
returns all available features. Ft r Get Byl ndex accepts a parameter

Palm OS Programmer’s Companion (Preliminary) 165

Palm System Features

Features

that specifies whether to search the ROM feature table or RAM
feature table. Note that in Palm OS version 3.1 and higher, the
contents of the ROM table are copied into the RAM table at system
startup; thus the RAM table serves the entire system.

Feature Memory

Palm OS 3.1 adds support for feature memory. Feature memory
provides quick, efficient access to data that persists between
invocations of an application. The values stored in feature memory
persist until the device is reset or until you explicitly free the
memory. Feature memory is memory allocated from the storage
heap. Thus, you write to feature memory using DV i t e, which
means that writing to feature memory is no faster than writing to a
database. However, feature memory can provide more efficient
access to that data in certain circumstances.

To allocate a chunk of feature memory, call Ft r Pt r New, specifying

a feature creator, a feature number, the number of bytes to allocate,

and a location where the feature manager can return a pointer to the
newly allocated memory chunk. For example:

Ftr Pt r Newm appCr eat or,
nyFtrMenFtr, 32, & trMem;

Elsewhere in your application, you can obtain the pointer to the
feature memory chunk using Ft r Get .

Feature memory is considered a performance optimization. The
conditions under which you'd use it are not common, and you
probably won't find them in a typical application. You use feature
memory in code that:

= |Is executed infrequently
= Does not have access to global variables

= Needs access to data whose contents change infrequently
and that cannot be stored in a 32-bit feature value

For example, suppose you've written a function that is called in
response to a launch code, and you expect to receive this launch
code frequently. Suppose that function needs access to the
application’s preferences database. At the start of the function, you'd
need to open the database and read the data from it. If the function

166 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Sound

is called frequently, opening the database each time can be a drain
on performance. Instead, you can allocate a chunk of feature
memory and write the values you need to that chunk. Because the
chunk persists until the device is reset, you only need to open the
database once. Listing 8.2 illustrates this example.

Listing 8.2 Using Feature Memory

MyAppPr ef erencesType prefs;

if (FtrGet(appCreator, nyPrefFtr, (DWrdPtr)&prefs) !'=0) {

}

/'l Feature nenory doesn't exist, so allocate it.
FtrPtrNew appCreator, nyPrefFtr, 32, & hePref);

/'l Load the preferences database.
Pr ef Get AppPr ef erences (appCreator, preflD, &prefs,
si zeof (prefs), true);

/Il Wite it to feature nenory.
DnWite(thePref, 0, &prefs, sizeof(prefs));

/'l Now prefs is guaranteed to be defi ned.

Another potential use of feature memory is to “publish” data from
your application or library to other applications when that data
doesn’t fit in a normal 32-bit feature value. For example, suppose
you are writing a communications library and you want to publish
an icon that client applications can use to draw the current
connection state. The library can use Ft r Pt r Newto allocate a
feature memory chunk and store an icon representing the current
state in that location. Applications can then use Ft r Get to access
the icon and pass the result to W nDr awBi t map to display the
connection state on the screen.

Sound

The Palm Computing platform device has primitive sound
generation. A square wave is generated directly from the 68328’s

Palm OS Programmer’s Companion (Preliminary) 167

Palm System Features

Sound

PWM circuitry. There is frequency, duration, and volume control.
Additionally, Palm OS 3.0 and higher support creating and playing
standard MIDI sounds.

The Palm OS sound manager provides an extendable API for
playing custom sounds and system sounds, and for controlling
default sound settings. Although the sound APl accommodates
multichannel design, the system provides only a single sound
channel at present.

The sound hardware can play only one simple tone at a time
through an onboard piezoelectric speaker. Note that for a particular
amplitude level, the Palm 11l device is slightly louder than its
predecessors.

Single tones can be played by the SndDoCnd function and system
sounds are played by the SndPl aySyst enSound function. The
end-user can control the amplitude of alarm sounds, game sounds,
and system sounds by means of the Preferences application.
System-supplied sounds include the Information, Warning, Error,
Startup, Alarm, Confirmation, and Click sounds.

Palm OS 3.0 introduces support for Standard MIDI Files (SMFs),
format 0. An SMF is a note-by-note description of a tune—Palm OS
doesn't support sampled sound, multiple voices, or complex
“instruments.” You can download the SMF format specification
from the ht t p: / / www. mi di . or g Web site.

The alarm sounds used in the built-in Date Book application are
SMFs stored in the System MIDI Sounds database and can be
played by the SndPI ay SMF function.

All SMF records in the System MIDI Sounds database are available
to the user. Developers can add their own alarm SMFs to this
database as a way to add variety and personalization to their
devices. You can use the sysFi | eTM di filetype and

sysFi | eCSyst em creator to open this database.

Each record in the database is a single SMF, with a header structure
containing the user-visible name. The record includes a song header,
then a track header, followed by any number of events. The system
only recognizes the keyDown, keyUp and t enpo events in a single
track; other commands which might be in the SMF are ignored. For
more information, see the following:

168 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Sound

= Adding a Standard MIDI File to a Database in this chapter.
< SndMidiRecType Structure in the Palm OS SDK Reference.

e SndMidiRecHdrType Structure in the Palm OS SDK
Reference.

You can use standard MIDI tools to create SMF blocks on desktop
computers, or you can write code to create them on the Palm OS
device. The sample code project “RockMusic,” particularly the
routines in the Make SMF. c file, can be helpful to see how to create
an SMF programmatically.

Previous versions of Palm OS don't support SMFs or asynchronous
notes; don't use the new routines or commands when the Ft r Get
function returns a system version of less than 0x03000000. Doing
so will crash your application. See the section “The System \ersion
Feature” for more information.

Synchronous and Asynchronous Sound

The SndDoCnd function executes synchronously or asynchronously
according to the operation it is to perform. The cndNot eOn and
cndFr eqOn operations execute asynchronously; that is, they are
non-blocking and can be interrupted by another sound command.
In contrast, the cndFr eqDur at i onAnp operation is synchronous
and blocking (it cannot be interrupted).

The SndPl ay S\VF function is also synchronous and blocking;
however, the Sound Manager polls the key queue periodically
during playback and halts playback in progress if it finds events
generated by user interaction with the screen, digitizer, or
hardware-based buttons. Optionally, the caller can override this
default behavior to specify that the SndPl ay SMF function play the
SMF to completion without being interrupted by user events.

Using the Sound Manager

Before playing custom sounds that require a volume (amplitude)
setting, your code needs to discover the user’s current volume
settings. To do so in Palm OS 3.X, pass one of the

pr ef SysSoundVol une, pr ef GaneSoundVol une, or

pr ef Al ar nSoundVol une selectors to the Pr ef Get Pr ef er ence
function.

Palm OS Programmer’s Companion (Preliminary) 169

Palm System Features

Sound

NOTE: See “Sound Preferences Compatibility Information” for
important information regarding the correct use of sound
preferences in various versions of Palm OS.

You can pass the returned amplitude information to the

SndPl ay SMF function as one element of a SndSnf Opt i onsType
St ruct ur e parameter block. Alternatively, you can pass
amplitude information to the SndDoCnd function as an element of a
SndConmmandType Struct ure parameter block.

To execute a sound manager command, pass to the Snd DoCnd
function a sound channel pointer (presently, only NULL is supported
and maps to the shared channel), a pointer to a structure of
SndConmandType, and a flag indicating whether the command
should be performed asynchronously.

To play SMFs, call the SndPl ay SMF function. This function, which
is new in Palm OS 3.0, is used by the built in Date Book application
to play alarm sounds.

To play single notes, you can use either of the SndPl ay SMF or
SndDoCnd functions. Of course, you can use the SndPl ay SMF
function to play a single MIDI note from an SMF. You can also use
the SndDoCnd function to play a single MIDI note by passing the
sndCndNot eOn command selector to this function. To specify by
frequency the note to be played, pass the sndCrdFr egOn command
selector to the SndDoCnrd function.You can pass the sndCndQui et
selector to this function to stop playback of the current note.

The system provides no specialized API for playing game sounds or
alarm sounds. When an alarm triggers, the application that set the
alarm must use the standard Sound Manager API to play the sound
associated with that alarm. Similarly, game sounds are implemented
by the game developer using any appropriate element of the Sound
Manager API. Games should observe the pr ef GaneSoundVol une
setting, as described in the section “Sound Preferences
Compatibility Information.”

To play a default system sound, such as a click or an error beep, pass
the appropriate system sound ID to the SndPI aySyst enSound
function, which will play that sound at the volume level specified
by the user’s system sound preference. For the complete list of

170 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Sound

system sound IDs, see the SoundMgr . h file provided by the Palm
OS SDK.

Adding a Standard MIDI File to a Database

To add a format 0 standard MIDI file to the system MIDI database,
you can use code similar to the AddSnf ToDat abase example
function shown in the following code listing. This function returns 0
if successful, and returns a non-zero value otherwise. To use a
different database, pass different creator and type values to the
DnOpenDat abaseByTypeCr eat or function.

Listing 8.3 AddSmfToDatabase

/1l Useful structure field offset macro
#define prvFieldOfset(type, field) ((DWrd) (& (type*)0)->field))

// returns O for success, nonzero for error
i nt AddSnf ToDat abase(Handl e snfH, CharPtr trackNane)

{
Err err = 0;
DmOpenRef dbP;
Ul nt recl ndex;
Voi dHand recH,;
Byt e* rechk;
Byt e* snf P;
Byt e bM di O f set ;
ULong dwsnt Si ze;

SndM di RecHdr Type recHdr;

bM di O f set = sizeof (SndM di RecHdr Type) +
StrLen(trackNane) + 1;
dwsnf Si ze = MenHandl eSi ze(snf H) ;

recHdr. si gnature = sndM di RecSi gnat ur e;
recHdr.reserved = O;
recHdr . bDat alsf f set = bM di O f set ;

dbP = DnOpenDat abaseByTypeCreat or (sysFil eTM di, sysFil eCSystem
dmvbdeReadWite | dmvbdeExcl usive);
if (!dbP)

Palm OS Programmer’s Companion (Preliminary) 171

Palm System Features
Sound

return 1;

// Allocate a newrecord for the mdi resource
recl ndex = dmvaxRecor dl ndex;
recH = DmNewRecor d(dbP, &reclndex, dwsnfSize + bMdi O fset);
if ('recH)
return 2;

/'l Lock down the source SMF and target record and copy the data
snf P = MenmHandl eLock(snf H);
recP = MenHandl eLock(recH);

err = DVWite(recP, O, & ecHdr, sizeof(recHdr));

if (lerr) err = DnttrCopy(recP, prvFieldOfset(SndM di RecType,
nanme), trackNane);

if (lerr) err = DWWite(recP, bMdi Ofset, snfP, dwSnfSi ze);

/1 Unlock the pointers

MenHandl eUnl ock(snf H);

MenHandl eUnl ock(recH);

/ | Because DmNewRecord marks the new record as busy,

/1 we nust call DnRel easeRecord before closing the database
DnRel easeRecor d(dbP, reclndex, 1);

DCl oseDat abase(dbP) ;

return err;

Saving References to Standard MIDI Files

To save a reference to a SMF stored in a particular database, save its
record ID and the name of the database in which it is stored. Do not
store the database ID between invocations of your application,
because various events, such as a HotSync, can invalidate database
IDs. Using an invalid database ID can crash your application.

172 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Sound

Retrieving a Standard MIDI File From a Database

Standard MIDI Files (SMFs) are stored as individual records in a
MIDI record database—one SMF per record. Palm OS defines the
database type sysFi | eTM di for MIDI record databases. The
system MIDI database, with type sysFi | eTM di and creator
sysFi | eCSyst em holds multiple system alarm sounds. In
addition, your applications can create their own private MIDI
databases of type sysFi | eTM di and your own creator.

To obtain a particular SMF, you need to identify the database in
which it resides and the specific database record which holds the
SMF data. The database record itself is always identified by record
ID. The MIDI database in which it resides may be identified by
name or by database ID. If you know the creator of the SMF, you can
use the SndCr eat eM di Li st utility function to retrieve this
information. Alternatively, you can use the Data Manager record
API functions to iterate through MIDI database records manually in
search of this information.

The SndCr eat eM di Li st utility function retrieves information
about Standard Midi Files from one or more MIDI databases. This
information is returned as a table of entries. Each entry contains the
name of an SMF; its unique record ID; and the database ID and card
number of the record database in which it resides.

Once you have the appropriate identifiers for the record and the
database in which it resides, you need to open the MIDI database. If
you have identified the database by type and creator, pass the
sysFi | eTM di type and an appropriate creator value to the
DrOpenDat abaseBy TypeCr eat or function. For example, to
retrieve a SMF from the system MIDI database, pass type

sysFi | eTM di and creator sysFi | eCSyst em The

DmOpenDat abaseBy TypeCr eat or function returns a reference to
the open database.

If you have identified the database by name, rather than by creator,
you’ll need to discover its database ID in order to open it. The

DnFi ndDat abase function returns the database ID for a database
specified by name and card number. You can pass the returned ID to
the DnOpenDat abase function to open the database and obtain a
reference to it.

Palm OS Programmer’s Companion (Preliminary) 173

Palm System Features

Sound

Once you have opened the MIDI database, call

DnFi ndRecor dByl Dto get the index of the SMF record. To retrieve
the record itself, pass this index value to either of the functions
DnQuer yRecor d or DniGet Recor d. When you intend to modify
the record, use the DmGet Recor d function—it marks the record as
busy. When you intend to use the record in read-only fashion, use
the DmQuer yRecor d function —it does not mark the record as
busy. You must lock the handle returned by either of these functions
before making further use of it.

To lock the database record’s handle, pass it to the MenHandl eLock
function, which returns a pointer to the locked record holding the
SMF data. You can pass this pointer to the SndPI ay SMF function in
the snf P parameter to play the MIDI file.

When you’ve finished using the record, unlock the pointer to it by
calling the MenPt r Unl ock function. If you’ve used DnmGet Recor d
to open the record for editing, you must call DnRel easeRecor d to
make the record available once again to other callers. If you used
DmQuer yRecor d to open the record for read-only use, you need
not call DmRel easeRecor d.

Finally, close the database by calling the DnCl oseDat abase
function.

Sound Preferences Compatibility Information

The sound preferences implementation and API varies slightly
among versions 1.0, 2.0, and 3.X of Palm OS. This section describes
how to use sound preferences correctly for various versions of Palm
OsS.

Because versions 2.0 and 3.X of Palm OS provide backward
compatibility with previous sound preference mechanisms,
applications written for an earlier version of the sound preferences
API will get correct sound preference information from newer
versions of Palm OS. However, it is strongly recommended that new
applications use the latest API.

174 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Sound

Listing 8.4

Using Sound Preferences on All Palm OS Devices

Because the user chooses sound preference settings, your
application should respect them and adhere to their values. Further,
you should always treat sound preferences as read-only values.

At reset time, the sound manager reads stored preference values
and caches them for use at run time. The user interface controls
update both the stored preference values and the sound manager’s
cached values.

The Pr ef Set Pr ef er ence function writes to stored preference
values without affecting cached values. New values are read at the
next system reset. The system-use-only SndSet Def aul t Vol une
function updates cached values but not stored preferences.
Applications should avoid modifying stored preferences or cached
values in favor of respecting the user’s choices for preferences.

Using Palm OS 1.0 Sound Preferences

To read sound preference values in version 1.0 of Palm OS, call the
Pr ef Get Pr ef er ences function to obtain the data structure
shown in Listing 8.4. This Syst enPr ef er encesTypeV10
structure holds the current values of all system-wide
preferences.You must extract from this structure the values of the
sysSoundLevel andal ar nSoundLevel fields. These values are
the only sound preference information that Palm OS version 1.0
provides.

Each of these fields holds a value of either s| On (on) or sl O f (off).
Your code must interpret the values read from these fields as an
indication of whether those volumes should be on or off, then map
them to appropriate amplitude values to pass to Sound Manager
functions: map the sl On selector to the sndMaxAnp constant
(defined in SoundMgr . h) and map the sI O f selector to the value
0 (zero).

Syst enPr ef er encesTypeV10 data structure

t ypedef struct
Word versi on;

{

/'l Version of preference info

/1l International preferences

Palm OS Programmer’s Companion (Preliminary) 175

Palm System Features
Sound

CountryType country;// Country the device is in

Dat eFor mat Type dateFornmat;// Format to display date in

Dat eFor mat Type | ongDat eFormat;// Format to display date in
Byte weekStartDay;// Sunday or Mnday

Ti meFor mat Type tineFormat;// Format to display time in

Nunber For mat Type nunber Format;// Format to di splay nunbers in

/'l system preferences
Byte autoO fDuration;// Time period before shutting off
SoundLevel TypeV20 sysSoundLevel ;//error beeps
SoundLevel TypeV20 al ar nSoundLevel ;//al arm only
Bool ean hi deSecret Records;// True to not display records with
/'l their secret bit attribute set
Bool ean devi ceLocked; // Device |ocked until the system
/'l password is entered
Wor dsysPref Fl ags;// M scel | aneous system pref flags copied into
/'l the gl obal GSysPrefFlags at boot tine.
SysBatteryKi nd sysBatteryKi nd;
/'l The type of batteries installed.
/1l This is copied into the gl obals
/1 GSysbatteryKind at boot tine.

} SystenPreferencesTypeV1O;

Using Palm OS 2.0 Sound Preferences

Version 2.0 of Palm OS introduces a new API for retrieving
individual preference values from the system. You can pass any of
the selectors pr ef SysSoundLevel V20,

pr ef GameSoundLevel V20, or pr ef Al ar nSoundLevel V20 to
the Pr ef Get Pr ef er ence function to retrieve individual
amplitude preference values for alarm sounds, game sounds, or for
overall (system) sound amplitude. As in Palm OS 1.0, each of these
settings holds values of either sI On (on) or s| O f (off), as defined
in the Preferences.h file. Your code must interpret the values read
from these fields as an indication of whether those volumes should
be on or off, then map them to appropriate amplitude values to pass
to Sound Manager functions: map the sl On selector to the
sndMaxAnp constant (defined in SoundMyr . h file) and map the

sl O f selector to the value O (zero).

176 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Sound

For a complete listing of selectors you can pass to the
Pr ef Get Pr ef er ence function, see the Pr ef er ences. h file.

Using Palm OS 3.X Sound Preferences

Palm OS version 3.X enhances the resolution of sound preference
settings by providing discrete amplitude levels for games, alarms,
and the system overall. As usual, do not set preferences yourself,
but treat them as read-only values indicating the proper volume
level for your application to use.

Palm OS 3.X defines the new sound amplitude selectors

pr ef SysSoundVol une, pr ef GaneSoundVol une, and

pr ef Al ar mSoundVol une for use with the Pr ef Get Pr ef er ence
function. The values this function returns for these selectors are
actual amplitude settings that may be passed directly to Sound
Manager functions.

NOTE: The amplitude selectors used in previous versions of
Palm OS (all ending with the Level suffix, such as

pr ef sGaneSoundLevel) are obsoleted in version 3.0 of Palm
OS and replaced by new selectors. The old selectors remain
available in Palm OS 3.X to ensure backward compatibility and
are suffixed V20 (for example, pr ef sGaneSoundLevel V20).

Ensuring Sound Preferences Compatibility

For greatest compatibility with multiple versions of the sound
preferences mechanism, your application should condition its
sound preference code according to the version of Palm OS on
which it is running. See “The System Version Feature” for more
information.

When your application is launched, it should retrieve the system
version number and save the results in its global variables (or
equivalent structure) for use elsewhere. If the major version number
is 3 (three) or greater, then use the 3.0 mechanism for obtaining
sound amplitude preferences, since this reflects the user’s selection
most accurately. If the major version number is 2 (two), then use the
2.0 mechanism described in “Using Palm OS 2.0 Sound

Palm OS Programmer’s Companion (Preliminary) 177

Palm System Features
System Boot and Reset

Preferences.” If it is 1 (one), then use the 1.0 mechanism described in
“Using Palm OS 1.0 Sound Preferences.”

Avoid calling new APIs (including new selectors) when running on
older versions of Palm OS that do not implement them. In
particular, note that violating any of the following conditions will
cause your application to crash:

= Do not call either of the SndPI ay SMF or
SndCr eat eM di Li st functions on versions of Palm OS
prior to 3.0.

= Do not pass any selector other than
sndCndFr eqDur at i onAnp to the SndDoCnd function on
versions of Palm OS prior to 3.0.

System Boot and Reset

Any reset is normally performed by sticking a bent-open paper clip
or a large embroidery needle into the small hole in the back of the
device. This hole, known as the “reset switch” is above and to the
right of the serial number sticker (on Palm Il devices). Depending
on additional keys held down, the reset behavior varies, as follows:

Soft Reset

A soft reset clears all of the dynamic heap (Heap 0, Card 0). The
storage heaps remain untouched. The operating system restarts
from scratch with a new stack, new global variables, restarted
drivers, and a reset communication port. All applications on the
device receive a sysAppLaunchCndSyst enReset message.

Soft Reset + Up Arrow

Holding the up-arrow down while pressing the reset switch with a
paper clip causes the same soft reset logic with the following two
exceptions:

e The sysAppLaunchCndSyst enmReset message is not sent
to applications. This is useful if there is an application on the
device that crashes upon receiving this message (not
uncommon) and therefore prevents the system from booting.

178 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
System Boot and Reset

= The OS won’t load any system patches during startup. This is
useful if you have to delete or replace a system patch
database. If the system patches are loaded and therefore
open, they cannot be replaced or deleted from the system.

Hard Reset

A hard reset is performed by pressing the reset switch with a paper
clip while holding down the power key. This has all the effects of the
soft reset. In addition, the storage heaps are erased. As a result, all
programs, data, patches, user information, etc. are lost. A
confirmation message is displayed asking the user to confirm the
deletion of all data.

The sysAppLaunchCnmdSyst enmReset message is sent to the
applications at this time. If the user selected the “Delete all data”
option, the digitizer calibration screen comes up first. The default
databases for the four main applications is copied out of the ROM.

If you hold down the up arrow key when the “Delete all data”
message is displayed, and then press the other four application
buttons while still holding the up arrow key, the system is booted
without reading the default databases for the four main applications
out of ROM.

System Reset Calls

The system manager provides support for booting the Palm OS
device. It calls SysReset to reset the device. This call does a soft
reset and has the same effect as pressing the reset switch on the unit.
Normally applications should not use this call.

SysReset is used, for example, by the Sync application. When the
user copies an extension onto the Palm OS device, the Sync
application automatically resets the device after the sync is
completed to allow the extension to install itself.

The SysCol dBoot call is similar, but even more dangerous. It
performs a hard reset that clears all user storage RAM on the device,
destroying all user data.

Palm OS Programmer’s Companion (Preliminary) 179

Palm System Features

Hardware Interaction

Hardware Interaction

Palm OS differs from a traditional desktop system in that it’s never
really turned off. Power is constantly supplied to essential
subsystems and the on/off key is merely a way of bringing the
device in or out of low-power mode. The obvious effect of pressing
the on/off key is that the LCD turns on or off. When the user presses
the power key to turn the device off, the LCD is disabled, which
makes it appear as if power to the entire unit is turned off. In fact,
the memory system, real-time clock, and the interrupt generation
circuitry are still running, though they are consuming little current.

This section looks at Palm OS power management, discussing the
following topics:

e Palm OS Power Modes

« Guidelines for Application Developers

e Power Management Calls

Palm OS Power Modes

To minimize power consumption, the operating system
dynamically switches between three different modes of operation:
sleep mode, doze mode, and running mode. The system manager
controls transitions between different power modes and provides
an API for controlling some aspects of the power management.

= In sleep mode, the device looks like it’s turned off: the
display is blank, the digitizer is inactive, and the main clock
is stopped. The only circuits still active are the real-time clock
and interrupt generation circuitry.

The device enters this mode when there is no user activity for
a number of minutes or when the user presses the off button.
The device comes out of sleep mode only when there is an
interrupt, for example, when the user presses a button.

To enter sleep mode, the system puts as many peripherals as
possible into low-power mode and sets up the hardware so
that an interrupt from any hard key or the real-time clock
wakes up the system. When the system gets one of these
interrupts while in sleep mode, it quickly checks that the
battery is strong enough to complete the wake-up and then

180 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Hardware Interaction

takes each of the peripherals, for example, the LCD, serial
port, and timers, out of low-power mode.

= In doze mode, the main clock is running, the device appears
to be turned on, the LCD is on, and the processor’s clock is
running but it’s not executing instructions (that is, it’s
halted). When the processor receives an interrupt, it comes
out of halt and starts processing the interrupt.

The device enters this mode whenever it’s on but has no user
input to process.

The system can come out of doze mode much faster than it
can come out of sleep mode since none of the peripherals
need to be woken up. In fact, it takes no longer to come out of
doze mode than to process an interrupt. Usually, when the
system appears on, it is actually in doze mode and goes into
running mode only for short periods of time to process an
interrupt or respond to user input like a pen tap or key press.

= In running mode, the processor is actually executing
instructions.

The device enters this mode when it detects user input (like a
tap on the screen) while in doze mode or when it detects an
interrupt while in doze or sleep mode. The device stays in
running mode only as long as it takes to process the user
input (most likely less than a second), then it immediately
reenters doze mode. A typical application puts the system
into running mode only about 5% of the time.

To maximize battery life, the processor on the Palm Computing
platform device is kept out of running mode as much as possible.
Any interrupt generated on the device must therefore be capable of
“waking” up the processor. The processor can receive interrupts
from the serial port, the hard buttons on the case, the button on the
cradle, the programmable timer, the memory module slot, the
real-time clock (for alarms), the low-battery detector, and any
built-in peripherals such as a pager or modem.

Guidelines for Application Developers

Normally, applications don’t need to be aware of power
management except for a few simple guidelines. When an
application calls Evt Get Event to ask the system for the next event
to process, the system automatically puts itself into doze mode until

Palm OS Programmer’s Companion (Preliminary) 181

Palm System Features

Hardware Interaction

there is an event to process. As long as an application uses

Evt Get Event , power management occurs automatically. If there
has been no user input for the amount of time determined by the
current setting of the auto-off preference, the system automatically
enters sleep mode without intervention from the application.

Applications should avoid providing their own delay loops.
Instead, they should use SysTaskDel ay, which puts the system
into doze mode during the delay to conserve as much power as
possible. If an application needs to perform periodic work, it can
pass a time out to Evt Get Event ; this forces the unit to wake up out
of doze mode and to return to the application when the time out
expires, even if there is no event to process. Using these mechanisms
provides the longest possible battery life.

Power Management Calls

The system calls Sys S| eep to put itself immediately into
low-power sleep mode. Normally, the system puts itself to sleep
when there has been no user activity for the minimum auto-off time
or when the user presses the power key.

The SysSet Aut o f Ti e routine changes the auto-off time value.
This routine is normally used by the system only during boot, and
by the Preferences application. The Preferences application saves
the user preference for the auto-off time in a preferences database,
and the system initializes the auto-off time to the value saved in the
preferences database during boot. While the auto-off feature can be
disabled entirely by calling SysSet Aut oOf f Ti me with a time-out
of 0, doing this depletes the battery.

The current battery level and other information can be obtained
through the SysBat t er yl nf o routine. This call returns
information about the battery, including the current battery voltage
in hundredths of a volt, the warning thresholds for the low-battery
alerts, the battery type, and whether external power is applied to
the unit. This call can also change the battery warning thresholds
and battery type.

182 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
The Microkernel

The Microkernel

Palm OS has a preemptive multitasking kernel that provides basic
task management.

Most applications don’t need the microkernel services because they
are handled automatically by the system. This functionality is
provided mainly for internal use by the system software or for
certain special purpose applications.

In this version of the Palm OS, there is only one user interface
application running at a time. The User Interface Application Shell
(UIAS) is responsible for managing the current user-interface
application. The UIAS launches the current user-interface
application as a subroutine and doesn’t get control back until that
application quits. When control returns to the UIAS, the UIAS
immediately launches the next application as another subroutine.
See “Power Management Calls” for more information.

Usually, the UIAS is the only task running. Occasionally though, an
application launches another task as a part of its normal operation.
One example of this is the Sync application, which launches a
second task to handle the serial communication with the desktop.
The Sync application creates a second task dedicated to the serial
communication and gives this task a lower priority than the main
user-interface task. The result is optimal performance over the serial
port without a delay in response to the user-interface controls.

Normally, there is no user interaction during a sync, so that the
serial communication task gets all of the processor’s time. However,
if the user does tap on the screen, for example, to cancel the sync,
the user-interface task immediately processes the tap, since it has a
higher priority. Alternatively, the Sync application could have been
written to use just one task, but then it would have to periodically
poll for user input during the serial communication, which would
hamper performance and user-interface response time.

NOTE: Only system software can launch a separate task. The
multi-tasking API is not available to developer applications.

Palm OS Programmer’s Companion (Preliminary) 183

Palm System Features
Retrieving the ROM Serial Number

Retrieving the ROM Serial Number

Listing 8.5

Some Palm devices, beginning with the Palm |11 product, hold a
12-digit serial number that identifies the device uniquely. (Earlier
devices do not have this identifier.) The serial number is held in a
displayable text buffer with no null terminator. The user can view
the serial number in the Application Launcher application. (The
pop-up version of the Launcher does not display the serial number.)
The Application Launcher also displays to the user a checksum digit
that you can use to validate user entry of the serial number.

To retrieve the ROM serial number programmatically, pass the
sysROMIokenSnum selector to the SysGet Ronifoken function. If
the SysGet RomToken function returns an error, or if the returned
pointer to the buffer is NULL, or if the first byte of the text buffer is
OxFF, then no serial number is available.

The Dr awSer i al NunOr Message function shown in Listing 8.5
retrieves the ROM serial number, calculates the checksum, and
draws both on the screen at a specified location. If the device has no
serial number, this function draws a message you specify. This
function accepts as its input a pair of coordinates at which it draws
output, and a pointer to the message it draws when a serial number
is not available.

DrawSerialNumOrMessage

static void DrawSeri al NumOr Message(int x, int vy,

{

Char Pt r noNunmber Message)

Char Ptr buf P;

Wor d buf Len;

Wor d retval ;

Shor t count;

Byt e checkSum

char checksunttr|[2] ;

/'l holds the dash and the checksum digit

retval = SysGet ROMIoken (0, sysROMIokenSnum

(BytePtr*) &bufP, &buflLen);

184 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Time

if (('retval) && (bufP) && ((Byte) *bufP !'= OxFF)) {
/'l there's a valid serial nunber!
/1l Calculate the checksum Start wth zero, add each digit,
/'l then rotate the result one bit to the left and repeat.
checkSum = 0;
for (count=0; count<buflLen; count++) {
checkSum += buf P[count] ;
checkSum = (checkSunx<l) | ((checkSum & 0x80) >> 7);
}
/1 Add the two hex digits (nibbles) together, +2
/1l (range: 2 - 31 ==> 2-9, AW
/1 By adding 2 to the result before converting to ascii,
/1 we elimnate the nunbers 0 and 1, which can be
/[l difficult to distinguish fromthe letters O and I.
checkSum = ((checkSunr>4) & OxOF) + (checkSum & Ox0F) + 2;

// draw the serial nunmber and find out how wide it was
W nDr awChar s(buf P, bufLen, x, y);
x += Fnt Char sW dt h(buf P, bufLen);

/1l draw the dash and the checksumdigit right after it
checksunsttr[0] = "'-";
checksunttr[1] =
((checkSum < 10) ? (checkSum +' 0"): (checkSum -10 + A'));

W nDr awChars (checksunftr, 2, x, y);
}
else // there's no serial nunber
/'l draw a status nessage if the caller provided one
i f (noNunmber Message)

W nDr awChar s(noNunber Message, StrLen(noNunber Message), X,

The Palm Computing platform device has a real-time clock and

programmable timer as part of the 68328 processor. The real-time
clock maintains the current time even when the system is in sleep
mode (turned off). It’s capable of generating an interrupt to wake

Palm OS Programmer’s Companion (Preliminary) 185

Palm System Features

Time

the device when an alarm is set by the user. The programmable
timer is used to generate the system tick count interrupts (100
times/second) while the processor is in doze or running mode. The
system tick interrupts are required for periodic activity such as
polling the digitizer for user input, key debouncing, etc.

The date and time manager (called time manager in this chapter)
provides access to both the 1-second and 0.01-second timing
resources on the Palm OS device.

= The 1-second timer keeps track of the real-time clock (date
and time), even when the unit is in sleep mode.

= The 0.01-second timer, also referred to as the system ticks,
can be used for finer timing tasks. This timer is not updated
when the unit is in sleep mode and is reset to 0 each time the
unit resets.

The basic time-manager API provides support for setting and
getting the real-time clock in seconds and for getting the current
system ticks value (but not for setting it). The system manager
provides more advanced functionality for setting up a timer task
that executes periodically or in a given number of system ticks.

This section discusses the following topics:
= Using Real-Time Clock Functions

e Using System Ticks Functions

Using Real-Time Clock Functions

The real-time clock functions of the time manager include

Ti nSet Seconds and Ti nGet Seconds. Real time on the Palm OS
device is measured in seconds from midnight, Jan 1, 1904. Call

Ti nSecondsToDat eTi ne and Ti nDat eTi neToSeconds to
convert between seconds and a structure specifying year, month,
day, hour, minute, and second.

Using System Ticks Functions

The Palm OS device maintains a tick count that starts at 0 when the
device is reset. This tick increments

= 100 times per second when running on the Palm OS device

186 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Floating-Point

= 60 times per second when running on the Macintosh under
the Simulator

For tick-based timing purposes, applications should use the macro
SysTi cksPer Second, which is conditionally compiled for
different platforms. Use the function Ti nGet Ti cks to read the
current tick count.

Although the Ti ntGet Ti cks function could be used in a loop to
implement a delay, it is recommended that applications use the
SysTaskDel ay function instead. The SysTaskDel ay function
automatically puts the unit into low-power mode during the delay.
Using Ti mGet Ti cks in a loop consumes much more current.

Floating-Point

Palm OS 1.0 provided 16-bit floating point arithmetic. Instead of
using standard mathematical symbols, you called functions like
Fpl Add, Fpl Sub, and so on.

Palm OS 2.0 and later implements floating point arithmetic
differently than Palm OS 1.0 did. The floating-point library in OS
versions 2.0 and later provides 32-bit and 64-bit floating point
arithmetic.

Using Floating Point Arithmetic

To take advantage of the floating-point library, applications can now
use the mathematical symbols + —* Zinstead of using functions like
Fpl Add, Fpl Sub, etc.

When compiling the application, you have to link in the floating
point library under certain circumstances. Choose from one of these
options:

= Simulator application or application for 1.0 device — link in
the floating point library explicitly.

This library adds approximately 8KB to the size of your prc
file. The library provides 32-bit and 64-bit floating-point
arithmetic. The original Palm OS Fpl functions provided
only 16-bit floating-point arithmetic. Linking in the library
explicitly won’t cause problems when you compile for a 2.0
or later device.

Palm OS Programmer’s Companion (Preliminary) 187

Palm System Features
Summary of System Features

= 2.0 or later Palm OS device—It’s not necessary to link in the
library.

The compiler generates trap calls to equivalent floating-point
functionality in the system ROM.

There are control panel settings in the IDE which let you select the
appropriate floating-point model.

Floating-point functionality is identical in either method.

Using 1.0 Floating-Point Functionality

The original Fpl calls (documented in the chapter “Float Manager”
in the Palm OS SDK Reference) are still available. They may be useful
for applications that don’t need high precision, don’t want to incur
the size penalty of the float library, and want to run on 1.0 devices
only. To get 1.0 behavior, use the 1.0 calls (Fpl Add, etc.) and don’t
link in the library.

Summary of System Features

Alarm Manager Functions

AlmSetAlarm AlmGetAlarm
AlmSetProcAlarm AlmGetProcAlarm

Feature Manager Functions

FtrGet FtrGetBylndex
FtrSet FtrUnreqgister
FtrPtrNew FtrPtrFree

FtrPtrResize

Sound Manager Functions

SndCreateMidiL.ist SndDoCmd
SndGetDefaultVolume SndPlaySMF
SndPlaySystemSound SndPlaySmfResource

188 Palm OS Programmer’s Companion (Preliminary)

Palm System Features
Summary of System Features

System Manager Functions

Launching Applications

SysApplLaunch
SysBroadcastActionCode

System Dialogs

SysGraffitiReferenceDialog

SysApplLauncherDialog
SysUIAppSwitch

SysKeyboardDialog

SysKeyboardDialogV10

Power Management

SysBatterylnfo
SysSetAutoOffTime

System Management

SysLibFind
SysRandom
SysGremlins

SysBatterylnfoVV20
SysTaskDelay

SysLiblLoad
SysReset

Working With Strings and Resources

SysBinarySearch

SysQSort

SysCreatePanelList
SysFormPointerArrayToStrings

SyslnsertionSort
SysCopyStringResource

Syslinstall
SysStringBylndex

Database Support

SysCreateDataBaseL ist

Error Handling
SysErrString
Event Handling
SysHandleEvent

System Information

SysGetOSVersionString
SysGetRomToken

SysCurAppDatabase

SysFatalAlert

SysGetStackinfo
SysTicksPerSecond

Palm OS Programmer’s Companion (Preliminary) 189

Palm System Features
Summary of System Features

Time Manager Functions

Allowing User to Change Date and Time

DayHandleEvent SelectTime
SelectDay SelectDayV10

Changing the Date

DateAdjust TimAdjust
TimSetSeconds

Converting to Date Format

DateDaysToDate DateSecondsToDate
TimSecondsToDateTime

Converting Dates to Other Formats

DateToASsclii TimeToAscii
DateToDays DateToDOWDMFormat
TimGetSeconds TimDateTimeToSeconds
TimGetTicks

Date Information

DayOfMonth DayOfWeek
DaysinMonth

Float Manager Functions

FplAdd FplAToF
FplBaselOInfo FplDiv
FplFloatTolong FplFloatToUlLong
FplFree FplFToA

Fplinit FplLongToFloat
FplMul FplSub

190 Palm OS Programmer’s Companion (Preliminary)

= Serial
Communication

The Palm OS serial communications software provides high-
performance serial communications capabilities, including byte-

level serial 170, best-effort packet-based 1/0 with CRC-16, reliable

data transport with retries and acknowledgments, connection
management, and modem dialing capabilities.

This chapter helps you understand the different parts of the serial
communications system and explains how to use them, discussing
these topics:

Serial Hardware describes the serial port hardware.

Byte Ordering briefly explains the byte order used for all
data.

Serial Communications Architecture Hierarchy provides an
overview of the hierarchy, including an illustration.

The Serial Manager and the The New Serial Manager are
responsible for byte-level serial 1/0 and control of the RS232
signals.

The Connection Manager allows other applications to access,
add, and delete connection profiles contained in the
Connection preferences panel.

The Serial Link Protocol provides an efficient mechanism for
sending and receiving packets.

The Serial Link Manager is the Palm OS implementation of
the serial link protocol.

Serial Hardware

The Palm Computing Platform device serial port is used for
implementing desktop PC connectivity or other external

communication. The serial communication is fully interrupt-driven

Palm OS Programmer’s Companion (Preliminary) 191

Serial Communication

Byte Ordering

for receiving data. Currently, interrupt-driven transmission of data
is not implemented in software, but the hardware does support it.
Five external signals are used for this communication:

= SG (signal ground)

e TxD (transmit data)
= RxD (receive data)

e CTS (clear to send)

= RTS (request to send)

The Palm Computing Platform device has an external connector
that provides:

= Five serial communication signals
= General-purpose output

= General-purpose input

= Cradle button input

Palm Computing publishes a hardware development kit designed
to assist developers in creating devices to interface with the serial
communications port on Palm Computing Platform Device
products. This kit is known as the Hardware Developer Kit - Serial
Communications. For more information about the serial port
hardware and obtaining this Kit, see the Palm developer web page
for this kit at:

http://ww. pal m coml devzone/ hdk/ dzhdkser. htm .

Byte Ordering

By convention, all data coming from and going to the Palm OS
device use Motorola byte ordering. That is, data of compound types
such as Word (2 bytes) and DWord (4 bytes), as well as their integral
counterparts, are packaged with the most-significant byte at the
lowest address. This contrasts with Intel byte ordering.

Serial Communications Architecture Hierarchy

The serial communications software has multiple layers. Higher
layers depend on more primitive functionality provided by lower

192 Palm OS Programmer’s Companion (Preliminary)

http://www.palm.com/devzone/hdk/dzhdkser.html

Serial Communication
Serial Communications Architecture Hierarchy

layers. Applications can use functionality of all layers. The software
consists of the following layers, described in more detail below:

= The serial manager, at the lowest layer, deals with the Palm
device serial port and control of the RS232 signals, providing
byte-level serial 1/0. See The Serial Manager.

= The modem manager provides modem dialing capabilities.

= The Serial Link Protocol (SLP) provides best-effort packet
send and receive capabilities with CRC-16. Packet delivery is
left to the higher-level protocols; SLP does not guarantee it.
See The Serial Link Protocol.

= The Packet Assembly/Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efficient protocol
featuring variable-size block transfers with robust error
checking and automatic retries. Applications don’t need
access to this part of the system.

= The Connection Management Protocol (CMP) provides
connection-establishment capabilities featuring baud rate
arbitration and exchange of communications software
version numbers.

= The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other subsystems.

DLP facilitates efficient data synchronization between
desktop (PC, Macintosh, etc.) and Palm OS applications,
database backup, installation of code patches, extensions,
applications, and other databases, as well as Remote
Interapplication Communication (RIAC) and Remote
Procedure Calls (RPC).

Figure 9.1 illustrates the communications layers.

Palm OS Programmer’s Companion (Preliminary) 193

Serial Communication

The Serial Manager

Figure 9.1 Palm OS Serial Communications Architecture
bocerm Connection Desklop Link
Manager hla nagement Probocol
Protoca| {ChF)
Packet Assemibs iy

Dizassermiboly Protocol

Serial Link
Protocal [SLF)

setial Manager

Serial Port }:

The Serial Manager

The Palm OS serial manager is responsible for byte-level serial 1/0

and control of the RS232 signals.

In order to prolong battery life, the serial manager must be very
efficient in its use of processing power. To reach this goal, the serial

manager receiver is interrupt-driven. In the present

implementation, the serial manager uses the polling mode to send

data.

194 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The Serial Manager

Using the Serial Manager

Before using the serial manager, call SysLi bFi nd, passing
“Serial Library” forthe library name to get the serial library
reference number. This reference number is used with all
subsequent serial manager calls. The system software automatically
installs the serial library during system initialization.

To open the serial port, call Ser Qpen, passing the serial library
reference number (returned by SysLi bFi nd), 0 (zero) for the port
number, and the desired baud rate. An error code of 0 (zero) or
ser Err Al r eadyOpen indicates that the port was successfully
opened.

If the serial port is already open when Ser Open is called, the port’s
open count is incremented and an error code of

ser Err Al readyOpen is returned. This ability to open the serial
port multiple times allows cooperating tasks to share the serial port.

All other applications must refrain from sharing the serial port and
close it by calling Ser C ose when ser Err Al r eadyQpen is
returned. Error codes other than 0 (zero) or ser Err Al r eadyQpen
indicate failure. The application must open the serial port before
making other serial manager calls.

To close the serial port, call Ser Cl ose. Every successful call to

Ser Open must eventually be paired with a call to Ser C ose.
Because an open serial port consumes more energy from the
device’s batteries, it is essential not to keep the port open any longer
than necessary.

To change serial port settings, such as the baud rate, CTS timeout,
number of data and stop bits, parity options, and handshaking
options, call Ser Set Set t i ngs. For baud rates above 19200, use of
hardware handshaking is advised.

To retrieve the current serial port settings, call Ser Get St at us.

To retrieve the current line error status, call Ser Get St at us, which
returns the cumulative status of all line errors being monitored. This
includes parity, hardware and software overrun, framing, break
detection, and handshake errors.

To reset the serial port error status, call Ser Cl ear Er r , which resets
the serial port’s line error status. Other serial manager functions,

Palm OS Programmer’s Companion (Preliminary) 195

Serial Communication

The Serial Manager

such as Ser Recei ve, immediately return with the error code
ser Err Li neErr if any line errors are pending. Applications
should therefore check the result of serial manager function calls
and call Ser O ear Er r_if line error(s) occurred.

To send a stream of bytes, call Ser Send. In the present
implementation, Ser Send blocks until all data are transferred to the
UART or a timeout error (if CTS handshaking is enabled) occurs. If
your software needs to detect when all data has been transmitted,
consider calling Ser Send\ai t .

NOTE: Both Ser Send and Ser Recei ve were enhanced in
version 2.0 of the system. See the function descriptions for more
information. The older versions are still available as SerSend10
and SerReceivelO.

To wait until all data queued up for transmission has been
transmitted, call Ser SendWai t . Ser SendWai t blocks until all
pending data is transmitted or a CTS timeout error occurs (if CTS
handshaking is enabled).

To flush all bytes from the transmission queue, call Ser SendFl ush.
This routine discards any data not yet transferred to the UART for
transmission.

To receive a stream of bytes from the serial port, call Ser Recei ve,
specifying a buffer, the number of bytes desired, and the interbyte
time out. This call blocks until all the requested data have been
received or an error occurs.

To read bytes already in the receive queue, call Ser Recei veCheck
(see below) to get the number of bytes presently in the receive queue
and then call Ser Recei ve, specifying the number of bytes desired.
Because Ser Recei ve returns immediately without any data if line
errors are pending, it is important to acknowledge the detection of
line errors by calling Ser Cl ear Err.

To wait for a specific number of bytes to be queued up in the receive
gueue, call Ser Recei veWi t , passing the desired number of bytes
and an interbyte timeout. This call blocks until the desired number
of bytes have accumulated in the receive queue or an error occurs.
The desired number of bytes must be less than the current receive

196 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The Serial Manager

gueue size. The default queue size is 512 bytes. Because this call
returns immediately if line errors are pending, applications have to
call Ser Cl ear Err to detect any line errors. See also

Ser Recei veCheck and Ser Set Recei veBuf f er..

To check how many bytes are presently in the receive queue, call
Ser Recei veCheck.

To discard all data presently in the receive queue and to flush bytes
coming into the serial port, call Ser Recei veFl ush, specifying the
interbyte timeout. This call blocks until a time out occurs waiting for
the next byte to arrive.

To replace the default receive queue, call Ser Set Recei veBuf f er ,
specifying the pointer to the buffer to be used for the receive queue
and its size. The default receive queue must be restored before the
serial port is closed. To restore the default receive queue, call

Ser Set Recei veBuf f er, passing 0 (zero) for the buffer size. The
serial manager does not free the custom receive queue.

To avoid having the system go to sleep while it’s waiting to receive
data, an application should call EvtResetAutoOffTimer periodically.
For example, the serial link manager automatically calls

Evt Reset Aut oOf f Ti mer each time a new packet is received. Note
that this facility is not part of the serial manager but part of the
event manager. For more information, see “Auto-Off Control” on
page 74.

To perform a control function, applications can call Ser Cont r ol .
This function performs one of the control operations specified by
Ser Ct | Enum whose elements are described in Table 9.1.

Table 9.1 SerCtlIEnum Elements

Element Description
serCtl| FirstReserved =0 Reserve 0
serCt| St art Break Turn RS232 break signal on. Applications have to

make sure that the break is set long enough to
generate a value BREAK!
val ueP = 0; val ueLenP =0

Palm OS Programmer’s Companion (Preliminary) 197

Serial Communication
The New Serial Manager

Element

ser Ct | St opBr eak

ser Ct | BreakSt at us

serCt| StartLocal Loopback

ser Ct| St opLocal Loopback

ser Ct | MaxBaud

ser ¢t | HandshakeThr eshol d

ser Ct | EmuSet Bl ocki ngHook

Description

Turn RS232 break signal off:
val ueP = 0; valueLenP =0

Get RS232 break signal status (on or off):
val ueP = ptr to Word for returning status
(0 = off, 10 =0n)

*val ueLenP = si zeof (Wrd)

Start local loopback test;

val ueP = 0, valueLenP =0
Stop local loopback test
val ueP = 0, valueLenP = 0

val ueP = ptr to DWbr d for returned baud
*valueLenP = si zeof (DWr d)

Retrieve HW handshake threshold; this is the
maximum baud rate that does not require
hardware handshaking

val ueP=ptr toDWord for returned baud
*val ueLenP = si zeof (DWrd)

Set a blocking hook routine.

WARNING! For use with the Simulator on Mac
OS only. NOT SUPPORTED ON THE PALM
DEVICE.

val ueP = ptrto SerCallbackEntryType
*val ueLenP=si zeof (Ser Cal | backEntryType

)

Returns the old settings in the first argument.

The New Serial Manager

The new serial manager is capable of managing multiple serial
connections within a Palm device.

198 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The New Serial Manager

This section describes the new serial manager and the new
capability to write serial drivers that it can use.

The new serial manager is the preferred serial manager API and the
Palm OS will eventually phase out support for the original serial
manager API.

NOTE: The new serial manager is not available on all Palm
devices. It is available by flash ROM update on Palm Il and
upgraded PalmPilot devices and some later devices. Before
making any new serial manager calls, you must ensure that it is
present.

Checking for the New Serial Manager

Because not all Palm devices will (or even can) have the new serial
manager installed, it’s important that you check for its existence
before making any new serial manager calls. You can check by
calling Ft r Get as follows:

err = FtrGet(sysFil eCSerial Myr,
sysFtrNewSeri al Present, &val ue);

If the new serial manager is installed, the val ue parameter will be
non-zero and the returned error should also be zero (for no error).

If the new serial manager is installed, it replaces the original serial
manager. However, it includes a compatibility layer so that
applications that use the original serial manager functions will
continue to operate as expected. The compatibility layer simply
translates the original serial manager calls into equivalent new
serial manager functions.

If you are writing new application code, best performance is
achieved by using the new serial library functions directly,
assuming the new serial manager is installed on the unit on which
your code is executing.

Palm OS Programmer’s Companion (Preliminary) 199

Serial Communication
The New Serial Manager

What's New About the New Serial Manager

The main difference between the new serial manager and previous
versions is that the new serial manager supports multiple physical
serial hardware devices and virtual serial devices, the detailed
operation of which is abstracted from the main serial management
code. Physical serial drivers manage communication with the
hardware as needed, and virtual drivers manage blocks of data to
be sent to some sort of block-based serial code.

In addition to this big change, a few new functions have been added
and there are widespread, minor changes to data structures and API
details.

About the New Serial Manager

The new serial manager manages multiple serial devices with
minimal duplication of hardware drivers and data structures. In
older Palm systems, the serial library managed any and all
connections to the serial hardware in the 68328 (Dragonball)
processor, which was the only serial device in the system. Newer
systems contain additional serial devices, such as an IR port.

The figure below shows the layering of communication software
with the new serial manager and hardware drivers.

200 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The New Serial Manager

Figure 9.2

Serial Communications Architecture with New Serial Manager

Applications

Libraries | sysherm code

Mew Serial Manager AF|

GR3Z8
Serial
Driver

1 ES%E;?A Sihg-'} “r“ir_tual Okher Ser@al
Diriver Devices Drivers Comm Devices

The new serial manager maintains a database of installed hardware
and currently open connections. Applications, libraries, or other
serial communication tasks open different pieces of serial hardware
by specifying a logical port number or a four-character code
identifying the exact piece of serial hardware that a task wishes to
open a connection with. The new serial manager then performs the
proper actions on the hardware via small hardware drivers that are
opened dynamically when the port is needed. One hardware driver
is needed for each serial communication hardware device available
to the Palm unit.

At system restart, the new serial manager searches for all serial
drivers on the Palm device. Serial drivers are independent .prc files
with a code resource and a version resource and are of type ‘sdrv’ or
‘vdrv’. Once a driver is found, it is asked to locate its associated
hardware and provide information on the capabilities of that
hardware. This is done for each driver found and the new serial
manager always maintains a list of hardware currently on the
device.

Once a port is opened, the new serial manager allocates a structure
for maintaining the current information and settings of the
particular port. The task or application that opens the port is

Palm OS Programmer’s Companion (Preliminary) 201

Serial Communication
The New Serial Manager

returned a port ID and must supply the port ID to refer to this port
when other new serial manager functions are called.

Upon closing the port, the new serial manager deallocates the open
port structure and unlocks the driver code resource to prevent
memory fragmentation.

Note that applications can use the connection manager to obtain the
proper port ID and other serial port parameters that the user has
stored in connection profiles for different connection types. For
more information, see the section “The Connection Manager” on
page 211.

Using the New Serial Manager

The new serial manager is installed when the device is booted.
Upon opening a new serial manager connection, the calling
application receives a unique ID that must be used to refer to this
specific connection for all subsequent calls to the new serial
managetr.

Opening a Connection

Opening a serial connection requires that the application enable the
serial hardware by calling the Sr mOpen function and specifying the
port ID (logical number or port name) and the initial baud rate of
the UART.

The Sr mOpen call returns a unique port ID for the open port. This
port ID is required to perform any other new serial manager
functions. If the returned port ID is NULL or an error is returned by
the Sr mOpen function, the returned port ID should be considered
invalid. Once the Sr nOpen call is made successfully, it indicates that
the new serial manager has successfully allocated internal structures
to maintain the port and has successfully loaded the serial driver for
this port.

A port may be opened with either a foreground connection

(Sr nOpen) or background connection (Sr nOpenBackgr ound). A
foreground connection makes an active connection to the port and
controls usage of the port until the connection is closed. A
background connection opens the port but relinquishes control to
any other task requesting a foreground connection. Background

202 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The New Serial Manager

connections are provided to support tasks (such as a keyboard
driver) that want to use a serial device to receive data only when no
other task is using the port.

Note that background ports have limited functionality: they can
only receive data and notify owning clients of what data has been
received.

Specifying the portlD Parameter

With the new serial manager, ports must be specified using one of
the following two methods:

= Logical port ID's (for physical ports only):
$8000 = Cradle Port, RS-232 serial
$8001 = IR Port
$800n = reserved for future types of ports
= A four-character string specifying the port name:
‘u328’ specifies the cradle port using the 68328 UART

‘u650’ specifies the IR port on an upgraded Palm I11
device

‘ircm’ specifies the IRComm virtual port

Note that other four-character codes will be added in the
future

Generally, it is best to use logical port ID’s rather than specifying the
port hardware directly. When you specify a logical port ID, the
device selects the appropriate hardware.

Closing a Connection

Once an application is finished with the serial port, it must close it
using the Sr nCl ose function. If Sr nCl ose returns no error, it
indicates that the new serial manager has successfully closed the
driver and deallocated the data structures used for maintaining the
port.

Sending and Receiving Data

Sending data is performed synchronously (for example, the process
of writing bytes to the serial hardware’s transmit FIFO). To send

Palm OS Programmer’s Companion (Preliminary) 203

Serial Communication
The New Serial Manager

data, the application only needs to have an open connection with a
port that has been configured properly and then specify a buffer to
send. The larger the buffer to send, the longer the send function
operates before returning to the calling application. The Sr nSend
function returns the actual number of bytes that were sent.

The Sr nSendCheck function can be used to check and determine if
the FIFO is empty. The Sr nSend\Wai t function can be used to wait
for the UART to send the contents of its FIFO. The Sr nSendFl ush
function can be used to flush remaining bytes in the FIFO that have
not been sent.

Receiving data is a more involved process because it depends on the
receiving application actually listening for data from the port. The
SrnRecei veWai t function allows the application to periodically
check the serial port to see if data has been received. In this function,
you specify a number of bytes to wait for and a timeout value (in
ticks). When Sr nRecei veWai t returns, you can call Sr nRecei ve
to receive the data.

Applications should not loop indefinitely on the

SrnRecei veCheck and Sr nRecei veWai t functions, waiting for
serial data to arrive on the port, without allowing the Palm OS to
obtain time to execute other tasks running in the same thread (by
calling Evt Get Event and SysHandl eEvent). Virtual devices
often run in the same thread as applications and this can prevent
virtual devices and other serial related code from properly handling
received data.

Receive Buffer Handling

Functions are provided to support directly changing or accessing
the new serial manager’s receive queue. This allows substitution of
a larger receive buffer to replace the 512-byte default buffer and
allows fast access to this buffer to reduce buffer copying. These
functions include Sr nSet Recei veBuf f er,

Sr nRecei veW ndowOpen, and Sr mRecei veW ndowC| ose.

Receive Data Notification

The Sr nSet WAkeupHandl er and Sr nPri neVWkeupHandl| er
functions are used to install a notification function

204 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The New Serial Manager

(WakeupHandlI er Pr oc) that gets called after some number of bytes
are received by the new serial manager’s interrupt function.

Because wakeup handlers are called during interrupt time, they
cannot call any Palm OS system functions that may block the system
in any way. Wakeup handlers should also be very short so as to
reduce interrupt latency.

Obtaining Information about Serial Hardware

The Sr ntzet Devi ceCount and Sr ntcet Devi cel nf o functions can
be used by applications to obtain information about all serial
devices currently available to the OS. Applications can obtain the
number of available serial hardware devices and then get
information for those devices by iterating through the list using the
Sr mGet Devi cel nf o call, until an error is returned.

The Sr mGet St at us function can be used to get status information
about the current hardware and return line errors. Typically,

Sr et St at us is called to retrieve the line errors for the port if
some of the send and receive functions return aser Err Li neErr
error code. Sr nCl ear Er r clears line errors.

Handling Custom Operations

The new serial manager handles custom operations via the

Sr nCont r ol function. To extend this functionality to the serial
drivers, an additional set of control functions has been added (see
the SdrvCont r ol and Vdr vCont r ol functions). These are unique
to the serial driver and should be called only by the new serial
manager itself. This allows functions that access the hardware
directly to go through the same switching mechanism in the driver
for both public and private control function operation codes.

New Serial Manager Example

The example code in this section shows how to receive (Listing 9.1)
large blocks of data using the new serial manager.

Listing 9.1 Receiving Data Using the New Serial Manager

#include <Pilot.h>// all the systemtool box headers
#i ncl ude <Seri al Mgr New. h>

Palm OS Programmer’s Companion (Preliminary) 205

Serial Communication
The New Serial Manager

#def i ne k2KBytes 2048

/

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

R IR bk kS R R I Rk Sk Sk R b R Rk kS b b b kS R IR R I I b b b Sk Sk S R

FUNCTI ON: RcvSeri al Dat a

DESCRI PTI ON: An exanpl e of how to receive a | arge chunk of data
fromthe Serial Manager. This function is useful if the app
knows it nust receive all this data before noving on. The
Your Dr ai nEvent Queue() function is a chance for the application
to call EvtCGetEvent and handl e ot her application events.

Recei vi ng data whenever it's available during idle events

m ght be done differently than this sanple.

PARAMETERS:

thePort -> valid portID for an open serial port.

rcvDataP -> pointer to a buffer to put the received data.

buf Si ze <-> pointer to the size of rcvBuffer and returns
t he nunber of bytes read.

***/

Err RcvSerial Data(U nt16 thePort, BytePtr rcvDataP, U nt32

*

{

buf Si zeP)

U nt32 bytesLeft, maxRcvBl kSi ze, bytesRcvd, waitTi ne,

t

ot al RevBytes = 0;

Byt ePtr newRcvBuUf f er;
U nt16 datalLen = sizeof (U nt32);
Err error;

/1l The default receive buffer is only 512 bytes; increase it if
/'l necessary. The followng lines are just an exanple of howto
/1l do it, but its necessity depends on the ability of the code
/[l toretrieve data in a tinely manner.
newRcvBuf fer = MenPtrNew(k2KBytes); // Al locate new rcv buffer.
i f (newRcvBuffer)

/'l Set new rcv buffer.

error = Srnfet Recei veBuffer(thePort, newRcvBuffer, k2KBytes);

if (error)

goto Exit;

el se

206 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The New Serial Manager

return mentrr Not EnoughSpace;

/[l Initialize the maxi mum bytes to receive at one tine.
maxRcvBl kSi ze = k2KByt es;

/'l Remenber how many bytes are left to receive.
bytesLeft = *bufSi zeP;

/1 Only wait 1/5 of a second for bytes to arrive.
wai t Time = SysTi cksPer Second() / 5;

/1 Now | oop while getting blocks of data and filling the
buffer.
do {
/'l 1s the max size |arger then the nunber of bytes left?
if (bytesLeft < maxRcvBIl kSi ze)
/'l Yes, so change the rcv bl ock anount.
maxRcvBl kSi ze = byteslLeft;
/1l Try to receive as much data as possi bl e,
/1l but wait only one second for it.
byt esRcvd = SrnRecei ve(thePort, rcvDataP, maxRcvBl kSi ze,
wait Ti me, &error);
/'l Remenber the total nunber of bytes received.
t ot al RcvByt es += byt esRcvd;
/'l Figure how many bytes are left to receive.
bytesLeft -= bytesRcvd;
rcvDat aP += bytesRcvd; // Advance the rcvDat aP
/1 1f there was a tineout and no data cane through..
if ((error == serErrTimeQut) && (bytesRcvd == 0))
goto Exit; // ...bail out and report the error.
/1 If there's sonme other error, bail out.
if ((error) && (error != serErrTinmeQut))
goto Exit;

/1l Call a function to handl e any pendi ng events because
/'l someone m ght press the cancel button.
/'l Your Dr ai nEvent Queue() ;
/1 Continue receiving data until all data has been received.
} while (bytesLeft);

/'l Clearing the receive buffer can al so be done right before
/1l the port is to be closed.

Palm OS Programmer’s Companion (Preliminary) 207

Serial Communication
The New Serial Manager

/'l Set back the default buffer when we're done.
Sr nSet Recei veBuf fer (t hePort, OL, 0);
MenPt r Free(newRcvBuffer); // Free the space.

Exit:
*pbuf Si zeP = total RcvByt es;
return error;

Writing a Serial or Virtual Device Driver

The new serial manager supports the ability to add other serial
hardware device drivers to the system. It also supports adding
virtual device drivers, which transmit and receive data in blocks,
instead of a byte at a time. The following sections discuss writing
serial and virtual device drivers, which are installed as code
resources on the Palm device.

Serial Driver (sdrv) Code Resources

A serial driver (sdrv) is a code resource (ID = 0) that is
independently compiled and installed on a Palm device. It provides
a hardware abstraction layer (HAL) for the serial hardware (the
UART). Serial driver .prc files are of file type ‘sdrv’ and their creator
type is chosen by the developer (and must be registered with Palm
Computing) to denote the type of hardware (for example, the 68328
UART driver has creator ‘u328’). When the new serial manager is
installed, it searches the database manager for code resources of the
‘sdrv’ file type and then calls the driver’s entry point function to
determine if the hardware that the driver supports is present and, if
so, to get information about the features and capabilities of the
hardware.

NOTE: Creator types with all lowercase letters are reserved by
Palm Computing. For more information about assigning and
registering creator types, see “Assigning a Creator ID” on page
31.

208 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The New Serial Manager

Serial drivers are responsible for installing and removing their
interrupt handlers. In addition, they must be aware of other
hardware that may share the IRQ line and be sure to pass along the
interrupt to other installed handlers, if required. See the Sdr vOpen
function for details.

Serial Driver Functions

There are eight functions that each serial driver must minimally
support in order to work with the new serial manager. These
functions are briefly described in this section. For details on the
exact operations each function must perform, see the function
descriptions in the Palm OS SDK Reference.

The functions a serial driver must implement include:

= DrvEnt r yPoi nt must be the first function defined in a
serial driver code resource and must be marked as the
__Startup__ function of the code resource. When the code
resource is loaded, the new serial manager jumps to the
beginning of the code resource and begins execution at
Dr vEnt r yPoi nt . This function is called at system restart,
when the new serial manager is building a database of
installed drivers and their capabilities, and when a serial port
is opened.

= The Sdr vOpen function is responsible for initializing the
serial hardware to send and receive data, and installing an
interrupt handler.

= The Sdr vd ose function must handle all activities needed to
power-down the UART and remove the interrupt handler.

e SdrvCont rol extends the SrnCont r ol function to the
level of the hardware.

e Sdr vSt at us returns a bitfield that describes the current
state of the UART.

e SdrvWi t eChar writes a byte to the appropriate UART
register for transmission.

e SdrvReadChar reads a byte (if available) from the receive
FIFO of the UART. It’s best to implement the
Sdr vr ReadChar function in assembly language.

= The Sdr vl SP function is called when a hardware interrupt is
generated on the IRQ line associated with the serial

Palm OS Programmer’s Companion (Preliminary) 209

Serial Communication
The New Serial Manager

hardware. It determines if the interrupt is for this particular
serial hardware. If so, it calls the saveDat aPr oc function
(passed to Sdr vOpen), which handles reading the data from
the UART by calling the Sdr vReadChar function. It’s best to
implement the Sdr vI SP function in assembly language.

Virtual Driver (vdrv) Code Resources

A Virtual Driver is a code resource (ID=0) that is independently
compiled and installed on a Palm device. Virtual driver .prc files are
of file type ‘vdrv’ and their creator type is chosen by the developer
(and must be registered with Palm Computing). When the new
serial manager is installed, it searches the database manager for
code resources of the ‘vdrv’ type and then calls the driver’s entry
point function to get information about the features and capabilities
of this virtual device. Unlike serial device drivers, virtual device
drivers send and receive data in blocks instead of transferring one
byte at a time. Their purpose is to abstract a level of communication
protocol away from serial devices without forcing applications to
work through a different API than the serial manager that may
already be used for normal RS-232 serial communication.

Virtual Driver Functions

There are six functions that each virtual driver must minimally
support in order to work with the new serial manager. These
functions are briefly described in this section. For details on the
exact operations each function must perform, see the function
descriptions in the Palm OS SDK Reference.

The functions a virtual driver must implement include:

e Dr vEnt r yPoi nt must be the first function defined in a
virtual driver code resource and must be marked as the
__Startup__ function of the code resource. When the code
resource is loaded, the new serial manager jumps to the
beginning of the code resource and begins execution at
Dr vEnt r yPoi nt . This function is called at system restart,
when the new serial manager is building a database of
installed drivers and their capabilities, and when a virtual
port is opened.

= The Vdr vOpen function is responsible for initializing the
virtual device to begin communication.

210 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The Connection Manager

The vdr vd ose function must handle all activities needed to
close the virtual device.

Vdr vCont r ol extends the Sr nCont r ol function to the
level of the virtual device.

Vdr vSt at us returns a bitfield that describes the current
state of the virtual device.

Vdr vW i t e writes a block of bytes to the virtual device.

Note that there is no virtual read function in the current
implementation. Virtual devices must save received data by using
the functions provided in the DrvrRcvQType Structure when they
are notified that data is available via some callback mechanism.

The Connection Manager

The connection manager allows other applications to access, add,
and delete connection profiles contained in the Connection
preferences panel. The Connection panel replaces the original
Modem panel on the Palm device. A connection profile includes
information on the hardware port to be used for a particular
connection and the port details (speed, flow control, modem
initialization string, etc.).

Because there are many more connection choices available to users
(serial cable, IR, modem, network, etc.), the connection manager
was developed to manage connection profiles that save preferences
for various connection types.

The connection manager provides functions that list the saved
connection profiles (CncGet Prof i | eLi st), return details for a
specific profile (CncGet Pr of i | el nf 0), add a profile
(CncAddProf i | e), and delete a profile (ChcDel et eProfi |l e).

NOTE: The connection manager is not available on all Palm
devices. It is available by flash ROM update on Palm Ill and
upgraded PalmPilot devices and some later devices. Before
making any connection manager calls, you must ensure that it is
present.

Palm OS Programmer’s Companion (Preliminary) 211

Serial Communication
The Serial Link Protocol

Because not all Palm devices will (or even can) have the connection
manager installed, it’s important that you check for its existence
before making any connection manager calls. You can check by
checking for the existence of the new serial manager, as described in
the section “Checking for the New Serial Manager” on page 199.
These managers work together and so are always installed together.

The Serial Link Protocol

The Serial Link Protocol (SLP) provides an efficient packet send and
receive mechanism that is used by the Palm desktop software and
debugger. SLP provides robust error detection with CRC-16. SLP is
a best-effort protocol; it does not guarantee packet delivery (packet
delivery is left to the higher-level protocols). For enhanced error
detection and implementation convenience of higher-level
protocols, SLP specifies packet type, source, destination, and
transaction ID information as an integral part of its data packet
structure.

SLP Packet Structures
The following sections describe:
SLP Packet Format

Packet Type Assignment

Socket ID Assignment

Transaction ID Assignment

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer, as shown in Figure 9.3.

212 Palm OS Programmer’s Companion (Preliminary)

Serial Communication

The Serial Link Protocol

Facket header

Client data,

Facket footer

zignature (3] OxBE
O=EF
O=ED

destination socket (1)
source socket (1)
packet tvpe (1)

client data size 2)
tranzacton D (1)
header checksum (1)

CRC-TEE)

Figure 9.3 Structure of a Serial Link Packet

= The packet header contains the packet signature, the
destination socket ID, the source socket ID, packet type,
client data size, transaction 1D, and header checksum. The
packet signature is composed of the three bytes OXBE, OXEF,
OXED, in that order. The header checksum is an 8-bit
arithmetic checksum of the entire packet header, not
including the checksum field itself.

= The client data is a variable-size block of binary data
specified by the user and is not interpreted by the Serial Link

Protocol.

Palm OS Programmer’s Companion (Preliminary) 213

Serial Communication
The Serial Link Protocol

= The packet footer consists of the CRC-16 value computed
over the packet header and client data.

Packet Type Assignment

Packet type values in the range of 0x00 through 0x7F are reserved
for use by the system software. The following packet type
assignments are currently implemented:

0x00 Remote Debugger, Remote Console, and System
Remote Procedure Call packets.

0x02 PADP packets.
0x03 Loop-back test packets.

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are “well-known” socket ID values that are
reserved by the components of the system software. The dynamic
socket IDs are assigned at runtime when requested by clients of SLP.
Static socket ID values in the ranges 0x00 through 0x03 and OXEOQ
through OxFF are reserved for use by the system software. The
following static socket IDs are currently implemented or reserved:

0x00 Remote Debugger socket.
0x01 Remote Console socket.
0x02 Remote Ul socket.

0x03 Desktop Link Server socket.

0x04 -OxCF Reserved for dynamic assignment.

0xDO0 - OXDF Reserved for testing.

Transaction ID Assignment

Transaction ID values are not interpreted by the Serial Link Protocol
and are for the sole benefit of the higher-level protocols. The
following transaction ID values are currently reserved:

214 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The Serial Link Manager

0x00 and OxFF Reserved for use by the system software.

0x00 Reserved by the Palm OS implementation of SLP
to request automatic transaction ID generation.

OxFF Reserved for the connection manager’s WakeUp
packets.

Transmitting an SLP Packet

This section provides an overview of the steps involved in
transmitting an SLP packet. The next section describes the
implementation.

Transmission of an SLP packet consists of these steps:
1. Fill in the packet header and compute its checksum.
2. Compute the CRC-16 of the packet header and client data.
3. Transmit the packet header, client data, and packet footer.
4. Return an error code to the client.

Receiving an SLP Packet
Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its
checksum.

3. Read in the client data.
4. Read in the packet footer and validate the packet CRC.

5. Dispatch/return an error code and the packet (if successful)
to the client.

The Serial Link Manager

The serial link manager is the Palm OS implementation of the Serial
Link Protocol.

Palm OS Programmer’s Companion (Preliminary) 215

Serial Communication
The Serial Link Manager

Serial link manager provides the mechanisms for managing
multiple client sockets, sending packets, and receiving packets both
synchronously and asynchronously. It also provides support for the
Remote Debugger and Remote Procedure Calls (RPC).

Using the Serial Link Manager

Before an application can use the services of the serial link manager,
the application must open the manager by calling SI kQpen. Success
is indicated by error codes of 0 (zero) or sl kErr Al r eadyOpen. The
return value sl KEr r Al r eadyQpen indicates that the serial link
manager has already been opened (most likely by another task).
Other error codes indicate failure.

When you finish using the serial link manager, call S| kGl ose.
S| kO ose may be called only if SI kOpen returned 0 (zero) or
sl kErr Al r eadyOpen. When the open count reaches zero,

Sl kCl ose frees resources allocated by S| kOpen.

To use the serial link manager socket services, open a Serial Link
socket by calling SI kOpenSocket . Pass a reference number or port
ID (for the new serial manager) of an opened and initialized
communications library (see SI kCl ose), a pointer to a memory
location for returning the socket ID, and a Boolean indicating
whether the socket is static or dynamic. If a static socket is being
opened, the memory location for the socket ID must contain the
desired socket number. If opening a dynamic socket, the new socket
ID is returned in the passed memory location. Sharing of sockets is
not supported. Success is indicated by an error code of 0 (zero). For
information about static and dynamic socket IDs, see “Socket 1D
Assignment” on page 214.

When you have finished using a Serial Link socket, close it by
calling S| kGl oseSocket . This releases system resources allocated
for this socket by the serial link manager.

To obtain the communications library reference number for a
particular socket, call SI kSocket Ref Num The socket must already
be open. To obtain the port ID for a socket, if you are using the new
serial manager, call SI kSocket Port | D.

To set the interbyte packet receive timeout for a particular socket,
call S| kSocket Set Ti neout .

216 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The Serial Link Manager

To flush the receive stream for a particular socket, call
S| kFl ushSocket , passing the socket number and the interbyte
timeout.

To register a socket listener for a particular socket, call

Sl kSet Socket Li st ener, passing the socket number of an open
socket and a pointer to the Sl kSocket Li st enType structure.
Because the serial link manager does not make a copy of the

Sl kSocket Li st enType structure but instead saves the pointer
passed to it, the structure may not be an automatic variable (that is,
allocated on the stack). The S| kSocket Li st enType structure may
be a global variable in an application or a locked chunk allocated
from the dynamic heap. The Sl kSocket Li st enType structure
specifies pointers to the socket listener procedure and the data
buffers for dispatching packets destined for this socket. Pointers to
two buffers must be specified:

= Packet header buffer (size of S| kPkt Header Type).

= Packet body buffer, which must be large enough for the
largest expected client data size.

Both buffers can be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is
received for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The serial link manager does not free the

Sl kSocket Li st enType structure or the buffers when the socket is
closed; freeing them is the responsibility of the application. For this
mechanism to function, some task needs to assume the
responsibility to “drive” the serial link manager receiver by
periodically calling S| kRecei vePacket .

To send a packet, call S| kSendPacket , passing a pointer to the
packet header (S| kPkt Header Type) and a pointer to an array of
Sl kWi t eDat aType structures. S| kSendPacket stuffs the
signature, client data size, and the checksum fields of the packet
header. The caller must fill in all other packet header fields. If the
transaction ID field is set to O (zero), the serial link manager
automatically generates and stuffs a new non-zero transaction ID.
The array of SI KW i t eDat aType structures enables the caller to
specify the client data part of the packet as a list of noncontiguous

Palm OS Programmer’s Companion (Preliminary) 217

Serial Communication
The Serial Link Manager

blocks. The end of list is indicated by an array element with the
si ze field set to 0 (zero). Listing 3.1 incorporates the processes
described in this section.

Listing 9.2 Sending a Serial Link Packet

Err err;
S| kPkt Header Type sendHdr;
/lserial |ink packet header
Sl kWi teDataType witeList[2];
/lserial link wite data segnents
Byt e body|[20] ;

/I packet body(exanpl e packet body)

/[l Initialize packet body

/1 Conpose the packet header
sendHdr . dest = sl kSocket DLP
sendHdr . src = sl kSocket DLP
sendHdr . type = sl kPkt TypeSyst em
sendHdr.transld = O;

/1l let Serial Link Manager set the transld
/'l Specify packet body
witeList[O].size = sizeof(body);

/1 first data bl ock size
witelList[O].dataP = body;

/1l first data bl ock pointer
witeList[1l].size = 0;

/1 no nore data bl ocks

/1 Send the packet
err = Sl kSendPacket (&sendHdr, writelList);

}

218 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
The Serial Link Manager

Listing 9.3 Generating a New Transaction ID

11
/| Exanple: Generating a new transaction ID given the previous

/1l transaction ID. Can start with any seed val ue.
I

Byt e Next Transactionl D (Byte previousTransacti onl D)

{

Byt e next Transacti onl D

/'l CGenerate a new transaction id, avoid the
/'l reserved val ues (0x00 and OxFF)
if (previousTransactionl D >= (Byte)OxFE)
next Transactionl D = 1; /1 wap around
el se
next Transactionl D = previ ousTransactionl D + 1;
/'l increnent

return next Transacti onl D;

To receive a packet, call S| kRecei vePacket . You may request a
packet for the passed socket ID only, or for any open socket that
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a timeout. The timeout
indicates how long the receiver should wait for a packet to begin
arriving before timing out. A timeout value of (-1) means “wait
forever.” If a packet is received for a socket with a registered socket
listener, the packet is dispatched via its socket listener procedure.

Palm OS Programmer’s Companion (Preliminary) 219

Serial Communication
Summary of Serial Communications

Summary of Serial Communications

Serial Manager Functions New Serial Manager Functions

SerClearErr
SerClose
SerControl
SerGetSettings
SerGetStatus
SerOpen
SerReceive
SerReceiveCheck
SerReceiveFlush
SerReceiveWait
SerSend
SerSendFlush
SerSendWait
SerSetReceiveBuffer
SerSetSettings

SrmClearErr

SrmClose

SrmControl
SrmGetDeviceCount
SrmGetDevicelnfo
SrmGetStatus

SrmOpen
SrmOpenBackground
SrmPrimeWakeupHandler
SrmReceive
SrmReceiveCheck
SrmReceiveFlush
SrmReceiveWait
SrmReceiveWindowClose
SrmReceiveWindowOpen
SrmSend

SrmSendCheck
SrmSendFlush
SrmSendWait
SrmSetReceiveBuffer
SrmSetWakeupHandler
WakeupHandlerProc

Serial Driver Functions

Virtual Driver Functions

DrvEntryPoint
SdrvClose
SdrvControl
SdrvISP
SdrvOpen
SdrvReadChar
SdrvStatus
SdrvWriteChar

DrvEntryPoint
GetSize

GetSpace
VdrvControl

VdrvOpen
VdrvStatus
VdrvWrite
WriteBlock

WriteByte

220 Palm OS Programmer’s Companion (Preliminary)

Serial Communication
Summary of Serial Communications

Connection Manager Functions

Serial Link Manager Functions

CncAddProfile
CncDeleteProfile
CncGetProfilelnfo
CncGetProfileList

SIkClose
SIkCloseSocket
SIkFlushSocket
SIkOpen
SIkOpenSocket
SIkReceivePacket
SIkSendPacket
SlkSetSocketL istener
SlkSocketPortID
SIkSocketRefNum
SIkSocketSetTimeout

Palm OS Programmer’s Companion (Preliminary) 221

Serial Communication
Summary of Serial Communications

222 Palm OS Programmer’s Companion (Preliminary)

10

3= Beaming (Infrared
Communication)

The Palm OS provides two levels of support for beaming, or
infrared communication (IR):

= The Exchange Manager provides a high-level interface that
handles all of the communication details transparently.

= The IR Library provides a low-level, direct interface to the IR
communications capabilities of the Palm OS. It is designed
for applications that want more direct access to the IR
capabilities than the exchange manager provides.

This chapter discusses these two facilities for IR communication.

Exchange Manager

The Palm OS exchange manager provides a simple interface for
Palm OS applications to send and receive typed data from any
number of remote devices and protocols. The device at the remote
end of a connection does not need to know it is talking to a Palm OS
device. The exchange manager can be used with industry standard
protocols and data formats. The burden of understanding the
protocols and data formats is on the Palm OS application using the
exchange manager.

The exchange manager was developed to provide a facility by
which Palm OS applications could communicate directly with
external devices and foreign data formats, without having to be tied
to the HotSync mechanism and conduits. In the increasingly
complex world of the Internet, wireless communications, and
infrared communications, it cannot be expected that all these modes
of communication must support HotSync and provide the
appropriate conduits on the other end. The Palm OS device must be
able to deal directly with foreign data formats since there will not be
conduits on the remote end to prepare the data. The data may also

Palm OS Programmer’s Companion (Preliminary) 223

Beaming (Infrared Communication)

Exchange Manager

be sent without regard to the version or even the existence of
particular software on the device.

Overview

The exchange manager is designed as a generic communications
facility by which typed data objects can be sent and received. It is
designed to support a variety of underlying transport mechanisms.
Currently, the exchange manager supports only the IR (beaming)
capability of the Palm 11l and later devices (and upgraded PalmPilot
devices).

NOTE: When used for IR communication, the exchange
manager uses the OBEX IrDA protocol. The only level of OBEX
supported currently is for the Put operation. The Palm Il can act
as both a client and a server.

The exchange manager API provides a mechanism for exchanging
typed data objects between applications. An object is a stream of
bytes with some information about its contents attached. The
content information includes a creator 1D, a MIME data type and an
optional filename. An application that wants to send data using the
exchange manager must provide at least one of these pieces of
information. An application that is able to receive an object registers
itself with the exchange manager (ExgReqi st er Dat a) and
specifies what data types and file extensions it can accept.

A key data structure used by the exchange manager is the
ExgSocketType data type. This exchange socket structure defines
information about the connection and the type of data to be
exchanged. When you are sending data, you must supply this
structure with the appropriate information filled in. When you are
receiving, this structure gives you information about the connection
and the incoming data. (Note that the use of the term “socket” in the
exchange manager API is not related to the term “socket” as used in
sockets communication programming.)

224 Palm OS Programmer’s Companion (Preliminary)

Beaming (Infrared Communication)
Exchange Manager

Exchange Manager and Launch Codes

When receiving incoming data, the exchange manager
communicates with applications via launch codes. The exchange
manager sends an application a series of three launch codes when it
receives data for it. These are:

¢ sysAppLaunchCndExgAskUser
« sysAppLaunchCndExgRecei veDat a
* sysAppLaunchCndGot o

The exchange manager sends the first launch code,
sysAppLaunchCndExgAskUser , when it has determined that
incoming data is destined for a particular application (based on
which application has registered to receive data of that type). This
launch code lets the application tell the exchange manager whether
or not to display a dialog asking the user if they want to accept the
data. If the application chooses not to handle this launch command,
the default course of action is that the exchange manager displays a
dialog asking the user if they want to accept the incoming data. In
most cases, applications won’t need to handle this launch code,
since the default action is the preferred alternative.

The application can respond to this launch code by setting the
resul t field in the parameter block to the appropriate value. If it
wants to allow the exchange manager to display a dialog, it should
leave ther esul t field setto exgAskDi al og (the default value). To
disable display of the dialog and to automatically accept the
incoming data (as if the user had pressed OK in the dialog), set the
resul t field to exgAskCk. To disable display of the dialog and to
automatically reject the incoming data (as if the user had pressed
Cancel in the dialog), set ther esul t field to exgAskCancel . Inthe
later case, the data is discarded and no further action is taken by the
exchange manager.

If the application sets the result field to exgAsk Ok, or the dialog is
displayed and the user presses the OK button, then the exchange
manager sends the application the next launch code,
sysAppLaunchCndExgRecei veDat a, so that it can actually
receive the data. This launch code notifies the application that it
should receive the data.

Palm OS Programmer’s Companion (Preliminary) 225

Beaming (Infrared Communication)
IR Library

The application should use the exchange manager functions
ExgAccept , ExgRecei ve, and ExgDi sconnect to receive the
data and store it or do whatever it needs to with the data.

The parameter block sent with this launch code is of the
ExgSocket Pt r data type. It is a pointer to the ExgSocket Type
structure corresponding to the exchange manager connection via
which the data is arriving. You will need to pass this pointer to the
ExgAccept function to begin receiving the data. Note that in the
socket structure, the | engt h field may not be accurate, so in your
receive loop you should be flexible in handling more or less data
than | engt h specifies.

After you have finished receiving the data and before you return
from the Pi | ot Mai n routine, you must set up the goToCr eat or
and goToPar ans fields in the socket structure. Set in the

goToCr eat or field the creator ID of the application that should be
launched to view the received data (normally the same application
that received the data). If no application should be launched, then
set this to NULL. Set in the goToPar ans structure information that
identifies the record to go to when the application is launched. It is
recommended that you use a unique ID to identify the record,
rather than the record index, since indexes might change. You can
put unique ID information into the goToPar ans. mat chCust om
field.

Note that the application may not be the active application, and
thus may not have globals available when it is launched with this
launch code. Be sure to check if you have globals available and don’t
try to access them if they are not available.

Assuming that everything has proceeded normally, the exchange
manager again launches the application identified in the

goToCr eat or field of the socket structure with the
sysAppLaunchCndCGot o launch code. This allows the user to view
the received item.

IR Library

The IR (InfraRed) library is a shared library that provides a direct
interface to the IR communications capabilities of the Palm OS. It is

226 Palm OS Programmer’s Companion (Preliminary)

Beaming (Infrared Communication)
IR Library

Figure 10.1

designed for applications that want more direct access to the IR
capabilities than the exchange manager provides.

The IR support provided by the Palm OS is compliant with the IrDA
specifications. IrDA (Infrared Data Association), is an industry body
consisting of representatives from a number of companies involved
in IR development. For a good introduction to the IrDA standards,
see the IrDA web site at:

http://ww. I rDA. org.

IrDA Stack

The IrDA stack comprises a number of protocol layers, of which
some are required and some are optional. The complete stack looks
something like Figure 10.1.

IrDA Protocol Stack

IrCamim LtLAN OBEX

TinyTF

IrLIIF

[tLAP

alR FIR

The SIR/FIR layer is purely hardware. The SIR (Serial IR) layer
supports speeds up to 115k bps while the FIR (Fast IR) layer
supports speeds up to 4M bps. IrFLAP is the IR Link Access Protocol
that provides a data pipe between IrDA devices. IrLMP, the IR Link
Management Protocol, manages multiple sessions using the IrLAP.
Tiny TP is a lightweight transfer protocol on which some higher-
level IrDA layers are built.

One or more of SIR/FIR must be implemented, and Tiny TP, IrLMP
and IrLAP must also be implemented. IrComm provides serial and

Palm OS Programmer’s Companion (Preliminary) 227

Beaming (Infrared Communication)
IR Library

parallel port emulation over an IR link and is optional (it is not
currently supported in the Palm OS). IrLAN provides an access
point to Local Area Network protocol adapters. It too is optional
(and is not supported in the Palm OS).

OBEX is an object exchange protocol that can be used (for instance)
to transfer business cards, calendar entries or other objects between
devices. It too is optional and is supported in the Palm OS. The
capabilities of OBEX are made available through the exchange
manager; there is no direct API for it.

The Palm OS implements all the required protocol layers (SIR,
IrLAP, IrLMP, and Tiny TP), as well as the OBEX layer, to support
the Exchange Manager. Palm 11l devices provide SIR (Serial IR)
hardware supporting the following speeds: 2400, 9600, 19200, 38400,
57600, and 115200 bps. The software (I r Open) currently limits
bandwidth to 57600 bps by default, but you can specify a connection
speed of up to 115200 bps if desired.

The stack is capable of connection-based or connectionless sessions.

IrLMP Information Access Service (IAS) is a component of the
IrLMP protocol that you will see mentioned in the interface. IAS
provides a database service through which devices can register
information about themselves and retrieve information about other
devices and the services they offer.

Accessing the IR Library

Before you can use the IR library, you must obtain a reference
number for it by calling the function SysLi bFi nd, as in this
example:

err = SysLi bFi nd(irLi bNanme, &refNun;

This function returns the library reference number in the r ef Num
parameter. This parameter is passed to most of the other functions
in the IR library.

228 Palm OS Programmer’s Companion (Preliminary)

Beaming (Infrared Communication)

Summary of Beaming

Summary of Beaming

Exchange Manager Functions

ExgAccept

ExgDBRead
ExgDBWite

ExgDi sconnect

ExgPut
ExgRecei ve

ExgReqi st er Dat a

ExgSend

IR Library Functions

IrAdvanceCredit
IrBind

IrClose

IrConnectlrLap

IrConnectReq

IrConnectRsp

IrDataReq
IrDisconnectirLap

IrDiscoverReqg

IrlslrLapConnected

IrlsMediaBusy

IrlsNoProgress

IrlIsRemoteBusy

IrLocalBusy
IrMaxRxSize

IrMaxTxSize
IrOpen
IrSetConTypelL MP
IrSetConTypeTTP

IrSetDevicelnfo

IrTestReq
IrUnbind

Palm OS Programmer’s Companion (Preliminary) 229

Beaming (Infrared Communication)
Summary of Beaming

IR Library IAS Database Functions

IrIAS_Add IrlIAS_GetUserString
IrIAS_Getlnteger IrIAS_GetUserStringCharSet
IrIAS_GetIntlL sap IrIAS_GetUserStringLen
IrlIAS_GetObjectIiD IrIAS_Next
IrlAS_GetOctetString IrIAS_Query
IrlIAS_GetOctetStringLen IrlIAS_SetDeviceName
IrlAS_GetType IrlAS_StartResult

230 Palm OS Programmer’s Companion (Preliminary)

11

= Network
Communication

Net Library

The net library allows Palm OS applications to easily establish a
connection with any other machine on the Internet and transfer data
to and from that machine using the standard TCP/IP protocols.

The basic network services provided by the net library include:

= Stream-based, guaranteed delivery of data using TCP
(Transmission Control Protocol).

= Datagram-based, best-effort delivery of data using UDP
(User Datagram Protocol).

You can implement higher-level Internet-based services (file
transfer, e-mail, web browsing, etc.) on top of these basic delivery
services.

IMPORTANT: Applications cannot directly use the net library to
make wireless connections. Use the INetLib for wireless
connections.

This section describes how to use the net library in your application.
It covers:

e About the Net Library
Net Library Usage Steps

Obtaining the Net Library’s Reference Number
Setting Up Berkeley Socket API
Setup and Configuration Calls

Palm OS Programmer’s Companion (Preliminary) 231

Network Communication
Net Library

Opening the Net Library

Closing the Net Library

Version Checking
Network 1/0 and Utility Calls
Berkeley Sockets APl Functions

About the Net Library

The net library consists of two parts: a netlib interface and a net
protocol stack.

The netlib interface is the set of routines that an application calls
directly when it makes a net library call. These routines execute in
the caller’s task like subroutines of the application. They are not
linked in with the application, however, but are called through the
library dispatch mechanism.

With the exception of functions that open, close, and set up the net
library, the net library’s APl maps almost directly to the Berkeley
UNIX sockets API, the de facto standard API for Internet
applications. You can compile an application written to use the
Berkeley sockets API for the Palm OS with only slight changes to the
source code.

The net protocol stack runs as a separate task in the operating
system. Inside this task, the TCP/IP protocol stack runs, and
received packets are processed from the network device drivers.
The netlib interface communicates with the net protocol stack
through an operating system mailbox queue. It posts requests from
applications into the queue and blocks until the net protocol stack
processes the requests.

Having the net protocol stack run as a separate task has two big
advantages:

= The operating system can switch in the net protocol stack to
process incoming packets from the network even if the
application is currently busy.

= Even if an application is blocked waiting for some data to
arrive off the network, the net protocol stack can continue to
process requests for other applications.

232 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

One or more network interfaces run inside the net protocol stack
task. A network interface is a separately linked database containing
code necessary to abstract link-level protocols. For example, there
are separate network interface databases for PPP and SLIP. A
network interface is generally specified by the user in the Network
preference panel. In rare circumstances, interfaces can also be
attached and detached from the net library at runtime as described
in the section “Settings for Interface Selection” later in this chapter.

Constraints

Because it’s unclear whether all future platforms will need or want
network support (especially devices with very limited amounts of
memory), network support is an optional part of the operating
system. For this reason, the net library is implemented as a system
library that is installed at runtime and doesn’t have to be present for
the system to work properly.

When the net library is present and running, it requires an estimated
additional 32 KB of RAM. This in effect doubles the overall system
RAM requirements, currently 32 KB without the net library. It’s
therefore not practical to run the net library on any platform that has
128 KB or less of total RAM available since the system itself will
consume 64 KB of RAM (leaving only 64 KB for user storage in a 128
KB system).

Because of the RAM requirements, the net library is supported only
on PalmPilot Professional and newer devices running Palm OS 2.0
and later.

All applications written for Palm OS must pay special attention to
memory and CPU usage because Palm OS runs on small devices
with limited amounts of memory and other hardware resources.
Applications that use the net library, therefore, must pay even more
attention to memory usage. After opening the net library, the total
remaining amount of RAM available to an application is
approximately 12 KB on a PalmPilot Professional and 36KB on a
Palm I11.

The Programmer’s Interface

There are essentially two sets of API into the net library: the net
library’s native API, and the Berkeley sockets API. The two APIs

Palm OS Programmer’s Companion (Preliminary) 233

Network Communication
Net Library

map almost directly to each other. You can use the Berkeley sockets
API with no performance penalty and little or no modifications to
any existing code that you have.

The header file <uni x/ sys_socket . h> contains a set of macros
that map Berkeley sockets calls directly to net library calls. The main
difference between the net library API and the Berkeley sockets API
is that most net library API calls accept additional parameters for:

= A reference number. All library calls in the Palm OS must
have the library reference number as the first parameter.

= A timeout. In consumer systems such as the Palm OS device,
infinite timeouts don’t work well because the end user can’t
“kill” a process that’s stuck. The timeout allows the
application to gracefully recover from hung connections. The
default timeout is 2 seconds.

= An error code. The sockets APl by convention returns error
codes in the application’s global variable er r no. The net
library API doesn’t rely on any application global variables.
This allows system code (which cannot have global
variables) to use the net library API.

The macros in sys_socket . h do the following:

For... The macros pass...

reference AppNet Ref num(application global variable).
number

timeout AppNet Ti neout (application global variable).

error code Address of the application global er r no.

For example, consider the Berkeley sockets call socket , which is
declared as:

int socket(int domain, int type, int protocol);

The equivalent net library call is Net Li bSocket Qpen, which is
declared as:

Net Socket Ref Net Li bSocket Open(Word | i bRef num
Net Socket Addr Enum domai n,

234 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

Net Socket TypeEnum type, Sword protocol,
SDWord tineout, Err* errP)

The macro for socket is:

#defi ne socket (donai n, type, protocol) \
Net Li bSocket Open(AppNet Ref num donai n, type,
prot ocol, AppNet Ti neout, &errno)

Net Library Usage Steps

In general, using the net library involves the steps listed below. The
next several sections describe some of the steps in more detail.

For an example of using the net library, see the example application
Net Sanpl e inthe Pal m OS Exanpl es directory. It exercises many
of the net library calls.

Obtain the net library’s reference number.

Because the net library is a system library, all net library calls take
the library’s reference number as the first parameter. For this
reason, your first step is to obtain the reference number and save it.
See “Obtaining the Net Library’s Reference Number.”

Set up for using Berkeley sockets API.

You can either use the net library’s native API or the Berkeley
sockets API for the majority of what you do with the net library. If
you’re already familiar with Berkeley sockets API, you’ll probably
want to use it instead of the native API. If so, follow the steps in
“Setting Up Berkeley Socket API.”

If necessary, configure the net library the way you want it.

Typically, users set up their networking services by using the
Network preferences panel. Most applications don’t set up the
networking services themselves; they simply access them through
the net library preferences database. In rare instances, your
application might need to perform some network configuration,
and it usually should do so before the net library is open. See “Setup
and Configuration Calls.”

Open the net library right before the first network access.

Because of the limited resources in the Palm OS environment, the
net library was designed so that it only takes up extra memory from

Palm OS Programmer’s Companion (Preliminary) 235

Network Communication
Net Library

the system when an application actually needs to use its services.
An Internet application must therefore inform the system when it
needs to use the net library by opening the net library when it starts
up and by closing it when it exits. See “Opening the Net Library.”

5. Make calls to access the network.

Once the net library has been opened, sockets can be opened and
data sent to and received from remote hosts using either the
Berkeley sockets API or the native net library API. See “Network
/0 and Utility Calls.”

6. Close the net library when you’re finished with it.

Closing the net library frees up the resources. See “Closing the Net
Library.”

Obtaining the Net Library’s Reference Number

To determine the reference number, call SysLi bFi nd, passing the
name of the net library, "Net . | i b". In addition, if you intend to use
Berkeley sockets API, save the reference number in the application

global variable AppNet Ref num

err = SysLibFind("Net.lib", &AppNetRefnum;
if (err) {/* error handling here */}

Remember that the net library requires Palm OS version 2.0 or later.
If the SysLi bFi nd call can’t find the net library, it returns an error
code.

Setting Up Berkeley Socket API
To set up the use of Berkeley sockets API, do the following:

= Include the header file <uni x/ sys_socket . h>, provided
with the Palm OS SDK.

= Link your project with the module Net Socket . ¢, which
declares and initializes three required global variables:
AppNet Ti meout , AppNet Ref num and er r no.
Net Li bSocket . ¢ also contains the glue code necessary for
a few of the Berkeley sockets functions.

= As described in the previous section, assign the net library’s
reference number to the variable AppNet Ref num

236 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

= Adjust AppNet Ti neout ’s value if necessary.

This value represents the maximum number of system ticks
to wait before a net library call expires. Most applications
should adjust this timeout value and possibly adjust it for
different sections of code. The following example sets the
timeout value to 10 seconds.

AppNet Ti meout = SysTi cksPer Second() * 10;

Setup and Configuration Calls

The setup and configuration API calls of the net library are normally
only used by the Network preferences panel. This includes calls to
set IP addresses, host name, domain name, login script, interface
settings, and so on. Each setup and configuration call saves its
settings in the net library preferences database in nonvolatile
storage for later retrieval by the runtime calls.

In rare instances, an application might need to perform setup and
configuration itself. For example, some applications might allow
users to select a particular “service” before trying to establish a
connection. Such applications present a pick list of service names
and allow the user to select a service name. This functionality is
provided via the Network preferences panel. The panel provides
launch codes (defined in Syst emvgr . h) that allow an application
to present a list of possible service names to let the end user pick
one. The preferences panel then makes the necessary net library
setup and configuration calls to set up for that particular service.

Usually, the setup and configuration calls are made while the library
is closed. A subset of the calls can also be issued while the library is
open and will have real-time effects on the behavior of the library.
Chapter 48, “Net Library” in Palm OS SDK Reference, describes the
behavior of each call in more detail.

Settings for Interface Selection

As you learned in the section “About the Net Library,” the net
library uses one or more network interfaces to abstract low-level
networking protocols. The user specifies which network interface to
use in the Network preference panel.

Palm OS Programmer’s Companion (Preliminary) 237

Network Communication
Net Library

You can also use net library calls to specify which interface(s)
should be used:

e Net Li bl FAt t ach attaches an interface to the library so that
it will be used when and if the library is open.

= Net Li bl FDet ach detaches an interfaces from the library.

e Net Li bl FGet returns an interface’s creator and instance
number.

Unlike most net library functions, these functions can be called
while the library is open or closed. If the library is open, the specific
interface is attached or detached in real time. If the library is closed,
the information is saved in preferences and used the next time the
library is opened.

Each interface is identified by a creator and an instance number. You
need these values if you want to attach or detach an interface or to
guery or set interface settings. You use Net Li bl FGet to obtain this
information. Net Li bl FGet takes four parameters: the net library’s
reference number, an index into the library’s interface list, and
addresses of two variables where the creator and instance number
are returned.

The creator is one of the following values:
= net | FCr eat or Loop (Loopback network)
« net | FCr eat or SLI P (SLIP network)
« net | FCr eat or PPP (PPP network)

If you know which interface you want to obtain information about,
you can iterate through the network interface list, calling

Net Li bl FGet with successive index values until the interface with
the creator value you need is returned.

Interface Specific Settings

The net library configuration is structured so that network interface-
specific settings can be specified for each network interface
independently. These interface specific settings are called IF settings
and are set and retrieved through the Net Li bl FSetti ngGet and
Net Li bl FSet ti ngSet calls.

= The NetLiblFSettingGet call takes a setting ID as a parameter
along with a buffer pointer and buffer size for the return

238 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

Table 11.1

value of the setting. Some settings, like login script, are of
variable size so the caller must be prepared to allocate a
buffer large enough to retrieve the entire setting.

(Net Li bl FSetti ngGet returns the required size if you
pass NULL for the buffer. See the Net Li bl FSet t i ngGet
description in the reference documentation for more
information.)

e The Net Li bl FSet ti ngSet call also takes a setting ID as a
parameter along with a pointer to the new setting value and
the size of the new setting.

If you’re using Net Li bl FSet ti ngSet to set the login
script, see the next section.

For an example of using these functions, see the Net Sanpl e
example application in the Pal m OS Exanpl es directory. The
function CdSet t i ngs in the file Cndl nf 0. ¢, for example, shows
how to loop through and obtain information about all of the
network interfaces.

Setting an Interface’s Login Script

Thenet | FSet ti ngLogi nScri pt setting is used to store the login
script for an interface. The login script is generated from the script
that the user enters in the Network preferences panel. The format of
the script is rigid; if a syntactically incorrect login script is presented
to the net library, the results will be unpredictable. The basic format
is a series of null-terminated command lines followed by a null byte
at the end of the script. Each command line has the format:

<command- byt e> [<par anet er >]

where the command byte is the first character in the line and there is
1 and only 1 space between the command byte and the parameter
string. Table 11.1 lists the possible commands.

Login Script Commands

Function @ Command Parameter Example

send S string s go PPP

wait w string w passwor d:

Palm OS Programmer’s Companion (Preliminary) 239

Network Communication
Net Library

Function = Command Parameter = Example

delay d seconds d1l
getIPAddr g g
ask a string a Enter Nanme:

The parameter string to the send (s) command can contain the
escape sequences shown in Table 11.2.

Table 11.2 Send Command Escape Sequences

$USERID substitutes user name
$PASSWORD substitutes password
$DBUSERID substitutes dialback user name

$DBPASSWORD substitutes dialback password

e ifcis‘@ ->"*_’, then byte value 0 -> 31
else if cis ‘a’ -> ‘z’, then byte value 1 -> 26
else c

<cr> carriage return (0x0D)

<If> line feed (0x0A)

\Il n

\/\ N\

\<

\\ \

General Settings

In addition to the interface-specific settings, there’s a class of
settings that don’t apply to any one particular interface. These
general settings are set and retrieved through the

Net Li bSettingGet and Net Li bSet ti ngSet calls. These calls
take setting ID, buffer pointer, and buffer size parameters.

240 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

Opening the Net Library

Call Net Li bQpen to open the net library, passing the reference
number you retrieved through SysLi bFi nd. Before the net library
is opened, most calls issued to it fail with a net Er r Not Open error
code.

err = NetLi bOpen(AppNet Ref num & fErrs);
if (err || ifErrs) {/* error handling here */}

Multiple applications can have the library open at a time, so the net
library may already be open when Net Li bOpen is called. If so, the
function increments the library’s open count, which keeps track of
how many applications are accessing it, and returns immediately.
(You can retrieve the open count with the function

Net Li bOpenCount .)

If the net library is not already open, Net Li bQpen starts up the net
protocol stack task, allocates memory for internal use by the net
library, and brings up the network connection. Most likely, the user
has configured the Palm OS device to establish a SLIP or PPP
connection through a modem and in this type of setup,

Net Li bQpen dials up the modem and establishes the connection
before returning.

If any of the attached network interfaces (such as SLIP or PPP) fail to
come up, the final parameter (i f Er r s in the example above)
contains the error number of the first interface that encountered a
problem.

It’s possible, and quite likely, that the net library will be able to open
even though one or more interfaces failed to come up (due to bad
modem settings, service down, etc.). Some applications may
therefore wish to close the net library using Net Li bCl ose if the
interface error parameter is non-zero and display an appropriate
message for the user. If an application needs more detailed
information, e.g. which interface(s) in particular failed to come up, it
can loop through each of the attached interfaces and ask each one if
it is up or not. For example:

Word i ndex, iflnstance;
DWwrd ifCreator;

Err err;

Byt e up;

Palm OS Programmer’s Companion (Preliminary) 241

Network Communication
Net Library

Char if Nange[32];

for (index = 0; 1; index++) {
err = NetLi bl FGet (AppNet Ref num i ndex,
& fCreator, & flnstance);
if (err) break;

settingSi ze = sizeof (up);

err = NetLibl FSettingGet (AppNet Ref num
ifCreator, iflnstance, netlFSettingUp, &up,
&settingSize);

if (err || up) continue;

settingSi ze = 32;

err = NetLibl FSettingGet (AppNet Ref num
ifCreator, iflnstance, netl FSettingNane,
i f Name, &settingSize);

if (err) continue;

/ldisplay interface didn’t conme up nessage

}
Net Li bCl ose(AppNet Ref num true);

Closing the Net Library

Before an application quits, or if it no longer needs to do network
170, it should call Net Li bdl ose.

err = NetLi bC ose(AppNet Ref num fal se);

Net Li bCl ose simply decrements the open count. The f al se
parameter specifies that if the open count has reached 0, the net
library should not immediately close. Instead, Net Li bCl ose
schedules a timer to shut down the net library unless another

Net Li bQpen is issued before the timer expires. When the net
library’s open count is 0 but its timer hasn’t yet expired, it’s referred
to as being in the close-wait state.

Just how long the net library waits before closing is set by the user
in the Network preferences panel. This timeout value allows users
to quit from one network application and launch another
application within a certain time period without having to wait for
another network connection establishment.

242 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

If Net Li bOpen is called before the close timer expires, it simply
cancels the timer and marks the library as fully open with an open
count of 1 before returning. If the timer expires before another

Net Li bQpen isissued, all existing network connections are brought
down, the net protocol stack task is terminated, and all memory
allocated for internal use by the net library is freed.

It’'s recommended that you allow the net library to enter the close-
wait state. However, if you do need the net library to close
immediately, you can do one of two things:

= Set Net Li bCl ose’s second parameter tot r ue. This
parameter specifies whether the library should close
immediately or not.

e Call Net Li bFi ni shd oseWai t . This function checks the
net library to see if it’s in the close-wait state and if so,
performs an immediate close.

Version Checking

Besides using SysLi bFi nd to determine if the net library is
installed, an application can also look for the net library version
feature. This feature is only present if the net library is installed.
This feature can be used to get the version number of the net library
as follows:

DWord versi on;
err = FtrCGet(netFtrCreator, netFtrNunmVersi on,
&version);

If the net library is not installed, Ft r Get returns a non-zero result
code.

The version number is encoded in the format Ox Mvhf sbbb, where:

MM major version

m minor version
f bug fix level
S stage: 3-release, 2-beta, 1-alpha, 0-development

bbb build number for non-releases

Palm OS Programmer’s Companion (Preliminary) 243

Network Communication
Net Library

For example:
V1.1.2b3 would be encoded as 0x01122003
V2.0a2 would be encoded as 0x02001002
V1.0.1 would be encoded as 0x01013000

This document describes version 2.01 of the net library
(0x02013000).

Network 1/0O and Utility Calls

For the network 1/0 and utility calls, you can either make calls
using Berkeley sockets API or using the net library’s native API.

Several books have been published that describe how to use
Berkeley sockets API to perform network communication. Net
library API closely mirrors Berkeley sockets API in this regard.
However, you should keep in mind these important differences
between using networking 1/0 on a typical computer and using net
library on a Palm OS device:

= You can open a maximum of four open sockets at once in the
net library. This is to keep net library’s memory requirements
to a minimum.

= When you try to send a large block of data, the net library
automatically buffers only a portion of that block because of
the limited available dynamic memory. The function call
returns the number of bytes of data that it actually
transmitted. You must check the return value and if there’s
more data to send, call the function again until the
transmission is finished.

= |f you expect to also receive data during a large transmission,
you should send a smaller block, then read back whatever is
available to read before sending the next block. In this way,
the amount of memory in the dynamic heap that must be
used to buffer data waiting to send out and data waiting to
be read back in by the application is kept to a minimum.

For more information, see the following:

= The next section, “Berkeley Sockets API Functions,” provides
tables that list the supported Berkeley sockets calls, the

244 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

corresponding native net library call, and gives a brief
description of what each call does.

e Chapter 48, “Net Library” of the Palm OS SDK Reference

provides detailed descriptions of each net library call. Where
applicable, it gives the equivalent sockets API call for each

net library native call.

= The Net Sanpl e example application in the Pal m OS
Exanpl es directory shows how to use the Berkeley sockets
API in Palm OS applications.

Berkeley Sockets API Functions

This section provides tables that list the functions in the Berkeley
sockets API that are supported by the net library. In some cases, the
calls have limited functionality from what’s found in a full
implementation of the sockets APl and these limitations are

described here.

Socket Functions

Berkeley Net Library Function Description

Sockets

Function

accept Net Li bSocket Accept Accepts a connection from a stream-
based socket.

bi nd Net Li bSocket Bi nd Binds a socket to a local address.

cl ose Net Li bSocket C ose Closes a socket.

connect Net Li bSocket Connect Connects a socket to a remote

endpoint to establish a connection.

Palm OS Programmer’s Companion (Preliminary) 245

Network Communication
Net Library

Berkeley Net Library Function Description
Sockets
Function

fcntl Net Li bSocket Opti onSet Supported only for socket r ef nuns
Net Li bSocket Opti onGet and the only commands it supports
(..., net Socket Opt Sock areF_SETFL and F_CGETFL. The
NonBl ocki ng, .. .) commands can be used to put a
socket into non-blocking mode by
setting the FNDELAY flag in the
argument parameter appropriately
— all other flags are ignored. The
F SETFL, F_GETFL, and FNDELAY
constants are defined in
<uni x/ uni x_fcntl. h>.

get peernanme Net Li bSocket Addr Gets the remote socket address for a
connection.

get socknanme Net Li bSocket Addr Gets the local socket address of a
connection.

get sockopt Net Li bSocket Opti onGet Gets a socket’s control options. Only
the following options are
implemented:

« TCP_NODELAY

Allows the application to
disable the TCP output
buffering algorithm so that
TCP sends small packets as
soon as possible. This
constant is defined in

<uni x/ neti net _tcp. h>.

* TCP_MAXSEG

Get the TCP maximum
segment size. This constant is
defined in

<uni x/ netinet _tcp. h>.

246 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

Berkeley
Sockets
Function

Net Library Function

Description

listen

read, recv,
recvnsg,
recvfrom

Net Li bSocket Li st en

Net Li bRecei ve

Net Li bRecei vePB

« SO _KEEPALI VE

Enables periodic transmission
of probe segments when there
is no data exchanged on a
connection. If the remote
endpoint doesn’t respond, the
connection is considered
broken,and so_error is set
to ETI MEQUT.

SO LI NGER

Specifies what to do with the
unsent data when a socket is
closed. It uses the | i nger
structure defined in

<uni x/ sys_socket . h>.

SO _ERRCR

Returns the current value of
the variable so_error,
defined in

<uni x/ sys_socket var. h>

SO TYPE

Returns the socket type to the
caller.

Sets up the socket to listen for
incoming connection requests. The
queue size is quietly limited to 1.
(Higher values are ignored.)

Read data from a socket. Ther ecv,
recvnsg, and r ecvf r omcalls
support the MSG_PEEK flag but not
the M5G_OOB or M5SG_DONTROUTE
flags.

Palm OS Programmer’s Companion (Preliminary) 247

Network Communication

Net Library
Berkeley Net Library Function Description
Sockets
Function
sel ect Net Li bSel ect Allows the application to block on

multiple 170 events. The system will
wake up the application process
when any of the multiple /0 events
occurs.

This function uses the t i neval
structure defined in

<uni x/ sys_ti me. h>and the
fd_set structure defined in
sys/ types. h.

Also associated with this function
are the following four macros
defined in <uni x/ sys_t ypes. h>:

« FD_ZERO
- FD _SET
« FD CLR
 FD | SSET

Besides socket descriptors, this
function also works with the “stdin”
descriptor, sysFi | eDescSt di n.
This descriptor is marked as ready
for input whenever a user or system
event is available in the event queue.
This includes any event that would
be returned by Evt Get Event . No
other descriptors besides

sysFi | eDescSt dl n and socket

r ef nuns are allowed.

248 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

Berkeley Net Library Function Description

Sockets

Function

send, Net Li bSend These functions write data to a
sendnsg, Net Li bSendPB socket. These calls, unlike the r ecv
sendto calls, do support the MSG_QOOB flag.

set sockopt

shut down

socket

wite

Net Li bSocket Opti onSet

Net Li bSocket Shut down

Net Li bSocket Open

Net Li bSend

The MSG_PEEK flag is not applicable
and the MSG_DONTROUTE flag is not
supported.

This function sets control options of
a socket. Only the following options
are allowed:

 TCP_NODELAY
SO KEEPALI VE
SO LI NGER

Similar to cl ose() ; however, it
gives the caller more control over a
full-duplex connection.

Creates a socket for
communication.The only valid
address family is AF_| NET. The only
valid socket types are
SOCK_STREAM SOCK_DGRAM and
in Palm OS version 3.0 and higher,
SOCK_RAW The protocol parameter
should be set to 0.

Writes data to a socket.

Palm OS Programmer’s Companion (Preliminary) 249

Network Communication

Net Library
Supported Network Utility Functions
Berkeley Net Library Function Description
Sockets
Function

get domai nnane

get host byaddr

get host bynane

get host nanme

get ser vbynane

get t i neof day

set domai nname

set host nane

set ti neof day

Net Li bSocket Opti onGet

(..,netSettingDomai nN
ane,...)

Net Li bGet Host By Addr

Net Li bGet Host By Nane

Net Li bSettingGet(..,
net Setti ngHost Nane,

)
Net Li bGet Ser vByNane

glue code using
TimGetSeconds

Net Li bSettingSet(..,
net Set t i ngDomai nNane,

-)

Net Li bSettingSet (..,
net Setti ngHost Nane,

-)

glue code using
TimSetSeconds

Returns the domain name of the
local host

Looks up host information given
the host’s IP address. It returns a
host ent structure, as defined in
<net db. h>.

Looks up host information given
the host’s name. It returns a
host ent structure which is
defined in <net db. h>.

Returns the name of the local host.

Returns a ser vent structure,
defined in <net db. h> given a
service name.

Returns the current date and time.

Sets the domain name of the local
host.

Sets the name of the local host.

Sets the current date and time.

250 Palm OS Programmer’s Companion (Preliminary)

Network Communication
Net Library

Supported Byte Ordering Macros

The byte ordering macros are defined in <uni x/ neti net _i n. h>.
They convert and integer between network byte order and the host

byte order.

Berkeley Description

Sockets

Macro

ht onl Converts a 32-bit integer from host byte order to network byte order.

ht ons Converts a 16-bit integer from host byte order to network byte order.

nt ohl Converts a 32-bit integer from network byte order to host byte order.

nt ohs Converts a 16-bit integer from network byte order to host byte order.
Supported Network Address Conversion Functions
The network address conversion functions are declared in the
<uni x/ ar pa_i net . h> header file. They convert a network
address from one format to another, or manipulate parts of a
network address.

Berkeley Net Library Description

Sockets Function

Function

i net _addr Net Li bAddr ATol N Converts an IP address from dotted

i net _network

i net _makeaddr

i net _| naof

decimal format to 32-bit binary format.

glue code Converts an IP network number from a
dotted decimal format to a 32-bit binary
format.

glue code Returns an IP address inan i n_addr

structure given an IP network number and
an IP host number in 32-bit binary format.

glue code Returns the host number part of an IP
address.

Palm OS Programmer’s Companion (Preliminary) 251

Network Communication
Summary of Network Communication

Berkeley Net Library Description

Sockets Function

Function

i net _net of glue code Returns the network number part of an IP
address.

i net _ntoa Net Li bAddr | NToA Converts an IP address from 32-bit format

to dotted decimal format.

Summary of Network Communication

Net Library Functions

Library Open and Close

NetLibClose NetLibOpen
NetLibConnectionRefresh NetLibOpenCount

NetLibFinishCloseWait

Socket Creation and Deletion

NetLibSocketClose

Socket Options

NetLibSocketOpen

NetLibSocketOptionGet NetLibSocketOptionSet

Socket Connections

NetLibSocketAccept
NetLibSocketAddr
NetLibSocketBind

NetLibSocketConnect
NetLibSocketListen
NetLibSocketShutdown

Send and Receive Routines

NetLibDmReceive
NetLibReceive
NetLibReceivePB

NetLibSend
NetLibSendPB

252 Palm OS Programmer’s Companion (Preliminary)

Network Communication

Summary of Network Communication

Net Library Functions

Utilities

NetHToNL

NetHToNS

NetLibAddrATolN
NetLibAddrINToA
NetLibGetHostByAddr
NetLibGetHostByName
NetLibGetMailExchangeByName

NetLibGetServByName
NetLibMaster
NetLibSelect
NetLibTracePrintF
NetLibTracePutS
NetNToHL

NetNToHS

Setup

NetLiblFAttach
NetLiblFDetach
NetLiblFDown
NetLiblFGet
NetLiblFSettingGet

NetLiblFSettingSet

NetLibIFUp
NetLibSettingGet

NetLibSettingSet

Network Utilities

NetUReadN NetUTCPOpen

NetUWriteN

Palm OS Programmer’s Companion (Preliminary) 253

Network Communication
Summary of Network Communication

254 Palm OS Programmer’s Companion (Preliminary)

12

Internet and
Messaging
Applications

NOTE: The information in this chapter currently applies only to
the system software installed on the Palm VII device.

The Palm OS version 3.2 provides support for wireless Internet
access and messaging via the Palm.Net wireless network. This
chapter discusses the following topics:

e Qverview of the Palm.Net System

System Version Checking

Using Clipper to Display Information

Launching Other Applications from Clipper

Sending Messages

New keyDownEvent Key Codes

e Qver the Air Characters

Most of the information in this chapter applies to wireline connects
as well as wireless connections. It is possible for developers to
connect to the Palm.Net network via a wired modem through an
Internet Service Provider for testing, though normal users will
access Palm.Net via the built-in wireless modem.

For more information about Palm query applications and content
style guidelines for the Palm VII device, refer to the Palm VII
Connected Organizer Content Style Guide.

Palm OS Programmer’s Companion (Preliminary) 255

Internet and Messaging Applications
Overview of the Palm.Net System

Overview of the Palm.Net System

Before developing content and applications for the Palm VII device,
it’s useful to understand the whole Palm.Net system. The Palm VII
device is just one part of a system that delivers data wirelessly from
the Internet to the Palm device.

The system is designed to work differently from a web browser
application running on a desktop computer. The Palm.Net system is
designed to best support access to real-time data, not casual
browsing. Browsing is possible, but the increased cost and volume
of data involved with visiting most standard web sites makes it
impractical over a wireless network.

Typical scenarios involve users accessing the following kinds of
information on the Internet: news, sports scores, weather, traffic
reports, driving directions, airline schedules and flight information,
stock quotes, hotel and restaurant information, email, etc.

Constraints on Palm wireless applications include the high cost to
users of radio usage, low bandwidth, and increased battery
consumption when the radio is on. Palm designed the system to
make the best use of resources given these constraints. You must
also keep these constraints in mind when designing applications
that use the wireless capabilities of the unit.

In particular, note the pricing model for the wireless service. Users
are charged a flat monthly fee for a modest number of bytes
transmitted and received. Once the limit is exceeded, users are
charged for each additional byte sent or received by their Palm
device. It’s imperative that applications using the wireless services
minimize the number of bytes sent and received, to avoid
contributing to large airtime charges for users.

Content developers wishing to customize web pages for optimal
display on Palm VII devices should follow the design guidelines
described in Palm VII Connected Organizer Content Style Guide. A web
site that conforms to these style guidelines and contains the

<META NAME=" Pal mConputi ngPl at f or n{ CONTENT="Tr ue" >
HTML tag is considered Palm friendly.

256 Palm OS Programmer’s Companion (Preliminary)

Internet and Messaging Applications
Overview of the Palm.Net System

NOTE: The Internet applications described in this chapter rely
on the Internet library (INetLib) for wireless connectivity functions,
and the Internet library uses the net library (NetLib). Applications
cannot directly use the net library to make wireless connections.

Palm Query Applications

The primary mechanism that Palm has provided for users to
interact with the WWW (World Wide Web) is the Palm query
application (PQA). Palm query applications encapsulate locally
stored HTML content, possibly including one or more query forms,
through which the user can submit requests for information from
the WWW. Returned data, called web clippings, are displayed by
the web clipping viewer application (called Clipper here) that runs
on the Palm device.

Note that Clipper does not appear as a separate application in the
Launcher; it is invoked automatically when a query application is
launched. End users don’t see the term “Clipper” anywhere in the
user interface or user documentation, so you should not confuse
them by using this term in your application documentation, readme
files, or help screens.

Palm query applications are created by the Query Application
Builder program that runs on a desktop computer. This program
translates one or more pages of HTML content into a single compact
database (.pga file) that the user installs on the Palm device.

When creating the .pqa file, the Query Application Builder
translates HTML into a compressed format. The Clipper application
works with this compressed format, rather than HTML directly. The
reason for this is that HTML is an inefficient format for the
transmission of data over the network and storage of information.
Compression minimizes the amount of information sent over the
radio and reduces the size of query applications stored on the Palm
device.

GIF and JPEG images incorporated into source HTML files are
converted to the Palm bitmap format (2-bit graphics) before being
stored in the query application file.

Palm OS Programmer’s Companion (Preliminary) 257

Internet and Messaging Applications
Overview of the Palm.Net System

Palm.Net System Overview
The physical Palm.Net network is illustrated in Figure 12.1.

Figure 12.1 Palm.Net Network

LIDP

Bel Souh

base stali on
Prosoy

TCP 5 RPVEF
kMessagng
S RPVEF
Palrn desice Palrn M et data certer

The Palm VII device communicates via radio modem to a nearby
BellSouth Wireless Data network base station. From there, data is
sent over a private link to the Palm Web Clipping Proxy server in
the Palm data center. The proxy server interprets user requests and
passes them to other computers on the Internet, using standard
HTTP protocols, to handle as appropriate.

Responses are sent back to the proxy server, which communicates
them to the Bell South wireless network and back to the Palm VII
device via radio modem.

258 Palm OS Programmer’s Companion (Preliminary)

Internet and Messaging Applications
Overview of the Palm.Net System

The wireless radio link operates at approximately 8 kbps, so is best
suited for exchanging small amounts of information. After
accounting for headers, error correction, and other overhead, the
effective data throughput is roughly 2 kbps, so compactness is
critical.

Palm Web Clipping Proxy Server

The Palm Web Clipping Proxy server is a key part of the system.
This server is responsible for accepting and responding to queries
sent by the Palm VII device.

The server supports three high-level protocols: HTTP, HTTPS, and
the Palm messaging protocol (used by the iMessenger application).
Requests using HTTP and HTTPS are forwarded to the Internet.
Requests using the messaging protocol are forwarded to the Palm
messaging server, which handles email communication to the
Internet.

UDP

One way that Palm optimizes the limited network bandwidth is to
use UDP (User Datagram Protocol). All communications between
the Palm VII device and the wireless network use UDP. This
transmission protocol is extremely efficient and lightweight,
resulting in the exchange of the fewest packets possible over the
wireless network. Often requests and responses require just a single
packet of data each. This is much more efficient than the relatively
verbose TCP (Transmission Control Protocol). Using UDP decreases
user airtime costs because fewer packets are required for each
request and response.

UDP does not normally function as a reliable protocol, however, the
wireless connection between the Palm device and the BellSouth
Wireless Data network has guaranteed delivery and reliability built
into it via other mechanisms, so there is no need for the extra
overhead of a full connection-oriented protocol such as TCP.

WWW requests that are passed to the Internet by the proxy server
use TCP to guarantee reliability over the Internet.

Note that in a debugging wired connection scenario, TCP is used
instead of UDP between the Palm device and the proxy server.

Palm OS Programmer’s Companion (Preliminary) 259

Internet and Messaging Applications
Overview of the Palm.Net System

Compressed HTML

Another way that Palm efficiently uses the limited bandwidth of the
Palm.Net system is to compress HTML.

Web clippings are rendered on the Palm VII device by the Clipper
application. Clipper renders compressed HTML data. Both the
query applications and WWW data returned from the Internet are
compressed.

= When creating Palm query applications, the Query
Application Builder program compresses HTML content and
combines multiple HTML pages and images into a single
guery application.

e All HTML information returned to the Palm device from the
Internet is dynamically compressed by the Palm Web
Clipping Proxy server before transmission through the
wireless network to the Palm device.

It’s important to note that the Palm device accesses standard HTML
data that resides on standard HTML web servers on the Internet.
The compression by the proxy server is transparent to the user and
the web server on the Internet.

If a web page that is not Palm-friendly is browsed, the proxy server
removes images, scripting code, Java code, frames, and other non-
supported elements before sending the content to the Palm device.
Additionally, the content is truncated to prevent large amounts of
unexpected data from being transmitted. The user can request more
data as desired.

Security

All wired parts of the network support security via the SSL (Secure
Sockets Layer) protocol widely used by servers and browsers on the
Internet. However, SSL is impractical to run over a low bandwidth
wireless network because it is quite verbose.

Palm implemented a level of security for the wireless portion of the
network that is equivalent to the 128-bit SSL encryption algorithms,
but optimized for use on a wireless network. The wireless part of
the network is protected by a security system that includes
encryption, message integrity checking, and server authentication.

260 Palm OS Programmer’s Companion (Preliminary)

Internet and Messaging Applications
System Version Checking

Message encryption is done via an elliptic curve cryptography
engine supplied by Certicom Corporation. Message integrity
checking protects against transmission errors or message
manipulation. Server authentication prevents the wireless session
between the Palm device and the proxy server from being hijacked
or spoofed.

Note that despite the optimized security scheme, secure
transmissions inherently increase the size of the data packet,
slowing its transmission over the network relative to unsecure
transmissions.

System Version Checking

Before using any special features of the operating system for the
Palm VII device, you must check to ensure they are present. You can
ensure that you are running on a device that supports the wireless
internet access features by checking for the existence of the Clipper
and iMessenger applications. Here’s an example of how to check for
Clipper:

DntSear chSt at eType searchSt at e;

U nt car dNo;

Local I D dbl D

err = DnGet Next Dat abaseByTypeCreat or (true,
&searchState, sysFileTApplication,

sysFil eCd i pper, true, &cardNo, &dblD);

If Clipper is not present, the

DnGet Next Dat abaseBy TypeCr eat or routine returns an error.
To check for iMessenger, you can use the creator type

sysFi | eCvessagi ng.

For more information on checking system compatibility, see the
appendix “Compatibility Guide” starting on page 905.

Using Clipper to Display Information

You can use launch codes to open Clipper and display content.

Palm OS Programmer’s Companion (Preliminary) 261

Internet and Messaging Applications
Using Clipper to Display Information

To launch Clipper and display a PQA, use the launch code
sysAppLaunchCndOpenDB. You pass as parameters the database
id and card number of the PQA to display. This is the same
mechanism used by the Launcher to “launch” data files.

To launch Clipper and display any URL, use the launch code
sysAppLaunchCndGoToURL. You pass as a parameter a pointer to
the URL string. An example of how to use this launch code is shown

in Listing 12.1.

IMPORTANT: Keep in mind that browsing web sites that are
complex or not Palm-friendly may possibly result in higher latency
and airtime charges for the user. If a web page that is not Palm-
friendly is browsed, the proxy server removes images, scripting
code, Java code, frames, and other non-supported elements
before sending the content to the Palm device.

Listing 12.1 Launching Clipper with a URL

Err GoToURL(CharPtr origurl)
{ /'l parameter is ptr to URL string
Err err;
CharPtr url;
DnSear chSt at eType sear chSt at e;
U nt car dNo;
Local | D dbl D;

/1 make a copy of the URL, since the OS will free
/'l the paraneter once Cipper quits

url = MenPtrNew(StrLen(origurl));

if (turl) return syskErrNoFreeRAM

StrCopy(url, origurl);

MenPt r Set Omer (url, 0);

/1 find clipper and launch it

err = Dnet Next Dat abaseByTypeCreat or (true, &searchState,
sysFi |l eTApplication, sysFileCdipper, true, &cardNo, &dblD);

if (err) { /] Cipper is not present

262 Palm OS Programmer’s Companion (Preliminary)

Internet and Messaging Applications
Launching Other Applications from Clipper

FrmAl ert (NoCl i pperAlert);
MenPt r Free(url);

}

el se
err = SysUl AppSwi t ch(car dNo, dbl D, sysAppLaunchCnrdGoToURL, url) ;

return err; // O means no error

Launching Other Applications from Clipper

Clipper can launch other applications via two special types of URLS:
pal mand pal ntal | . In aquery application, you might want to use
the pal ntal I URL to hand some data to a different application to
process and/or display while Clipper is running. This would be
useful for graphing a set of numbers, for example.

Both of these URL types take a URL string in the following form:
pal m cccc. tttt?parans

or
pal ntal | : cccc. tttt?parans

cccc is a four character creator name and ¢ t t t is a four character
database type. These parts identify the application to launch. After
the question mark (?), the par ans portion of the string can be any
text you want. The entire URL string is passed to the application to
use in any manner.

Here’s an example of an HTML anchor that uses the pal mURL type
to link to the Memo Pad application:

Meno Pad</ A>

Use the pal mURL to cause Clipper to launch another application
with the SysUIAppSwitch routine. This causes Clipper to quit
before the other application is launched.

Use the pal ntal | URL to cause Clipper to sublaunch another
application with the SysAppLaunch routine. Clipper stays in the
background and resumes execution when the other application

Palm OS Programmer’s Companion (Preliminary) 263

Internet and Messaging Applications
Sending Messages

quits. It’s important to note that in this situation, the sublaunched
application does not have access to its global variables.

The Clipper application handles these URLs by sending the
sysAppLaunchCndURLPar ans launch code to the specified
application. The parameter block for this launch code is a pointer to
the URL string.

Sending Messages

You can send messages via the built-in iMessenger application in 3
ways:

= Use the standard mai | t o URL in Clipper, passing an email
address, for example, “mai | t o: i nf o@al m coni’. This
launches iMessenger, passing the email address for the “To”
field. Optionally, you can include the subject
(“rmai I t o: i nf o@al m conf’subj ect =f 00”) and/or body
(“mai | to: i nfo@al m conPsubj ect =f oo&body=bar)
text in the URL. Internally, this launches iMessenger using
the next method.

= Use the sysAppLaunchCmdAddRecord launch code to
launch iMessenger with its editor open (optionally filling in
some of the fields via the passed parameter block). This
allows the user to edit the email. To make iMessenger display
the message in its editor, set the edi t field in the parameter
block tot r ue.

= Use the sysAppLaunchCmdAddRecord launch code to
silently add an item (the email) to the iMessenger outbox
database. You must pass all the needed information in the
parameter block. To prevent iMessenger from displaying the
message in its editor, set the edi t field in the parameter
block tof al se.

When launched via the sysAppLaunchCnrdAddRecor d launch
code, the iMessenger application returns an error code, or 0 if there
was no error.

To send a launch code to the iMessenger application, you will need
obtain its database id. You can use

Dntcet Next Dat abaseByTypeCr eat or and pass the constant
sysFi | eCvessagi ng for the cr eat or parameter.

264 Palm OS Programmer’s Companion (Preliminary)

Internet and Messaging Applications
New keyDownEvent Key Codes

Note that adding an item to the iMessenger outbox does not
actually send the message over the radio. It simply stores the
message in the outbox until the user later opens iMessenger and
chooses to send queued messages. This always gives the user
control over when the radio is used.

New keyDownEvent Key Codes

The OS on the Palm VII device provides special key DownEvent
virtual key codes to support the wireless capabilities. These include:

= vchr Har dAnt enna, which signals that the user has raised
the antenna, activating the radio

= vchr Radi oCover ageCK, which signals that the unit is
within radio coverage following a coverage check

= vchr Radi oCover ageFai | , which signals that the unit is
outside radio coverage following a coverage check, and thus
cannot communicate with the Palm.Net system

Virtual key codes are passed in the keyCode field of a
keyDownEvent data block, as described in the section
“keyDownEvent” on page 103.

Normally, you ignore these events in your application event
handler, and let the system event handler handle them. For
example, the vchr Har dAnt enna event causes the system to invoke
the Launcher and switch to the Palm.Net category. If you want to do
something different in your application, you must trap and handle
the event in your application event handler.

Over the Air Characters

One of the overriding user interface design goals of the Palm VII
system is to always give the user control when making a wireless
transaction, partly because of the costs associated with doing so. In
order that the user can recognize when an action causes a wireless
transaction, you must use a special character in user interface
buttons that cause wireless transactions. This alerts the user that
tapping the button will result in a wireless transaction and its
associated cost and latency. The user must never be surprised that a

Palm OS Programmer’s Companion (Preliminary) 265

Internet and Messaging Applications
Over the Air Characters

Figure 12.2

wireless transaction has occurred as a result of an action they
initiated.

Applications that cause data to be transmitted from the Palm VI
device must use two special characters in their user interface
buttons, as shown in Figure 12.2.

Over the Air Characters

-.‘
- i'-.

Cwver the air Cwver the air securs

If you have a button, that when tapped, causes data to be
transmitted, the button text must end with the “Over the air”
character (chr @ a). This alerts the user that tapping the button will
cause data transmission and incur possible airtime charges.

If you have a button, that when tapped, causes data to be
transmitted securely, the button text must end with the “Over the air
secure” character (chr Ot aSecur e). This alerts the user that
tapping the button will cause secure data transmission and incur
possible airtime charges.

Note that the Clipper application automatically adds these special
characters when rendering remote hyperlinks or buttons. You only
need to explicitly add these characters if you are building an
application that doesn’t use this capability of Clipper.

266 Palm OS Programmer’s Companion (Preliminary)

13

3= Localized
Applications

When you write an application (or any other type of software) that
is going to be localized, you need to take special care when working
with characters, strings, numbers, and dates as different countries
represent these items different ways. This chapter describes how to
write code for localized applications, focusing on the text manager
and international manager, which are new in Palm OS version 3.1.
The chapter covers:

e | ocalization Guidelines

e Text Manager and International Manager

e Characters

= Strings

= Dates

= Numbers

= Compatibility Information

= Notes on the Japanese Implementation

< Summary of Localization

This chapter does not cover how to actually perform localization of
resources. For more information on this subject, see your tools
documentation.

Localization Guidelines

When you start planning for the localized version of your
application, follow these guidelines:

= |f you use the English language version of the software as a
guide when designing the layout of the screen, try to allow:

— extra space for strings

Palm OS Programmer’s Companion (Preliminary) 267

Localized Applications
Text Manager and International Manager

— larger dialogs than the English version requires

= Don’t put language-dependent strings in code. If you have to
display text directly on the screen, remember that a one-line
warning or message in one language may need more than
one line in another language. See the section “Strings” in this
chapter for further discussion.

= Don’t depend on the physical characteristics of a string, such
as the number of characters, the fact that it contains a
particular substring, or any other attribute that might
disappear in translation.

= Use the functions described in this chapter when working
with characters, strings, numbers, and dates.

= Consider using string templates as described in the section
“Dynamically Determining a String’s Contents” in this
chapter. Using a fine granularity is usually helpful. You can
then concatenate strings as needed (and in the order needed,
which often differs from language to language) to arrive at a
correct translation.

= Abbreviations may be the best way to accommodate the
particularly scarce screen real estate on the Palm OS device.

= Remember that most resources, for example, lists, fields, and
tips, scroll if you need more space.

The chapter “Good Design Practices” provides further user
interface guidelines.

Text Manager and International Manager

The Palm OS provides two managers that help you work with
localized strings and characters. These managers are called the text
manager and the international manager.

Computers represent the characters in an alphabet with a numeric
code. The set of numeric codes for a given alphabet is called a
character encoding. Of course, a character encoding contains more
than codes for the letters of an alphabet. It also encodes
punctuation, numbers, control characters, and any other characters
deemed necessary. The set of characters that a character encoding
represents is called, appropriately enough, a character set.

268 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Text Manager and International Manager

As you know, different languages use different alphabets. Most
European languages use the Roman alphabet. The Roman alphabet
is relatively small, so its characters can be represented using a
single-byte encoding ranging from 32 to 255. On the other hand,
Asian languages such as Chinese, Korean, and Japanese require
their own alphabets, which are much larger. These larger character
sets are represented by a combination of single-byte and double-
byte numeric codes ranging from 32 to 65,535.

A given Palm OS device supports one language and one character
encoding to represent the characters required by that language.
Although the Palm OS supports multiple character encodings, a
given device uses only one of those encodings. For example, a
French device would probably use the Microsoft® Windows® code
page 1252 character encoding (an extension of ISO Latin 1), while a
Japanese device would use Microsoft Windows code page 932 (an
extension of Shift JIS). Code page 932 is not supported on the French
device, and code page 1252 is not supported on the Japanese device
even though they both use the same version of Palm OS. No matter
what the encoding is on a device, Palm guarantees that the low
ASCII characters (0 to Ox7F) are the same. (The exception to this rule
is 0x5C, which is either the backslash or the yen symbol.)

The text manager allows you to work with text, strings, and
characters independent of the character encoding. If you use text
manager routines and don’t work directly with string data, your
code should work on any system, regardless of which language and
character encoding the device supports (as long as it supports the
text manager).

The international manager’s job is to detect which character
encoding a device uses and initialize the corresponding version of
the text manager. The international manager also sets system
features that identify which encoding and fonts are used. For the
most part, you don’t work with the international manager directly.

The text manager and international manager are supported starting
in Palm OS version 3.1. If your application should work on older
systems, you should test for the presence of these managers before
using text manager calls. Listing 13.1 shows how.

Palm OS Programmer’s Companion (Preliminary) 269

Localized Applications
Characters

Listing 13.1 Testing for text and international managers

DWord i ntl Myr Exi st s;

if (FtrGet(sysFtrCreator, sysFtrNum ntl Mgr, & ntl MyrExists) !'= 0)
intl MgrExists = 0;

if (intlMrExists) {
/1 1f international manager exists, so does the text manager.
/'l Use text manager calls.

}
NOTE: You can still use the text manager and be compatible
with earlier releases if you link your application with the
I nt1 A ue. |'i b library. See the section “Compatibility
Information” for more information.

Characters

Depending on the device’s supported language, the Palm OS may
encode characters using either a single-byte encoding or a multi-
byte encoding. Because you do not know which character encoding
is used until runtime, you should never make an assumption about
the size of a character.

For the most part, your application does not need to know which
character encoding is used, and in fact, it should make no
assumptions about the encoding or about the size of characters.
Instead, your code should use text manager functions to manipulate
characters. This section describes how to use characters in a
localized application. It covers:

« Declaring Character Variables

Using Character Constants

Missing and Invalid Characters

Retrieving a Character’s Attributes

Virtual Characters

Retrieving the Character Encoding

270 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Characters

Declaring Character Variables

Declare all character variables to be of type WChar . WChar is a 16-bit
unsigned type that can accommodate characters of any encoding.
Don’t use Char . Char is an 8-bit variable that cannot accommodate
larger character encodings. The only time you should ever use Char
is to pass a parameter to an older Palm OS function.

WChar ch; // Right. 16-bit character.
Char ch; // Wong. 8-bit character.

When you receive input characters through the keyDownEvent ,
you’ll receive a WChar value.

Even though character variables are now declared as WChar , string
variables are still declared as Char *, even though they may
contain multi-byte characters. See the section “Strings” for more
information on strings.

Using Character Constants

Character constants are defined in several header files. The header
file Char s. h contains characters that are guaranteed to be
supported on all systems regardless of the encoding. Other header
files exist for each supported character encoding and contain
characters specific to that encoding. The character encoding-specific
header files are not included in the Palm OS precompiled header set
because they define characters that are not available on every
system.

To make it easier for the compiler to find character encoding
problems with your project, make a practice of using the character
constants defined in these header files rather than directly assigning
a character variable to a value. For example, suppose your code
contained this statement:

WChar ch = '&'; // WRONG Don’t use.

This statement may work on a Roman system, but it would cause
problems on an Asian-language system because the & character does
not exist. If you instead assign the value this way:

Palm OS Programmer’s Companion (Preliminary) 271

Localized Applications
Characters

WChar ch = chrSmall _A Ri ngAbove;

you’ll find the problem at compile time because the
chr Smal | _A Ri ngAbove constant is defined in Char Lat i n. h,
which is not included by default.

Missing and Invalid Characters

If during application testing, you see an open rectangle, a shaded
rectangle, or a gray square displayed on the screen, you have a
missing character.

A missing character is one that is valid within the character
encoding but the current font is not able to display it. In this case,
nothing is wrong with your code other than you have chosen the
wrong font. The system displays a gray square in place of a missing
double-byte character and an open rectangle in place of a missing
single-byte rectangle (see Figure 13.1).

Figure 13.1 Missing/invalid characters

D Missing single-byte character

Missing or invalid double-byte chamster

In multi-byte character encodings, a character may be missing as
described above, or it may be invalid. In single-byte character
encodings, there’s a one-to-one correspondence between numeric
values and characters to represent. This is not the case with multi-
byte character encodings. In multi-byte character encodings, there
are more possible values than there are characters to represent.
Thus, a character variable could end up containing an invalid
character—a value that doesn’t actually represent a character.

If the system is asked to display an invalid character, it prints an
open rectangle for the first invalid byte. Then it starts over at the
next byte. Thus, the next character displayed and possibly even the
remaining text displayed is probably not what you want. Check
your code for the following:

= Truncating strings. You might have truncated a string in the
middle of a multi-byte character.

272 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Characters

= Appending characters from one encoding set to a string in a
different encoding. For example, you might have code that
appends an ellipses to a menu command. This code fails on a
Asian-language system because the ellipses is not included in
the Asian character encodings.

= Arithmetic on character variables that could result in an
invalid character value.

= Arithmetic on a string pointer that could result in pointing to
an intra-character boundary. See “Performing String Pointer
Manipulation” for more information.

= Assumptions that a character is always a single byte long.

Use the text manager function Txt | sVal i dChar to determine
whether a character is valid or not.

Retrieving a Character’s Attributes

The text manager defines certain functions that retrieve a
character’s attributes, such whether the character is alphanumeric,
etc. You can use these functions on any character, regardless of its
size and encoding.

A character also has attributes unique to its encoding. Functions to
retrieve those attributes are defined in the header files specific to the
encoding.

WARNING! In previous versions of the Palm OS, the header file
Char At t r . h defined character attribute macros such as

| sAsci i . Using these macros on double-byte characters
produces incorrect results. Use the text manager macros instead
of the Char At t r . h macros.

Virtual Characters

Virtual characters are nondisplayable characters that trigger special
events in the operating system, such as displaying low battery
warnings or displaying the keyboard dialog. Virtual characters

Palm OS Programmer’s Companion (Preliminary) 273

Localized Applications
Characters

Listing 13.2

should never occur in any data and should never appear on the
screen.

The Palm OS uses character codes 256 through 4096 decimal for
virtual characters. The range for these characters may actually
overlap the range for “real” characters (characters that should
appear on the screen).

Therefore, when you check for a virtual character, first check the
command bit in the event record. If the command bit is set, then the
character is virtual. See Listing 13.2.

Checking for virtual characters

if ((event->eType == keyDownEvent) &&
(event - >dat a. keyDown. nodi fi ers & commandKeyMask)) {
/'l character is virtual.

if (ch ==

next Fi el dChr)

Listing 13.3

As a special case, you can use the Chr | sHar dKey macro to
determine if the character represents one of the hard keys on the
device. See Listing 13.3.

Checking for hard keys

i f (ChrlsHardKey(event->data. keyDown. nodi fiers,
event - >dat a. keyDown. chr)) {

} else {

}

/'l character is a hard key

/'l character is not a hard key

Retrieving the Character Encoding

Occasionally, you may need to determine which character encoding
is being used. For example, your application may need to do some
unique text manipulation if it is being run on a European device.

274 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Strings

You can retrieve the character encoding from the system feature set
using the Ft r Get function as shown in Listing 13.4.

Listing 13.4 Retrieving the character encoding

Word encodi ng;
Char Ptr encodi ngNane;
if (FtrGet(sysFtrCreator, sysFtrNunEncodi ng, &encoding) != 0)
encodi ng = char Encodi ngCP1252; //default encodi ng
if (encoding == char Encodi ngUTF8) {
/'l encodi ng for Unicode.
} else if (encoding == char Encodi ngCP1252) {
/'l extension of 1SO Latin 1

}

/1 The follow ng text manager function returns the official nane
/'l of the encoding as required by Internet applications.
encodi ngNanme = Txt Encodi ngNanme(encodi ng) ;

Strings

On systems that support the international manager and the text
manager, strings are made up of characters that are either a single-
byte long or multiple bytes long, up to three bytes. As stated
previously, character variables are always two bytes long. However,
when you add a character to a string, the operating system may
shrink it down to a single byte if it’s a low ASCII character. Thus,
any string that you work with may contain a mix of single-byte and
multi-byte characters.

Using characters of different sizes in a string has implications for
manipulating strings, searching strings, and implementing the
global find facility in your application. This section describes how to
perform all of these tasks using text manager functions. It also
describes how to create and display dynamically computed strings
and how to display error messages.

< Manipulating Strings

= Performing String Pointer Manipulation

Palm OS Programmer’s Companion (Preliminary) 275

Localized Applications
Strings

Truncating Displayed Text

Searching and Comparing Strings
Global Find
Dynamically Determining a String’s Contents

TIP: Many of the existing Palm OS functions have been
modified to work with strings containing multi-byte characters. All
Palm OS functions that return the length of a string, such as

FI dGet Txt Lengt h and St r Len, always return the size of the
string in bytes, not the number of characters in the string.

Manipulating Strings

Any time that you want to work with character pointers, you need
to be careful not to point to an intra- character boundary (a middle
or end byte of a multi-byte character). For example, any time that
you want to set the insertion point position in a text field or set the
text field’s selection, you must make sure that you use byte offsets
that point to inter-character boundaries. (The inter-character
boundary is both the start of one character and the end of the
previous character, except when the offset points to the very
beginning or very end of a string.)

Suppose you want to iterate through a string character by character.
Traditionally, C code uses a character pointer or byte counter to
iterate through a string a character at a time. Such code will not
work properly on systems with multi-byte characters. Instead, if
you want to iterate through a string a character at a time, use text
manager functions:

= Txt Get Next Char retrieves the next character in a string.

e Txt Get Pr evi ousChar retrieves the previous character in a
string.

= Txt Set Next Char changes the next character in a string and
can be used to fill a string buffer.

Each of these three functions returns the size of the character in
guestion, so you can use it to determine the offset to use for the next

276 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Strings

character. For example, Listing 13.5 shows how to iterate through a
string character by character until a particular character is found.

Listing 13.5 Iterating through a string or text

CharPtr buffer; // assune this exists
Wrd bufLen = StrLen(buffer); // Length of the input text.
Wchar ch = 0;
Wrd i = 0;
while ((i < bufLen) && (ch != chrAsterisk))
i += Txt Get Next Char (buffer, i, &ch));

The text manager also contains functions that let you determine the
size of a character without iterating through the string:

= Txt Char Si ze returns how much space a given character
will take up inside of a string.

e Txt Char Bounds determines the boundaries of a given
character within a given string.

Listing 13.6 Working with arbitrary limits

ULong char Start, charEnd;
CharPtr fldTextP = Fl dGet TextPtr(fld);
Txt Char Bounds(fl dText P, m n(kMaxByt esToPr ocess,
Fl dGet Text Length(fld)), &charStart, &charEnd);
/'l process only the first charStart bytes of text.

Performing String Pointer Manipulation

Never perform any pointer manipulation on strings you pass to the
text manager unless you use text manager calls to do the
manipulation. For text manager functions to work properly, the
string pointer must point to the first byte of a character. If you use
text manager functions when manipulating a string pointer, you can
be certain that your pointer always points to the beginning of a
character. Otherwise, you run the risk of pointing to an inter-
character boundary.

Palm OS Programmer’s Companion (Preliminary) 277

Localized Applications

Strings

/1 WRONG buffer is not guaranteed to

/1l point to start of character.

of fset = MyFunction();

Txt Get Next Char (buffer + offset, 0, NULL);

/1 R ght. TxtGetNextChar returns size of
/'l char, so buffer is guaranteed to point
/'l to start of char.
buf Pos = buffer;
whi | e (*buf Pos)
buf Pos += Txt Get Next Char (buf Pos, 0, NULL);

Truncating Displayed Text

If you’re performing drawing operations, you often have to
determine where to truncate a string if it’s too long to fit in the
available space. Two functions help you perform this task on strings
with multi-byte characters:

= WinDrawTruncChars - This function draws a string within a
specified width, determining automatically where to
truncate the string. If it can, it draws the entire string. If the
string doesn’t fit in the space, it draws one less than the
number of characters that fit and then ends the string with an
ellipsis (...).

= FntWidthToOffset - This function returns the byte offset of
the character displayed at a given pixel position. It can also
return the width of the text up to that offset.

Searching and Comparing Strings

Use the text manager functions Txt Conpar e and
Txt Casel essConpar e to perform comparisons of strings or to
search for one string inside of another.

In character encodings that use multi-byte characters, some
characters are accurately represented as either single-byte characters
or multi-byte characters. That is, a character might have both a
single-byte representation and a double-byte representation. One
string might use the single-byte representation and another might
use the multi-byte representation. Users expect the characters to

278 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Strings

match regardless of how many bytes a string uses to store that
character. Txt Conpar e and Txt Casel essConpar e can accurately
match single-byte characters with their multi-byte equivalents.

Because a single-byte character might be matched with a multi-byte
character, two strings might be considered equal even though they
have different lengths. For this reason, Txt Conpar e and

Txt Casel essConpar e take two parameters in which they pass
back the length of matching text in each of the two strings. See the
function descriptions in the Palm OS SDK Reference for more
information.

Global Find

A special case of performing string comparison is implementing the
global system find facility. To implement this facility, you should
call Txt Fi ndSt ri ng. As with Txt Conpar e and

Txt Casel essConpar e, Txt Fi ndSt ri ng accurately matches
single-byte characters with their corresponding multi-byte
characters. Plus, it passes back the length of the matched text. You’ll
need this value to highlight the matching text when the system
requests that you display the matching record.

Older versions of Palm OS use the function Fi ndStr I nSt r .

Fi ndStr I nSt r is not able to return the length of the matching text.
Instead, it assumes that characters within the string are always one
byte long.

Listing 13.7 and Listing 13.8 show how to implement a global find
facility on all systems (whether the text manager exists or not), and
how to implement a response to sysAppLaunchCndGot o, which is
the system’s request that the matching record be displayed. These
two listings are only code excerpts. For the complete
implementation of these two functions, see the example code in
your development environment.

Note that if you want to use Txt Fi ndSt ri ng to implement a
search within your application (as opposed to the global find
facility), you need to call Txt Pr epFi ndSt r i ng before you call
Txt Fi ndSt ri ng to ensure that the string is in the proper format.
(In the global find facility, the system has already made the call to
Txt PrepFi ndSt ri ng before your code is executed.)

Palm OS Programmer’s Companion (Preliminary) 279

Localized Applications
Strings

Listing 13.7 Implementing global find

static void Search (FindParanmsPtr findParans)
{

Word pos;

U nt recordNum

Voi dHand recor dH;

Bool ean done;

Bool ean mat ch;

DmOpenRef dbP;

U nt cardNo = O;

Local | D dbl D;

Fi ndPar ansPt r par amns;

MemoDBRecor dPtr nenoPadRecP;

ULong | ongPos;

Word mat chlLen;

Word intl Mr;

/1 See if international manager exists.
if (FtrGet(sysFtrCreator, sysFtrNumntlMyr, & ntlMr) !'= 0)
intl Mgr = 0;

parans = (Fi ndParansPtr)fi ndPar amns;

/1l Find the application's data file.

dbP = DnOpenDat abaseByTypeCr eat or (nenoDBType, sysFil eCMeno,
par ans- >dbAccesMode) ;

DnOpenDat abasel nf o(dbP, &dbl D, 0, 0, &cardNo, 0);

recor dNum = par ans- >r ecor dNum
while (true) {

/'l Get the next record. Skip private records if neccessary.
recordH = DnmQuer yNext | nCat egory (dbP, &recordNum
dmAl | Cat egori es) ;
/'l Have we run out of records?
if (! recordH {
par ans- >nore = fal se;
br eak;

280 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Strings

}
menoRecP = MenmHandl eLock (recordH);

/'l Search for the string passed.

/1 1f it's found display the title of the meno.

/1l Use TxtFindString on International Minager systens,
/'l else use FindStrinStr.

if (intlMr) {
mat ch = Txt FindString (& nmenoRecP->note),
par ans- >st r ToFi nd, & ongPos, &matchlLength);
pos = | ongPos;
if (match)
done = FindSaveMatch (findParanms, recordNum pos, O,
mat chLengt h, cardNo, dblD);
} else { //international manager doesn't exist.
mat ch = FindStrinStr (& nmenoRecP->note),
par ans- >str ToFi nd, &pos);
if (match)
done = FindSaveMatch (findParanms, recordNum pos, 0, O,
cardNo, dblD);

}
MenHandl eUnl ock (recordH);

if (done) break;
recor dNum#+;

}
DnCl oseDat abase (dbP);

}

Listing 13.8 Displaying the matching record

static void GoToRecord (GoToParansPtr goToParans, Bool ean

| aunchi ngApp)

{
Word recordNum

Event Type event;
Uunt attr;

Palm OS Programmer’s Companion (Preliminary) 281

Localized Applications
Strings

ULong uni quel b
DWord intl Myr;

if (FtrGet(sysFtrCreator, sysFtrNum ntl Mgr, & ntlMyr) !'= 0)
intl Mgr = 0;

recor dNum = goToPar ans- >r ecor dNum
DrRecordl nfo (MenoDB, recordNum &attr, &uniquel D, NULL);

/1l Send an event to goto a formand sel ect the matching text.
Mentet (&event, sizeof (Event Type), 0);

event . eType = frnlLoadEvent;
event.data.frnload.form D = EditView,
Evt AddEvent ToQueue (&event);

event . eType = frnGot oEvent;
event . data. frmGot 0. recor dNum = recor dNum
event . dat a. fr mGot 0. mat chPos = goToPar ans- >mat chPos;

event . dat a. f or n>0t 0. mat chLen =
(intlMr)
? goToPar ans- >mat chCust om
goToPar ans- >searchStr Len;
event . dat a. fr mGot 0. mat chFi el dNum = goToPar ans- >nat chFi el dNum
event.data.frnGoto.form D = EditView,
Evt AddEvent ToQueue (&event);

Dynamically Determining a String’s Contents

When working with strings in a localized application, you never
hard code them. Instead, you store strings in a resource and use the
resource to display the text. If you need to create the contents of the
string at runtime, store a template for the string as a resource and
then substitute values as needed.

282 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Strings

For example, consider the Edit view of the Memo application. Its
title bar contains a string such as “Memo 3 of 10.” The number of the
memo being displayed and the total number of memos cannot be
determined until runtime.

To create such a string, use a template resource and the text manager
function Txt Repl aceSt r . Txt Repl aceSt r allows you to search a
string for the sequence ™0, 1, up to ™9 and replace each of these
with a different string. In the Memo title bar example, you’d create a
string resource that looks like this:

Mermo 20 of ~1
And your code might look like this:

Listing 13.9 Using TxtReplaceStr

static void EditViewSetTitle (void)

{

CharPtr titleTenpl at eP;

FormPtr frm

Char posStr [digitsForRecordPosition + 1];
Char total Str [digitsForRecordPosition + 1];
U nt pos;

U nt | ength;

Il
/11

pos
Recor dCat egory) ;

Format as strings, the nenp's postion within its category,
and the total nunber of nmenos in the category.
= DnPosi ti onl nCat egory (MenoPadDB, CurrentRecord,

Strl ToA (posStr, pos+l);

i f

(Menosl nCat egory == nenosl nCat egor yUnknown)

Menosl nCat egory = DmNunRecor dsl nCat egory (MenoPadDB,

Recor dCat egory) ;

StrlToA (total Str, Menosl nCat egory);

Il
Il
11
Il

Get the title tenplate string. It contains '"*0" and '~"1'

chars which we replace with the position of CurrentRecord
within CurrentCategory and with the total count of records
in Current Category ().

Palm OS Programmer’s Companion (Preliminary) 283

Localized Applications
Dates

titleTenpl ateP = MenHandl eLock (DmGet Resource (strRsc,
EditViewTlitl eTenplateStringString));

if (EditViewTitlePtr)
MenPtr Free(EditViewTitl ePtr);

/1l Cal culate the space required, with is the tenplate, plus the
/'l inserted pos & total strings, plus the termnating null.
length = StrLen (posStr) + StrLen (total Str) +

StrLen (titleTenpl ateP) + 1;

/'l Reduce the new | ength because we're getting rid of 20 and "1

/1 in the tenplate. Wien Txt Repl aceStr is called wa null

/'l replacenent string ptr, it doesn't change the destination

[l string, but it still returns the nunber of occurences.

length -= 2 * (TxtReplaceStr(titleTenplateP, |ength, NULL, 0)
+ Txt Repl aceStr(titl eTenpl ateP, |ength, NULL, 1));

/1l Allocate the string space.

EditViewTlitlePtr = MenPtrNew (I ength);

ErrFatal Displaylf (!EditViewTlitlePtr, "Qut of nmenory");
StrCopy(EditViewTitlePtr, titleTenpl at eP);

[/l Substitute <posStr> and <total Str> for 0 and "1
Txt Repl aceStr (EditViewTitlePtr, |length, posStr, 0);
Txt Repl aceStr(EditViewTitlePtr, length, total Str, 1);

/1 Now set the title to use the newtitle string.
frm= FrnCet FornPtr (MenoPadEditForm;
FrnSetTitle (frm EditViewlitlePtr);

MenPt r Unl ock(titl eTenpl at eP);

Dates

If your application deals with dates and times, it should abide by
the values the user has set in the system preference for date and

284 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Numbers

Table 13.1

Numbers

time display. The default preferences at startup are different for the
different languages, though they can be overridden.

To check the system preferences call Pr ef Get Pr ef er ence with
one of the values listed in the second column of Table 13.1. The third
column lists an enumerated type that helps you interpret the value.

Date and time preferences

Preference Name Returns a value
of type

Date formats (i.e., pr ef Dat eFor nat Dat eFor mat Type

month first or day

first)

Time formats (i.e., pref Ti meFor mat Ti meFor mat Type

use a 12-hour clock
or use a 24-hour

clock)

Start day of week pref WeekSt art Day 0 (Sunday) or
(i.e., Sunday or 1 (Monday)
Monday)

To work with dates in your code, use the Date and Time Manager
API. It contains functions such as Day & Mont h, DayOf WWeek, and
Days| nMont h, which allow you to work with dates independent of
the user’s preference settings.

If your application displays large numbers or floating-point
numbers, you must check and make sure you are using the
appropriate thousands separator and decimal separator for the
device’s country by doing the following (see Listing 13.10):

1. Store numbers using US conventions, which means using a
“” as the thousands separator and a decimal point (.) as the
decimal separator.

Palm OS Programmer’s Companion (Preliminary) 285

Localized Applications
Compatibility Information

2. Use Pr ef Get Pr ef er ence and
LocGet Nunber Separ at or s to retrieve information about
how the number should be displayed.

3. UseStrlLocalizeNunber to perform the localization.

4. If a user enters a number that you need to manipulate in
some way, convert it to the US conventions using
StrDel ocal i zeNunber .

Listing 13.10 Working with numbers

/1l store nunbers using US conventions.
CharPtr jackpot = "20, 000, 000.00";
Char thou; // thousand separator

Char dp; // decinmal separator

/'l Retrieve current country’s preferences.

LocCGet Nunber Separ at or s((Nunber For mat Type) Pr ef Get Pr ef er ence
(pref Nunber Format), &thou, &dp);

/'l Localize jackpot nunber. Converts "," to thou and "." to dp.

StrLocal i zeNunber (j ackpot, thou, dp);

/1 Display string.

/1l Assume inputString is a nunber user entered,

/1l convert it to US conventions this way. Converts thou to ","

and dp to "."

St r Del ocal i zeNunber (i nput Nunber, thou, dp);

Compatibility Information

If you want to maintain backward compatibility with earlier
releases but you still want to use the international manager and the
text manager, you can link your application with the library

I nt1 @ ue. |'i b. This library provides the international manager
and the text manager for versions 3.0 and earlier.

Each time you make a call to the text manager or international
manager, the code in | nt | A ue. | i b either uses the text manager
or international manager on the ROM or, if the managers don’t exist,
executes a simple Latin equivalent of the function. Using the library
is slower than making the calls directly, so performance is crucial. To

286 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Notes on the Japanese Implementation

improve performance, you might use | nt | Get Rout i neAddr ess
to store the address of a frequently called routine.

Palm OS version 3.1 contains the following changes from previous
releases that affect strings, text, and localization. These changes may
affect you if you’re updating an application written to run on a prior
release or if you want to maintain backward compatibility with
prior releases:

e The keyDownEvent structure’s chr field (which contains
the input character) has been changed from a Wor d to a
WChar . The chr field may contain a multi-byte character, so
you should never copy the chr field into a Char variable or
pass it to a function using a Char parameter. Always use
WChar .

= Some of the special Palm OS glyphs in the high ASCII range
(such as the shortcut stroke and the command stroke) have
been moved down into the control code range, and other
characters (such as the numeric space and horizontal ellipsis)
have been copied into the control range so that they’re
guaranteed to exist in every encoding. For the numeric space
and horizontal ellipsis, you can use the macros
Chr Nuner i cSpace and Chr Hori zEI | i psi s to return the
appropriate character regardless of the operating system
version.

= The four playing-card characters have been moved from the
high ASCII range in the standard four fonts to the 9-point
Symbol font.

e Character attribute functions and macros are now obsolete
and have been replaced by functions and macros in the text
manager.

= The String Manager functions St r Chr and St r St r now
treat buffers as characters, not arbitrary byte arrays. If you
previously used these functions to search data buffers, your
code may no longer work.

Notes on the Japanese Implementation

This section describes programming practices for applications that
are to be localized for Japanese use. It covers:

Palm OS Programmer’s Companion (Preliminary) 287

Localized Applications
Notes on the Japanese Implementation

= Japanese Character Encoding

< Japanese Character Input

« Displaying Error Messages

Japanese Character Encoding

The character encoding used on Japanese systems is based on
Microsoft code page 932. The complete 932 character set (JIS level 1
and 2) is supported in both the standard and large font sizes. The
bold versions of these two fonts contain bolded versions of the
glyphs found in the 7-bit ASCII range, but the single-byte Katakana
characters and the multi-byte characters are not bolded.

Japanese Character Input

On current Japanese devices, users enter Japanese text using Latin
(ASCII) characters, and special software called a front-end processor
(FEP) transliterates this text into Hiragana or Katakana characters.
The user can then ask the FEP to phonetically convert Hiragana
characters into a mixture of Hiragana and Kanji (Kana-Kaniji
conversion).

Four silkscreen buttons added to the Japanese device control the
FEP transliteration and conversion process. These four FEP buttons
are arranged vertically between the current left-most silkscreen
buttons and the Graffiti area. The top-most FEP button tells the FEP
to attempt Kana-Kanji conversion on the inline text. The next button
confirms the inline text and terminates the inline conversion session.
The third button toggles the transliteration mode between Hiragana
and Katakana. The last button toggles the FEP on and off.

When any of these four FEP buttons are tapped, it posts a
keyDownEvent with the chr value set to vchr Tsml through
vchr Tsmid, respectively. When SysHandl eEvent is passed this
event, it posts at snfFepBut t onEvent and returnstr ue to
indicate that it handled the event.

Japanese text entry is always inline, which means that
transliteration and conversion happen directly inside of a field. The
field code passes events to the FEP, which then returns information
about the appropriate text to display.

288 Palm OS Programmer’s Companion (Preliminary)

Localized Applications
Summary of Localization

During inline conversion, the Graffiti space stroke acts as a shortcut
for the conversion FEP button and the Graffiti return stroke acts as a
shortcut for the confirm FEP button. If inline conversion is in
process, when SysHandl eEvent receives a space or return
character in a keyDownEvent , it generates the

t snFepBut t onEvent .

Displaying Error Messages

You may have code that uses the macros Er r Fat al Di spl ayl f
and Er r NonFat al Di spl ayl f to determine error conditions. If the
error condition occurs, the system displays the file name and line
number at which the error occurred along with the message that
you passed to the macro. Often these messages are hard-coded
strings. On Japanese systems, the Palm OS traps the messages
passed to these two macros and displays a generic message
explaining that an error has occurred.

You should only use Er r Fat al Di spl ayl f and

Err NonFat al D spl ayl f for totally unexpected errors. Do not use
them for errors that you believe your end users will see. If you wish
to inform your users of an error, use a localizable resource to display
the error message instead of Er r Fat al Di spl ayl f or

Err NonFat al Di spl ayl f.

Summary of Localization

Text Manager

Working With Multi-Byte Characters

TxtCharBounds TxtCharSize TxtByteAttr
TxtPreviousCharSize TxtNextCharSize

Changing Text

TxtReplaceStr TxtSetNextChar TxtTransliterate
TxtTruncate

Accessing Text

Palm OS Programmer’s Companion (Preliminary) 289

Localized Applications
Summary of Localization

Text Manager

TxtGetNextChar
TxtGetChar

TxtGetPreviousChar

TxtWordBounds

Searching/Comparing Text

TxtFindString

TxtCaselessCompare

TxtPrepFindString

TxtCompare

Obtaining a Character’s Attributes

TxtCharlsAINum

TxtCharlsDigit
TxtCharlsLower
TxtCharlsSpace
TxtlsValidChar

TxtCharlsAlpha
TxtCharlsGraph
TxtCharlsPrint

TxtCharlsUpper

TxtCharXAttr

TxtCharlsCntrl
TxtCharlsHex
TxtCharlsPunct
TxtCharAttr
TxtCharWidth

Obtaining Character Encoding information

TxtStrEncoding
TxtMaxEncoding

TxtEncodingName TxtCharEncoding

Localizing Numbers

StrLocalizeNumber StrDelocalizeNumber

LocGetNumberSeparators

International Manager

IntIGetRoutineAddress

290 Palm OS Programmer’s Companion (Preliminary)

14

Debugging
Strategies

You can use a Palm OS system manager called the error manager to
display unexpected runtime errors such as those that typically show
up during program development. Final versions of applications or
system software won’t use the error manager.

The error manager API consists of a set of functions for displaying
an alert with an error message, file name, and the line number
where the error occurred. If a debugger is connected, it is entered
when the error occurs.

The error manager also provides a “try and catch” mechanism that
applications can use for handling such runtime errors as out of
memory conditions, user input errors, etc.

This section helps you understand and use the error manager,
discussing the following topics:

« Displaying Development Errors
= Understanding the Try-and-Catch Mechanism
e Using the Error Manager Macros

« Summary of Debugging API

This chapter only describes programmatic debugging strategies; to
learn how to use the available tools to debug your application, see
the book Debugging Palm OS Applications.

Displaying Development Errors

The error manager provides some compiler macros that can be used
in source code. These macros display a fatal alert dialog on the
screen and provide buttons to reset the device or enter the debugger
after the error is displayed. There are three macros: Er r Di spl ay,
ErrFatal Di spl ayl f,and Err NonFat al Di spl ayl f.

Palm OS Programmer’s Companion (Preliminary) 291

Debugging Strategies

= Err D spl ay always displays the error message on the
screen.

e ErrFat al Di spl ayl f and Er r NonFat al Di spl ayl f
display the error message only if their first argument is
TRUE.

The error manager uses the compiler define ERROR_CHECK LEVEL
to control the level of error messages displayed. You can set the
value of the compiler define to control which level of error checking
and display is compiled into the application. Three levels of error
checking are supported: none, partial, and full.

If you set The compiler...
ERR_CHECK LEVEL to...

ERROR_CHECK_NONE (0) Doesn’t compile in any error calls.

ERROR_CHECK_PARTI AL Compilesinonly Err D spl ay
(1) and Err Fat al Di spl ayl f calls.

ERROR CHECK FULL (2) Compiles in all three calls.

During development, it makes sense to set full error checking for
early development, partial error checking during alpha and beta test
periods, and no error checking for the final product. At partial error
checking, only fatal errors are displayed; error conditions that are
only possible are ignored under the assumption that the application
developer is already aware of the condition and designed the
software to operate that way.

Using the Error Manager Macros

Calls to the error manager to display errors are actually compiler
macros that are conditionally compiled into your program. Most of
the calls take a boolean parameter, which should be settot r ue to
display the error, and a pointer to a text message to display if the
condition is true.

Typically, the boolean parameter is an in-line expression that
evaluates to t r ue if there is an error condition. As a result, both the
expression that evaluates the error condition and the message text
are left out of the compiled code when error checking is turned off.

292 Palm OS Programmer’s Companion (Preliminary)

Debugging Strategies

You can call Err Fat al Di spl ayl f, or Err Di spl ay, but using
Err Fat al Di spl ayl f makes your source code look neater.

For example, assume your source code looks like this:

result = DoSonet hi ng();
ErrFatal Di splaylf (result < 0,
"unexpected result from DoSonething");

With error checking turned on, this code displays an error alert
dialog if the result from DoSonet hi ng() is less than 0. Besides the
error message itself, this alert also shows the file name and line
number of the source code that called the error manager. With error
checking turned off, both the expression evaluationerr < 0 and
the error message text are left out of the compiled code.

The same net result can be achieved by the following code:

result = DoSonet hi ng();
#i f ERROR CHECK LEVEL != ERROR CHECK_NONE
if (result < 0)

ErrDi splay ("unexpected result from
DoSonet hi ng") ;
#endi f

However, this solution is longer and requires more work than
simply calling Er r Fat al Di spl ayl f . It also makes the source code
harder to follow.

Understanding the Try-and-Catch Mechanism

The error manager is aware of the machine state of the Palm OS
device and can therefore correctly save and restore this state. The
built-in try and catch of the compiler can’t be used because it’s
machine dependent.

Try and catch is basically a neater way of implementing a got o if an
error occurs. A typical way of handling errors in the middle of a
routine is to go to the end of the routine as soon as an error occurs
and have some general-purpose cleanup code at the end of every
routine. Errors in nested routines are even trickier because the result
code from every subroutine call must be checked before continuing.

When you set up a try/catch, you are providing the compiler with a
place to jump to when an error occurs. You can go to that error

Palm OS Programmer’s Companion (Preliminary) 293

Debugging Strategies

Listing 14.1

handling routine at any time by calling Er r Thr ow. When the
compiler sees the Er r Thr owcall, it performs a got o to your error
handling code. The greatest advantage to calling Er r Thr ow,
however, is for handling errors in nested subroutine calls.

Even if Er r Thr ow is called from a nested subroutine, execution
immediately goes to the same error handling code in the higher-
level call. The compiler and runtime environment automatically
strip off the stack frames that were pushed onto the stack during the
nesting process and go to the error handling section of the higher-
level call. You no longer have to check for result codes after calling
every subroutine; this greatly simplifies your source code and
reduces its size.

Using the Try and Catch Mechanism

The following example illustrates the possible layout for a a typical
routine using the error manager’s try and catch mechanism.

Try and Catch Mechanism Example

ErrTry {

p = MenPtrNew 1000);
if (!'p) ErrThrow err NoMenory);

MenSet (p,

1000, 0);

Creat eTabl e(p) ;
Print Tabl e(p);

}

ErrCatch(err) {
/'l Recover or cleanup after a failure in the
/1 above Try block."err" is an int
/1l identifying the reason for the failure.

/1l You may call ErrThrow() if you want to
/1 junp out to the next Catch bl ock.

// The code in this Catch bl ock doesn't
/'l execute if the above Try bl ock conpl etes
/! wi thout a Thr ow.

294 Palm OS Programmer’s Companion (Preliminary)

Debugging Strategies

if (err == errNoMenory)

ErrDi spl ay("Qut of Menory");
el se

ErrDi spl ay(" Sone other error");
} ErrEndCat ch
/1 You rnmust structure your code exactly as
/I above. You can’'t have an ErrTry w thout an
[l ErrCatch { } ErrEndCatch, or vice versa.

Any call to Er r Thr owwithin the Er r Tr y block results in control
passing immediately to the Er r Cat ch block. Even if the subroutine
Cr eat eTabl e called Er r Thr ow, control would pass directly to the
Er r Cat ch block. If the Er r Tr y block completes without calling

Er r Thr ow, the Er r Cat ch block is not executed.

You can nest multiple Er r Tr y blocks. For example, if you wanted to
perform some cleanup at the end of Cr eat eTabl e in case of error,

e PutErr Try/Err Cat ch blocks in Cr eat eTabl e
= Clean up in the Err Cat ch block first
e Call Err Thr owto jump to the top-level Er r Cat ch

Summary of Debugging API

Error Manager Functions

ErrDisplay ErrDisplayFileLineMsqg
ErrFatalDisplaylf ErrNonFatalDisplaylf
ErrThrow

Palm OS Programmer’s Companion (Preliminary) 295

Debugging Strategies

296 Palm OS Programmer’s Companion (Preliminary)

15

3= Standard IO
Applications

The Palm OS supports command line (UNIX style) applications for
debugging and special purposes such as communications utilities.
This capability is not intended for general users, but for developers.
This feature is not implemented in the Palm OS, but rather by
additional C modules that you must link with your application.

NOTE: Don't confuse this standard IO functionality with the file
streaming API. They are unrelated.

There are two parts necessary for a standard 10 application:
= The standard 10 application itself.

A standard 10 application is not like a normal Palm
application. It is executed by a command line and has
minimal user interface. It can take character input from the
stdin device (the keyboard) and write character output to the
stdout window.

= The standard 10 provider application.

A standard 10 provider application is necessary to execute
and see output from a standard 10 application. The standard
IO provider application is a normal Palm application that
provides a field in which you can enter commands to execute
standard 10 applications. The field also serves as a stdout
window where output from the executing application is
written.

The details of creating these two different applications are described
in the following sections.

Palm OS Programmer’s Companion (Preliminary) 297

Standard 10 Applications
Creating a Standard 10 Application

Creating a Standard 1O Application

To create a standard 10 application, you must include the header file
St dI OPal m h. In addition to including this header, you must link
the application with the module St dI OPal m c. This module
provides a Pi | ot Mai n routine that extracts the command line
arguments from the cnd and cndPBP parameters and the glue code
necessary for executing the appropriate callbacks supplied by the
standard 10 provider application.

You build the application normally, but give it a database type of
si oDBType ('sdio’) instead of 'appl'. In addition, it must be named
“Cmd-cmdname” where cmdname is the name of the command used
to execute the application. For example, the ping command would
be placed in a database named “Cmd-ping*.

In the Palm VII device, the Network panel, whose log window is a
standard 10 provider application, has two standard 1O commands
built-in: info and finger. The ROM has two additional ones: ping
and nettrace.

When compiling for the Palm device, the entry point must be
named Si oMai n and must accept two parameters: ar ¢ and ar gv.
Here’s the simplest possible example of a standard 10 application.

#i ncl ude <Stdl OPal m h>
SWrd Si oMai n(Word argc, char* argv|[])
{ printf(“Hello Wrld\n”);

}

Standard 10 applications can use several input and output functions
that mimic their similarly named UNIX counterparts. These are
listed in the summary table at the end of this chapter.

Your standard 10 application can accept input from stdin and write
output to stdout. The stdin device corresponds to the text field in
the standard 10 provider application that is used for input and
output. The stdout device corresponds to that same text field.

Creating a Standard 10 Provider Application

In order for a standard 10 application to be invoked and able to
provide results, you need a standard 10 provider application. This

298 Palm OS Programmer’s Companion (Preliminary)

Standard 10 Applications
Creating a Standard 10 Provider Application

application provides the user interface support; that is, the stdin
device support and the stdout window that the standard 10
application reads from and writes to.

The standard 10 provider sublaunches the standard 10 application
when the user types in a command line and Return (using Graffiti).
The provider application passes a structure pointer that contains the
callbacks necessary for performing 1O to the standard 10
application through the cndPBP parameter of Pi | ot Mai n.

To create a standard 10 provider application, you must link the
application with the module St dI OPr ovi der . c.

To handle input and output, the standard 10 provider application
must provide a form with a text field and a scroll bar. The standard
10 provider application must do the following:

1. Call Si ol ni t during application initialization. Si ol ni t
saves the object ID of the form that contains the input/output
field, the field itself, and the scroll bar.

2. Call Si oHandl eEvent from the form's event handler before
doing application specific processing of the event. In other
words, the form event handler that the application installs
with Fr nSet Event Handl er should call Si oHandl eEvent
before it does anything else with the event.

3. Call Si_oFr ee during application shutdown.

The application is free to call any of the standard 10 macros and
functions between the Si ol ni t and Si oFr ee calls. If the current
form is not the standard 10 form when these calls are made, they
will record changes to the active text and display it the next time the
form becomes active.

A typical standard 10 provider application will have a routine
called Appl i cat i onHandl eEvent , which gets called from its
main event loop after SysHandl eEvent and MenuHand| eEvent .
An example is shown in Listing 15.1.

Listing 15.1 Standard 10 Provider ApplicationHandleEvent Routine

static Bool ean ApplicationHandl eEvent (EventPtr event)

{
FornPtr frm

Palm OS Programmer’s Companion (Preliminary) 299

Standard 10 Applications
Creating a Standard 10 Provider Application

Wrd form d;

if (event->eType == frnlLoadEvent) {
formd = event->data.frnload. f ornl D
frm= FrmnitForm (formd);
FrnSet Acti veForm (frm;

switch (formd) {

case nyViewwNthStdl O
Fr nSet Event Handl er (frm MVi ewHandl eEvent);
br eak;

}

return (true);

}

return (false);

}

A typical application form event handler is shown in Listing 15.2.

Listing 15.2 Standard 10 Provider Form Event Handler

static Bool ean MyVi ewHandl eEvent (EventPtr event)
{

FornPtr frm

Bool ean handl ed = fal se;

/1l Let Stdl O handler do its thing first.
i f (SioHandl eEvent (event)) return true;

/1 1f Stdl O did not conpletely handl e the event...
if (event->eType == ctl Sel ect Event) {
switch (event->data.ctl Sel ect.control D) {
case nyVi ewDoneBut t onl D
Fr mGot oFor m (net wor kFor m D) ;
handl ed = true;
br eak;

}
}

300 Palm OS Programmer’s Companion (Preliminary)

Standard 10 Applications
Summary of Standard 10

else if (event->eType == nenuEvent)
return MyMenuDoCommand(event->data.nenu.item D);

else if (event->eType == frnlpdat eEvent) {
MyVi ewDr aw(Fr nmGet Acti veForm());
handl ed = true;

}

else if (event->eType == frnOpenEvent) {
frm= FrnGet Acti veForn();
MViemnit(frm);
My ViewDraw(frm);
handl ed = true;

}

else if (event->eType == frnC oseEvent) {
frm= FrnCet Acti veForn();
MyVi ewCl ose(frm;

}

return (handl ed);

Summary of Standard 10

Standard IO Macros and Functions

fgetc putchar

fgets puts

fprintf SioAddCommand
fputc SioMain

fputs sprintf

getchar system

gets viprintf

printf vsprintf

putc

Palm OS Programmer’s Companion (Preliminary) 301

Standard 10 Applications
Summary of Standard 10

Standard IO Provider Functions

SioClearScreen SioHandleEvent
SioExecCommand Siolnit
SioFree

302 Palm OS Programmer’s Companion (Preliminary)

Index

Numerics

0.01-second timer 186
1.0 heaps 137
1-second timer 186
2.0 heaps 137

3.0 heaps 137

32K jumps 30

68328 processor 125

A

alarm manager 157-163
and alarm sound 158
procedure alarms 161
reminder dialog boxes 158
alarm sound 158, 168
alarms 27
alert manager 81
alerts, system-defined 81
allocating handles 30
AlmGetAlarm 159
AlmGetProcAlarm 162
AlmSetAlarm 158, 159
AlmSetProcAlarm 162
ANSI C libraries 21
APPL database 31
application design
accessibility 37
assigning version number 32
base tutorial phase 35
buttons 38
command buttons 37
data entry 41
dialogs 37
ease of use 37
handling system messages 28
minimizing taps 37
removing deleted records 32
switching applications 40
using lists 96
application icon 28, 38
name 27
size 28
application launcher 52
application name 27

application preferences database 27
application record database 27
application startup 51-63
application-defined features 165
applications

control flow 20

event driven 20
AppNetRefnum 236
AppNetTimeout 236
architecture of memory 125
auto-off 182

timer 74
auto-repeat 73

B

back-up of data to PC 124
battery 182
conservation using modes 181
life, maximizing 181
battery life and serial manager 194
baud rate, parity options 195
beaming 223
Berkeley Sockets APl 232
mapping example 234
bind (Berkeley Sockets API) 245
bits behind menu bar 94
booting 178
button objects 84
Button resource 37,78
highlighting 84
buttons
assignment by end-user 40
choosing number 38
in dialog 45
position 44
traversing categories 40
byte ordering 192

C

C library
and float manager 187
and string manager 103
C library calls 35
calibrating digitizer 108

Palm OS Programmer’s Companion (Preliminary) 303

Index

carriage returns 91 creator ID 31

categories 39,40 ctlEnterEvent 84, 85, 86, 87, 88, 89
maximum number 28 ctIExitEvent 85, 86, 88, 90
traversing with button 40 CtlHandleEvent 84

changing serial port settings 195 CtINewControl 101

Char 271 ctiRepeatEvent 87, 88

Chars.h 271 ctlSelectEvent 86, 87, 89, 90

check box object 89 CTS timeout 195

Checkbox 78 custom Ul element 100

ChrHorizEllipsis 287

ChrisHardKey 274 D

ChrNumericSpace 287

data entry, Graffiti 41

chunks_ 1.33 data manager 141
resizing 136 using 145
 size 136 database headers 143
Click sound 168 fields 143
clipboard 43 database ID

clock, real-time 185
close (Berkeley Sockets API) 245

and launch codes 60
database version number 32

close-wait state 242 databases 20, 128, 142
closing net library 242 getting and setting information 146
closing serial link manager 216 date and time manager 186
closing serial port 195 DateFormatType 285
CMP 193 default receive queue, restoring 197
CodeWarrior IDE 22 deleted records 28, 32
command buttons 37 deleting database 145
command line applications 297 deleting records 31
conduit 19 desktop link protocol 193
configuration, net library 237 Desktop Link Server 214
Confirmation sound 168 Details button 40
connect (Berkeley Sockets API) 245 Details dialog format 42
connection management protocol 193 dialog boxes (reminder) 158
connection manager 211 dialogs 30
connectivity 191 design 45
connector (external) 192 online help 45
conserving battery using modes 181 digitizer 105
Constructor 22 after reset 179
control flow 20 and pen manager 108
control objects 84 and pen queue 72
conventions for naming 29 calibrating 108
CRC-16 212 dimensions 108

pen stroke to key event 72

creating a chunk 135
creating database 145
creating resources 151

polling 186
sampling accuracy 108

304 Palm OS Programmer’s Companion (Preliminary)

Index

DLP 193
DmCloseDatabase 174
DmCreateDatabase 145, 149
DmbDatabaselnfo 32, 146, 149
DmbDatabaseSize 146
DmDeleteDatabase 145, 149
DmbDeleteRecord 31
DmFindDatabase 146,173
DmFindRecordByID 174
DmGetDatabase 146
DmGetRecord 146,174
DmNewResource 151
DmOpenDatabase 173
DmOpenDatabaseByTypeCreator 171
DmQueryRecord 146,174
DmReleaseRecord 146,174
DmReleaseResource 150
DmRemoveRecord 31
DmResizeRecord 146
DmSetDatabaselnfo 32, 146
DmWrite 166
double taps 39
down arrow 92
doze mode 181
drivers, restarting 178
dynamic heap

soft reset 178

dynamic memory 30
dynamic RAM 125

E

editable items
labels 45
edit-in-place 30
ErrDisplay 291, 293
ErrFatalDisplaylf 289, 292, 293
errno 236
ErrNonFatalDisplaylf 289
error manager 291-295
try-and-catch mechanism 293
Error sound 168
ERROR_CHECK_LEVEL 292, 293
ErrThrow 294

event loop 67-70

example 67

example program 33
event-driven applications 20
events

naming conventions 29

overview 65-75
EvtGetEvent 82,181
EvtResetAutoOffTimer 74, 197
examples

event loop 67

startup routine 55

stop routine 61
exchange manager 223

launch codes sent by 225

F

fentl 246
feature manager 163-167
feature memory 166
features
application-defined 165
feature memory 166
system version 164
Field 79
field objects 90
events 91
line feeds vs. carriage returns 91
file streaming functions 155
finding database 146
FindStrinStr 279
finger navigation 39
FIR 227
flags, launch flags 52
fldEnterEvent 92
FldHandleEvent 91
FlIdNewField 101
float manager overview 187
flushing serial port 197
FntDefineFont 104
FntSetFont 104
font labels 45
FontSelect 104

Palm OS Programmer’s Companion (Preliminary) 305

Index

form objects 79 Graffiti status indicator area

event flow 80 not obscuring 45
forms 21 graffitiReferenceChr 107
FrmAlert 81 GrfProcessStroke 105, 106
FrmCustomAlert 81
FrmNewBitmap 101 H
FrmNewForm 101 handles, allocation 30
FrmNewGadget 101 handshaking options 195
FrmNewLabel 101 hard reset 178,179
frmOpenEvent 80, 87 hardware button presses and key manager 107
FrmRemoveObject 101 heap fragmentation 30
FrmValidatePtr 101 heap header 132
FtrGet 165, 166, 275 heap space 30
FtrPtrNew 166 heaps
FtrSet 165 and soft reset 129
FtrUnregister 165 in Palm OS 1.0 137
function naming conventions 29 in Palm OS 2.0 137

in Palm OS 3.0 137

G overview 129

RAM and ROM based 123

gadget resource 100 structure 132

getdomainname (Berkeley Sockets API) 250

Help ID 45
ge::os:gyaddr (BBerkke'fy Sgckket: AAPFR 22?;’0 highlighting button objects 84
gethostbyname (Berkeley Sockets API) HotSync 32

gethostname (Berkeley Sockets API) 250
getpeername (Berkeley Sockets API) 246
getservbyname (Berkeley Sockets API) 250
getsockname (Berkeley Sockets API) 246 |
getsockopt (Berkeley Sockets API) 246

htonl (Berkeley Sockets API) 251
htons (Berkeley Sockets API) 251

gettimeofday() (Berkeley Sockets API) 250 icons, application 28
global find 27 1D
and private records 27 local 131
global variables 30 See Also creator 1D
erasing 178 IDE 22
Graffiti 41, 43 inet_addr (Berkeley Sockets API) 251
customizing behavior 105 inet_Inaof (Berkeley Sockets API) 251
Help 107 inet_makeaddr (Berkeley Sockets API) 251
Help character 107 inet_netof (Berkeley Sockets API) 252
Graffiti manager 105 inet_network (Berkeley Sockets API) 251
Graffiti navigation 40 inet_ntoa (Berkeley Sockets API) 252
Graffiti recognizer 71 infrared library 226
Graffiti reference 42 initialization
Graffiti Shift global variables 55
getting and setting state 106 input devices 19
Graffiti ShortCuts database 106 insertion point object 102

306 Palm OS Programmer’s Companion (Preliminary)

Index

interface(s) used by net library 238
Internet 236
Internet applications 232
interrupting Sync application 183
IntIGlue.lib 286
IR library 226

accessing 228
IrDA stack 227
IrLAP 227
IrLMP 227

K

kernel 183
key events
from pen strokes 71
key manager 107
key queue 73
keyboard 42
KeyCurrentState 107
keyDownEvent 92, 93,107, 109, 271, 287
KeyRates 108

L

label resource 98
labels, font 45
launch codes 20, 51-63
and returned database ID 60
code example 53
creating 60
handling 26
launch flags 52
parameter blocks 52
predefined 62
sent by exchange manager 225
summary 62
SysBroadcastActionCode 59
use by application 59
launch flags 52
launcher 38
application icon name 27
launching applications 52
LCD screen 79
left arrow 92
line feeds 91

list objects 96
List resource 79
listen (Berkeley Sockets API) 247
local IDs 131, 142
localization

general guidelines 267
LocGetNumberSeparators 286
locking a chunk 135
Loop-back Test 214
low-battery warnings 27
IstEnterEvent 97
LstHandleEvent 97
LstNewList 101
IstSelectEvent 97

M

mailbox queue 232
managers
naming convention 157
overview 21
master pointer table 132
maximizing battery life 181
MemHandleFree 136
MemHandleLock 135, 174
MemHandleNew 135
MemHandleResize 136
MemHandleSize 136
MemHandleUnlock 135
MemMove 137
memory architecture 125
memory management
architecture 125
Introduction 123

memory manager
chunks 127

memory manager See Also data manager

memory manager See Also resource manager

MemPtrNew 136

MemPtrRecoverHandle 136

MemPtrUnlock 174

MemSet 137

menu bar objects 93

Menu Bar resource 79

Palm OS Programmer’s Companion (Preliminary) 307

Index

menu bars network interface 233
and user actions 93 network services 231
bits behind 94 new serial manager 198
Menu Resource 79 nilEvent 82
menuEvent 95 ntohl (Berkeley Sockets API) 251
MenuHandleEvent 94 ntohs (Berkeley Sockets API) 251
menus 43
MIME data type 224 O
Modem Manager 193 OBEX 228
modes 40, 180 online help 45

efficient use 181
modifying Graffiti shortcuts 107
Motorola byte ordering 192
moving memory 137
multitasking kernel 183

on-screen keyboard 42

open sockets maximum (net library) 244
opening net library 241

opening serial link manager 216
opening serial port 195

optimization 30
N dynamic memory 30
naming conventions 29 sorting 30
navigation 40 over the air characters 265
net library overloading buttons 39
closing 242 overview of net library 232-235
open sockets maximum 244
opening and closing 241 P
OS requirement 233)
overview 232-235 packet assembly/disassembly protocol 193
preferences 237 packet footer, SLP 214
RAM requirement 233 packet header, SLP 213
setup and configuration 237 packet receive timeout 216
version checking 243 PADP 193,214
net protocol stack 232 parameter blocks 52
as separate task 232 patches, loading during reset 179
netlFCreatorLoop 238 PC connectivity 18,124
netlFCreatorPPP 238 pen location polling 108
netlFCreatorSLIP 238 pen manager 108
netlib interface introduction 232 pen queue 72,108
NetLiblFAttach 238 pen strokes and key events 71
NetLiblFDetach 238 penDownEvent 84, 85, 86, 87, 88, 89, 92, 96, 97
NetLiblIFGet 238 penUpEvent 84, 85, 86, 87, 88, 89, 90, 92, 95, 97, 106
NetLiblFSettingGet 238 performance 30
NetLiblFSettingSet 239 physical scrolling 41
NetLibSettingGet 240 PilotMain 52
NetLibSettingSet 240 code example 53
NetSocket.c 236 popSelectEvent 97
network device drivers 232 Popup list 37,79

308 Palm OS Programmer’s Companion (Preliminary)

Index

Popup trigger 79 R
popup trigger object 85 RAM 19
port ID for socket 216

RAM store 123
power 19 RAM use 124

pov(\;e:c_modd:as 18?} des 62 read (Berkeley Sockets API) 247
predenined faunch codes real-time clock 185, 186

prefAlarmSoundLevelV20 176 receive queue, restoring 197
prefAlarmSoundVolume 169, 177 receiving SLP packet 215
prefDateFormat 285 records 20, 141

prefzrer](i:s;ﬁit specific 55 recv (Berkeley Sockets API) 247
aﬂfo_off 182 P recvfrom (Berkeley Sockets API) 247
recvmsg (Berkeley Sockets API) 247

quick switch 41
restoring 27 reference number for socket 216

saving 27 reminder dialog boxes 158

short cuts 107 Remote Console 214

system 55 Remote Console packets 214
preferences database Remote Debugger 214,216

net library 237 remote inter-application communication 193
prefGameSoundLevelVV20 176 Remote Procedure Call packets 214
prefGameSoundVolume 169, 177 remote procedure calls 193,216
PrefGetAppPreferences 27 Remote Ul 214
PrefGetPreference 169, 176, 177, 285, 286 repeat control objects 87
PrefGetPreferences 175 Repeating button 78
PrefSetAppPreferences 27 ResEdit
PrefSetPreference 175 resource haming conventions 29
prefSysSoundLevelV20 176 reset 178
prefSysSoundVolume 169, 177 digitizer screen 179
prefTimeFormat 285 hard reset 179
prefWeekStartDay 285 loading patches 179

soft reset 178
resource database header 148
resource manager 148

PrgHandleEvent 82
PrgStartDialog 82
PrgUpdateDialog 82

private records 27 using 149
procedure alarms 161 resources
gadget 100

progress manager 82 label 98

Push button 37,78

push button objects 88
event flow 88

storing 148
response time 183
restoring default receive queue 197
restoring preferences 27

Q RIAC 193

quick switch, preferences 41 right arrow 92
ROM store 123
ROM use 124

Palm OS Programmer’s Companion (Preliminary) 309

Index

ROM, retrieving serial number 184
RPC 193,216

RS232 signals 194

running mode 181

S

saving preferences 27
SclDrawsScrollBar 99
sclEnterEvent 99
sclExitEvent 99
SclGetScrollBar 99
sclRepeatEvent 99
SclSetScrollBar 99
screen layout 44
screen size 17,79
scrollbar objects 98
scrolling 41
select (Berkeley Sockets API) 248
Selector trigger 78
selector trigger object 86
send (Berkeley Sockets API) 249
sending stream of bytes 196
sendmsg (Berkeley Sockets API) 249
sendto (Berkeley Sockets API) 249
SerClearErr 195
serCtlBreakStatus (in SerCtIEnum) 198
serCtIEmusSetBlockingHook (in SerCtIEnum) 198
SerCtlIEnum 197
serCtlFirstReserved (in SerCtIEnum) 197
serCtlIHandshakeThreshold (in SerCtIEnum) 198
serCtiIMaxBaud (in SerCtlEnum) 198
serCtlStartBreak (in SerCtIEnum) 197
serCtlStartLocalLoopback (in SerCtIEnum) 198
serCtlIStopBreak (in SerCtIEnum) 198
serCtlStopLocalLoopback (in SerCtIEnum) 198
serErrAlreadyOpen 195
serErrLineErr 196
serial communication 191
serial link manager 215

opening 216
serial link protocol 193,212,213, 215
serial manager 193, 194, 198

prolonging battery life 194

serial number, retrieving 184
serial port 27

changing settings 195

closing 195

flushing 197

opening 195
SerOpen 195
SerReceive 196
SerReceiveCheck 196
SerReceiveFlush 197
SerReceiveWait 196
SerSend 196
SerSendWait 196
SerSetReceiveBuffer 197
SerSetSettings 195
setdomainname (Berkeley Sockets API) 250
sethostname (Berkeley Sockets API) 250
setsockopt (Berkeley Sockets API) 249
settimeofday (Berkeley Sockets API) 250
setup, net library 237
shortcuts 43
shortcuts, Graffiti 106
shutdown (Berkeley Sockets API) 249
silk-screened icons, not obscuring 45
SIR 227
sleep mode 180

and current time 185

and real-time clock 186
SlkClose 216
SlkCloseSocket 216
slkErrAlreadyOpen 216
SIkOpen 216
SIkOpenSocket 216
SlkPktHeaderType 217
SlkReceivePacket 217,219
SlkSendPacket 217
SIkSocketListenType 217
SlkSocketPortID 216
SlkSocketRefNum 216
SlkSocketSetTimeout 216
SIkWriteDataType 217
SLP 193,212

310 Palm OS Programmer’s Companion (Preliminary)

Index

SLP packet 212

footer 214

header 213

receiving 215

transmitting 215
SMF 169
SMFs in databases 172
SndCommandType 170
SndCreateMidiList 173,178
SndDoCmd 168, 169, 170, 178
SndPlaySMF 168, 169, 170, 174,178
SndPlaySystemSound 168, 170
SndSetDefaultVolume 175
SndSmfOptionsType 170
SO _ERROR (Berkeley Sockets API) 247
SO_KEEPALIVE (Berkeley Sockets API) 247,249
SO_LINGER (Berkeley Sockets API) 247, 249
SO_TYPE (Berkeley Sockets API) 247
socket (Berkeley Sockets API) 249
socket listener 217,219
socket listener procedure 217,219
sockets, opening serial link socket 216
soft reset 129,178

dynamic heap 178
sorting 30
sound manager 167-178
stack space 30
standard 10 applications 297
startup 51-63
startup routine, example 55
Startup sound 168
state information, storing 27
stop routine example 61
storage heaps, erasing 179
storage RAM 125
StrDelocalizeNumber 286
string manager 102
StrLocalizeNumber 286
strokes

capturing 72
structure elements, naming convention 29
summary of launch codes 62
switching applications 40
switching categories 40

switching views 40

Sync application 183

synchronization messages 27, 28
sys_socket.h 234,236

SysAppLaunch 59, 109
sysAppLaunchCmdAddRecord 62
sysAppLaunchCmdAlarmTriggered 62, 159, 160
sysAppLaunchCmdCountryChange 62
sysAppLaunchCmdDisplayAlarm 62, 159, 161
sysAppLaunchCmdExgAskUser 62, 225
sysAppLaunchCmdExgReceiveData 62, 225
sysAppLaunchCmdFind 62
sysAppLaunchCmdGoto 62, 226, 279
sysAppLaunchCmdGoToURL 62
sysAppLaunchCmdlnitDatabase 62
sysAppLaunchCmdLookup 63
sysAppLaunchCmdNormallLaunch 26
sysAppLaunchCmdOpenDB 63
sysAppLaunchCmdPanelCalledFromApp 41, 63
SysAppLaunchCmdReset 178
sysAppLaunchCmdReturnFromPanel 41, 63
sysAppLaunchCmdSaveData 63
sysAppLaunchCmdSyncNotify 63
sysAppLaunchCmdSystemLock 63
sysAppLaunchCmdSystemReset 63,178
sysAppLaunchCmdTimeChange 63
sysAppLaunchCmdURLParams 63
sysAppLaunchCommandNormalLaunch 52,55
SysAppLauncherDialog 109

SysBatteryInfo 182
SysBroadcastActionCode 59
SysCurAppDatabase 59

sysFileDescStdIn 248

sysFtrCreator 164

sysFtrNumROMVersion 164
SysGraffitiReferenceDialog 107

SysLibFind 195, 228

SysReset 179

SysSetAutoOffTime 182

SysTaskDelay 182, 187

system event manager 71-75

system keyboard 43

system messages 27, 28

Palm OS Programmer’s Companion (Preliminary) 311

Index

system preferences 26, 55
system tick interrupts 186
system ticks 186

and Simulator 187

on Palm OS device 186
system version feature 164
SystemMgr.h 62, 164, 237
SystemPreferencesTypeV10 175
SysTicksPerSecond 187
SysTraps.h 48
SysUIAppSwitch 60, 109

T

table objects 95
tAIN resource 28
taps
double taps 39
minimizing 37
TblHasScrollBar 99
tbiSelectEvent 95, 96
TCP/IP 231
TCP_MAXSEG (Berkeley Sockets API) 246
TCP_NODELAY (Berkeley Sockets API) 246, 249
TimDateTimeToSeconds 160, 186
time manager 186
TimeFormatType 285
timeout
serial link socket 216
timer 185
TimGetSeconds 186
TimGetTicks 187
timing 187
TimSecondsToDateTime 186
TimSetSeconds 186
Tiny TP 227
title bar 44
transmitting SLP packet 215
try-and-catch mechanism 293
example 294
tutorial (use for application design) 35
TxtCaselessCompare 278
TxtCharBounds 277
TxtCharSize 277
TxtCompare 278

TxtFindString 279
TxtGetNextChar 276
TxtGetPrevChar 276
TxtlsValidChar 273
TxtPrepFindString 279
TxtReplaceStr 283
TxtSetNextChar 276

U

UDP 231
Ul design 18, 35
avoiding dialog box stacking 30
button alignment 44
design elements 78
design philosophy 18, 35
dialogs 45
screen layout 44
title bar 44
Ul design rules
clipboard 43
finger navigation 39
Graffiti navigation 40
Graffiti status indicator area 45
overloading buttons 39
ready cursor 42
silk-screened icons 45
Ul objects 21
buttons 84
check box 89
control objects 84
field 90
form 79
insertion point 102
list 96
menu bars 93
popup trigger 85
push button 88
repeat control 87
scrollbar 98
selector trigger 86
table 95
windows 80
Ul resources
custom 100
Ul resources, storing 148

312 Palm OS Programmer’s Companion (Preliminary)

Index

UIAS 183
unlocking a chunk 135
up arrow 92
user input 43
cut, copy, paste, undo 43
User Interface Application Shell 183
user interface elements
storing (resource manager) 148

Vv

vchrHardAntenna 265
vchrRadioCoverageFail 265
vchrRadioCoverageOK 265
vchrTsml 288

vchrTsm4 288
version checking, net library 243
version number 32

W

wait cursor 30
Warning sound 168
WChar 271
window objects 80
off-screen 80
winEnterEvent 80, 86, 95, 97
winExitEvent 80, 87, 97
write (Berkeley Sockets API) 249

Palm OS Programmer’s Companion (Preliminary) 313

Index

314 Palm OS Programmer’s Companion (Preliminary)

	About This Document
	Palm OS SDK Documentation
	What This Volume Contains
	Conventions Used in This Guide

	Programming Palm OS in a Nutshell
	Why Programming for Palm OS Is Different
	Screen Size
	Quick Turnaround Expected
	PC Connectivity
	Input Methods
	Power
	Memory
	File System
	Backward Compatibility

	Palm OS Programming Concepts
	Programming Tools
	Where to Go From Here

	Good Design Practices
	Designing Your Application
	Integrating Programs With the Palm OS Environment
	Naming Conventions
	Achieving Optimum Performance
	Assigning a Creator ID
	Working With Databases
	Writing Robust Code
	Avoiding Potential Pitfalls

	User Interface Guidelines
	Understanding the Palm OS UI Design Philosophy
	Creating a Palm OS User Interface
	Palm OS Resource Selection: List or Table?

	Localization Guidelines
	Making Your Application Run on Different Devices
	Running New Applications on an Older Device
	Compiling Older Applications With The Latest SDK

	Application Startup and Stop
	Launch Codes and Launching an Application
	Responding to Launch Codes
	Responding to Normal Launch
	Responding to Other Launch Codes

	Launching Applications Programmatically
	Creating Your Own Launch Codes
	Stopping an Application
	Launch Code Summary

	Event Loop
	The Application Event Loop
	Low-Level Event Management
	Event Translation: Pen Strokes to Key Events
	Pen Queue Management
	Key Queue Management
	Auto-Off Control
	System Event Manager Summary

	User Interface
	Palm OS Resource Summary
	Drawing on the Palm OS Device
	Forms, Windows, and Dialogs
	Alert Dialogs
	Progress Dialogs

	Controls
	Buttons
	Popup Trigger
	Selector Trigger
	Repeating Button
	Push Buttons
	Check Boxes

	Fields
	Menus
	Tables
	Table Event

	Lists
	Labels
	Scroll Bars
	Custom UI Objects
	Dynamic UI
	Dynamic User Interface Functions

	Insertion Point
	Text
	Working With Text As Strings
	Fonts in Palm OS 3.0 and Later

	Receiving User Input
	The Graffiti Manager
	The Key Manager
	The Pen Manager

	Application Launcher
	Summary of User Interface API

	Memory
	Introduction to Memory Use on Palm OS
	Hardware Architecture
	PC Connectivity

	Memory Architecture
	Heap Overview

	The Memory Manager
	Memory Manager Structures
	Using the Memory Manager

	Summary of Memory Management

	Files and Databases
	The Data Manager
	Records and Databases
	Structure of a Database Header
	Using the Data Manager

	The Resource Manager
	Structure of a Resource Database Header
	Using the Resource Manager

	File Streaming Application Program Interface
	Using the File Streaming API

	Summary of Files and Databases

	Palm System Features
	Alarms
	Setting an Alarm
	Alarm Scenario
	Setting a Procedure Alarm

	Features
	The System Version Feature
	Application-Defined Features
	Using the Feature Manager
	Feature Memory

	Sound
	Synchronous and Asynchronous Sound
	Using the Sound Manager
	Sound Preferences Compatibility Information

	System Boot and Reset
	Soft Reset
	Soft Reset + Up Arrow
	Hard Reset
	System Reset Calls

	Hardware Interaction
	Palm OS Power Modes
	Guidelines for Application Developers
	Power Management Calls

	The Microkernel
	Retrieving the ROM Serial Number
	Time
	Using Real-Time Clock Functions
	Using System Ticks Functions

	Floating-Point
	Using Floating Point Arithmetic
	Using 1.0 Floating-Point Functionality

	Summary of System Features

	Serial Communication
	Serial Hardware
	Byte Ordering
	Serial Communications Architecture Hierarchy
	The Serial Manager
	Using the Serial Manager

	The New Serial Manager
	Checking for the New Serial Manager
	What's New About the New Serial Manager
	About the New Serial Manager
	Using the New Serial Manager
	New Serial Manager Example
	Writing a Serial or Virtual Device Driver

	The Connection Manager
	The Serial Link Protocol
	SLP Packet Structures
	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager

	Summary of Serial Communications

	Beaming (Infrared Communication)
	Exchange Manager
	Overview
	Exchange Manager and Launch Codes

	IR Library
	IrDA Stack
	Accessing the IR Library

	Summary of Beaming

	Network Communication
	Net Library
	About the Net Library
	Net Library Usage Steps
	Obtaining the Net Library’s Reference Number
	Setting Up Berkeley Socket API
	Setup and Configuration Calls
	Opening the Net Library
	Closing the Net Library
	Version Checking
	Network I/O and Utility Calls
	Berkeley Sockets API Functions

	Summary of Network Communication

	Internet and Messaging Applications
	Overview of the Palm.Net System
	Palm Query Applications
	Palm.Net System Overview

	System Version Checking
	Using Clipper to Display Information
	Launching Other Applications from Clipper
	Sending Messages
	New keyDownEvent Key Codes
	Over the Air Characters

	Localized Applications
	Localization Guidelines
	Text Manager and International Manager
	Characters
	Declaring Character Variables
	Using Character Constants
	Missing and Invalid Characters
	Retrieving a Character’s Attributes
	Virtual Characters
	Retrieving the Character Encoding

	Strings
	Manipulating Strings
	Performing String Pointer Manipulation
	Truncating Displayed Text
	Searching and Comparing Strings
	Global Find
	Dynamically Determining a String’s Contents

	Dates
	Numbers
	Compatibility Information
	Notes on the Japanese Implementation
	Japanese Character Encoding
	Japanese Character Input
	Displaying Error Messages

	Summary of Localization

	Debugging Strategies
	Displaying Development Errors
	Using the Error Manager Macros
	Understanding the Try-and-Catch Mechanism
	Using the Try and Catch Mechanism
	Summary of Debugging API

	Standard IO Applications
	Creating a Standard IO Application
	Creating a Standard IO Provider Application
	Summary of Standard IO

	Index

