

Developing Palm OS 3.0
Applications

Part I: Interface Management

Navigate this online document as follows:

To see bookmarks,
type:

Command-7 (Mac OS)
Ctrl-7 (Windows)

To navigate,
click on:

any blue hypertext link
any Table of Contents entry
any Index entry
arrows in the toolbar

Developing Palm OS
3.0 Applications

Part I: Interface
Management

Copyright © 1996 - 1998, 3Com Corporation or its subsidiaries (“3Com”). All rights reserved. This docu-
mentation may be printed and copied solely for use in developing products for the Palm Computing plat-
form. In addition, two (2) copies of this documentation may be made for archival and backup purposes.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or
by any means or used to make any derivative work (such as translation, transformation or adaptation)
without express written consent from 3Com.

3Com reserves the right to revise this documentation and to make changes in content from time to time
without obligation on the part of 3Com to provide notification of such revision or changes. 3COM MAKES
NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR
THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMENTATION IS PROVIDED
ON AN “AS IS” BASIS. 3COM MAKES NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IM-
PLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING
WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, 3COM ALSO EXCLUDES FOR ITSELF AND ITS SUPPLI-
ERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR
DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY
KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION OR
DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF 3COM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3Com, the 3Com logo, HotSync, Palm Computing, and Graffiti are registered trademarks, and Palm III,
Palm OS, and the Palm Computing Platform logo are trademarks of 3Com Corporation or its subsidiaries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brand and product
names may be registered trademarks or trademarks of their respective holders.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Contact Information:

Metrowerks U.S.A. and international

Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758
U.S.A.

Metrowerks Canada

Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Metrowerks Mail order

Voice: 1-800-377–5416
Fax: 1-512-873–4901

3Com (Palm Computing Subsidiary)
Mail Order

U.S.A.: 1-800-881-7256 Canada: 800-891-6342
elsewhere: 1-801-431-1536

Metrowerks World Wide Web

http://www.metrowerks.com

Palm Computing World Wide Web

http://www.palm.com

Registration information

register@metrowerks.com

Technical support

support@metrowerks.com

Sales, marketing, & licensing

sales@metrowerks.com

CompuServe

go

Metrowerks

Developing Palm OS 3.0 Applications, Part I

 v

Table of Contents

About This Document. . 23

Palm OS SDK Documentation 23
What This Guide Contains 24
Conventions Used in This Guide 25
What’s New in Palm OS 3.0 26

General Information 26
New Launch Codes. 27
Dynamic User Interface Objects 27
Font Functions . 27
Progress Manager 28
File Streaming API 28
Sound Manager . 29
Exchange Manager 29
IR Library . 29
Miscellaneous New Functions in 3.0 30
Existing Functions that Changed in 3.0 30
Documentation Revisions 31

1 Developing Palm OS Applications 33

Overview of Application Development 33
Designing UI and Program Functionality 34
Constructing UI Resources 35
Using Managers and Filling Out the Program Logic. 36
Writing Robust Code 37
Building, Debugging, and Testing 40
Building the Application and Running it on the Palm Device . 40
Using Other Components of the SDK 41

Internal Structure of an Application 41
The ‘code’ #1 Resource 42
The ‘pref’ #0 Resource 42
The ‘code’ #0 and ‘date’ #0 Resources 43

Naming Conventions 43
Basic Hardware . 44

RAM and ROM . 44

Table of Contents

vi

Developing Palm OS 3.0 Applications, Part I

Modes of Operation 44
Palm OS Connectivity. 45
Real-Time Clock and Timer 46
Palm OS Device Screen and Sound Generation 46
Palm OS Device Reset Switch 47

Different Palm Computing Platform Devices 48
Running Older Applications on the 3.0 Device 49
Compiling Older Applications With SDK Version 3.0 49
Using OS Version 3.0 Features 50
Running 3.0 Applications on an Older Device 50
Retrieving the System Version Number 51
Retrieving the ROM Serial Number 51

2 Application Control Flow . 55

How Events Control an Application 57
Basic Application Stages. 57
The Startup Routine 58
The Event Loop . 61
The Stop Routine . 65

How Launch Codes Control an Application 66
Parameter Block . 67
Launch Flags . 67

Launch Code Example 68
Summary of All Launch Codes 70
More About Launch Codes. 71

sysAppLaunchCmdAlarmTriggered 72
sysAppLaunchCmdCountryChange 72
sysAppLaunchCmdDisplayAlarm 72
sysAppLaunchCmdExgAskUser 72
sysAppLaunchCmdExgReceiveData 74
sysAppLaunchCmdFind 74
sysAppLaunchCmdGoto 76
sysAppLaunchCmdInitDatabase 77
sysAppLaunchCmdLookup 78
sysAppLaunchCmdPanelCalledFromApp 79
 sysAppLaunchCmdReturnFromPanel 80

Table of Contents

Developing Palm OS 3.0 Applications, Part I

 vii

sysAppLaunchCmdSaveData 80
sysAppLaunchCmdSyncNotify 80
sysAppLaunchCmdSystemLock 81
sysAppLaunchCmdSystemReset 81
sysAppLaunchCmdTimeChange 82

More About Launch Flags 82
Responding to Launch Codes 83

Determining Status When Receiving Launch Code 84
Predefined Launch Codes 84

Creating Your Own Launch Codes 84

3 Palm OS User Interface Resources. 85

Using Constructor to Work With Resources 86
Creating Resources 86
Changing Resources 87

Project Resources . 88
Alerts . 89
Form Resource . 91
String Resource. 94
Menus and Menu Bars 94

Menu Overview . 94
Creating a Menu . 95
Menu Bar and Menu Resources 96
Menu User Interaction 96
Event Flow for Menu Resource 98

Catalog Resources . 98
Button Resource . 100
Check Box Resource. 103
Field Resource . 106
Form Bitmap Resource 109
Gadget Resource . 110
Graffiti Shift Indicator Resource 111
Label Resource . . 112
List Resource. . 113
Popup Trigger Resource 115
Push Button Resource 117

Table of Contents

viii

Developing Palm OS 3.0 Applications, Part I

Repeating Button Resource. 120
Scrollbar Resource . 122
Selector Trigger Resource 124
Table Resource . 126

4 Palm OS User Interface Objects 127

A Note on the Rectangle Structure 128
Control Objects . . 128

Control Object Events 129
Structure of a Control 130
Associated Resources 133
Control Functions 133

Date and Time Objects. 134
Date and Time Functions 134

Field Objects . . 134
Field Object Events 135
Structure of a Field 136
Associated Resources 139
Field Functions . 140

Form Objects . . 142
Form Object Events 142

 Structure of a Form 144
Associated Resource 149
Form Functions . 149

Insertion Point Object 151
Insertion Point Functions 151

List Object . . 152
List Object Events 153
Structure of a List 154
Associated Resources 156
List Functions . 156

Menu Objects . 157
Menu Events . 158
Structure of a Menu 158
Menu Functions . 162

Scrollbar Object. . 162

Table of Contents

Developing Palm OS 3.0 Applications, Part I

 ix

Table Objects . . 166
Table Event . 166
Structure of a Table 166
Associated Resource 169
Table Functions . 169

Window Objects . 171
Window Events . 171
Structure of a Window 171
Window Functions 173

Dynamic User Interface Objects. 175
Dynamic User Interface Functions 176

5 Using Palm OS UI Managers . 179

The Alert Manager . 180
Alert Resource Information 180
Alert Manager Functions 181

The Graffiti Manager 181
Using GrfProcessStroke 181
Using Other High-Level Graffiti Manager Calls 182
Special-Purpose Graffiti Manager Calls 182
Accessing Graffiti ShortCuts 182
Note on Auto Shifting. 183
Note on Graffiti Help 183
Graffiti Manager Functions 183

The Key Manager . . 184
The Pen Manager . . 185
The Progress Manager. 186

Progress textCallback Function. 186
Progress Manager Function Summary. 189

6 Palm OS Events . 191

appStopEvent . 192
ctlEnterEvent . 192
ctlExitEvent . 192
ctlRepeatEvent . . 193
ctlSelectEvent . 193

Table of Contents

x

Developing Palm OS 3.0 Applications, Part I

daySelectEvent . . 194
fldChangedEvent . . 194
fldEnterEvent . 195
fldHeightChangedEvent 195
frmCloseEvent . 195
frmGotoEvent . 196
frmLoadEvent . 197
frmOpenEvent . 197
frmSaveEvent . 197
frmUpdateEvent . 197
frmTitleEnterEvent . 198
frmTitleSelectEvent 198
keyDownEvent . . 199
lstEnterEvent. . 200
lstExitEvent . 200
lstSelectEvent . 200
menuEvent . 201
nilEvent . . 201
penDownEvent. . 202
penMoveEvent . . 202
penUpEvent . 202
popSelectEvent . . 203
sclEnterEvent . 204
sclExitEvent . 204
sclRepeatEvent . . 205
tblEnterEvent . 205
tblExitEvent . 206
tblSelectEvent . 206
winEnterEvent . . 207
winExitEvent . 207

7 Palm OS User Interface Functions 209

Category Functions 209
CategoryCreateList 209
CategoryCreateListV10 210
CategoryEdit 211

Table of Contents

Developing Palm OS 3.0 Applications, Part I

 xi

CategoryEditV20 212
CategoryEditV10 213
CategoryFind . 213
CategoryFreeList 214
CategoryFreeListV10 215
CategoryGetName 215
CategoryGetNext. 216
CategoryInitialize 216
CategorySelect . . 217
CategorySelectV10 218
CategorySetName 219
CategorySetTriggerLabel 219
CategoryTruncateName 220

ClipBoard Functions 220
ClipboardAddItem 220
ClipboardGetItem 221

Control Functions. . 221
CtlDrawControl . 221
CtlEnabled . 222
CtlEraseControl . 222
CtlGetLabel . 223
CtlGetValue . 223
CtlHandleEvent . 224
CtlHideControl . 225
CtlHitControl . 225
CtlNewControl 226
CtlSetEnabled . 228
CtlSetLabel . 228
CtlSetUsable . . 229
CtlSetValue . 229
CtlShowControl . 230
CtlValidatePointer 230

Field UI Functions . 231
FldCalcFieldHeight 231
FldCompactText . 231
FldCopy . 232

Table of Contents

xii

Developing Palm OS 3.0 Applications, Part I

FldCut . 232
FldDelete . 233
FldDirty. . 233
FldDrawField . 234
FldEraseField . 234
FldFreeMemory . 235
FldGetAttributes 235
FldGetBounds . 236
FldGetFont . 236
FldGetInsPtPosition 237
FldGetMaxChars 237
FldGetNumberOfBlankLines 238
FldGetScrollPosition 238
FldGetScrollValues 239
FldGetSelection . 240
FldGetTextAllocatedSize 241
FldGetTextHandle 241
FldGetTextHeight 242
FldGetTextLength 242
FldGetTextPtr . 243
FldGetVisibleLines 243
FldGrabFocus . 244
FldHandleEvent . 245
FldInsert . 246
FldMakeFullyVisible 246
FldNewField 247
FldPaste. . 249
FldRecalculateField. 250
FldReleaseFocus . 250
FldScrollable. . 251
FldScrollField . 251
FldSendChangeNotification 252
FldSendHeightChangeNotification 252
FldSetAttributes . 253
FldSetBounds . 253
FldSetDirty . 254

Table of Contents

Developing Palm OS 3.0 Applications, Part I

 xiii

FldSetFont. . 254
FldSetInsertionPoint 255
FldSetInsPtPosition 255
FldSetMaxChars . 256
FldSetScrollPosition 256
FldSetSelection. . 257
FldSetText . . 258
FldSetTextAllocatedSize 259
FldSetTextHandle 259
FldSetTextPtr . 260
FldSetUsable . 260
FldUndo . 261
FldWordWrap . 261

Font Functions . 262
New Font Features in Palm OS 3.0 262
FntAverageCharWidth 263
FntBaseLine . 263
FntCharHeight. . 263
FntCharsInWidth 264
FntCharsWidth 265
FntCharWidth 265
FntDefineFont 266
FntDescenderHeight 267
FntGetFont . 267
FntGetFontPtr . 267
FntGetScrollValues 268
FntLineHeight . . 268
FntLineWidth 269
FntSetFont . 269
FntWordWrap 270
FntWordWrapReverseNLines 270
FontSelect 271

Form Functions. . 272
FrmAlert . 272
FrmCloseAllForms 272
FrmCopyLabel . . 273
FrmCopyTitle . 274

Table of Contents

xiv

Developing Palm OS 3.0 Applications, Part I

FrmCustomAlert 275
FrmDeleteForm . 276
FrmDispatchEvent 276
FrmDoDialog . 277
FrmDrawForm. . 277
FrmEraseForm . . 278
FrmGetActiveForm 278
FrmGetActiveFormID. 279
FrmGetControlGroupSelection 279
FrmGetControlValue 280
FrmGetFirstForm. 280
FrmGetFocus . 281
FrmGetFormBounds 281
FrmGetFormId. . 282
FrmGetFormPtr . 282
FrmGetGadgetData. 283
FrmGetLabel . 283
FrmGetNumberOfObjects 284
FrmGetObjectBounds 284
FrmGetObjectId . 285
FrmGetObjectIndex. 285
FrmGetObjectPosition 286
FrmGetObjectPtr 286
FrmGetObjectType 287
FrmGetTitle . 287
FrmGetUserModifiedState. 288
FrmGetWindowHandle 288
FrmGotoForm . 289
FrmHandleEvent 289
FrmHelp . 290
FrmHideObject . 290
FrmInitForm. . 291
FrmNewBitmap 292
FrmNewForm 293
FrmNewGadget 295
FrmNewLabel 296

Table of Contents

Developing Palm OS 3.0 Applications, Part I

 xv

FrmPointInTitle . 297
FrmPopupForm . 297
FrmRemoveObject 298
FrmReturnToForm 299
FrmSaveAllForms 299
FrmSetActiveForm 300
FrmSetCategoryLabel 300
FrmSetControlGroupSelection 301
FrmSetControlValue 301
FrmSetEventHandler 302
FrmSetFocus. . 302
FrmSetGadgetData 303
FrmSetMenu. . 303
FrmSetNotUserModified 304
FrmSetObjectBounds 304
FrmSetObjectPosition 305
FrmSetTitle . 306
FrmShowObject . 306
FrmUpdateForm 307
FrmUpdateScrollers 307
FrmValidatePtr 308
FrmVisible . 308

Character Attribute Functions 309
GetCharAttr . . 309
GetCharCaselessValue 309
GetCharSortValue 310

Graffiti Manager Functions 311
GrfAddMacro . 311
GrfAddPoint . 311
GrfCleanState . 312
GrfDeleteMacro . 312
GrfFilterPoints . . 313
GrfFindBranch . . 313
GrfFlushPoints. . 314
GrfGetAndExpandMacro 314
GrfGetGlyphMapping 315

Table of Contents

xvi

Developing Palm OS 3.0 Applications, Part I

GrfGetMacro . 316
GrfGetMacroName 316
GrfGetNumPoints 317
GrfGetPoint . 317
GrfGetState . 318
GrfInitState . 319
GrfMatch . 319
GrfMatchGlyph . 320
GrfProcessStroke 321
GrfSetState . 322
SysGrfShortCutListDialog 322
Functions for System Use Only. 323

GraffitiShift Functions 323
GsiEnable . . 323
GsiEnabled . 324
GsiInitialize . 324
GsiSetLocation . . 324
GsiSetShiftState . 325

Insertion Point Functions 326
InsPtEnable . 326
InsPtEnabled . 326
InsPtGetHeight . 327
InsPtGetLocation 327
InsPtSetHeight . . 328
InsPtSetLocation 328
Functions for System Use Only. 329

Key Manager Functions 329
KeyCurrentState . 329
KeyRates . 330
Functions for System Use Only. 330

List UI Functions . 332
LstDrawList . . 332
LstEraseList . 332
LstGetNumberOfItems 333
LstGetSelection . 333
LstGetSelectionText. 334

Table of Contents

Developing Palm OS 3.0 Applications, Part I

 xvii

LstGetVisibleItems 334
LstHandleEvent . 335
LstMakeItemVisible 336
LstNewList 336
LstPopupList . 338
LstScrollList . . 338
LstSetDrawFunction 339
LstSetHeight. . 339
LstSetListChoices 340
LstSetPosition . 340
LstSetSelection . . 341
LstSetTopItem . 341

Menu Functions . 342
MenuDispose . 342
MenuDrawMenu. 343
MenuEraseStatus. 344
MenuGetActiveMenu 345
MenuHandleEvent 346
MenuInit . 347
MenuSetActiveMenu 347

Miscellaneous User Interface Functions 348
AbtShowAbout . 348
DayHandleEvent 348
KeySetMask . . 349
LocGetNumberSeparators 349

Pen Manager Functions 350
PenCalibrate. . 350
PenResetCalibration 351
Functions for System Use Only. 351

Progress Manager Functions 353
PrgHandleEvent 353
PrgStartDialog 354
PrgStopDialog 355
PrgUpdateDialog 356
PrgUserCancel 357

Rectangle Functions. 358
RctCopyRectangle 358

Table of Contents

xviii

Developing Palm OS 3.0 Applications, Part I

RctGetIntersection 358
RctInsetRectangle 359
RctOffsetRectangle 360
RctPtInRectangle 361
RctSetRectangle . 361

Scrollbar Functions . 362
SclDrawScrollBar. 362
SclGetScrollBar . 362
SclHandleEvent . 363
SclSetScrollBar . . 364

Functions for System Use Only 365
Time Selection Functions 367

SelectDay . 367
SelectDayV10 . 367
SelectTime. . 368

Table Functions. . 369
TblDrawTable . 369
TblEditing. . 369
TblEraseTable . 370
TblFindRowData 370
TblFindRowID . . 371
TblGetBounds . 371
TblGetColumnSpacing 372
TblGetColumnWidth 372
TblGetCurrentField. 373
TblGetItemBounds 373
TblGetItemFont 374
TblGetItemInt . 374
TblGetLastUsableRow 375
TblGetNumberOfRows 375
TblGetRowData . 375
TblGetRowHeight 376
TblGetRowID . 376
TblGetSelection . 377
TblGrabFocus . 377
TblHandleEvent . 378

Table of Contents

Developing Palm OS 3.0 Applications, Part I

 xix

TblHasScrollBar . 378
TblInsertRow . 379
TblMarkRowInvalid 379
TblMarkTableInvalid 380
TblRedrawTable . 380
TblReleaseFocus . 381
TblRemoveRow . 381
TblRowInvalid . . 382
TblRowSelectable 382
TblRowUsable . . 383
TblSelectItem . 383
TblSetBounds . 384
TblSetColumnEditIndicator 384
TblSetColumnSpacing 385
TblSetColumnUsable 385
TblSetColumnWidth 386
TblSetCustomDrawProcedure 387
TblSetItemFont 388
TblSetItemInt . 388
TblSetItemPtr . 389
TblSetItemStyle . 390
TblSetLoadDataProcedure 391
TblSetRowData . 392
TblSetRowHeight 392
TblSetRowID . 393
TblSetRowSelectable 393
TblSetRowStaticHeight 394
TblSetRowUsable 394
TblSetSaveDataProcedure 395
TblUnhighlightSelection 395

Window Functions . 396
ScrDisplayMode 396
WinAddWindow 400
WinClipRectangle 400
WinCopyRectangle 401
WinCreateOffscreenWindow. 402

Table of Contents

xx

Developing Palm OS 3.0 Applications, Part I

WinCreateWindow 403
WinDeleteWindow 404
WinDisableWindow 404
WinDisplayToWindowPt 405
WinDrawBitmap 405
WinDrawChars . 406
WinDrawGrayLine 406
WinDrawGrayRectangleFrame 407
WinDrawInvertedChars. 407
WinDrawLine . 408
WinDrawRectangle 408
WinDrawRectangleFrame 409
WinDrawWindowFrame 409
WinEnableWindow 410
WinEraseChars . 410
WinEraseLine . 411
WinEraseRectangle 411
WinEraseRectangleFrame 412
WinEraseWindow 412
WinFillLine . 413
WinFillRectangle 413
WinGetActiveWindow 414
WinGetClip . 414
WinGetDisplayExtent 415
WinGetDisplayWindow 415
WinGetDrawWindow. 416
WinGetFirstWindow 416
WinGetFramesRectangle 417
WinGetPattern . . 418
WinGetWindowBounds 418
WinGetWindowExtent 419
WinGetWindowFrameRect 419
WinGetWindowPointer 420
WinInitializeWindow 420
WinInvertChars . 421
WinInvertLine . . 421

Table of Contents

Developing Palm OS 3.0 Applications, Part I

 xxi

WinInvertRectangle 422
WinInvertRectangleFrame 422
WinModal. . 423
WinRemoveWindow 423
WinResetClip . 424
WinRestoreBits. . 424
WinSaveBits . . 425
WinScrollRectangle 426
WinSetActiveWindow 427
WinSetClip . 427
WinSetDrawWindow 428
WinSetPattern . 428
WinSetUnderlineMode 429
WinSetWindowBounds 429
WinValidateHandle 430
WinWindowToDisplayPt 430

Index . 431

Table of Contents

xxii

Developing Palm OS 3.0 Applications, Part I

Developing Palm OS 3.0 Applications, Part I

23

About This Document

Developing Palm OS 3.0 Applications, Part I, is part of the Palm OS
Software Development Kit. This introduction provides an overview
SDK documentation, discusses what materials are included in this
document and what conventions are used.

Palm OS SDK Documentation

The following documents are part of the SDK:

Document Description

Palm OS 3.0 Tutorial A number of Phases step developers through using the dif-
ferent parts of the system. Example applications for each
phase are part of the SDK.

Developing Palm OS
3.0 Applications.
Part I: Interface Man-
agement

A programmer’s guide and reference document that intro-
duces all important parts of developing an application. See
What This Guide Contains for details.

Developing Palm OS
3.0 Applications.
Part II. System Man-
agement

A programmer’s guide and reference document for all sys-
tem managers, such as the string manager or the system
event manager.

About This Document

What This Guide Contains

24

 Developing Palm OS 3.0 Applications, Part I

What This Guide Contains

This section provides an overview of the chapters in this guide.

• Chapter 1,“Developing Palm OS Applications,” helps you
understand the basic principles of application development.
The chapter provides information on:
– steps involved in creating an application
– internal structure of an application
– naming conventions
– basic hardware
– the different Palm Computing Platform devices

• Chapter 2, “Application Control Flow,” explains how appli-
cations and the system work together using events and
launch codes.
– Events are posted by the system in response to user input

and are then either handled by the system itself or by the
application.

– Launch codes are sent to the top level of the event loop.
They are usually sent by the system and require an appli-
cation response. Applications can, however, send launch
codes themselves if desired.

Developing Palm OS
3.0 Applications,
Part III. Memory and
Communications Man-
agement

Programmer’s guide and reference document for:

• Memory management; both the database manager and
the memory manager.

• The Palm OS communications library for serial com-
munication.

• The Palm OS net library, which provides basic net-
work services.

• The exchange manager and IR library, which provide
infrared communication capabilities.

Palm OS 3.0 Cookbook Information about using CodeWarrior for Palm OS to create
projects and executables. Also provides a variety of design
guidelines, including localization design guidelines.

Document Description

About This Document

Conventions Used in This Guide

Developing Palm OS 3.0 Applications, Part I

25

• Chapter 3, “Palm OS User Interface Resources,” provides de-
tailed information about all the UI resources an application
can use a templates for its user interface.

• Chapter 4, “Palm OS User Interface Objects,” discusses the C
structures applications can use to manipulate the UI re-
sources discussed in chapter 3. Each object is related with one
or more UI resources and has a number of fields and at-
tributes an application program can change.

• Chapter 5, “Using Palm OS UI Managers,” discusses the
functionality of all managers related to the Palm OS user in-
terface. For each manager, the chapter provides a functional-
ity overview, discussion of how to use that functionality, and
list of functions.

• Chapter 6, “Palm OS Events,” provides reference-style infor-
mation for each event.

• Chapter 7, “Palm OS User Interface Functions,” provides ref-
erence-style information for each UI function.

Conventions Used in This Guide

This guide uses the following typographical conventions:

This style... Is used for...

fixed width font

Code elements such as function,
structure, field, bitfield.

fixed width underline

Emphasis (for code elements).

bold

Emphasis (for other elements).

blue and underlined Hot links.

black and underlined 3.0 function names (headings only)

red and underlined 3.0 function names (Table of Con-
tents only)

About This Document

What’s New in Palm OS 3.0

26

 Developing Palm OS 3.0 Applications, Part I

What’s New in Palm OS 3.0

Version 3.0 of the Palm OS brings changes to many areas of the sys-
tem. Some programming interfaces have been extended and others
are brand new. For those readers familiar with previous versions of
the Palm OS API, this section gives a brief overview of what is new,
what has changed, and where you can find documentation on the
new APIs. Other documentation revisions are also noted.

General Information

The configuration of system memory includes the following
changes:
• The dynamic heap has been increased in size to 96 KB.
• Storage RAM is no longer subdivided into multiple storage

heaps of 64 KB each. All storage RAM on a memory card is
configured as a single storage heap.

For more details on memory management under OS 3.0, see the
chapter “Palm OS Memory Management” on page 21 of Part III.
This chapter now presents an overview of memory management
and heap usage for all versions of Palm OS.

There is a new system version number for the Palm III device, as re-
turned by

FtrGet

. It is 0x03003000.

Palm III devices contain a unique serial number that is accessible to
developers and users. For more information, see “Retrieving the
ROM Serial Number” on page 51 of Part I.

The Application Launcher (accessed via the silkscreen “Applica-
tions” button) is now an application, rather than a popup. The

SysAppLauncherDialog

 function, which provides the API to the
old popup launcher, is still present in Palm OS 3.0 for compatibility
purposes, but has not been updated and generally should not be
used. The Launcher can beam your application to another device or
you can suppress beaming.The new Launcher provides a list mode
which allows users to see more installed applications at once. For
more information, see “Application Launcher” on page 70 of Part II.

About This Document

What’s New in Palm OS 3.0

Developing Palm OS 3.0 Applications, Part I

27

New Launch Codes

Two new launch codes have been added to support the exchange
manager:
•

sysAppLaunchCmdExgAskUser

•

sysAppLaunchCmdExgReceiveData

In addition, the launch code

sysAppLaunchCmdGoto

 is now also
sent by the exchange manager, in addition to its use by the global
find operation.

Dynamic User Interface Objects

Palm OS 3.0 provides functions that can be used to create forms and
form elements at run time. Most applications will never need to
change any user interface elements at run time—the built-in appli-
cations don't do so, and the Palm user interface guidelines discour-
age it. For more information, see the section “Dynamic User Inter-
face Objects” on page 175 of Part I. The following new functions are
included in the dynamic user interface API:
•

CtlNewControl

•

CtlValidatePointer

•

FldNewField

•

FrmNewBitmap

•

FrmNewForm

•

FrmNewGadget

•

FrmNewLabel

•

FrmRemoveObject

•

FrmValidatePtr

•

LstNewList

•

WinValidateHandle

Font Functions

The Palm OS 3.0 provides a new font (

largeBoldFont), two new
font manipulation routines (FontSelect and FntDefineFont),
and support for the use of custom fonts. For more information, see
the section “Font Functions” on page 262 of Part I.

About This Document
What’s New in Palm OS 3.0

28 Developing Palm OS 3.0 Applications, Part I

Progress Manager
The progress manager is a new manager that provides support for
displaying and updating a progress dialog to the user during
lengthy operations (such as communications). For more informa-
tion, see the section “The Progress Manager” on page 186 of Part I.
New functions include:
• PrgHandleEvent
• PrgStartDialog
• PrgStopDialog
• PrgUpdateDialog
• PrgUserCancel

File Streaming API

The file streaming functions in Palm OS 3.0 let you work with large
blocks of data (larger than 64 KB) in a manner similar to traditional
desktop file systems. The File Streaming API is derived from the C
programming language’s <stdio.h> interface. For more informa-
tion, see the section “File Streaming Application Program Interface”
on page 28 of Part II. New functions include:

• FileClearerr
• FileClose
• FileControl
• FileDelete
• FileDmRead
• FileEOF
• FileError
• FileFlush
• FileGetLastError
• FileOpen
• FileRead
• FileReadLow
• FileRewind
• FileSeek
• FileTell

About This Document
What’s New in Palm OS 3.0

Developing Palm OS 3.0 Applications, Part I 29

• FileTruncate
• FileWrite

Sound Manager
The sound manager in Palm OS 3.0 supports MIDI sound files, add-
ing new sounds, asynchronous playback, and other features. There
are also new selectors for setting the volume preferences. For more
information, see the section “The Sound Manager” on page 35 of
Part II. New functions include:
• SndCreateMidiList
• SndPlaySMF
• SndDoCmd (enhanced in 3.0)

The sound manager section has also been revised to describe how to
use sound preferences correctly on various versions of Palm OS.

Exchange Manager
The exchange manager is a new manager in Palm OS 3.0 that pro-
vides a simple interface for Palm OS applications to send and re-
ceive typed data from any number of remote devices and protocols.
Initially, the exchange manager supports infrared “beaming” of in-
formation between Palm devices and other external devices. For
more information, see the chapter “Exchange Manager” on page 279
of Part III.

IR Library
The IR library is a new shared library of functions that provide a di-
rect interface to the infrared (IR) communications capabilities of
Palm OS 3.0. It is designed for applications that need more direct ac-
cess to the IR capabilities than the exchange manager provides. The
IR support provided by the Palm OS is compliant with the IrDA
specifications. For more information, see the chapter “IR Library”
on page 295 of Part III.

About This Document
What’s New in Palm OS 3.0

30 Developing Palm OS 3.0 Applications, Part I

Miscellaneous New Functions in 3.0
The following other new functions were added in Palm OS 3.0:

ScrDisplayMode

SysGetAppInfo (system use only)

SysGetOSVersionString

SysGetRomToken

SysGetStackInfo

SysGremlins

TblGetItemFont

TblSetItemFont

The following functions existed in the system previously, but were
not previously documented:

RctCopyRectangle

RctGetIntersection

RctInsetRectangle

RctOffsetRectangle

RctPtInRectangle

RctSetRectangle

The following event type existed in the system previously, but was
not previously documented:

frmGotoEvent

Existing Functions that Changed in 3.0
Only two functions that existed in 2.0 were changed in 3.0. These are
CategoryEdit and SysBatteryInfo. If you are using these
functions in existing applications, you can continue using the old
APIs by calling the functions CategoryEditV20 and
SysBatteryInfoV20. However, we recommend that you begin
using the new changed APIs for future compatibility.

About This Document
What’s New in Palm OS 3.0

Developing Palm OS 3.0 Applications, Part I 31

Documentation Revisions
The documentation for the following events and functions has been
revised to correct inaccuracies or add clarification:

lstEnterEvent

CategoryCreateList

DateAdjust

FrmCustomAlert

FrmGetControlGroupSelection

FldGetInsPtPosition

FldSetSelection

MenuEraseStatus

StrNCat

SysBinarySearch

SysCreateDataBaseList

SysInsertionSort

TblSetLoadDataProcedure (loadDataCallback)

TblSetSaveDataProcedure (saveDataCallback)

The following other section of the documentation is new:

“Writing Robust Code” on page 37 of Part I.

About This Document
What’s New in Palm OS 3.0

32 Developing Palm OS 3.0 Applications, Part I

Developing Palm OS 3.0 Applications, Part I 33

1

Developing Palm OS
Applications
This chapter helps you understand the basic principles of Palm OS
application development. It discusses these topics:
• Overview of Application Development explains the steps

involved in creating an application.
• Internal Structure of an Application provides some information

about resources the system creates for each application and how
they are used.

• Naming Conventions briefly explains naming conventions used
for functions and structures.

• Basic Hardware gives some background information about
the Palm Computing Platform devices.

• Different Palm Computing Platform Devices discusses how to
make 1.0 applications run on the new devices, and how to run
3.0 applications on older devices.

Overview of Application Development
This section provides an overview of the application development
process for Palm Computing Platform devices. It introduces the dif-
ferent components of an application in the order that you’ll most
likely work with them, and provides many links to related sections
in this guide and pointers to other relevant documentation included
in your developer package.

You learn about these topics:
• Designing UI and Program Functionality
• Constructing UI Resources
• Using Managers and Filling Out the Program Logic

Developing Palm OS Applications
Overview of Application Development

34 Developing Palm OS 3.0 Applications, Part I

• Writing Robust Code
• Building, Debugging, and Testing
• Building the Application and Running it on the Palm Device
• Using Other Components of the SDK

Designing UI and Program Functionality

The first step in application development is to envision what users
will do as they interact with your application. After that, it’s useful
to implement a small prototype and have some users interact with
it. When you’re satisfied with the basic interface and user interac-
tion, you can move on from the prototype to a complete application.

This section looks at the steps involved in creating a working user
interface.

Designing Screen Layout and User Interaction

Careful UI design is critical for a Palm OS application because using
a Palm Computing Platform device differs from using other com-
puters. Here are a few points to consider when designing your
application:

Do this... Because of this...

Pay attention to pen-based user
input paradigms.

Pen-based user input differs
from keyboard-based user input.

Plan integration with the desk-
top early.

Your conduit/backup strategy
and your integration with desk-
top software can make your pro-
gram much more useful.

Offload some computationally
intensive tasks to the desktop;
use the device as a satellite
viewer.

Device runs on batteries and
doesn’t have the same process-
ing power than the desktop PC.

Developing Palm OS Applications
Overview of Application Development

Developing Palm OS 3.0 Applications, Part I 35

The Palm OS development team has put together a set of design
guidelines that were used as the basis for the four applications
resident on the device (MemoPad, Address Book, etc.). These
guidelines are summarized in Chapter 1 of the “Palm OS
Cookbook.” Some information, such as recommended font size or
border width, is included for each resource in Chapter 3, “Palm OS
User Interface Resources.”

Note: Follow the design guidelines in chapter 1 of the “Palm OS
Cookbook” to make your application easier to learn and to use.

Constructing UI Resources

The resource templates that were used to implement all the applica-
tions resident on the device are provided with your development
environment.

The Palm OS 3.0 SDK Constructor tool lets you use the resource
templates to create your own buttons, popup lists, menus, and other
parts of the user interface.

The process of creating new resources is described in detail in the
tutorial; the basic process consists of entering values into the at-
tribute fields of the resource templates. Each resource has to have an
ID; and may also need a width, height, label, or other attributes. The
Constructor tool assigns the ID.

Macintosh users can also use ResEdit to create resources, but have to
assign the IDs explicitly in that case.

Limit data input where possible. Graffiti and the popup keyboard
are useful tools, but not as easy
to use as a regular keyboard.

Design the layout carefully.
Strive for a balance between
providing enough information
and overcrowding the screen.

Screen size is very limited.

Do this... Because of this...

Developing Palm OS Applications
Overview of Application Development

36 Developing Palm OS 3.0 Applications, Part I

The recommended (or required) values for the different fields in
each resource are provided in Chapter 3, “Palm OS User Interface
Resources.” The “Palm OS Tutorial” provides “recipes” for creating
each resource type in the Tutorial’s “Resource Recipes” chapter.

When you build your program, the system converts the UI resourc-
es into data structures that the system can work with. Different re-
source types map to different data structures, that is, UI object type.
For example, menu resources map to C structures that have system-
defined behavior for turning highlighting on and off. Fields have
system-defined behavior for positioning input cursors and process-
ing user input. Note that there isn’t a 1:1 mapping between resourc-
es and UI objects. This is explained in more detail in the relevant
chapters.

The operating system provides quite a bit of default functionality
for each UI object type. Your program logic can use, replace, or
extend that functionality. Detailed information on all structures and
their fields is provided in Chapter 4, “Palm OS User Interface
Objects.”

Using Managers and Filling Out the Program
Logic

To successfully build a Palm OS application, you have to under-
stand how the system itself is structured and how to structure your
application. You learn about Using Events and Launch Codes and
Using Palm OS Managers.

Using Events and Launch Codes

Palm OS applications are single-threaded, event-driven programs.
The events are generated by the system, based on user input and
system interrupts. The program logic may generate events as well.
The programs are structured as a series of event handlers dis-
patched from a single event loop in each program.

Launch codes allow the system (or another application) to send a re-
quest to an application at the top level. For example, one application
that supports global find may bring up the Find dialog and the

Developing Palm OS Applications
Overview of Application Development

Developing Palm OS 3.0 Applications, Part I 37

system will query all currently loaded applications that handle the
global find. In response to a launch code, an application doesn’t nec-
essarily display its user interface; instead, it only performs the re-
quested action. This is described in more detail in How Launch
Codes Control an Application.

Note: To make your application interact appropriately with other
applications on the device and to avoid problems later, read
Chapter 1 of the Palm OS Cookbook.

Using Palm OS Managers

The Palm OS system API is divided into functional areas called
managers. Each manager has a distinct three-letter prefix used on all
API calls and structures and is discussed separately below.

• All UI related managers, such as the graffiti or key manages,
are discussed in “Using Palm OS UI Managers.”

• All system related managers, such the string or system event
manager, are discussed in “Using Palm OS System Managers”
of “Developing Palm OS 3.0 Applications, Part II.”

• The memory manager, data manager, and resource manager are
explained in “Palm OS Memory Management” of “Developing
Palm OS 3.0 Applications, Part III.”

• The serial communications API is explained in “Palm OS
Communications” of “Developing Palm OS 3.0 Applications,
Part III.”

• The exchange manager API is explained in “Exchange
Manager” of “Developing Palm OS 3.0 Applications, Part III.”

Writing Robust Code

To make your programs more robust and to increase their compati-
bility with the next generation of Palm Computing products, it is
strongly recommended that you follow the guidelines and practices
outlined in this section.

Check Assumptions

You can write defensive code by adding frequent calls to the
ErrNonFatalDisplayIf function, which enables your debug

Developing Palm OS Applications
Overview of Application Development

38 Developing Palm OS 3.0 Applications, Part I

builds to check assumptions. Many bugs are caught in this way, and
these “extra” calls don't weigh down your shipping application.
You can keep more important checks in the release builds by using
the ErrFatalDisplayIf function.

Avoid reading and writing to NULL (or low memory)

When calling functions that allocate memory (MemSet, MemMove
and similar functions) make sure that the pointers they return are
non-NULL. (If you can do better validation than that, so much the
better.) Also check that pointers your code obtains from structures
or other function calls are not NULL. Consider adding to your
debug build a #define that overrides MemMove (and similar func-
tions) with a version that validates the arguments passed to it.

Use Dynamic Heap Space Frugally

It is important not to use the extra dynamic heap space available on
Palm OS 3.0 units unless it is truly necessary to do so. Wasteful use
of heap space may limit your application to running only on devices
having 2MB of memory—which prevents it from running on the
very large number of units already in the marketplace.

Note that some system services, such as the IrDA stack or the Find
window, can require additional memory while your application is
running; for example, if the unit starts to receive a beam or other ex-
ternal input, the system may need to allocate additional heap space
for the incoming data. Don’t use all available dynamic memory just
because it's there; instead, consider using the storage heap for work-
ing with large amounts of temporary data.

Check Result Codes When Allocating Memory

Because future devices may have larger or smaller amounts of avail-
able memory, it is always a good idea to check result codes carefully
when allocating memory. It’s also good practice to use the storage
heap (and possibly file streams) to work with large objects.

Avoid allocating zero-length objects

It's not valid to allocate a zero-byte buffer, or to resize a buffer to
zero bytes. Palm OS 2.0 and previous releases allowed this practice,
but future revisions of the OS may not permit zero-length objects.

Developing Palm OS Applications
Overview of Application Development

Developing Palm OS 3.0 Applications, Part I 39

Avoid making assumptions about the screen

The location of the screen buffer, its size, and the number of pixels
per bit aren’t set in stone—they might well change. Don’t hack
around the windowing and drawing functions. If you are going to
hack the hardware to circumvent the APIs, save the state and return
the system to that saved state when you quit.

Don’t access globals or hardware directly

Global variables and their locations can change; to avoid mishap,
use the documented API functions and disable your application if it
is run on anything but a tested version of the OS. Future devices
might run on a different processor than the current one.

Similarly, don’t hardcode references to cards. Although current
Palm OS hardware provides only a single card slot, this may not al-
ways be the case. Thus, when calling functions that manipulate
cards, such as database manager and file streaming functions, pass a
variable that references the target card, rather than passing a hard-
coded reference to card 0.

Don't overfill the stack

Allocating large numbers of local variables (or extremely large local
variables) can result in hard-to-debug heap corruption. The stack is
only about 4k; be stingy with stack-based variables!

 Built-in apps can change

The format and size of the preferences (and data) for the built-in ap-
plications is subject to change. Write your code defensively, and
consider disabling your application if it is run on an untested ver-
sion of the OS.

Don’t use desktop C libraries on Palm OS

Avoid using functions from standard desktop C libraries, as they
tend to slow performance and enlarge programs significantly. Many
will not work at all on Palm devices. Use functions provided by the
Palm OS managers instead.

Developing Palm OS Applications
Overview of Application Development

40 Developing Palm OS 3.0 Applications, Part I

Building, Debugging, and Testing

To build your application for initial debugging and testing, you use
the CodeWarrior Interactive Development Environment (IDE) to
build an executable. Documentation for the CodeWarrior IDE is pro-
vided with CodeWarrior.

On the Macintosh, you can then use the Palm Simulator to run the
executable on a simulated Palm Computing Platform device on the
Macintosh screen. You can interact with the simulated buttons,
menus, or fields, and even enter Graffiti characters using the mouse.
You can also use the Simulator to test your application using an au-
tomated test suite called Gremlins. Using the Simulator is discussed
in detail in Chapter 2, “Using the Palm OS Simulator,” of the “Palm
OS Cookbook.”

On both Macintosh and PC, you can use the CodeWarrior Debugger
to download the application to a device connected with the Desktop
computer and test it there. The CodeWarrior debugging environ-
ment is also documented in the CodeWarrior Documentation folder.

Building the Application and Running it on the
Palm Device

When you’ve completed building and testing the application with
the Simulator, you can build a second project inside CodeWarrior
that lets you run your application on the device.

This process is described in Chapter 3, “Debugging in Standalone
Mode on the Device” of the Palm OS Cookbook and in Phase 20 of
the tutorial.

Phase 20 of the Palm OS Tutorial provides a sample project and
step-by-step instructions for setting up a project to build an execut-
able and for downloading and running the application on the
device.

Developing Palm OS Applications
Internal Structure of an Application

Developing Palm OS 3.0 Applications, Part I 41

Note: When using the Palm OS 1.0 SDK, developers had to
create a Makefile to create an executable they could download
and run on the device. This is no longer necessary; instead,
developers use a project that’s built with different settings.

Using Other Components of the SDK

The Palm Computing Platform has provided the following addi-
tional items in the development kit to help you come up to speed
quickly:

• The Palm OS tutorial provides step-by-step examples of
developing an application from start to finish in its more
than twenty phases. Examples, both resources and code that
is incrementally changed, are included.

• The actual source code for the four PIM applications on the
Palm device is included as examples on your SDK CD. The code
can be a valuable aid when you develop your own program.
The software development kit provides a royalty-free license
that permits you to use any or all of the source code from the
examples in your application.

• The Palm OS net library provides basic networking capabilities,
compatible with the Berkeley Sockets API. The net library is
discussed in “Developing Palm OS 3.0 Applications, Part III.”

Internal Structure of an Application
Every application running under Palm OS must have certain mini-
mum system (not UI) resources defined to be recognized by the
Palm OS system software. These required resources are created for
your application by the development environment. You may find
that you need additional, application-specific resources.

Resources consist of a type and an ID, where the type is a 4-byte
ASCII string like ‘code’ and the ID is a decimal integer preceded by
a pound sign.

Developing Palm OS Applications
Internal Structure of an Application

42 Developing Palm OS 3.0 Applications, Part I

The ‘code’ #1 Resource

The system creates a ‘code’ #1 resource for every application. This
resource is the entry point for the application and is where applica-
tion initialization is performed. When the Palm OS launches an ap-
plication, it starts executing at the first byte of the ‘code’ #1 resource.
All of the application code that you provide is included in this re-
source as well.

Typically, some startup code provided with the Palm Computing
Platform development environment is linked in with your applica-
tion code. This startup code works as follows:

• The startup code performs application setup and
initialization.

• The startup code calls your main routine.
• When your main routine exits, control is returned to the startup

code, which performs any necessary cleanup of your application
and returns control to the Palm OS system software.

The ‘pref’ #0 Resource

The system creates a ‘pref’ #0 resource for every application. This
resource contains startup information necessary for launching your
application. The resource includes

• Required stack size

• Dynamic heap space required

• Task priority

Note that although the ‘pref’ #0 resource must be present, it’s main-
ly for future use because user-interface applications currently don’t
get their own stack or priority.

Developing Palm OS Applications
Naming Conventions

Developing Palm OS 3.0 Applications, Part I 43

The ‘code’ #0 and ‘date’ #0 Resources

The ‘code’ #0 and ‘data’ #0 resources contain the required size of
your global data and an image of the initialized area of that global
data. When your application is launched, the system allocates a
memory chunk in the dynamic heap that’s big enough to hold all
your globals.The ‘data’ #0 resource is then used to initialize those
globals.

Naming Conventions
The following conventions are used throughout the Palm OS API:

• Functions start with a capital letter.
• All functions belonging to a particular manager start with a

two- or three-letter prefix, such as “Ctl” for control functions or
“Ftr” for functions that are part of the feature manager.

• Events and other constants start with a lowercase letter.
• Structure elements start with a lowercase letter.
• Global variables start with a capital letter.
• Typedefs start with a capital letter and end with “type” (for

example, DateFormatType, found in DateTime.h).
• Macintosh ResEdit resource types usually start with a lowercase

letter followed by three capital letters, for example tSTR or
tTBL. (Customized Macintosh resources provided with your
developer package are all uppercase, for example, MENU. Some
resources, such as Talt, don’t follow the conventions.)

• Members of an enumerated type start with a lowercase prefix
followed by a name starting with a capital letter, as follows:

enum formObjects {

frmFieldObj,

frmControlObj,

frmListObj,

frmTableObj,

frmBitmapObj,

frmLineObj,

frmFrameObj,

Developing Palm OS Applications
Basic Hardware

44 Developing Palm OS 3.0 Applications, Part I

frmRectangleObj,

frmLabelObj,

frmTitleObj,

frmPopupObj,

frmGraffitiStateObj,

frmGadgetObj};

typedef enum formObjects FormObjectKind;

Basic Hardware
This section helps you understand the device for which you’re de-
veloping your application.

It discusses RAM and ROM, Modes of Operation, Palm OS Connec-
tivity, Real-Time Clock and Timer, Palm OS Device Screen and
Sound Generation, and Palm OS Device Reset Switch.

RAM and ROM

The 1.0, 2.0, and 3.0 versions of the Palm OS run on the Motorola
68328 “DragonBall” processor. The first memory card shipped with
the device has 128K of pseudostatic RAM and 512K of ROM for the
system software and application code. A portion of the RAM (32K)
is reserved for system use and is not available for storing user data.
Both the ROM and RAM are on a memory module that users can re-
place. The Palm Computing Platform device does not have a disk
drive or PCMCIA support.

Note: The PalmPilot Professional has additional RAM for use by
the network library. This memory is not for application use.

Modes of Operation

To minimize power consumption, the operating system dynamical-
ly switches between three different modes of operation: sleep mode,
doze mode, and running mode.

Developing Palm OS Applications
Basic Hardware

Developing Palm OS 3.0 Applications, Part I 45

• In sleep mode, the device looks like it’s turned off: the
display is blank, the digitizer is inactive, and the main clock
is stopped. The only circuits still active are the real-time
clock and interrupt generation circuitry.

The device enters this mode when there is no user activity for
a number of minutes or when the user presses the off button.
The device comes out of sleep mode only when there is an in-
terrupt, for example, when the user presses a button.

• In doze mode, the main clock is running, the device appears to
be turned on, and the processor’s clock is running but it’s not
executing instructions (that is, it’s halted). When the processor
receives an interrupt, it comes out of halt and starts processing
the interrupt.

The device enters this mode whenever it’s on but has no user
input to process.

• In running mode, the processor is actually executing
instructions.

The device enters this mode when it detects user input (like a
tap on the screen) while in doze mode or when it detects an
interrupt while in doze or sleep mode. The device stays in
running mode only as long as it takes to process the user
input (most likely less than a second), then it immediately re-
enters doze mode.

To maximize battery life, the processor on the Palm Computing Plat-
form device is kept out of running mode as much as possible. Any
interrupt generated on the device must therefore be capable of
“waking” up the processor. The processor can receive interrupts
from the serial port, the hard buttons on the case, the button on the
cradle, the programmable timer, the memory module slot, the real-
time clock (for alarms), the low-battery detector, and any built-in
peripherals such as a pager or modem.

Palm OS Connectivity

The Palm Computing Platform device uses its serial port for imple-
menting desktop PC connectivity or other external communication.
The serial communication is fully interrupt-driven for receiving
data. Currently, interrupt-driven transmission of data is not

Developing Palm OS Applications
Basic Hardware

46 Developing Palm OS 3.0 Applications, Part I

implemented in software, but the hardware does support it. Five ex-
ternal signals are used for this communication:

• SG (signal ground)

• TxD (transmit data)

• RxD (receive data)

• CTS (clear to send)

• RTS (request to send)

The Palm Computing Platform device has an external connector
that provides:

• Five serial communication signals

• General-purpose output

• General-purpose input

• Cradle button input

Real-Time Clock and Timer

The Palm Computing Platform device has a real-time clock and pro-
grammable timer as part of the 68328 processor. The real-time clock
maintains the current time even when the system is in sleep mode
(turned off). It’s capable of generating an interrupt to wake the de-
vice when an alarm is set by the user. The programmable timer is
used to generate the system tick count interrupts (100 times/sec-
ond) while the processor is in doze or running mode. The system
tick interrupts are required for periodic activity such as polling the
digitizer for user input, key debouncing, etc.

The Palm Computing Platform device has one memory module
socket for installing modules that may contain ROM or RAM
storage.

Palm OS Device Screen and Sound Generation

The first version of the Palm Computing Platform device has an
LCD screen of 160x160 pixels. The LCD controller built into the
68328 maps a portion of system memory to the LCD. Currently, the

Developing Palm OS Applications
Basic Hardware

Developing Palm OS 3.0 Applications, Part I 47

software only supports 1 bit/pixel monochrome graphics, although
the controller can support 2 bits/pixel gray scale.

The Palm Computing Platform device has a built-in digitizer over-
laid onto the LCD screen and extending about an inch below the
screen. This digitizer is capable of sampling accurately to within
0.35 mm (.0138 in) with up to 50 accurate points/second. When the
device is in doze mode, an interrupt is generated when the pen is
first brought down on the screen. After a pen down is detected, the
system software polls the pen location periodically (every 20 ms)
until the pen is again raised.

The Palm Computing Platform device has primitive sound genera-
tion. A square wave is generated directly from the 68328’s PWM cir-
cuitry. There is frequency, duration, and volume control. Addition-
ally, OS 3.0 supports creating and playing standard MIDI sounds.

Palm OS Device Reset Switch

Any reset is normally performed by sticking a bent-open paper clip
or a large embroidery needle into the small hole in the back of the
device. This hole, known as the “reset switch” is above and to the
right of the serial number sticker (on Palm III devices). Depending
on additional keys held down, the reset behavior varies, as follows:

Soft Reset

A soft reset clears all of the dynamic heap (Heap 0, Card 0). The
storage heaps remain untouched. The operating system restarts
from scratch with a new stack, new global variables, restarted driv-
ers, and a reset comm port. All applications on the device receive a
SysAppLaunchCmdReset message.

Soft Reset + Up Arrow

Holding the up-arrow down while pressing the reset switch with a
paper clip causes the same soft reset logic with the following two
exceptions:

• The SysAppLaunchCmdReset message is not sent to applica-
tions. This is useful if there is an application on the device that

Developing Palm OS Applications
Different Palm Computing Platform Devices

48 Developing Palm OS 3.0 Applications, Part I

crashes upon receiving this message (not uncommon) and there-
fore prevents the system from booting.

• The OS won’t load any system patches during startup. This is
useful if you have to delete or replace a system patch database. If
the system patches are loaded and therefore open, the cannot be
replaced or deleted from the system.

Hard Reset

A hard reset is performed by pressing the reset switch with a paper
clip while holding down the power key. This has all the effects of the
soft reset. In addition, the storage heaps are erased. As a result, all
programs, data, patches, user information, etc. are lost. A confirma-
tion message is displayed asking the user to confirm the deletion of
all data.

The SysAppLaunchCmdReset message is sent to the applications at
this time. If the user selected the “Delete all data” option, the digitiz-
er calibration screen comes up first. The default databases for the
four main applications is copied out of the ROM.

If you hold down the up arrow key when the “Delete all data” mes-
sage is displayed, and then press the other four application buttons
while still holding the up arrow key, the system is booted without
reading the default databases for the four main applications out of
ROM.

Different Palm Computing Platform Devices
In spring 1998, a new Palm Computing Platform device became
available. As a result, there are now 4 devices:

• Palm Computing Platform 1.0 device (Pilot 1000 and Pilot
5000)

• Palm Computing Platform 2.0 device (PalmPilot and PalmPi-
lot Professional)

• Palm Computing Platform 3.0 device (Palm III)

This section summarizes migrating to Palm Computing Platform 3.0
by discussing Running Older Applications on the 3.0 Device,

Developing Palm OS Applications
Different Palm Computing Platform Devices

Developing Palm OS 3.0 Applications, Part I 49

Compiling Older Applications With SDK Version 3.0, Using OS Ver-
sion 3.0 Features, and Retrieving the System Version Number.

Caution: The sample PIM applications (Date Book, Address
Book, Memo Pad, To Do List) do not have OS version checking
code in them because they are normally built into a 3.0 ROM and
the check is unnecessary.
Compiling these samples and running them on an older device
will cause the device to crash, but will not cause the loss of any
data.

Running Older Applications on the 3.0 Device
As a rule, all Palm OS applications developed with the Palm Com-
puting Platform 1.0 or 2.0 SDK should run error-free on a 3.0 device.
There are two possible pitfalls for 1.0 applications:

• fldChangedEvent Change—The operating system now cor-
rectly sends a fldChangedEvent whenever a field object is
changed. Previously, the event was at times not sent, espe-
cially when a fldSetText operation was performed. If your
application doesn’t catch the events that are now sent, it may
have problems.

• Non-standard tools—If your application was not developed
with Metrowerks Code Warrior for the Palm OS, it may run
into problems. One know problem can occur if the applica-
tion:

– was compiled with optimization turned on

– uses system preferences

Compiling Older Applications With SDK
Version 3.0
If you want to compile your older application under version 3.0,
you need to be aware of a number of functions with a changed API.
For any of these functions, the old function still exists with a V10 (“v
one zero”) or a V20 suffix.

Developing Palm OS Applications
Different Palm Computing Platform Devices

50 Developing Palm OS 3.0 Applications, Part I

You can choose one of two options:

• Change the function name to keep using the old API. Your 1.0
application will then run error free on a 3.0 device.

• Update your application to use the new API. The application
will then run error free and have access to some new
functionality.

Using OS Version 3.0 Features
Because Palm OS applications can run on different operating system
versions (on the different devices), it’s important your application
checks that the functionality it uses is actually supported. Most
notably:

• All applications that use 3.0 features need to run on a Palm
Computing Platform device version 3.0 (Palm III). They
won’t run on Palm Computing Platform 1.0 or 2.0 devices.

• All applications that use 2.0 features need to run on a Palm
Computing Platform device version 2.0 or 3.0 (PalmPilot,
PalmPilot Professional, or Palm III). They won’t run on a
Palm OS 1.0 device.

• All applications that use the network library can run only on
Palm III or PalmPilot Professional systems.

Running 3.0 Applications on an Older Device
If you’re writing an application that doesn’t use any of the new fea-
tures in 3.0, that application can run on a 2.0 device without any fur-
ther modification. If it also doesn’t use any 2.0-specific features, then
it can also run on a 1.0 device without further modification.

3.0 applications are fully data-compatible with 1.0 and 2.0
applications.

Developing Palm OS Applications
Different Palm Computing Platform Devices

Developing Palm OS 3.0 Applications, Part I 51

Retrieving the System Version Number

To retrieve the system version number, call:
FtrGet(sysFtrCreator, sysFtrNumROMVersion);

The system returns:

• 0x01003001 for the 1.0 device

• 0x02003000 for both PalmPilot 2.0 and PalmPilot Professional

• 0x03003000 for the Palm III device

A more detailed discussion of version checking is in Chapter 1 of
the Palm OS Cookbook.

Retrieving the ROM Serial Number

Each flash ROM-based Palm III device holds a 12-digit serial num-
ber that identifies it uniquely. (Earlier devices do not have this iden-
tifier.) The serial number is held in a displayable text buffer with no
null terminator. The user can view the serial number in the Applica-
tion Launcher application. (The popup version of the Launcher does
not display the serial number.) The Application Launcher on Palm
III devices also displays to the user a checksum digit that you can
use to validate user entry of the serial number.

To retrieve the ROM serial number programmatically, pass the
sysROMTokenSnum selector to the SysGetRomToken function. If
the SysGetRomToken function returns an error, or if the returned
pointer to the buffer is NULL, or if the first byte of the text buffer is
0xFF, then no serial number is available.

The DrawSerialNumOrMessage function shown in Listing 1.1 re-
trieves the ROM serial number, calculates the checksum, and draws
both on the screen at a specified location. If the device has no serial
number, this function draws a message you specify. This function
accepts as its input a pair of coordinates at which it draws output,
and a pointer to the message it draws when a serial number is not
available.

Developing Palm OS Applications
Different Palm Computing Platform Devices

52 Developing Palm OS 3.0 Applications, Part I

Listing 1.1 DrawSerialNumOrMessage

static void DrawSerialNumOrMessage(int x, int y,
CharPtr noNumberMessage)

{
 CharPtr bufP;
 Word bufLen;
 Word retval;
 Short count;
 Byte checkSum;
 char checksumStr[2];

// holds the dash and the checksum digit

 retval = SysGetROMToken (0, sysROMTokenSnum,
(BytePtr*) &bufP, &bufLen);

 if ((!retval) && (bufP) && ((Byte) *bufP != 0xFF)) {
// there's a valid serial number!
// Calculate the checksum: Start with zero, add each digit,
// then rotate the result one bit to the left and repeat.

 checkSum = 0;
 for (count=0; count<bufLen; count++) {
 checkSum += bufP[count];
 checkSum = (checkSum<<1) | ((checkSum & 0x80) >> 7);
 }

// Add the two hex digits (nybbles) together, +2
// (range: 2 - 31 ==> 2-9, A-W)
// By adding 2 to the result before converting to ascii,
// we eliminate the numbers 0 and 1, which can be
// difficult to distinguish from the letters O and I.
checkSum = ((checkSum>>4) & 0x0F) + (checkSum & 0x0F) + 2;

// draw the serial number and find out how wide it was
WinDrawChars(bufP, bufLen, x, y);
x += FntCharsWidth(bufP, bufLen);

// draw the dash and the checksum digit right after it
checksumStr[0] = '-';
checksumStr[1] =

((checkSum < 10) ? (checkSum +'0'):(checkSum -10 +'A'));

Developing Palm OS Applications
Different Palm Computing Platform Devices

Developing Palm OS 3.0 Applications, Part I 53

WinDrawChars (checksumStr, 2, x, y);
}

 else // there's no serial number
// draw a status message if the caller provided one
if (noNumberMessage)
WinDrawChars(noNumberMessage, StrLen(noNumberMessage),x, y);

}

Developing Palm OS Applications
Different Palm Computing Platform Devices

54 Developing Palm OS 3.0 Applications, Part I

Developing Palm OS 3.0 Applications, Part I 55

2
Application Control
Flow
Palm OS applications are generally single-threaded, event-driven
programs. They may use predefined UI elements (sometimes re-
ferred to as UI objects) or they may create their own UI elements. All
applications must use the memory and data management facilities
provided by the system and must be considerate of the system and
other applications by periodically allowing system event handlers
access to the event flow.

The flow of control in Palm OS is driven by two different mecha-
nisms, discussed in some detail in this chapter:
• How Events Control an Application discusses the event

manager, the main interface between the Palm OS system
software and an application. It discusses in some detail what
an application does in response to user input, providing
code fragments as examples where needed.

• How Launch Codes Control an Application discusses how
an application handles requests for immediate action at its
top level (PilotMain). For example, there are launch codes
for launching an application, for telling an application to
search its data for a text string, and for notifying an
application that data has been synchronized. Using launch
codes, an application can request information or actions
from another application.

Figure 2.1 illustrates control flow in a typical application.

Application Control Flow

56 Developing Palm OS 3.0 Applications, Part I

Figure 2.1 Control Flow in a Typical Application

EvtGetEvent

SysHandleEvent

MenuHandleEvent

FormDispatchEvent

Is there an event?

yes

no

Is this a system function?
Process event,
generate other events
as necessary, return. (e.g., power-off, Graffiti input)

Handle menu interface,

Remain in loop until
there is an event.

then go on.

ApplicationHandleEvent

yes

no

Is this a menu?

Load from resources, set event
handler for form loaded.

FrmHandleEvent

yes

no

Is this a frmLoadEvent?

Did application handler
complete event processing?

Provide default processing
for event.

yes

no

no

yes

Dispatch event to applications
handler for form.

Application Control Flow
How Events Control an Application

Developing Palm OS 3.0 Applications, Part I 57

How Events Control an Application
This section starts with a high-level overview of the stages of a Palm
OS application, then provides more information on the event loop.

Note that each event is discussed in some detail in Chapter 6, “Palm
OS Events.” The event flow for each User Interface resource is dis-
cussed in Chapter 3, “Palm OS User Interface Resources.” The
event flow for each User Interface object is discussed in Chapter 4,
“Palm OS User Interface Objects.”

Basic Application Stages

When an application receives the launch code
sysAppLauchCommandNormalLaunch (see How Launch Codes
Control an Application), it begins with a startup routine, then goes
into an event loop, and finally exits with a stop routine.

• The Startup Routine is the application’s opportunity to
perform actions that need to happen once, and only once, at
startup. A typical startup routine opens databases, reads
saved state information (such as UI preferences), and
initializes the application’s global data.

• The Event Loop fetches events from the queue and
dispatches them, taking advantage of default system
functionality as appropriate.

• The Stop Routine provides an opportunity for the
application to perform cleanup activities before exiting.
Typical activities include closing databases and saving state
information.

The following sections look at each of the stages in some detail.
Note that for each phase, Palm OS provides a default behavior that
can help you keep application code to a minimum. If your applica-
tion has special requirements, your application may instead handle
the bulk of the work itself.

Application Control Flow
How Events Control an Application

58 Developing Palm OS 3.0 Applications, Part I

The Startup Routine

During the startup routine, your application should perform these
actions:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global vari-
ables that will be referenced throughout the application.

2. Find the application database by creator type. If none exists,
create it and initialize it.

3. Get application-specific preferences and initialize related glo-
bal variables.

4. Initialize any other global variables.

Listing 2.1 shows an example StartApplication function from
the datebook application.

Listing 2.1 StartApplication from Datebook.c

static Word StartApplication (void)
{
Word error = 0;
Err err = 0;
UInt mode;
DateTimeType dateTime;
DatebookPreferenceType prefs;
SystemPreferencesType sysPrefs;
Word prefsSize;

// Determime if secret records should be displayed.
PrefGetPreferences (&sysPrefs);
HideSecretRecords = sysPrefs.hideSecretRecords;

if (HideSecretRecords)
mode = dmModeReadWrite;

else
mode = dmModeReadWrite | dmModeShowSecret;

// Get the time formats from the system preferences.
TimeFormat = sysPrefs.timeFormat;

Application Control Flow
How Events Control an Application

Developing Palm OS 3.0 Applications, Part I 59

// Get the date formats from the system preferences.
LongDateFormat = sysPrefs.longDateFormat;
ShortDateFormat = sysPrefs.dateFormat;

// Get the starting day of the week from the system preferences.
StartDayOfWeek = sysPrefs.weekStartDay;

// Get today's date.
TimSecondsToDateTime (TimGetSeconds (), &dateTime);
Date.year = dateTime.year - firstYear;
Date.month = dateTime.month;
Date.day = dateTime.day;

// Find the application's data file. If it doesn't exist
// create it.
ApptDB = DmOpenDatabaseByTypeCreator(datebookDBType,

sysFileCDatebook, mode);
if (! ApptDB)
{
error = DmCreateDatabase (0, datebookDBName, sysFileCDatebook,

datebookDBType, false);
if (error) return error;

ApptDB = DmOpenDatabaseByTypeCreator(datebookDBType,
sysFileCDatebook, mode);

if (! ApptDB) return (1);

error = ApptAppInfoInit (ApptDB);
if (error) return error;
}

// Read the preferences / saved-state information. There is
// only one version of the DateBook preferences so don't worry
// about multiple versions.
prefsSize = sizeof (DatebookPreferenceType);

Application Control Flow
How Events Control an Application

60 Developing Palm OS 3.0 Applications, Part I

if (PrefGetAppPreferences (sysFileCDatebook, datebookPrefID,
&prefs, &prefsSize,

true) != noPreferenceFound)
{
DayStartHour = prefs.dayStartHour;
DayEndHour = prefs.dayEndHour;
AlarmPreset = prefs.alarmPreset;
NoteFont = prefs.noteFont;
SaveBackup = prefs.saveBackup;
ShowTimeBars = prefs.showTimeBars;
CompressDayView = prefs.compressDayView;
ShowTimedAppts = prefs.showTimedAppts;
ShowUntimedAppts = prefs.showUntimedAppts;
ShowDailyRepeatingAppts = prefs.showDailyRepeatingAppts;
}

TopVisibleAppt = 0;
CurrentRecord = noRecordSelected;

// Laod the far call jump table.
FarCalls.apptGetAppointments = ApptGetAppointments;
FarCalls.apptGetRecord = ApptGetRecord;
FarCalls.apptFindFirst = ApptFindFirst;
FarCalls.apptNextRepeat = ApptNextRepeat;
FarCalls.apptNewRecord = ApptNewRecord;
FarCalls.moveEvent = MoveEvent;

return (error);
}

Application Control Flow
How Events Control an Application

Developing Palm OS 3.0 Applications, Part I 61

The Event Loop

When startup is complete, the application enters an event loop.
While in the loop, the application continuously checks for events on
the event queue. If there are events on the queue, the application has
to process them as determined in the event loop. As a rule, the
events are passed on to the system, which knows how to handle
them. For example, the system knows how to respond to pen taps
on forms or menus.

The application typically remains in the event loop until the system
tells it to shut itself down by sending an appStopEvent (not a
launch code) through the event queue. The application must detect
this event and terminate.

Listing 2.2 Top-Level Event Loop Example

static void EventLoop (void)
{
Word error;
EventType event;
do
{
EvtGetEvent (&event, evtWaitForever);

PreprocessEvent (&event);

if (! SysHandleEvent (&event))

if (! MenuHandleEvent (NULL, &event, &error))

if (! ApplicationHandleEvent (&event))
FrmDispatchEvent (&event);

#if EMULATION_LEVEL != EMULATION_NONE
ECApptDBValidate (ApptDB);

#endif
}

while (event.eType != appStopEvent);
}

Application Control Flow
How Events Control an Application

62 Developing Palm OS 3.0 Applications, Part I

In the event loop, the application iterates through these steps (see
Figure 2.1 and Listing 2.2)

1. Fetch an event from the event queue.

2. Call PreprocessEvent to allow the datebook event han-
dler to see the command keys before any other event handler
geta them. Some of the databook views display UI that dis-
pappears automatically; This UI needs to be dismissed be-
fore the system event handler or the menu event handler dis-
play any UI objects.

Note that not all applications need a PreprocessEvent
functions. It may be appropriate to call SysHandleEvent
right away.

3. Call SysHandleEvent to give the system an opportunity to
handle the event.

The system handles events like power on/ power off, Graffiti
input, tapping silk-screened icons, or pressing buttons. Dur-
ing the call to SysHandleEvent, the user may also be in-
formed about low-battery warnings or may find and search
another application.

Note that in the process of handling an event,
SysHandleEvent may generate new events and put them
on the queue. For example, the system handles Graffiti input
by translating the pen events to key events. Those, in turn,
are put on the event queue and are eventually handled by the
application.

SysHandleEvent returns TRUE if the event was completely
handled, that is, no further processing of the event is re-
quired. The application can then pick up the next event from
the queue.

4. If SysHandleEvent did not completely handle the event, the
application calls MenuHandleEvent. MenuHandleEvent
handles two types of events:
– If the user has tapped in the area that invokes a menu,
MenuHandleEvent brings up the menu.

– If the user has tapped inside a menu to invoke a menu
command, MenuHandleEvent removes the menu from
the screen and puts the events that result from the
command onto the event queue.

Application Control Flow
How Events Control an Application

Developing Palm OS 3.0 Applications, Part I 63

MenuHandleEvent returns TRUE if the event was completely
handled.

5. If MenuHandleEvent did not completely handle the event,
the application calls ApplicationHandleEvent, a func-
tion your application has to provide itself.
ApplicationHandleEvent handles only the
frmLoadEvent for that event; it loads and activates applica-
tion form resources and sets the event handler for the active
form.

6. If ApplicationHandleEvent did not completely handle
the event, the application calls FrmDispatchEvent.
FrmDispatchEvent first sends the event to the application’s
event handler for the active form. This is the event handler
routine that was established in ApplicationHandleEvent.
Thus the application’s code is given the first opportunity to
process events that pertain to the current form. The applica-
tion’s event handler may completely handle the event and re-
turn TRUE to callsfrom FrmDispatchEvent.In that case,
calls FrmDispatchEvent returns to the application’s event
loop. Otherwise, calls FrmDispatchEvent calls
FrmDispatchEvent to provide the system’s default process-
ing for the event.

For example, in the process of handling an event, an applica-
tion frequently has to first close the current form and then
open another one, as follows:
– The application calls FrmGotoForm to bring up another

form. FrmGotoForm queues a frmCloseEvent for the
currently active form, then queues frmLoadEvent and
frmOpenEvent for the new form.

– When the application gets the frmCloseEvent, it closes
and erases the currently active form.

– When the application gets the frmLoadEvent, it loads
and then activates the new form. Normally, the form
remains active until it’s closed. (Note that this wouldn’t
work if you preload all forms, but preloading is really
discouraged. Applications don’t need to be concerned
with the overhead of loading forms; loading is so fast
that applications can do it when they need it.) The
application’s event handler for the new form is also
established.

Application Control Flow
How Events Control an Application

64 Developing Palm OS 3.0 Applications, Part I

– When the application gets the frmOpenEvent, it
performs any required initialization of the form, then
draws the form on the display.

After FrmGotoForm has been called, any further events that
come through the main event loop and to
FrmDispatchEvent are dispatched to the event handler for
the form that’s currently active. For each dialog box or form,
the event handler knows how it should respond to events, for
example, it may open, close, highlight, or perform other ac-
tions in response to the event. FrmHandleEvent invokes
this default UI functionality.

After the system has done all it can to handle the event for
the specified form, the application finally calls the active
form’s own event handling function. For example, in the
datebook application, it may call DayViewHandleEvent or
WeekViewHandleEvent.

Notice how the event flow allows your application to rely on system
functionality as much as it wants. If your application wants to know
whether a button is pressed, it has only to wait for
ctlSelectEvent. All the details of the event queue are handled
by the system.

Some events are actually requests for the application to do some-
thing, for example, frmOpenEvent. Typically, all the application
does is draw its own interface, using the functions provided by the
system, and then waits for events it can handle to arrive from the
queue.

Only the active form should process events.

Application Control Flow
How Events Control an Application

Developing Palm OS 3.0 Applications, Part I 65

The Stop Routine

In the stop routine, an application should first flush all active
records, then close the application’s database, and finally save those
aspects of the current state needed for startup. Listing 2.3 is an ex-
ample of a StopApplication routine from Datebook.c.

Listing 2.3 Example of StopApplication Routine

static void StopApplication (void)
{
DatebookPreferenceType prefs;

// Write the preferences / saved-state information.
prefs.noteFont = NoteFont;
prefs.dayStartHour = DayStartHour;
prefs.dayEndHour = DayEndHour;
prefs.alarmPreset = AlarmPreset;
prefs.saveBackup = SaveBackup;
prefs.showTimeBars = ShowTimeBars;
prefs.compressDayView = CompressDayView;
prefs.showTimedAppts = ShowTimedAppts;
prefs.showUntimedAppts = ShowUntimedAppts;
prefs.showDailyRepeatingAppts = ShowDailyRepeatingAppts;

// Write the state information.
PrefSetAppPreferences (sysFileCDatebook, datebookPrefID,
datebookVersionNum, &prefs, sizeof (DatebookPreferenceType),
true);

// Send a frmSave event to all the open forms.
FrmSaveAllForms ();

// Close all the open forms.
FrmCloseAllForms ();

// Close the application's data file.
DmCloseDatabase (ApptDB);

}

Application Control Flow
How Launch Codes Control an Application

66 Developing Palm OS 3.0 Applications, Part I

How Launch Codes Control an Application
Launch codes allow direct communication between the system and
an application and between two applications. This direct communi-
cation takes precedence over any events on an application’s queue.
• The system uses launch codes to ask an application to do

something, interrupting other activities if necessary.
Examples include launch codes for launching an application,
initializing databases, or resetting after the user performs a
hard reset.

Global find is a frequently used launch code that illustrates
the usefulness of launch codes. It allows users to search all
databases for a certain record, such as a name. In this case, it
would be very wasteful to do a full launch—including the
user interface—of each application only to access the applica-
tion’s databases in search of that item. Using a launch code
avoids this overhead.

• An application can use a launch code to request that another
application perform an action or modify its data. For
example, a data collection application could instruct an
email application to queue up a particular message to be
sent.

Launch codes can be sent from the system’s top level or from anoth-
er application’s thread. In most cases, an application’s global vari-
ables are not available. Launch codes are delivered to an application
at its highest level (through the PilotMain function). Each launch
code may be accompanied by a Parameter Block which may in turn
contain one or more Launch Flags. The parameter block is specific to
the launch code, while the launch flags can be sent with any launch
code.

Note: Static local variables are stored with the global variables on
the system’s dynamic heap. They are not accessible while
executing launch codes other than normal launch.

Application Control Flow
How Launch Codes Control an Application

Developing Palm OS 3.0 Applications, Part I 67

Parameter Block
Many launch codes are accompanied by a parameter block. A pa-
rameter block is a pointer to a structure that contains several param-
eters. These parameters contain information necessary to handle the
associated launch code.

Launch Flags

Launch flags provide some additional information on what exactly
an application should do when it receives a launch code.

• If an application sends a launch code to another application,
it should always set the launch flags to zero.

• The system sometimes uses flags with a launch code to indi-
cate how the application should behave. For example, a flag
could be used to specify whether the UI should be displayed
or not.

Note that even if an application has decided to handle a certain
launch code, it can still decide not to handle the associated launch
flags.

See More About Launch Flags for additional information.

Application Control Flow
Launch Code Example

68 Developing Palm OS 3.0 Applications, Part I

Launch Code Example
An application needs to checks for launch codes in its main func-
tion. Listing 2.4 shows parts of PilotMain from the datebook ap-
plication as an example. To see the complete example, go to Palm
OS SDK: Examples:Datebook:Datebook.c.

Listing 2.4 Code Fragment Checking for Launch Codes

static DWord DBPilotMain (Word cmd, Ptr cmdPBP, Word launchFlags)
{
Word error;
Boolean launched;

// This app makes use of PalmOS 2.0 features.It will crash if
// run on an earlier version of PalmOS. Detect and warn if this
// happens, then exit.
error = RomVersionCompatible (version20, launchFlags);
if (error)
return error;

// Launch code sent by the launcher or the datebook button.
if (cmd == sysAppLaunchCmdNormalLaunch)
{
error = StartApplication ();
if (error) return (error);

FrmGotoForm (DayView);
EventLoop ();
StopApplication ();
}

// Launch code sent by text search.
else if (cmd == sysAppLaunchCmdFind)
{
Search ((FindParamsPtr)cmdPBP);
}

Application Control Flow
Launch Code Example

Developing Palm OS 3.0 Applications, Part I 69

// This launch code might be sent to the app when it's already
// running if the user hits the "Go To" button in the Find
// Results dialog box.
else if (cmd == sysAppLaunchCmdGoTo)
{
launched = launchFlags & sysAppLaunchFlagNewGlobals;
if (launched)
{
error = StartApplication ();
if (error) return (error);

GoToItem ((GoToParamsPtr) cmdPBP, launched);

EventLoop ();
StopApplication ();
}

else
GoToItem ((GoToParamsPtr) cmdPBP, launched);

}

// Launch code sent by sync application to notify the datebook
// application that its database was been synced.
// ...
// Launch code sent by Alarm Manager to notify the datebook
// application that an alarm has triggered.
// ...
// Launch code sent by Alarm Manager to notify the datebook
// application that is should display its alarm dialog.
// ...
// Launch code sent when the system time is changed.
// ...
// Launch code sent after the system is reset. We use this time
// to create our default database if this is a hard reset
// ...
// Launch code sent by the DesktopLink server when it create
// a new database. We will initializes the new database.
return (0);

}

Application Control Flow
Summary of All Launch Codes

70 Developing Palm OS 3.0 Applications, Part I

Summary of All Launch Codes
The following table lists all Palm OS standard launch codes in alphabetical order. More
detailed information is provided immediately after the table (you can also click on the
links to access it).

Table 2.1 Palm OS Launch Codes

Code Request

sysAppLaunchCmdAlarmTriggered Schedule next alarm or perform quick ac-
tions such as sounding alarm tones.

sysAppLaunchCmdCountryChange Respond to country change.

sysAppLaunchCmdDisplayAlarm Display specified alarm dialog or perform
time-consuming alarm-related actions.

sysAppLaunchCmdExgAskUser Let application override display of dialog
asking user if they want to receive incom-
ing data via the exchange manager.

sysAppLaunchCmdExgReceiveData Notify application that it should receive
incoming data via the exchange manager.

sysAppLaunchCmdFind Find a text string.

sysAppLaunchCmdGoto Go to a particular record, display it, and
optionally select the specified text.

sysAppLaunchCmdInitDatabase Initialize database.

sysAppLaunchCmdLookup Look up data. In contrast to
sysAppLaunchCmdFind, a level of indi-
rection is implied. For example, look up a
phone number associated with a name.

sysAppLaunchCmdNormalLaunch Launch normally.

Application Control Flow
More About Launch Codes

Developing Palm OS 3.0 Applications, Part I 71

More About Launch Codes
This section provides supplemental information about launch
codes. For some launch codes, it lists the parameter block, which in
some cases provides additional information about the launch code.

The section discusses all launch codes in alphabetical order. For a
listing, see Table 2.1.

sysAppLaunchCmdPanelCalledFromApp Tell preferences panel that it was invoked
from an application, not the Preferences
application.

sysAppLaunchCmdReturnFromPanel Tell an application that it’s restarting after
preferences panel had been called.

sysAppLaunchCmdSaveData Save data. Often sent before find
operations.

sysAppLaunchCmdSyncNotify Notify applications that a HotSync has
been completed.

sysAppLaunchCmdSystemLock Sent to the Security application to request
that the system be locked down.

sysAppLaunchCmdSystemReset Respond to system reset. No UI is al-
lowed during this launch code.

sysAppLaunchCmdTimeChange Respond to system time change.

Table 2.1 Palm OS Launch Codes

Code Request

Application Control Flow
More About Launch Codes

72 Developing Palm OS 3.0 Applications, Part I

sysAppLaunchCmdAlarmTriggered

Perform quick action such as scheduling next alarm or sounding
alarm.

Impact on Application

This launch code is sent as close to the actual alarm time as possible.
An application may perform any quick, non-blocking action at this
time. An opportunity to perform more time-consuming actions will
come when sysAppLaunchCmdDisplayAlarm is sent.

sysAppLaunchCmdCountryChange

Respond to country change.

Impact on Application

Applications should change the display of numbers to use the prop-
er number separators. To do this, call LocGetNumberSeparators,
StrLocalizeNumber, and StrDelocalizeNumber.

sysAppLaunchCmdDisplayAlarm

Perform full, possibly blocking, handling of alarm.

Impact on Application

This is the application’s opportunity to handle an alarm in a lengthy
or blocking fashion. Notification dialogs are usually displayed
when this launch code is received. This work should be done here,
not when sysAppLaunchCmdAlarmTriggered is received. Multi-
ple alarms may be pending at the same time for multiple applica-
tions, and one alarm display shouldn’t block the system and pre-
vent other applications from receiving their alarms in a timely
fashion.

sysAppLaunchCmdExgAskUser

Exchange manager sends this launch code to the application when
data has arrived for that application. This launch code lets the

Application Control Flow
More About Launch Codes

Developing Palm OS 3.0 Applications, Part I 73

application tell the exchange manager whether or not to display a
dialog asking the user if they want to accept the data. If the applica-
tion chooses not to handle this launch command, the default course
of action is that the exchange manager displays a dialog asking the
user if they want to accept the incoming data. In most cases, applica-
tions won’t need to handle this launch code, since the default action
is the preferred alternative.

The application can respond to this launch code by setting the
result field in the parameter block to the appropriate value. If it
wants to allow the exchange manager to display a dialog, it should
leave the result field set to exgAskDialog (the default value). To
disable display of the dialog and to automatically accept the incom-
ing data (as if the user had pressed OK in the dialog), set the
result field to exgAskOk. To disable display of the dialog and to
automatically reject the incoming data (as if the user had pressed
Cancel in the dialog), set the result field to exgAskCancel. In the
later case, the data is discarded and no further action is taken by the
exchange manager.

If the application sets the result field to exgAskOk, or the dialog is
displayed and the user presses the OK button, then the exchange
manager sends the application the next launch code,
sysAppLaunchCmdExgReceiveData, so that it can actually re-
ceive the data.

sysAppLaunchCmdExgAskUser Parameter Block

Prototype typedef struct {

ExgSocketPtr socketP;

ExgAskResultTyperesult;

} ExgAskParamType;

Fields socketP Socket pointer

result Show dialog, auto-confirm, or auto-cancel

Application Control Flow
More About Launch Codes

74 Developing Palm OS 3.0 Applications, Part I

sysAppLaunchCmdExgReceiveData

Following the launch code sysAppLaunchCmdExgAskUser, the
exchange manager sends this launch code to the application to noti-
fy it that it should receive the data (assuming that the application
and/or the user has indicated the data should be received).

The application should use exchange manager functions to receive
the data and store it or do whatever it needs to with the data.

Note that the application may not be the active application, and
thus may not have globals available when it is launched with this
launch code. You can check if you have globals by using this code in
the PilotMain routine:

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;

The appIsActive value will be true if your application is active
and globals are available; otherwise, you won’t be able to access any
of your global variables during the receive operation.

The parameter block sent with this launch code is of the
ExgSocketPtr data type. It is a pointer to the ExgSocketType
structure corresponding to the exchange manager connection via
which the data is arriving. You will need to pass this pointer to the
ExgAccept function to begin receiving the data. For more details,
refer to the Exchange Manager chapter in Part III.

sysAppLaunchCmdFind

This launch command is used to implement the global find. It is sent
by the system whenever the user enters a text string in a Find dia-
log. At that time, the system queries each application whether it
handles this launch code and returns any records matching the find
request.

The system, sends this launch code with the FindParamsType pa-
rameter block to each application. The system displays the results of
the query in the Find dialog.

Application Control Flow
More About Launch Codes

Developing Palm OS 3.0 Applications, Part I 75

Impact on Application

Most applications that use text records should support this launch
code. When they receive it, they should search all records for match-
es to the find string and return all matches.

An application can also integrate the find operation in its own user
interface and send the launch code to a particular application.

Applications that support this launch code should support sysAp-
pLaunchCmdSaveData and sysAppLaunchCmdGoto as well. See
Phase 14 of the tutorial for an example.

sysAppLaunchCmdFind Parameter Block

Prototype typedef struct {

// These fields are used by the applications.

Word dbAccesMode;

Word recordNum;

Boolean more;

Char strAsTyped [maxFindStrLen+1];

Char strToFind [maxFindStrLen+1];

// These fields are private to the Find routine

//and should NOT be accessed by applications.

Word numMatches;

Word lineNumber;

Boolean continuation;

Boolean searchedCaller;

LocalID callerAppDbID;

Word callerAppCardNo;

LocalID appDbID;

Word appCardNo;

Boolean newSearch;

DmSearchStateType searchState;

FindMatchType match [maxFinds];

} FindParamsType;

Application Control Flow
More About Launch Codes

76 Developing Palm OS 3.0 Applications, Part I

Fields dbAccessMode Read mode. May be “show secret.”

recordNum Index of last record that contained a match.

more TRUE if more matches to display.

strAsTyped [maxFindStrLen+1]
Search string as entered.

strToFind [maxFindStrLen+1]
Search string in lower case.

numMatches System use only.

lineNumber System use only.

continuation System use only.

searchedCaller System use only.

callerAppDbID System use only.

callerAppCardNoSystem use only.

appDbID System use only.

appCardNo System use only.

newSearch System use only.

searchState System use only.

match [maxFinds]System use only.

sysAppLaunchCmdGoto

Sent in conjunction with sysAppLaunchCmdFind or sysAp-
pLaunchCmdExgReceiveData to allow users to actually inspect
the record that the global find returned or that was received by the
exchange manager.

Impact on Application

Applications should do most of the normal launch actions, then dis-
play the requested item. The applications should continue running
unless explicitly closed.

Application Control Flow
More About Launch Codes

Developing Palm OS 3.0 Applications, Part I 77

sysAppLaunchCmdGoto Parameter Block

Prototype typedef struct {

Word searchStrLen;

Word dbCardNo;

LocalID dbID;

Word recordNum;

Word matchPos;

Word matchFieldNum;

DWord matchCustom;

} GoToParamsType;

Fields searchStrLen Length of search string.

dbCardNo Card number of the database.

dbID Local ID of the database.

recordNum Index of record containing a match.

matchPos Position of the match.

matchFieldNum Field number string was found in.

matchCustom Application-specific information.

sysAppLaunchCmdInitDatabase

This launch code is sent by the Desktop Link server in response to a
request to create a database. It is sent to the application whose cre-
ator ID matches that of the requested database.

The most frequent occurrence of this is when a ‘data’ database is
being installed or restored from the desktop. In this case, HotSync
creates a new database on the device and passes it to the application
via a sysAppLaunchCmdInitDatabase command, so that the ap-
plication can perform any required initialization. HotSync will then
transfer the records from the desktop database to the device
database.

When a Palm OS application crashes while a database is installed
using HotSync, the reason may be that the application is not

Application Control Flow
More About Launch Codes

78 Developing Palm OS 3.0 Applications, Part I

handling the sysAppLaunchCmdInitDatabase command prop-
erly. Be especially careful not to access global variables.

Impact on Application

The system will create a database and pass it to the application for
initialization. The application must perform any initialization re-
quired, then pass the database back to the system, unclosed.

sysAppLaunchCmdInitDatabase Parameter Block

Prototype typedef struct {

DmOpenRef dbP;

ULong creator;

ULong type;

UInt version;

} SysAppLaunchCmdInitDatabaseType;

Fields dbP Database reference.

creator Database creator.

type Database type.

version Database version.

sysAppLaunchCmdLookup

The system or an application sends this launch command to retrieve
information from another application. In contrast to Find, there is a
level of indirection; for example, this launch code could be used to
retrieve the phone number based on input of a name.

This functionality is currently supported by the standard Palm OS
Address Book.

Impact on Application

Applications that decide to handle this launch code must search
their database for the string the user entered and perform the match
operation specified in the launch code’s parameter block.

Application Control Flow
More About Launch Codes

Developing Palm OS 3.0 Applications, Part I 79

If an application wants to allow its users to perform lookup in other
applications, it has to send it properly, including all information
necessary to perform the match. An example for this is in
Address.c and AppLaunchCmd.h which are included in your
SDK.

Parameter Block

The parameter block is defined by the application that supports this
launch code. See AppLaunchCmd.h for an example.

sysAppLaunchCmdPanelCalledFromApp

sysAppLaunchCmdPanelCalledFromApp and
sysAppLaunchCmdReturnFromPanel allow an application to let
users change preferences without switching to the Preferences ap-
plication. For example, for the calculator, you may launch the For-
mats preferences panel, set up a number format preference, then di-
rectly return to the calculator that then uses the new format.

sysAppLaunchCmdPanelCalledFromApp lets a preferences panel
know whether it was switched to from the Preferences application
or whether an application invoked it to make a change. The panel
may be a preference panel owned by the application or a system
preferences panel.

Examples of these system panels that may handle this launch code
are:

• Network panel (called from network applications)
• Modem panel (called if modem selection is necessary)

Impact on Application

All preferences panels must handle this launch code. If a panel is
launched with this command, it should:

• Display a Done button.

• NOT display the panel-switching pop-up trigger used for
navigation within the preferences application.

Application Control Flow
More About Launch Codes

80 Developing Palm OS 3.0 Applications, Part I

 sysAppLaunchCmdReturnFromPanel

This launch code is used in conjunction with
sysAppLaunchCmdPanelCalledFromApp. It informs an applica-
tion that the user is done with a called preferences panel. The sys-
tem passes this launch code to the application when a previously-
called preferences panel exists.

sysAppLaunchCmdSaveData

Instructs the application to save all current data. For example, be-
fore the system performs a Find operation, an application should
save all data.

Impact on Application

Any application that supports the Find command and that can have
buffered data should support this launch code. Generally, an appli-
cation only has to respond if it’s the currently running application.
In that case, all buffered data should be saved when the launch code
is received.

sysAppLaunchCmdSaveData Parameter Block

Prototype typedef struct {

Boolean uiComing;

} SysAppLaunchCmdSaveDataType;

Fields uiComing TRUE if system dialog is displayed before
launch code arrives.

sysAppLaunchCmdSyncNotify

This launch code is sent to applications to inform them that a
HotSync has occurred.

Application Control Flow
More About Launch Codes

Developing Palm OS 3.0 Applications, Part I 81

sysAppLaunchCmdSystemLock

Launch code sent to the system-internal security application to lock
the device.

Impact on Application

As a rule, applications don’t need to do respond to this launch code.
If an application replaces the system-internal security application, it
must handle this launch code.

sysAppLaunchCmdSystemReset

Launch code to respond to system soft or hard reset.

Impact on Application

Applications can respond to this launch code by performing initial-
ization, indexing, or other setup that they need to do when the sys-
tem is reset. For more information about resetting the device, see the
Palm OS Cookbook.

sysAppLaunchCmdSystemReset Parameter Block

Prototype typedef struct {

Boolean hardReset;

Boolean createDefaultDB;

} SysAppLaunchCmdSystemResetType;

Fields hardReset TRUE if system was hardReset. FALSE if sys-
tem was softReset.

createDefaultDBIf TRUE, application has to create default
database.

Application Control Flow
More About Launch Flags

82 Developing Palm OS 3.0 Applications, Part I

sysAppLaunchCmdTimeChange

Launch code to respond to a time change initiated by the user.

Impact on Application

Applications that are dependent on the current time or date need to
respond to this launch code. For example, an application that sets
alarms may want to cancel an alarm or set a different one if the sys-
tem time changes.

More About Launch Flags
When an application is launched with any launch command, it also
is passed a set of launch flags.

An application may decide not to handle the flags even if it handles
the launch code itself. For applications that decide to include this
launch code, the following table provides additional information:

Flag Functionality

sysAppLaunchFlagNewThread Creates a new thread for the
application. Implies
sysAppLaunchFlagNewStack.

sysAppLaunchFlagNewStack Creates a separate stack for the
application.

sysAppLaunchFlagNewGlobals Creates a new globals world for
the application. Implies new
owner ID for memory chunks.

Application Control Flow
Responding to Launch Codes

Developing Palm OS 3.0 Applications, Part I 83

Generally, the system sends launch flags along with all launch
codes. Applications should just pass 0 (zero) when sending a launch
code to another application.

Responding to Launch Codes
Launch codes may be sent to any application without negative ef-
fects. However, a launch code only has an effect if the application
that receives it has been programmed to handle it. An application
may decide not to handle the flags even if it handles the launch code
itself.

When developing your application, be sure to handle as many of the
standard launch codes as possible.

When an application receives a launch code, it must first check
whether it can handle this particular code. For example, only appli-
cations that have text data should respond to a launch code request-
ing a string search. If an application can’t handle a launch code, it
exits without failure. Otherwise, it performs the action immediately
and returns.

sysAppLaunchFlagUIApp Notifies launch routine that this
is a UI application being
launched.

sysAppLaunchFlagSubCal Notifies launch routine that the
application is calling its entry
point as a subroutine call. This
tells the launch code that it's
OK to keep the A5 (globals)
pointer valid through the call.

Flag Functionality

Application Control Flow
Predefined Launch Codes

84 Developing Palm OS 3.0 Applications, Part I

Determining Status When Receiving Launch
Code

If an application receives a launch code other than
sysCmdAppNormalLaunch, it can find out whether it’s the current
application by checking the launch flags, which are sent to the cur-
rently running application.

If the application is the currently running application, the
sysAppLaunchFlagSubCall flag is set. This flag is set by the sys-
tem and isn’t (and shouldn’t be) set by the sender of a launch code.

Note that if the launch code is sent to the currently running applica-
tion, the launch code handler may access the application’s global
variables. Only the system can access these global variables.

Predefined Launch Codes
A number of launch codes are predefined by the system for han-
dling certain system tasks, for example,

• Notifying the application when certain system preferences
like date and time have changed

• Performing global find and goto operations
• Notifying the application that its data files have been

updated by a sync operation

The launch code parameter is a 16-bit word value. All launch codes
with values 0–32767 are reserved for use by the system and for fu-
ture enhancements. Launch codes 32768–65535 are available for pri-
vate use by applications.

Creating Your Own Launch Codes

In addition to the predefined launch codes defined in Table 2.1, de-
velopers can create their own launch codes to implement specific
functionality. Both the sending and the receiving application must
know about and handle any developer-defined launch codes.

An example is PhoneLookup.c.

Developing Palm OS 3.0 Applications, Part I 85

3

Palm OS User
Interface Resources
Palm OS User Interface resources are the elements of an applica-
tion’s GUI (graphical user interface).

This chapter helps you work with resources by providing informa-
tion about these topics:

• Using Constructor to Work With Resources gives an overview of
the Constructor tool and briefly explains how to use it.

• Project Resources provides information about project resources.
These resources are created by instantiating a template. Exam-
ples are menu and menu bar or string.

• Catalog Resources provides information about resources that
you can instantiate by dragging them from the catalog onto a
form. Examples are buttons and check boxes.

Note: For more information see the following manuals:
The Palm OS Tutorial provides more detailed instruction on how to
create a GUI using the Constructor tool.
The Constructor for Palm OS manual in the CodeWarrior Docu-
mentation folder provides detailed reference-style documentation
as well as information on how to use each individual resource.

The relationship between the resources and the structures provided
by Palm OS is discussed in Chapter 4, “Palm OS User Interface Ob-
jects.”

Palm OS User Interface Resources
Using Constructor to Work With Resources

86 Developing Palm OS 3.0 Applications, Part I

Using Constructor to Work With Resources
In Palm OS 2.0 and later, developers can choose how they want to
create their resources:

• Using Constructor. This chapter describes how to use Construc-
tor to create and manipulate resources.

• Macintosh users can also use ResEdit (as under Palm OS 1.0)

Creating Resources

Constructor has a graphical interface that allows you to quickly cre-
ate and view a GUI for your application. Here’s an overview of how
it works. For detailed information, see the “Palm OS Tutorial.”

1. Open Constructor.

Constructor opens a catalog window that contains all catalog re-
sources such as buttons, check boxes, or tables. If the catalog win-
dow isn’t visible, you can type Cmd-Y to display it.

2. From the File Menu, choose New Project File or Open Project File.

Constructor opens the Constructor project window that lets you in-
stantiate project resources such as forms, menus, and strings and
specify project settings.

3. In the Constructor project window, select the Forms template and
type Cmd–K.

Constructor instantiates the form; an icon representing it appears
below the template.

4. Double-click on the form.

Constructor opens a Form Editor, with information about the re-
source (left panel) and a graphical representation (right panel).

5. Drag the additional desired UI elements from the catalog to the
Forms window

After you’ve dragged a resource icon onto the form, the resource in-
formation becomes visible in the left panel (Layout Properties).

6. Instantiate special resource types, such as strings or bitmaps, in
the project window and associate them with the related resource.

Palm OS User Interface Resources
Using Constructor to Work With Resources

Developing Palm OS 3.0 Applications, Part I 87

Changing Resources

You can make changes to any resource as follows:

• To change a project resource, double-click on that resource in the
project window and change the fields in the associated editor
that appears.

• To change a catalog resource, you have several choices:

– Move any UI element in the Layout Appearance panel of the
Forms window.

– Change the values in the left (Layout Properties) panel of the
Forms window.

– Double-click the UI element and change the values in the In-
spector that appears.

Palm OS User Interface Resources
Project Resources

88 Developing Palm OS 3.0 Applications, Part I

Project Resources
Catalog resources are available in the Catalog window and can be
dragged directly on a form. All other resources, including the form
itself, are instantiated from the projects window.

The following table lists all Palm OS project resources in alphabeti-
cal order by resource name. The Macintosh ResEdit resource name
is include for reference only; it’s not needed by developers who use
Constructor exclusively, and not relevant for Windows developers.

Name Resource UI Name

Talt Alerts Alert

tFRM Form Resource Form

Menu Resource Menu

Menu bar Resource Menu bar

tSTR String Resource String

Icons

Bitmaps

Palm OS User Interface Resources
Alerts

Developing Palm OS 3.0 Applications, Part I 89

Alerts

Example

Overview The alert resource defines a modal dialog that displays a message,
an icon, and one or more buttons.

A small icon indicates the category of the dialog box; for example,
an exclamation mark for an error message. The icon appears on the
left side of the dialog. The text is justified left but placed to the right
of the dialog icon.

Type Icon Definition Button Example

Infor-
mation

i Lowest-level warning. Action
shouldn’t or can’t be complet-
ed but doesn’t generate an
error or risk data loss.

OK An alarm setting must be
between 1 and 99.

Confir-
mation

? Confirm an action or suggest
options.

OK,
Cancel

Change settings before
switching applications?
(For example, when
pressing an application
key with an open dialog
box.)

Warn-
ing

! Ask if user wishes to continue
a potentially dangerous action.

OK,
Cancel

Are you sure you want
to delete this entry?

Error (stop
sign)

Attempted action generated
error and/or cannot be com-
pleted.

OK Disk full.

Palm OS User Interface Resources
Alerts

90 Developing Palm OS 3.0 Applications, Part I

The Alert resource has the following attributes.

 Attributes Alert Type Determines the sound played and the icon dis-
played when the alert is drawn. There are four pos-
sible icons:

• InformationAlert (Alert Number 0)
• ConfirmationAlert (Alert Number 1)
• WarningAlert (Alert Number 2)
• ErrorAlert (Alert Number 3)

Help ID The ID of a String resource that’s the help text for
the alert dialog box. If you provide a value, the sys-
tem displays an “i” in the top right corner of the
alert box.

Default
Button ID

The number of a button that the system assumes is
selected if the user switches to another application,
forcing the form to go away without making a selec-
tion.

Title Title of the alert form.

Message Message displayed by the alert dialog. May contain
^1, ^2, ^3 as substitution variables for use in con-
junction with FrmCustomAlert.

Button Text Text of the button (e.g. OK or Cancel), determined
by an entry in the resource of each button.
To add a button, select Item Text 0, and type Cmd-K.

Palm OS User Interface Resources
Form Resource

Developing Palm OS 3.0 Applications, Part I 91

Form Resource

Overview A form is a container for one or more of the Catalog Resources.

Applications usually contain several different forms that the user
triggers by tapping buttons or other control UI objects. Most UI ob-
jects are displayed only if they are contained within a form.

Example The example below shows a modal form. A form can also be as large
as the screen.

Attributes Left Origin Window-relative position of left side of form.
Valid values: 0 – 159

Top Origin Window-relative position of top of form.
Valid values: 0 – 159

Width Width of the form in pixels.
Valid values: 0 – 160

Height Height of the form in pixels.
Valid values: 1– 160

Usable Not currently supported for forms.

Modal If checked, form is modal. Modal forms ignore pen
events outside their boundaries. Used for dialogs.

Save Behind If checked, the region obscured by the form is
saved when it’s drawn and restored when it’s
erased. Used for dialogs.

Palm OS User Interface Resources
Form Resource

92 Developing Palm OS 3.0 Applications, Part I

Comments The total display on the Palm device is 160 pixels by 160 pixels. If
you want your whole form to be seen, make sure it fits within this
display area. For pop-up dialogs, you can make the form smaller.
Align a popup dialog with the bottom of the screen.

A form is the GUI area for each view of your application. For exam-
ple the Address Book offers an Address List view, Address Edit
view, and so on. Each application has to have one form, and most
applications have more than one. To actually create the view, you
have to add other UI elements to the form; either by dragging them
onto the form from the catalog or by providing their ID as the value
of some of the form’s fields.

Here are some general design guidelines:

Form ID Form ID assigned by Constructor.

Help ID ID number of a string that’s displayed when the
user taps the “i” icon. The system adds the icon to
the form when you provide a value for this prop-
erty. Currently, only modal dialogs have help re-
sources.

Menu Bar ID Contains the ID of a menu bar resource to be asso-
ciated with this forms.

Default But-
ton ID

Number of a button that the system assumes is se-
lected if the user switches to another application,
forcing the form to go away without making a se-
lection.

Form Title Title of that form. Use titles for dialogs, menu bars
for views. By convention, the name of the applica-
tion and the name of the screen, if possible, for ex-
ample Address List or Address Edit.
The title must be one line; it uses about 13 pixels of
the top of the form.

Palm OS
Version

Version of the device for which this form is cre-
ated.

Palm OS User Interface Resources
Form Resource

Developing Palm OS 3.0 Applications, Part I 93

• Each form should have a title that displays the name or view
of the application, or both.

• Scroll bars in fields and tables appear and disappear
dynamically if you’ve selected that option for that UI
element. Place them to the right of command buttons.

• Modal dialogs always occupy the full width of the screen
and are justified to the bottom of the screen. They hide the
command buttons of the base application but don’t obscure
the title bar of the base application if possible. There should
be a minimum of three pixels between the top of the modal
dialog title bar and the bottom of the application title bar. If
the dialog is too large to accommodate this, the entire
application title bar should be obscured.

• Screen command buttons should always be at the bottom of
the screen.

• Dialog command buttons appear four pixels above the
bottom of the dialog box frame. Two-pixel default ring is
three pixels above the bottom, and the baseline of the text
within the buttons should be aligned.

• Command buttons should be centered so that the spaces
between the buttons are twice the width of the spaces
between the edges and the border (see diagram below).

If possible, all buttons should be the same width. At a minimum,
they should be spaced equidistant, as illustrated below.

Event Flow When a form is opened, a frmOpenEvent is triggered and the form’s
ID is stored. A winEnterEvent is triggered whenever a form is
opened, and a winExitEvent is triggered whenever a form is closed.

One button Two buttons Three buttons

A B C A B C D

Distance B = 2 x A = 2 x C Distance B = C = 2 x A = 2 x D

A B

Distance A = B

Palm OS User Interface Resources
String Resource

94 Developing Palm OS 3.0 Applications, Part I

String Resource

Name Strings

Overview Stores data strings used by the program. String resources may be en-
tered as text strings or as a series of hexadecimal characters.

Attributes String The text string to be stored, in decimal ASCII.

Comments The string resource uses either the string or data. If both are entered,
they are concatenated.

Menus and Menu Bars
This section first provides a Menu Overview, then steps you
through Creating a Menu. This is followed by a discussion of the
two resources: Menu Bar and Menu Resources. Finally, you learn
about Menu User Interaction and Event Flow for Menu Resource.

Menu Overview

menu

menu item

separator

shortcut

menu bar name

Palm OS User Interface Resources
Menus and Menu Bars

Developing Palm OS 3.0 Applications, Part I 95

A menu assembly consists of a menu bar, menu names indicating
the available menus, and the menus themselves with their com-
mands:

• Menu bar. The menu bar at the top of the screen contains the
names of the available menus. Each application has different
sets of menu names; within an application, different views
may have different menus.

• Menu name. Each menu is displayed below the menu
name. The following menu names are commonly found:

– Record—Place Record to the left of Edit (if applicable).

– Edit—Screens that allow editing need an Edit menu. Note,
however, that most editing is edit-in-place.

– Options—Typically, the last menu. The About command,
which provides version and creator information, should al-
ways be an Options command under Palm OS.

• Menu. The menus themselves consist of menu items and
optional shortcuts. Under Palm OS, menu items should
not duplicate functionality available via command
buttons. Menus justify left with the active heading of the
menu name when invoked. If the menu doesn’t fit, it’s
justified to the right border of the screen.

Note: For each menu, provide shortcuts for all commands or for
none at all. Don’t assign the same shortcut twice within one
application.

Creating a Menu

In Palm OS 2.0 and later, you can interactively create the menu bar
and all menus, then associate the menu bar with the form.

To create a menu assembly using Constructor, follow these steps:

1. In the project window, select Menu Bars, then type Cmd–K.

Constructor creates a menu bar instance.

2. Name the Menu Bar instance, then double-click on it.

Constructor opens the Menu Editor.

Palm OS User Interface Resources
Menus and Menu Bars

96 Developing Palm OS 3.0 Applications, Part I

3. Back in the project window, create one or more Menus, name
them, and drag them onto the Menu Editor.

4. For each menu, replace the “untitled” default text with the menu
name, such as Edit or File.

5. Type Cmd–K to add menu items, Cmd– (minus) to add separators
to the menu.

6. To assign a shortcut key, you can do one of the following:

• Tab from the menu item to the shortcut region in the menu edi-
tor, then enter the shortcut letter.

• Type Cmd-I and enter the shortcut in the property inspector that
appears.

The system will later add the shortcut symbol before the character.

7. When you’re finished with the assembly, close the window.

8. Finally, enter the ID of the menu bar you created into the Menu
Bar ID property of a form.

Note: The Palm OS Tutorial provides more detailed step-by-step
instructions for creating a menu.

Menu Bar and Menu Resources

The only information provided for the menu and menu bar resource
is the resource name and resource ID.

Menu User Interaction
• Default Menu and Menu Item. A pen-up on the menu icon dis-

plays the menu bar. The first time a menu is invoked after an ap-
plication is launched, no menus are displayed unless there is
only one menu available. Afterwards the menu and menu item
of the last command executed from the menu are displayed.
Graffiti command equivalents are ignored.

For example, if the user selects Edit > Copy, the Edit menu is
popped down and the Copy command is highlighted the next
time the menu bar is displayed. This expedites execution of com-
monly used commands or of grouped commands (e.g., Copy/

Palm OS User Interface Resources
Menus and Menu Bars

Developing Palm OS 3.0 Applications, Part I 97

Paste). The last menu heading is not saved if the user switches to
a different view or a different application.

• View-specific Menus. Each view within an application can have
a unique menu, that is, different menu headings and items.

• Menu Display. As a rule, a Palm OS application should try to
have the menu visible on screen as rarely as possible:

– After a menu command is executed, the menu bar is dis-
missed.

– The menu bar is active when the menu headings in it are ac-
tive. When not active, the menu bar is not visible.

– There are no grayed-out menu headings or grayed-out menu
items. A command not accessible in a certain mode doesn’t
appear at all.

• Size. The vertical active area of menu headings is 2 pixels be-
yond the ascender and 1 pixel below a potential descender of the
menu heading text. The horizontal active area covers half the
distance to the next menu heading, leaving no gaps between the
headings. If the menu headings aren’t as wide as the menu bar,
part of the menu bar may be inactive.

• Active Area. The entire area of the menu, excluding the border,
is active. Divider lines and status items on the launcher menu
are inactive; that is, they do not highlight when tapped.

Palm OS User Interface Resources
Catalog Resources

98 Developing Palm OS 3.0 Applications, Part I

Event Flow for Menu Resource

Catalog Resources
You can add Constructor catalog resources to the user interface by
dragging the corresponding icon onto a Form. The following catalog
resources are available:

User Action System Response

Pen enters menu
window.

winExitEvent to exit previous window.
winEnterEvent to enter menu window.
penDownEvent is also triggered, although the pen has not actual-
ly touched the screen.

User selects a
menu item.

WinExitEvent to exit menu window.
WinEnterEvent to enable the form the menu spawned.
menuEvent (store ID number of the item in EventType).
penUpEvent finally occurs.

Name Resource Resource

tBTN Button Resource

tCBX Check Box Resource

tFLD Field Resource

tFBM Form Bitmap Resource (container for Bit-
map resource)

tGDT Gadget Resource (application de-
fined)

Palm OS User Interface Resources
Catalog Resources

Developing Palm OS 3.0 Applications, Part I 99

tGSI Graffiti Shift Indicator Resource

tLBL Label Resource (container for a
String)

tLST List Resource

tPUT Popup Trigger Resource

tPBN Push Button Resource

tREP Repeating Button Resource

Scrollbar Resource (see below)

tSLT Selector Trigger Resource

tTBL Table Resource

Name Resource Resource

Palm OS User Interface Resources
Button Resource

100 Developing Palm OS 3.0 Applications, Part I

Button Resource

UI Structure ControlType

Overview A button is a clickable UI object, often used to trigger events in an
application. A button displays as a text label surrounded by a rect-
angular frame. The frame has rounded corners. The label may be
regular text or a glyph from one of the symbol fonts provided with
your development environment, for example, an arrow.

Examples

Attributes Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Button ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 - 159

Width Width of button in pixels. Size the buttons to allow
3–6 pixels of white space at each end of the label.
Valid values: 0 – 160

Height Height of the button in pixels. Should be 3 pixels
larger than the font size, for example, height = 12 for
9-point labels.
Valid values: 1 – 160

Palm OS User Interface Resources
Button Resource

Developing Palm OS 3.0 Applications, Part I 101

Comments The label is centered in the button. If the label text is wider than the
button, the whole label is centered and both the right and left sides
are clipped.

Place command buttons at the bottom of table views and dialog
boxes. Leave three pixels between the dialog bottom and buttons.

Increment arrows are a special case; they are buttons that let users
increment the value displayed in a data field.

To create an increment arrow, use an arrow character from the Sym-
bol font as a label. Several arrow styles and sizes are available.

Usable A nonusable object is not considered part of the ap-
plication’s interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.
If checked, the object is usable.

Anchor
Left

Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the ob-
ject is fixed; if unchecked, the right bound is fixed.

Frame If checked, a rectangular frame with rounded cor-
ners is drawn around the button. Most buttons have
frames. Buttons whose labels are single symbol char-
acters, such as scroll buttons, don’t have frames.

Non-bold
Frame

If checked, a one-pixel-wide rectangular frame with
rounded corners is drawn around the button. If un-
checked, a bold frame (two pixels wide) is drawn
around the button. Non-bold frames are the default.

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
fonts.

Label Text displayed inside the button: one line of text, or a
single character from a symbol font to create an in-
crement arrow.

Palm OS User Interface Resources
Button Resource

102 Developing Palm OS 3.0 Applications, Part I

Event Flow for Button Resource

Tip Making a Button with a Bitmap Label

It’s not possible to make a bitmap the label of a button; the label al-
ways has to be a text string. However, the same effect can be
achieved by

• Creating a bitmap the same size of a button

• Placing them at the same location.

Make sure the bitmap is a Form Bitmap, selected from the catalog.

When the user selects the button, the system inverts the bitmap
graphic as well.

User Action System Response

Pen goes down on a
button.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store button ID number in EventType.

Pen is lifted from but-
ton.

ctlSelectEvent; store button ID number in EventType.
ctlSelectEvent can be triggered only if a
ctlEnterEvent with the same button ID has just occurred.
penUpEvent; store x and y coordinates in EventType.

Pen is lifted outside
button.

Nothing happens.

Palm OS User Interface Resources
Check Box Resource

Developing Palm OS 3.0 Applications, Part I 103

Check Box Resource

UI Structure ControlType

Overview A check box is a small, square UI object with an optional text label to
the right.

Example The figure below shows a checked and an unchecked check box
with a label to the right (the default).

Attributes Object
Identifier

Name of the object. Assigned by developer and
used by Constructor during header file generation
and update.

Check Box ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the picking area around the check box.
Valid values: 0 – 160

Height Height of the picking area around the check box.
Valid values: 1– 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Palm OS User Interface Resources
Check Box Resource

104 Developing Palm OS 3.0 Applications, Part I

Comments Make sure that only one check box in a group is initially checked.

All check boxes are the same size. The Height and Width determine
the toggle area, which is the screen area the user needs to press to
check or uncheck the box.

If a label attribute is defined, it’s part of the activation area.

Selected Initial selection state of the checkbox. If the box is
checked (the default), the checkbox is initially
checked.

Group ID Group ID of a check box that is part of an exclusive
group. Ungrouped (nonexclusive) check boxes
have 0 as a group ID.
Valid values: 0 – 65535

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
fonts.

Label Text displayed to the right of the check box. This
text is part of the activation area. To create a (non-
active) label to the left of the check box, leave this
attribute blank and create a separate Label re-
source.

Palm OS User Interface Resources
Check Box Resource

Developing Palm OS 3.0 Applications, Part I 105

Event Flow for Check Box Resource

User Action System Response

Pen goes down
on check box.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store check box’s ID number in EventType.

• If the check box is unchecked, a check appears.
• If the check box is already checked and is grouped,

there is no change in appearance.
• If the check box is already checked and is ungrouped,

the check disappears.

Pen is lifted from
check box.

ctlSelectEvent; store check box’s ID number in EventType, switch
check box on (1) or off (0) internally. A ctlSelectEvent can be
triggered only if a ctlEnterEvent with the same check box ID
number has just occurred.
penUpEvent; store x and y coordinates in EventType.

Pen is lifted out-
side box.

Nothing happens.

Palm OS User Interface Resources
Field Resource

106 Developing Palm OS 3.0 Applications, Part I

Field Resource

UI Structure FieldType

Overview The field UI object is for user data entry in an application. It displays
one or more lines of editable text. A field can be underlined, justified
left or right, and selectable or unselectable.

Text fields can be located anywhere but in menus and in the com-
mand button area.

The following is an underlined, left-justified field containing data:

Attributes Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and up-
date.

Field ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the object in pixels.
Valid values: 0 – 160

Height Height of the object in pixels.
Valid values: 1– 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the ap-
plication interface and doesn’t draw. Nonusable ob-
jects can programmatically be set to usable.

Palm OS User Interface Resources
Field Resource

Developing Palm OS 3.0 Applications, Part I 107

Editable Noneditable fields don’t accept user input but can be
changed programmatically. If this box is checked, the
field is editable.

Underline If set, each line of text is underlined with a gray line.

Single Line If checked, the field doesn’t scroll horizontally and
doesn’t accept Return or Tab characters. Only a single
line of text is displayed. If the user attempts to enter
text beyond this, the system beeps.

Multiline text fields expand. An empty field may dis-
play one or more blank lines; for example, records in
a To Do list or a text page.

Dynamic
Size

If checked, the height of the field is expanded or com-
pressed as characters are added or removed. Set this
attribute to false if the Single Line attribute is set.

Left Justi-
fied

Text justification. Supported only for fields that have
the Single Line attribute checked.
Valid values: checked (left-justified)—recommended

unchecked (right-justified)

Max
characters

Maximum number of characters the field accepts.
This is a limit on the number of characters a user can
enter, but not on what can be displayed. All fields can
display up to 32,767 characters regardless of this set-
ting.
Valid values: 0 – 32767

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Palm OS User Interface Resources
Field Resource

108 Developing Palm OS 3.0 Applications, Part I

Event Flow for Field Resource

Auto-Shift If checked, 2.0 (and later) auto-shift rules are applied.
The system automatically uses an upper-case letter:

• after an empty field
• after a period or other sentence terminator

 (e.g. ? or !).
• after two spaces

Has Scroll-
bar

If checked, the system sends more frequent fld-
HeightChangedEvents so the application can adjust
the height appropriately.

User Action System Response

Pen goes down on a
field.

penDownEvent; store x and y coordinates in EventType.
fldEnterEvent; store the field’s ID number in EventType.

Pen is lifted. penUpEvent; store x and y coordinates in EventType. A field
remains selected until another field is selected or the form
that contains the field is closed.

User enters charac-
ters into selected field.

keyDownEvent; store ASCII value in EventType.

Palm OS User Interface Resources
Form Bitmap Resource

Developing Palm OS 3.0 Applications, Part I 109

Form Bitmap Resource

Overview Places predefined bitmaps on a given form. Used for icons in Alert
dialogs to indicate a warning, error, information, and so on. You
have to associate a Bitmap with the Form Bitmap to actually make a
picture appear.

Attributes Object
Identifier

Name of the object. Assigned by developer and
used by Constructor during header file genera-
tion and update.

Left Origin. Left bounds of bitmap.

Top Origin Top bounds of bitmap.

Bitmap Re-
source ID

ID of a PICT resource containing the graphic.
You can also assign an ID number, then click on
Create and draw the picture in the bitmap edi-
tor that appears.

Usable Checked if the bitmap should be drawn.

Palm OS User Interface Resources
Gadget Resource

110 Developing Palm OS 3.0 Applications, Part I

Gadget Resource

Name tGDT

UI Name Gadget

Overview A gadget object lets developers implement a custom UI gadget. The
gadget resource contains basic information about the custom gad-
get, which is useful to the gadget writer for drawing and processing
user input.

Attributes Object
Identifier

Name of the object. Assigned by developer and
used by Constructor during header file generation
and update.

Gadget ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the gadget in pixels.
Valid values: 0 – 160

Height Height of the gadget in pixels.
Valid values: 1– 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the ap-
plication interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Palm OS User Interface Resources
Graffiti Shift Indicator Resource

Developing Palm OS 3.0 Applications, Part I 111

Graffiti Shift Indicator Resource

Overview The Graffiti Shift Indicator resource specifies the window-relative or
form-relative position of the Graffiti shift state indicator. The differ-
ent shift states are punctuation, symbol, uppercase shift, and upper-
case lock. These indicators will appear at the position of the Graffiti
Shift resource.

Note: By convention, Graffiti Shift indicators are placed at the bot-
tom-right of every form that has an editable text field.

Attributes Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Object ID ID of the object (assigned by Constructor).

Palm OS User Interface Resources
Label Resource

112 Developing Palm OS 3.0 Applications, Part I

Label Resource

Overview The label resource displays noneditable text or labels on a form (dia-
log box or full-screen). It’s used, for example, to have text appear to
the left of a checkbox instead of the right.

Comments Pressing Return in a label wraps the text to the next line.

Attributes Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and
update.

Label ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the ap-
plication interface and doesn’t draw. Nonusable ob-
jects can programmatically be set to usable.

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
fonts.

Text Text of the label.

Palm OS User Interface Resources
List Resource

Developing Palm OS 3.0 Applications, Part I 113

List Resource

UI Structure ListType

Example

Overview A list provides a box with a list of choices to the user. The list is
scrollable if the choices don’t all fit in the box.

The list box appears as a vertical list of choices surrounded by a rect-
angular frame. The current selection of the list is inverted. Arrows
for scrolling the list appear in the right margin if necessary.

Lists can appear as popup lists when used with popup triggers. See
Popup Trigger Resource.

Attributes Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation and up-
date.

List ID ID of the object (assigned by Constructor).

Left Ori-
gin

Form-relative position of left side of object.
Valid values: 0 – 159

Palm OS User Interface Resources
List Resource

114 Developing Palm OS 3.0 Applications, Part I

Comments Errors may occur if the number of visible items is greater than the
actual number of items. An item’s text is not clipped against the list
box’s borders. Set a list to not usable if it’s linked to a popup trigger.

Use a list to let users choose between items of data; use a menu to
activate a command.

If a list becomes too tall to fit below the trigger, it’s justified up. If it
becomes to large for the screen, it scrolls.

Event Flow for List Resource

Top Ori-
gin

Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the list.
Valid values: 0 – 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the appli-
cation interface and doesn’t draw. Nonusable objects
can programmatically be set to usable.

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Visible
items

Height of the list box, in items (choices). For example,
if the list has six items but only four fit, specify four.

Items Items in the list.

User Action System Response

Pen goes down
on a list box.

penDownEvent; store x and y coordinates in EventType.
lstEnterEvent; store list ID and selected item in EventType.

Pen is lifted from
the list box.

lstSelectEvent is triggered; store button’s ID number and number
of selected item in EventType.
penUpEvent; store x and y coordinates in EventType.

Palm OS User Interface Resources
Popup Trigger Resource

Developing Palm OS 3.0 Applications, Part I 115

Popup Trigger Resource

UI structure ControlType

Overview The popup trigger shows the selection of a list. The user can press
the popup trigger to pop up the list and change the selection.

A popup trigger displays a text label and a triangle to the left of the
label that indicates the object is a popup trigger.

When the user selects a popup trigger, a list of items pops up.

Attributes Object
Identifier

Name of the object. Assigned by developer and
used by Constructor during header file generation
and update.

Popup ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 – 159

Top Origin Form-relative position of top of button.
Valid values: 0 – 159

Width Width of the button’s picking area in pixels.
Valid values: 1 – 160

Height Height of the button’s picking area in pixels.
Valid values: 1 –160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Palm OS User Interface Resources
Popup Trigger Resource

116 Developing Palm OS 3.0 Applications, Part I

Event Flow for Popup Trigger Resource

Left
anchor

Controls how the object resizes itself when its text
label is changed.
Valid values: checked (left bound fixed)

unchecked (right bound fixed)

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
fonts.

Label Text displayed in the popup trigger (right of ar-
row).

List ID ID of the List object that pops up when the user
taps the pop-up trigger.

User Action System Response

Pen goes down on
popup trigger.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store popup trigger ID number in EventType.

Pen is lifted from
popup trigger.

ctlSelectEvent; store popup trigger ID number in EventType. A
ctlSelectEvent can be triggered only if a ctlEnterEvent
with the same popup trigger ID number has just occurred.
winExitEvent; pass control to a popup list object.

Popup list pops
up.

winEnterEvent
penUpEvent; a penDownEvent to pop up the popup list.

Palm OS User Interface Resources
Push Button Resource

Developing Palm OS 3.0 Applications, Part I 117

Push Button Resource

UI Structure ControlType

Overview Push buttons allow users to select an option from a group of items.
The choices should have few characters; if the choices are long;
check boxes are preferable.

Push buttons display a text label surrounded by a 1-pixel-wide rect-
angular frame. They appear in a horizontal or vertical row with no
pixels between the buttons. The buttons share a common border so
there appears to be a one pixel line between two controls. The cur-
rent selection is highlighted.

.

The List By dialog of the Address Book and the Details dialog of the
ToDo List contain examples of rows of push buttons.

Pen goes down on
item in popup list.

penDownEvent occurs.

Pen is lifted from
popup list.

lstSelectEvent; store the popup list ID and the selected item num-
ber in EventType.
winExitEvent causes popup list to disappear; control passes
back to the popup trigger.
winEnterEvent occurs.
popSelectEvent is triggered if an item was selected in the
popup list; store popup trigger ID, the popup list ID, and the item
number selected in EventType.
penUpEvent occurs.

User Action System Response

Palm OS User Interface Resources
Push Button Resource

118 Developing Palm OS 3.0 Applications, Part I

Attributes Object
Identifier

Name of the object. Assigned by developer and used
by Constructor during header file generation/update.

Button ID ID of the object (assigned by Constructor).

Left
Origin

Form-relative position of left side of button.
Valid values: 0 – 159

Top
Origin

Form-relative position of top of button.
Valid values: 0 – 159

Width Width of the button in pixels. Should be size of label
plus two pixels at each end.
Valid values: 1 – 160

Height Height of the button in pixels. Should be font size plus
two pixels.
Valid values: 1 – 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the appli-
cation interface and doesn’t draw. Nonusable objects
can programmatically be set to usable.

Group ID Group ID of a push button that is part of an exclusive
group. Only one push button in an exclusive group
may be depressed at a time. Ungrouped (nonexclu-
sive) push buttons have zero as a group ID. This fea-
ture must be enforced by the application.
Valid values: 0 – 65535

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the fonts.

Label Text displayed inside the push button.

Palm OS User Interface Resources
Push Button Resource

Developing Palm OS 3.0 Applications, Part I 119

Comment To create a row of push buttons, create a number of individual push
button resources with the same height and align them by specifying
the same top position for each button.

Event Flow for Push Button Resource

User Action System Response

Pen goes down on
push button.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store push button ID number in EventType.
Push button is highlighted.
If push button is grouped and highlighted, no change.
If push button is ungrouped and highlighted, it becomes
unhighlighted.

Pen is lifted from
push button.

ctlSelectEvent; store button ID number and its current state; on =
1; off = 0.
ctlSelectEvent can be triggered only if a ctlEnterEvent
with the same push button ID number just occurred.
penUpEvent; store the x and y coordinates.

Palm OS User Interface Resources
Repeating Button Resource

120 Developing Palm OS 3.0 Applications, Part I

Repeating Button Resource

Overview The repeating button object is identical to the button object in its ap-
pearance. The repeating button is used for buttons that need to be
triggered continuously by holding the pen down on them.
A good example for a repeating button is the scroll arrow, which
moves text as long as it’s held down.

Attributes Object
Identifier

Name of the object. Assigned by developer and
used by Constructor during header file generation
and update.

Button ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 – 159

Top Origin Form-relative position of top of button.
Valid values: 0 – 159

Width Width of the button in pixels.
Valid values: 1 – 160

Height Height of the button in pixels.
Valid values: 1 – 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Anchor Left Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is fixed; if unchecked, the right bound is
fixed.

Frame If checked, a rectangular frame with rounded cor-
ners is drawn around the button.

Palm OS User Interface Resources
Repeating Button Resource

Developing Palm OS 3.0 Applications, Part I 121

Comments The attributes match those of the Button Resource (tBTN); the be-
havior differs.

You can also use repeating buttons to create increment arrows. See
Button Resource for more information.

Event Flow for Repeating Button Resource

A repeating button is similar in appearance to a button, but it gener-
ates different events. A button generates a ctlEnterEvent when it is
pressed and a ctlSelect event when it is released. A repeating
button generates a ctlEnterEvent when it is pressed and a
ctlRepeatEvent as long as it remains pressed. Here’s a more detailed
discussion of the events:

Non-bold
Frame

Determines the width of the rectangular frame
drawn around the object.
Valid values: checked (1-pixel-wide frame)

unchecked (2-pixel-wide frame)

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
fonts.

Label Text displayed inside the button.

User Action System Response

Pen goes down on a
repeating button.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store button’s ID number in EventType.

Pen remains on
repeating button.

For every given amount of time the pen is down on the repeat
control object, a ctlRepeatEvent is generated.

Pen is dragged off
the repeating button.

No additional ctlRepeatEvent occurs.

Palm OS User Interface Resources
Scrollbar Resource

122 Developing Palm OS 3.0 Applications, Part I

Scrollbar Resource

Overview The scroll bar resource helps developers to provide scrolling behav-
ior for fields and tables.

Example

Pen is dragged back
onto the button.

ctlRepeatEvent begins to occur again.

Pen is lifted. penUpEvent; store x and y coordinates in EventType

User Action System Response

scroll car

Attributes Object
Identifier

Name of the object. Assigned by developer and
used by Constructor during header file generation
and update.

Scrollbar ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 – 159

Palm OS User Interface Resources
Scrollbar Resource

Developing Palm OS 3.0 Applications, Part I 123

Top Origin Form-relative position of top of button.
Valid values: 0 – 159

Width Width of the scroll bar in pixels.
7 (the default) is strongly recommended.

Height Height of the scrollbar in pixels.
Valid values: 1 – 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesn’t draw. Nonusable
objects can programmatically be set to usable.

Value Current top value of the scroll bar’s car (movable
piece).

Min Value Position of the scroll car when the scrollbar is at the
top. Default should usually be 0.

Max Value Position of the scroll car when the scrollbar is at the
bottom. To compute this value, use the formula:
Number of lines – Page size + Overlap.

Page Size Number of lines to scroll at one time.

Palm OS User Interface Resources
Selector Trigger Resource

124 Developing Palm OS 3.0 Applications, Part I

Selector Trigger Resource

UI Structure ControlType

Overview Users can tap a selector trigger to pop up a dialog that lets them se-
lect an item. The selected item becomes the label of the selector trig-
ger. For example, a selector trigger for time pops up a time selector.
The selected time is entered into the selector trigger.

A selector trigger displays a text label surrounded by a gray rectan-
gular frame, as shown below:

Attributes Object
Identifier

Name of the object. Assigned by developer and
used by Constructor during header file generation
and update.

Selector
Trigger ID

ID of the object (assigned by Constructor).

Left Origin Form-relative position of the left side of the object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the object in pixels.
Valid values: 1– 160

Height Height of the object in pixels. Height extends two
pixels above and one pixel below the 9-point plain
font. Height is one pixel above command buttons to
accommodate the gray frame.
Valid values: 1– 160

Palm OS User Interface Resources
Selector Trigger Resource

Developing Palm OS 3.0 Applications, Part I 125

Event Flow for Selector Trigger Resource

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the ap-
plication interface and doesn’t draw. Nonusable ob-
jects can programmatically be set to usable.

Anchor
Left

Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is fixed, if unchecked, the right bound is
fixed.
Valid values: checked (left bound fixed)

unchecked (right bound fixed)

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
fonts.

Label Text in the selector trigger.

User Action System Response

Pen goes down on
a selector trigger.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store selector trigger ID number in EventType.

Pen is lifted from
the selector trigger.

ctlSelectEvent; store selector trigger ID number in EventType. A
ctlSelectEvent can only be triggered if a ctlEnterEvent
with the same selector trigger ID number has just occurred.
frmOpenEvent followed by a winExitEvent, control is passed to a
form object. When control is passed back to the selector trigger, a
winEnterEvent and a penUpEvent occur.

Palm OS User Interface Resources
Table Resource

126 Developing Palm OS 3.0 Applications, Part I

Table Resource

Overview The table object allows the developer to organize a collection of ob-
jects on the display. For example, a table might contain a column of
labels that correspond to a column of fields. Under some circum-
stances, a one-column table may be preferable to a list.

Comments Since tables are scrollable, they may be larger than the display.

Example

Attributes Object
Identifier

Name of the object. Assigned by developer, used
by Constructor during header file generation/
update.

Table ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of the object.
Valid values: 0 – 159

Top Origin Form-relative position of top of object.
Valid values: 0 – 159

Width Width of the object in pixels.
Valid values: 1– 160

Height Height of the object in pixels.
Valid values: 1–160

Rows Number of rows in the table.

Columns Number of columns in the table.

Column width Width of the nth column.

Developing Palm OS 3.0 Applications, Part I 127

4

Palm OS User
Interface Objects
A Palm OS UI object is a C structure that’s linked with one or more
items on the screen. By changing field values of the C structure, an
application can manipulate its user interface. Note that Palm UI ob-
jects are just structures, not the more elaborate objects found in
some systems. This is useful because a C structure is more compact
than other objects could be.

This chapter helps you develop your application’s user interface by
providing information about each object’s structure, associated
events, associated UI resource files, and all API calls available for
manipulating the structure. It discusses the following objects:

• Control Objects
• Date and Time Objects
• Field Objects
• Form Objects
• Insertion Point Object
• List Object
• Menu Objects
• Scrollbar Object
• Table Objects
• Window Objects
• Dynamic User Interface Objects

Palm OS User Interface Objects
Control Objects

128 Developing Palm OS 3.0 Applications, Part I

A Note on the Rectangle Structure

The RectangleType structure is used for describing the area of a
rectangle throughout the resources and API. The RectangleType
defines the top-left corner of a rectangle and its width and height
(not the lower-left corner).

Control Objects
Control objects allow for user interaction when you add them to the
forms in your application. There are six types of control objects:

• Buttons display a text label in a box. The default style for a
button is a text string centered within a rounded rectangle.
Buttons have rounded corners unless a rectangular frame is
specified. A button without a frame inverts a rounded
rectangular region when pressed.

When the user taps a button with the pen, the button high-
lights until the user releases the pen or drags it outside the
bounds of the button.

• A popup trigger displays a text label followed by a graphic
element (always on the right) that signifies the control initiates a
popup list. If the text label changes, the width of the control
expands or contracts to the width of the new label plus the
graphic element.

• A selector trigger displays a text label surrounded by a gray
rectangular frame. If the text label changes, the width of the
control expands or contracts to the width of the new label.

• A repeat control looks like a button. In contrast to buttons,
however, users can repeatedly select repeat controls if they
don’t lift the pen when the control has been selected. The object
is selected repeatedly until the pen is lifted.

• Push buttons look like buttons, but the frame always has square
corners. Touching a push button with the pen inverts the
bounds. If the pen is released within the bounds, the button
remains inverted.

• Check boxes display a setting, either on (checked) or off
(unchecked). Touching a check box with the pen toggles the
setting. The check box appears as a square, which contains a
check mark if the check box’s setting is on. A check box can

Palm OS User Interface Objects
Control Objects

Developing Palm OS 3.0 Applications, Part I 129

have a text label attached to it; selecting the label also toggles
the check box.

Push buttons and check boxes can be arranged into exclusive
groups; one and only one control in a group can be on at a time.

This section provides the following information about control
objects:

• Control Object Events
• Structure of a Control
• Associated Resources
• Control Functions

Control Object Events

Control objects generate four types of events: ctlEnterEvent,
ctlExitEvent, ctlRepeatEvent, and ctlSelectEvent. All
these events are generated by the control event handler
CtlHandleEvent. All events posted by the handler contain the ID
of the control and a pointer to the control data structure

The following table provides an overview of how
CtlHandleEvent deals with the different events.

Palm OS User Interface Objects
Control Objects

130 Developing Palm OS 3.0 Applications, Part I

Structure of a Control

Listing 4.1 ControlType and Auxiliary Structures
typedef struct {

Word id;

RectangleType bounds;

CharPtr text;

ControlAttrType attr;

ControlStyleType style;

When CtlHandleEvent
receives...

CtlHandleEvent performs these actions...

penDownEvent; pen po-
sition in the bounds of
the control object.

Adds a ctlEnterEvent to the event queue

 ctlEnterEvent Inverts the control and tracks the pen until the pen comes
up or until the pen is dragged outside the bounds of the
control.

• If the pen comes up in the bounds of the control, a
ctlSelectEvent is added to the event queue.

• If the pen is dragged outside the bounds of the control,
the control reverts to its original visual state and a
ctlExitEvent is added to the event queue.

ctlEnterEvent for a
repeat control

Sends a ctlRepeatEvent. When the repeat control re-
ceives a ctlRepeatEvent, it tracks the pen for a period of
time and then sends another ctlRepeatEvent if the pen is
still within the bounds of the control.

ctlExitEvent Tracks the pen until the pen comes up or is dragged inside
the bounds of the control.

• If the pen is dragged into the control, a
ctlEnterEvent is added to the event queue.

• If the pen is released outside the control, no event is
posted.

Palm OS User Interface Objects
Control Objects

Developing Palm OS 3.0 Applications, Part I 131

FontID font;

Byte group;

} ControlType;

typedef ControlType* ControlPtr;

typedef struct {

Byte usable :1;

Byte enabled :1;

Byte visible :1;

Byte on :1;

Byte leftAnchor :1;

Byte frame :3;

} ControlAttrType;

enum controlStyles {buttonCtl, pushButtonCtl,

checkboxCtl, popupTriggerCtl,

 selectorTriggerClt, repeatingButtonCtl};

typedef enum controlStyles ControlStyleType;

enum buttonFrames {noButtonFrame,

standardButtonFrame, boldButtonFrame,

rectangleButtonFrame};

typedef enum buttonFrames ButtonFrameType;

Palm OS User Interface Objects
Control Objects

132 Developing Palm OS 3.0 Applications, Part I

Fields of a ControlType Structure

The following table lists the fields of a ControlType structure and
discusses what they do.

Field Function

id Symbolic ID of the control, specified by the developer. By conven-
tion, this ID should match the resource ID (not mandatory).

text Pointer to the control’s label. If text is NULL, the control has no
label. Only buttons, push buttons, and text boxes have text labels.

bounds Bounds of the control, in window-relative coordinates. The con-
trol’s text label is clipped to the control’s bounds. The control’s
frame is drawn around (outside) the bounds of the control.

attr Control attributes. The attr field is a bit field that contains the
following members:

• A control that doesn’t have the usable attribute set is not
considered to be part of the interface of the current
application, and it doesn’t appear on screen.

• A control that doesn’t have the enable attribute set appears
“grayed out,” and doesn’t respond to the pen. Graying out UI
elements is strongly discouraged because it’s a poor use of
screen real estate. Remove the control object instead.

• The visible attribute is set and cleared internally when the
control is drawn and erased.

• The leftAnchor attribute is used by controls that expand
and shrink their width when their label is changed. If the
attribute is set, the left bound of the control is fixed.

• The frame field specifies the type of frame drawn around the
button controls. Only button controls use this attribute; for all
other controls, the ControlStyle determines the frame.

style Style of the control: button, push button, check box, popup trig-
ger, popup selector, or repeating button. (See the
ControlStyleType enum listed under Structure of a Control.)

Palm OS User Interface Objects
Control Objects

Developing Palm OS 3.0 Applications, Part I 133

Associated Resources

Different resources are associated with different controls, as follows:

• Button—Button Resource (tBTN)
• Popup trigger— Popup Trigger Resource (tPUT)
• Selector trigger—Selector Trigger Resource (tSLT)
• Repeat control—Repeating Button Resource (tREP)
• Push button—Push Button Resource (tPBN)
• Check box—Check Box Resource (tCBX)

Control Functions

The following API calls can be used to manipulate control objects.

• CtlDrawControl
• CtlEraseControl
• CtlGetLabel
• CtlGetValue
• CtlHandleEvent
• CtlHideControl
• CtlHitControl
• CtlEnabled
• CtlSetEnabled
• CtlSetLabel
• CtlSetUsable
• CtlSetValue
• CtlShowControl

font Font to use to draw the control’s label.

group Group ID of a push button or a check box that is part of an exclu-
sive group. The control routines don’t automatically turn one con-
trol off when another is selected. It’s up to the application or a
higher-level object, like a dialog box, to manage this.

Field Function

Palm OS User Interface Objects
Date and Time Objects

134 Developing Palm OS 3.0 Applications, Part I

Date and Time Objects
The Palm OS UI provides two system resources for accepting date
and time input values. These resources are dialog boxes that contain
UI gadgetry for entering dates and times. The Palm OS UI also pro-
vides routines to manage the interaction with these resources.

There is no corresponding UI object.

Date and Time Functions

Currently defined date and time selection functions are SelectDay
and SelectTime.

Field Objects
A field object displays one or more lines of editable text, supporting
these features:
• Proportional fonts (only one font per field)
• Drag-selection
• Scrolling for multiline fields
• Cut, copy, and paste
• Left and right text justification
• Tab stops
• Editable/noneditable attribute
• Expandable field height (the height of the field expands as more

text is entered)
• Underlined text (each line of the field is underlined)
• Maximum character limit (the field stops accepting characters

when the maximum is reached)
• Special keys (Graffiti strokes) to support cut, copy, and paste
• Insertion point positioning with pen (the insertion point is

positioned by touching the pen between characters)
• Scroll bars

Palm OS User Interface Objects
Field Objects

Developing Palm OS 3.0 Applications, Part I 135

The field object does not support overstrike input mode; horizontal
scrolling; word selection; character filters (for example, only numer-
ic characters accepted); numeric formatting; or special keys for page
up, page down, left word, right word, home, end, left margin, right
margin, and backspace.

Note: Field objects can handle line feeds—\0A—but not carriage
returns—\0D. PalmRez translates any carriage returns it finds in
any Palm OS resources into line feeds, but doesn’t touch static
data.

This section provides the following information about field objects:
• Field Object Events
• Structure of a Field
• Associated Resources
• Field Functions

Field Object Events

Events in field objects are handled by FldHandleEvent.
FldHandleEvent handles events of type penDownEvent,
fldEnterEvent, and keyDownEvent.

The following table provides an overview of how
FldHandleEvent deals with the different events

When FldHandleEvent
receives...

FldHandleEvent performs these actions...

penDownEvent; pen po-
sition in the bounds of
the field object.

Adds a fldEnterEvent to the event queue.

fldEnterEvent Sets the insertion point position to the position of the pen
and tracks the pen until it is released. Drag-selection and
drag-scrolling are supported.

Palm OS User Interface Objects
Field Objects

136 Developing Palm OS 3.0 Applications, Part I

Structure of a Field

The FieldType structure and supporting structures are defined as
follows:

Listing 4.2 FieldType Structure
typedef struct {

Word id;

RectangleType rect;

FieldAttrType attr;

CharPtr text;

VoidHand textHandle;

A keyDownEvent with a special character:

keyDownEvent with
up arrow

Moves insertion point up a line.

keyDownEvent with
down arrow

Moves insertion point down a line; the insertion point
doesn’t move beyond the last line that contains text.

keyDownEvent with
left arrow

Moves insertion point one character position to the left.
When the left margin is reached, move to the end of the
previous line.

keyDownEvent with
right arrow

Moves insertion point one character position to the right.
When the right margin is reached, move to the start of the
next line.

keyDownEvent with
cut key

Cuts the current selection to the text clipboard.

keyDownEvent with
copy key

Copies the current selection to the text clipboard.

keyDownEvent with
paste key

Inserts clipboard text into the field at insertion point.

When FldHandleEvent
receives...

FldHandleEvent performs these actions...

Palm OS User Interface Objects
Field Objects

Developing Palm OS 3.0 Applications, Part I 137

LineInfoPtr lines;

Word textLen;

Word textBlockSize;

Word maxChars;

Word selFirstPos;

Word selLastPos;

Word insPtXPos;

Word insPtYPos;

FontID fontID;

} FieldType;

typedef FieldType* FieldPtr;

typedef struct {

Word usable :1;

Word visible :1;

Word editable :1;

Word singleLine :1;

Word hasFocus :1;

Word dynamicSize :1;

Word insPtVisible :1;

Word dirty :1;

Word underlined :2;

Word justification:2;

Word autoShift :1;

Word hasScrollBar :1;

} FieldAttrType;

typedef struct {

Word start;

Word length;

} LineInfoType;

typedef LineInfoType* LineInfoPtr;

Palm OS User Interface Objects
Field Objects

138 Developing Palm OS 3.0 Applications, Part I

Fields of a Field Structure

The field structure has the following fields:

Field Function

id ID value specified by the application developer. This ID value is
included as part of the event data of fldEnterEvent.

rect Position and size of the field object.

attr Field object attributes. The attr field is a bit field that contains the
following members: usable, visible, editable, singleLine,
hasFocus, dynamicSize, insPtVisible, dirty, underlined,
justification, autoShift, hasScrollBar, and numeric.
(see Field Attributes below)

text Pointer to the NULL-terminated string that is displayed by the
field object.

textHandle Handle to the stored text.

lines Pointer to an array of LineInfoType structures. There is one
entry in this array for each visible line of the text. The LineInfo-
Type structure contains the character position, in the field’s text
string, of the first character displayed by a line and the number of
characters displayed.

textLen Current number of characters in the string displayed by the field
object; the null-terminator is excluded.

textBlockSize Allocated size of the memory block that holds the field object’s text
string.

maxChars Maximum number of characters the field object accepts.

selFirstPos Starting character position of the current selection.

selLastPos Ending character position of the current selection. When
selFirstPos equals selLastPos, there is no selection.

insPtXPos Column position of the insertion point.

Palm OS User Interface Objects
Field Objects

Developing Palm OS 3.0 Applications, Part I 139

Field Attributes

The attr field of the Field UI object can have the following values:

• A field object that doesn’t have the usable attribute set is not
considered part of the current interface of the application, and it
doesn’t appear on screen.

• The visible attribute is set or cleared internally when the field
object is drawn or erased.

• A field object that doesn’t have its editable attribute set
doesn’t accept Graffiti input or edit commands and the insertion
point cannot be positioned with the pen.

• If the singleLine attribute is set, the height of the
singleLine field doesn’t expand to accommodate more text.

• The hasFocus attribute is set internally when the field has the
current focus. The blinking insertion point appears in the field
that has the current focus.

• If the dynamicSize attribute is set, the height of the field
expands as characters are entered into the field.

• If the insPtVisible attribute is set, the insertion point is
scrolled into view. This attribute is set and cleared internally.

• If a field has its dirty attribute set, the user has modified the
field.

• If a field has its underlined attribute set each line of the field,
including blank lines, is underlined.

• The justification attribute specifies the text alignment (left
or right justification only; center justification is not supported).

Associated Resources

The Field Resource (tFLD) represents a field on screen.

insPtYPos Display line where the insertion point is positioned. The first dis-
play line is zero.

fontID Font ID for the field. See Font.h for more information.

Field Function

Palm OS User Interface Objects
Field Objects

140 Developing Palm OS 3.0 Applications, Part I

Field Functions

The following API calls can be used to manipulate field objects.

• FldCalcFieldHeight

• FldCompactText

• FldCopy

• FldCut

• FldDelete

• FldDirty

• FldDrawField

• FldEraseField

• FldFreeMemory

• FldGetAttributes

• FldGetBounds

• FldGetFont

• FldGetInsPtPosition

• FldGetMaxChars

• FldGetNumberOfBlankLines

• FldGetScrollValues

• FldGetScrollPosition

• FldGetSelection

• FldGetTextAllocatedSize

• FldGetTextHandle

• FldGetTextHeight

• FldGetTextLength

• FldGetTextPtr

• FldGetVisibleLines

• FldGrabFocus

• FldHandleEvent

• FldInsert

Palm OS User Interface Objects
Field Objects

Developing Palm OS 3.0 Applications, Part I 141

• FldMakeFullyVisible

• FldPaste

• FldRecalculateField

• FldReleaseFocus

• FldScrollable

• FldScrollField

• FldSendChangeNotification

• FldSendHeightChangeNotification

• FldSetAttributes

• FldSetBounds

• FldSetDirty

• FldSetFont

• FldSetInsertionPoint

• FldSetInsPtPosition

• FldSetMaxChars

• FldSetScrollPosition

• FldSetSelection

• FldSetText

• FldSetTextAllocatedSize

• FldSetTextHandle

• FldSetTextPtr

• FldSetUsable

• FldUndo

• FldWordWrap

Palm OS User Interface Objects
Form Objects

142 Developing Palm OS 3.0 Applications, Part I

Form Objects
A form object is used as a container for all other UI objects. A form is
a window and everything contained within it.

This section provides the following information about form objects:

• Form Object Events
• Structure of a Form
• Associated Resources
• Form Functions

Form Object Events

Events in form objects are handled by the FrmHandleEvent rou-
tine.

The following table provides an overview of how
FrmHandleEvent deals with the different events.

When FrmHandleEvent
receives...

FrmHandleEvent performs these actions...

penDownEvent; pen posi-
tion in the bounds of the
form object.

Checks the list of objects contained by the form to deter-
mine if the pen is within the bounds of one. If it is, the
appropriate handler is called to handle the event, for ex-
ample, if the pen is in a control, CtlHandleEvent is called.
If the pen isn’t within the bounds of an object, the event
is ignored by the form.

keyDownEvent Passes the event to the handler for the object that has the
focus. If no object has the focus, the event is ignored.

ctlEnterEvent Checks if the control is in an exclusive control group. If
it is, it deselects the currently selected control of the
group and passes the event and a pointer to the object
the event occurred in to CtlHandleEvent. The object
pointer is obtained from the event data.

Palm OS User Interface Objects
Form Objects

Developing Palm OS 3.0 Applications, Part I 143

ctlRepeatEvent Passes the event and a pointer to the object the event oc-
curred in to the appropriate handler. The object pointer
is obtained from the event data.

ctlSelectEvent Checks if the control is a Popup Trigger Control. If it is,
the list associated with the popup trigger is displayed
until the user makes a selection or touches the pen out-
side the bounds of the list. If a selection is made, a
popSelectEvent is added to the event queue.

popSelectEvent Sets the label of the popup trigger to the current selec-
tion of the popup list.

lstEnterEvent or
tblEnterEvent

Passes the event and a pointer to the object the event oc-
curred in to the appropriate handler. The object pointer
is obtained from the event data.

fldEnterEvent or
fldHeightChangedEvent

Checks if a field object or a table object has the focus and
passes the event to the appropriate handler. The table
object is also a container object, which may contain a
field object. If TblHandleEvent receives a field event,
it passes the event to the field object contained within it.

frmCloseEvent Erases the form and releases any memory allocated for
it.

frmUpdateEvent Redraws the form.

menuEvent Checks if the menu command is one of the system edit
menu commands. The system provides a standard edit
menu which contains the commands Undo, Cut, Copy,
Paste, Select All, and Keyboard. FrmHandleEvent re-
sponds to these commands.

When FrmHandleEvent
receives...

FrmHandleEvent performs these actions...

Palm OS User Interface Objects
Structure of a Form

144 Developing Palm OS 3.0 Applications, Part I

 Structure of a Form
The FormType structure and supporting structures are defined as
follows:

Listing 4.3 FormType Structure and Supporting Structures
typedef struct {

WindowType window;

Word formId;

FormAttrType attr;

WinHandle bitsBehindForm;

FormEventHandlerPtr handler;

Word focus;

Word defaultButton;

Word helpRscId;

Word menuRscId;

Word numObjects;

FormObjListType* objects;

} FormType;

typedef FormType * FormPtr;

typedef struct {

Word usable :1;

Word enabled :1;

Word visible :1;

Word dirty :1;

Word saveBehind :1;

Word graffitiShift:1;

Word reserved :11;

} FormAttrType;

typedef struct {

FormObjectKind objectType;

FormObjectType object;

} FormObjListType;

Palm OS User Interface Objects
Structure of a Form

Developing Palm OS 3.0 Applications, Part I 145

typedef union {

void * ptr;

FieldType* field;

ControlType* control;

ListType* list;

TableType* table;

FormBitmapType* bitmap;

FormLabelType * label;

FormTitleType* title;

FormPopupType* popup;

FormGraffitiStateType* grfState;

FormGadgetType* gadget;

ScrollBarType scrollBar;

} FormObjectType;

enum formObjects {

frmFieldObj,

frmControlObj,

frmListObj,

frmTableObj,

frmBitmapObj,

frmLineObj,

frmFrameObj,

frmRectangleObj,

frmLabelObj,

frmTitleObj,

frmPopupObj,

frmGraffitiStateObj,

frmGadgetObj,

frmScrollbarObj

};

typedef enum formObjects FormObjectKind;

Palm OS User Interface Objects
Structure of a Form

146 Developing Palm OS 3.0 Applications, Part I

typedef struct {

Word usable :1;

} FormObjAttrType;

typedef struct {

FormObjAttrType attr;

PointType pos;

Word rscID;

} FormBitmapType;

typedef struct {

FormObjAttrType attr;

PointType point1;

PointType point2;

} FormLineType;

typedef struct {

Word id;

FormObjAttrType attr;

RectangleType rect;

Word frameType;

} FormFrameType;

typedef struct {

FormObjAttrType attr;

RectangleType rect;

} FormRectangleType;

typedef struct {

Word id;

PointType pos;

FormObjAttrType attr;

FontID fontID;

char * text;

} FormLabelType;

Palm OS User Interface Objects
Structure of a Form

Developing Palm OS 3.0 Applications, Part I 147

typedef struct {

RectangleType rect;

char * text;

} FormTitleType;

typedef struct {

unsigned short controlID;

unsigned short listID;

} FormPopupType;

typedef struct{

PointerType pos;

}FrmGraffitiStateType;

typedef struct{

Word id;

FormObjAttrType attr;

RectangleType rect;

VoidPtr date;

}FormGadgetType;

Fields of Form Objects

The form structure has the following fields:

Field Function

window Structure of the window object that corresponds to the form.

formId ID number of the form, specified by the application developer. This
ID value is part of the event data of frmOpenEvent. The ID should
match the form’s resource ID.

Palm OS User Interface Objects
Structure of a Form

148 Developing Palm OS 3.0 Applications, Part I

attr Form object attributes. The attr field is a bit field that contains the
members usable, enable, visible, dirty, saveBehind, and
reserved.

• A form that doesn’t have the usable attribute set is not
considered part of the current interface of the application, and
it doesn’t appear on screen.

• When the saveBehind attribute is set, the bits behind the form
are saved when the form is drawn.

• When the visible attribute is set or cleared internally when
the field object is drawn or erased.

• When the dirty attribute is set, the form has been modified in
any way. Modifications include the changing of a field or check
box. Currently, the system doesn’t change the form’s dirty at-
tribute when elements of the form are changed.

• The reserved attribute is reserved for system use.

bitsBehind-
Form

Used to save all the bits behind the form so the screen can be prop-
erly refreshed when the form is closed. Use this attribute for modal
forms.

handler Routine called when the form needs to handle an event, typically
set by the application in the ApplicationHandleEvent function.

focus Index of a field or table object within the form that contains the fo-
cus. Any keyDownEvent is passed to the object that has the focus.

defaultButton Index of the object defined as the default button. This value is used
by the routine FrmDoDialog.

helpRscId Resource ID number of the help resource. The help resource is a
String resource (type tSTR).

MenuRscId ID number of a menu bar to use if the form is a menu, or zero if the
form is not a menu.

numObjects Number of objects contained within the form.

objects Pointer to the array of objects contained within the form.

Field Function

Palm OS User Interface Objects
Structure of a Form

Developing Palm OS 3.0 Applications, Part I 149

Associated Resource

The Form Resource (tFRM) is used to represent forms on screen.

Form Functions

The following API calls can be used to manipulate form objects.

• FrmAlert

• FrmCloseAllForms
• FrmCopyLabel
• FrmCopyTitle
• FrmCustomAlert
• FrmDeleteForm
• FrmDispatchEvent
• FrmDoDialog
• FrmDrawForm
• FrmEraseForm
• FrmGetActiveForm
• FrmGetActiveFormID
• FrmGetControlGroupSelection
• FrmGetControlValue
• FrmGetFirstForm
• FrmGetFocus
• FrmGetFormBounds
• FrmGetFormId
• FrmGetFormPtr
• FrmGetGadgetData
• FrmGetLabel
• FrmGetNumberOfObjects
• FrmGetObjectBounds
• FrmGetObjectId
• FrmGetObjectIndex
• FrmGetObjectPosition
• FrmGetObjectPtr

Palm OS User Interface Objects
Structure of a Form

150 Developing Palm OS 3.0 Applications, Part I

• FrmGetObjectType
• FrmGetTitle
• FrmGetUserModifiedState
• FrmGetWindowHandle
• FrmGotoForm
• FrmHandleEvent
• FrmHelp
• FrmHideObject
• FrmInitForm
• FrmPointInTitle
• FrmPopupForm
• FrmReturnToForm
• FrmSaveAllForms
• FrmSetActiveForm
• FrmSetCategoryLabel
• FrmSetControlGroupSelection
• FrmSaveAllForms
• FrmSetActiveForm
• FrmSetCategoryLabel
• FrmSetControlGroupSelection
• FrmSetControlValue
• FrmSetEventHandler
• FrmSetFocus
• FrmSetGadgetData
• FrmSetMenu
• FrmSetNotUserModified
• FrmSetObjectBounds
• FrmSetObjectPosition
• FrmSetTitle
• FrmShowObject
• FrmUpdateScrollers
• FrmUpdateForm
• FrmVisible

Palm OS User Interface Objects
Insertion Point Object

Developing Palm OS 3.0 Applications, Part I 151

Insertion Point Object
The insertion point is a blinking indicator that shows where text is
inserted when users write Graffiti characters or paste clipboard text.

In general, an application doesn’t need to be concerned with the in-
sertion point; the Palm OS UI manages the insertion point.

Insertion Point Functions

For custom insertion point behavior, developers can use the follow-
ing API calls:
• InsPtEnable
• InsPtEnabled
• InsPtGetHeight
• InsPtGetLocation
• InsPtSetHeight
• InsPtSetLocation

Palm OS User Interface Objects
List Object

152 Developing Palm OS 3.0 Applications, Part I

List Object
The list object appears as a vertical list of choices in a box. The cur-
rent selection of the list is inverted. If there are more choices than
can be displayed, the system draws small arrows (scroll indicators)
in the right margin next to the first and last visible choice.

When the pen comes down and up on a scroll indicator, the list is
scrolled. When the user scrolls down, the last visible item becomes
the first visible item if there are enough items to fill the list. If not,
the list is scrolled so that the last item of the list appears at the bot-
tom of the list. The reverse is true for scrolling up. Scrolling doesn’t
change the current selection.

Bringing the pen down on a list item unhighlights the current selec-
tion and highlights the item under the pen. Dragging the pen
through the list highlights the item under the pen. Dragging the pen
above or below the list causes the list to scroll if it contains more
choices than are visible.

When the pen is released over an item, that item becomes the cur-
rent selection. When the pen is dragged outside the list, the item
that was highlighted before the penDownEvent is highlighted again
if it’s visible. If it’s not, no item is highlighted.

This section provides information about list objects by discussing
these topics:
• List Object Events
• Structure of a List
• Associated Resources
• List Functions

Palm OS User Interface Objects
List Object

Developing Palm OS 3.0 Applications, Part I 153

List Object Events

The list object generates two types of event structures:
lstEnterEvent and lstSelectEvent. Both events are generated
by the list event-handler function LstHandleEvent.

The following table provides an overview of how
LstHandleEvent deals with the different events.

When LstHandleEvent
receives...

LstHandleEvent performs these actions...

penDownEvent Adds a lstEnterEvent to the event queue if the pen
position is within the bounds of the list.

lstEnterEvent Tracks the pen until it’s released.

• If the pen is released on a list choice, a new selection is
made (the data structure is modified) and a
lstSelectEvent is added to the event queue.

• If the pen is released outside the list, the selection is
unchanged and no event is posted.

Palm OS User Interface Objects
List Object

154 Developing Palm OS 3.0 Applications, Part I

Structure of a List

The ListType structure and supporting structures are defined as
follows:

Listing 4.4 List Structure
typedef struct {

Word id;

RectangleType bounds;

ListAttrType attr;

CharPtr* itemsText;

Word numItems;

Word currentItem;

Word topItem;

FontID font;

WinHandle popupWin;

ListDrawDataFuncPtr drawItemCallback;

} ListType;

typedef struct {

Word usable :1;

Word enabled :1;

Word visible :1;

Word poppedUp :1;

Word hasScrollBar :1.

Word search :1;

Word reserved :2;

} ListAttrType;

Palm OS User Interface Objects
List Object

Developing Palm OS 3.0 Applications, Part I 155

List Object Fields

The list object has the following fields:

Field Function

id ID value, specified by the application developer. This ID value is
part of the event data of lstEnterEvent and lstSelectEvent.

bounds Bounds of the list, relative to the window.

attr List attributes:

• A form that doesn’t have the usable attribute set is not
considered part of the current interface of the application, and
it doesn’t appear on screen.

• If the enable attribute is set, the user can interact with the list.
• The visible attribute is set or cleared internally when the

field object is drawn or erased.

• If the poppedUp attribute is set, choices are displayed in a
popup window. This attribute is set and cleared internally.

• If hasScrollbar is set, the field has a scroll bar.

• If search is set, incremental search is enabled.

itemsText Pointer to an array of pointers to the text of the choices.

numItems Number of choices in the list.

currentItem Currently-selected list choice (0 = first choice).

topItem First choice displayed in the list.

font ID of the font used to draw all list text strings.

popupWin Handle of the window created when a list is displayed if the
poppedUp attribute is set.

drawItems-
Callback

Function used to draw an item in the list. If NULL, the default
drawing routine is used instead.

void ListDrawDataFuncType (UInt itemNum,
RectanglePtr bounds, CharPtr *itemsText)

Palm OS User Interface Objects
List Object

156 Developing Palm OS 3.0 Applications, Part I

Associated Resources

The List Resource (tLST), andPopup Trigger Resource (tPUT) are
used together to represent an active list.

List Functions

The following API calls can be used to manipulate list objects.

• LstDrawList
• LstEraseList

• LstGetNumberOfItems
• LstGetSelection
• LstGetSelectionText
• LstGetVisibleItems
• LstHandleEvent
• LstMakeItemVisible
• LstNewList
• LstPopupList
• LstScrollList
• LstSetDrawFunction
• LstSetHeight
• LstSetListChoices
• LstSetPosition
• LstSetSelection
• LstSetTopItem

Palm OS User Interface Objects
Menu Objects

Developing Palm OS 3.0 Applications, Part I 157

Menu Objects
A menu bar is displayed whenever the user taps a menu icon. The
menu bar, a horizontal list of menu titles, appears at the top of the
screen in its own window, above all application windows. Pressing
a menu title highlights the title and “pulls down” the menu below
the title.

User actions have the following effect on a menu:

A menu has the following features:
• Item separators, which are lines to group menu items.
• Keyboard shortcuts; the shortcut labels are right justified in

menu items.
• A menu remembers its last selection; the next time a menu is

displayed the prior selection appears highlighted.
• The bits behind the menu bar and the menus are saved and

restored by the menu routines.
• When the menu is visible, the insertion point is turned off.

When... Then...

User drags the pen
through the menu.

Command under the pen is highlighted.

Pen is released over a
menu item.

That item is selected and the menu bar
and menu disappear.

Pen is released out-
side both the menu
bar and the menu.

Both menu and menu bar disappear and
no selection is made.

Pen is released in a
menu title.

Menu bar and Menu remain displayed
until a selection is made from the menu.

Pen is tapped outside
menu and menu bar.

Both menu and menu bar are dismissed.

User selects a separa-
tor with the pen.

Menu is dismissed but no event is posted.

Palm OS User Interface Objects
Menu Objects

158 Developing Palm OS 3.0 Applications, Part I

This section provides information about menu objects by discussing
these topics:

• Menu Events
• Structure of a Menu
• Associated Resources
• Menu Functions

Menu Events

Menu events are handled by the routine MenuHandleEvent, which
handles events of type penDownEvent and keyDownEvent.

When a menu item is chosen, the menu event handler adds a
menuEvent that identifies the chosen item to the event queue.

Structure of a Menu

The menu structure and supporting structures are defined as
follows:

Listing 4.5 Menu Structure and Supporting Structures
typedef struct {

WinHandle barWin;

WinHandle bitsBehind;

WinHandle savedActiveWin;

WinHandle bitsBehindStatus;

MenuBarAttrType attr;

SWord curMenu;

SWord curItem;

long commandTick;

SWord numMenus;

MenuPullDownPtr menus;

} MenuBarType;

typedef MenuBarType * MenuBarPtr;

Palm OS User Interface Objects
Menu Objects

Developing Palm OS 3.0 Applications, Part I 159

typedef struct {

Word visible :1;

Word commandPending :1;

Word insPtEnabled :1;

} MenuBarAttrType;

typedef struct {

WinHandle menuWin;

RectangleType bounds;

WinHandle bitsBehind;

RectangleType titleBounds;

CharPtr title;

Word numItems;

MenuItemType *items;

} MenuPullDownType;

typedef MenuPullDownType * MenuPullDownPtr;

typedef struct {

Word id;

char command;

CharPtr itemStr;

} MenuItemType;

Palm OS User Interface Objects
Menu Objects

160 Developing Palm OS 3.0 Applications, Part I

Menu Object Fields

The menu object has the following fields:

Field Function

barWin Handle for the window that contains the menu bar.

bitsBehind Handle for the window that contains the region obscured by the
menu bar.

savedActiveWin Stores currently active window behind the menu.

bitsBehind-
Status

Stores the bits behind the status message so that when the mes-
sage display terminates, the bits can be restored.

attr Menu bar attributes. The attr field is a bit field that contains
the members visible, commandPending, and insPtEnabled.

• If visible is set, the menu bar is drawn.
• If commandPending, the next key is a command.
• If insPtEnable is set, the insertion point was on when the

menu was drawn.

curMenu Menu number for the currently visible menu. Menus are num-
bered sequentially, starting with 0. The value is preserved when
the menu bar is dismissed.
The next time the menu is displayed, the previously visible pull-
down menu can also be redisplayed. A value of -1 indicates that
there is no current pull-down menu.

curItem Item number of the currently highlighted menu item. The items
in each menu are numbered sequentially, starting with zero.

commandTick Stores the tick count at which the status message should be
erased.

numMenus Number of pull-down menus on the menu bar.

menus Array of MenuPullDownType structures. The MenuPullDown-
Type structure defines a pull-down menu.

Palm OS User Interface Objects
Menu Objects

Developing Palm OS 3.0 Applications, Part I 161

Menu Pull-Down Fields

The menu pulldown object has the following fields:

Menu Item Fields

The menu item object has the following fields:

Field Function

menuWin Handle for the window that contains the menu.

bounds Position and size, in pixels, of the pull-down menu.

bitsBehind Handle of a window that contains the region obscured
by the menu.

title Pointer to the menu title (null-terminated).

titleBounds Bounds of the title in the menubar.

numItems Number of items in a menu. Separators count as items.

items Array of MenuItemType structures. A MenuItemType
structure defines a menu item.

Field Function

id ID value specified by the application developer. This
ID value is included as part of the event data of a
menuEvent.

command Shortcut key. If you provide shortcuts, make sure that
each shortcut is unique among all commands available
at that time.

itemStr Pointer to the text display for a menu item. The short-
cut key description is included in this string. The item
label and the shortcut key description are delimited
with a tab character.

Palm OS User Interface Objects
Scrollbar Object

162 Developing Palm OS 3.0 Applications, Part I

Associated Resources

The resources MBAR (menu bar) and MENU (menu) are used joint-
ly to represent a menu object on screen.

Menu Functions

The following API calls can be used to manipulate menu objects.

• MenuDispose

• MenuDrawMenu
• MenuEraseStatus
• MenuGetActiveMenu
• MenuHandleEvent
• MenuInit
• MenuSetActiveMenu

Scrollbar Object
Palm 0S 2.0 and later provides vertical scrollbar support. As a result,
developers can include scroll bars in forms or tables and the system
sends the appropriate events when the end-user interacts with the
scroll bar.

Here’s what you have to do to include a scroll bar in your GUI:

1. Create a scroll bar (tSCL) UI resource.

Provide the ID, the bounds for the scroll bar rectangle. The height
has to match the object you want to attach it to (normally a text
field). The width should be 7.

2. Provide a minimum, and maximum value as well as a page size.

• minimum is usually 0

• maximum is usually 0 and set programmatically

• the page size determines by how many lines the system moves
when the text scrolls.

Palm OS User Interface Objects
Scrollbar Object

Developing Palm OS 3.0 Applications, Part I 163

3. Make the scroll bar part of the form (for tables, place the scroll bar
next to the table field programmatically.)

When you compile your application, the system creates the appro-
priate scroll bar UI object (see Scroll Bar UI Object)

There are two ways in which the scroll bar and the field (or table
field) that it’s attached to need to interact:

• When the user adds or removes text, the scroll bar needs to
know about the change in size.
To get this functionality, call TableHasScrollBar pro-
grammatically. The table or field will then send events when-
ever the size changes. Your application can catch the events
and process them appropriately.

• When the user moves the scroll bar, the text needs to more
accordingly. This can either happen dynamically or statically
(i.e. after the user has released the scroll bar)
As a rule, the scroll bar appears on screen as part of the form
and is updated appropriately by the system. Applications
therefore rarely have to call SclDrawScrollBar,
SclGetScrollBar, or SclSetScrollBar. The application
usually does call SclSetScrollBar at initialization time to
set the initial position of the scroll bar.

• The system sends the following scroll bar events:
– sclEnterEvent is sent when a penDownEvent occurs

within the bounds of the scroll bar.
– sclRepeatEvent is sent when the user drags the scroll

bar.
– sclExitEvent is sent when the user lifts the pen. This

event is sent regardless of previous sclRepeatEvents.

Applications that want to support immediate-mode scrolling (that
is, scrolling happens as the user drags the pen) need to watch for oc-
currences of sclRepeatEvent.

Application that don’t support immediate-mode scrolling should
ignore occurrences of sclRepeatEvent and wait only for the
sclExitEvent.

Listing 4.6 Scroll Bar UI Object
typedef struct {

Word usable: 1;

Palm OS User Interface Objects
Scrollbar Object

164 Developing Palm OS 3.0 Applications, Part I

Word visible: 1;

Word hilighted: 1;

Word shown: 1;

Word activeRegion: 4;

} ScrollBarAttrType;

typedef struct {

RectangleType bounds;

Word id;

ScrollBarAttrType attr;

Short value;

Short minValue;

Short maxValue;

Short pageSize;

Short penPosInCar;

Short savePos;

} ScrollBarType;

typedef ScrollBarType * ScrollBarPtr;

Scrollbar Fields

The scrollbar object has the following fields:

Field Function

bounds Bounds of the scrollbar

id Developer-defined ID of the scrollbar.

Palm OS User Interface Objects
Scrollbar Object

Developing Palm OS 3.0 Applications, Part I 165

attr Attributes of the scrollbar.

• When the usable attribute is set, the scrollbar is part of the UI.

• When the visible attribute is set, the scrollbar is visible on
screen.

• When the highlighted attribute is set, the scrollbar is high-
lighted.

• The shown attribute has to be true if the scrollbar is visible and
if maxValue > minValue.

• The activeRegion attribute indicates the active region of the
scrollbar.

value Current value of the scroll bar.

minValue Minimum value (default should be zero).

maxValue Maximum value. With the scroll car being the dark region in the
scrollbar that indicates the position in the document and overlap
the number of lines from the bottom of one page to be visible at the
top of the next page, this value is usually computed as follows:

number of lines – (page size + overlap)

For example, if you have 100 lines, the scroll car is at maximum at
line 90 or 91.

pageSize Number of lines to scroll when user scrolls one page.

penPosInChar Used internally.

savePos Used internally.

Field Function

Palm OS User Interface Objects
Table Objects

166 Developing Palm OS 3.0 Applications, Part I

Table Objects
The table object is used to organize several types of UI objects. The
number of rows and the number of columns must be specified for
each table object. A UI object can be placed inside a cell of a table.
Tables often consist of rows or columns of the same object. For ex-
ample, a table might have one column of labels and another column
of fields. Tables can only be scrolled vertically. Tables can’t include
bitmaps.

This section provides information about table objects by discussing
these topics:

• Table Event
• Structure of a Table
• Associated Resource
• Table Functions

Table Event

The table object generates the event tblSelectEvent. This event
contains:
• The table’s ID number
• The row of the selected table
• The column of the selected table

When tblSelectEvent is sent to a table, the table generates an
event to handle any possible events within the item’s UI object.

Structure of a Table

The table structure and supporting structures are defined as follows:
typedef struct {

Word id;

RectangleType bounds;

TableAttrType attr;

Word numColumns;

Word numRows;

Palm OS User Interface Objects
Table Objects

Developing Palm OS 3.0 Applications, Part I 167

Word currentRow;

Word currentColumn;

Word topRow;

TableColumnAttrType * columnAttrs;

TableRowAttrType * rowAttrs;

TableItemPtr items;

FieldType currentField;

} TableType;

typedef TableType * TablePtr;

typedef struct {

Word visible:1;

Word editable:1;

Word editing:1;

Word selected:1;

Word hasScrollBAr:1.

} TableAttrType;

typedef struct {

TableItemStyleType itemType;

FontID fontID; //font for drawing text

Word intValue;

CharPtr ptr;

} TableItemType;

typedef TableItemType * TableItemPtr;

typedef struct {

Word width; // in
pixels

Boolean usable;

Word spacing;

TableDrawItemFuncPtr drawCallback;

TableLoadDataFuncPtr loadDataCallback;

TabelSaveDataFuncPtr SaveDataCallback;

} TableColumnAttrType;

Palm OS User Interface Objects
Table Objects

168 Developing Palm OS 3.0 Applications, Part I

typedef struct {

Word id;

Word height; // row height in pixels

DWord data;

Word usable;

Word selectable;

Word invalid;//true if redraw needed

} TableRowAttrType;

Fields of a Table Structure

The table structure has the following fields:

Field Function

id ID value specified by the application developer.

bounds Position and size of the table object.

attr Table object’s attributes. The attr field is a bit field that contains
the following members:

• If visible is set, the table is drawn on screen.
• If editable is set, the user can modify the table.
• If editing is set, the table is in edit mode.
• If selected is set, the current item is selected.
• If hasScrollbar is set, the table has a scroll bar. Note that

this attribute can only be set programmatically.

numColumns Number of columns in the table object.

numRows Number of rows in the table object.

currentRow Row of the table set to current.

currentColumn Column of the table set to current.

topRow First row in the table object.

Palm OS User Interface Objects
Table Objects

Developing Palm OS 3.0 Applications, Part I 169

Associated Resource

The Table Resource (tTBL) represents a table on screen.

Table Functions

The following API calls can be used to manipulate table objects.
• TblDrawTable
• TblEditing
• TblEraseTable
• TblFindRowData
• TblFindRowID
• TblGetBounds
• TblGetColumnSpacing
• TblGetColumnWidth
• TblGetCurrentField
• TblGetItemBounds
• TblGetItemInt
• TblGetLastUsableRow
• TblGetNumberOfRows
• TblGetRowData
• TblGetRowHeight
• TblGetRowID

columnAttrs Column attributes, such as its width, its usability, and how the
column draws itself.

rowAttrs Row’s attributes, such as its ID, height, and whether or not it is
usable, selectable, or invalid.

items Item attributes, such as the item type, font ID, an integer value,
and a character pointer.

currentField Field object the user is currently editing.

Field Function

Palm OS User Interface Objects
Table Objects

170 Developing Palm OS 3.0 Applications, Part I

• TblGetSelection
• TblGrabFocus
• TblHandleEvent
• TblHasScrollBar
• TblInsertRow
• TblMarkRowInvalid
• TblMarkTableInvalid
• TblRedrawTable
• TblReleaseFocus
• TblRemoveRow
• TblRowInvalid
• TblRowSelectable
• TblRowUsable
• TblSelectItem
• TblSetBounds
• TblSetColumnEditIndicator
• TblSetColumnSpacing
• TblSetColumnUsable
• TblSetColumnWidth
• TblSetCustomDrawProcedure
• TblSetItemInt
• TblSetItemPtr
• TblSetItemStyle
• TblSetLoadDataProcedure
• TblSetRowData
• TblSetRowHeight
• TblSetRowID
• TblSetRowSelectable
• TblSetRowStaticHeight
• TblSetRowUsable
• TblSetSaveDataProcedure
• TblUnhighlightSelection

Palm OS User Interface Objects
Window Objects

Developing Palm OS 3.0 Applications, Part I 171

Window Objects
A window defines a drawing region. This region may be on the dis-
play or in a memory buffer (an off-screen window). Off-screen win-
dows are useful for saving and restoring regions of the display that
are obscured by other UI objects. All forms are windows, but not all
windows are forms.

The window object is the portion of the form object that determines
how the form’s window looks and behaves. A window object con-
tains viewing coordinates of the window and clipping bounds.

This section provides information about windows by discussing
these topics:

• Window Events
• Structure of a Window
• Window Functions

No resources are associated with window objects.

Window Events

When a window becomes active, a winEnterEvent takes place.
When the window is deactivated, a winExitEvent occurs. The
winEnterEvent usually follows right after a winExitEvent; an
old window is deactivated just before a new window is activated.

Structure of a Window

The WinType structure is defined as follows:
typedef struct WinTypeStruct {

Word displayWidth;

Word displayHeight;

VoidPtr displayAddr;

WindowFlagsType windowFlags;

RectangleType windowBounds;

AbsRectType clippingBounds;

PointType viewOrigin;

Palm OS User Interface Objects
Window Objects

172 Developing Palm OS 3.0 Applications, Part I

FrameBitsType frameType;

GraphicStatePtr gstate;

struct WinTypeStruct* nextWindow;

} WindowType;

typedef WindowType * WinPtr;

typedef WinPtr WinHandle;

Fields of a Window Structure

Field Function

displayWidth Width, in pixels, of the display memory buffer (video RAM) for
on-screen windows and the width of a memory buffer for off-
screen windows.

displayHeight Height, in pixels, of the device display.

displayAddr Pointer to the window’s display memory buffer.

windowFlags Window attributes: format, offscreen, modal, focusable,
enabled, visible, dialog, and compressed (see next table).

windowBounds Bounds of the window.

clipping-
Bounds

Bounds for clipping any drawing within the window.

viewOrigin Window origin point on the display.

frameType Frame’s corner diameter, width of shadow, and width of frame.

gstate State of the graphic mode, pattern mode, font, and underline
mode.

nextWindow Pointer to the next window in a linked list of windows.

Palm OS User Interface Objects
Window Objects

Developing Palm OS 3.0 Applications, Part I 173

Window attributes are defined as follows:

Window Functions

The following API calls can be used to manipulate window objects.

• ScrDisplayMode
• WinAddWindow

• WinClipRectangle
• WinCopyRectangle
• WinCreateOffscreenWindow
• WinCreateWindow
• WinDeleteWindow
• WinDisableWindow
• WinDisplayToWindowPt
• WinDrawBitmap
• WinDrawChars
• WinDrawGrayLine
• WinDrawGrayRectangleFrame
• WinDrawInvertedChars

Attribute Set to 0 Set to 1

format screen mode generic mode

offscreen on screen off screen

modal modeless window modal window

focusable non-focusable focusable

enabled disabled enabled

visible invisible visible

dialog nondialog dialog

compressed uncompressed compressed

Palm OS User Interface Objects
Window Objects

174 Developing Palm OS 3.0 Applications, Part I

• WinDrawLine
• WinDrawRectangle
• WinDrawRectangleFrame
• WinDrawWindowFrame
• WinDrawWindowFrame
• WinEnableWindow
• WinEraseChars
• WinEraseLine
• WinEraseRectangleFrame
• WinEraseWindow
• WinFillLine
• WinFillRectangle
• WinGetActiveWindow
• WinGetClip
• WinGetDisplayExtent
• WinGetDisplayWindow
• WinGetDrawWindow
• WinGetFirstWindow
• WinGetFramesRectangle
• WinGetPattern
• WinGetWindowBounds
• WinGetWindowExtent
• WinGetWindowFrameRect
• WinGetWindowPointer
• WinInitializeWindow
• WinInvertChars
• WinInvertLine
• WinInvertRectangle
• WinInvertRectangleFrame
• WinModal
• WinRemoveWindow
• WinResetClip
• WinRestoreBits

Palm OS User Interface Objects
Dynamic User Interface Objects

Developing Palm OS 3.0 Applications, Part I 175

• WinSaveBits
• WinScrollRectangle
• WinSetActiveWindow
• WinSetClip
• WinSetDrawWindow
• WinSetPattern
• WinSetUnderlineMode
• WinSetWindowBounds
• WinValidateHandle
• WinWindowToDisplayPt

Dynamic User Interface Objects
Palm OS 3.0 provides functions that can be used to create forms and
form elements at runtime. Most applications will never need to
change any user interface elements at runtime—the built-in applica-
tions don't do so, and the Palm user interface guidelines discourage
it. However, some applications, such as forms packages, must create
their displays at runtime—it is for applications such as these that
the Dynamic UI API is provided. If you're not absolutely sure that
you need to change your UI dynamically, don't do it—unexpected
changes to an application’s interface are likely to confuse or frus-
trate the end user.

Dynamic user interface objects are subject to the following limita-
tions:

• You cannot create tables or Graffiti Shift indicators.
• You cannot create buttons (or repeating buttons) having frames

or non-bold frames.
• You cannot move user interface objects after they have been

created.

You can use the FrmNewForm function to create new forms dynami-
cally. Palm's UI guidelines encourage you to keep popup dialogs at
the bottom of the screen, using the entire screen width. This isn't en-
forced by the routine, but is encouraged strongly in order to main-
tain a look and feel that is consistent with the built-in applications.

Palm OS User Interface Objects
Dynamic User Interface Objects

176 Developing Palm OS 3.0 Applications, Part I

The FrmNewLabel, FrmNewBitmap, FrmNewGadget, LstNewList,
FldNewField and CtlNewControl functions can be used to create
new objects on forms.

It is fine to add new items to an active form, but doing so is very
likely to move the form structure in memory; therefore, any pointers
to the form or to controls on the form might change. Make sure to
update any variables or pointers that you are using so that they refer
to the form's new memory location, which is returned when you
create the object.

The FrmRemoveObject function removes an object from a form.
This function doesn't free memory referenced by the object (if any)
but it does shrink the form chunk. For best efficiency when remov-
ing items from forms, remove items in order of decreasing index
values, beginning with the item having the highest index value.
When removing items from a form, you need to be mindful of the
same concerns as when adding items: the form pointer and pointers
to controls on the form may change as a result of any call that moves
the form structure in memory.

When creating forms dynamically, or just to make your application
more robust, use the FrmValidatePtr function to ensure that
your form pointer is valid and the form it points to is valid. This
routine can catch lots of bugs for you - use it!

Dynamic User Interface Functions

Because the functions composing the Dynamic User Interface API
are implemented by a variety of distinct objects and managers with-
in Palm OS 3.0, the reference description for a particular function in
this API is found in the section of this book dedicated to the manag-
er or object that provides it. For convenience, the list immediately
following summarizes the Dynamic User Interface API as a single
conceptual entity.

• CtlNewControl
• CtlValidatePointer
• FldNewField
• FrmNewBitmap

Palm OS User Interface Objects
Dynamic User Interface Objects

Developing Palm OS 3.0 Applications, Part I 177

• FrmNewForm
• FrmNewGadget
• FrmNewLabel
• FrmRemoveObject
• FrmValidatePtr
• LstNewList
• WinValidateHandle

Palm OS User Interface Objects
Dynamic User Interface Objects

178 Developing Palm OS 3.0 Applications, Part I

Developing Palm OS 3.0 Applications, Part I 179

5

Using Palm OS UI
Managers
In contrast to desktop computer operating systems, Palm OS con-
sists of only one library. This library, however, contains several man-
agers, which are groups of functions that work together to imple-
ment certain functionality. As a rule, all functions that belong to one
manager use the same three-letter prefix and work together to im-
plement a certain aspect of functionality.

In this chapter, you learn about all Palm OS managers that aren’t di-
rectly responsible for memory management or system management.
As you investigate managers more closely you’ll find that some of
them are mostly services provided by the system, while others con-
tain a large number of API calls.

The managers are presented in alphabetical order for easy access.
• The Alert Manager lets applications implement modal

dialog boxes that display an alert dialog or prompt the
user for a response to a question.

• The Graffiti Manager provides an interface to the Graffiti
recognizer. The recognizer converts pen strokes into key
events, which are then fed to an application through the
event manager.

Most applications never need to call the Graffiti manager di-
rectly because the event manager calls it automatically when-
ever it detects pen strokes in the Graffiti area of the digitizer.

• The Key Manager provides an interface to the hardware
buttons on the Palm OS device. It converts hardware
button presses into key events and implements auto-
repeat of the buttons.

Using Palm OS UI Managers
The Alert Manager

180 Developing Palm OS 3.0 Applications, Part I

Most applications never need to call the key manager directly
except to change the key repeat rate or poll the current state
of the keys.

• The Pen Manager provides an interface to the digitizer
hardware and converts input from the digitizer into pen
coordinates.

Most applications never need to call the pen manager direct-
ly because any pen activity is automatically returned to the
application in the form of events.

• The Progress Manager provides a mechanism to display
changing progress information to the user in a progress dia-
log. This is useful during any lengthy process such as data
transfer during a communications session.

The Alert Manager
The alert manager provides a simple way for an application to im-
plement modal dialog boxes that display an alert message or
prompt the user for a response to a question.

Given a resource ID that defines an alert, the alert manager creates
and displays a modal dialog box. When the user taps one of the but-
tons in the dialog, the alert manager disposes of the dialog box and
returns to the caller the item number of the button the user tapped.

There are four types of system-defined alerts:

• Question
• Warning
• Notification
• Error

The alert type determines which icon is drawn in the alert window
and which sound plays when the alert is displayed.

Alert Resource Information

When the alert manager is invoked, it’s passed an alert resource (see
Alerts) that contains the following information:

Using Palm OS UI Managers
The Graffiti Manager

Developing Palm OS 3.0 Applications, Part I 181

• The rectangle that specifies the size and position of the alert
window.

• The alert type (question, warning, notification, or error).
• The null-terminated text string; that is, the message the

alert displays.
• The text labels for one or more buttons.

Alert Manager Functions

The following alert manager functions are available for application
use:

• FrmAlert

• FrmCustomAlert

The Graffiti Manager
The Graffiti manager provides an API to the Palm OS Graffiti recog-
nizer. The recognizer converts pen strokes into key events, which
are then fed to an application through the event manager.

Most applications never need to call the Graffiti manager directly
because it’s automatically called by the event manager whenever it
detects pen strokes in the Graffiti area of the digitizer.

Special-purpose applications, such as a Graffiti tutorial, may want
to call the Graffiti manager directly to recognize strokes in other
areas of the screen or to customize the Graffiti behavior.

Using GrfProcessStroke

GrfProcessStroke is a high-level Graffiti manager call used by
the event manager for converting pen strokes into key events. The
call

• Removes pen points from the pen queue

• Recognizes the stroke

• Puts one or more key events into the key queue

Using Palm OS UI Managers
The Graffiti Manager

182 Developing Palm OS 3.0 Applications, Part I

GrfProcessStroke automatically handles Graffiti ShortCuts and
calls the user interface as appropriate to display shift indicators in
the current window.

An application can call GrfProcessStroke when it receives a
penUpEvent from the event manager if it wants to recognize
strokes entered into its application area (in addition to the Graffiti
area).

Using Other High-Level Graffiti Manager Calls

Other high-level calls provided by the Graffiti manager include rou-
tines for

• Getting and setting the current Graffiti shift state (caps lock
on/off, temporary shift state, etc.)

• Notifying Graffiti when the user selects a different field.
Graffiti needs to be notified when a field change occurs so
that it can cancel out of any partially entered shortcut and
clear its temporary shift state if it’s showing a potentially ac-
cented character.

Special-Purpose Graffiti Manager Calls

The remainder of Graffiti manager API routines are for special-
purpose use. They are basically all the entry points into the Graffiti
recognizer engine and are usually called only by
GrfProcessStroke. These special-purpose uses include calls to
add pen points to the Graffiti recognizer’s stroke buffer, to convert
the stroke buffer into a Graffiti glyph ID, and to map a glyph into a
string of one or more key strokes.

Accessing Graffiti ShortCuts

Other routines provide access to the Graffiti ShortCuts database.
This is a separate database owned and maintained by the Graffiti
manager that contains all of the shortcuts. This database is opened
by the Graffiti manager when it initializes and stays open even after
applications quit.

Using Palm OS UI Managers
The Graffiti Manager

Developing Palm OS 3.0 Applications, Part I 183

The only way to modify this database is through the Graffiti manag-
er API. It provides calls for getting a list of all shortcuts, and for add-
ing, editing, and removing shortcuts. The ShortCuts screen of the
Preferences application provides a user-interface for modifying this
database.

Note on Auto Shifting

The Palm OS 2.0 and later automatically uses an upper-case letter
under the following conditions:

• Period and space or Return.

• Other sentence terminator (such as ? or !) and space

This functionality requires no changes by the developer, but should
be welcome to the end user.

Note on Graffiti Help

In Palm OS 2.0 and later, applications can pop up Graffiti help by
calling SysGraffitiReferenceDialog or by putting a special
character—graffitiReferenceChr from Chars.h—on the
queue.

Graffiti help is also available through the system Edit menu. As a re-
sult, any application that includes the system Edit menu allows
users to access Graffiti Help that way. See: System:HSUtil.h,
System:HTALSPI.h, System:SysConfig.Prv.h.

Graffiti Manager Functions

The following functions are available for application use.

• GrfProcessStroke

• GrfGetState

• GrfSetState

• GrfFlushPoints

• GrfAddPoint

• GrfInitState

• GrfCleanState

Using Palm OS UI Managers
The Key Manager

184 Developing Palm OS 3.0 Applications, Part I

• GrfMatch

• GrfGetMacro

• GrfGetAndExpandMacro

• GrfFilterPoints

• GrfGetNumPoints

• GrfGetPoint

• GrfFindBranch

• GrfMatchGlyph

• GrfGetGlyphMapping

• GrfGetMacroName

• GrfDeleteMacro

• GrfAddMacro

The Key Manager
The key manager manages the hardware buttons on the Palm OS
device. It converts hardware button presses into key events and im-
plements auto-repeat of the buttons. Most applications never need
to call the key manager directly except to change the key repeat rate
or to poll the current state of the keys.

The event manager is the main interface to the keys; it returns a
keyDownEvent to an application whenever a button is pressed.
Normally, applications are notified of key presses through the event
manager. Whenever a hardware button is pressed, the application
receives an event through the event manager with the appropriate
key code stored in the event record. The state of the hardware but-
tons can also be queried by applications at any time through the
KeyCurrentState function call.

The KeyRates call changes the auto-repeat rate of the hardware
buttons. This might be useful to game applications that want to use
the hardware buttons for control. The current key repeat rates are
stored in the key manager globals and should be restored before the
application exits.

Using Palm OS UI Managers
The Pen Manager

Developing Palm OS 3.0 Applications, Part I 185

The following functions are available for application use.

• KeyRates

• KeyCurrentState

The Pen Manager
The pen manager manages the digitizer hardware and converts
input from the digitizer into pen coordinates. Most applications
never need to call the pen manager directly because any pen activity
is automatically returned to the application in the form of events.

Pen coordinates are stored in the pen queue as raw, uncalibrated
coordinates. When the system event manager routine for removing
pen coordinates from the pen queue is called, it converts the pen
coordinate into screen coordinates before returning.

The Preferences application provides a user interface for calibrating
the digitizer. It uses the pen manager API to set up the calibration
which is then saved into the Preferences database. The pen manager
assumes that the digitizer is linear in both the x and y directions; the
calibration is therefore a simple matter of adding an offset and scal-
ing the x and y coordinates appropriately.

The following functions are available for application use.
• PenResetCalibration

• PenCalibrate

Using Palm OS UI Managers
The Progress Manager

186 Developing Palm OS 3.0 Applications, Part I

The Progress Manager
The progress manager provides a mechanism to display changing
progress information to the user during any lengthy process such as
data transfer during a communications session.

You display the progress dialog by calling PrgStartDialog. Then,
as your process progresses, you call PrgUpdateDialog to update
the dialog with new information for the user. In your event loop you
call PrgHandleEvent to handle the progress dialog update events
queued by PrgUpdateDialog. The PrgHandleEvent function
makes a callback to a textCallback function that you supply, to
get the latest progress information.

Note that whatever operation you are doing that is the lengthy pro-
cess, you do the work inside your normal event loop, not in the call-
back function. That is, you call EvtGetEvent and do work when
you get a nilEvent. Each time you get a nilEvent, do a chunk of
work, but be sure to continue to call EvtGetEvent frequently (like
every half second), so that pen taps and other events get noticed
quickly enough.

The dialog can display a few lines of text that are automatically cen-
tered and formatted. You can also specify an icon that identifies the
operation in progress. The dialog has one optional button that can
be a cancel or an OK button. The type of the button is automatically
controlled by the progress manager and depends on the current
progress state (no error, error, or user canceled operation).

Progress textCallback Function

When you want to update the progress dialog with new informa-
tion, you call the function PrgUpdateDialog. To get the current
progress information to display in the progress dialog,
PrgHandleEvent makes a callback to a function, textCallback,
that you supplied in your call to PrgStartDialog.

The system passes the textCallback function one parameter, a
pointer to a PrgCallbackData structure. Here are the important

Using Palm OS UI Managers
The Progress Manager

Developing Palm OS 3.0 Applications, Part I 187

fields in that data structure (note that --> indicates you set the field
in the textCallback function):

<-- Word stage Current stage (passed from
PrgUpdateDialog).

<--> CharPtr textP Buffer to hold the text to display in the
updated dialog. You might want to look
up a message in a resource file, based on
the value in the stage field. Also, you
should append the additional text in the
message field, to form the full string to
display. Be sure to include a null termi-
nator at the end of the string you return,
and don’t exceed the length in textLen.

<-- Word textLen Maximum length of the text buffer
textP. Note that this value is set for you
by the caller. Be careful not to exceed this
length in textP.

<-- CharPtr message Additional text to display in the dialog
(from the messageP parameter to
PrgUpdateDialog). This should be no
longer than progressMaxMessage
(128)

<-- Err error Current error (passed from the err pa-
rameter to PrgUpdateDialog).

--> Word bitmapId Resource ID of the bitmap to display in
the progress dialog, if any.

<-- Word canceled TRUE if user has pressed the cancel but-
ton.

<-- Word showDetails TRUE if user pressed the down arrow
button on the Palm device for more de-
tails. (Because this is a non-standard
user interface technique, you shouldn’t
use this feature to display details that
users need under normal conditions. It’s
more for debugging purposes.)

Using Palm OS UI Managers
The Progress Manager

188 Developing Palm OS 3.0 Applications, Part I

--> Word textChanged If TRUE, then update text (defaults to
TRUE). You can set this to FALSE to
avoid an update to the text.

<-- Word timedOut TRUE if update caused by a timeout.

<--> ULong timeout Timeout in ticks to force next update.
After this number of ticks, an update is
automatically triggered (which sets the
timedOut flag). You can use this feature
to do a simple animation effect. Note
that you must set the timeout for
EvtGetEvent to a value that is equal to
or less than this value, otherwise you
won’t get update events as frequently as
you expect.

Your textCallback function should return a Boolean. Return
TRUE if the progress dialog should be updated using the values you
specified in the PrgCallbackData structure. If you specify FALSE,
the dialog is still updated, but with default status messages. (Re-
turning FALSE is not recommended.)

In the textCallback function, you should set the value of the
textP buffer to the string you want to display in the progress dia-
log when it is updated. You can use the value in the stage field to
look up a message in a string resource. You also might want to ap-
pend the text in the message field to your base string. Typically, the
message field would contain more dynamic information that de-
pends on a user selection, such as a phone number, device name, or
network identifier, etc.

For example, the PrgUpdateDialog function might have been
called with a stage of 1 and a messageP parameter value of a
phone number string, “555-1212”. Based on the stage, you might
find the string “Dialing” in a string resource, and append the phone
number, to form the final text “Dialing 555-1212” that you place in
the text buffer textP.

Keeping the static strings corresponding to various stages in a re-
source makes it easier to localize your application. More dynamic

Using Palm OS UI Managers
The Progress Manager

Developing Palm OS 3.0 Applications, Part I 189

information can be passed in via the messageP parameter to
PrgUpdateDialog.

NOTE: The textCallback function is called only if the param-
eters passed to PrgUpdateDialog have changed from the last
time it was called. If PrgUpdateDialog is called twice with exact-
ly the same parameters, the textCallback function is called only
once.

Progress Manager Function Summary

The following functions are available for application use.

• PrgHandleEvent

• PrgStartDialog

• PrgStopDialog

• PrgUpdateDialog

• PrgUserCancel

Using Palm OS UI Managers
The Progress Manager

190 Developing Palm OS 3.0 Applications, Part I

Developing Palm OS 3.0 Applications, Part I 191

6

Palm OS Events
Palm OS events are structures that the system passes to the applica-
tion when the user interacts with the graphical user interface. How
Events Control an Application discusses in detail how this works.
This chapter only provides reference-style information about each
event. It discusses the following events in alphabetical order:

Event UI Object

appStopEvent N.A.

ctlEnterEvent, ctlExitEvent, ctlRepeatEvent, ctlSelectEvent Control

daySelectEvent N.A.

fldChangedEvent, fldEnterEvent, fldHeightChangedEvent Field

frmCloseEvent, frmGotoEvent, frmLoadEvent, frmOpenEvent,
frmSaveEvent, frmUpdateEvent, frmTitleEnterEvent,
frmTitleSelectEvent

Form

keyDownEvent N.A.

lstEnterEvent, lstExitEvent, lstSelectEvent List

menuEvent Menu

nilEvent N.A.

penDownEvent, penMoveEvent, penUpEvent N.A. (pen)

popSelectEvent Popup (Control)

sclEnterEvent, sclRepeatEvent, sclExitEvent Scroll bar

Palm OS Events
appStopEvent

192 Developing Palm OS 3.0 Applications, Part I

appStopEvent
When the system wants to launch a different application than the
one currently running, the event manager sends this event to re-
quest the current application to terminate. In response, an applica-
tion has to exit its event loop, close any open files and forms, and
exit.

If an application doesn’t respond to this event by exiting, the system
can’t start the other application.

ctlEnterEvent
The control routine CtlHandleEvent sends this event when it re-
ceives a penDownEvent within the bounds of a control.

The following data is passed with the event:

ctlExitEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of a control, a ctlSelectEvent is added to the event
queue; if not, a cltExitEvent is added to the event queue.

tblEnterEvent, tblExitEvent, tblSelectEvent Table

winEnterEvent, winExitEvent Window

Event UI Object

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

Palm OS Events
ctlRepeatEvent

Developing Palm OS 3.0 Applications, Part I 193

The following data is passed with the event:

ctlRepeatEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent in a Repeat control
(tREP), it sends a ctlRepeatEvent. When CtlHandleEvent re-
ceives a ctlRepeatEvent in a repeat control, it sends another
ctlRepeatEvent if the pen remains down within the bounds of
the control for 1/2 second beyond the last ctlRepeatEvent.

The following data is passed with the event:

ctlSelectEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of the
same control it went down in, a cltSelectEvent is added to the
event queue; if not, a ctlExitEvent is added to the event queue.

The following data is passed with the event:

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

time System-ticks count when the event is added to
the queue.

controlID Developer-defined ID of the control.

Palm OS Events
daySelectEvent

194 Developing Palm OS 3.0 Applications, Part I

daySelectEvent
The system-internal DayHandleEvent routine, which handles
events in the day selector object, handles this event. When the day
selector object displays a calendar month, the user can select a day
by tapping on it.

This event is sent when the pen touches and is lifted from a day
number.

The following data is passed with the event:

fldChangedEvent
The field routine FldHandleEvent sends this event when the text
of a field has been scrolled as a result of drag-selecting. When
FldHandleEvent receives a fldEnterEvent, it positions the in-
sertion point and tracks the pen until it’s lifted. Text is selected
(highlighted) appropriately as the pen is dragged.

The following data is passed with the event:

pControl Pointer to a control structure (ControlType).

on TRUE when the control is depressed; otherwise,
FALSE.

pSelector Pointer to a day selector structure
(DaySelectorType).

selection Not used.

useThisDate Set to TRUE to automatically use the selected
date.

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

Palm OS Events
fldEnterEvent

Developing Palm OS 3.0 Applications, Part I 195

fldEnterEvent
The field routine FldHandleEvent sends this event when the field
receives a penDownEvent within the bounds of a field. The follow-
ing data is passed with the event:

fldHeightChangedEvent
The field routine FldHandleEvent sends this event. The field API
supports a feature that allows a field to dynamically resize its visible
height as text is added or removed from it. Functions in the field API
send a fldHeightChangedEvent to change the height of a field.
Applications don’t usually send or handle this event.

The following data is passed with the event:

frmCloseEvent
The form routines FrmGotoForm and FrmCloseAllForms send
this event. FrmGotoForm sends a frmCloseEvent to the currently
active form; FrmCloseAllForms sends a frmCloseEvent to all
forms an application has loaded into memory. If an application
doesn’t intercept this event, the routine FrmHandleEvent erases
the specified form and releases any memory allocated for it.

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

newHeight New visible height of the field, in number of
lines.

currentPos Current position of the insertion point.

Palm OS Events
frmGotoEvent

196 Developing Palm OS 3.0 Applications, Part I

The following data is passed with the event:

frmGotoEvent
An application may choose to send itself this event when it receives
a sysAppLaunchCmdGoto launch code. sysAppLaunchCmdGoto
is generated when the user selects a record in the global find facility.
Like frmOpenEvent, frmGotoEvent is a request that the applica-
tion initialize and draw a form, but this event provides extra infor-
mation so that the application may display and highlight the match-
ing string in the form.

The application is responsible for handling this event.

The following data is passed with the event:

formID Developer-defined ID of the form.

formID Developer-defined ID of the form.

recordNum Index of record containing the match
string.

matchPos Position of the match.

matchLen Length of the matched string.

matchFieldNum Number of the field the matched string
was found in.

matchCustom Application-specific information. You
might use this if you need to provide extra
information to locate the matching string
within the record.

Palm OS Events
frmLoadEvent

Developing Palm OS 3.0 Applications, Part I 197

frmLoadEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. It’s a request that the application load a form into memory.

The application is responsible for handling this event.

The following data is passed with the event:

frmOpenEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. It is a request that the application initialize and draw a form.

The application is responsible for handling this event.

The following data is passed with the event:

frmSaveEvent
The form routine FrmSaveAllForms sends this event. It is a re-
quest that the application save any data stored in a form.

The application is responsible for handling this event.

No data is passed with this event.

frmUpdateEvent
The form routine FrmUpdateForm, or in some cases the routine
FrmEraseForm, sends this event when it needs to redraw the re-
gion obscured by the form being erased.

Generally, the region obscured by a form is saved and restored by
the form routines without application intervention. However, in
cases where the system is running low on memory, the form’s rou-
tine may not save obscured regions itself. In that case, the

formID Developer-defined ID of the form.

formID Developer-defined ID of the form.

Palm OS Events
frmTitleEnterEvent

198 Developing Palm OS 3.0 Applications, Part I

application adds a frmUpdateEvent to the event queue. The form
receives the event and redraws the region using the updateCode
value.

An application can define its own updateCode and then use this
event to also trigger behavior in another form, usually when chang-
es made to one form need to be reflected in another form.

The following data is passed with the event:

frmTitleEnterEvent
The control routine FrmHandleEvent sends this event when it re-
ceives a penDownEvent within the bound of the title of the form.
Note that only the written title, not the whole title bar is active.

The following data is passed with the event:

frmTitleSelectEvent
The control routine FrmHandleEvent sends this event. FrmHan-
dleEvent receives a frmTitleEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of the ac-
tive same title bar region, a frmTitleSelectEvent is added to
the event queue.

The following data is passed with the event:

formID Developer-defined ID of the form.

updateCode The reason for the update request.
FrmEraseForm sets this code to zero. Applica-
tion developers can define their own
updateCode. The updateCode is passed as a
parameter to FrmUpdateForm.

formID Developer-defined ID of the form.

formID Developer-defined ID of the form.

Palm OS Events
keyDownEvent

Developing Palm OS 3.0 Applications, Part I 199

keyDownEvent
This event is sent by the system when the user enters a Graffiti char-
acter, presses one of the buttons below the display, or taps one of the
icons in the icon area; for example, the Find icon.

The following data is passed with the event:

chr ASCII code of character, or zero if the key is a
virtual key code; for example, the Find key.

keyCode Virtual key code; for example, the Find key.

modifiers One of the following:

shiftKeyMask True if Graffiti is in case-shift
mode.

capsLockMask True if Graffiti is in cap-shift
mode.

numLockMask True if Graffiti is in numeric-shift
mode.

commandKeyMask True if the Graffiti glyph was the
menu command glyph.

optionKeyMask Not implemented. Reserved.

controlKeyMask Not implemented. Reserved.

autoRepeatKey-
Mask

True if generated due to auto-
repeat.

doubleTapKeyMask Not implemented. Reserved.

poweredOnKeyMask True if the key press caused the
system to be powered on.

Palm OS Events
lstEnterEvent

200 Developing Palm OS 3.0 Applications, Part I

lstEnterEvent
The list routine LstHandleEvent sends this event when it receives
a penDownEvent within the bounds of a list object.

The following data is passed with the event:

lstExitEvent
The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

The following data is passed with the event:

lstSelectEvent
The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

selec-
tion

Unused.

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

Palm OS Events
menuEvent

Developing Palm OS 3.0 Applications, Part I 201

The following data is passed with the event:

menuEvent
The menu routine MenuHandleEvent sends this event:

• When the user selects an item from a pull-down menu
• When the user selects a menu command using the

Graffiti Command shortcut followed by an available
command; for example, Command-C for copy

The following data is passed with the event:

nilEvent
A nilEvent is useful for animation, polling, and similar situations.

The event manager sends this event when there are no events in the
event queue. This happens only if the routine EvtGetEvent, dis-
cussed in Developing Palm OS Applications, Part I, is passed a time-
out value (a value other than evtWaitForever, -1). If
EvtGetEvent is unable to return an event in the specified time, it
returns a nilEvent.

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

selection Item number (zero-based) of the new selection.

itemID Item ID of the selected menu command.

Palm OS Events
penDownEvent

202 Developing Palm OS 3.0 Applications, Part I

penDownEvent
The event manager sends this event when the pen first touches the
digitizer.

The following data is passed with the event:

penMoveEvent
The event manager sends this event when the pen is moved on the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penMoveEvent is gener-
ated.

The following data is passed with the event:

penUpEvent
The event manager sends this event when the pen is lifted from the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penUpEvent is
generated.

penDown Always TRUE.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

penDown Always TRUE.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

Palm OS Events
popSelectEvent

Developing Palm OS 3.0 Applications, Part I 203

The following data is passed with the event:

popSelectEvent
The form routine FrmHandleEvent sends this event when the user
selects an item in a popup list.

The following data is passed with the event:

penDown Always false.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

start Display-relative start point of the stroke.

end Display-relative end point of the stroke.

controlID Developer-defined ID of the resource.

controlP Pointer to the control structure (Control-
Type) of the popup trigger object.

listID Developer-defined ID of the popup list object.

listP Pointer to the list structure (ListType) of the
popup list object.

selection Item number (zero-based) of the new list
selection.

priorSelec-
tion

Item number (zero-based) of the prior list
selection.

Palm OS Events
sclEnterEvent

204 Developing Palm OS 3.0 Applications, Part I

sclEnterEvent
The routine SclHandleEvent sends this event when it receives a
penDownEvent within the bounds of a scroll bar.

Applications usually don’t have to handle this event.

The following data is passed with the event:

sclExitEvent
The routine SclHandleEvent sends this event when the user lifts
the pen from the scroll bar.

Applications that want to implement non-dynamic scrolling should
wait for this event, then scroll the text using the values provided in
value and newvalue.

Note that this event is sent regardless of previous sclRepeat-
Events.If, however, the application has implemented dynamic
scrolling, it doesn’t have to catch this event.

The following data is passed with the event:

scrollBarID Developer-defined ID of the scroll bar re-
source.

pScrollBar Pointer to the scroll bar structure.

scrollBarID Developer-defined ID of the scroll bar re-
source.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar

newvalue New position of the scroll bar. Given value
and newValue, you can actually tell how
much you have scrolled.

Palm OS Events
sclRepeatEvent

Developing Palm OS 3.0 Applications, Part I 205

sclRepeatEvent
The routine SclHandleEvent sends this event when the pen is
continually held within the bounds of a scroll bar.

Applications that implement dynamic scrolling should watch for
this event. In dynamic scrolling, the display is updated as the user
drags the scroll bar (not after the user releases the scroll bar).

The following data is passed with the event:

tblEnterEvent
The table routine TblHandleEvent sends this event when it re-
ceives a penDownEvent within the bounds of an active item in a
table object.

The following data is passed with the event:

scrollBarID Developer-defined ID of the scroll bar re-
source.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar.

newValue New position of the scroll bar. Given value
and newValue, you can actually tell how
much you have scrolled.

time System-ticks count when the event is added to
the queue to determine when the next event
should occur.

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

Palm OS Events
tblExitEvent

206 Developing Palm OS 3.0 Applications, Part I

tblExitEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until it’s lifted from the display. If the pen is lifted within the bounds
of the same item it went down in, a tblSelectEvent is added to
the event queue; if not, a tblExitEvent is added to the event
queue.

The following data is passed with the event:

tblSelectEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of the same item it went down in, a tblSelectEvent is
added to the event queue; if not, a tblExitEvent is added to the
event queue.

The following data is passed with the event:

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

Palm OS Events
winEnterEvent

Developing Palm OS 3.0 Applications, Part I 207

winEnterEvent
The event manager sends this event when a window becomes the
active window. This can happen in two ways: a call to
WinSetActiveWindow is issued (FrmSetActiveForm calls this
routine), or the user taps within the bounds of a window that is vis-
ible but not active. All forms are windows, but not all windows are
forms; for example, the menu bar is a window but not a form.

The following data is passed with the event:

winExitEvent
This event is sent by the event manager when a window is deacti-
vated. A window is deactivated when another window becomes the
active window (see winEnterEvent).

The following data is passed with the event:

enter-
Window

Pointer to the window we are entering. If the window is
a form, this is a pointer to a FormType structure; if not,
it’s a pointer to a WindowType structure.

exit-
Window

Pointer to the window we are exiting, if there is current-
ly an active window, or zero if there is no active win-
dow. If the window is a form, this is a pointer to a
FormType structure; if not, it’s a pointer to a Window-
Type structure.

enterWin-
dow

Pointer to the window we are entering. If the
window is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a
WindowType structure.

exitWindow Pointer to the window we are exiting. If the win-
dow is a form, then this is a pointer to a
FormType structure; if not, it’s a pointer to a
WindowType structure.

Palm OS Events
winExitEvent

208 Developing Palm OS 3.0 Applications, Part I

Developing Palm OS 3.0 Applications, Part I 209

7
Palm OS User
Interface Functions

Category Functions

CategoryCreateList

Purpose Read a database’s categories and store them in a list.

Prototype void CategoryCreateList (DmOpenRef db,
ListPtr listP,
Word currentCategory,
Boolean showAll,
Boolean showUneditables,
Byte numUneditableCategories,
DWord editingStrID,
Boolean resizeList)

Parameters db Opened database containing category info.

listP List in which to place the categories.

currentCategory Category to select.

showAll TRUE to have an All category.

showUneditablesTRUE to show uneditable categories.

numUneditableCategories
Number of categories that the user should not
be able to edit. For example, “Unfiled” is an
uneditable category in all applications included
on the device. Uneditable categories must be
kept together in the lowest category numbers.

Palm OS User Interface Functions
Category Functions

210 Developing Palm OS 3.0 Applications, Part I

editingStrID A resource type to string to edit categories.

resizeList TRUE to resize the list to the number of catego-
ries. Set TRUE for popups, FALSE otherwise.

Result Returns nothing.

Comments Upon return, listP points to an allocated list of categories. You
must use CategoryFreeList to free this allocated memory.

See Also CategoryCreateListV10

CategoryCreateListV10

Purpose Read a database’s categories and set categories.

Prototype void CategoryCreateListV10 (DmOpenRef db,
ListPtr lst,
Word currentCategory,
Boolean showAll)

Parameters db Database containing categories to extract.

lst List object to load categories into.

currentCategoryWill be set as the current selection in the result-
ing list.

showAll TRUE if an All category should be included in
the list.

Result Returns nothing.

See Also CategoryCreateList

Palm OS User Interface Functions
Category Functions

Developing Palm OS 3.0 Applications, Part I 211

CategoryEdit

Purpose Event handler for the Edit Categories dialog.

Prototype Boolean CategoryEdit (const DmOpenRef db,
const WordPtr category,
const DWord titleStrID,
const Byte

numUneditableCategories)

Parameters db Database containing the categories to be edited.

category Set to the category selected when the dialog is
done.

titleStrID Resource ID of a string resource to display in
the title bar of the Edit Categories dialog. If this
is 0, the default string (“Edit Categories”) is
used.

numUneditableCategories
Number of categories that the user should not
be able to edit. For example, “Unfiled” is an
uneditable category in all applications included
on the device. Uneditable categories must be
kept together in the lowest category numbers.
Uneditable categories are not displayed in the
Edit Categories dialog.

Result Returns TRUE if any of the following conditions are TRUE:
• The current category is renamed.
• The current category is deleted.
• The current category is merged with another category.

Caveat This function was revised for Palm OS 2.0 and Palm OS 3.0.

See Also CategoryEditV20, CategoryEditV10

Palm OS User Interface Functions
Category Functions

212 Developing Palm OS 3.0 Applications, Part I

CategoryEditV20

Purpose Event handler for the Edit Categories dialog.

Prototype Boolean CategoryEdit (DmOpenRef db,
WordPtr categoryP,
DWord titleStrID)

Parameters db Database containing the categories to be edited.

categoryP Set to the category selected when the dialog is
done.

titleStrID Resource ID of a string resource to display in
the title bar of the Edit Categories dialog. If this
is 0, the default string (Edit Categories) is used.

Result Returns TRUE if any of the following conditions are TRUE:
• The current category is renamed.
• The current category is deleted.
• The current category is merged with another category.

Caveat This function was revised for Palm OS 2.0 and Palm OS 3.0.

See Also CategoryEdit, CategoryEditV10

Palm OS User Interface Functions
Category Functions

Developing Palm OS 3.0 Applications, Part I 213

CategoryEditV10

Purpose Event handler for the Edit Categories dialog.

Prototype Boolean CategoryEditV10 (DmOpenRef db,
WordPtr category)

Parameters db Database containing the categories to be edited.

category Current category.

Result Returns TRUE if any of the following conditions are true:

the current category is renamed

the current category is deleted

the current category is merged with another category

See Also CategoryEdit, CategoryEditV20

CategoryFind

Purpose Return the index of the category that matches the name passed.

Prototype Word CategoryFind (DmOpenRef db, CharPtr name)

Parameters db Database to search for the passed category.

name Category name.

Result Returns the category index.

Palm OS User Interface Functions
Category Functions

214 Developing Palm OS 3.0 Applications, Part I

CategoryFreeList

Purpose This routine unlocks or frees memory locked or allocated by
CategoryCreateList.

Prototype void CategoryFreeList (DmOpenRef db,
ListPtr listP,
Boolean showAll,
DWord editingStrID)

Parameters db Database containing the categories.

listP Pointer to the category list.

showAll TRUE if the list was created with an All catego-
ry.

editingStrID A resource type to string to edit categories.

Comment Calling this function doesn’t remove the categories from the passed
database.

Result Returns nothing.

See Also CategoryFreeListV10

Palm OS User Interface Functions
Category Functions

Developing Palm OS 3.0 Applications, Part I 215

CategoryFreeListV10

Purpose Unlock or free memory locked or allocated by
CategoryCreateListV10 which was attached to the passed List
object.

Prototype void CategoryFreeListV10 (DmOpenRef db,
ListPtr lst)

Parameters db Database containing the categories.

1st Pointer to the category list containing the mem-
ory to be freed.

Result Returns nothing.

See Also CategoryFreeList

CategoryGetName

Purpose Return the name of the specified category.

Prototype void CategoryGetName (DmOpenRef db,
Word index,
CharPtr name)

Parameters db Database that contains the categories.

index Category index.

name Buffer to hold category name. Buffer should be
dmCategoryLength in size.

Result Stores the category name in the name buffer passed.

Palm OS User Interface Functions
Category Functions

216 Developing Palm OS 3.0 Applications, Part I

CategoryGetNext

Purpose Return the index of the next category, given a category index this
routine. Note that categories are not stored sequentially.

Prototype Word CategoryGetNext (DmOpenRef db, Word index)

Parameters db Database that contains the categories.

index Category index.

Result Category index of next category.

Comment Don’t use this function to search for a category. Instead, use it to
allow your users to cycle through categories, for example, using the
hard-button scroll bars on the device.

Compatibility
Note

In Palm OS 1.0, the system chose Unfiled as one category.

In Palm OS 2.0 and later, the system skips both Unfiled and
empty records.

CategoryInitialize

Purpose Initialize the category names, IDs and flags.

Prototype void CategoryInitialize (
AppInfoPtr appInfoP,
Word localizedAppInfoStrID)

Parameters appInfoP Application info pointer.

localizedAppInfoStrID
Resource ID of the localized category names

Result Returns nothing.

Palm OS User Interface Functions
Category Functions

Developing Palm OS 3.0 Applications, Part I 217

CategorySelect

Purpose Process the selection and editing of categories.

Prototype Boolean CategorySelect (DmOpenRef db,
FormPtr frm,
Word ctlID,
Word lstID,
Boolean title,
WordPtr categoryP,
charPtr categoryName,
Byte numUneditableCategories,
DWord editingStrID)

Parameters db Database that contains the categories.

frm Form that contains the category popup list.

ctlID ID of the popup trigger.

lstID ID of the popup list.

title TRUE if the popup trigger is on the title line.

categoryP Current category (index into db structure).

categoryName Name of the current category.

numUneditableCategories
Number of categories that the user should not
be able to edit. Uneditable categories must be
kept together in the lowest category number.
For the applications included on the device,
there is one uneditable category: “Unfiled”

editingStrID ID of string resource to use for editing catego-
ries. If 0, the default, “Edit categories” is used.

Result Returns TRUE if any of the following conditions are TRUE:

• The current category is renamed.
• The current category is deleted.
• The current category is merged with another category.

See Also CategorySelectV10

Palm OS User Interface Functions
Category Functions

218 Developing Palm OS 3.0 Applications, Part I

CategorySelectV10

Purpose Process the selection and editing of categories.

Prototype Boolean CategorySelectV10 (DmOpenRef db,
FormPtr frm,
Word ctlID,
Word lstID,
Boolean title,
WordPtr categoryP,
CharPtr categoryName)

Parameters db Database that contains the categories.

frm Form that contains the category popup list.

ctlID ID of the popup trigger.

lstID ID of the popup list.

title TRUE if the popup trigger is on the title line.

categoryP Current category (index into db structure).

categoryName Name of the current category.

Result Returns TRUE if any of the following conditions are true:

• the current category is renamed
• the current category is deleted
• the current category is merged with another category

Palm OS User Interface Functions
Category Functions

Developing Palm OS 3.0 Applications, Part I 219

CategorySetName

Purpose Set the category name and rename bits. A NULL pointer removes the
category name.

Prototype void CategorySetName (DmOpenRef db,
Word index,
CharPtr nameP)

Parameters db Database containing the categories to change.

index Index of category to set.

nameP A category name (null-terminated) or NULL
pointer to remove the category.

Result Returns nothing.

CategorySetTriggerLabel

Purpose Set the label displayed by the category trigger. The category name is
truncated if it’s to long.

Prototype void CategorySetTriggerLabel (ControlPtr ctl,
CharPtr name)

Parameters ctl Pointer to control object to relabel.

name Pointer to the name of the new category.

Result Returns nothing.

Palm OS User Interface Functions
ClipBoard Functions

220 Developing Palm OS 3.0 Applications, Part I

CategoryTruncateName

Purpose Truncate a category name so that it’s short enough to display.

Prototype void CategoryTruncateName (CharPtr name,
Word maxWidth)

Parameters name Category name to truncate.

maxWidth Maximum size, in pixels, of truncated category
(including ellipsis).

Result Returns nothing. Stores the changed category in CharPtr.

ClipBoard Functions

ClipboardAddItem

Purpose Add the item passed to the specified clipboard. The format param-
eter determines which clipboard (text, ink, etc.) the item is added to.

Prototype void ClipboardAddItem (ClipboardFormatType format,
VoidPtr ptr,
Word length)

Parameters format Text, ink, bitmap, etc.

ptr Pointer to the item to place on the clipboard.

length Size of the item to place on the clipboard.

Result Returns nothing.

See Also FldCut, FldCopy

Palm OS User Interface Functions
Control Functions

Developing Palm OS 3.0 Applications, Part I 221

ClipboardGetItem

Purpose Return the handle of the contents of the clipboard of a specified type
and the length of a clipboard item.

Prototype VoidHand ClipboardGetItem (
ClipboardFormatType format, WordPtr length)

Parameters format Text, ink, bitmap, etc.

length Pointer to the length of the clipboard item.

Result Handle of the clipboard item.

Control Functions

CtlDrawControl

Purpose Draw a control object (and the text in it) on screen. The control is
drawn only if its usable attribute is TRUE.

Prototype void CtlDrawControl (ControlPtr ControlP)

Parameters ControlP Pointer to the control object to draw.

Result Returns nothing.

Comments Sets the visible attribute to TRUE.

See Also CtlSetUsable, CtlShowControl

Palm OS User Interface Functions
Control Functions

222 Developing Palm OS 3.0 Applications, Part I

CtlEnabled

Purpose Return TRUE if the control is enabled. Disabled controls do not re-
spond to the pen.

Prototype Boolean CtlEnabled (ControlPtr ControlP)

Parameters ControlPPointer to control object.

Result Returns TRUE if enabled; FALSE if not.

See Also CtlSetEnabled

CtlEraseControl

Purpose Erase a usable and visible control object and its frame from the
screen.

Prototype void CtlEraseControl (ControlPtr ControlP)

Parameters ControlP Pointer to control object to erase.

Comments Sets the visible attribute to FALSE.

Palm OS User Interface Functions
Control Functions

Developing Palm OS 3.0 Applications, Part I 223

CtlGetLabel

Purpose Return a character pointer to a control’s text label.

Prototype CharPtr CtlGetLabel (ControlPtr ControlP)

Parameters ControlP Pointer to control object.

Result Returns a pointer to a null-terminated string.

See Also CtlSetLabel

CtlGetValue

Purpose Return the current value (on or off) of the specified control. This
function is valid only for push buttons and check boxes. The return
value is undefined for other control types.

Prototype short CtlGetValue (ControlPtr ControlP)

Parameters ControlP Pointer to a control object.

Result Returns the current value of the control; 0 = off, 1 = on.

See Also CtlSetValue

Palm OS User Interface Functions
Control Functions

224 Developing Palm OS 3.0 Applications, Part I

CtlHandleEvent

Purpose Handle event in the specified control object.

Prototype Boolean CtlHandleEvent (ControlPtr ControlP,
EventPtr EventP)

Parameters ControlP Pointer to control object.

EventP Pointer to an EventType structure.

Result Returns TRUE if an event is handled by this function. Events that are
handled are:

• penDownEvent — If the pen is within the bounds of the
control

• ctlEnterEvent, ctlRepeatEvent and
ctlExitEvent— If the control ID in the event data
matches the control’s ID.

Comments The control object’s usable, enabled, and visible attributes
must be TRUE. This routine handles three type of events:
penDownEvent, ctlEnterEvent/ctlRepeatEvent and
ctlExitEvent.

When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the control object. If it is, a
ctlEnterEvent is added to the event queue and the routine exits.

When this routine receives a ctlEnterEvent, the control object is
inverted.

When this routine receives a ctlEnterEvent or
ctlRepeatEvent, it checks that the control ID in the passed event
record matches the ID of the specified control. If they match, this
routine tracks the pen until it comes up or until it leaves the object’s
bounds. When that happens, ctlSelectEvent is sent to the event
queue if the pen came up in the bounds of the control. If the pen
exits the bounds, a ctlExitEvent is sent to the event queue.

Palm OS User Interface Functions
Control Functions

Developing Palm OS 3.0 Applications, Part I 225

CtlHideControl

Purpose Set a control’s usable attribute to FALSE and erase the control from
the screen. This function calls CtlEraseControl.

Prototype void CtlHideControl (ControlPtr ControlP)

Parameters ControlP Pointer to the control object to hide.

Result Returns nothing.

Comments A control that is not usable doesn’t draw and doesn’t respond to the
pen.

Sets the visible and the usable attributes to FALSE.

See Also CtlShowControl

CtlHitControl

Purpose Simulate tapping a control. This function adds a ctlSelectEvent
to the event queue.

Prototype void CtlHitControl (ControlPtr ControlP)

Parameters ControlP Pointer to a control object.

Result Returns nothing.

Comments Useful for testing.

Palm OS User Interface Functions
Control Functions

226 Developing Palm OS 3.0 Applications, Part I

CtlNewControl

Purpose Create a new control object dynamically and install it in the speci-
fied form.

Prototype ControlPtr CtlNewControl (VoidPtr *formPP,
const Word ID,
const ControlStyleType style,
const CharPtr textP,
const Word x,
const Word y,
const Word width,
const Word height,
const FontID font,
Byte group,
Boolean leftAnchor)

Parameters <--> formPP Pointer to the pointer to the form in which the
new control is installed. This value is not a han-
dle; that is, the old formPP value is not neces-
sarily valid after this function returns. In subse-
quent calls, always use the new formPP value
returned by this function.

ID Symbolic ID of the control, specified by the de-
veloper. By convention, this ID should match
the resource ID (not mandatory).

style A controlStyles value specifying the kind
of control to create: button, push button, check
box, popup trigger, or popup selector. (You can-
not create repeating buttons dynamically.) For
more information, see the
ControlStyleType enum in Structure of a
Control starting on page 130

textP Pointer to the control’s label text. If textP is
NULL, the control has no label. Only buttons,
push buttons, and text boxes have text labels.
Because the contents of this pointer are copied
into their own buffer, you can free the textP

Palm OS User Interface Functions
Control Functions

Developing Palm OS 3.0 Applications, Part I 227

pointer any time after the CtlNewControl
function returns. The buffer into which this
string is copied is freed automatically when
you remove the control from the form or delete
the form.

x Horizontal coordinate of the upper-left corner
of the control’s boundaries, relative to the win-
dow in which it appears.

y Vertical coordinate of the upper-left corner of
the control’s boundaries, relative to the win-
dow in which it appears.

font Font used to draw the control’s label.

width Width of the control, expressed in pixels. Valid
values are 1-160. If the value of either of the
width or height parameters is 0, the control is
sized automatically as necessary to display the
text passed as the value of the text parameter.

height Height of the control, expressed in pixels. Valid
values are 1-160. If the value of either of the
width or height parameters is 0, the control is
sized automatically as necessary to display the
text passed as the value of the text parameter.

group Group ID of a push button or a check box that
is part of an exclusive group. The control rou-
tines don’t turn one control off automatically
when another is selected. It’s up to the applica-
tion or a higher-level object, such as a dialog
box, to manage this.

leftAnchor TRUE specifies that the left bound of this control
is fixed. This attribute is used by controls that
resize dynamically in response to label text
changes.

Result Returns a pointer to the new control.

See Also CtlValidatePointer, FrmRemoveObject

Palm OS User Interface Functions
Control Functions

228 Developing Palm OS 3.0 Applications, Part I

CtlSetEnabled

Purpose Set a control as enabled or disabled. Disabled controls do not re-
spond to the pen.

Prototype void CtlSetEnabled (ControlPtr ControlP,
Boolean enable)

Parameters ControlP Pointer to a control object.

enable TRUE to set enabled; FALSE to set not enabled.

Result Returns nothing.

See Also CtlEnabled

CtlSetLabel

Purpose Set the current label for the specified control object. If the control ob-
ject currently has its usable and visible attributes set to TRUE,
redraw it with the new label.

Prototype void CtlSetLabel (ControlPtr ControlP,
CharPtr newLabel)

Parameters ControlP Pointer to a control object.

newLabel Pointer to the new text label. Must be a NULL-
terminated string.

Result Returns nothing.

Comments This function resizes the width of the control to the size of the new
label.

The pointer passed to this function is stored in the control’s data
structure; the control doesn’t make a copy of the string passed.

See Also CtlGetLabel

Palm OS User Interface Functions
Control Functions

Developing Palm OS 3.0 Applications, Part I 229

CtlSetUsable

Purpose Set a control usable or not usable by changing the value of its us-
able attribute.

Prototype void CtlSetUsable (ControlPtr ControlP,
Boolean usable)

Parameters ControlP Pointer to a control object.

usable TRUE to set usable; FALSE to set not usable.

Result Returns nothing.

Comments Function doesn’t usually update the control.

See Also CtlEraseControl,

CtlSetValue

Purpose Set the current value (on or off) of the specified control. If the control
is visible, it’s visually updated.

Prototype void CtlSetValue (ControlPtr ControlP,
short newValue)

Parameters ControlP Pointer to a control object.

newValue 0 = off, non-zero = on.

Result Returns nothing.

Comments Function works only with push buttons and check boxes. Other con-
trols ignore calls to this function.

See Also CtlGetValue

Palm OS User Interface Functions
Control Functions

230 Developing Palm OS 3.0 Applications, Part I

CtlShowControl

Purpose Set a control’s usable attribute to TRUE and draw the control on
the screen. This function calls CtlDrawControl.

Prototype void CtlShowControl (ControlPtr ControlP)

Parameters ControlP Pointer to a control object.

Result Returns nothing.

Comments If the control is already usable, this function is the functional equiv-
alent of CtlDrawControl.

Sets the visible and the usable attributes to TRUE.

See Also CtlHideControl

CtlValidatePointer

Purpose Returns TRUE if the specified pointer references a valid control ob-
ject.

Prototype Boolean CtlValidatePointer (
const ControlPtr pControl)

Parameters --> pControl Pointer to a control.

Result Returns TRUE when passed a valid pointer to a control; otherwise,
returns FALSE.

Comments For debugging purposes; do not include this function in commercial
products. In debug builds, this function displays a dialog and waits
for the debugger when an error occurs.

See Also FrmValidatePtr, WinValidateHandle

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 231

Field UI Functions

FldCalcFieldHeight

Purpose Determine the height of a field for a string.

Prototype Word FldCalcFieldHeight (CharPtr chars,
Word maxWidth)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Result Returns total number of lines needed to draw the string passed.

FldCompactText

Purpose Compact the memory block that contains the text of the field to re-
lease any unused space.

Prototype void FldCompactText (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns nothing.

Comments As characters are added to the text of a field, the block that contains
the text is grown. The block is expanded in chunks so that it doesn’t
have to expand each time a character is added. This expansion re-
sults in some unused space in the text block.

Applications should call this function should on field objects that
edit data records in place before the field is unlocked, or at any other
time when a compact field is desirable; for example, when the form
is being closed.

Palm OS User Interface Functions
Field UI Functions

232 Developing Palm OS 3.0 Applications, Part I

FldCopy

Purpose Copy the current selection to the text clipboard.

Prototype void FldCopy (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns nothing.

Comments This function leaves the current selection highlighted.

This functions replaces anything previously in the text clipboard.

If there is no selection, this function does nothing.

See Also FldCut, FldPaste

FldCut

Purpose Copy the current selection to the text clipboard, delete the selection
from the field, and redraw the field.

Prototype void FldCut (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns nothing.

Comments Anything previously in the text clipboard is replaced by this func-
tion.

If there is no selection, this function does nothing.

See Also FldCopy, FldPaste

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 233

FldDelete

Purpose Delete the specified range of characters from the field and redraw
the field.

Prototype void FldDelete (FieldPtr fld,
Word start,
Word end)

Parameters fld Pointer to the field object to delete from.

start Starting character position.

end Ending character position.

Result Returns nothing.

See Also FldInsert

FldDirty

Purpose Return TRUE if the field has been modified by the user since the text
value was set (FldSetText).

Prototype Boolean FldDirty (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns TRUE if the field has been modified by the user, FALSE if the
field has not been modified.

See Also FldSetDirty

Palm OS User Interface Functions
Field UI Functions

234 Developing Palm OS 3.0 Applications, Part I

FldDrawField

Purpose Draw the text of the field. The field’s usable attribute must be
TRUE or the field won’t be drawn.

Prototype void FldDrawField (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns nothing.

Comments This function doesn’t erase the area behind the field before drawing.

If the field has the focus, the blinking insertion point is displayed in
the field.

See Also FldEraseField

FldEraseField

Purpose Erase the text of a field and turn off the insertion point if it’s in the
field.

Prototype void FldEraseField (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns nothing.

Comments The function doesn’t modify the contents of the field.

If the field has the focus, the blinking insertion point is turned off.

See Also FldDrawField

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 235

FldFreeMemory

Purpose Release the memory allocated to the text of a field and the associat-
ed word-wrapping information.

Prototype void FldFreeFieldMemory (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns nothing.

Comments This function releases

• The memory allocated to the text of a field—the memory
block that the text member of the FieldType data struc-
ture points to.

• The memory allocated to hold the display lines informa-
tion—the memory block that the lines member of the
FieldType data structure points to.

This function doesn’t affect the display of the field.

FldGetAttributes

Purpose Return the attributes of a field.

Prototype void FldGetAttributes (FieldPtr fld,
FieldAttrPtr attrP)

Parameters fld Pointer to a FieldType structure.

attrP Pointer to FieldAttrType, see Field.h.

Result Returns nothing.

See Also FldSetAttributes

Palm OS User Interface Functions
Field UI Functions

236 Developing Palm OS 3.0 Applications, Part I

FldGetBounds

Purpose Return the current bounds of a field.

Prototype void FldGetBounds (FieldPtr fld,
RectanglePtr rect)

Parameters fld Pointer to a field object (FieldType data
structure).

rect Pointer to a RectangleType structure.

Result Returns nothing. Stores the field’s bounds in the RectangleType
structure reference by bounds.

Comments Returns the rect field of the FieldType structure.

See Also FldSetBounds

FldGetFont

Purpose Return the ID of the font used to draw the text of a field.

Prototype FontID FldGetFont (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns the ID of the font.

See Also FldSetFont

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 237

FldGetInsPtPosition

Purpose Return the insertion point position within the string.

Prototype Word FldGetInsPtPosition (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns the character position of the insertion point.

Comments The insertion point is to the left of the character position that this
function returns. That is, if this function returns 0, the insertion
point is to the left of the first character in the string. In multiline
fields, line feeds are counted as a single character in the string, and
the character position after the line feed character is the beginning
of the next line.

See Also FldSetInsPtPosition

FldGetMaxChars

Purpose Return the maximum number of characters the field accepts.

Prototype Word FldGetMaxChars (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns the maximum number of characters the user is allowed to
enter.

See Also FldSetMaxChars

Palm OS User Interface Functions
Field UI Functions

238 Developing Palm OS 3.0 Applications, Part I

FldGetNumberOfBlankLines

Purpose Return the number of blank lines that are displayed at the bottom of
a field. This routine is useful for updating a scroll bar after charac-
ters have been removed from the text in a field.

Prototype Word FldGetNumberOfBlankLines (FieldPtr fld)

Parameters fld Pointer to a FieldType structure.

Result Returns the number of blank lines visible.

FldGetScrollPosition

Purpose Return the string position of the first character in the first line of a
field.

Prototype Word FldGetScrollPosition (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns the character position of the first visible character.

See Also FldSetScrollPosition

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 239

FldGetScrollValues

Purpose Return the values necessary to update a scroll bar.

Prototype void FldGetScrollValues (FieldPtr fld,
WordPtr scrollPosP,
WordPtr textHeightP,
WordPtr fieldHeightP)

Parameters fld Pointer to a FieldType structure.

scrollPosP Return scroll position here.

textHeightP Return text height here.

fieldHeightP Return field height here.

Result Returns nothing. Stores the position, text height, and field height in
the parameters passed in.

Palm OS User Interface Functions
Field UI Functions

240 Developing Palm OS 3.0 Applications, Part I

FldGetSelection

Purpose Return the current selection of a field.

Prototype void FldGetSelection (FieldPtr fld,
WordPtr startPosition,
WordPtr endPosition)

Parameters fld Pointer to a field object (FieldType data
structure).

startPosition Pointer to start-character position of selected
range of characters.

endPosition Pointer to end-character position of selected
range of characters.

Result Returns the start and end position in startPosition and
endPosition.

Comments The first character in a field is at position zero.

If the user has selected the first five characters of a field,
startPosition will contain the value 0 and endPosition the
value 5.

See Also FldSetSelection

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 241

FldGetTextAllocatedSize

Purpose Return the number of characters allocated to hold the field’s text
string. Don’t confuse this number with the length of the text string.

Prototype Word FldGetTextAllocatedSize (FieldPtr fld)

Parameters fld Pointer to a field object.

Result Returns the number of characters allocated for the field’s text.

See Also FldSetTextAllocatedSize

FldGetTextHandle

Purpose Return a handle to the block that contains the text string of a field.

Prototype Handle FldGetTextHandle (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns the handle of the text string of a field; 0 is a possible value.

Comments If 0 is returned, no handle has been allocated for the field pointer.

See Also FldSetTextHandle, FldGetTextPtr

Palm OS User Interface Functions
Field UI Functions

242 Developing Palm OS 3.0 Applications, Part I

FldGetTextHeight

Purpose Return the number of lines of text that the specified field has.

Prototype Word FldGetTextHeight (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns the number of lines with text.

Comments Empty lines are not counted.

See Also FldCalcFieldHeight

FldGetTextLength

Purpose Return the length of the text string of a field object.

Prototype Word FldGetTextLength (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns the length of a field’s text string.

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 243

FldGetTextPtr

Purpose Return a pointer to the text string of a field, or NULL.

Prototype CharPtr FldGetTextPtr (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns a pointer to t text string of a field; NULL is a possible value.

See Also FldSetTextPtr, FldGetTextHandle

FldGetVisibleLines

Purpose Return the number of lines that can be displayed within the visible
bounds of the field.

Prototype Word FldGetVisibleLines (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns the number of lines.

Palm OS User Interface Functions
Field UI Functions

244 Developing Palm OS 3.0 Applications, Part I

FldGrabFocus

Purpose Turn the insertion point on (if the specified field is visible) and posi-
tion the blinking insertion point in the field.

Prototype void FldGrabFocus (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns nothing.

Comments This function sets the field attribute hasFocus to TRUE.

See Also FldReleaseFocus

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 245

FldHandleEvent

Purpose Handles the following events: keyDownEvent, penDownEvent,
and fldEnterEvent. The field’s editable and usable attributes
must be set to TRUE.

Prototype Boolean FldHandleEvent (FieldPtr fld,
EventPtr EventP)

Parameters fld Pointer to a field object (FieldType data
structure).

EventP Pointer to an event (EventType data
structure).

Result Returns TRUE if the event was handled.

Comments When a keyDownEvent occurs, the keystroke appears in the field if
it’s a printable character or manipulates the insertion point if it’s a
“movement” character. The field is automatically updated.

When a penDownEvent occurs, an “editable” field sends a
fldEnterEvent to the event queue.

 When a fldEnterEvent occurs, the field grabs the focus and the
insertion point is placed in the specified position.

If the event alters the contents of the field, this function visually up-
dates the field.

This function doesn’t handle any events if the field is not editable.

Palm OS User Interface Functions
Field UI Functions

246 Developing Palm OS 3.0 Applications, Part I

FldInsert

Purpose Replace the current selection with the string passed.

Prototype Boolean FldInsert (FieldPtr fld,
CharPtr insertChars,
Word insertLen)

Parameters fld Pointer to the field object to insert to.

insertChars Text string to be inserted.

insertLen Length of the text string to be inserted.

Result Returns TRUE if string was successfully inserted; otherwise, FALSE.

Comments If there is no current selection, the string passed is inserted at the po-
sition of the insertion point.

See Also FldPaste, FldDelete, FldCut, FldCopy

FldMakeFullyVisible

Purpose Cause a dynamically resizable field to expand its height to make its
text fully visible.

Prototype Boolean FldMakeFullyVisible (FieldPtr fld)

Parameters fld Pointer to a field object.

Result Returns TRUE if the field was not fully visible; FALSE otherwise.

Comments If the field’s height changes, this function sends a
fldHeightChangedEvent via the event queue.

Caveats If the field is in a table, the table resizes it; otherwise, it’s not resized.

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 247

FldNewField

Purpose Create a new field object dynamically and install it in the specified
form.

Prototype FieldPtr FldNewField (VoidPtr *formPP,
const Word id,
const Word x,
const Word y,
const Word width,
const Word height,
const FontID font,
DWord maxChars,
Boolean editable,
Boolean underlined,
Boolean singleLine,
Boolean dynamicSize,
JustificationType justification,
Boolean autoShift,
Boolean hasScrollBar,
Boolean numeric)

Parameters <--> formPP Pointer to the pointer to the form in which the
new field is installed. This value is not a handle;
that is, the old formPP value is not necessarily
valid after this function returns. In subsequent
calls, always use the new formPP value re-
turned by this function.

id Symbolic ID of the field, specified by the devel-
oper. By convention, this ID should match the
resource ID (not mandatory).

x Horizontal coordinate of the upper-left corner
of the field’s boundaries, relative to the win-
dow in which it appears.

y Vertical coordinate of the upper-left corner of
the field’s boundaries, relative to the window
in which it appears.

width Width of the field, expressed in pixels.
height Height of the field, expressed in pixels.

Palm OS User Interface Functions
Field UI Functions

248 Developing Palm OS 3.0 Applications, Part I

font Font to use to draw the field’s text.
maxChars Maximum number of characters held by the

field this function creates.
editable Pass TRUE to create a field in which the user can

edit text. Pass FALSE to create a field that
cannot be edited.

underlined Pass TRUE to create a field that underlines the
text it displays.

singleLine Pass TRUE to create a field that can display only
a single line of text.

dynamicSize Pass TRUE to create a field that resizes dynami-
cally according to the amount of text it
displays.

justification Pass either of the selectors leftAlign or
rightAlign to specify left justification or
right justification, respectively. The
centerAlign selector is not supported.

autoShift Pass TRUE to specify the use of Palm OS 2.0
(and later) auto-shift rules. If checked, 2.0 auto-
shift rules are applied, causing the system to
use an upper-case letter automatically:

• after an empty field

• after a period or other sentence terminator,
such as a question mark (?) or an exclamation
point (!).

• after two spaces.
hasScrollBar Pass TRUE to attach a scroll bar control to the

field this function creates.
numeric

Result Returns a pointer to the new field object.

See Also FrmValidatePtr, WinValidateHandle,
CtlValidatePointer, FrmRemoveObject

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 249

FldPaste

Purpose Replace the current selection in the field with the contents of the text
clipboard.

Prototype void FldPaste (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns nothing

Comments The function performs these actions:

• Positions the insertion point after the last character inserted.

• Scrolls the field, if necessary, so the insertion point is visible.

• Inserts the clipboard text at the position of the insertion point
if there is no current selection,

• Doesn’t delete the current selection if there is no text in the
clipboard.

See Also FldInsert, FldDelete, FldCut, FldCopy

Palm OS User Interface Functions
Field UI Functions

250 Developing Palm OS 3.0 Applications, Part I

FldRecalculateField

Purpose Update the structure that contains the word-wrapping information
for each visible line.

Prototype void FldRecalculateField (FieldPtr fld,
Boolean redraw)

Parameters fld Pointer to a field object (FieldType data
structure).

redraw If TRUE, redraws the field.

Result Returns nothing.

Comments If necessary, this function reallocates the memory block that con-
tains the displayed lines information, the block pointed to by the
lines member in the FieldType data structure.

Call this function if the field’s data structure is modified in a way
that invalidates the visual appearance of the field.

FldReleaseFocus

Purpose Turn the blinking insertion point off if the field is visible and has the
current focus, reset the Graffiti state, and reset the undo state.

Prototype void FldReleaseFocus (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data
structure).

Result Returns nothing.

Comments This function sets the field attribute hasFocus to FALSE.

See Also FldGrabFocus

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 251

FldScrollable

Purpose Return TRUE if the field is scrollable in the specified direction.

Prototype Boolean FldScrollable (FieldPtr fld,
DirectionType direction)

Parameters fld Pointer to a field object (FieldType data
structure).

direction Either the string “up” or the string “down”.

Result Returns TRUE if the field is scrollable; FALSE otherwise.

See Also FldScrollField

FldScrollField

Purpose Scroll a field up or down by the number of lines specified.

Prototype void FldScrollField (FieldPtr fld,
Word linesToScroll,
DirectionType direction)

Parameters fld Pointer to a field object (FieldType data
structure).

linesToScroll Number of lines to scroll.

direction Either the string “up” or the string “down”.

Result Returns nothing.

Comments This function can’t scroll horizontally, that is, right or left.

The field object is redrawn if it’s scrolled.

See Also FldScrollable

Palm OS User Interface Functions
Field UI Functions

252 Developing Palm OS 3.0 Applications, Part I

FldSendChangeNotification

Purpose Send a fldChangedEvent via the event queue.

Prototype void FldSendChangeNotification (FieldPtr fld)

Parameters fld Pointer to a field object.

Result Returns nothing.

FldSendHeightChangeNotification

Purpose Send a fldHeightChangedEvent via the event queue.

Prototype void FldSendHeightChangeNotification (
FieldPtr fld,
Word pos,
Short numLines)

Parameters fld Pointer to a field object.

pos Character position of the insertion point.

numLines New number of lines in the field.

Result Returns nothing.

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 253

FldSetAttributes

Purpose Set the attributes of a field.

Prototype void FldSetAttributes (FieldPtr fld,
FieldAttrPtr attrP)

Parameters fld Pointer to a FieldType structure.

attrP Pointer to the attributes.

Result Returns nothing.

See Also FldGetAttributes

FldSetBounds

Purpose Change the position or size of a field.

Prototype void FldSetBounds (FieldPtr fld,
RectanglePtr rect)

Parameters fld Pointer to a field object (FieldType data
structure).

rect Pointer to a RectangleType structure that
contains the new bounds of the display.

Result Returns nothing.

Comments If the field is visible, the field is redrawn within its new bounds.

The memory block that contains the word-wrapping information
will be resized if the number of visible lines is changed. The inser-
tion point is assumed to be off when this routine is called.

Caveats Don’t change the width of the object while it’s visible.

See Also FldGetBounds

Palm OS User Interface Functions
Field UI Functions

254 Developing Palm OS 3.0 Applications, Part I

FldSetDirty

Purpose Set whether the field has been modified.

Prototype void FldSetDirty (FieldPtr fld, Boolean dirty)

Parameters fld Pointer to a field object.

dirty TRUE if the text is modified.

Result Returns nothing.

See Also FldDirty

FldSetFont

Purpose Set the font of the field, update the word-wrapping information,
and draw the field if the field is visible.

Prototype void FldSetFont (FieldPtr fld, FontID fontID)

Parameters fld Pointer to a field object (FieldType data
structure).

fontID ID of new font.

Result Returns nothing.

See Also FldGetFont

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 255

FldSetInsertionPoint

Purpose Set the location of the insertion point based on a specified string po-
sition. This routine differs from FldSetInsPtPosition in that it
doesn’t make the character position visible.

Prototype void FldSetInsertionPoint (FieldPtr fld, Word pos)

Parameters fld Pointer to a FieldType structure.

pos Character position in the text of the field

Result Nothing.

Caution FldSetInsertionPoint doesn’t make the field the current focus
of input if it was not already.

FldSetInsPtPosition

Purpose Set the location of the insertion point for a given string position.

Prototype void FldSetInsPtPosition (FieldPtr fld, Word pos)

Parameters fld Pointer to a field object (FieldType data
structure).

pos Character position of insertion point.

Result Returns nothing.

Comments If the position is beyond the visible text, then the insertion point is
disabled.

See Also FldGetInsPtPosition

Palm OS User Interface Functions
Field UI Functions

256 Developing Palm OS 3.0 Applications, Part I

FldSetMaxChars

Purpose Set the maximum number of characters the field accepts.

Prototype void FldSetMaxChars (FieldPtr fld, Word maxChars)

Parameters fld Pointer to a field object (FieldType data
structure).

maxChars Maximum number of characters the user may
enter.

Result Returns nothing.

Comments Line feed characters are counted when the number of characters is
determined.

See Also FldGetMaxChars

FldSetScrollPosition

Purpose Set the string position of the first character in the first line of a field.
Redraw the field if necessary.

Prototype void FldSetScrollPosition (FieldPtr fld, Word pos)

Parameters fld Pointer to a field object (FieldType data
structure).

pos Character position of first visible character.

Result Returns nothing.

See Also FldGetScrollPosition

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 257

FldSetSelection

Purpose Set the current selection in a field and highlight the selection if the
field is visible.

Prototype void FldSetSelection (FieldPtr fld,
Word startPosition,
Word endPosition)

Parameters fld Pointer to a field object (FieldType data
structure)

startPosition Starting character position of the character
range to highlight.

endPosition Ending character position of the character
range to highlight.

Result Returns nothing.

Comments To cancel a selection, set both startPosition and endPosition
to the same value.

If startPosition equals endPosition, then the current selec-
tion is unhighlighted.

Palm OS User Interface Functions
Field UI Functions

258 Developing Palm OS 3.0 Applications, Part I

FldSetText

Purpose Set the text value of the field, update the word-wrapping informa-
tion, and place the insertion point after the last visible character.

Prototype void FldSetText (FieldPtr fld,
VoidHand textHandle,
Word offset,
Word size)

Parameters fld Pointer to a field object (FieldType data
structure).

textHandle Handle of a block containing a null-terminated
text string.

offset Offset from start of block to start of the text
string.

size Allocated size of text string, not the string
length.

Result Returns nothing.

Comments The pointer passed is stored in the field’s structure; in other words,
this function doesn’t make a copy of the string passed.

If a size of zero is passed, the size is computed as the block size,
minus the offset passed. If more text is set than there is room for in
memory, an error occurs.

Warning: This routine doesn’t free the memory block that holds
the current text value.

See Also FldSetTextPtr, FldSetTextHandle

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 259

FldSetTextAllocatedSize

Purpose Set the number of characters allocated to hold the field’s text string.
Don’t confuse this with the length of the text string.

Prototype void FldSetTextAllocatedSize (FieldPtr fld,
Word allocatedSize)

Parameters fld Pointer to a field object.

allocatedSize Number of characters to allocate for the text.

Result Returns nothing.

See Also FldGetTextAllocatedSize

FldSetTextHandle

Purpose Set the handle of the block that contains the text string of a field.

Prototype void FldSetTextHandle (FieldPtr fld,
Handle textHandle)

Parameters fld Pointer to a field object (FieldType data
structure).

textHandle Handle of a field’s text string; 0 is a possible
value.

Result Returns nothing.

See Also FldSetTextPtr, FldSetText

Palm OS User Interface Functions
Field UI Functions

260 Developing Palm OS 3.0 Applications, Part I

FldSetTextPtr

Purpose Set the field’s text to point to a text string.

Prototype void FldSetTextPtr (FieldPtr fld, CharPtr textP)

Parameters fld Pointer to a field object (FieldType data structure).

textPPointer to a null-terminated string.

Result Returns nothing.

Comments Since the field cannot resize a pointer (only handles can be resized),
the field must be not editable and must be single line. If the field is
editable or has more than one line, an error occurs.

This function does not visually update the field.

See Also FldSetTextHandle

FldSetUsable

Purpose Set a field usable or nonusable.

Prototype void FldSetUsable (FieldPtr fld, Boolean usable)

Parameters fld Pointer to a FieldType structure.

usable TRUE to set usable; FALSE to set nonusable.

Result Returns nothing.

Comments A nonusable field doesn’t display or accept input.

See Also FldEraseField, FldDrawField

Palm OS User Interface Functions
Field UI Functions

Developing Palm OS 3.0 Applications, Part I 261

FldUndo

 Purpose Undo the last change made to the field object. Changes include typ-
ing, backspaces, delete, paste, and cut.

Prototype void FldUndo (FieldPtr fld)

Parameters fld Pointer to the field that has the focus.

Result Returns nothing.

See Also FldPaste, FldCut, FldCopy

FldWordWrap

Purpose Given a string and a width, return the number of characters that can
be displayed using the current font.

Prototype Word FldWordWrap (CharPtr chars, Word maxWidth)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Result Returns the number of characters.

Palm OS User Interface Functions
Font Functions

262 Developing Palm OS 3.0 Applications, Part I

Font Functions
This section describes the functions used to manipulate fonts, and
includes a summary of new font functions provided by version 3.0
of the Palm OS.

New Font Features in Palm OS 3.0

The Palm OS 3.0 ROM provides a new font (largeBoldFont),
two new font manipulation routines (FontSelect and
FntDefineFont), and support for the use of custom fonts.

To use the large, bold font, pass the largeBoldFont selector to the
FntSetFont function. Under Palm OS 3.0, if you try to draw with a
font that isn’t installed, the system uses the standard font by default.
Note that previous versions of Palm OS can crash if told to use a
nonexistent font.

The FontSelect function displays a dialog box in which the user
can specify the use of one of the three primary fonts stdFont,
boldFont, or largeBoldFont. For more information, see the de-
scription of FontSelect beginning on page 271.

The FntDefineFont function makes a custom font available to
your application. For more information, see the description of
FntDefineFont beginning on page 266.

Currently, Palm has not made available any tools or specifications to
convert desktop fonts for use on Palm OS 3.0. If you have an urgent
need for such support, send email to devsupp@palm.com for up-
dated information.

FntAccentHeight

Not currently implemented.

FntAscent

Not currently implemented.

Palm OS User

Palm OS User Interface Functions
Font Functions

Developing Palm OS 3.0 Applications, Part I 263

FntAverageCharWidth

Purpose Return the average character width in the current font.

Prototype short FntAverageCharWidth (void)

Parameters None.

Result Returns the average character width (in pixels).

FntBaseLine

Purpose Return the distance from the top of character cell to the baseline for
the current font.

Prototype short FntBaseLine (void)

Parameters None.

Result Returns the baseline of the font (in pixels).

FntCharHeight

Purpose Return the character height, in the current font including accents
and descenders.

Prototype short FntCharHeight (void)

Parameters None

Result Height of the characters in the current font, expressed in pixels.

Palm OS User Interface Functions
Font Functions

264 Developing Palm OS 3.0 Applications, Part I

FntCharsInWidth

Purpose Find the number of characters in a string that fit within a passed
width. Spaces at the end of a string are ignored and removed. Char-
acters after a carriage return are ignored, the string is considered
truncated.

Prototype void FntCharsInWidth (const Char * string,
SWord *stringWidthP,
SWord *stringLengthP,
Boolean *fitWithinWidth)

Parameters string Pointer to the char string.

stringWidthP Maximum width to allow.

stringLengthP Maximum characters to allow (assumes current
Font).

fitWithinWidth Set to TRUE if string is considered truncated.

Result When the call is completed, the information is updated as follows:

stringWidthP Set to the width of the chars allowed.

stringLengthP Set to the number of chars within the width.

fitWithinWidth TRUE if the string is considered truncated,
FALSE if it isn’t.

Palm OS User Interface Functions
Font Functions

Developing Palm OS 3.0 Applications, Part I 265

FntCharsWidth

Purpose Return the width of the specified character string. The Missing
Character Symbol is substituted for any character which does not
exist in the current font.

Prototype SWord FntCharsWidth (const Char * chars, Word len)

Parameters chars Pointer to a string of characters.

len Number of character in the string.

Result Returns the width of the string, in pixels.

FntCharWidth

Purpose Return the width of the specified character. If the specified character
does not exist within the current font, the Missing Character Symbol
is substituted.

Prototype SWord FntCharWidth (const Char ch)

Parameters ch Character whose width is needed.

Result Returns the width of the specified character (in pixels).

Palm OS User Interface Functions
Font Functions

266 Developing Palm OS 3.0 Applications, Part I

FntDefineFont

Purpose Makes a custom font available to your application. The custom font
is available only when the application that called this function is
running; when the application quits, the custom font is uninstalled
automatically.

Prototype Err FntDefineFont (FontID font, FontPtr fontP)

Parameters font An application-defined value greater than 128
that identifies the custom font to the system.
Although this value is local to the application
that called the FntDefineFont function, it
must be greater than 128 because values less
than 128 are reserved for system use.

fontP Pointer to the custom font resource to be used
by this function. This resource must remain
locked until the calling application undefines
the custom font or quits.

Result 0 no error

memErrNotEnoughSpace
Insufficient dynamic heap space

Comments The font this function specifies is not available at build time; as a re-
sult, some UI elements—labels, for example—cannot determine
their bounds automatically as they do when using the built-in fonts.
This mechanism and its associated tools may be augmented in the
near future; for more information, stay in contact with Palm.

See Also FontSelect, FntSetFont

Palm OS User Interface Functions
Font Functions

Developing Palm OS 3.0 Applications, Part I 267

FntDescenderHeight

Purpose Return the height of a character’s descender in the current font. The
height of a descender is the distance between the base line an the
bottom of the character cell.

Prototype SWord FntDescenderHeight (void)

Parameters None.

Result Returns the height of a descender, expressed in pixels.

FntGetFont

Purpose Return the Font ID of the current font.

Prototype FontID FntGetFont (void)

Parameters None.

Result Returns the Font ID of the current font.

FntGetFontPtr

Purpose Return a pointer to the current font.

Prototype FontPtr FntGetFontPtr (void)

Parameters None.

Result Returns the FontPtr of the current font.

Palm OS User Interface Functions
Font Functions

268 Developing Palm OS 3.0 Applications, Part I

FntGetScrollValues

Purpose Return the values needed to update a scroll bar based on a specified
string and the position within the string.

Prototype void FntGetScrollValues (const Char * const chars,
const Word width,
const Word scrollPos,
const WordPtr linesP,
const WordPtr topLine)

Parameters chars Null-terminated string.

width Width to word wrap at, in pixels.

scrollPos Character position of the first visible character.

linesP (returned) number of lines of text.

topLine (returned) top visible line.

Result Returns nothing. Stores the number of lines of text in linesP and
the top visible line in topLine.

FntLineHeight

Purpose Return the height of a line in the current font. The height of a line is
the height of the character cell plus the space between lines (the ex-
ternal leading).

Prototype short FntLineHeight (void)

Parameters None.

Result Returns the height of a line in the current font.

Palm OS User Interface Functions
Font Functions

Developing Palm OS 3.0 Applications, Part I 269

FntLineWidth

Purpose Return the width of the specified line of text, taking tab characters in
to account. The function assumes that the characters passed are left-
aligned and that the first character in the string is the first character
drawn on a line. In other words, this routine doesn’t work for char-
acters that don’t start at the beginning of a line.

Prototype SWord FntLineWidth (const Char * pChars,
Word length)

Parameters pChars Pointer to a string of characters.

length Number of character in the string.

Result Returns the line width (in pixels).

FntSetFont

Purpose Set the current font.

Prototype FontID FntSetFont (FontID fontID)

Parameters fontID ID of the font to make the active font.

Result Returns the ID of the current font before the change.

Palm OS User Interface Functions
Font Functions

270 Developing Palm OS 3.0 Applications, Part I

FntWordWrap

Purpose Given a string, determine the number of characters that can be dis-
played within the specified width.

Prototype Word FntWordWrap (const Char * const chars,
const Word maxWidth)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Result Returns the length of the line, in characters.

FntWordWrapReverseNLines

Purpose Word wrap a text string backwards by the number of lines specified.
The character position of the start of the first line and the number of
lines that are actually word wrapped are returned.

Prototype void FntWordWrapReverseNLines (
const Char * const chars,
const Word maxWidth,
const WordPtr linesToScrollP,
const WordPtr scrollPosP)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

linesToScrollP Passed: lines to scroll returned: lines scrolled.

scrollPosP Passed: first character returned: first character
after wrapping.

Result Returns nothing. Stores the first character after wrapping and the
number of lines scrolled in scrollPosP and linesToScrollP.

Palm OS User Interface Functions
Font Functions

Developing Palm OS 3.0 Applications, Part I 271

FontSelect

Purpose Displays a dialog box in which the user can choose one of three sys-
tem-supplied fonts, and returns a FontID value representing the
user’s choice.

Prototype FontID FontSelect (FontID fontID)

Parameters fontID A fontID value specifying the font to be high-
lighted as the default choice in the dialog box
this function displays. This value must be one
of the following system-supplied constants:

stdFont Standard plain text font
boldFont Bold version of stdFont
largeBoldFont Larger version of

boldFont

Result Returns a fontID value representing the font that the user chose in
the dialog box this function displays.

See Also FntGetFont, FntSetFont

Palm OS User Interface Functions
Form Functions

272 Developing Palm OS 3.0 Applications, Part I

Form Functions

FrmAlert

Purpose Create a modal dialog from an alert resource and display it until the
user selects a button in the dialog.

Prototype Word FrmAlert (Word alertId)

Parameters alertId ID of the alert resource.

Result Returns the item number of the button the user selected. A button’s
item number is determined by its order in the alert dialog; the first
button has the item number 0 (zero).

See Also FrmDoDialog, FrmCustomAlert

FrmCloseAllForms

Purpose Send a frmCloseEvent to all open forms.

Prototype void FrmCloseAllForms (void)

Parameters None.

Comments Applications can call this function to ensure that all forms are closed
cleanly before exiting PilotMain(); that is, before termination.

See Also FrmSaveAllForms

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 273

FrmCopyLabel

Purpose Copy the passed string into the data structure of the specified label
object in the active form.

Prototype void FrmCopyLabel (FormPtr frm,
Word labelID,
CharPtr newLabel)

Parameters frm Pointer to memory block that contains the
form.

labelID ID of form label object.

newLabel Pointer to a null-terminated string.

Result Returns nothing.

Comments The size of the new label must not exceed the size of the label de-
fined in the resource. When defining the label in the resource, speci-
fy an initial size at least as big as any of the strings that will be as-
signed dynamically. Redraw the label if the form’s usable attribute
and the label’s visible attribute are set.

See Also FrmGetLabel

Palm OS User Interface Functions
Form Functions

274 Developing Palm OS 3.0 Applications, Part I

FrmCopyTitle

Purpose Copy the title passed over the form’s current title. If the form is visi-
ble, the new title is drawn.

Prototype void FrmCopyTitle (FormPtr frm, CharPtr newTitle)

Parameters frm Memory block that contains the form.

newTitle Pointer to the new title string.

Result Returns nothing.

Comments The size of the new title must not exceed the title size defined in the
resource. When defining the title in the resource, specify an initial
size at least as big as any of string to be assigned dynamically.

See Also FrmGetTitle

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 275

FrmCustomAlert

Purpose Create a modal dialog from an alert resource and display the dialog
until the user taps a button in the alert dialog.

Prototype Word FrmCustomAlert (Word alertId, CharPtr s1,
CharPtr s2, CharPtr s3)

Parameters alertId Resource ID of the alert.

s1, s2, s3 Strings to replace ^1, ^2, and ^3 (see
Comment).

Result Returns the button number the user tapped (first button is zero).

Comments A button’s item number is determined by its order in the alert tem-
plate; the first button has the item number zero.

Up to three strings can be passed to this routine. They are used to re-
place the variables ^1, ^2 and ^3 that are contained in the message
string of the alert resource.

If the variables ^1, ^2, and ^3 occur in the message string, do not
pass NULL for the arguments s1, s2, and s3. If you want an argu-
ment to be ignored, pass the empty string (""). In Palm OS 2.0 or be-
low, pass a string containing a space (" ") instead of the empty
string.

See Also FrmAlert, FrmDoDialog

Palm OS User Interface Functions
Form Functions

276 Developing Palm OS 3.0 Applications, Part I

FrmDeleteForm

Purpose Release the memory occupied by a form. Any memory allocated to
objects in the form is also released.

Prototype void FrmDeleteForm (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns nothing.

Comments This function doesn’t modify the display.

See Also FrmInitForm, FrmReturnToForm

FrmDispatchEvent

Purpose Dispatch an event to the application’s handler for the form.

Prototype Boolean FrmDispatchEvent (EventPtr eventP)

Parameters eventP Pointer to an event.

Result Returns nothing.

Comments The event is dispatched to the current form unless the form ID is
specified in the event data, as, for example, with frmOpenEvent.

See Also FrmSetEventHandler, FrmHandleEvent

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 277

FrmDoDialog

Purpose Display a modal dialog until the user taps a button in the dialog.

Prototype Word FrmDoDialog (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns the number of the button the user tapped (first button is ze-
ro).

Comments A button’s item number is determined by its order in the alert tem-
plate; the first button has an item number of 0 (zero).

See Also FrmInitForm, FrmCustomAlert

FrmDrawForm

Purpose Draw all objects in a form and the frame around the form.

Prototype void FrmDrawForm (FormPtr frm)

Parameters frm Pointer to the memory block that contains the
form.

Result Returns nothing.

Comments Saves the bits behind the form using the bitsBehindForm field.

See Also FrmEraseForm, FrmInitForm

Palm OS User Interface Functions
Form Functions

278 Developing Palm OS 3.0 Applications, Part I

FrmEraseForm

Purpose Erase a form from the display.

 Prototype void FrmEraseForm (FormPtr frm)

Parameters frm Pointer to the memory block that contains the
form.

Result Returns nothing.

Comments If the region obscured by the form was saved by FrmDrawForm, this
function restores that region.

See Also FrmDrawForm

FrmGetActiveForm

Purpose Return the currently active form.

Prototype FormPtr FrmGetActiveForm (void)

Parameters None.

Result Returns the pointer to the memory block that contains the form.

See Also FrmGetActiveFormID, FrmSetActiveForm

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 279

FrmGetActiveFormID

Purpose Return the ID of the currently active form.

Prototype Word FrmGetActiveFormID (void)

Parameters None.

Result Returns the currently active form’s ID number.

See Also FrmGetActiveForm

FrmGetControlGroupSelection

Purpose Return the item number of the control selected in a group of con-
trols.

Prototype Byte FrmGetControlGroupSelection (FormPtr frm,
Byte groupNum)

Parameters frm Pointer to memory block that contains the
form.

groupNum Control group number.

Result Returns the item number of the selected control; returns 255 if no
item is selected.

Comments The item number is the index into the form object’s data structure.

See Also FrmGetObjectId, FrmGetObjectPtr,
FrmSetControlGroupSelection

Palm OS User Interface Functions
Form Functions

280 Developing Palm OS 3.0 Applications, Part I

FrmGetControlValue

Purpose Return the on/off state of a control.

Prototype short FrmGetControlValue (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.

Result Returns the state of the control: 1 = on; 0 = off.

Comments The caller must specify a valid index. This function is used only for
push button and check box control objects.

See Also FrmGetObjectIndex, FrmSetControlValue

FrmGetFirstForm

Purpose Return the first form in the window list.

Prototype FormPtr FrmGetFirstForm (void)

Parameters None.

Result Returns a pointer to a form, or NULL if there are no forms.

Comments The window list is a LIFO stack. The last window created is the first
window in the window list.

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 281

FrmGetFocus

Purpose Return the item (index) number of the object (UI element) that has
the focus.

Prototype Word FrmGetFocus (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns the index of the object (UI element) that has the focus, or -1
if none does.

See Also FrmGetObjectId, FrmGetObjectPtr, FrmSetFocus

FrmGetFormBounds

Purpose Return the visual bounds of the form; the region returned includes
the form’s frame.

Prototype void FrmGetFormBounds (FormPtr frm, RectanglePtr r)

Parameters frm Pointer to memory block that contains the
form.

r Pointer to a RectangleType structure that will
contain the bounds.

Result Returns the bounds of the form in r.

Palm OS User Interface Functions
Form Functions

282 Developing Palm OS 3.0 Applications, Part I

FrmGetFormId

Purpose Return the resource ID of a form.

Prototype Word FrmGetFormId (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns form resource ID.

See Also FrmGetFormPtr

FrmGetFormPtr

Purpose Return a pointer to the form that has the specified ID.

Prototype FormPtr FrmGetFormPtr (Word formId)

Parameters formId Form ID number.

Result Returns a pointer to the memory block that contains the form, or
NULL if the form is not in memory.

See Also FrmGetFormId

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 283

FrmGetGadgetData

Purpose Return the value stored in the data field of the gadget object.

Prototype VoidPtr FrmGetGadgetData (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the gadget object.

Result Returns a pointer to the custom gadget’s data.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the data field of a gadget object con-
tains a pointer to the custom object’s data structure.

See Also FrmSetGadgetData

FrmGetLabel

Purpose Return pointer to the text of the specified label object in the specified
form.

Prototype CharPtr FrmGetLabel (FormPtr frm, Word labelID)

Parameters frm Pointer to memory block that contains the
form.

labelID ID of the label object.

Result Returns a pointer to the label string.

Comments Does not make a copy of the string; returns a pointer to the string.
The object must be a label.

See Also FrmCopyLabel

Palm OS User Interface Functions
Form Functions

284 Developing Palm OS 3.0 Applications, Part I

FrmGetNumberOfObjects

Purpose Return the number of objects in a form.

Prototype Word FrmGetNumberOfObjects (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns the number of objects in the specified form.

See Also FrmGetObjectPtr, FrmGetObjectId

FrmGetObjectBounds

Purpose Retrieve the bounds of an object given its form and index.

Prototype void FrmGetObjectBounds (FormPtr frm,
Word ObjIndex,
RectanglePtr r)

Parameters frm Pointer to memory block that contains the
form.

ObjIndex Index of an object in the form.

r Pointer to the rectangle containing the object
bounds.

Result Returns nothing. The object’s bounds are returned in r.

See Also FrmGetObjectPosition, FrmGetObjectIndex,
FrmSetObjectPosition

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 285

FrmGetObjectId

Purpose Return the ID of the specified object.

Prototype Word FrmGetObjectId (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the
form.

objIndex Index of an object in the form.

Result Returns the ID number of a object.

Comments The application developer specifies a unique object ID.

See Also FrmGetObjectPtr, FrmGetObjectIndex

FrmGetObjectIndex

Purpose Return the item number of an object. The item number is the posi-
tion of the object in the form’s objects list.

Prototype Word FrmGetObjectIndex (FormPtr frm, Word objID)

Parameters frm Pointer to memory block that contains the
form.

objID ID of an object in the form.

Result Returns the item number of an object (the first item number is 0).

See Also FrmGetObjectPtr, FrmGetObjectId

Palm OS User Interface Functions
Form Functions

286 Developing Palm OS 3.0 Applications, Part I

FrmGetObjectPosition

Purpose Return the coordinate of the specified object relative to the form.

Prototype void FrmGetObjectPosition (FormPtr frm,
Word objIndex,
SWordPtr x,
SWordPtr y)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.

x, y Pointer to window-relative x and y position.

Result Returns nothing.

See Also FrmGetObjectBounds, FrmSetObjectPosition

FrmGetObjectPtr

Purpose Return a pointer to the data structure of an object in a form.

Prototype void * FrmGetObjectPtr (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.

Result Returns a pointer to an object in the form.

See Also FrmGetObjectIndex, FrmGetObjectId

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 287

FrmGetObjectType

Purpose Return the type of an object.

Prototype FormObjectKind FrmGetObjectType (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.

Result Returns FormObjectKind of the item specified.

FrmGetTitle

Purpose Return a pointer to the title string of a form.

Prototype CharPtr FrmGetTitle (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns a pointer to title string.

Comments This is a pointer to the internal structure itself, not to a copy.

See Also FrmCopyTitle, FrmSetTitle

Palm OS User Interface Functions
Form Functions

288 Developing Palm OS 3.0 Applications, Part I

FrmGetUserModifiedState

Purpose Return TRUE if an object in the form has been modified by the user
since it was initialized or since the last call to
FrmSetNotUserModified.

Prototype Boolean FrmGetUserModifiedState (FormPtr frm)

Parameters frm Pointer to the memory block that contains the
form.

Result Returns TRUE if an object was modified; FALSE otherwise.

Comments Returns TRUE if the dirty attribute of the form has been set.

See Also FrmSetNotUserModified

FrmGetWindowHandle

Purpose Return the window handle of a form.

Prototype WinHandle FrmGetWindowHandle (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns the handle of the memory block that the form is in. Since
the form structure begins with the WindowType structure, this is
also a WinHandle.

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 289

FrmGotoForm

Purpose Send a frmCloseEvent to the current form; send a frmLoadEvent
and a frmOpenEvent to the specified form.

Prototype void FrmGotoForm (Word formId)

Parameters formId ID of the form to display.

Result Returns nothing.

Comments The form event handler (FrmHandleEvent) erases and disposes of
a form when it receives a frmCloseEvent.

See Also FrmPopupForm

FrmHandleEvent

Purpose Handle the event that has occurred in the form.

Prototype Boolean FrmHandleEvent (FormPtr frm,
EventPtr event)

Parameters frm Pointer to the memory block that contains the
form.

event Pointer to the event data structure.

Result Returns TRUE if the event was handled.

See Also FrmDispatchEvent

Palm OS User Interface Functions
Form Functions

290 Developing Palm OS 3.0 Applications, Part I

FrmHelp

Purpose Display the specified help message until the user taps the Done but-
ton in the help dialog.

Prototype void FrmHelp (Word helpMsgId)

Parameters helpMsgId Resource ID of help message string.

Result Returns nothing.

Comments The ID passed is the resource ID of a string resource that contains
the help message. The help message is displayed in a modal dialog
that has vertical scrolls if necessary.

FrmHideObject

Purpose Erase the specified object and set its attribute data so that it does not
redraw or respond to the pen.

Prototype void FrmHideObject (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.

Result Returns nothing.

See Also FrmGetObjectIndex, FrmShowObject

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 291

FrmInitForm

Purpose Load and initialize a form resource.

Prototype FormPtr FrmInitForm (Word rscID)

Parameters rscID Resource ID of the form.

Result Returns a pointer to the form memory block.

Displays an error message if the form has already been initialized.

Comments This function does not affect the display nor make the form active.

See Also FrmDoDialog, FrmDeleteForm

Palm OS User Interface Functions
Form Functions

292 Developing Palm OS 3.0 Applications, Part I

FrmNewBitmap

Purpose Create a new form bitmap dynamically.

Prototype FormBitmapType * FrmNewBitmap (VoidPtr *formPP,
const Word ID,
const Word rscID,
const Word x,
const Word y)

Parameters <--> formPP Pointer to the pointer to the form in which the
new bitmap is installed. This value is not a han-
dle; that is, the old formPP value is not neces-
sarily valid after this function returns. In subse-
quent calls, always use the new formPP value
returned by this function.

ID Symbolic ID of the bitmap, specified by the de-
veloper. By convention, this ID should match
the resource ID (not mandatory).

rscID Numeric value identifying the resource that
provides the bitmap. This value must be unique
within the application scope.

x Horizontal coordinate of the upper-left corner
of the bitmap’s boundaries, relative to the win-
dow in which it appears.

y Vertical coordinate of the upper-left corner of
the bitmap’s boundaries, relative to the win-
dow in which it appears.

Result Returns a pointer to the new bitmap, or 0 if the call did not succeed.
The most common cause of failure is lack of memory.

See Also FrmRemoveObject

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 293

FrmNewForm

Purpose Create a new form object dynamically.

Prototype FormPtr FrmNewForm (const Word formID,
const Char * const titleStrP,
Word x,
Word y,
Word width,
Word height,
const Boolean modal,
const Word defaultButton,
const Word helpRscID,
const Word menuRscID)

Parameters formID Symbolic ID of the form, specified by the devel-
oper. By convention, this ID should match the
resource ID (not mandatory).

titleStrP Pointer to a string that is the title of the form.

x Horizontal coordinate of the upper-left corner
of the form’s boundaries, relative to the win-
dow in which it appears.

y Vertical coordinate of the upper-left corner of
the form’s boundaries, relative to the window
in which it appears.

width Width of the form, expressed in pixels. Valid
values are 1 - 160.

height Height of the form, expressed in pixels.Valid
values are 1 - 160.

 modal TRUE specifies that the form ignores pen events
outside its boundaries.

defaultButton Symbolic ID of the button that provides the
form’s default action, specified by the develop-
er.

helpRscID Symbolic ID of the resource that provides the
form’s online help, specified by the developer.

Palm OS User Interface Functions
Form Functions

294 Developing Palm OS 3.0 Applications, Part I

under Palm OS 3.0, only modal dialogs have
help resources.

menuRscID Symbolic ID of the resource that provides the
form’s menus, specified by the developer.

Result Returns a pointer to the new form object, or 0 if the call did not suc-
ceed. The most common cause of failure is lack of memory.

See Also FrmValidatePtr, WinValidateHandle, FrmRemoveObject

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 295

FrmNewGadget

Purpose Create a new gadget dynamically and install it in the specified form.

Prototype FormGadgetType * FrmNewGadget (VoidPtr *formPP,
const Word id,
const Word x,
const Word y,
const Word width,
const Word height)

Parameters <--> formPP Pointer to the pointer to the form in which the
new gadget is installed. This value is not a han-
dle; that is, the old formPP value is not neces-
sarily valid after this function returns. In subse-
quent calls, always use the new formPP value
returned by this function.

id Symbolic ID of the gadget, specified by the de-
veloper. By convention, this ID should match
the resource ID (not mandatory).

x Horizontal coordinate of the upper-left corner
of the gadget’s boundaries, relative to the win-
dow in which it appears.

y Vertical coordinate of the upper-left corner of
the gadget’s boundaries, relative to the window
in which it appears.

width Width of the gadget, expressed in pixels. Valid
values are 1 - 160.

height Height of the gadget, expressed in pixels.Valid
values are 1 - 160.

Result Returns a pointer to the new gadget object or 0 if the call did not
succeed. The most common cause of failure is lack of memory.

Comments A gadget is a custom UI object. For more information, see “Gadget
Resource” starting on page 110.

See Also FrmRemoveObject

Palm OS User Interface Functions
Form Functions

296 Developing Palm OS 3.0 Applications, Part I

FrmNewLabel

Purpose Create a new label object dynamically and install it in the specified
form.

Prototype FormLabelType* FrmNewLabel (
VoidPtr *formPP,
const Word ID,
const Char * const textP,
const Word x,
const Word y,
const FontID font)

Parameters <--> formPP Pointer to the pointer to the form in which the
new label is installed. This value is not a han-
dle; that is, the old formPP value is not neces-
sarily valid after this function returns. In subse-
quent calls, always use the new formPP value
returned by this function.

ID Symbolic ID of the label, specified by the devel-
oper. By convention, this ID should match the
resource ID (not mandatory).

textP Pointer to a string that provides the label text.

x Horizontal coordinate of the upper-left corner
of the label’s boundaries, relative to the win-
dow in which it appears.

y Vertical coordinate of the upper-left corner of
the label’s boundaries, relative to the window
in which it appears.

font Font with which to draw the label text.

Result Returns a pointer to the new label object or 0 if the call did not suc-
ceed. The most common cause of failure is lack of memory.

See Also CtlValidatePointer, FrmRemoveObject

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 297

FrmPointInTitle

Purpose Returns TRUE if the coordinate passed is within the bounds of
form’s title.

Prototype Boolean FrmPointInTitle (FormPtr frm,
Short x,
Short y)

Parameters frm Memory block that contains the form.

x, y Window-relative x and y coordinate.

Result Returns TRUE if the specified coordinate is in the form’s title.

FrmPopupForm

Purpose Send a frmOpenEvent to the specified form. This routine differs
from FrmGotoForm in that the current form is not closed.

Prototype void FrmPopupForm (Word formId)

Parameters formID Resource ID of form to open.

Result Returns nothing.

See Also FrmGotoForm

Palm OS User Interface Functions
Form Functions

298 Developing Palm OS 3.0 Applications, Part I

FrmRemoveObject

Purpose Remove the specified object from the specified form.

Prototype Err FrmRemoveObject (FormPtr *formPP,
Word objIndex)

Parameters <--> formPP Pointer to the pointer to the form from which
this function removes an object. This value is
not a handle; that is, the old formPP value is
not necessarily valid after this function returns.
In subsequent calls, always use the new
formPP value returned by this function.

objIndex The object to remove, specified as an index into
the list of objects installed in the form. You can
use the FrmGetObjectIndex function to dis-
cover this value.

Result Returns 0 if no error.

Comments You can use this function to remove any form object (bitmaps, con-
trols, lists, and so on) and free the memory allocated to it.

See Also FrmNewBitmap, FrmNewForm, FrmNewGadget, FrmNewLabel,
CtlNewControl, FldNewField, LstNewList

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 299

FrmReturnToForm

Purpose Erase and delete the currently active form and make the specified
form the active form.

Prototype void FrmReturnToForm (Word formId)

Parameters formID Resource ID of the form to return to.

Result Returns nothing.

Comments It is assumed that the form being returned to is already loaded into
memory and initialized. Passing a form ID of 0 returns to the first
form in the window list, which is the last form to be loaded.

See Also FrmGotoForm, FrmPopupForm

FrmSaveAllForms

Purpose Send a frmSaveEvent to all open forms.

Prototype void FrmSaveAllForms (void)

Parameters None.

Result Returns nothing.

See Also FrmCloseAllForms

Palm OS User Interface Functions
Form Functions

300 Developing Palm OS 3.0 Applications, Part I

FrmSetActiveForm

Purpose Set the active form. All input (key and pen) is directed to the active
form.

Prototype void FrmSetActiveForm (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns nothing.

Comments A penDownEvent outside the form but within the display area is ig-
nored.

See Also FrmGetActiveForm

FrmSetCategoryLabel

Purpose Set the category label displayed on the title line of a form. If the
form’s visible attribute is set, redraw the label.

Prototype void FrmSetCategoryLabel (FormPtr frm,
Word objIndex,
CharPtr newLabel)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.

newLabel Pointer to the name of the new category.

Result Returns nothing.

Comments The pointer to the new label is saved in the object.

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 301

FrmSetControlGroupSelection

Purpose Set the selected control in a group of controls.

Prototype void FrmSetControlGroupSelection (FormPtr frm,
Byte groupNum,
Word controlID)

Parameters frm Pointer to memory block that contains the
form.

groupNum Control group number.
controlID ID of control to set.

Result Returns nothing.

Comments Function unsets all the other controls in the group. The display is
updated.

See Also FrmGetControlGroupSelection

FrmSetControlValue

Purpose Turn a control on or off.

Prototype void FrmSetControlValue (FormPtr frm,
Word objIndex,
short newValue)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.
newValue New control value (non-zero equals on).

Result Returns nothing.

Comments The display is not changed.

See Also FrmGetControlValue

Palm OS User Interface Functions
Form Functions

302 Developing Palm OS 3.0 Applications, Part I

FrmSetEventHandler

Purpose Set the event handler callback routine for the specified form.

Prototype void FrmSetEventHandler (FormPtr frm,
FormEventHandlerPtr handler)

Parameters frm Pointer to memory block that contains the
form.

handler Address of a function.

Result Returns nothing.

Comments FrmHandleEvent calls this handler whenever it receives an event.

This routine should be called right after a form resource is loaded.
The callback routine is the mechanism for dispatching events to an
application. The tutorial explains how to use callback routines.

See Also FrmDispatchEvent

FrmSetFocus

Purpose Set the focus of a form to the specified object.

Prototype void FrmSetFocus (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object (UI element) that gets
the focus.

Result Returns nothing.

See Also FrmGetFocus, FrmGetObjectIndex

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 303

FrmSetGadgetData

Purpose Store the value passed in the data field of the gadget object.

Prototype void FrmSetGadgetData (FormPtr frm,
Word objIndex,
VoidPtr data)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.

data Application-defined value.

Result Returns nothing.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the data field of a gadget object con-
tains a pointer to the custom object’s data structure.

See Also FrmGetGadgetData, FrmGetObjectIndex

FrmSetMenu

Purpose Change a form’s menu bar.

Prototype void FrmSetMenu (FormPtr frm, Word menuRscID)

Parameters frm Memory block that contains the form.

menuRscID Resource ID of the menu.

Result Returns nothing.

Palm OS User Interface Functions
Form Functions

304 Developing Palm OS 3.0 Applications, Part I

FrmSetNotUserModified

Purpose Clear the flag that keeps track of whether or not the form has been
modified by the user.

Prototype void FrmSetNotUserModified (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns nothing.

See Also FrmGetUserModifiedState

FrmSetObjectBounds

Purpose Set the bounds of the specified form object.

Prototype void FrmSetObjectBounds (FormPtr frm,
Word objIndex,
RectanglePtr bounds)

Parameters frmPtr Memory block that contains the form.

objIndex Item number of the object.

bounds Window-relative bounds.

Result Returns nothing.

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 305

FrmSetObjectPosition

Purpose Set the window-relative coordinate of the specified object.

Prototype void FrmSetObjectPosition (FormPtr frm,
Word objIndex,
SWord x,
SWord y)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.

x Window-relative coordinate.

y Window-relative coordinate.

Result Returns nothing.

Comments Doesn’t update the display. Presently, only label objects are affected.

Caveat This function currently doesn’t work when used on a bitmap.

See Also FrmGetObjectPosition, FrmGetObjectIndex,
FrmGetObjectBounds

Palm OS User Interface Functions
Form Functions

306 Developing Palm OS 3.0 Applications, Part I

FrmSetTitle

Purpose Set the title of a form. If the form is visible, draw the new title.

Prototype void FrmSetTitle (FormPtr frm, CharPtr newTitle)

Parameters frm Pointer to memory block that contains the
form.

newTitle Pointer to the new title string.

Result Returns nothing.

Comments Draws the title if the form is visible.

Saves the pointer to the passed title string. Does not make a copy.

See Also FrmGetTitle, FrmCopyTitle, FrmCopyLabel

FrmShowObject

Purpose Set an object (UI element) inside a form as usable. If the form is visi-
ble, draw the object.

Prototype void FrmShowObject (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the
form.

objIndex Item number of the object.

Result Returns nothing.

See Also FrmHideObject, FrmGetObjectIndex

Palm OS User Interface Functions
Form Functions

Developing Palm OS 3.0 Applications, Part I 307

FrmUpdateForm

Purpose Send a frmUpdateEvent to the specified form.

Prototype void FrmUpdateForm (Word formId, Word updateCode)

Parameters formId Resource ID of form to open.

updateCode If the update code is frmRedrawUpdateCode,
the form reinitializes its global variables and re-
draws itself. Otherwise, the form reinitializes
its global variables but does not redraw itself.

Result Returns nothing.

FrmUpdateScrollers

Purpose Visually update the field scroll arrow buttons.

Prototype void FrmUpdateScrollers (FormPtr frm,
Word upIndex,
Word downIndex,
Boolean scrollableUp,
Boolean scrollableDown)

Parameters frm Pointer to a form.

upIndex Index of the up-scroller button.

downIndex Index of the down-scroller button.

scrollableUp TRUE if the up-scroll should be active.

scrollableDown TRUE if the down-scroll should be active.

Result Returns nothing.

See Also FrmGetObjectIndex

Palm OS User Interface Functions
Form Functions

308 Developing Palm OS 3.0 Applications, Part I

FrmValidatePtr

Purpose Return TRUE if the specified pointer references a valid form.

Prototype Boolean FrmValidatePtr (FormPtr frm)

Parameters frm Pointer to be tested.

Result Returns TRUE if the specified handle references a non-NULL pointer
to an object having a valid form structure.

Comments This function is intended for debugging purposes only. Do not in-
clude it in commercial code.

FrmVisible

Purpose Return TRUE if the form is visible (is drawn).

Prototype Boolean FrmVisible (FormPtr frm)

Parameters frm Pointer to memory block that contains the
form.

Result Returns TRUE if visible; FALSE if not visible.

See Also FrmDrawForm, FrmEraseForm

Palm OS User Interface Functions
Character Attribute Functions

Developing Palm OS 3.0 Applications, Part I 309

Character Attribute Functions

GetCharAttr

Purpose Return a pointer to the character attribute. This array is used by the
character classification and character conversion macros (such as
isalpha).

Prototype WordPtr GetCharAttr (void)

Parameters None

Result A pointer to the attributes array. See CharAttr.h for an explana-
tion of the attributes.

GetCharCaselessValue

Purpose Return a pointer to an array that maps all characters to an assigned
caseless and accentless value. Use this function for finding text.

Prototype BytePtr GetCharCaselessValue (void)

Parameters None.

Result Returns a pointer to the sort array.

The compiler pads each byte out to a word so each index position
contains two characters.

Note: array[x].high = sort value for character 2x+1.

Palm OS User Interface Functions
Character Attribute Functions

310 Developing Palm OS 3.0 Applications, Part I

Comment The GetCharCaselessValue conversion table converts each char-
acter into a numeric value that is caseless and sorted according to
Microsoft Windows sorting rules:

• Punctuation characters have the lowest values,

• followed by numbers,

• followed by alpha characters.

All forms of each alpha character have equivalent values, so
that e = E = e-grave = e-circumflex, etc.

This conversion table is used by all the Palm OS sorting and com-
parison routines to yield caseless searches and caseless sorts in the
same order as Windows-based programs.

GetCharSortValue

Purpose Return a pointer to an array that maps all characters to an assigned
sorting value. Use this function for ordering (sorting) text.

Prototype BytePtr GetCharSortValue (void)

Parameters None.

Result Returns a pointer to the attributes array.

The compiler pads each byte out to a word so each index position
contains two characters.

Note: array[x].low = sort value for character 2x.

Palm OS User Interface Functions
Graffiti Manager Functions

Developing Palm OS 3.0 Applications, Part I 311

Graffiti Manager Functions

GrfAddMacro

Purpose Add a macro to the macro list.

Prototype Err GrfAddMacro (CharPtr nameP,

BytePtr macroDataP,

Word dataLen)

Parameters nameP Name of macro.

macroDataP Data of macro.

dataLen Size of macro data in bytes.

Result Returns 0 if no error; returns grfErrNoMacros,
grfErrMacroPtrTooSmall, dmErrNotValidRecord,
dmErrWriteOutOfBounds if an error occurs.

See Also GrfGetMacro, GrfGetMacroName, GrfDeleteMacro

GrfAddPoint

Purpose Add a point to the Graffiti point buffer.

Prototype Err GrfAddPoint (PointType* ptP)

Parameters ptP Pointer to point buffer.

Result Returns 0 if no error; returns grfErrPointBufferFull if an error
occurs.

See Also GrfFlushPoints

Palm OS User

Palm OS User Interface Functions
Graffiti Manager Functions

312 Developing Palm OS 3.0 Applications, Part I

GrfCleanState

Purpose Remove any temporary shifts from the dictionary state.

Prototype Err GrfCleanState (void)

Parameters None

Result Returns 0 if no error, or grfErrNoDictionary if an error occurs.

See Also GrfInitState

GrfDeleteMacro

Purpose Delete a macro from the macro list.

Prototype Err GrfDeleteMacro (Word index)

Parameters index Index of the macro to delete.

Result Returns 0 if no error, or grfErrNoMacros,
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro

Palm OS User Interface Functions
Graffiti Manager Functions

Developing Palm OS 3.0 Applications, Part I 313

GrfFilterPoints

Purpose Filter the points in the Graffiti point buffer.

Prototype Err GrfFilterPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfMatch

GrfFindBranch

Purpose Locate a branch in the Graffiti dictionary by flags.

Prototype Err GrfFindBranch (Word flags)

Parameters flags Flags of the branch you’re searching for.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrBranchNotFound if an error occurs.

See Also GrfCleanState, GrfInitState

Palm OS User Interface Functions
Graffiti Manager Functions

314 Developing Palm OS 3.0 Applications, Part I

GrfFlushPoints

Purpose Dispose of all points in the Graffiti point buffer.

Prototype Err GrfFlushPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfAddPoint

GrfGetAndExpandMacro

Purpose Look up and expand a macro in the current macros.

Prototype Err GrfGetAndExpandMacro (CharPtr nameP,

BytePtr macroDataP,

WordPtr dataLenP)

Parameters nameP Name of macro to look up.

macroDataP Macro contents returned here.

dataLenP On entry, size of macroDataP buffer; on exit,
number of bytes in macro data.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro

Palm OS User Interface Functions
Graffiti Manager Functions

Developing Palm OS 3.0 Applications, Part I 315

GrfGetGlyphMapping

Purpose Look up a glyph in the dictionary and return the text.

Prototype Err GrfGetGlyphMapping (Word glyphID,

WordPtr flagsP,

void* dataPtrP,

WordPtr dataLenP,

WordPtr uncertainLenP)

Parameters glyphID Glyph ID to look up.

flagsP Returned dictionary flags.

dataPtrP Where returned text goes.

dataLenP On entry, size of dataPtrP; on exit, number of
bytes returned.

uncertainLenP Return number of uncertain characters in text.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrNoMapping if an error occurs.

See Also GrfMatch

Palm OS User Interface Functions
Graffiti Manager Functions

316 Developing Palm OS 3.0 Applications, Part I

GrfGetMacro

Purpose Look up a macro in the current macros.

Prototype Err GrfGetMacro (CharPtr nameP,

BytePtr macroDataP,

WordPtr dataLenP)

Parameters nameP Name of macro to lookup.

macroDataP Macro contents returned here.

dataLenP On entry: size of macroDataP buffer. On exit:
number of bytes in macro data.

Result Returns 0 if no error or grfErrNoMacros,
grfErrMacroNotFound.

See Also GrfAddMacro

GrfGetMacroName

Purpose Look up a macro name by index.

Prototype Err GrfGetMacroName (Word index, CharPtr nameP)

Parameters index Index of macro.

nameP Name returned here.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro

Palm OS User Interface Functions
Graffiti Manager Functions

Developing Palm OS 3.0 Applications, Part I 317

GrfGetNumPoints

Purpose Return the number of points in the point buffer.

Prototype Err GrfGetNumPoints (WordPtr numPtsP)

Parameters numPtsP Returned number of points.

Result Always returns 0.

See Also GrfAddPoint

GrfGetPoint

Purpose Return a point out of the Graffiti point buffer.

Prototype Err GrfGetPoint (Word index, PointType* pointP)

Parameters index Index of the point to get.

pointP Returned point.

Result Returns 0 if no error, or grfErrBadParam if an error occurs.

See Also GrfAddPoint, GrfGetNumPoints

Palm OS User Interface Functions
Graffiti Manager Functions

318 Developing Palm OS 3.0 Applications, Part I

GrfGetState

Purpose Return the current Graffiti shift state.

Prototype Err GrfGetState (Boolean* capsLockP,

Boolean* numLockP,

WordPtr tempShiftP,

Boolean* autoShiftedP)

Parameters capsLockP Returns TRUE if caps lock on.

numLockP Returns TRUE if num lock on.

tempShiftP Current temporary shift.

autoShiftedP Returns TRUE if shift not set by the user but by
the system, for example, at the beginning of a
line.

Result Always returns 0.

Compatibility
Note

Palm OS 2.0 and later has more user-friendly auto shifting. It uses
an upper case letter under these conditions:

• after an empty field
• after a period or other sentence terminator (such as ? or !).
• after two spaces

See Also GrfSetState

Palm OS User Interface Functions
Graffiti Manager Functions

Developing Palm OS 3.0 Applications, Part I 319

GrfInitState

Purpose Reinitialize the Graffiti dictionary state.

Prototype Err GrfInitState (void)

Parameters None.

Result Always returns 0.

See Also GrfGetState, GrfSetState

GrfMatch

Purpose Recognize the current stroke in the Graffiti point buffer and return
with the recognized text.

Prototype Err GrfMatch (WordPtr flagsP,

void* dataPtrP,

WordPtr dataLenP,

WordPtr uncertainLenP,

GrfMatchInfoPtr matchInfoP)

Parameters flagsP Glyph flags are returned here.

dataPtrP Return text is placed here.

dataLenP Size of dataPtrP on exit; number of characters
returned on exit.

uncertainLenP Return number of uncertain characters.

matchInfoP Array of grfMaxMatches, or nil.

Result Returns 0 if no error, or grfErrNoGlyphTable,
grfErrNoDictionary, or grfErrNoMapping if an error occurs.

See Also GrfAddPoint, GrfFlushPoints

Palm OS User Interface Functions
Graffiti Manager Functions

320 Developing Palm OS 3.0 Applications, Part I

GrfMatchGlyph

Purpose Recognize the current stroke as a glyph.

Prototype Err GrfMatchGlyph (GrfMatchInfoPtr matchInfoP,

Word maxUnCertainty,

Word maxMatches)

Parameters matchInfoP Pointer to array of matches to fill in.

maxUnCertainty Maximum number of errors to tolerate.

maxMatches Size of matchInfoP array.

Result Returns 0 if no error, or grfErrNoGlyphTable if an error occurs.

See Also GrfMatch

Palm OS User Interface Functions
Graffiti Manager Functions

Developing Palm OS 3.0 Applications, Part I 321

GrfProcessStroke

Purpose Translate a stroke to keyboard events using Graffiti.

Prototype Err GrfProcessStroke (PointType* startPtP,

 PointType* endPtP,

Boolean upShift)

Parameters startPtP Start point of stroke.

endPtP End point of stroke.

upShift Set to TRUE to feed an artificial upshift into the
engine.

Result Returns 0 if recognized.

Comments Called by SysHandleEvent when a penUpEvent is detected in
the writing area. This routine recognizes the stroke and sends the
recognized characters into the key queue. It also flushes the stroke
out of the pen queue after recognition.

See Also SysHandleEvent (documented in “Developing Palm OS Appli-
cations, Part II”)

Palm OS User Interface Functions
Graffiti Manager Functions

322 Developing Palm OS 3.0 Applications, Part I

GrfSetState

Purpose Set the current shift state of Graffiti.

Prototype Err GrfSetState (Boolean capsLock,

Boolean numLock,

Boolean upperShift)

Parameters capsLock Set to TRUE to turn on caps lock.

numLock Set to TRUE to turn on num lock.

upperShift Set to TRUE to put into upper shift.

Result Always returns 0.

See Also GrfGetState

SysGrfShortCutListDialog

Purpose Pop up the Graffiti ShortCut list as a field object with the focus.

Prototype void SysGrfShortCutListDialog (void)

Parameters event Pointer to an EventType structure.

Result The field’s text chunk is changed.

See Also GrfGetMacro, GrfGetMacroName

Palm OS User Interface Functions
GraffitiShift Functions

Developing Palm OS 3.0 Applications, Part I 323

Functions for System Use Only

GrfFieldChange

Prototype Err GrfFieldChange (Boolean resetState,
UIntPtr characterToDelete)

WARNING: System Use Only.

GrfFree

Prototype Err GrfFree(void)

WARNING: System Use Only.

GraffitiShift Functions

GsiEnable

Purpose Enable or disable the Graffiti-shift state indicator.

Prototype void GsiEnable (Boolean enableIt)

Parameters enableIt TRUE to enable, FALSE to disable.

Result Returns nothing.

Comments Enabling the indicator makes it visible, disabling it makes the inser-
tion point invisible.

Palm OS User Interface Functions
GraffitiShift Functions

324 Developing Palm OS 3.0 Applications, Part I

GsiEnabled

Purpose Return TRUE if the Graffiti-shift state indicator is enabled, or FALSE
if it’s disabled.

Prototype Boolean GsiEnabled (void)

Parameters None.

Result TRUE if enabled, FALSE if not.

GsiInitialize

Purpose Initialize the global variables used to manage the Graffiti-shift state
indicator.

Prototype void GsiInitialize (void)

Parameters None.

Result Returns nothing.

GsiSetLocation

Purpose Set the display-relative position of the Graffiti-shift state indicator.

Prototype void GsiSetLocation (short x, short y)

Parameters x, y Coordinate of left side and top of the indicator.

Result Returns nothing.

Comments The indicator is not redrawn by this routine.

Palm OS User Interface Functions
GraffitiShift Functions

Developing Palm OS 3.0 Applications, Part I 325

GsiSetShiftState

Purpose Set the Graffiti-shift state indicator.

Prototype void GsiSetShiftState (Word lockFlags,

Word tempShift)

Parameters lockFlags glfCapsLock or glfNumLock.

tempShift The current temporary shift.

Result Returns nothing.

Comment This function affects only the state of the UI element, not the under-
lying Graffiti engine.

See Also GrfSetState

Palm OS User Interface Functions
Insertion Point Functions

326 Developing Palm OS 3.0 Applications, Part I

Insertion Point Functions

InsPtEnable

Purpose Enable or disable the insertion point. When the insertion point is
disabled, it’s invisible; when it’s enabled, it blinks.

Prototype void InsPtEnable (Boolean enableIt)

Parameters enableIt TRUE = enable; FALSE = disable

Result Returns nothing.

Comments This function is called by the Form functions when a text field loses
or gains the focus, and by the Windows function when a region of
the display is copied (WinCopyRectangle).

See Also InsPtEnabled

InsPtEnabled

Purpose Return TRUE if the insertion point is enabled or FALSE if the inser-
tion point is disabled.

Prototype Boolean InsPtEnabled (void)

Parameters None.

Result Returns TRUE if the insertion point is enabled (blinking); returns
FALSE if the insertion point is disabled (invisible).

See Also InsPtEnable

Palm OS User Interface Functions
Insertion Point Functions

Developing Palm OS 3.0 Applications, Part I 327

InsPtGetHeight

Purpose Return the height of the insertion point.

Prototype short InsPtGetHeight (void)

Parameters None.

Result Returns the height of the insertion point, in pixels.

InsPtGetLocation

Purpose Return the screen-relative position of the insertion point.

Prototype void InsPtGetLocation (short *x, short *y)

Parameters x, y Pointer to top-left position of insertion point’s x
and y coordinate.

Result Returns nothing. Stores the location in x and y.

Comments This function is called by the Field functions. An application would
not normally call this function.

Palm OS User Interface Functions
Insertion Point Functions

328 Developing Palm OS 3.0 Applications, Part I

InsPtSetHeight

Purpose Set the height of the insertion point.

Prototype void InsPtSetHeight (short height)

Parameters height Height of the insertion point in pixels.

Result Returns nothing.

Comments Set the height of the insertion point to match the character height of
the font used in the field that the insertion point is in. When the cur-
rent font is changed, the insertion point height should be set to the
line height of the new font.

If the insertion point is visible when its height is changed, it’s erased
and redrawn with its new height.

See Also InsPtGetHeight

InsPtSetLocation

Purpose Set the screen-relative position of the insertion point.

Prototype void InsPtSetLocation (short x, short y)

Parameters x, y Number of pixels from the left side (top) of the
display.

Result Returns nothing.

Comments The position passed to this function is the location of the top-left
corner of the insertion point.

This function should be called only by the Field functions.

See Also InsPtGetLocation

Palm OS User Interface Functions
Key Manager Functions

Developing Palm OS 3.0 Applications, Part I 329

Functions for System Use Only

InsPtCheckBlink

Prototype void InsPtCheckBlink (void)

WARNING: For System Use Only.

InsPtInitialize

Prototype void InsPtInitialize (void)

WARNING: For System Use Only.

Key Manager Functions

KeyCurrentState

Purpose Return bit field with bits set for each key that is currently depressed.

Prototype DWord KeyCurrentState (void)

Parameters None.

Result Returns a DWord with bits set for keys that are depressed. See
keyBitPower, keyBitPageUp, keyBitPageDown, etc., in
KeyMgr.h.

Comments Called by applications that need to poll the keys.

See Also KeyRates

Palm OS User Interface Functions
Key Manager Functions

330 Developing Palm OS 3.0 Applications, Part I

KeyRates

Purpose Get or set the key repeat rates.

Prototype Err KeyRates (Boolean set,

WordPtr initDelayP,

WordPtr periodP,

WordPtr doubleTapDelayP,

BooleanPtr queueAheadP)

Parameters set If TRUE, settings are changed; if FALSE, current
settings are returned.

initDelayP Initial delay in ticks for a auto-repeat event.

periodP Auto-repeat rate specified as period in ticks.

doubleTapDelayPMaximum double-tap delay, in ticks.

queueAheadP If TRUE, auto-repeating keeps queueing up key
events if the queue has keys in it. If FALSE,
auto-repeat doesn’t enqueue keys unless the
queue is already empty.

Result Returns 0 if no error.

See Also KeyCurrentState

Functions for System Use Only

KeyBootKeys

Prototype DWord KeyBootKeys (void)

WARNING: This function for use by system software only.

Palm OS User Interface Functions
Key Manager Functions

Developing Palm OS 3.0 Applications, Part I 331

KeyHandleInterrupt

Prototype ULong KeyHandleInterrupt (Boolean periodic,
DWord status)

WARNING: This function for use by system software only.

KeyInit

Prototype Err KeyInit (void)

WARNING: This function for use by system software only.

KeyResetDoubleTap

Prototype Err KeyResetDoubleTap (void)

WARNING: This function for use by system software only.

KeySleep

Prototype Err KeySleep (Boolean untilReset,
Boolean emergency)

WARNING: This function for use by system software only.

KeyWake

Prototype Err KeyWake (void)

WARNING: This function for use by system software only.

Palm OS User Interface Functions
List UI Functions

332 Developing Palm OS 3.0 Applications, Part I

List UI Functions

LstDrawList

Purpose Draw the list object if it’s usable. Set it’s visible attribute to TRUE.

Prototype void LstDrawList (ListPtr list)

Parameters list Pointer to list object (ListType data structure).

Result Returns nothing.

Comments If there are more choices than can be displayed, this function en-
sures that the current selection is visible. If possible, the current se-
lection is displayed at the top. The current selection is highlighted.

If the list is disabled, it’s drawn grayed-out (strongly discouraged).
If it’s empty, nothing is drawn. If it’s not usable, nothing is drawn.

See Also FrmGetObjectPtr, LstPopupList, LstEraseList

LstEraseList

Purpose Erase a list object.

Prototype void LstEraseList (ListPtr ListP)

Parameters ListP Pointer to a list object (ListType data
structure).

Result Returns nothing.

Comments The visible attribute is set to FALSE by this function.

See Also FrmGetObjectPtr, LstDrawList

Palm OS User Interface Functions
List UI Functions

Developing Palm OS 3.0 Applications, Part I 333

LstGetNumberOfItems

Purpose Return the number of items in a list.

Prototype Word LstGetNumberOfItems (ListPtr ListP)

Parameters ListP Pointer to a list object (ListType data
structure).

Result Returns the number of items in a list.

See Also FrmGetObjectPtr, LstSetListChoices

LstGetSelection

Purpose Return the currently selected choice in the list. If there is no selec-
tion, return NoListSelection (-1).

Prototype Word LstGetSelection (ListPtr ListP)

Parameters ListP Pointer to list object.

Result Returns the item number of the current list choice. The list choices
are numbered sequentially, starting with 0; -1 = none.

See Also FrmGetObjectPtr, LstSetListChoices, LstSetSelection,
LstGetSelectionText

Palm OS User Interface Functions
List UI Functions

334 Developing Palm OS 3.0 Applications, Part I

LstGetSelectionText

Purpose Return a pointer to the text of the specified item in the list, or NULL
if no such item exists.

Prototype CharPtr LstGetSelectionText (ListPtr ListP,
Word itemNum)

Parameters ListP Pointer to list object.

itemNum Item to select (0 = first item in list).

Result Returns a pointer to the text of the current selection, or NULL if out
of bounds.

Comments This is a pointer within ListType structure, not a copy.

See Also FrmGetObjectPtr, LstSetListChoices

LstGetVisibleItems

Purpose Return the number of visible items.

Prototype Int LstGetVisibleItems (ListPtr pList)

Parameters pList Pointer to list object

Result The number of items visible.

Palm OS User Interface Functions
List UI Functions

Developing Palm OS 3.0 Applications, Part I 335

LstHandleEvent

Purpose Handle event in the specified list; the list object must have its us-
able and visible attribute set to TRUE.This routine handles two
type of events, penDownEvent and lstEnterEvent; see
Comments.

Prototype Boolean LstHandleEvent (ListPtr listP,

EventPtr pEvent)

Parameters listP Pointer to a list object (ListType data struc-
ture).

pEvent Pointer to an EventType structure.

Result Return TRUE if the event was handled. The following cases will re-
sult in a return value of TRUE:

• A penDownEvent within the bounds of the list

• A lstEnterEvent with a list ID value that matches the list
ID in the list data structure

Comments When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the list object. If it is, this routine
tracks the pen until the pen comes up. If the pen comes up within
the bounds of the list, a lstEnterEvent is added to the event
queue, and the routine is exited.

When this routine receives a lstEnterEvent, it checks that the list
ID in the event record matches the ID of the specified list. If there is
a match, this routine creates and displays a popup window contain-
ing the list’s choices and the routine is exited.

If a penDownEvent is received while the list’s popup window is
displayed and the pen position is outside the bounds of the popup
window, the window is dismissed. If the pen position is within the
bounds of the window, this routine tracks the pen until it comes up.
If the pen comes up outside the list object, a lstEnterEvent is
added to the event queue.

Palm OS User Interface Functions
List UI Functions

336 Developing Palm OS 3.0 Applications, Part I

LstMakeItemVisible

Purpose Make an item visible, preferably at the top. If the item is already vis-
ible, make no changes.

Prototype LstMakeItemVisible (ListPtr ListP,

Word itemNum)

Parameters ListP Pointer to a list object (ListType data struc-
ture).

itemNum Item to select (0 = first item in list).

Result Returns nothing.

Comments Does not visually update the list. You must call LstDrawList to
update it.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList

LstNewList

Purpose Create a new list object dynamically and install it in the specified
form.

Prototype Err LstNewList (VoidPtr *formPP,
const Word id,
const Word x,
const Word y,
const Word width,
const Word height,
const FontID font,
const Word visibleItems,
const Word triggerId)

Palm OS User Interface Functions
List UI Functions

Developing Palm OS 3.0 Applications, Part I 337

Parameters <--> formPP Pointer to the pointer to the form in which the
new list is installed. This value is not a handle;
that is, the old formPP value is not necessarily
valid after this function returns. In subsequent
calls, always use the new formPP value re-
turned by this function.

id Symbolic ID of the list, specified by the devel-
oper. By convention, this ID should match the
resource ID (not mandatory).

x Horizontal coordinate of the upper-left corner
of the list’s boundaries, relative to the window
in which it appears.

y Vertical coordinate of the upper-left corner of
the list’s boundaries, relative to the window in
which it appears.

width Width of the list, expressed in pixels. Valid val-
ues are 1 - 160.

height Height of the list, expressed in pixels.Valid val-
ues are 1 - 160.

visibleItems Number of list items that can be viewed
together.

triggerId Symbolic ID of the popup trigger associated
with the new list. This ID is specified by the de-
veloper; by convention, this ID should match
the resource ID (not mandatory).

Result Returns 0 if no error, or XXXXXXX if an error occurs.

See Also LstDrawList, FrmRemoveObject

Palm OS User Interface Functions
List UI Functions

338 Developing Palm OS 3.0 Applications, Part I

LstPopupList

Purpose Display a modal window that contains the items in the list.

Prototype short LstPopupList (ListPtr ListP)

Parameters ListP Pointer to list object.

Result Returns the list item selected, or -1 if no item was selected.

Comments Saves the previously active window. Creates and deletes the new
popup window.

See Also FrmGetObjectPtr

LstScrollList

Purpose Scroll the list up or down a number of times.

Prototype Boolean LstScrollList (ListPtr pList,

enum directions direction,

short itemCount)

Parameters pList Pointer to list object

direction Direction to scroll

itemCount Items to scroll in direction

Result Returns TRUE when the list is actually scrolled, FALSE otherwise.
May return FALSE if a scroll past the end of the list is requested.

Palm OS User Interface Functions
List UI Functions

Developing Palm OS 3.0 Applications, Part I 339

LstSetDrawFunction

Purpose Set a callback function to draw each item instead of drawing the
item’s text string.

Prototype void LstSetDrawFunction (ListPtr list,

ListDrawDataFuncPtr func)

Parameters list Pointer to list object.

func Pointer to function which draws items.

Result Returns nothing.

Comments This function also adjusts topItem to prevent a shrunken list from
being scrolled down too far. Use this function for custom draw
functionality.

See Also FrmGetObjectPtr, LstSetListChoices

LstSetHeight

Purpose Set the number of items visible in a list.

Prototype void LstSetHeight (ListPtr ListP,

Word visibleItems)

Parameters ListP Pointer to list object.

visibleItems Number of choices visible at once.

Result Returns nothing.

Comments This function doesn’t redraw the list if it’s already visible.

See Also FrmGetObjectPtr

Palm OS User Interface Functions
List UI Functions

340 Developing Palm OS 3.0 Applications, Part I

LstSetListChoices

Purpose Set the items of a list to the array of text strings passed to this func-
tion. This function doesn’t affect the display of the list. If the list is
visible, erases the old list items.

Prototype void LstSetListChoices (ListPtr ListP,

char ** itemsText,

UInt numItems)

Parameters ListP Pointer to a list object.

itemsText Pointer to an array of text strings.

numItems Number of choices in the list.

Result Returns nothing.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList, LstSetHeight, LstSetDrawFunction

LstSetPosition

Purpose Set the position of a list.

Prototype void LstSetPosition (ListPtr ListP,

short x,

short y)

Parameters ListP Pointer to a list object

x, y Left and top bound.

Result Returns nothing.

Comments List is not redrawn. Don’t call this function when the list is visible.

See Also FrmGetObjectPtr

Palm OS User Interface Functions
List UI Functions

Developing Palm OS 3.0 Applications, Part I 341

LstSetSelection

Purpose Set the selection for a list.

Prototype void LstSetSelection (ListPtr ListP,

Word itemNum)

Parameters ListP Pointer to a list object.

itemNum Item to select (0 = first item in list; -1 = none).

Result Returns nothing.

Comments The old selection, if any, is unselected. If the list is visible, the select-
ed item is visually updated. The list is scrolled to the selection, if
necessary.

See Also FrmGetObjectPtr

LstSetTopItem

Purpose Set the item visible. The item cannot become the top item if it’s on
the last page.

Prototype void LstSetTopItem (ListPtr ListP, UInt itemNum)

Parameters ListP Pointer to list object.

itemNum Item to select (0 = first item in list).

Result Returns nothing.

Comments Does not update the display.

See Also FrmGetObjectPtr, LstSetSelection, LstMakeItemVisible,
LstDrawList, LstEraseList

Palm OS User Interface Functions
Menu Functions

342 Developing Palm OS 3.0 Applications, Part I

Menu Functions

MenuDispose

Purpose Release any memory allocated to support the menu management.

Prototype void MenuDispose (MenuBarPtr MenuP)

Parameters MenuP Pointer returned by MenuInit; this is a pointer
to a MenuBarType data structure.

Result Returns nothing.

Comments This function is useful for applications that have multiple menu
bars. It frees all memory allocated by a menu, resets the command
status, and restores the saved bits to the screen.

See Also MenuInit, MenuDrawMenu

Palm OS User Interface Functions
Menu Functions

Developing Palm OS 3.0 Applications, Part I 343

MenuDrawMenu

Purpose Draw the current menu bar and the last pull-down that was visible.

Prototype void MenuDrawMenu (MenuBarPtr MenuP)

Parameters MenuP Pointer to a MenuBarType data structure.

Result Returns nothing.

Comments If a pull-down menu was visible the last time the menu bar was vis-
ible, the pull-down menu is also drawn. The first time a menu bar is
drawn, no pull-down menu is displayed.

The menu bar and the pull-down menu are drawn in front of all the
applications windows.

Screen regions obscured by the menus are saved by this function
and restored by MenuEraseStatus.

See Also MenuInit, MenuEraseStatus, MenuDispose

Palm OS User Interface Functions
Menu Functions

344 Developing Palm OS 3.0 Applications, Part I

MenuEraseStatus

Purpose Erase the menu command status.

Prototype void MenuEraseStatus (MenuBarPtr MenuP)

Parameters MenuP Pointer to a MenuBarType data structure, or
NULL for the current menu.

Result Returns nothing.

Comments Under most circumstances, you do not need to call this function ex-
plicitly—just let the current menu command status remove itself au-
tomatically. Otherwise, you may cause text to be erased before the
user has a chance to see it.

You need to call MenuEraseStatus explicitly only before execut-
ing a menu command that displays a new form or one that causes
the screen display to be modified.

When a menu command displays a new form, the system may save
the bits in the current form. In some cases, the saved bits include the
menu status; when you return to the original form later, the saved
menu status is displayed and not erased. To avoid this problem, call
MenuEraseStatus before executing the menu command that dis-
plays the new form.

You should also call this function before issuing a menu command
which causes the bits under the menu status to be modified. For ex-
ample, you need to call MenuEraseStatus before using menu
commands to update text or other items. However, you need not do
so for static buttons under the menu status (which is the most com-
mon case) because their appearance does not change.

See Also MenuInit

Palm OS User Interface Functions
Menu Functions

Developing Palm OS 3.0 Applications, Part I 345

MenuGetActiveMenu

Purpose Returns a pointer to the current menu.

Prototype MenuBarPtr MenuGetActiveMenu (void)

Parameters None.

Result Returns a pointer to the current menu, NULL if there is none.

See Also MenuSetActiveMenu

Palm OS User Interface Functions
Menu Functions

346 Developing Palm OS 3.0 Applications, Part I

MenuHandleEvent

Purpose Handle events in the current menu. This routine handles two types
of events, penDownEvent and winEnterEvent.

Prototype Boolean MenuHandleEvent (MenuBarPtr MenuP,

EventPtr event,

WordPtr error)

Parameters MenuP Pointer to a MenuBarType data structure.

event Pointer to an EventType structure.

error Error (or 0 if no error).

Result Returns TRUE if the event is handled; that is, if the event is a
penDownEvent within the menu bar or the menu, or the event is a
keyDownEvent that the menu supports.

Comments When MenuHandleEvent receives a penDownEvent, it checks if
the pen position is within the bounds of the menu object. If it is,
MenuHandleEvent tracks the pen until it comes up. If the pen
comes up within the bounds of the menu, a winEnterEvent is
added to the event queue, and the routine is exited.

When MenuHandleEvent receives a winEnterEvent, it checks
that the menu ID in the event record matches the ID of the specified
menu. If there is a match, MenuHandleEvent creates and displays
a popup window containing the menu’s choices, and the routine is
exited.

If a penDownEvent is received while the menu’s popup window is
displayed and the pen position is outside the bounds of the popup
window, the menu is dismissed. If the pen position is within the
bounds of the window, MenuHandleEvent tracks the pen until it
comes up. If the pen comes up in the menu, a winExitEvent is
added to the event queue.

Palm OS User Interface Functions
Menu Functions

Developing Palm OS 3.0 Applications, Part I 347

MenuInit

Purpose Load a menu resource from a resource file.

Prototype MenuBarPtr MenuInit (Word resourceId)

Parameters resourceId ID that identifies the menu resource.

Result Returns the pointer to a memory block allocated to hold the menu
resource (a pointer to a MenuBarType data structure).

Comments The menu is not usable until MenuSetActiveMenu is called.

See Also MenuSetActiveMenu, MenuDispose

MenuSetActiveMenu

Purpose Set the current menu.

Prototype MenuBarPtr MenuSetActiveMenu (MenuBarPtr MenuP)

Parameters MenuP Pointer to the memory block that contains the
new menu, or NULL for none.

Result Returns a pointer to the menu that was active before the new menu
was set, or NULL if no menu was active.

See Also MenuGetActiveMenu

Palm OS User Interface Functions
Miscellaneous User Interface Functions

348 Developing Palm OS 3.0 Applications, Part I

Miscellaneous User Interface Functions

AbtShowAbout

Purpose Displays the info dialog box. The application name is picked up
from either the application name resource, defined in constructor, or
the name of the application database (which is assigned in the
makefile).

Prototype void AbtShowAbout (ULong creator)

Parameters creator Creator ID of this application.

Result Returns nothing.

DayHandleEvent

Purpose Handle event in the specified control. This routine handles two type
of events, penDownEvent and ctlEnterEvent.

Prototype Boolean DayHandleEvent (DaySelectorPtr pSelector,

EventPtr pEvent)

Parameters pSelector Pointer to control object (ControlType)

pEvent Pointer to an EventType structure.

Result TRUE if the event was handled or FALSE if it was not.

Posts a daySelectEvent with information on whether to use the
date.

A date is used if the user selects a day in the visible month.

Palm OS User Interface Functions
Miscellaneous User Interface Functions

Developing Palm OS 3.0 Applications, Part I 349

KeySetMask

Purpose Specify which keys generate keyDownEvents.

You can specify this either by using this function or by using the
powerOn modifier.

Prototype DWord KeySetMask (DWord keyMask)

Parameters keyMask Mask with bits set for those keys to generate
keyDownEvents for.

Result Returns the old keyMask.

LocGetNumberSeparators

Purpose Get localized number separators.

Prototype void LocGetNumberSeparators(

NumberFormatType numberFormat,

Char *thousandSeparator,

Char *decimalSeparator)

Parameters numberFormat The format to use

thousandSeparator
Return a localized thousand separator here (al-
locate 1 char).

decimalSeparator
Return a localized decimal separator here (allo-
cate 1 char).

Result Returns nothing.

See Also StrLocalizeNumber, StrDelocalizeNumber (documented in
“Developing Palm OS Applications, Part II)

Palm OS User Interface Functions
Pen Manager Functions

350 Developing Palm OS 3.0 Applications, Part I

Pen Manager Functions

PenCalibrate

Purpose Set the calibration of the pen.

Prototype Err PenCalibrate (PointType* digTopLeftP,

 PointType* digBotRightP,

PointType* scrTopLeftP,

PointType* scrBotRightP)

Parameters digTopLeftP Digitizer output from top-left coordinate.

digBotRightP Digitizer output from bottom-right coordinate.

scrTopLeftP Screen coordinate near top-left corner.

scrBotRightP Screen coordinate near bottom-right corner.

Result Returns 0 if no error.

Comments Called by Preferences application when calibrating pen.

See Also PenResetCalibration

Palm OS User Interface Functions
Pen Manager Functions

Developing Palm OS 3.0 Applications, Part I 351

PenResetCalibration

Purpose Reset the calibration in preparation for calibrating the pen again.

Prototype Err PenResetCalibration (void)

Parameters None.

Result Always returns 0.

Comments Called by Preferences application before capturing points when cal-
ibrating the pen.

See Also PenCalibrate

WARNING: The digitizer is off after calling this routine and must
be calibrated again!

Functions for System Use Only

PenClose

Prototype Err PenClose (void)

WARNING: This function for use by system software only.

PenGetRawPen

Prototype Err PenGetRawPen (PointType* penP)

See Instead EvtDequeuePenPoint (documented in “Developing Palm OS Ap-
plications, Part II”)

WARNING: This function for use by system software only.

Palm OS User Interface Functions
Pen Manager Functions

352 Developing Palm OS 3.0 Applications, Part I

PenOpen

Prototype Err PenOpen (void)

WARNING: This function for use by system software only.

PenSleep

Prototype Err PenSleep (void)

WARNING: This function for use by system software only.

PenRawToScreen

Prototype Err PenRawToScreen (PointType* penP)

WARNING: This function for use by system software only.

PenScreenToRaw

Prototype Err PenScreenToRaw (PointType* penP)

WARNING: This function for use by system software only.

PenWake

Prototype Err PenWake (void)

WARNING: This function for use by system software only.

Palm OS User Interface Functions
Progress Manager Functions

Developing Palm OS 3.0 Applications, Part I 353

Progress Manager Functions

PrgHandleEvent

Purpose Handles events related to the active progress dialog.

Prototype Boolean PrgHandleEvent (ProgressPtr prgP,
EventPtr eventP)

Parameters --> prgP Pointer to a progress structure created by
PrgStartDialog.

--> eventP Pointer to an event. You can pass a NULL event
to cause this function to immediately call your
textCallback function and then update the
dialog (for example, after you call
PrgUpdateDialog).

Result Returns TRUE if the system handled the event. If it returns FALSE,
you should check if the user canceled the dialog by calling
PrgUserCancel.

Comments Use this function instead of SysHandleEvent when you have a
progress dialog. PrgHandleEvent internally calls
SysHandleEvent as needed.

Note that the auto power-off feature of the system is automatically
disabled when you use this function, unless the dialog is just dis-
playing an error. This function also prevents appStopEvent
events.

If an update to the dialog is pending (from a call to
PrgUpdateDialog, for example) this function handles that event
and causes the dialog to be updated. As part of this process, the
textCallback function you specified in your call to
PrgStartDialog is called. Your textCallback function should
set the textP buffer in the PrgCallbackData structure with the
new message to be displayed in the progress dialog. Optionally, you
can also set the bitmapId field to include an icon in the update

Palm OS User Interface Functions
Progress Manager Functions

354 Developing Palm OS 3.0 Applications, Part I

dialog. For more information about the textCallback function,
see the section “Progress textCallback Function” on page 186.

See Also PrgStartDialog, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

PrgStartDialog

Purpose Displays a progress dialog that can be updated.

Prototype ProgressPtr PrgStartDialog (CharPtr title,
PrgCallbackFunc

textCallback)

Parameters --> title Pointer to a title for the progress dialog. Must
be a NULL-terminated string that is no longer
than progressMaxTitle (20).

--> textCallback Pointer to a callback function that supplies the
text and icons for the current progress state. For
more information about this function, see the
section “Progress textCallback Function” on
page 186.

Result A pointer to a progress structure. This pointer must be passed to
other progress manager functions and MUST be released by calling
PrgStopDialog. Null is returned if the system is unable to allocate
the progress structure.

Comments The dialog created by this function can be updated by another pro-
cess via the PrgUpdateDialog function. The dialog can contain a
Cancel or OK button. The initial dialog defaults to stage 0 and calls
the textCallback function to get the initial text and icon data for
the progress dialog.

This function saves the screen bits behind the progress dialog, and
these are restored when you call PrgStopDialog. Because of this,
you should minimize changes to the screen while the progress

Palm OS User Interface Functions
Progress Manager Functions

Developing Palm OS 3.0 Applications, Part I 355

dialog is displayed, otherwise, the restored bits may not match with
what is currently being displayed.

See Also PrgHandleEvent, PrgStopDialog, PrgUpdateDialog,
PrgUserCancel

PrgStopDialog

Purpose Releases memory used by the progress dialog and restores the
screen to its initial state.

Prototype void PrgStopDialog (ProgressPtr prgP,
Boolean force)

Parameters --> prgP Pointer to a progress structure created by
PrgStartDialog.

--> force TRUE removes the progress dialog immediate-
ly, FALSE causes the system to wait until the
user confirms an error, if one is displayed.

Result Returns nothing.

Comments If the progress dialog is in a state where it is displaying an error
message to the user, this function normally waits for the user to con-
firm the dialog before it removes the dialog. If you specify TRUE for
the force parameter, this causes the system to remove the dialog
immediately.

See Also PrgHandleEvent, PrgStartDialog, PrgUpdateDialog,
PrgUserCancel

Palm OS User Interface Functions
Progress Manager Functions

356 Developing Palm OS 3.0 Applications, Part I

PrgUpdateDialog

Purpose Updates the status of the current progress dialog.

Prototype void PrgUpdateDialog (ProgressPtr prgP,
Word err,

Word stage,

CharPtr messageP,

Boolean updateNow)

Parameters --> prgP Pointer to a progress structure created by
PrgStartDialog.

--> err If non-zero, causes the dialog to go into error
mode, to display an error message with only an
OK button.

--> stage Current stage of progress. The callback function
can use this to determine the correct string to
display in the updated dialog.

--> messageP Extra text that may be useful in displaying the
progress for this stage. Used by the callback
function, which can append it to the base mes-
sage that is based on the stage.

--> updateNow If TRUE, the dialog is immediately updated.
Otherwise, the dialog is updated on the next
call to PrgHandleEvent.

Result Returns nothing.

Comments For more information about how the parameters are used and the
callback function, see the section “Progress textCallback Function”
on page 186.

See Also PrgHandleEvent, PrgStartDialog, PrgStopDialog,
PrgUserCancel

Palm OS User Interface Functions
Progress Manager Functions

Developing Palm OS 3.0 Applications, Part I 357

PrgUserCancel

Purpose Returns TRUE if the user cancelled the process via the progress
dialog.

Prototype Word PrgUserCancel (ProgressPtr prgP)

Parameters --> prgP Pointer to a progress structure created by
PrgStartDialog.

Result Returns the value of the cancel field in the progress structure.

Comments This is a macro you can use to check if the user cancelled the pro-
cess. If the user did cancel, you can change the progress dialog text
to something like “Cancelling,” or “Disconnecting,” or whatever is
appropriate for your application. Then you should cancel the pro-
cess, end the communication session, or do whatever processing is
necessary.

See Also PrgHandleEvent, PrgStartDialog, PrgStopDialog,
PrgUpdateDialog

Palm OS User Interface Functions
Rectangle Functions

358 Developing Palm OS 3.0 Applications, Part I

Rectangle Functions

RctCopyRectangle

Purpose Copy the source rectangle to the destination rectangle.

Prototype void RctCopyRectangle (const RectanglePtr srcRect,

const RectanglePtr dstRect)

Parameters srcRect A pointer to the rectangle to be copied.

dstRect A pointer to the destination rectangle.

See Also RctSetRectangle

RctGetIntersection

Purpose Determine the intersection of two rectangles.

Prototype void RctGetIntersection (const RectanglePtr r1,

const RectanglePtr r2,

RectanglePtr r3)

Parameters r1 A pointer to a source rectangle.

r2 A pointer to the other source rectangle.

r3 Upon return, points to a rectangle representing
the intersection of r1 and r2.

Comments The rectangle type RectangleType, which is pointed to by
RectanglePtr, stores the coordinates for the top-left corner of the
rectangle plus the rectangle’s width and height. This function re-
turns in the r3 parameter a pointer to the rectangle that represents
the intersection of the first two rectangles.

If rectangles r1 and r2 do not intersect, r3 contains a rectangle that
begins at coordinates (0, 0) and has 0 width and 0 height.

Palm OS User Interface Functions
Rectangle Functions

Developing Palm OS 3.0 Applications, Part I 359

RctInsetRectangle

Purpose Move all of the boundaries of a rectangle by a specified offset.

Prototype void RctInsetRectangle (const RectanglePtr r,

SWord insetAmt)

Parameters r A pointer to the rectangle.

insetAmt Number of pixels to move the boundaries. This
can be a negative number.

Comments The rectangle type RectangleType, which is pointed to by Rect-
anglePtr, stores the coordinates for the top-left corner of the rect-
angle plus the rectangle’s width and height. This function adds
insetAmt to the x and y values of the top-left coordinate and then
adjusts the width and the height accordingly so that all of the sides
of the rectangle are contracted or expanded by the same amount.

A positive insetAmt creates a smaller rectangle that is contained
inside the old rectangle’s boundaries. A negative insetAmt creates
a larger rectangle that surrounds the old rectangle.

See Also RctOffsetRectangle

Palm OS User Interface Functions
Rectangle Functions

360 Developing Palm OS 3.0 Applications, Part I

RctOffsetRectangle

Purpose Move the top and left boundaries of a rectangle by the specified
values.

Prototype void RctOffsetRectangle (const RectanglePtr r,

const SWord deltaX,

const SWord deltaY)

Parameters r A pointer to the rectangle.

deltaX Number of pixels to move the left boundary.
This can be a negative number.

deltaY Number of pixels to move the top boundary.
This can be a negative number.

Comments The rectangle type RectangleType, which is pointed to by
RectanglePtr, stores the coordinates for the top-left corner of the
rectangle plus the rectangle’s width and height. This function adds
deltaX to the x value of the top-left coordinate and deltaY to the
y value. The width and height are unchanged. Thus, this function
shifts the position of the rectangle by the deltaX and deltaY
amounts.

See Also RctInsetRectangle

Palm OS User Interface Functions
Rectangle Functions

Developing Palm OS 3.0 Applications, Part I 361

RctPtInRectangle

Purpose Determine if a point lies within a rectangle’s boundaries.

Prototype Boolean RctPtInRectangle (const SWord x,

const SWord y,

const RectanglePtr r)

Parameters x The x coordinate of the point.

y The y coordinate of the point.

r The rectangle.

Result Returns TRUE if the point (x, y) lies within the boundaries of rectan-
gle r, FALSE otherwise.

RctSetRectangle

Purpose Sets a rectangle’s values.

Prototype void RctSetRectangle (const RectanglePtr r,

const SWord left,

const SWord top,

const SWord width,

const SWord height)

Parameters r A pointer to the rectangle to be set.

left The x value for the top-left coordinate of the
rectangle.

top The y value for the top-left coordinate of the
rectangle.

width The rectangle’s width.

height The rectangle’s height.

See Also RctCopyRectangle

Palm OS User Interface Functions
Scrollbar Functions

362 Developing Palm OS 3.0 Applications, Part I

Scrollbar Functions

SclDrawScrollBar

Purpose Draw a scroll bar.

Prototype void SclDrawScrollBar (ScrollBarPtr bar)

Parameters bar Pointer to a scroll bar structure.

Result Returns nothing.

SclGetScrollBar

Purpose Retrieve a scrollbar’s current position, its range, and the size of a
page. If the scroll bar is visible, it’s redrawn.

Prototype void SclGetScrollBar (ScrollBarPtr bar,

ShortPtr valueP,

ShortPtr minP,

ShortPtr maxP,

ShortPtr pageSizeP)

Parameters bar Pointer to a scroll bar structure.

valueP Pointer to current value (position).

minP Pointer to minimum value.

maxP Pointer to maximum value.

pageSizeP Pointer to size of a page (used when page
scrolling).

Result: Returns nothing.

Stores the current values in valueP, minP, maxP, and pageSizeP.

See Also SclSetScrollBar

Palm OS User Interface Functions
Scrollbar Functions

Developing Palm OS 3.0 Applications, Part I 363

SclHandleEvent

Purpose Handles the three scrollbar events.

Prototype Boolean SclHandleEvent (ScrollBarPtr bar,

EventPtr event)

Parameters bar Pointer to a scroll bar structure.

event Pointer to an event (EventType data
structure).

Result Returns TRUE if the event was handled.

Comment When the user touches a scroll bar with a pen, the system sends a
sclEnterEvent. Generally, applications don’t need to respond to
that event.

When the user holds and drags the scroll bar with the pen, the sys-
tem sends a sclRepeatEvent. Applications that implement dy-
namic scrolling should catch this event and move the text each time
one arrives.

When the user releases the pen from the scroll bar, the system sends
a sclExitEvent. Applications that implement non-dynamic
scrolling should catch this event and move the text when
sclExitEvent arrives. Applications that implement dynamic
scrolling can ignore this event.

Palm OS User Interface Functions
Scrollbar Functions

364 Developing Palm OS 3.0 Applications, Part I

SclSetScrollBar

Purpose Set the scrollbar’s current position, its range, and the size of a page.
If the scroll bar is visible, it’s redrawn.

Prototype void SclSetScrollBar (ScrollBarPtr bar,

Short value,

Short min,

 Short max,

Short pageSize)

Parameters bar Pointer to a scroll bar structure.

value Current value (position); one of the initializa-
tion values

min Minimum value.

max Maximum value.

pageSize Size of a page (used when page scrolling).

Result Returns nothing.

See Also SclGetScrollBar

Palm OS User Interface Functions
Functions for System Use Only

Developing Palm OS 3.0 Applications, Part I 365

Functions for System Use Only
Find

Prototype void Find (GoToParamsPtr goToP)

WARNING: System Use Only!

FindDrawHeader

Prototype Boolean FindDrawHeader (FindParamsPtr params,

CharPtr title)

WARNING: System Use Only!

FindGetLineBounds

Prototype void FindGetLineBounds (FindParamsPtr params,

RectanglePtr r)

WARNING: System Use Only!

FindSaveMatch

Prototype Boolean FindSaveMatch (FindParamsPtr params,

UInt recordNum,

Word pos,

UInt fieldNum,

DWord appCustom,

UInt dbCardNo,

LocalID dbID)

WARNING: System Use Only!

Palm OS User Interface Functions
Functions for System Use Only

366 Developing Palm OS 3.0 Applications, Part I

FindStrInStr

Prototype Boolean FindStrInStr (CharPtr strToSearch,

CharPtr strToFind,

WordPtr posP)

WARNING: System Use Only!

UIInitialize

Prototype void UIInitialize (void)

WARNING: System Use Only!

UIReset

Prototype void UIReset (void)

WARNING: System Use Only!

Palm OS User Interface Functions
Time Selection Functions

Developing Palm OS 3.0 Applications, Part I 367

Time Selection Functions

SelectDay

Purpose Display a form showing a date; allow user to select a different date.

Prototype Boolean SelectDay (SelectDayType selectDayBy,
SWord *month,

 SWord *day,
 SWord *year,
 CharPtr title)

Parameters selectDayBy

month, day, year Month, day, and year selected.

title String title for the dialog.

Result TRUE if the OK button was pressed. If TRUE, month, day, and year
contain the new date.

See Also SelectDayV10

SelectDayV10

Purpose Display a form showing a date, allow user to select a different date.

Prototype Boolean SelectDay (int *month, int *day,
int *year, CharPtr title)

Parameters month, day, year Month, day and year selected.

title String title for the dialog.

Result Returns TRUE if the OK button was pressed. In that case, the param-
eters passed are changed.

See Also SelectDay

Palm OS User

Palm OS User Interface Functions
Time Selection Functions

368 Developing Palm OS 3.0 Applications, Part I

SelectTime

Purpose Display a form showing the time and allow the user to select a dif-
ferent time.

Prototype Boolean SelectTime (TimePtr startTimeP,
TimePtr EndTimeP,
Boolean untimed,
CharPtr title,
SWord startOfDay)

Parameters startTimeP, EndTimeP
Pointers to values of type TimeType. Pass val-
ues to display in these two parameters. If the
user makes a selection and taps the OK button,
the selected values are returned here.

untimed Pass in TRUE to indicate that no time is selected.
If the user sets the time to no time then
startTimeP and EndTimeP are both set to the
constant noTime (-1).

title A pointer to a string to display as the title.
Doesn’t change as the function executes.

startofDay The hour that the hour list displays at its top. To
see earlier hours, the user can scroll the list up.
The value must be between 0 to 12, inclusive.

Result Returns TRUE if the user selects OK and FALSE otherwise. If TRUE is
returned expect the values that startTimeP and endTimeP are
likely to be changed.

See Also SelectDay

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 369

Table Functions

TblDrawTable

Purpose Draw a table.

Prototype void TblDrawTable (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

See Also TblEraseTable, TblRedrawTable,
TblSetCustomDrawProcedure

TblEditing

Purpose Check whether a table is in edit mode.

Prototype Boolean TblEditing (TablePtr table)

Parameters table Pointer to a table object.

Result Returns TRUE if the table is in edit mode, FALSE otherwise.

Comments The table is in edit mode while the user edits a text item.

Palm OS User Interface Functions
Table Functions

370 Developing Palm OS 3.0 Applications, Part I

TblEraseTable

Purpose Erase a table object.

Prototype void TblEraseTable (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

See Also TblDrawTable, TblSetCustomDrawProcedure,
TblRedrawTable

TblFindRowData

Purpose Return the row number that contains the specified data value.

Prototype Boolean TblFindRowData (TablePtr table,
ULong data,
WordPtr rowP)

Parameters table Pointer to a table object.

data Row data to find.

rowP Pointer to the row number (return value).

Result Returns TRUE if a match was found, FALSE otherwise.

See Also TblGetRowData, TblFindRowID

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 371

TblFindRowID

Purpose Return the number of the row that matches the specified ID.

Prototype Boolean TblFindRowID (TablePtr table,
Word id,
WordPtr rowP)

Parameters table Pointer to a table object.

id Row ID to find.

rowP Pointer to the row number (return value).

Result Returns TRUE if a match was found, FALSE otherwise.

See Also TblFindRowData

TblGetBounds

Purpose Return the bounds of a table.

Prototype void TblGetBounds (TablePtr table, RectanglePtr r)

Parameters table Pointer to a table object.

r Pointer to a RectangleType structure.

Result Returns nothing. Stores the bounds in r.

See Also TblGetItemBounds

Palm OS User Interface Functions
Table Functions

372 Developing Palm OS 3.0 Applications, Part I

TblGetColumnSpacing

Purpose Return the spacing after the specified column.

Prototype Word TblGetColumnSpacing (TablePtr table,
Word column)

Parameters table Pointer to a table object.

column Column number (zero-based).

Result Returns the spacing after column (in pixels).

See Also TblGetColumnWidth, TblSetColumnSpacing,
TblSetColumnUsable

TblGetColumnWidth

Purpose Return the width of the specified column.

Prototype Word TblGetColumnWidth (TablePtr table,
Word column)

Parameters table Pointer to a table object.

column Column number (zero-based).

Result Returns the width of a column (in pixels).

See Also TblGetColumnSpacing, TblSetColumnWidth,
TblSetColumnUsable

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 373

TblGetCurrentField

Purpose Return a pointer to the FieldType structure in which the user is
currently editing a text item.

Prototype FieldPtr TblGetCurrentField (TablePtr table)

Parameters table Pointer to a table object.

Result Returns FieldPtr, or NULL if the table is not in edit mode.

See Also TblGetSelection

TblGetItemBounds

Purpose Return the bounds of an item in a table.

Prototype void TblGetItemBounds (TablePtr table,
Word row,
Word column,
RectanglePtr r)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

r Pointer to a structure that holds the bounds of
the item.

Result Returns nothing. Stores the bounds in r.

Palm OS User Interface Functions
Table Functions

374 Developing Palm OS 3.0 Applications, Part I

TblGetItemFont

Purpose Return the font used to display a table item.

Prototype FontID TblGetItemFont (TablePtr table,
Word row,
Word column)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

column Column of the item to select (zero-based).

Result Returns the ID of the font used for the table item at the row and col-
umn indicated.

See Also TblSetItemFont

TblGetItemInt

Purpose Return the integer value stored in a table item.

Prototype Word TblGetItemInt (TablePtr table,
Word row,
Word column)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

column Column of the item to select (zero-based).

Result Returns the integer value.

See Also TblSetItemInt

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 375

TblGetLastUsableRow

Purpose Return the last row in a table that is usable (visible).

Prototype Word TblGetLastUsableRow (TablePtr table)

Parameters table Pointer to a table object.

Result Returns the row index (zero-based) or -1 if there are no usable rows.

See Also TblGetRowData, TblGetRowID

TblGetNumberOfRows

Purpose Return the number of rows in a table.

Prototype Word TblGetNumberOfRows (TablePtr table)

Parameters table Pointer to a table object.

Result Returns the number of rows in the specified table.

TblGetRowData

Purpose Return the data value of the specified row. The data value is a place-
holder for application-specific values.

Prototype ULong TblGetRowData (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

See Also TblGetRowID, TblSetRowData

Palm OS User Interface Functions
Table Functions

376 Developing Palm OS 3.0 Applications, Part I

TblGetRowHeight

Purpose Return the height of the specified row.

Prototype Word TblGetRowHeight (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row to get (zero-based).

Result Returns the height in pixels.

See Also TblGetItemBounds, TblSetRowHeight

TblGetRowID

Purpose Return the ID value of the specified row.

Prototype Word TblGetRowID (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row for which the ID will be returned
(zero-based).

Result Returns the ID value of the row in the table.

See Also TblGetRowData, TblSetRowHeight

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 377

TblGetSelection

Purpose Return the row and column of the currently selected table item.

Prototype Boolean TblGetSelection (TablePtr table,
WordPtr rowP,
WordPtr columnP)

Parameters table Pointer to a table object.

rowP, columnP Pointer to a Word variable in which to store the
row /column (zero-based).

Result Returns TRUE if the item is highlighted, FALSE if not.

See Also TblSetRowSelectable

TblGrabFocus

Purpose Put a table into edit mode.

Prototype void TblGrabFocus (TablePtr table,
Word row,
Word column)

Parameters table Pointer to a table object.

row Current row to be edited (zero-based).

column Current column to be edited (zero-based).

Result Returns nothing.

Comments Displays an error if the row or column passed is out of bounds. An
editable field must exist in the coordinates passed to this function.

See Also TblReleaseFocus

Palm OS User Interface Functions
Table Functions

378 Developing Palm OS 3.0 Applications, Part I

TblHandleEvent

Purpose Handle an event for the table.

Prototype Boolean TblHandleEvent (TablePtr table,
EventPtr event)

Parameters table Pointer to a table object.

event The event to be handled.

Result Returns TRUE if the event was handled, FALSE if it was not.

TblHasScrollBar

Purpose Set the hasScrollBar attribute in the table. A table that has its at-
tribute set will initialize the associated field object such that it will
send fldChanged events when that scroll bar needs to be updated.

Prototype void TblHasScrollBar (TablePtr table,
Boolean hasScrollBar)

Parameters table Pointer to a table object

hasScrollBar TRUE to set the attribute, FALSE to unset it.

Result Returns nothing.

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 379

TblInsertRow

Purpose Insert a row into the table before the specified row.

The number of rows in the table is not increased; the last row in the
table is removed.

Prototype void TblInsertRow (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row to insert (zero-based).

Result Returns nothing.

Comments If the row parameter is greater than or equal to the number of rows
in the table, an error is displayed.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkRowInvalid

TblMarkRowInvalid

Purpose Mark the image of the specified row invalid.

Prototype void TblMarkRowInvalid (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

Comments After calling this function, call TblRedrawTable to redraw all
rows marked invalid. Rows not marked invalid are not redrawn.

Result Returns nothing.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkTableInvalid, TblRowInvalid

Palm OS User Interface Functions
Table Functions

380 Developing Palm OS 3.0 Applications, Part I

TblMarkTableInvalid

Purpose Mark the image of all the rows in a table invalid.

Prototype void TblMarkTableInvalid (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

Comments After calling this function, you must call TblRedrawTable to re-
draw all rows. Rows not marked invalid are not redrawn.

See Also TblEraseTable, TblRedrawTable

TblRedrawTable

Purpose Redraw the rows of the table that are marked invalid.

Prototype void TblRedrawTable (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

See Also TblMarkTableInvalid

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 381

TblReleaseFocus

Purpose Release the focus.

Prototype void TblReleaseFocus (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

Comments If the current item is a text item, the memory allocated for editing is
released and the insertion point is turned off.

See Also TblGrabFocus

TblRemoveRow

Purpose Remove the specified row from the table.

Prototype void TblRemoveRow (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row to remove (zero-based).

Result Returns nothing.

Comments The number of rows in the table is not decreased; an unusable row is
added to the end of the table. If an invalid row is specified, an error
is displayed.

This function does not visually update the display.

See Also TblInsertRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkRowInvalid

Palm OS User Interface Functions
Table Functions

382 Developing Palm OS 3.0 Applications, Part I

TblRowInvalid

Purpose Determine whether a row is invalid. Invalid rows need to be
redrawn.

Prototype Boolean TblRowInvalid (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row number (zero-based).

Result Returns TRUE if the row is invalid, FALSE if it’s valid.

See Also TblMarkRowInvalid

TblRowSelectable

Purpose Determine whether the specified row is selectable. Rows that are not
selectable don’t highlight when touched.

Prototype Boolean TblRowSelectable (TablePtr table,
Word row)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

Result Returns TRUE if the row is selectable, FALSE if it’s not.

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 383

TblRowUsable

Purpose Determine whether the specified row is usable.

Prototype Boolean TblRowUsable (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row number (zero-based).

Result Returns TRUE if the row is usable, FALSE if it’s not.

Comments Rows that are not usable do not display.

See Also TblRowSelectable, TblGetLastUsableRow

TblSelectItem

Purpose Select (highlight) the specified item. If there is already a selected
item, it is unhighlighted.

Prototype void TblSelectItem (TablePtr table,
Word row,
Word column)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

column Column of the item to select (zero-based).

Result Returns nothing.

See Also TblRowSelectable, TblGetItemBounds, TblGetItemInt

Palm OS User Interface Functions
Table Functions

384 Developing Palm OS 3.0 Applications, Part I

TblSetBounds

Purpose Sets the bounds of a table.

Prototype void TblSetBounds (TablePtr table, RectanglePtr r)

Parameters table Pointer to a table object.

r Pointer to a RectangleType structure that
specifies the bounds for the table.

Result Returns nothing.

TblSetColumnEditIndicator

Purpose Set the column attribute that controls whether a column highlights
when the table is in edit mode.

Prototype void TblSetColumnEditIndicator (
TablePtr table,
Word column,
Boolean editIndicator)

Parameters table Pointer to a table object

column Column of the item (zero based)

editIndicator TRUE to highlight, FALSE to turn off highlight.

Result Returns nothing.

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 385

TblSetColumnSpacing

Purpose Set the spacing after the specified column.

Prototype void TblSetColumnSpacing (TablePtr table,
Word column,
Word spacing)

Parameters table Pointer to a table object.

column Column number (zero-based).

spacing Spacing after the column.

Result Returns nothing.

See Also TblSetColumnUsable

TblSetColumnUsable

Purpose Set a column in a table usable or unusable.

Prototype void TblSetColumnUsable (TablePtr table,
Word row,
Boolean usable)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

usable TRUE for usable or FALSE for not usable.

Result Returns nothing.

Comments Columns that are not usable do not display.

See Also TblMarkRowInvalid

Palm OS User Interface Functions
Table Functions

386 Developing Palm OS 3.0 Applications, Part I

TblSetColumnWidth

Purpose Set the width of the specified column.

Prototype void TblSetColumnWidth (TablePtr table,
Word column,
Word width)

Parameters table Pointer to a table object.

column Column number (zero-based).

width Width of the column (in pixels).

Result Returns nothing.

See Also TblGetColumnWidth

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 387

TblSetCustomDrawProcedure

Purpose Set the custom draw callback procedure for the specified column.

Prototype void TblSetCustomDrawProcedure (TablePtr table,
Word column,
VoidPtr drawCallback)

Parameters table Pointer to a table object.

column Column of table.

drawCallback Callback function.

Result Returns nothing.

Comments The custom draw callback function is used to draw table items with
a TableItemStyleType of customTableItem (see table.h).

The callback procedure should have this prototype:
void TableDrawItemFuncType (

VoidPtr table,
Word row,
Word column,
RectanglePtr bounds);

See Also TblDrawTable

Palm OS User Interface Functions
Table Functions

388 Developing Palm OS 3.0 Applications, Part I

TblSetItemFont

Purpose Set the font used to display a table item.

Prototype void TblSetItemFont (TablePtr table,
Word row,
Word column,
FontID fontID)

Parameters table Pointer to a table object.
row Row of the item to select (zero-based).
column Column of the item to select (zero-based).
fontID ID of the font to be used.

Result Returns nothing.

See Also TblGetItemFont

TblSetItemInt

Purpose Set the integer value of the specified item.

Prototype void TblSetItemInt (TablePtr table,
Word row,
Word column,
Word value)

Parameters table Pointer to a table object.
row Row of the item (zero-based).
column Column of the item (zero-based).
value Any byte value (an integer).

Result Returns nothing.

Comments An application can store what it wants in an item’s integer value.

See Also TblGetItemInt, TblSetItemPtr

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 389

TblSetItemPtr

Purpose Set the item to the specified pointer value.

Prototype void TblSetItemPtr (TablePtr table,
Word row,
Word column,
VoidPtr value)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

value Pointer to data to display in the table item.

Result Returns nothing.

Comments An application can store whatever it wants in the table item.

See Also TblSetItemInt

Palm OS User Interface Functions
Table Functions

390 Developing Palm OS 3.0 Applications, Part I

TblSetItemStyle

Purpose Set the item to display its data in a style; for example, text, numbers,
dates, and so on.

Prototype void TblSetItemStyle (TablePtr table,
Word row,
Word column,
TableItemStyleType type)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

type See Table.h.

Result Returns nothing.

See Also TblSetCustomDrawProcedure

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 391

TblSetLoadDataProcedure

Purpose Set the load-data callback procedure for the specified column.

Prototype void TblSetLoadDataProcedure (
TablePtr table,
Word column,
TableLoadDataFuncPtr loadDataCallback)

Parameters table Pointer to a table object.

column Column of table.

loadDataCallback Callback procedure.

Result Returns nothing.

Comments The callback procedure is used to obtain the data values of a table
item. It should have this prototype:
Err TableLoadDataFuncType (

VoidPtr table,
Word row,
Word column,
Boolean editable,
VoidHand *dataH,
WordPtr dataOffset,
WordPtr dataSize,
FieldPtr fld)

For a text style item, the callback procedure should return the han-
dle of a block that contains a null-terminated text string, the offset
from the start of the block to the start of the string, and the amount
of space allocated for the string.

See Also TblSetCustomDrawProcedure

Palm OS User Interface Functions
Table Functions

392 Developing Palm OS 3.0 Applications, Part I

TblSetRowData

Purpose Set the data value of the specified row.

The data value is a placeholder for application-specific values.

Prototype void TblSetRowData (TablePtr table,
Word row,
ULong data)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

data Application-specific data.

Result Returns nothing.

See Also TblGetRowData

TblSetRowHeight

Purpose Set the height of the specified row.

Prototype void TblSetRowHeight (TablePtr table,
Word row,
Word height)

Parameters table Pointer to a table object.

row Row to set (zero-based).

height New height in pixels.

Result Returns nothing.

See Also TblGetRowHeight, TblSetRowStaticHeight

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 393

TblSetRowID

Purpose Set the ID value of the specified row.

Prototype void TblSetRowID (TablePtr table,
Word row,
Word id)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

id ID to identify a row.

Result Returns nothing.

See Also TblGetRowID

TblSetRowSelectable

Purpose Set a row in a table to selectable or nonselectable.

Prototype void TblSetRowSelectable (TablePtr table,
Word row,
Boolean selectable)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

selectable TRUE or FALSE.

Result Returns nothing.

Comments Rows that are not selectable don’t highlight when touched.

See Also TblRowSelectable, TblSetRowUsable

Palm OS User Interface Functions
Table Functions

394 Developing Palm OS 3.0 Applications, Part I

TblSetRowStaticHeight

Purpose Set the static height attribute of a row. A row that has its static height
attribute set will not expand or contract the height of the row as text
is added or removed from a text item.

Prototype void TblSetRowStaticHeight (TablePtr table,
Word row,
Boolean staticHeight)

Parameters table Pointer to a table object

row Row of the item to select (zero based)

staticHeight TRUE to set the static height, FALSE to unset it.

Result Nothing.

TblSetRowUsable

Purpose Set a row in a table to usable or unusable. Rows that are not usable
do not display.

Prototype void TblSetRowUsable (TablePtr table,
Word row,
Boolean usable)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

usable TRUE or FALSE.

Result Returns nothing.

See Also TblRowUsable, TblSetRowSelectable

Palm OS User Interface Functions
Table Functions

Developing Palm OS 3.0 Applications, Part I 395

TblSetSaveDataProcedure

Purpose Set the save-data callback procedure for the specified column.

Prototype void TblSetSaveDataProcedure (TablePtr table,
Word column,
VoidPtr saveDataCallback)

Parameters table Pointer to a table object.

column Column of table.

saveDataCallback Callback function.

Comments The callback procedure is called when the table object determines
the data of a text object needs to be saved.

The callback procedure should have this prototype:
Boolean TableSaveDataFuncType

(VoidPtr table,
 Word row,
 Word column);

Result Returns nothing.

See Also TblSetCustomDrawProcedure

TblUnhighlightSelection

Purpose Unhighlight the currently selected item in a table.

Prototype void TblUnhighlightSelection (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

Palm OS User Interface Functions
Window Functions

396 Developing Palm OS 3.0 Applications, Part I

Window Functions

ScrDisplayMode

Purpose Sets or returns display parameters, including display geometry, bit
depth, and color support.

Prototype Err ScrDisplayMode (
ScrDisplayModeOperation operation,
DWordPtr widthP,
DWordPtr heightP,
DWordPtr depthP,
BooleanPtr enableColorP)

Parameters The widthP, heightP, depthP, and enableColorP parameters
are used in different ways for different operations. See Comments at
the end of this description for details.

operation The work this function is to perform, as speci-
fied by one of the following selectors:

scrDisplayModeGet
Return the current settings for the
display.

scrDisplayModeGetDefaults
Return the default settings for the
display. See Comments at the end of this
description for values.

scrDisplayModeGetSupportedDepths
Return in depthP a hexadecimal value
indicating the supported screen depths.
The binary representation of this value
defines a bitfield in which the value 1
indicates support for a particular
display depth. The position representing
a particular bit depth corresponds to the
value 2(bitDepth-1). See the Example at
the end of this function description for
more information.

Palm OS User

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 397

scrDisplayModeGetSupportsColor
Return TRUE as the value of the
enableColorP parameter when color
mode can be enabled. On Palm III
devices, this operation always returns
FALSE.

scrDisplayModeSet
Change display settings to the values
specified by the other arguments to the
ScrDisplayMode function.

scrDisplayModeSetToDefaults
Change display settings to default
values. See Comments at the end of this
description for values.

widthP Pointer to new/old screen width. On Palm III
devices this value must always be NULL or a
pointer to a DWord that contains the value 160.

heightP Pointer to new/old screen height. On Palm III
devices this value must always be NULL or a
pointer to a DWord that contains the value 160.

depthP Pointer to new/old/available screen depth. On
Palm III devices this value must always be
NULL or a pointer to a DWord that contains ei-
ther of the values 1 or 2.

enableColorP Pass TRUE to enable color drawing mode. On
Palm III devices, this value must always be
FALSE or NULL.

Result If no error, returns values as specified by the operation argument.
Various invalid arguments may cause this function to return a
sysErrParamErr result code. In rare cases, a failed allocation can
cause this function to return a memErrNotEnoughSpace error.

Comments The widthP, heightP, depthP, and enableColorP parameters
are used in different ways for different operations. All “get” opera-
tions overwrite these values with a result when the function returns.
The scrDisplayModeSet operation changes current display

Palm OS User Interface Functions
Window Functions

398 Developing Palm OS 3.0 Applications, Part I

parameters when passed valid argument values that are not NULL
pointers. The scrDisplayModeSetToDefaults operation ig-
nores values passed for all of these parameters.

Table 7.1 summarizes parameter usage for each operation this func-
tion performs.

Table 7.1 Use of parameters to ScrDisplayMode function

This function ignores NULL pointer arguments to the widthP,
heightP, depthP, and enableColorP parameters; thus, you can
pass a NULL pointer for any of these values to leave the current
value unchanged. Similarly, when getting values, this function does
not return a value for any NULL pointer argument.

Default display values for Palm OS 3.0 running on Palm III hard-
ware are
width: 160,
height: 160,
depth: FtrGet(sysFtrNumDisplayDepth),
enableColor: FALSE

If you change the display depth, it is recommended that you restore
it to its previous state when your application closes, even though
the system sets display parameters back to their default values
when launching an application.

Operation scrDisplayMode… widthP heightP depthP enableColorP

…Get returned returned returned returned

…GetDefaults returned returned returned returned

…GetSupportedDepths pass in pass in returned pass in

…GetSupportsColor pass in pass in pass in returned

…Set pass in pass in pass in pass in

…SetToDefaults ignored ignored ignored ignored

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 399

Example Here are some additional examples of return values provided by the
scrDisplayModeGetSupportedDepths mode of the
ScrDisplayMode function.

This function indicates support for 4-bit drawing by returning a
value of 0x08, or 23, which corresponds to a binary value of 1000.
Support for bit depths of 2 and 1 is indicated by a return value of
0x03. Support for bit depths of 4, 2, and 1 is indicated by 0x0B,
which is a binary value of 1011. Support for bit depths of 24, 8, 4
and 2 is indicated by 0x80008A. The figure immediately following
depicts this final example graphically.

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0

 2-bit drawing
 4-bit drawing

 8-bit drawing 24-bit drawing

Bit depth support indicated by interpreting 0x80008A as binary value

Palm OS User Interface Functions
Window Functions

400 Developing Palm OS 3.0 Applications, Part I

WinAddWindow

Purpose Add the specified window to the active windows list.

Prototype void WinAddWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

Comment The active windows list contains all windows in the current applica-
tion’s user interface.

See Also WinCreateWindow, WinRemoveWindow

WinClipRectangle

Purpose Clip a rectangle to the clipping rectangle of the draw window.

Prototype void WinClipRectangle (RectanglePtr r)

Parameters r Pointer to a structure holding the rectangle to
clip.

Comment The draw window is the window to which all drawing functions
send their output.

The rectangle returned in r is the intersection of the rectangle
passed and the draw window’s clipping bounds.

Result Returns nothing.

See Also WinCopyRectangle, WinDrawRectangle,
WinEraseRectangle, WinGetClip

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 401

WinCopyRectangle

Purpose Copy a rectangular region from one place to another (either between
windows or within a single window).

Prototype void WinCopyRectangle (WinHandle srcWin,
WinHandle dstWin,
RectanglePtr srcRect,
SWord destX,
SWord destY,
ScrOperation mode)

Parameters srcWin Window from which the rectangle is copied.

dstWin Window to which the rectangle is copied.

srcRect Bounds of the region to copy.

destX Top bound of the rectangle in destination
window.

destY Left bound of the rectangle in destination
window.

mode The method of transfer from the source to the
destination window (see Window.h).

Result Returns nothing.

Comments Copies the bits of the window inside the rectangle region.

Palm OS User Interface Functions
Window Functions

402 Developing Palm OS 3.0 Applications, Part I

WinCreateOffscreenWindow

Purpose Create a new off-screen window and add it to the window list.

Prototype WinHandle WinCreateOffscreenWindow (
SWord width,
SWord height,
WindowFormatType format,
WordPtr error)

Parameters width, height Width and height of the window in pixels.

format Either screenFormat or genericFormat.

error Pointer to any error this function encounters.

Result Returns the handle of the new window.

Comments Windows created with this routine draw to a memory buffer instead
of the display.

The memory buffer has two formats: screen format and generic for-
mat. Screen format is the native format of the video system, win-
dows in this format can be copied to the display faster. The generic
format is device-independent.

See Also WinCreateWindow, WinAddWindow

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 403

WinCreateWindow

Purpose Create a new window and add it to the window list.

Prototype WinHandle WinCreateWindow (RectanglePtr bounds,
FrameType frame,
Boolean modal,
Boolean focusable,
WordPtr error)

Parameters bounds Display relative bounds of the window.

frame Type of frame around the window (see
Window.h).

modal TRUE if the window is modal.

focusable TRUE if the window can be the active window.

error Pointer to any error encountered by this
function.

Result Returns a handle for the new window.

Comments Windows created by this routine draw to the display. See
WinCreateOffscreenWindow for information on drawing off
screen.

New windows are created disabled, and must be enabled before
they accept input.

See Also WinCreateOffscreenWindow, WinDeleteWindow,
WinInitializeWindow

Palm OS User Interface Functions
Window Functions

404 Developing Palm OS 3.0 Applications, Part I

WinDeleteWindow

Purpose Remove a window from the window list and free the memory used
by the window.

Prototype void WinDeleteWindow (WinHandle winHandle,
Boolean eraseIt)

Parameters winHandle Handle of window to delete.

eraseIt If TRUE, the window is erased before it is
deleted.

Result Returns nothing.

See Also WinCreateWindow

WinDisableWindow

Purpose Disable a window but leave it on the active windows list (list of all
windows in the system).

Prototype void WinDisableWindow (WinHandle winHandle)

Parameters winHandle Handle of window to disable.

Result Returns nothing.

Comments Disabled windows ignore all pen input and cannot be made the cur-
rent window or the draw window. Windows are usually disabled
when they are removed from the screen.

This function does not affect the visual appearance of the window.

See Also WinEnableWindow, WinDeleteWindow

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 405

WinDisplayToWindowPt

Purpose Convert a display-relative coordinate to a window-relative coordi-
nate. The coordinate returned is relative to the display window.

Prototype void WinDisplayToWindowPt (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX, extentY Pointer to x and y coordinate to convert.

Result Returns nothing.

See Also WinWindowToDisplayPt

WinDrawBitmap

Purpose Draw a bitmap at the given x and y coordinates.

Prototype void WinDrawBitmap (BitmapPtr bitmapP,
SWord x,
Sword y)

Parameters bitmapP Pointer to a bitmap.

x, y The x and y coordinates of the top-left corner.

Result Returns nothing.

See Also WinEraseRectangle

Palm OS User Interface Functions
Window Functions

406 Developing Palm OS 3.0 Applications, Part I

WinDrawChars

Purpose Draw the specified characters in the draw window.

Prototype void WinDrawChars (CharPtr chars,
Word len,
SWord x,
SWord y)

Parameters chars Pointer to the characters to draw.

len Number of characters to draw.

x, y Left and top bound of first character to draw.

Result Returns nothing.

Comment Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

See Also WinDrawInvertedChars, WinEraseChars,
WinSetUnderlineMode

WinDrawGrayLine

Purpose Draw a line in the draw window.

Prototype void WinDrawGrayLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1, y1 x and y coordinates of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinDrawLine

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 407

WinDrawGrayRectangleFrame

Purpose Draw a gray rectangular frame in the draw window.

Prototype void WinDrawGrayRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to draw.
r Pointer to the rectangle to frame.

Result Returns nothing.

Comments The standard gray pattern is not used by this routine; rather, the
frame is drawn so that the top-left pixel of the frame is always on.

See Also WinDrawRectangleFrame

WinDrawInvertedChars

Purpose Draw the specified characters inverted (background color) in the
draw window.

Prototype void WinDrawInvertedChars (CharPtr chars,
Word len,
SWord x,
SWord y)

Parameters chars Pointer to the characters to draw.
len Number of characters to draw.
x, y Left and top bound of first character to draw.

Result Returns nothing.

Comments The characters are drawn in the background color and the off pixels
are drawn in the foreground color.
Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

See Also WinDrawChars

Palm OS User Interface Functions
Window Functions

408 Developing Palm OS 3.0 Applications, Part I

WinDrawLine

Purpose Draw a line in the draw window.

Prototype void WinDrawLine (short x1, short y1,
short x2, short y2)

Parameters x1, y1 x and y coordinates of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinDrawGrayLine, WinEraseLine, WinFillLine

WinDrawRectangle

Purpose Draw a black rectangle in the draw window; the rectangle can have
square or round corners.

Prototype void WinDrawRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to draw.

cornerDiam Diameter of rounded corners. Zero for square
corners.

Result Returns nothing.

Comments The cornerDiam parameter specifies the diameter of four imagi-
nary circles used to form the rounded corners. An imaginary circle
is placed within each corner tangent to the rectangle on two sides.

See Also WinFillRectangle, WinEraseRectangle

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 409

WinDrawRectangleFrame

Purpose Draw a rectangular frame around the specified region in the draw
window.

Prototype void WinDrawRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to draw.

r Pointer to the rectangle to frame.

Result Returns nothing.

Comments The frame is drawn outside the specified region.

See Also WinEraseRectangleFrame, WinGetFramesRectangle,
WinDrawGrayRectangleFrame, WinDrawWindowFrame

WinDrawWindowFrame

Purpose Draw the frame of the current drawing window.

Prototype void WinDrawWindowFrame (void)

Parameters None.

Result Returns nothing.

See Also WinDrawRectangleFrame, WinGetDrawWindow

Palm OS User Interface Functions
Window Functions

410 Developing Palm OS 3.0 Applications, Part I

WinEnableWindow

Purpose Enable a window.

Prototype void WinEnableWindow (WinHandle winHandle)

Parameters winHandle Handle of the window to enable.

Result Returns nothing.

Comments An enabled window accepts pen input and can be made the active
window.

This routine does not affect the visual appearance of the window.

See Also WinDisableWindow, WinSetActiveWindow

WinEraseChars

Purpose Erase specified characters in the draw window.

Prototype void WinEraseChars (CharPtr chars, Word len,
SWord x, SWord y)

Parameters chars Pointer to the characters to erase.

len Number of characters to erase.

x, y Left and top bound of first character to erase.

Result Returns nothing.

See Also WinDrawChars

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 411

WinEraseLine

Purpose Erase a line in the draw window.

Prototype void WinEraseLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1, y1 x and y coordinate of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinDrawLine

WinEraseRectangle

Purpose Erase a rectangle in the draw window. (The rectangle can have
round or square corners; see WinDrawRectangle.)

Prototype void WinEraseRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to erase.

cornerDiam Diameter of rounded corners; zero for square
corners.

Result Returns nothing.

See Also WinDrawRectangle

Palm OS User Interface Functions
Window Functions

412 Developing Palm OS 3.0 Applications, Part I

WinEraseRectangleFrame

Purpose Erase a rectangular frame in the draw window.

Prototype void WinEraseRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to erase.

r Pointer to the rectangular frame.

Result Returns nothing.

See Also WinDrawRectangleFrame

WinEraseWindow

Purpose Erase the contents of the draw window. This routine doesn’t erase
the frame around the draw window.

Prototype void WinEraseWindow (void)

Parameters None.

Result Returns nothing.

See Also WinEnableWindow

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 413

WinFillLine

Purpose Fill a line in the draw window with the current pattern. You can set
the current pattern with WinSetPattern.

Prototype void WinFillLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1, y1 x and y coordinate of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinSetPattern, WinDrawLine

WinFillRectangle

Purpose Draw a rectangle with current pattern. (The rectangle can have
square or round corners.)

Prototype void WinFillRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to draw.

cornerDiam Diameter of rounded corners. Zero for square
corners.

Result Returns nothing.

Comments You can set the current pattern with WinSetPattern.

See Also WinSetPattern. WinDrawRectangle

Palm OS User Interface Functions
Window Functions

414 Developing Palm OS 3.0 Applications, Part I

WinGetActiveWindow

Purpose Return the window handle of the active window.

Prototype WinHandle WinGetActiveWindow (void)

Parameters None.

Result Returns the handle of the active window.

See Also WinSetActiveWindow, WinGetDisplayWindow,
WinGetFirstWindow, WinGetDrawWindow, WinRemoveWindow

WinGetClip

Purpose Return the clipping rectangle of the draw window.

Prototype void WinGetClip (RectanglePtr r)

Parameters r Pointer to a structure to hold the clipping
bounds.

Result Returns nothing.

See Also WinSetClip

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 415

WinGetDisplayExtent

Purpose Return the width and height of the display (the screen).

Prototype void WinGetDisplayExtent (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX Pointer to the width of the display.

extentY Pointer to the height of the display.

Result Returns nothing.

WinGetDisplayWindow

Purpose Return the window handle of the display window.

Prototype WinHandle WinGetDisplayWindow (void)

Parameters None.

Result Returns the handle of display window.

Comments The display window is created by the system at start-up; it has the
same size as the physical display (screen).

See Also WinGetDisplayExtent, WinGetActiveWindow,
WinGetDrawWindow

Palm OS User Interface Functions
Window Functions

416 Developing Palm OS 3.0 Applications, Part I

WinGetDrawWindow

Purpose Return the window handle of the current draw window.

Prototype WinHandle WinGetDrawWindow (void)

Parameters None.

Result Returns handle of draw window.

See Also WinGetDisplayWindow, WinGetActiveWindow,
WinSetDrawWindow

WinGetFirstWindow

Purpose Return a pointer to the first window in the linked list of windows.

Prototype WinHandle WinGetFirstWindow (void)

Parameters None.

Result Returns handle of first window.

Comments This function is usually used by the system only.

See also WinAddWindow, WinGetActiveWindow

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 417

WinGetFramesRectangle

Purpose Return the region needed to draw a rectangle with the specified
frame around it.

Prototype void WinGetFramesRectangle (FrameType frame,
RectanglePtr r,
RectanglePtr obscuredRect)

Parameters frame Type of frame drawn around the rectangle.

r Pointer to the rectangle to frame.

obscuredRect Pointer to the rectangle obscured by the frame.

Result Returns nothing.

Comments Frames are always drawn around (outside) a rectangle.

See Also WinGetWindowBounds

Palm OS User Interface Functions
Window Functions

418 Developing Palm OS 3.0 Applications, Part I

WinGetPattern

Purpose Return the current fill pattern.

Prototype void WinGetPattern (CustomPatternType pattern)

Parameters pattern Pattern buffer to hold pattern.

Result Returns nothing.

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

A pattern defines an 8-x-8 bit pattern. The pattern is tiled to fill the
specified region. The pattern structure is eight bytes long, the first
byte is the first row of the pattern.

See Also WinSetPattern

WinGetWindowBounds

Purpose Return the bounds of the current draw window in display-relative
coordinates.

Prototype void WinGetWindowBounds (RectanglePtr r)

Parameters r Pointer to a rectangle.

Result Returns nothing.

See Also WinGetWindowExtent

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 419

WinGetWindowExtent

Purpose Return the width and height of the current draw window.

Prototype void WinGetWindowExtent (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX Pointer to the width of the draw window.

extentY Pointer to the height of the draw window.

Result Returns nothing.

See Also WinGetWindowBounds, WinGetWindowFrameRect,

WinGetWindowFrameRect

Purpose Return a rectangle, in display-relative coordinates, that defines the
size and location of a window and its frame.

Prototype void WinGetWindowFrameRect (WinHandle winHandle,
RectanglePtr r)

Parameters winHandle Handle of window whose coordinates are
desired.

r Pointer to the coordinates of the window.

Result Returns nothing.

See Also WinGetWindowBounds

Palm OS User Interface Functions
Window Functions

420 Developing Palm OS 3.0 Applications, Part I

WinGetWindowPointer

Purpose Return a pointer to the specified window’s WindowType structure.

Prototype WinPtr WinGetWindowPointer (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns pointer to the specified window’s WindowType structure.

See Also WinGetActiveWindow

WinInitializeWindow

Purpose Initialize the screen-dependent members of a WindowType struc-
ture and set the window’s clipping bounds to the window’s bounds.

Prototype void WinInitializeWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

See Also WinCreateWindow

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 421

WinInvertChars

Purpose Invert the specified characters in the draw window.

Prototype void WinInvertChars (CharPtr chars, Word len,
SWord x, SWord y)

Parameters chars Pointer to the characters to invert.

len Number of characters to invert.

x, y Left and top bound of first character to invert.

Result Returns nothing.

See Also WinDrawInvertedChars, WinDrawChars

WinInvertLine

Purpose Invert a line in the draw window.

Prototype void WinInvertLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1, y1 x and y coordinate of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinInvertRectangle, WinInvertRectangleFrame,
WinDrawLine, WinEraseLine

Palm OS User Interface Functions
Window Functions

422 Developing Palm OS 3.0 Applications, Part I

WinInvertRectangle

Purpose Invert a rectangle in the draw window. (The rectangle can have
square or round corners.)

Prototype void WinInvertRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to invert.

cornerDiam Diameter of rounded corners; zero for square
corners.

Result Returns nothing.

See Also WinInvertLine, WinInvertRectangleFrame,
WinDrawRectangle

WinInvertRectangleFrame

Purpose Invert a rectangular frame in the draw window.

Prototype void WinInvertRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to invert.

r Pointer to the rectangular frame to invert.

Result Returns nothing.

See Also WinInvertRectangle, WinInvertLine,
WinDrawRectangleFrame, WinEraseRectangleFrame

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 423

WinModal

Purpose Return TRUE if the specified window is modal.

Prototype Boolean WinModal (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns TRUE if modal, otherwise FALSE.

Comments A window is modal if it cannot lose the focus.

WinRemoveWindow

Purpose Remove the specified window from the window list.

Prototype void WinRemoveWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

Comments Doesn’t free the memory used by the window.

See Also WinAddWindow, WinDeleteWindow, WinGetFirstWindow

Palm OS User Interface Functions
Window Functions

424 Developing Palm OS 3.0 Applications, Part I

WinResetClip

Purpose Reset the clipping rectangle of the draw window to the portion of
the draw window that is within the bounds of the display.

Prototype void WinResetClip (void)

Parameters None.

Result Returns nothing.

See Also WinSetClip

WinRestoreBits

Purpose Copy the contents of the specified window to the draw window and
delete the passed window.

Prototype void WinRestoreBits (WinHandle winHandle,
SWord destX,
SWord destY)

Parameters winHandle Handle of window to copy and delete.

destX, destY x and y coordinate in the draw window to copy
to.

Result Returns nothing.

Comments This routine is generally used to restore a region of the display that
was saved with WinSaveBits.

See Also WinSaveBits

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 425

WinSaveBits

Purpose Create an offscreen window and copy the specified region from the
draw window to the offscreen window.

Prototype WinHandle WinSaveBits (RectanglePtr sourceP,
WordPtr error)

Parameters sourceP Pointer to the bounds of the region to save, rela-
tive to the display.

error Pointer to any error encountered by this
function.

Result Returns the handle of the window containing the saved image, or
zero if an error occurred.

Comments The offscreen window is the same size as the region to copy.

See Also WinRestoreBits

Palm OS User Interface Functions
Window Functions

426 Developing Palm OS 3.0 Applications, Part I

WinScrollRectangle

Purpose Scroll a rectangle in the draw window.

Prototype void WinScrollRectangle (RectanglePtr r,
DirectionType direction,
SWord distance,
RectanglePtr vacated)

Parameters r Pointer to the rectangle to scroll.

direction Direction to scroll (up, down, left, or right).

distance Distance to scroll in pixels.

vacated Pointer to the rectangle that needs to be re-
drawn because it has been vacated as a result of
the scroll.

Result Returns nothing.

Comments The rectangle scrolls within its own bounds. Any portion of the rect-
angle that is scrolled outside its bounds is clipped.

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 427

WinSetActiveWindow

Purpose Make a window the active window.

Prototype void WinSetActiveWindow (WinHandle winHandle)

Parameters winHandle Handle of a window

Result Returns nothing.

Comments The active window is not actually set in this routine; flags are set to
indicate that a window is being exited and another window is being
entered. The routine EvtGetEvent sends a winExitEvent and a
winEnterEvent when it detects these flags. The active window is
set by EvtGetEvent when it sends the winEnterEvent. The
draw window is also set to the new active window when the active
window is changed.

All user input is directed to the active window.

See Also WinAddWindow, WinGetActiveWindow,EvtGetEvent (docu-
mented in “Developing Palm OS Applications, Part I”)

WinSetClip

Purpose Set the clipping rectangle of the draw window.

Prototype void WinSetClip (RectanglePtr r)

Parameters r Pointer to a structure holding the clipping
bounds.

Result Returns nothing.

See Also WinClipRectangle, WinSetClip, WinGetClip

Palm OS User Interface Functions
Window Functions

428 Developing Palm OS 3.0 Applications, Part I

WinSetDrawWindow

Purpose Set the draw window. (All drawing operations are relative to the
draw window.)

Prototype WinHandle WinSetDrawWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns the draw window.

See Also WinGetDrawWindow, WinSetActiveWindow

WinSetPattern

Purpose Set the current fill pattern.

Prototype void WinSetPattern (CustomPatternType pattern)

Parameters pattern Pattern to use.

Result Returns nothing.

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

See Also WinGetPattern

Palm OS User Interface Functions
Window Functions

Developing Palm OS 3.0 Applications, Part I 429

WinSetUnderlineMode

Purpose Set the graphic state to enable or disable the underlining of
characters.

Prototype UnderlineModeType
WinSetUnderlineMode (UnderlineModeType mode)

Parameters mode New underline mode type, one of
noUnderline, grayUnderline,
solidUnderline.

Result Returns the previous underline mode type.

See Also WinDrawChars

WinSetWindowBounds

Purpose Set the bounds of the window to display relative coordinates.

Prototype void WinSetWindowBounds (WinHandle winHandle,
RectanglePtr r)

Parameters winHandle Handle for the window for which to set the
bounds.

r Pointer to a rectangle to use for bounds.

Result Returns nothing.

Palm OS User Interface Functions
Window Functions

430 Developing Palm OS 3.0 Applications, Part I

WinValidateHandle

Purpose Return TRUE if the specified handle references a valid window
object.

Prototype Boolean WinValidateHandle (
const WinHandle winHandle)

Parameters --> winHandle The handle to be tested.

Result Returns TRUE if the specified handle references a non-NULL pointer
to a window in the active window list.

Comments For debugging purposes only. Do not include this function in com-
mercial applications.

See Also FrmValidatePtr, FrmRemoveObject

WinWindowToDisplayPt

Purpose Convert a window-relative coordinate to a display-relative
coordinate.

Prototype void WinWindowToDisplayPt (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX, extentY Pointer to x and y coordinate to convert.

Result Returns nothing.

Comments The coordinate passed is assumed to be relative to the draw
window.

See Also WinDisplayToWindowPt

Developing Palm OS 3.0 Applications, Part I 431

Index
Numerics
68328 processor 44

A
about box 348
AbtShowAbout 348
action codes See launch codes
active form 278, 279
active window 207, 403, 427
active windows list 400
alarms

and launch codes 72
sysAppLaunchCmdTimeChange 82

alert manager 180
alert resource 89
alerts

confirmation 89
custom alert 275
error 89
system-defined 180
warning 89

application design and conduits 34
applications

control flow 55
designing UI 34
event driven 36
initialization 42
Security 81

appStopEvent 192
Auto-Shift (field) 108

B
battery life, maximizing 45
Berkeley Sockets API 41
bitmap label for button 102
bitmaps

See Also form bitmap resource
drawing 405

bits behind menu bar 157
blank lines in field 238
boldFont 271
button objects 128

button resource 100
bitmap label 102
highlighting 128
increment arrow 101
label 101

buttons (silk-screened buttons) 199

C
C library functions 39
calibrating digitizer 185
calibrating the pen 350
carriage returns 135
catalog resources 98
categories, setting label 300
CategoryCreateList 209
CategoryCreateListV10 210
CategoryEdit 211
CategoryEditV10 213
CategoryEditV20 212
CategoryFind 213
CategoryFreeList 214
CategoryFreeListV10 215
CategoryGetName 215
CategoryGetNext 216
CategoryInitialize 216
CategorySelect 217
CategorySelectV10 218
CategorySetName 219
CategorySetTriggerLabel 219
CategoryTruncateName 220
changing resources 87
character attribute functions 309–310
characters

See Also functions starting with Fnt
drawing in window 406
erasing 410
inverting 421
sorting text 310

check box object 128
check box resource 103

Group ID 104
toggle area 104

clipboard 232, 249

Index

432 Developing Palm OS 3.0 Applications, Part I

ClipboardAddItem 220
ClipboardGetItem 221
clipping rectangle 427
clock, real-time 46
code #0 resource 43
code #1 resource 42
CodeWarrior IDE 40
conduits and application design 34
Confirmation alert 89
connectivity 45
connector (external) 46
Constructor 35, 86

catalog resources 98
control flow 55
control objects 128

and pen tracking 202
drawing 221
erasing 222
events 129
fields of structure 132
function list 133
structure 130

ControlType structure. See Also control objects
conventions for naming 43
coordinates, display-relative vs. window-

relative 405
creating active window 403
creating modal window 403
creating resources 86
creator ID 77
CtlDrawControl 221
CtlEnabled 222
ctlEnterEvent 192
CtlEraseControl 222
ctlExitEvent 192
CtlGetLabel 223
CtlGetValue 223
CtlHandleEvent 129, 224
CtlHideControl 225
CtlHitControl 225
CtlNewControl 226
ctlRepeatEvent 193
ctlSelectEvent 193
CtlSetEnabled 228
CtlSetLabel 228

CtlSetUsable 229
CtlSetValue 229
CtlShowControl 230
CtlValidatePointer 230
current time 82
custom fill patterns, getting 418
custom UI element 110

D
data #0 resource 43
date 367
date system resource 134
day selector object 194
DayHandleEvent 348
daySelectEvent 194
designing UI 34
dialogs

command buttons 93
Edit Categories 211
info dialog 348
placement 92

digitizer 181
after reset 48
and pen manager 185
and PenResetCalibration function 351
and penUpEvent 202
calibrating 185
dimensions 47
polling 46
sampling accuracy 47

down arrow 136
doze mode 45
drag-selecting and fldChangedEvent 194
draw window 428
drawing rectangular frame 407, 409
drawItemsCallback 155
drivers, restarting 47
dynamic heap 43

soft reset 47
space requirement 42

dynamic scrolling 205

E
Edit Categories dialog 211
enabled window 410

Index

Developing Palm OS 3.0 Applications, Part I 433

enabling windows 403
erasing characters 410
erasing lines in window 411
erasing rectangle 411
Error alert 89
event loop 61–64

example 61
event-driven applications 36, 55
events 191–207

naming conventions 43
overview 57–65

examples
event loop 61
startup routine 58
stop routine 65

F
field objects 134

and text height 242
different keyDownEvents 136
dynamic resizing 195
events 135
field attributes 139
fields 138
function list 140
line feeds vs. carriage returns 135
modifying 233
structure 136

field resource 106
Auto-Shift 108
Has Scrollbar 108

FieldType structure 136
fill patterns

setting 428
fill patterns, getting 418
Find (global find) 74, 76

saving data 80
Find (lookup) 78
Find icon 199
flags, launch flags 67, 82
FldCalcFieldHeight 231
fldChangedEvent 194

in 2.0 49
FldCompactText 231
FldCopy 232

FldCut 232
FldDelete 233
FldDirty 233
FldDrawField 234
fldEnterEvent 195
FldEraseField 234
FldFreeMemory 235
FldGetAttributes 235
FldGetBounds 236
FldGetFont 236
FldGetInsPtPosition 237
FldGetMaxChars 237
FldGetNumberOfBlankLines 238
FldGetScrollPosition 238
FldGetScrollValues 239
FldGetSelection 240
FldGetTextAllocatedSize 241
FldGetTextHandle 241
FldGetTextHeight 242
FldGetTextLength 242
FldGetTextPtr 243
FldGetVisibleLines 243
FldGrabFocus 244
FldHandleEvent 135, 245
fldHeightChangedEvent 195
FldInsert 246
FldMakeFullyVisible 246
FldNewField 247
FldPaste 249
FldRecalculateField 250
FldReleaseFocus 250
FldScrollable 251
FldScrollField 251
FldSendChangeNotification 252
FldSendHeightChangeNotification 252
FldSetAttributes 253
FldSetBounds 253
FldSetDirty 254
FldSetFont 254
FldSetInsertionPoint 255
FldSetInsPtPosition 255
FldSetMaxChars 256
FldSetScrollPosition 256
FldSetSelection 257

Index

434 Developing Palm OS 3.0 Applications, Part I

FldSetText 258
FldSetTextAllocatedSize 259
FldSetTextHandle 259
FldSetTextPtr 260
FldSetUsable 260
FldUndo 261
FldWordWrap 261
FntAverageCharWidth 263
FntBaseLine 263
FntCharHeight 263
FntCharsInWidth 264
FntCharsWidth 265
FntCharWidth 265
FntDefineFont 266
FntDescenderHeight 267
FntGetFont 267
FntGetFontPtr 267
FntGetScrollValues 268
FntLineHeight 268
FntLineWidth 269
FntSetFont 269
FntWordWrap 270
FntWordWrapReverseNLines 270
focus

and modal window 423
FrmGetFocus 281
FrmSetFocus 302

fonts
and FldGetFont 236
font ID 267
functions 263–270

FontSelect 271
form bitmap resource 109
form objects 142

events 142
FormType structure 144
function list 149
functions 272–308

form resource 91
adding menu 96
creating 86
dialog command 93
event flow 93
modal 91
Save Behind 91

screen command buttons 93
title 93

form, active 278, 279
FormType structure 144
frames

drawing in window 407, 409
erasing rectangular frame 412

FrmAlert 272
FrmCloseAllForms 272
frmCloseEvent 195
FrmCopyLabel 273
FrmCopyTitle 274
FrmCustomAlert 275
FrmDeleteForm 276
FrmDispatchEvent 276
FrmDoDialog 277
FrmDrawForm 277
FrmEraseForm 278
FrmGetActiveForm 278
FrmGetActiveFormID 279
FrmGetControlGroupSelection 279
FrmGetControlValue 280
FrmGetFirstForm 280
FrmGetFocus 281
FrmGetFormBounds 281
FrmGetFormId 282
FrmGetFormPtr 282
FrmGetGadgetData 283
FrmGetLabel 283
FrmGetNumberOfObjects 284
FrmGetObjectId 285
FrmGetObjectIndex 285
FrmGetObjectPosition 286
FrmGetObjectPtr 286
FrmGetObjectType 287
FrmGetTitle 287
FrmGetUserModifiedState 288
FrmGetWindowHandle 288
frmGotoEvent 196
FrmGotoForm 289
FrmHandleEvent 142, 289
FrmHelp 290
FrmHideObject 290
FrmInitForm 291

Index

Developing Palm OS 3.0 Applications, Part I 435

frmLoadEvent 197
FrmNewBitmap 292
FrmNewForm 293
FrmNewGadget 295
FrmNewLabel 296
frmOpenEvent 197
FrmPointInTitle 297
FrmPopupForm 297
FrmRemoveObject 298
FrmReturnToForm 299
FrmSaveAllForms 299
frmSaveEvent 197
FrmSetActiveForm 300
FrmSetCategoryLabel 300
FrmSetControlGroupSelection 301
FrmSetControlValue 301
FrmSetEventHandler 302
FrmSetFocus 302
FrmSetGadgetData 303
FrmSetMenu 303
FrmSetNotUserModified 304
FrmSetObjectBounds 304
FrmSetObjectPosition 305
FrmSetTitle 306
FrmShowObject 306
frmTitleEnterEvent 198
frmTitleSelectEvent 198
frmUpdateEvent 197
FrmUpdateForm 307
FrmUpdateScrollers 307
FrmValidatePtr 308
FrmVisible 308
function naming conventions 43

G
gadget resource 110

FrmSetGadgetData 303
GetCharAttr 309
GetCharCaselessValue 309
GetCharSortValue 310
global find 74, 76

saving data 80

global variables
and launch codes 66
erasing 47

goto (global find) 76
Graffiti

Command shortcuts 201
customizing behavior 181
Help 183
Help character 183

Graffiti manager 181
functions 311–323

Graffiti Shift
functions 323–325
getting and setting state 182
Indicator resource 111

Graffiti ShortCuts
database 182
SysShortCutListDialog 322

graffitiReferenceChr 183
grayUnderline 429
Gremlins 40
GrfAddMacro 311
GrfAddPoint 311
GrfCleanState 312
GrfDeleteMacro 312
GrfFilterPoints 313
GrfFindBranch 313
GrfFlushPoints 314
GrfGetAndExpandMacro 314
GrfGetGlyphMapping 315
GrfGetMacro 316
GrfGetMacroName 316
GrfGetNumPoints 317
GrfGetPoint 317
GrfGetState 318
GrfInitState 319
GrfMatch 319
GrfMatchGlyph 320
GrfProcessStroke 182, 321
GrfSetState 322
Group ID 104
groups of controls 279
GsiEnable 323
GsiEnabled 324
GsiInitialize 324

Index

436 Developing Palm OS 3.0 Applications, Part I

GsiSetLocation 324
GsiSetShiftState 325
GUI See UI

H
hard reset 47, 48, 81
hardware button presses and key manager 184
hardware overview 44
Has Scrollbar (field) 108
height of text in field 242
Help ID 90
highlighting button objects 128
HotSync and sysAppLaunchCmdSyncNotify 80

I
icons

alert 89
Find icon 199

IDE 40
increment arrow 101
Information alert 89
initialization 78

global variables 58
of application 42

insertion point functions 326–328
insertion point object 151
insertion points

and FldGetInsPtPosition 237
and FldGrabFocus 244
and FldReleaseFocus 250
and FldSetInsertionPoint 255
displayed in field 234

InsPtEnable 326
InsPtEnabled 326
InsPtGetHeight 327
InsPtGetLocation 327
InsPtSetHeight 328
InsPtSetLocation 328
inverting characters in draw window 421
inverting line in draw window 421
inverting rectangles 422

K
key manager 184
key manager functions 329–330
KeyCurrentState 184, 329
keyDownEvent 184, 199

in field object 136
KeyRates 184, 330
KeySetMask 349

L
label (button) 101
label resource 112

bitmap label for button 102
wrapping text 112

largeBoldFont 271
launch codes 36, 66–84

and global variables 66
code example 68
creating 84
launch flags 67
parameter blocks 67
predefined 84
responding 83
summary 70
use by application 66
use by system 66

launch flags 67, 82
Layout Appearance panel 87
Layout Properties panel 87
LCD screen 46
left arrow 136
line feeds 135
lines

erasing 411
inverting 421

list objects
and pen tracking 202
creating category list 209
drawItemsCallback 155
events 153
fields 155
function list 156
functions 332–341
scroll indicators 152
structure 154

Index

Developing Palm OS 3.0 Applications, Part I 437

list resource
and popup trigger 114
event flow 114
vs. menu resource 114

ListDrawDataFuncType 155
ListType structure 154
LocGetNumberSeparators 72, 349
locking system 81
lookup 78

example 79
LstDrawList 332
lstEnterEvent 200
LstEraseList 332
lstExitEvent 200
LstGetNumberOfItems 333
LstGetSelection 333
LstGetSelectionText 334
LstGetVisibleItems 334
LstHandleEvent 335
LstMakeItemVisible 336
LstNewList 336
LstPopupList 338
LstScrollList 338
lstSelectEvent 200
LstSetDrawFunction 339
LstSetHeight 339
LstSetListChoices 340
LstSetPosition 340
LstSetSelection 341
LstSetTopItem 341

M
Makefile 41
managers

overview 37
vs. library 179

mapping, resources and UI objects 36
maximizing battery life 45
memory

and FldCompactText 231
and FldFreeMemory 235
and FldSetText 258

menu bar objects 157

menu bars 94
and user actions 157
bits behind 157

Menu Item Object fields 161
menu objects

 See Also menus 158
events 158
fields 160
function list 162
structure 158

menu pulldown object 161
MenuDispose 342
MenuDrawMenu 343
MenuEraseStatus 344
menuEvent 201
MenuGetActiveMenu 345
MenuHandleEvent 346
MenuInit 347
menus 94

active area 97
adding to form 96
creating 95
event flow 98
FrmSetMenu 303
functions 342–347
shortcut key 96
user interaction 96

MenuSetActiveMenu 347
Missing Character Symbol 265
modal form 91
modal window 338, 403, 423
modes 44
modified field objects 233
modifying Graffiti shortcuts 183
Motorola 68328 44

N
naming conventions 43
nilEvent 201
noUnderline 429

O
Object Identifier 100
off-screen windows 402

Index

438 Developing Palm OS 3.0 Applications, Part I

P
Palm OS 2.0 48
Palm OS 3.0 48
PalmPilot Professional memory 44
parameter blocks 67
patches, loading during reset 48
pen location polling 47
pen manager 185
pen manager functions 350–351
pen queue 185
PenCalibrate 350
penDownEvent 202
penMoveEvent 202
PenResetCalibration 351
penUpEvent 202
PilotMain 66
popSelectEvent 203
popup list 338
popup trigger

event flow 116
popup trigger object 128
popup trigger resource 115

and list 114
predefined launch codes 84
pref #0 resource 42
preferences

application-specific 58
changing with launch codes 79
short cuts 183
system 58

PrgHandleEvent 353
PrgStartDialog 354
PrgStopDialog 355
PrgUpdateDialog 356
PrgUserCancel 357
processor 44
progress manager 186
push button object 128
push button resource 117

creating row 119
event flow 119

R
radio button See push button 119
RAM 44
RctCopyRectangle 358
RctGetIntersection 358
RctInsetRectangle 359
RctOffsetRectangle 360
RctPtInRectangle 361
RctSetRectangle 361
real-time clock 46
rectangles

copying 358
erasing 411
intersecting 358
inverting 422
moving 360
resizing 359
scrolling 426

RectangleType structure 128
repeat control object 128

and ctlRepeatEvent 193
repeating button resource 120

event flow 121
ResEdit 86

resource naming conventions 43
reset 47, 81

digitizer screen 48
hard reset 48
loading patches 48
soft reset 47

resources
See Also UI resources
alert 89
and UI objects 36
changing 87
check box 103
field 106
form 91
form bitmap 109
gadget 110
Graffiti Shift Indicator 111
label 112
menu 94
menu bar 94
popup trigger 115
push button 117

Index

Developing Palm OS 3.0 Applications, Part I 439

repeating button 120
scrollbar 122
selector trigger 124
string 94
table 126

retrieving system version number 51
right arrow 136
ROM 44
rounded corners 411, 413
running mode 45

S
Save Behind 91
SclDrawScrollBar 362
sclEnterEvent 204
sclExitEvent 204
SclGetScrollBar 362
SclHandleEvent 363
sclRepeatEvent 205

and sclExitEvent 204
SclSetScrollBar 364
ScrDisplayMode 396
screen command buttons 93
screen layout design 34
screen size 46
scroll arrows

FrmUpdateScrollers 307
scroll position in field 238
scrollbar functions 362–364
scrollbar objects 162

fields 164
in tables 378
structure 163

scrollbar resource 122
scrolling rectangle in window 426
Security application 81
SelectDay 367
SelectDayV10 367
selection in field 240
selector trigger object 128
selector trigger resource 124
SelectTime 368
serial communication 45
shortcut key 96

shortcuts, Graffiti 182
sleep mode 44

and current time 46
soft reset 47, 81

dynamic heap 47
solidUnderline 429
sorting text 310
square corners 411, 413
stack size requirement 42
startup routine, example 58
stdFont 271
stop routine example 65
storage heaps, erasing 48
StrDelocalizeNumber, and launch code 72
string resource 94
StrLocalizeNumber, and launch code 72
structure elements, naming convention 43
structure of field object 136
summary of launch codes 70
sysAppLaunchCmdAlarmTriggered 72
sysAppLaunchCmdCountryChange 72
sysAppLaunchCmdDisplayAlarm 72
sysAppLaunchCmdExgAskUser 72
sysAppLaunchCmdExgReceiveData 74
sysAppLaunchCmdFind 74
sysAppLaunchCmdGoto 76
sysAppLaunchCmdInitDatabase 77
sysAppLaunchCmdLookup 78
sysAppLaunchCmdPanelCalledFromApp 79
SysAppLaunchCmdReset 47
sysAppLaunchCmdReturnFromPanel 80
sysAppLaunchCmdSaveData 80
sysAppLaunchCmdSyncNotify 80
sysAppLaunchCmdSystemLock 81
sysAppLaunchCmdSystemReset 81
sysAppLaunchCmdTimeChange 82
sysAppLaunchFlagNewGlobals launch flag 82
sysAppLaunchFlagNewStack launch flag 82
sysAppLaunchFlagNewThread launch flag 82
sysAppLaunchFlagSubCal launch flag 83
sysAppLaunchFlagUIApp launch flag 83
SysGraffitiReferenceDialog 183
SysGrfShortCutListDialog 322
system preferences 58

Index

440 Developing Palm OS 3.0 Applications, Part I

system tick interrupts 46
system version number 51

T
table functions 369–395
table objects 166

fields 168
structure 166

table resource 126
maximum size 126

tables
setting load data callback 391
setting save data callback 395

TblDrawTable 369
TblEditing 369
tblEnterEvent 205
TblEraseTable 370
tblExitEvent 206
TblFindRowData 370
TblFindRowID 371
TblGetBounds 371
TblGetColumnSpacing 372
TblGetColumnWidth 372
TblGetCurrentField 373
TblGetItemBounds 373
TblGetItemFont 374
TblGetItemInt 374
TblGetLastUsableRow 375
TblGetNumberOfRows 375
TblGetRowData 375
TblGetRowHeight 376
TblGetRowID 376
TblGetSelection 377
TblGrabFocus 377
TblHandleEvent 378
TblHasScrollBar 378
TblInsertRow 379
TblMarkRowInvalid 379
TblMarkTableInvalid 380
TblRedrawTable 380
TblReleaseFocus 381
TblRemoveRow 381
TblRowInvalid 382
TblRowSelectable 382

TblRowUsable 383
tblSelectEvent 206
TblSelectItem 383
TblSetBounds 384
TblSetColumnEditIndicator 384
TblSetColumnSpacing 385
TblSetColumnUsable 385
TblSetColumnWidth 386
TblSetCustomDrawProcedure 387
TblSetItemFont 388
TblSetItemInt 388
TblSetItemPtr 389
TblSetItemStyle 390
TblSetLoadDataProcedure 391
TblSetRowData 392
TblSetRowHeight 392
TblSetRowID 393
TblSetRowSelectable 393
TblSetRowStaticHeight 394
TblSetRowUsable 394
TblSetSaveDataProcedure 395
TblUnhighlightSelection 395
text clipboard 232
text, finding with GetCharCaselessValue 309
time system resource 134
time, displaying and selecting 368
timer 46
title (form) 93
titles

active area 198
copying form title 274

U
UI design 34
UI objects 127–175

buttons 128
check box 128
control objects 128
field 134
form 142
insertion point 151
list 152
menu bars 157
popup trigger 128
push button 128

Index

Developing Palm OS 3.0 Applications, Part I 441

selector trigger 128
table 166
windows 171

UI resources 86–126
creating 86
custom 110

up arrow 136
user interaction design 34

V
version number (system) 51

W
Warning alert 89
WinAddWindow 400
WinClipRectangle 400
WinCopyRectangle 401
WinCreateOffscreenWindow 402
WinCreateWindow 403
WinDeleteWindow 404
WinDisableWindow 404
WinDisplayToWindowPt 405
window list 280
window objects 171

fields of structure 172
function list 173
off-screen 171
structure 171

windows
active window 207
enabled window 410

WinDrawBitmap 405
WinDrawChars 406
WinDrawGrayLine 406
WinDrawGrayRectangleFrame 407
WinDrawInvertedChars 407
WinDrawLine 408
WinDrawRectangle 408
WinDrawRectangleFrame 409
WinDrawWindowFrame 409
WinEnableWindow 410
winEnterEvent 207

WinEraseChars 410
WinEraseLine 411
WinEraseRectangle 411
WinEraseRectangleFrame 412
WinEraseWindow 412
winExitEvent 207
WinFillLine 413
WinFillRectangle 413
WinGetActiveWindow 414
WinGetClip 414
WinGetDisplayExtent 415
WinGetDisplayWindow 415
WinGetDrawWindow 416
WinGetFirstWindow 416
WinGetFramesRectangle 417
WinGetPattern 418
WinGetWindowBounds 418
WinGetWindowExtent 419
WinGetWindowFrameRect 419
WinGetWindowPointer 420
WinInitializeWindow 420
WinInvertChars 421
WinInvertLine 421
WinInvertRectangle 422
WinInvertRectangleFrame 422
WinModal 423
WinRemoveWindow 423
WinResetClip 424
WinRestoreBits 424
WinSaveBits 425
WinScrollRectangle 426
WinSetActiveWindow 427
WinSetClip 427
WinSetDrawWindow 428
WinSetPattern 428
WinSetUnderlineMode 429
WinSetWindowBounds 429
WinType structure 171
WinValidateHandle 430
WinWindowToDisplayPt 430
word wrap 270

Index

442 Developing Palm OS 3.0 Applications, Part I

	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Guide Contains
	Conventions Used in This Guide
	What’s New in Palm OS 3.0
	General Information
	New Launch Codes
	Dynamic User Interface Objects
	Font Functions
	Progress Manager
	File Streaming API
	Sound Manager
	Exchange Manager
	IR Library
	Miscellaneous New Functions in 3.0
	Existing Functions that Changed in 3.0
	Documentation Revisions

	Developing Palm OS Applications
	Overview of Application Development
	Designing UI and Program Functionality
	Designing Screen Layout and User Interaction

	Constructing UI Resources
	Using Managers and Filling Out the Program Logic
	Using Events and Launch Codes
	Using Palm OS Managers

	Writing Robust Code
	Check Assumptions
	Avoid reading and writing to NULL (or low memory)
	Use Dynamic Heap Space Frugally
	Check Result Codes When Allocating Memory
	Avoid allocating zero-length objects
	Avoid making assumptions about the screen
	Don’t access globals or hardware directly
	Don't overfill the stack
	Built-in apps can change
	Don’t use desktop C libraries on Palm OS

	Building, Debugging, and Testing
	Building the Application and Running it on the Palm Device
	Using Other Components of the SDK

	Internal Structure of an Application
	The ‘code’ #1 Resource
	The ‘pref’ #0 Resource
	The ‘code’ #0 and ‘date’ #0 Resources

	Naming Conventions
	Basic Hardware
	RAM and ROM
	Modes of Operation
	Palm OS Connectivity
	Real-Time Clock and Timer
	Palm OS Device Screen and Sound Generation
	Palm OS Device Reset Switch
	Soft Reset
	Soft Reset + Up Arrow
	Hard Reset

	Different Palm Computing Platform Devices
	Running Older Applications on the 3.0 Device
	Compiling Older Applications With SDK Version 3.0
	Using OS Version 3.0 Features
	Running 3.0 Applications on an Older Device
	Retrieving the System Version Number
	Retrieving the ROM Serial Number

	Application Control Flow
	How Events Control an Application
	Basic Application Stages
	The Startup Routine
	The Event Loop
	The Stop Routine

	How Launch Codes Control an Application
	Parameter Block
	Launch Flags

	Launch Code Example
	Summary of All Launch Codes
	More About Launch Codes
	sysAppLaunchCmdAlarmTriggered
	Impact on Application

	sysAppLaunchCmdCountryChange
	Impact on Application

	sysAppLaunchCmdDisplayAlarm
	Impact on Application

	sysAppLaunchCmdExgAskUser
	sysAppLaunchCmdExgAskUser Parameter Block

	sysAppLaunchCmdExgReceiveData
	sysAppLaunchCmdFind
	Impact on Application
	sysAppLaunchCmdFind Parameter Block

	sysAppLaunchCmdGoto
	Impact on Application
	sysAppLaunchCmdGoto Parameter Block

	sysAppLaunchCmdInitDatabase
	Impact on Application
	sysAppLaunchCmdInitDatabase Parameter Block

	sysAppLaunchCmdLookup
	Impact on Application
	Parameter Block

	sysAppLaunchCmdPanelCalledFromApp
	Impact on Application

	sysAppLaunchCmdReturnFromPanel
	sysAppLaunchCmdSaveData
	Impact on Application
	sysAppLaunchCmdSaveData Parameter Block

	sysAppLaunchCmdSyncNotify
	sysAppLaunchCmdSystemLock
	Impact on Application

	sysAppLaunchCmdSystemReset
	Impact on Application
	sysAppLaunchCmdSystemReset Parameter Block

	sysAppLaunchCmdTimeChange
	Impact on Application

	More About Launch Flags
	Responding to Launch Codes
	Determining Status When Receiving Launch Code

	Predefined Launch Codes
	Creating Your Own Launch Codes

	Palm OS User Interface Resources
	Using Constructor to Work With Resources
	Creating Resources
	Changing Resources

	Project Resources
	Alerts
	Form Resource
	String Resource
	Menus and Menu Bars
	Menu Overview
	Creating a Menu
	Menu Bar and Menu Resources
	Menu User Interaction
	Event Flow for Menu Resource

	Catalog Resources
	Button Resource
	Making a Button with a Bitmap Label

	Check Box Resource
	Field Resource
	Form Bitmap Resource
	Gadget Resource
	Graffiti Shift Indicator Resource
	Label Resource
	List Resource
	Popup Trigger Resource
	Push Button Resource
	Repeating Button Resource
	Scrollbar Resource
	Selector Trigger Resource
	Table Resource

	Palm OS User Interface Objects
	A Note on the Rectangle Structure
	Control Objects
	Control Object Events
	Structure of a Control
	Fields of a ControlType Structure

	Associated Resources
	Control Functions

	Date and Time Objects
	Date and Time Functions

	Field Objects
	Field Object Events
	Structure of a Field
	Fields of a Field Structure
	Field Attributes

	Associated Resources
	Field Functions

	Form Objects
	Form Object Events

	Structure of a Form
	Fields of Form Objects
	Associated Resource
	Form Functions

	Insertion Point Object
	Insertion Point Functions

	List Object
	List Object Events
	Structure of a List
	List Object Fields

	Associated Resources
	List Functions

	Menu Objects
	Menu Events
	Structure of a Menu
	Menu Object Fields
	Menu Pull-Down Fields
	Menu Item Fields
	Associated Resources

	Menu Functions

	Scrollbar Object
	Scrollbar Fields

	Table Objects
	Table Event
	Structure of a Table
	Fields of a Table Structure

	Associated Resource
	Table Functions

	Window Objects
	Window Events
	Structure of a Window
	Fields of a Window Structure

	Window Functions

	Dynamic User Interface Objects
	Dynamic User Interface Functions

	Using Palm OS UI Managers
	The Alert Manager
	Alert Resource Information
	Alert Manager Functions

	The Graffiti Manager
	Using GrfProcessStroke
	Using Other High-Level Graffiti Manager Calls
	Special-Purpose Graffiti Manager Calls
	Accessing Graffiti ShortCuts
	Note on Auto Shifting
	Note on Graffiti Help
	Graffiti Manager Functions

	The Key Manager
	The Pen Manager
	The Progress Manager
	Progress textCallback Function
	Progress Manager Function Summary

	Palm OS Events
	appStopEvent
	ctlEnterEvent
	ctlExitEvent
	ctlRepeatEvent
	ctlSelectEvent
	daySelectEvent
	fldChangedEvent
	fldEnterEvent
	fldHeightChangedEvent
	frmCloseEvent
	frmGotoEvent
	frmLoadEvent
	frmOpenEvent
	frmSaveEvent
	frmUpdateEvent
	frmTitleEnterEvent
	frmTitleSelectEvent
	keyDownEvent
	lstEnterEvent
	lstExitEvent
	lstSelectEvent
	menuEvent
	nilEvent
	penDownEvent
	penMoveEvent
	penUpEvent
	popSelectEvent
	sclEnterEvent
	sclExitEvent
	sclRepeatEvent
	tblEnterEvent
	tblExitEvent
	tblSelectEvent
	winEnterEvent
	winExitEvent

	Palm OS User Interface Functions
	Category Functions
	CategoryCreateList
	CategoryCreateListV10
	CategoryEdit
	CategoryEditV20
	CategoryEditV10
	CategoryFind
	CategoryFreeList
	CategoryFreeListV10
	CategoryGetName
	CategoryGetNext
	CategoryInitialize
	CategorySelect
	CategorySelectV10
	CategorySetName
	CategorySetTriggerLabel
	CategoryTruncateName

	ClipBoard Functions
	ClipboardAddItem
	ClipboardGetItem

	Control Functions
	CtlDrawControl
	CtlEnabled
	CtlEraseControl
	CtlGetLabel
	CtlGetValue
	CtlHandleEvent
	CtlHideControl
	CtlHitControl
	CtlNewControl
	CtlSetEnabled
	CtlSetLabel
	CtlSetUsable
	CtlSetValue
	CtlShowControl
	CtlValidatePointer

	Field UI Functions
	FldCalcFieldHeight
	FldCompactText
	FldCopy
	FldCut
	FldDelete
	FldDirty
	FldDrawField
	FldEraseField
	FldFreeMemory
	FldGetAttributes
	FldGetBounds
	FldGetFont
	FldGetInsPtPosition
	FldGetMaxChars
	FldGetNumberOfBlankLines
	FldGetScrollPosition
	FldGetScrollValues
	FldGetSelection
	FldGetTextAllocatedSize
	FldGetTextHandle
	FldGetTextHeight
	FldGetTextLength
	FldGetTextPtr
	FldGetVisibleLines
	FldGrabFocus
	FldHandleEvent
	FldInsert
	FldMakeFullyVisible
	FldNewField
	FldPaste
	FldRecalculateField
	FldReleaseFocus
	FldScrollable
	FldScrollField
	FldSendChangeNotification
	FldSendHeightChangeNotification
	FldSetAttributes
	FldSetBounds
	FldSetDirty
	FldSetFont
	FldSetInsertionPoint
	FldSetInsPtPosition
	FldSetMaxChars
	FldSetScrollPosition
	FldSetSelection
	FldSetText
	FldSetTextAllocatedSize
	FldSetTextHandle
	FldSetTextPtr
	FldSetUsable
	FldUndo
	FldWordWrap

	Font Functions
	New Font Features in Palm OS 3.0
	FntAccentHeight
	FntAscent

	FntAverageCharWidth
	FntBaseLine
	FntCharHeight
	FntCharsInWidth
	FntCharsWidth
	FntCharWidth
	FntDefineFont
	FntDescenderHeight
	FntGetFont
	FntGetFontPtr
	FntGetScrollValues
	FntLineHeight
	FntLineWidth
	FntSetFont
	FntWordWrap
	FntWordWrapReverseNLines
	FontSelect

	Form Functions
	FrmAlert
	FrmCloseAllForms
	FrmCopyLabel
	FrmCopyTitle
	FrmCustomAlert
	FrmDeleteForm
	FrmDispatchEvent
	FrmDoDialog
	FrmDrawForm
	FrmEraseForm
	FrmGetActiveForm
	FrmGetActiveFormID
	FrmGetControlGroupSelection
	FrmGetControlValue
	FrmGetFirstForm
	FrmGetFocus
	FrmGetFormBounds
	FrmGetFormId
	FrmGetFormPtr
	FrmGetGadgetData
	FrmGetLabel
	FrmGetNumberOfObjects
	FrmGetObjectBounds
	FrmGetObjectId
	FrmGetObjectIndex
	FrmGetObjectPosition
	FrmGetObjectPtr
	FrmGetObjectType
	FrmGetTitle
	FrmGetUserModifiedState
	FrmGetWindowHandle
	FrmGotoForm
	FrmHandleEvent
	FrmHelp
	FrmHideObject
	FrmInitForm
	FrmNewBitmap
	FrmNewForm
	FrmNewGadget
	FrmNewLabel
	FrmPointInTitle
	FrmPopupForm
	FrmRemoveObject
	FrmReturnToForm
	FrmSaveAllForms
	FrmSetActiveForm
	FrmSetCategoryLabel
	FrmSetControlGroupSelection
	FrmSetControlValue
	FrmSetEventHandler
	FrmSetFocus
	FrmSetGadgetData
	FrmSetMenu
	FrmSetNotUserModified
	FrmSetObjectBounds
	FrmSetObjectPosition
	FrmSetTitle
	FrmShowObject
	FrmUpdateForm
	FrmUpdateScrollers
	FrmValidatePtr
	FrmVisible

	Character Attribute Functions
	GetCharAttr
	GetCharCaselessValue
	GetCharSortValue

	Graffiti Manager Functions
	GrfAddMacro
	GrfAddPoint
	GrfCleanState
	GrfDeleteMacro
	GrfFilterPoints
	GrfFindBranch
	GrfFlushPoints
	GrfGetAndExpandMacro
	GrfGetGlyphMapping
	GrfGetMacro
	GrfGetMacroName
	GrfGetNumPoints
	GrfGetPoint
	GrfGetState
	GrfInitState
	GrfMatch
	GrfMatchGlyph
	GrfProcessStroke
	GrfSetState
	SysGrfShortCutListDialog
	Functions for System Use Only
	GrfFieldChange
	GrfFree

	GraffitiShift Functions
	GsiEnable
	GsiEnabled
	GsiInitialize
	GsiSetLocation
	GsiSetShiftState

	Insertion Point Functions
	InsPtEnable
	InsPtEnabled
	InsPtGetHeight
	InsPtGetLocation
	InsPtSetHeight
	InsPtSetLocation
	Functions for System Use Only
	InsPtCheckBlink
	InsPtInitialize

	Key Manager Functions
	KeyCurrentState
	KeyRates
	Functions for System Use Only
	KeyBootKeys
	KeyHandleInterrupt
	KeyInit
	KeyResetDoubleTap
	KeySleep
	KeyWake

	List UI Functions
	LstDrawList
	LstEraseList
	LstGetNumberOfItems
	LstGetSelection
	LstGetSelectionText
	LstGetVisibleItems
	LstHandleEvent
	LstMakeItemVisible
	LstNewList
	LstPopupList
	LstScrollList
	LstSetDrawFunction
	LstSetHeight
	LstSetListChoices
	LstSetPosition
	LstSetSelection
	LstSetTopItem

	Menu Functions
	MenuDispose
	MenuDrawMenu
	MenuEraseStatus
	MenuGetActiveMenu
	MenuHandleEvent
	MenuInit
	MenuSetActiveMenu

	Miscellaneous User Interface Functions
	AbtShowAbout
	DayHandleEvent
	KeySetMask
	LocGetNumberSeparators

	Pen Manager Functions
	PenCalibrate
	PenResetCalibration
	Functions for System Use Only
	PenClose
	PenGetRawPen
	PenOpen
	PenSleep
	PenRawToScreen
	PenScreenToRaw
	PenWake

	Progress Manager Functions
	PrgHandleEvent
	PrgStartDialog
	PrgStopDialog
	PrgUpdateDialog
	PrgUserCancel

	Rectangle Functions
	RctCopyRectangle
	RctGetIntersection
	RctInsetRectangle
	RctOffsetRectangle
	RctPtInRectangle
	RctSetRectangle

	Scrollbar Functions
	SclDrawScrollBar
	SclGetScrollBar
	SclHandleEvent
	SclSetScrollBar

	Functions for System Use Only
	Find
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr
	UIInitialize
	UIReset

	Time Selection Functions
	SelectDay
	SelectDayV10
	SelectTime

	Table Functions
	TblDrawTable
	TblEditing
	TblEraseTable
	TblFindRowData
	TblFindRowID
	TblGetBounds
	TblGetColumnSpacing
	TblGetColumnWidth
	TblGetCurrentField
	TblGetItemBounds
	TblGetItemFont
	TblGetItemInt
	TblGetLastUsableRow
	TblGetNumberOfRows
	TblGetRowData
	TblGetRowHeight
	TblGetRowID
	TblGetSelection
	TblGrabFocus
	TblHandleEvent
	TblHasScrollBar
	TblInsertRow
	TblMarkRowInvalid
	TblMarkTableInvalid
	TblRedrawTable
	TblReleaseFocus
	TblRemoveRow
	TblRowInvalid
	TblRowSelectable
	TblRowUsable
	TblSelectItem
	TblSetBounds
	TblSetColumnEditIndicator
	TblSetColumnSpacing
	TblSetColumnUsable
	TblSetColumnWidth
	TblSetCustomDrawProcedure
	TblSetItemFont
	TblSetItemInt
	TblSetItemPtr
	TblSetItemStyle
	TblSetLoadDataProcedure
	TblSetRowData
	TblSetRowHeight
	TblSetRowID
	TblSetRowSelectable
	TblSetRowStaticHeight
	TblSetRowUsable
	TblSetSaveDataProcedure
	TblUnhighlightSelection

	Window Functions
	ScrDisplayMode
	WinAddWindow
	WinClipRectangle
	WinCopyRectangle
	WinCreateOffscreenWindow
	WinCreateWindow
	WinDeleteWindow
	WinDisableWindow
	WinDisplayToWindowPt
	WinDrawBitmap
	WinDrawChars
	WinDrawGrayLine
	WinDrawGrayRectangleFrame
	WinDrawInvertedChars
	WinDrawLine
	WinDrawRectangle
	WinDrawRectangleFrame
	WinDrawWindowFrame
	WinEnableWindow
	WinEraseChars
	WinEraseLine
	WinEraseRectangle
	WinEraseRectangleFrame
	WinEraseWindow
	WinFillLine
	WinFillRectangle
	WinGetActiveWindow
	WinGetClip
	WinGetDisplayExtent
	WinGetDisplayWindow
	WinGetDrawWindow
	WinGetFirstWindow
	WinGetFramesRectangle
	WinGetPattern
	WinGetWindowBounds
	WinGetWindowExtent
	WinGetWindowFrameRect
	WinGetWindowPointer
	WinInitializeWindow
	WinInvertChars
	WinInvertLine
	WinInvertRectangle
	WinInvertRectangleFrame
	WinModal
	WinRemoveWindow
	WinResetClip
	WinRestoreBits
	WinSaveBits
	WinScrollRectangle
	WinSetActiveWindow
	WinSetClip
	WinSetDrawWindow
	WinSetPattern
	WinSetUnderlineMode
	WinSetWindowBounds
	WinValidateHandle
	WinWindowToDisplayPt

	Index

