
 

Developing Palm OS 3.0 
Applications

 

Part II: System Management

 

Navigate this online document as follows:

To see bookmarks, 
type:

Command-7 (Mac OS)
Ctrl-7 (Windows)

To navigate, 
click on:

any blue hypertext link
any Table of Contents entry
any Index entry
arrows in the toolbar





 

Developing Palm OS 
3.0 Applications

 

Part II: System 
Management



 

Copyright © 1996 - 1998, 3Com Corporation or its subsidiaries (“3Com”). All rights reserved. This docu-
mentation may be printed and copied solely for use in developing products for the Palm Computing plat-
form. In addition, two (2) copies of this documentation may be made for archival and backup purposes. 
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or 
by any means or used to make any derivative work (such as translation, transformation or adaptation) 
without express written consent from 3Com.

3Com reserves the right to revise this documentation and to make changes in content from time to time 
without obligation on the part of 3Com to provide notification of such revision or changes. 3COM MAKES 
NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR 
THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMENTATION IS PROVIDED 
ON AN “AS IS” BASIS. 3COM MAKES NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IM-
PLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING 
WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, 3COM ALSO EXCLUDES FOR ITSELF AND ITS SUPPLI-
ERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR 
DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY 
KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION OR 
DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF 3COM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3Com, the 3Com logo, HotSync, Palm Computing, and Graffiti are registered trademarks, and Palm III, 
Palm OS, and the Palm Computing Platform logo are trademarks of 3Com Corporation or its subsidiaries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brand and product 
names may be registered trademarks or trademarks of their respective holders.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND 
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

 

Contact Information:

 

Metrowerks U.S.A. and international

 

Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758
U.S.A.

 

Metrowerks Canada

 

Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

 

Metrowerks Mail order

 

Voice: 1-800-377–5416
Fax: 1-512-873–4901

 

3Com (Palm Computing Subsidiary) 
Mail Order

 

U.S.A.: 1-800-881-7256        Canada: 800-891-6342
elsewhere:  1-801-431-1536

 

Metrowerks World Wide Web

 

http://www.metrowerks.com

 

Palm Computing World Wide Web

 

http://www.palm.com

 

Registration information

 

register@metrowerks.com

 

Technical support

 

support@metrowerks.com

 

Sales, marketing, & licensing

 

sales@metrowerks.com

 

CompuServe

 

go 

 

Metrowerks



 

Developing Palm OS 3.0 Applications, Part II

 

   v

 

Table of Contents

 

About This Document.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13

 

Palm OS SDK Documentation   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   13
What This Guide Contains .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   14
Conventions Used in This Guide  .   .   .   .   .   .   .   .   .   .   .   .   .   .   15

 

1 Using Palm OS System Managers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

 

The Alarm Manager.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   18
Alarm Manager Overview.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   18
Using the Alarm Manager .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   20
Alarm Manager Function Summary    .   .   .   .   .   .   .   .   .   .   .   20

The Error Manager  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   21
Displaying Development Errors   .   .   .   .   .   .   .   .   .   .   .   .   .   21
Using the Error Manager Macros .   .   .   .   .   .   .   .   .   .   .   .   .   22
Understanding the Try-and-Catch Mechanism  .   .   .   .   .   .   .   23
Using the Try and Catch Mechanism   .   .   .   .   .   .   .   .   .   .   .   24
Error Manager Function Summary  .   .   .   .   .   .   .   .   .   .   .   .   25

The Feature Manager  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   25
The System Version Feature  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   26
Application-Defined Features   .   .   .   .   .   .   .   .   .   .   .   .   .   .   26
Using the Feature Manager   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   27
Feature Manager Function Summary  .   .   .   .   .   .   .   .   .   .   .   27

File Streaming Application Program Interface    .   .   .   .   .   .   .   .   28
Using the File Streaming API    .   .   .   .   .   .   .   .   .   .   .   .   .   .   28
File Streaming Data Structures .   .   .   .   .   .   .   .   .   .   .   .   .   .   29
File Streaming Function Summary   .   .   .   .   .   .   .   .   .   .   .   .   35

The Sound Manager.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   35
Using the Sound Manager .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   37
Sound Preferences Compatibility Information   .   .   .   .   .   .   .   42
Sound Manager Data Structures   .   .   .   .   .   .   .   .   .   .   .   .   .   46
Sound Manager Function Summary    .   .   .   .   .   .   .   .   .   .   .   52

The String Manager .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   53
String Manager Function Summary .   .   .   .   .   .   .   .   .   .   .   .   53

The System Manager   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   54
System Boot and Reset   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   54



 

Table of Contents

 

vi  

 

 

 

Developing Palm OS 3.0 Applications, Part II

 

 

Power Management    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   55
The Microkernel  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   57
Application Support   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   58
System Manager Function Summary   .   .   .   .   .   .   .   .   .   .   .   63

The System Event Manager    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   63
Event Translation: Pen Strokes to Key Events.   .   .   .   .   .   .   .   64
Pen Queue Management   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   65
Key Queue Management   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   66
Auto-Off Control .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   67
System Event Manager Function Summary   .   .   .   .   .   .   .   .   67

The Time Manager   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   68
Using Real-Time Clock Functions.   .   .   .   .   .   .   .   .   .   .   .   .   68
Using System Ticks Functions  .   .   .   .   .   .   .   .   .   .   .   .   .   .   68
Time Manager Structures   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   69
Time Manager Function Summary  .   .   .   .   .   .   .   .   .   .   .   .   70

Application Launcher .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   70

 

2 Palm OS System Functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73

 

Alarm Manager API.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   73
AlmGetAlarm  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   73
AlmSetAlarm   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   74
Functions for System Use Only.   .   .   .   .   .   .   .   .   .   .   .   .   .   75

Error Manager Functions    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   76
ErrDisplay    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   76
ErrDisplayFileLineMsg  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   77
ErrFatalDisplayIf .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   78
ErrNonFatalDisplayIf .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   79
ErrThrow  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   80

Event Manager Functions   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   80
EvtAddEventToQueue   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   80
EvtAddUniqueEventToQueue  .   .   .   .   .   .   .   .   .   .   .   .   .   .   81
EvtCopyEvent .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   81
EvtDequeuePenPoint .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   82
EvtDequeuePenStrokeInfo.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   83
EvtEnableGraffiti.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   83
EvtEnqueueKey   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   84



 

Table of Contents

 

Developing Palm OS 3.0 Applications, Part II

 

   vii

 

EvtEventAvail  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   85
EvtFlushKeyQueue .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   85
EvtFlushNextPenStroke .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   86
EvtFlushPenQueue .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   86
EvtGetEvent .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   87
EvtGetPen.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   87
EvtGetPenBtnList    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   88
EvtKeyQueueEmpty  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   88
EvtKeyQueueSize   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   89
EvtPenQueueSize    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   89
EvtProcessSoftKeyStroke   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   90
EvtResetAutoOffTimer   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   90
EvtSysEventAvail    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   91
EvtWakeup   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   91
Functions for System Use Only.   .   .   .   .   .   .   .   .   .   .   .   .   .   92

Feature Manager Functions    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   93
FtrGet    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   93
FtrGetByIndex .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   94
FtrSet .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   95
FtrUnregister   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   96
Functions for System Use Only.   .   .   .   .   .   .   .   .   .   .   .   .   .   96

Find Functions  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   97
FindDrawHeader    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   97
FindGetLineBounds   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   97
FindSaveMatch    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   98
FindStrInStr  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   99

Float Manager Functions    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 101
Using Floating Point Arithmetic   .   .   .   .   .   .   .   .   .   .   .   .   . 101
Using 1.0 Floating-Point Functionality    .   .   .   .   .   .   .   .   .   . 101
FplAdd .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 102
FplAToF.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 102
FplBase10Info  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 103
FplDiv   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 104
FplFloatToLong   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 104
FplFloatToULong    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 105
FplFree  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 105



 

Table of Contents

 

viii  

 

 

 

Developing Palm OS 3.0 Applications, Part II

 

 

FplFToA    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 106
FplInit   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 106
FplLongToFloat   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 107
FplMul  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 107
FplSub   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 108

Miscellaneous System Functions   .   .   .   .   .   .   .   .   .   .   .   .   .   . 109
Crc16CalcBlock    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 109
MdmDial  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 110
MdmHangUp  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 111
PhoneNumberLookup   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 111
ResLoadForm  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 112
ResLoadMenu .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 112

System Preferences Functions    .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 113
PrefGetAppPreferences  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 113
PrefGetAppPreferencesV10   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 114
PrefGetPreference   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 115
PrefGetPreferences  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 116
PrefOpenPreferenceDBV10   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 116
PrefSetAppPreferences   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 117
PrefSetAppPreferencesV10    .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 118
PrefSetPreference.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 119
PrefSetPreferences   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 119

Password Functions.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 120
PwdExists .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 120
PwdRemove .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 120
PwdSet  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 121
PwdVerify.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 121

String Manager Functions  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 122
StrAToI  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 122
StrCaselessCompare   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 122
StrCat.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 123
StrChr    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 123
StrCompare  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 124
StrCopy .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 124
StrDelocalizeNumber .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 125
StrIToA .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 125



 

Table of Contents

 

Developing Palm OS 3.0 Applications, Part II

 

   ix

 

StrIToH .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 126
StrLen    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 126
StrLocalizeNumber .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 127
StrNCaselessCompare    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 127
StrNCat .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 128
StrNCompare   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 129
StrNCopy .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 129
StrPrintF   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 130
StrStr .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 130
StrToLower   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 131
StrVPrintF.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 131

File Streaming Functions.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 133
FileClearerr 133
FileClose 133
FileControl 134
FileDelete 136
FileDmRead 136
FileEOF 138
FileError 139
FileFlush 139
FileGetLastError 140
FileOpen 140
FileRead 143
FileRewind 144
FileSeek 145
FileTell 146
FileTruncate 147
FileWrite 147
Functions For System Use Only    .   .   .   .   .   .   .   .   .   .   .   .   . 148
File Streaming Error Codes   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 149

Sound Manager Functions .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 150
SndCreateMidiList 150
SndDoCmd 151
SndGetDefaultVolume   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 152
SndPlaySMF 152
SndPlaySystemSound.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 155
Functions for System Use Only.   .   .   .   .   .   .   .   .   .   .   .   .   . 155



 

Table of Contents

 

x  

 

 

 

Developing Palm OS 3.0 Applications, Part II

 

 

System Functions .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 156
SysAppLaunch    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 156
SysAppLauncherDialog .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 157
SysBatteryInfo 158
SysBatteryInfoV20 159
SysBinarySearch  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 160
SysBroadcastActionCode   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 162
SysCopyStringResource .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 162
SysCreateDataBaseList   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 163
SysCreatePanelList .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 164
SysCurAppDatabase  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 164
SysErrString .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 165
SysFatalAlert    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 165
SysFormPointerArrayToStrings    .   .   .   .   .   .   .   .   .   .   .   .   . 166
SysGetOSVersionString 166
SysGetRomToken 167
SysGetStackInfo 168
SysGraffitiReferenceDialog   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 168
SysGremlins 169
SysHandleEvent  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 170
SysInsertionSort  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 170
SysInstall  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 172
SysKeyboardDialog    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 173
SysKeyboardDialogV10 .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 173
SysLibFind   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 174
SysLibLoad  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 175
SysQSort   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 176
SysRandom  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 177
SysReset    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 177
SysSetAutoOffTime.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 178
SysStringByIndex    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 178
SysTaskDelay   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 179
SysTicksPerSecond .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 179
SysUIAppSwitch .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 179
Functions for System Use Only.   .   .   .   .   .   .   .   .   .   .   .   .   . 180



 

Table of Contents

 

Developing Palm OS 3.0 Applications, Part II

 

   xi

 

Time Manager Functions    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 189
DateAdjust   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 189
DateDaysToDate .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 189
DateSecondsToDate    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 190
DateToAscii  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 190
DateToDays  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 191
DateToDOWDMFormat .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 191
DayOfMonth    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 192
DayOfWeek  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 192
DaysInMonth   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 193
TimAdjust.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 193
TimDateTimeToSeconds.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 194
TimGetSeconds    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 194
TimGetTicks .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 194
TimSecondsToDateTime.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 195
TimSetSeconds .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 195
TimeToAscii .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 196
Functions for System Use Only.   .   .   .   .   .   .   .   .   .   .   .   .   . 196

 

Index .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  199



 

Table of Contents

 

xii  

 

 

 

Developing Palm OS 3.0 Applications, Part II

 

 



 

Developing Palm OS 3.0 Applications, Part II   

 

13

 

About This Document

 

Developing Palm OS 3.0 Applications, Part II, is part of the Palm OS 
Software Development Kit (SDK). This introduction provides an 
overview of the SDK documentation, discusses what materials are 
included in this document, and what conventions are used. 

 

Palm OS SDK Documentation

 

The following documents are part of the SDK:

 

Document Description

 

Palm OS 3.0 Tutorial A number of Phases step developers through using the dif-
ferent parts of the system. Example applications for each 
phase are included in the SDK. 

Developing Palm OS 
3.0 Applications. 
Part I: Interface Man-
agement

A programmer’s guide and reference document that dis-
cusses all important aspects of developing an application. 

Developing Palm OS 
3.0 Applications. 
Part II. System Man-
agement.

A programmer’s guide and reference document for all sys-
tem managers, such as the string manager or the system 
event manager. See What This Guide Contains for details.



 

About This Document

 

What This Guide Contains

 

14

 

   Developing Palm OS 3.0 Applications, Part II 

 

What This Guide Contains

 

This section provides an overview of the chapters in this guide.

• Chapter 1, “Using Palm OS System Managers,” discusses the 
managers that provide system functionality, including the sys-
tem event manager, time manager, and error manager. 

• Chapter 2, “Palm OS System Functions,” provides reference-
style information for each API function that allows applica-
tions to interact with the system. 

Developing Palm OS 
3.0 Applications, 
Part III. Memory and 
Communications Man-
agement

Programmer’s guide and reference document for: 

• Memory management; both the database manager and 
the memory manager. 

• The Palm OS communications library for serial commu-
nication.

• The Palm OS network library, which provides basic net-
work services.

• The exchange manager and IR library, which provide in-
frared communication capabilities.

Palm OS 3.0 Cookbook. Provides a variety of design guidelines, including localiza-
tion, UI design, and optimization. Information about using 
CodeWarrior for Palm OS to create projects and executables.

 

Document Description



 

About This Document

 

Conventions Used in This Guide

 

Developing Palm OS 3.0 Applications, Part II  

 

 

 

15

 

Conventions Used in This Guide

 

This guide uses the following typographical conventions:

 

This style... Is used for...

 

fixed width font

 

Code elements such as function, 
structure, field, bitfield.

 

fixed width underline

 

Emphasis (for code elements).

 

bold

 

Emphasis (for other elements).

blue and underlined Hot links.

black and underlined 3.0 function names (headings only)

red and underlined 3.0 function names (in Table of 
Contents only)



 

About This Document

 

Conventions Used in This Guide

 

16

 

   Developing Palm OS 3.0 Applications, Part II 



 

Developing Palm OS 3.0 Applications, Part II   

 

17

 

1

 

Using Palm OS 

 

System Managers

 

In contrast to desktop computer operating systems, Palm OS con-
sists of only one library. This library, however, contains several man-
agers, which are groups of functions that work together to imple-
ment certain functionality. As a rule, all functions that belong to one 
manager use the same three-letter prefix and work together to im-
plement a certain aspect of functionality. 

In this chapter, you learn about all Palm OS managers that aren’t di-
rectly responsible for interface management or memory manage-
ment. As you investigate the managers more closely you’ll find that 
some of them are mostly services provided by the system, while 
others contain a large number of API calls. 

This chapter presents the managers in the following order:

• The Alarm Manager provides support for setting real-time 
alarms to perform some periodic activity or display a reminder.

• The Error Manager can be used by applications or system soft-
ware for displaying unexpected runtime errors, such as those 
that typically show up during program development. 

Final production versions of applications or system software are 
not expected to use error manager. 

• The Feature Manager provides information about the system 
software version and the optional system features and third-
party extensions that are installed. An application can also use 
the feature manager to keep track of its own data.

• The Sound Manager lets applications and system modules con-
trol sound manager settings and play custom and predefined 
system sounds.



 

Using Palm OS System Managers

 

The Alarm Manager

 

18

 

   Developing Palm OS 3.0 Applications, Part II 

 

• The String Manager is a set of string manipulation functions 
available to applications. Use these routines instead of the 
standard C routines. 

• The System Manager is responsible for the basic operation of 
the system, including booting and resetting the system, 
managing power, managing the microkernel, and 
supporting applications. 

• The System Event Manager provides an interface to the low-
level pen and key event queues, translates taps on silk-screened 
icons into key events, sends pen strokes in the Graffiti area to the 
Graffiti recognizer, and puts the system into low-power doze 
mode when there is no user activity. 

• The Time Manager provides real-time clock functions and sys-
tem tick functions. 

 

The Alarm Manager

 

The Palm OS alarm manager provides support for setting real-time 
alarms, for performing some periodic activity, or for displaying a re-
minder. This section helps you use the alarm manager by discussing 
these topics:

• Alarm Manager Overview

• Using the Alarm Manager

• Alarm Manager Function Summary

 

Alarm Manager Overview

 

The alarm manager:

• Works closely with the time manager to handle real-time alarms.

• Sends launch codes to applications that set a specific time alarm 
to inform the application the alarm is due.

• Handles alarms by application in a two cycle operation

– First, it notifies each application that the alarm has occurred.

– Second, it allows each application to display some UI.

• Allows only one alarm to be set per application

However, the alarm manager



 

Using Palm OS System Managers

 

The Alarm Manager

 

Developing Palm OS 3.0 Applications, Part II  

 

 

 

19

 

• Doesn’t provide reminder dialog boxes.

• Doesn’t play the alarm sound.

The following section looks in some detail at how the alarm manag-
er and applications interact when processing an alarm.

 

Alarm Queue

 

The alarm queue contains all alarm requests. Triggered alarms are 
queued up until the alarm manager can send the launch code to the 
application that created the alarm. However, if the alarm queue be-
comes full, the oldest entry that has been both triggered and notified 
is deleted to make room for a new alarm.

 

Alarm Manager Processing

 

When an alarm is triggered, the alarm manager notifies each appli-
cation that set an alarm for that alarm time via the 

 

sysAppLaunch-
CmdAlarmTriggered

 

 launch code. 

After each application has processed this launch code, the alarm 
manager sends each application the 

 

sysAppLaunchCmdDisplay-
Alarm

 

 launch code in order for the application to display the alarm. 

If a new alarm time is triggered while an older alarm is still being 
displayed, all applications with alarms scheduled for this second 
alarm time are sent the 

 

sysAppLaunchCmdAlarmTriggered

 

 
launch code, but the display cycle is postponed until all earlier 
alarms have finished displaying.

 

Alarm Scenario

 

The alarm manager typically first notifies each application that an 
alarm has been triggered, then notifies each application to display 
the alarm. Here’s how an application and the alarm manager typi-
cally interact when processing an alarm

1. When the alarm time is reached, the alarm manager finds the 
first application in the alarm queue that set an alarm for this 
alarm time.

2. The alarm manager sends this application the 

 

sysAppLaunchCmdAlarmTriggered

 

 launch code.



 

Using Palm OS System Managers

 

The Alarm Manager

 

20

 

   Developing Palm OS 3.0 Applications, Part II 

 

3. The application can now:

– Set the next alarm.

– Play a short sound.

– Perform some maintenance activity. 

4. The alarm manager finds in the alarm queue the next appli-
cation that set an alarm and repeats steps 2 and 3. 

5. This is process is repeated until no more applications are 
found with this alarm time.

6. The alarm manager then finds once again the first application 
in the alarm queue who set an alarm for this alarm time and 
sends this application the 

 

sysAppLaunchCmdDisplay-
Alarm

 

 launch code

7. The application can now:

– Display a dialog box

– Display some other type of reminder

8. The alarm manager processes the alarm queue for the next 
application that set an alarm for the alarm being triggered 
and step 6 and 7 are repeated. 

9. This is process is repeated until no more applications are 
found with this alarm time.

 

Using the Alarm Manager 

 

An applications can use the Palm OS function 

 

AlmSetAlarm

 

 to set 
and/or clear an alarm.

An application can find out its current alarm setting by using the 

 

AlmGetAlarm

 

 function. This function returns the alarm date and 
time (expressed in seconds since 1/1/1904). The return value is 0 if 
no active alarm exists for the application. 

 

Alarm Manager Function Summary

 

The following alarm manager functions are for application use:

• AlmGetAlarm

• AlmSetAlarm



 

Using Palm OS System Managers

 

The Error Manager

 

Developing Palm OS 3.0 Applications, Part II  

 

 

 

21

 

The Error Manager

 

The error manager can be used by applications or system software 
for displaying unexpected runtime errors such as those that typical-
ly show up during program development. Final versions of applica-
tions or system software won’t use the error manager. 

The error manager API consists of a set of functions for displaying 
an alert with an error message, file name, and the line number 
where the error occurred. If a debugger is connected, it is entered 
when the error occurs.

The error manager also provides a “try and catch” mechanism that 
applications can use for handling such runtime errors as out of 
memory conditions, user input errors, etc. This mechanism is close-
ly modeled after the try/catch functionality of the recent ANSI C 
specification.

This section helps you understand and use the error manager, dis-
cussing the following topics:

• Displaying Development Errors

• Understanding the Try-and-Catch Mechanism

• Using the Error Manager Macros

• Error Manager Function Summary

 

Displaying Development Errors

 

The error manager provides some compiler macros that can be used 
in source code. These macros display a fatal alert dialog on the 
screen and provide buttons to reset the device or enter the debugger 
after the error is displayed. There are three macros: 

 

ErrDisplay

 

, 

 

ErrFatalDisplayIf

 

, and 

 

ErrNonFatalDisplayIf

 

. 

•

 

ErrDisplay

 

 always displays the error message on the screen.

•

 

ErrFatalDisplayIf

 

 and 

 

ErrNonFatalDisplayIf

 

 display 
the error message only if their first argument is 

 

TRUE.

 

The error manager uses the compiler define 

 

ERROR_CHECK_LEVEL

 

 
to control the level of error messages displayed. You can set the 
value of the compiler define to control which level of error checking 



 

Using Palm OS System Managers

 

The Error Manager

 

22

 

   Developing Palm OS 3.0 Applications, Part II 

 

and display is compiled into the application. Three levels of error 
checking are supported: none, partial, and full.

During development, it makes sense to set full error checking for 
early development, partial error checking during alpha and beta test 
periods, and no error checking for the final product. At partial error 
checking, only fatal errors are displayed; error conditions that are 
only possible are ignored under the assumption that the application 
developer is already aware of the condition and designed the soft-
ware to operate that way. 

 

Using the Error Manager Macros

 

Calls to the error manager to display errors are actually compiler 
macros that are conditionally compiled into your program. Most of 
the calls take a boolean parameter, which should be set to 

 

TRUE

 

 to 
display the error, and a pointer to a text message to display if the 
condition is true. 

Typically, the boolean parameter is an in-line expression that evalu-
ates to 

 

TRUE

 

 if there is an error condition. As a result, both the ex-
pression that evaluates the error condition and the message text are 
left out of the compiled code when error checking is turned off. You 
can call 

 

ErrFatalDisplayIf

 

, or 

 

ErrDisplay

 

, but using 

 

ErrFatalDisplayIf

 

 makes your source code look neater. 

For example, assume your source code looks like this:
result = DoSomething();

ErrFatalDisplayIf (result < 0, “unexpected 
result from DoSomething”);

If you set 
ERR_CHECK_LEVEL to...

The compiler...

ERROR_CHECK_NONE (0) Doesn’t compile in any error calls.

ERROR_CHECK_PARTIAL (1) Compiles in only ErrDisplay 
and ErrFatalDisplayIf calls.

ERROR_CHECK_FULL (2) Compiles in all three calls.



Using Palm OS System Managers
The Error Manager

Developing Palm OS 3.0 Applications, Part II   23

With error checking turned on, this code displays an error alert dia-
log if the result from DoSomething() is less than 0. Besides the 
error message itself, this alert also shows the file name and line 
number of the source code that called the error manager. With error 
checking turned off, both the expression evaluation err < 0 and 
the error message text are left out of the compiled code. 

The same net result can be achieved by the following code:
result = DoSomething();

#if ERROR_CHECK_LEVEL != ERROR_CHECK_NONE

if (result < 0) 

ErrDisplay (“unexpected result from 

DoSomething”);

#endif

However, this solution is longer and requires more work than sim-
ply calling ErrFatalDisplayIf. It also makes the source code 
harder to follow.

Understanding the Try-and-Catch Mechanism
The try-and-catch mechanism of the error manager is closely mod-
eled after the ANSI C try and catch standard. 

The error manager is aware of the machine state of the Palm OS de-
vice and can therefore correctly save and restore this state. The built-
in try and catch of the compiler can’t be used because it’s machine 
dependent.

Try and catch is basically a neater way of implementing a goto if an 
error occurs. A typical way of handling errors in the middle of a 
routine is to go to the end of the routine as soon as an error occurs 
and have some general-purpose cleanup code at the end of every 
routine. Errors in nested routines are even trickier because the result 
code from every subroutine call must be checked before continuing. 

When you set up a try/catch, you are providing the compiler with a 
place to jump to when an error occurs. You can go to that error han-
dling routine at any time by calling ErrThrow. When the compiler 
sees the ErrThrow call, it performs a goto to your error handling 



Using Palm OS System Managers
The Error Manager

24   Developing Palm OS 3.0 Applications, Part II 

code. The greatest advantage to calling ErrThrow, however, is for 
handling errors in nested subroutine calls. 

Even if ErrThrow is called from a nested subroutine, execution im-
mediately goes to the same error handling code in the higher-level 
call. The compiler and runtime environment automatically strip off 
the stack frames that were pushed onto the stack during the nesting 
process and go to the error handling section of the higher-level call. 
You no longer have to check for result codes after calling every sub-
routine; this greatly simplifies your source code and reduces its size. 

Using the Try and Catch Mechanism
The following example illustrates the possible layout for a a typical 
routine using the error manager’s try and catch mechanism.

Listing 1.1 Try and Catch Mechanism Example

ErrTry {
 p = MemPtrNew(1000);

if (!p) ErrThrow(errNoMemory);
MemSet(p, 1000, 0);
CreateTable(p);
PrintTable(p);

 }
 
 ErrCatch(err) {
  // Recover or clean up after a failure in the 
 // above Try block."err" is an int 
 // identifying the reason for the failure.
 
 // You may call ErrThrow() if you want to 
 // jump out to the next Catch block.
 
 // The code in this Catch block doesn’t 
 // execute if the above Try block completes

// without a Throw.
 

if (err == errNoMemory)
ErrDisplay("Out of Memory");

else



Using Palm OS System Managers
The Feature Manager

Developing Palm OS 3.0 Applications, Part II   25

ErrDisplay("Some other error");
 } ErrEndCatch

// You must structure your code exactly as 
 //above. You can’t have an ErrTry without an 

//ErrCatch { } ErrEndCatch, or vice versa.

Any call to ErrThrow within the ErrTry block results in control 
passing immediately to the ErrCatch block. Even if the subroutine 
CreateTable called ErrThrow, control would pass directly to the 
ErrCatch block. If the ErrTry block completes without calling 
ErrThrow, the ErrCatch block is not executed.

You can nest multiple ErrTry blocks. For example, if you wanted to 
perform some cleanup at the end of CreateTable in case of error, 

• Put ErrTry/ErrCatch blocks in CreateTable 

• Clean up in the ErrCatch block first

• Call ErrThrow to jump to the top-level ErrCatch

Error Manager Function Summary
The following error manager functions are available for application 
use:

• ErrDisplay

• ErrDisplayFileLineMsg

• ErrFatalDisplayIf

• ErrNonFatalDisplayIf

• ErrThrow

The Feature Manager
A feature is a 32-bit value that has special meaning to both the fea-
ture publisher and to users of that feature. Features can be pub-
lished by the system or by applications. 

Each feature is identified by a feature creator and a feature number: 

• The feature creator is usually the database creator type of the ap-
plication that publishes the feature. 



Using Palm OS System Managers
The Feature Manager

26   Developing Palm OS 3.0 Applications, Part II 

• The feature number is any 16-bit value used to distinguish be-
tween different features of a particular creator.

Once a feature is published, it remains present until it is explicitly 
deleted. A feature published by an application sticks around even 
after the application quits.

The System Version Feature
An example for a feature is the system version. This feature is pub-
lished by the system and contains a 32-bit representation of the sys-
tem version. The system version has a feature creator of “psys” and 
a feature number of 1. Currently, the different versions of the system 
software have the following numbers:

Any application can find out the system version by looking for this 
feature.

Application-Defined Features
When an application adds or removes capabilities from the base sys-
tem, it can create features to test for the presence or absence of those 
capabilities. This allows an application to be compatible with multi-
ple versions of the system by refining its behavior, depending on 
which capabilities are present or not. Future hardware platforms 
may lack some capabilities present in the first platform, so checking 
the system version feature is important. 

This section introduces the feature manager by discussing these 
topics: 

• Using the Feature Manager

• Feature Manager Function Summary

0x01003001 Pilot 1000 and Pilot 5000 (Palm OS 1.0)

0x02003000 PalmPilot and PalmPilot Professional (Palm OS 2.0)

0x03003000 Palm III Connected Organizer (Palm OS 3.0)



Using Palm OS System Managers
The Feature Manager

Developing Palm OS 3.0 Applications, Part II   27

Using the Feature Manager
Applications may find the feature manager useful for their own pri-
vate use. For example, an application may want to publish a feature 
that contains a pointer to some private data it needs for processing 
launch codes. Because an application’s global data is not generally 
available while it processes launch codes, using the feature manager 
is usually the easiest way for an application to get to its data. 

To check whether a particular feature is present, call FtrGet and 
pass it the feature creator and feature number. If the feature exists, 
FtrGet returns the 32-bit value of the feature. If the feature doesn’t 
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call 
FtrSet and pass the feature creator and number, and the 32-bit 
value of the feature. A published feature remains available until it is 
explicitly removed by a call to FtrUnregister or until the system 
resets; simply quitting an application doesn’t remove a feature pub-
lished by that application. 

Features are split into two groups: ROM-based and RAM-based. 
ROM-based features are stored in a separate table in ROM and can 
never be removed; only system-defined features are in this table. All 
features installed at runtime are in the RAM table. FtrGetByIndex 
accepts a parameter that specifies whether to search the ROM table 
or RAM table.

Call FtrUnregister to remove RAM-based features created at 
runtime by calling FtrSet.

You can get a complete list of all published features by calling 
FtrGetByIndex repeatedly. Passing an index value starting at 0 to 
FtrGetByIndex and incrementing repeatedly by 1 eventually re-
turns all available features.

Feature Manager Function Summary
The following feature manager functions are available for applica-
tion use: 

• FtrGet

• FtrGetByIndex



Using Palm OS System Managers
File Streaming Application Program Interface

28   Developing Palm OS 3.0 Applications, Part II 

• FtrSet

• FtrUnregister

File Streaming Application Program Interface
The file streaming functions in Palm OS 3.0 let you work with large 
blocks of data. File streams can be arbitrarily large—they are not 
subject to the 64k maximum size limit imposed by the memory 
manager on allocated objects. File streams can be used for perma-
nent data storage; in Palm OS 3.0, their underlying implementation 
is a PalmOS database. You can read, write, seek to a specified offset, 
truncate, and do everything else you'd expect to do with a desktop-
style file. 

Other than backup/restore, Palm OS does not provide direct Hot 
Sync support for file streams, and none is planned at this time. 

The use of double-buffering imposes a performance penalty on file 
streams that may make them unsuitable for certain applications. 
Record-intensive applications tend to obtain better performance 
from the Data Manager.

Using the File Streaming API

The File Streaming API is derived from the C programming lan-
guage’s <stdio.h> interface. Any C book that explains the 
<stdio.h> interface should serve as a suitable introduction to the 
concepts underlying the Palm OS File Streaming API. This section 
provides only a brief overview of the most commonly used file 
streaming functions. 

The FileOpen function opens a file, and the FileRead function 
reads it. The semantics of FileRead and FileWrite are just like 
their <stdio.h> equivalents, the fread and fwrite functions. 
The other <stdio.h> routines have obvious analogs in the File 
Streaming API as well.



Using Palm OS System Managers
File Streaming Application Program Interface

Developing Palm OS 3.0 Applications, Part II   29

For example,

theStream = FileOpen(cardId,"KillerAppDataFile", 
'KILR', 'KILD', fileModeReadOnly,
&err); 

As on a desktop, the filename is the unique item. The creator ID and 
filetype are for informational purposes and your code may require 
that an opened file have the correct type and creator.

Normally, the FileOpen function returns an error when it attempts 
to open or replace an existing stream having a type and creator that 
do not match those specified. To suppress this error, pass the 
fileModeAnyTypeCreator selector as a flag in the openMode pa-
rameter to the FileOpen function. 

To read data, use the FileRead function as in the following exam-
ple: 

FileRead(theStream, &buf, objSize, numObjs,
&err); 

To free the memory used to store stream data as the data is read, you 
can use the FileControl function to switch the stream to destruc-
tive read mode. This mode is useful for manipulating temporary 
data; for example, destructive read mode would be ideal for adding 
the objects in a large data stream to a database when sufficient mem-
ory for duplicating the entire file stream is not available. You can 
switch a stream to destructive read mode by passing the 
fileOpDestructiveReadMode selector as the value of the op pa-
rameter to the FileControl function. 

The FileDmRead function can read data directly into a Database 
Manager chunk for immediate addition to a PalmOS database.

File Streaming Data Structures

This section lists enumerated types used by file streaming functions. 



Using Palm OS System Managers
File Streaming Application Program Interface

30   Developing Palm OS 3.0 Applications, Part II 

FileOpEnum

This data type describes the file streaming operation to perform. It is 
passed as the value of the op parameter to the FileControl func-
tion. Normally, you do not call the FileControl function yourself; 
it is called for you by most of the other file streaming functions or 
macros to perform common file streaming operations. However, 
you may call  FileControl explicitly to enable specialized read 
modes. 

Listing 1.2 FileOpEnum type definition

typedef enum FileOpEnum {
fileOpNone = 0,// no-op

fileOpDestructiveReadMode,
// Enter destructive read mode, and rewind stream to its 
// beginning. Once in this mode, there is no turning back:
// stream's contents after closing (or crash) are undefined.
// Destructive read mode deletes file stream data blocks as
// data is being read, thus freeing storage automatically.
// You cannot call FileWrite, FileSeek or FileTruncate on a
// stream in this mode. An exception to this rule applies to
// streams opened in "write + append" mode and then switched
// into destructive read mode. FileWrite appends data to this 
// stream while preserving the current file position, and 
// subsequent reads pick up where they left off (you can think
// of this feature as a pseudo-pipe).
// ARGUMENTS:
// stream = open stream handle
// valueP = NULL
// valueLenP = NULL
// RETURNS:
// zero on success; fileErr... on error

fileOpGetEOFStatus,
// get end-of-file status (like C runtime’s feof) 
// (err = fileErrEOF) indicates end of file condition
// use FileClearerr to clear this error status
// ARGUMENTS:
// stream = open stream handle



Using Palm OS System Managers
File Streaming Application Program Interface

Developing Palm OS 3.0 Applications, Part II   31

// valueP = NULL
// valueLenP = NULL
// RETURNS:
// zero if _not_ end of file; 
// non-zero if end of file

fileOpGetLastError,
// get error code from last operation on stream, and clear the
// last error code value. Doesn’t change status of end-of-file 
// or I/O errors -- use FileClearerr to reset all error codes.
// ARGUMENTS:
// stream = open stream handle
// valueP = NULL
// valueLenP = NULL
// RETURNS:
// Error code from last file stream operation

fileOpClearError,
// clear I/O and end of file error status, and last error
// ARGUMENTS:
// stream = open stream handle
// valueP = NULL
// valueLenP = NULL
// RETURNS:
// zero on success; fileErr... on error

fileOpGetIOErrorStatus,
// get I/O error status (like C runtime's ferror)
// use FileClearerr to clear this error status
// ARGUMENTS:
// stream = open stream handle
// valueP = NULL
// valueLenP = NULL
// RETURNS:
// zero if _not_ I/O error; 
// non-zero if I/O error is pending

fileOpGetCreatedStatus,
// find out whether file was created by FileOpen function
// ARGUMENTS:



Using Palm OS System Managers
File Streaming Application Program Interface

32   Developing Palm OS 3.0 Applications, Part II 

// stream = open stream handle
// valueP = ptr to Boolean type variable
// valueLenP = ptr to Long variable set to sizeof(Boolean)
// RETURNS:
// zero on success; fileErr... on error;
// the Boolean variable will be set to 
// non-zero if the file was created.

fileOpGetOpenDbRef,
// Get the open database reference (handle) of the underlying
// database that implements the stream (NULL if none); this is
// needed for performing PalmOS-specific operations on the
// underlying database, such as changing or getting creator
// and type,version, backup/reset bits, etc.
// ARGUMENTS:
// stream = open stream handle
// valueP = ptr to DmOpenRef type variable
// valueLenP = ptr to Long variable set to sizeof(DmOpenRef)
// RETURNS:
// zero on success; fileErr... on error;
// the DmOpenRef variable will be set to the
// file's open db reference that may be passed
// to Data Manager calls;
// WARNING:
// Do not make any changes to the data of the underlying
// database -- doing so will corrupt the file stream. 

fileOpFlush,
// flush any cached data to storage
// ARGUMENTS:
// stream = open stream handle
// valueP = NULL
// valueLenP = NULL
// RETURNS:
// zero on success; fileErr... on error;

// removed system-use-only info that appears here in FileStream.h

} FileOpEnum;



Using Palm OS System Managers
File Streaming Application Program Interface

Developing Palm OS 3.0 Applications, Part II   33

FileOriginEnum

This data type describes the origin of a seek operation on a file 
stream. It is passed as the value of the origin parameter to the 
FileSeek function. 

Listing 1.3 FileOriginEnum type definition

typedef enum FileOriginEnum {
fileOriginBeginning = 1,
// from the beginning (first data byte of file)
fileOriginCurrent,
// from the current position
fileOriginEnd
// from the end of file (one position beyond last data byte)

} FileOriginEnum;

Open Mode Constants

This section lists constants passed in the openMode parameter to 
the FileOpen function. These constants specify the mode in which 
a file stream is opened. 

For each file stream, you must pass to the FileOpen function only 
one of the primary mode selectors listed in Table 1.1.

Table 1.1 Primary Open Mode Constants:

Primary Selectors (use only one) Comment

fileModeReadOnly Open for read-only access

fileModeReadWrite Open/create for read/write access, dis-
carding any previous version of stream

fileModeUpdate Open/create for read/write, preserving 
previous version of stream if it exists

fileModeAppend Open/create for read/write, always 
writing to the end of the stream



Using Palm OS System Managers
File Streaming Application Program Interface

34   Developing Palm OS 3.0 Applications, Part II 

You can use the | operator (bitwise inclusive OR) to append to a 
primary mode selector one or more of the secondary mode selectors 
listed in Table 1.2. 

Table 1.2 Secondary Open Mode Constants

Secondary Selectors (append to primary) Comment

fileModeDontOverwrite Prevents fileModeReadWrite from 
discarding an existing stream having 
the same name;  may only be specified 
together with fileModeReadWrite

fileModeLeaveOpen Leave stream open when application 
quits. Most applications should not use 
this option.

fileModeExclusive No other application can open the 
stream until the application that 
opened it in this mode closes it. 

fileModeAnyTypeCreator Accept any type/creator when opening 
or replacing an existing stream. Nor-
mally, the FileOpen function opens 
only streams having the specified cre-
ator and type. Setting this option en-
ables the FileOpen function to open 
streams having a type or creator other 
than those specified.

fileModeTemporary Delete the stream automatically when it 
is closed. For more information, see 
Comment section of FileOpen func-
tion description.



Using Palm OS System Managers
The Sound Manager

Developing Palm OS 3.0 Applications, Part II   35

File Streaming Function Summary
• FileClearerr

• FileClose

• FileControl

• FileDelete

• FileDmRead

• FileEOF

• FileError

• FileFlush

• FileGetLastError

• FileOpen

• FileRead

• FileReadLow

• FileRewind

• FileSeek

• FileTell

• FileTruncate

• FileWrite

The Sound Manager
The Palm OS sound manager provides an extendable API for play-
ing custom sounds and system sounds, and for controlling default 
sound settings. Although the sound API accommodates multichan-
nel design, the system provides only a single sound channel at 
present.

The sound hardware can play only one simple tone at a time 
through an onboard piezoelectric speaker. Note that for a particular 
amplitude level, the Palm III device is slightly louder than its prede-
cessors. 

Single tones can be played by the SndDoCmd function and system 
sounds are played by the SndPlaySystemSound function. The 



Using Palm OS System Managers
The Sound Manager

36   Developing Palm OS 3.0 Applications, Part II 

end-user can control the amplitude of alarm sounds, game sounds, 
and system sounds by means of the Preferences application. Sys-
tem-supplied sounds include the Information, Warning, Error, Start-
up, Alarm, Confirmation, and Click sounds.

Palm OS 3.0 introduces support for Standard MIDI Files (SMFs), for-
mat 0. An SMF is a note-by-note description of a tune—PalmOS 
doesn't support sampled sound, multiple voices or complex “instru-
ments.” You can download the SMF format specification from the 
http://www.midi.org Web site. 

The alarm sounds used in the built-in Date Book application are 
SMFs stored in the System MIDI Sounds database and can be 
played by the SndPlaySMF function.

All SMF records in the System MIDI Sounds database are available 
to the user. Developers can add their own alarm SMFs to this data-
base as a way to add variety and personalization to their devices. 
You can use the sysFileTMidi filetype and sysFileCSystem 
creator to open this database.

Each record in the database is a single SMF, with a header structure 
containing the user-visible name. The record includes a song header, 
then a track header, followed by any number of events. The system 
only recognizes the keyDown, keyUp and tempo events in a single 
track; other commands which might be in the SMF are ignored. For 
more information, see the following sections in this book:

• “Adding a Standard MIDI File to a Database” on page 38

• “MIDI Record Type” on page 46

• “MIDI Record Header” on page 47

You can use standard MIDI tools to create SMF blocks on desktop 
computers, or you can write code to create them on the Palm OS de-
vice. The sample code project "RockMusic", particularly the routines 
in the MakeSMF.c file, can be helpful to see how to create an SMF 
programmatically.

Previous versions of PalmOS don't support SMFs or asynchronous 
notes; don't use the new routines or commands when the FtrGet 
function returns a system version of less than 0x03000000. Doing 
so will crash your application. For more information, see the 
Retrieving the System Version Number section beginning on 



Using Palm OS System Managers
The Sound Manager

Developing Palm OS 3.0 Applications, Part II   37

page 51 in the “Developing Palm OS Applications” chapter of Part I 
of this documentation suite.

Synchronous and Asynchronous Sound

The SndDoCmd function executes synchronously or asynchronously 
according to the operation it is to perform. The cmdNoteOn and 
cmdFreqOn operations execute asynchronously; that is, they are 
non-blocking and can be interrupted by another sound command. 
In contrast, the cmdFreqDurationAmp operation is synchronous 
and blocking (it cannot be interrupted). 

The SndPlaySMF function is also synchronous and blocking; how-
ever, the Sound Manager polls the key queue periodically during 
playback and halts playback in progress if it finds events generated 
by user interaction with the screen, digitizer, or hardware-based 
buttons. Optionally, the caller can override this default behavior to 
specify that the SndPlaySMF function play the SMF to completion 
without being interrupted by user events.

Using the Sound Manager

Before playing custom sounds that require a volume (amplitude) 
setting, your code needs to discover the user’s current volume set-
tings. To do so in Palm OS 3.0, pass one of the prefSysSoundVol-
ume, prefGameSoundVolume, or prefAlarmSoundVolume selec-
tors to the PrefGetPreference function. 

Compatibility
Note

See “Sound Preferences Compatibility Information” starting on 
page 42 for important information regarding the correct use of 
sound preferences in various versions of Palm OS.

You can pass the returned amplitude information to the 
SndPlaySMF function as one element of a SndSmfOptionsType 
parameter block. Alternatively, you can pass amplitude information 
to the SndDoCmd function as an element of a SndCommandType 
parameter block. 

To execute a sound manager command, pass to the SndDoCmd func-
tion a sound channel pointer (presently, only NULL is supported and 



Using Palm OS System Managers
The Sound Manager

38   Developing Palm OS 3.0 Applications, Part II 

maps to the shared channel), a pointer to a structure of 
SndCommandType, and a flag indicating whether the command 
should be performed asynchronously. 

To play SMFs, call the SndPlaySMF function. This function, which 
is new in Palm OS 3.0, is used by the built in Date Book application 
to play alarm sounds. 

To play single notes, you can use either of the SndPlaySMF or 
SndDoCmd functions. Of course, you can use the SndPlaySMF func-
tion to play a single MIDI note from an SMF. You can also use the 
SndDoCmd function to play a single MIDI note by passing the snd-
CmdNoteOn command selector to this function. To specify by fre-
quency the note to be played, pass the sndCmdFreqOn command 
selector to the SndDoCmd function.You can pass the sndCmdQuiet 
selector to this function to stop playback of the current note.

The system provides no specialized API for playing game sounds or 
alarm sounds. When an alarm triggers, the application that set the 
alarm must use the standard Sound Manager API to play the sound 
associated with that alarm. Similarly, game sounds are implemented 
by the game developer using any appropriate element of the Sound 
Manager API. Games should observe the prefGameSoundVolume 
setting, as described in the Sound Preferences Compatibility Infor-
mation section starting on page 42.

To play a default system sound, such as a click or an error beep, pass 
the appropriate system sound ID to the SndPlaySystemSound 
function, which will play that sound at the volume level specified 
by the user’s system sound preference. For the complete list of sys-
tem sound IDs, see the SoundMgr.h file provided by the Palm OS 
SDK.

Adding a Standard MIDI File to a Database

To add a format 0 standard MIDI file to the system MIDI database, 
you can use code similar to the AddSmfToDatabase example func-
tion shown in the following code listing. This function returns 0 if 
successful, and returns a non-zero value otherwise. To use a differ-
ent database, pass different creator and type values to the 
DmOpenDatabaseByTypeCreator function. 



Using Palm OS System Managers
The Sound Manager

Developing Palm OS 3.0 Applications, Part II   39

Listing 1.4 AddSmfToDatabase

// Useful structure field offset macro
#define prvFieldOffset(type, field)((DWord)(&((type*)0)->field))

// returns 0 for success, nonzero for error
int AddSmfToDatabase(Handle smfH, CharPtr trackName)
{
Err err = 0;
DmOpenRef dbP;
UInt recIndex;
VoidHand recH;
Byte* recP;
Byte* smfP;
Byte bMidiOffset;
ULong dwSmfSize;
SndMidiRecHdrType recHdr;

bMidiOffset = sizeof(SndMidiRecHdrType) + StrLen(trackName) + 1;
dwSmfSize = MemHandleSize(smfH);

recHdr.signature = sndMidiRecSignature;
recHdr.reserved = 0;
recHdr.bDataOffset = bMidiOffset;

dbP = DmOpenDatabaseByTypeCreator(sysFileTMidi, sysFileCSystem,
dmModeReadWrite | dmModeExclusive);

if (!dbP)
return 1;

// Allocate a new record for the midi resource
recIndex = dmMaxRecordIndex;
recH = DmNewRecord(dbP, &recIndex, dwSmfSize + bMidiOffset);
if ( !recH )
return 2;

// Lock down the source SMF and target record and copy the data
smfP = MemHandleLock(smfH);
recP = MemHandleLock(recH);



Using Palm OS System Managers
The Sound Manager

40   Developing Palm OS 3.0 Applications, Part II 

err = DmWrite(recP, 0, &recHdr, sizeof(recHdr));
if (!err) err = DmStrCopy(recP, prvFieldOffset(SndMidiRecType,

name), trackName);
if (!err) err = DmWrite(recP, bMidiOffset, smfP, dwSmfSize);

// Unlock the pointers
MemHandleUnlock(smfH);
MemHandleUnlock(recH);

//Because DmNewRecord marks the new record as busy, 
// we must call DmReleaseRecord before closing the database
DmReleaseRecord(dbP, recIndex, 1);

DmCloseDatabase(dbP);

return err;
}

Saving References to Standard MIDI Files

To save a reference to a SMF stored in a particular database, save its 
record ID and the name of the database in which it is stored. Do not 
store the database ID between invocations of your application, be-
cause various events, such as a Hot Sync, can invalidate database 
IDs. Using an invalid database ID can crash your application. 

Retrieving a Standard MIDI File From a Database

Standard MIDI Files (SMFs) are stored as individual records in a 
MIDI record database—one SMF per record. Palm OS defines the 
database type sysFileTMidi for MIDI record databases. The sys-
tem MIDI database, with type sysFileTMidi and creator sysFi-
leCSystem, holds multiple system alarm sounds. In addition, your 
applications can create their own private MIDI databases of type 
sysFileTMidi and your own creator.

To obtain a particular SMF, you need to identify the database in 
which it resides and the specific database record which holds the 
SMF data. The database record itself is always identified by record 
ID. The MIDI database in which it resides may be identified by 
name or by database ID. If you know the creator of the SMF, you can 



Using Palm OS System Managers
The Sound Manager

Developing Palm OS 3.0 Applications, Part II   41

use the SndCreateMidiList utility function to retrieve this infor-
mation. Alternatively, you can use the Data Manager record API 
functions to iterate through MIDI database records manually in 
search of this information.

The SndCreateMidiList utility function retrieves information 
about Standard Midi Files from one or more MIDI databases. This 
information is returned as a table of entries. Each entry contains the 
name of an SMF; its unique record ID; and the database ID and card 
number of the record database in which it resides.

Once you have the appropriate identifiers for the record and the da-
tabase in which it resides, you need to open the MIDI database. If 
you have identified the database by type and creator, pass the 
sysFileTMidi type and an appropriate creator value to the 
DmOpenDatabaseByTypeCreator function. For example, to re-
trieve a SMF from the system MIDI database, pass type 
sysFileTMidi and creator sysFileCSystem. The 
DmOpenDatabaseByTypeCreator function returns a reference to 
the open database. 

If you have identified the database by name, rather than by creator, 
you’ll need to discover its database ID in order to open it. The 
DmFindDatabase function returns the database ID for a database 
specified by name and card number. You can pass the returned ID to 
the DmOpenDatabase function to open the database and obtain a 
reference to it. 

Once you have opened the MIDI database, call 
DmFindRecordByID to get the index of the SMF record. To retrieve 
the record itself, pass this index value to either of the functions Dm-
QueryRecord or DmGetRecord. When you intend to modify the 
record, use the DmGetRecord function—it marks the record as 
busy. When you intend to use the record in read-only fashion, use 
the DmQueryRecord function —it does not mark the record as 
busy. You must lock the handle returned by either of these functions 
before making further use of it. 

To lock the database record’s handle, pass it to the MemHandleLock 
function, which returns a pointer to the locked record holding the 
SMF data. You can pass this pointer to the SndPlaySMF function in 
the smfP parameter to play the MIDI file. 



Using Palm OS System Managers
The Sound Manager

42   Developing Palm OS 3.0 Applications, Part II 

When you’ve finished using the record, unlock the pointer to it by 
calling the MemPtrUnlock function. If you’ve used DmGetRecord 
to open the record for editing, you must call DmReleaseRecord to 
make the record available once again to other callers. If you used 
DmQueryRecord to open the record for read-only use, you need 
not call DmReleaseRecord. 

Finally, close the database by calling the DmCloseDatabase func-
tion.

Sound Preferences Compatibility Information

The sound preferences implementation and API varies slightly 
among versions 1.0, 2.0, and 3.0 of Palm OS. This section describes 
how to use sound preferences correctly for various versions of Palm 
OS. 

Because versions 2.0 and 3.0 of Palm OS provide backward compat-
ibility with previous sound preference mechanisms, applications 
written for an earlier version of the sound preferences API will get 
correct sound preference information from newer versions of Palm 
OS. However, it is strongly recommended that new applications use 
the latest API. 

Using Sound Preferences on All Palm OS Devices

Because the user chooses sound preference settings, your applica-
tion should respect them and adhere to their values. Further, you 
should always treat sound preferences as read-only values.

At reset time, the sound manager reads stored preference values 
and caches them for use at run time. The user interface controls up-
date both the stored preference values and the sound manager’s 
cached values. 

The PrefSetPreference function writes to stored preference val-
ues without affecting cached values. New values are read at the next 
system reset. The system-use-only SndSetDefaultVolume func-
tion updates cached values but not stored preferences. Applications 
should avoid modifying stored preferences or cached values in 
favor of respecting the user’s choices for preferences.



Using Palm OS System Managers
The Sound Manager

Developing Palm OS 3.0 Applications, Part II   43

Using Palm OS v. 1.0 Sound Prefs

To read sound preference values in version 1.0 of Palm OS, call the 
PrefGetPreferences function to obtain the data structure 
shown in Listing 1.5. This SystemPreferencesTypeV10 struc-
ture holds the current values of all system-wide preferences.You 
must extract from this structure the values of the sysSoundLevel 
and alarmSoundLevel fields. These values are the only sound 
preference information that Palm OS version 1.0 provides. 

Each of these fields holds a value of either slOn (on) or slOff (off). 
Your code must interpret the values read from these fields as an in-
dication of whether those volumes should be on or off, then map 
them to appropriate amplitude values to pass to Sound Manager 
functions: map the slOn selector to the sndMaxAmp constant (de-
fined in SoundMgr.h) and map the slOff selector to the value 0 (ze-
ro). 

Listing 1.5 SystemPreferencesTypeV10 data structure

typedef struct {
Word version; // Version of preference info

// International preferences
CountryType country;// Country the device is in
DateFormatType dateFormat;// Format to display date in
DateFormatType longDateFormat;// Format to display date in
Byte weekStartDay;// Sunday or Monday
TimeFormatType timeFormat;// Format to display time in
NumberFormatType numberFormat;// Format to display numbers in

// system preferences
Byte autoOffDuration;// Time period before shutting off
SoundLevelTypeV20 sysSoundLevel;//error beeps
SoundLevelTypeV20 alarmSoundLevel;//alarm only
Boolean hideSecretRecords;// True to not display records with

// their secret bit attribute set
Boolean deviceLocked; // Device locked until the system

// password is entered
WordsysPrefFlags;// Miscellaneous system pref flags copied into

 // the global GSysPrefFlags at boot time.



Using Palm OS System Managers
The Sound Manager

44   Developing Palm OS 3.0 Applications, Part II 

SysBatteryKindsysBatteryKind;// The type of batteries installed.
// This is copied into the globals
// GSysbatteryKind at boot time.

} SystemPreferencesTypeV10;

Using Palm OS v. 2.0 Sound Prefs

Version 2.0 of Palm OS introduces a new API for retrieving individ-
ual preference values from the system. You can pass any of the selec-
tors prefSysSoundLevelV20, prefGameSoundLevelV20, or 
prefAlarmSoundLevelV20 to the PrefGetPreference func-
tion to retrieve individual amplitude preference values for alarm 
sounds, game sounds, or for overall (system) sound amplitude. As 
in Palm OS 1.0, each of these settings holds values of either slOn 
(on) or slOff (off), as defined in the Preferences.h file. Your code 
must interpret the values read from these fields as an indication of 
whether those volumes should be on or off, then map them to ap-
propriate amplitude values to pass to Sound Manager functions: 
map the slOn selector to the sndMaxAmp constant (defined in 
SoundMgr.h file) and map the slOff selector to the value 0 (zero). 

For a complete listing of selectors you can pass to the 
PrefGetPreference function, see the Preferences.h file. 

Using Palm OS v. 3.0 Sound Prefs

Palm OS version 3.0 enhances the resolution of sound preference 
settings by providing discrete amplitude levels for games, alarms, 
and the system overall. As usual, do not set preferences yourself, 
but treat them as read-only values indicating the proper volume 
level for your application to use. 

Palm OS 3.0 defines the new sound amplitude selectors 
prefSysSoundVolume, prefGameSoundVolume, and 
prefAlarmSoundVolume for use with the PrefGetPrefer-
ence function. The values this function returns for these selectors 
are actual amplitude settings that may be passed directly to Sound 
Manager functions. 



Using Palm OS System Managers
The Sound Manager

Developing Palm OS 3.0 Applications, Part II   45

Compatibility
Note

The amplitude selectors used in previous versions of Palm OS (all 
ending with the Level suffix, such as prefsGameSoundLevel) 
are obsoleted in version 3.0 of Palm OS and replaced by new se-
lectors. The old selectors remain available in Palm OS 3.0 to en-
sure backward compatibility and are suffixed V20 (for example, 
prefsGameSoundLevelV20). 

Ensuring Sound Preferences Compatibility

For greatest compatibility with multiple versions of the sound pref-
erences mechanism, your application should condition its sound 
preference code according to the version of Palm OS on which it is 
running. Information on Retrieving the System Version Number is 
available on page 51 of the “Developing Palm OS Applications” 
chapter of Part I of this documentation suite. 

When your application is launched, it should retrieve the system 
version number and save the results in its global variables (or equiv-
alent structure) for use elsewhere. If the major version number is 3 
(three) or greater, then use the 3.0 mechanism for obtaining sound 
amplitude preferences, since this reflects the user’s selection most 
accurately. If the major version number is 2 (two), then use the 2.0 
mechanism described in Using Palm OS v. 2.0 Sound Prefs starting 
on page 44 of this book. If it is 1 (one), then use the 1.0 mechanism 
described in Using Palm OS v. 1.0 Sound Prefs starting on page 43 of 
this book.

Avoid calling new API’s (including new selectors) when running on 
older versions of Palm OS that do not implement them.  In particu-
lar, note that violating any of the following conditions will cause 
your application to crash:

• Do not call either of the SndPlaySMF or SndCreateMidiList 
functions on versions of PalmOS prior to 3.0.  

• Do not pass any selector other than sndCmdFreqDurationAmp 
to the SndDoCmd function on versions of PalmOS prior to 3.0.  



Using Palm OS System Managers
The Sound Manager

46   Developing Palm OS 3.0 Applications, Part II 

Sound Manager Data Structures
This section describes the data structures that define the MIDI 
records and parameter blocks used by sound manager functions. 
Figure 1.1 depicts a Palm OS MIDI record graphically. 

Figure 1.1 Palm OS Midi Record

MIDI Record Type

This variable-length header precedes the actual MIDI data in a 
PalmOS MIDI record. It consists of a fixed-size MIDI Record Header 
followed by the name of the MIDI track.

Listing 1.6 SndMidiRecType structure

typedef struct SndMidiRecType {
SndMidiRecHdrType hdr;
// fixed-size portion of the Palm OS MIDI record header
Char name[1];
// Track name: 1 or more chars including NULL terminator.
// length of name, including NULL terminator, must not be

sndMidiRecType
sndMidiRecHdrType

signature (4 bytes) 

bDataOffset  (1 byte) 

reserved (1 byte) 

name (1 or more bytes)
       • null-terminated
       • size varies

SMF 0
(standard 

MIDI
track)



Using Palm OS System Managers
The Sound Manager

Developing Palm OS 3.0 Applications, Part II   47

// greater than sndMidiNameLength. The NULL character must
// always be provided, even for tracks that have no name
} SndMidiRecType;

MIDI Record Header

This structure defines the fixed-size portion of a Palm OS MIDI 
record. 

Listing 1.7 SndMidiRecHdrType structure

typedef struct SndMidiRecHdrType {
DWord signature;
// set to sndMidiRecSignature
Byte bDataOffset;
// offset from the beginning of the record
// to the Standard Midi File data stream
Byte reserved;
// set to zero
} SndMidiRecHdrType;

SndMidiListItemType

When the SndCreateMidiList function returns TRUE, its entHP 
parameter holds a handle to a memory chunk containing an array of 
SndMidiListItemType structs.

Listing 1.8 SndMidiListItemType structure

typedef struct SndMidiListItemType{
Char name[sndMidiNameLength];
// including NULL terminator
ULong uniqueRecID;
LocalID dbID;
UInt cardNo;
} SndMidiListItemType;



Using Palm OS System Managers
The Sound Manager

48   Developing Palm OS 3.0 Applications, Part II 

SndCommandType

This structure is passed as the value of the cmdP parameter to the 
SndDoCmd function. Its parameters are defined by the 
SndCmdIDType enumerated constant. 

Listing 1.9 SndCommandType structure

typedef struct SndCommandType {
SndCmdIDType cmd;
// command id
Long param1;
// use varies according to value of cmd
UInt param2;
// use varies according to value of cmd
UInt param3;
// use varies according to value of cmd

} SndCommandType;

SndCmdIDType

This enumerated type defines the commands that may be specified 
in the cmd field of the SndCommandType struct. Each command de-
fines its own specific use of the param1, param2, and param3 
fields. 

Listing 1.10 SndCmdIDType type definition

typedef enum SndCmdIDType {
sndCmdFreqDurationAmp = 1,
// play a sound, blocking for the entire
// duration (except for zero amplitude)
// param1 = frequency in Hz
// param2 = duration in milliseconds
// param3 = amplitude (0 - sndMaxAmp);
// if value of param3 is 0,return immediately

// Commands added in Palm OS v3.0
// ***IMPORTANT***
// Please note that SndDoCmd() in Palm OS before v3.0 will 
// Fatal Error on unknown commands (anything other than 



Using Palm OS System Managers
The Sound Manager

Developing Palm OS 3.0 Applications, Part II   49

// sndCmdFreqDurationAmp).  For this reason, applications
// wishing to take advantage of these new commands while staying
// compatible with the earlier version of the OS, _must_ avoid
// using these commands when running on OS versions less than
// v3.0 (see sysFtrNumROMVersion in SystemMgr.h).
// Beginning with v3.0, SndDoCmd has been fixed to return
// sndErrBadParam when an unknown command is passed.

sndCmdNoteOn,
// play sound at specified MIDI key index 
// with max duration and velocity;
// return immediately, without waiting for playback to complete. 
// any other sound play request made before 
// this one completes will interrupt it.
// param1 = MIDI key index (0-127)
// param2 = maximum duration in milliseconds
// param3 = velocity (0 - 127) to be interpolated as amplitude

sndCmdFrqOn,
// similar to sndCmdNoteOn except note to play 
// is specified as frequency in Hz.
// play sound at specified frequency 
// with max duration and velocity;
// return immediately, without waiting for playback to complete
// any other sound play request made before 
// this one completes will interrupt it.
// param1 = frequency in Hz
// param2 = maximum duration in milliseconds 
// param3 = amplitude (0 - sndMaxAmp)

sndCmdQuiet
// stop playback of current sound
// param1 = 0
// param2 = 0
// param3 = 0

} SndCmdIDType;



Using Palm OS System Managers
The Sound Manager

50   Developing Palm OS 3.0 Applications, Part II 

SndSmfOptionsType

This struct is passed as the value of the selP parameter to the 
SndPlaySMF function. 

typedef struct SndSmfOptionsType {
// dwStartMilliSec and dwEndMilliSec are used as inputs to the
// fn for sndSmfCmdPlay and as outputs for sndSmfCmdDuration

DWord dwStartMilliSec;
// position at which to begin playback, expressed as number of
// milliseconds from beginning of track
// 0 = "start from the beginning"

DWord dwEndMilliSec;
// position at which to stop playback, expressed as number of
// milliseconds from beginning of track
// sndSmfPlayAllMilliSec = "play entire track";
// the default is "play entire track" 
// if this structure is not passed in

UInt amplitude;
// The amplitude and interruptible fields 
// are used only for sndSmfCmdPlay
// relative volume: 0 - sndMaxAmp, inclusively
// the default is sndMaxAmp if this structure 
// is not passed in; if 0, the play will be
// skipped and the call will return immediately

Boolean interruptible;
// If true, sound play will be interrupted if user interacts 
// with the controls (digitizer, buttons, etc.) even if the
// interaction does not generate a sound command. If false,
// playback is not interrupted; the default behavior is
// "interruptible" if this structure is not passed in

DWord reserved;
// RESERVED! -- MUST SET TO ZERO BEFORE PASSING
} SndSmfOptionsType;



Using Palm OS System Managers
The Sound Manager

Developing Palm OS 3.0 Applications, Part II   51

SndSmfChanRangeType

This struct is passed as the value of the chanRangeP parameter to 
the SndPlaySMF function. 

Listing 1.11 SndSmfChanRangeType structure

typedef struct SndSmfChanRangeType {
// specifies a range of enabled channels. 
// events for channels outside this range are ignored.
// if this structure is not passed,
// all channels in track are honored.
Byte bFirstChan;
// first MIDI channel (0-15 decimal)
Byte bLastChan;
// last MIDI channel (0-15 decimal)}

SndSmfChanRangeType;

Sound Callback Functions

These structures define callback functions to be executed by the 
SndPlaySMF function. 

A non-null completion callback function is executed after playback 
of the SMF completes.

typedef void SndComplFuncType(void* chanP, DWord dwUserData);
typedef SndComplFuncType* SndComplFuncPtr;

A non-null blocking callback function is executed periodically dur-
ing playback of the SMF. This function returns TRUE to continue 
playback, or FALSE to cancel playback. Suggested uses for this func-
tion include updating the user interface or checking for user input. 
You can test sysTicksAvailable to determine the maximum 
amount of time available for completion of this function. 

typedef Boolean SndBlockingFuncType(void* chanP, DWord dwUserData,
Long sysTicksAvailable);

typedef SndBlockingFuncType* SndBlockingFuncPtr;



Using Palm OS System Managers
The Sound Manager

52   Developing Palm OS 3.0 Applications, Part II 

Both kinds of callbacks are wrapped in a SndCallbackInfoType 
struct.

typedef struct SndCallbackInfoType {
Ptr funcP;
// pointer to the callback function (NULL = no function)
DWord dwUserData;
// value to pass in dwUserData parameter of callback function

} SndCallbackInfoType;

The SndSmfCallbacksType struct is passed as the value of the 
callbacksP parameter to the SndPlaySMF function. 

typedef struct SndSmfCallbacksType {
SndCallbackInfoType completion;
// completion callback function (see SndComplFuncType)
SndCallbackInfoType blocking;
// blocking hook callback function (see SndBlockingFuncType)
SndCallbackInfoType reserved;
// RESERVED -- SET ALL FIELDS TO ZERO BEFORE PASSING

} SndSmfCallbacksType;

Sound Manager Function Summary
The following sound manager functions are available for applica-
tion use:

• SndCreateMidiList

• SndDoCmd

• SndGetDefaultVolume

• SndPlaySMF

• SndPlaySystemSound



Using Palm OS System Managers
The String Manager

Developing Palm OS 3.0 Applications, Part II   53

The String Manager
The string manager provides a set of string manipulation functions. 
The string manager API is closely modeled after the standard C 
string-manipulation functions like strcpy, strcat, etc. 

Applications should use the functions built into the string manager 
instead of the standard C functions, because doing so makes the ap-
plication smaller:

• When your application uses the string manager functions, the 
actual code that implements the function is not linked into your 
application but is already part of the operating system. 

• When you use the standard C functions, the code for each func-
tion you use is linked into your application and results in a big-
ger executable. 

In addition, many standard C functions don’t work on the Palm OS 
device at all because the OS doesn’t provide all basic system func-
tions (such as malloc) and doesn’t support the subroutine calls 
used by most standard C functions. 

String Manager Function Summary
The following functions are available for application use:

• StrAToI

• StrCat

• StrCaselessCompare

• StrChr

• StrCompare

• StrCopy

• StrIToA

• StrIToH

• StrLen

• StrStr

• StrToLower



Using Palm OS System Managers
The System Manager

54   Developing Palm OS 3.0 Applications, Part II 

The System Manager
The Palm OS system manager is responsible for the general opera-
tion of the system, including boot-up, power-up, launching applica-
tions, library management, monitoring the battery, multitasking, 
timing, and semaphore support. Applications need to be concerned 
with very few system manager API functions. Most of what the sys-
tem manager does is transparent to applications and is explained 
here as background information only. 

In this section, you learn about the following aspects of the system 
manager:

• System Boot and Reset — information about the different 
reset operations, including system reset calls

• Power Management — the three different power modes and 
guidelines for application developers 

• The Microkernel— basic task management provided by the sys-
tem 

• Application Support — event processing and interapplication 
communication from the system’s point of view 

• System Manager Function Summary — list of all system manag-
er functions available to applications 

System Boot and Reset
The system manager provides support for booting the Palm OS de-
vice. Booting occurs only when the user presses the reset switch on 
the device (see “Palm OS Device Reset Switch” in Developing Palm 
OS Applications, Part I). Palm OS differs from a traditional desktop 
system in that it’s never really turned off. Power is constantly sup-
plied to essential subsystems and the on/off key is merely a way of 
bringing the device in or out of low-power mode (see Palm OS 
Power Modes). The obvious effect of pressing the on/off key is that 
the LCD turns on or off. When the user presses the power key to 
turn the device off, the LCD is disabled, which makes it appear as if 
power to the entire unit is turned off. In fact, the memory system, 
real-time clock, and interrupt generation circuitry are still running, 
though they are consuming little current.



Using Palm OS System Managers
The System Manager

Developing Palm OS 3.0 Applications, Part II   55

In this version of Palm OS, there is only one user interface applica-
tion running at a time. The User Interface Application Shell (UIAS) 
is responsible for managing the current user-interface application. 
The UIAS launches the current user-interface application as a sub-
routine and doesn’t get control back until that application quits. 
When control returns to the UIAS, the UIAS immediately launches 
the next application as another subroutine. See Power Management 
Calls for more information.

System Reset Calls

The system calls SysReset to reset the device. This call does a soft 
reset and has the same effect as pressing the reset switch on the unit. 
Normally, applications should not use this call. 

SysReset is used, for example, by the Sync application. When the 
user copies an extension onto the Palm OS device, the Sync applica-
tion automatically resets the device after the sync is completed to 
allow the extension to install itself.

The SysColdBoot call is similar, but even more dangerous. It per-
forms a hard reset that clears all user storage RAM on the device, 
destroying all user data.

Power Management 
This section looks at Palm OS power management, discussing the 
following topics:

• Palm OS Power Modes 

• Guidelines for Application Developers

• Power Management Calls 

Palm OS Power Modes

At any time, the Palm OS device is in one of three power modes: 
sleep, doze, or running. The system manager controls transitions be-
tween different power modes and provides an API for controlling 
some aspects of the power management. 

• Sleep mode. If the unit appears to be off, it is actually in 
sleep mode and is consuming as little current as possible. At 
this rate, a unit could sit for almost a year on a single set of 



Using Palm OS System Managers
The System Manager

56   Developing Palm OS 3.0 Applications, Part II 

batteries without losing the contents of memory. To enter 
sleep mode, the system puts as many peripherals as possible 
into low-power mode and sets up the hardware so that an 
interrupt from any hard key or the real-time clock wakes up 
the system. 

When the system gets one of these interrupts while in sleep 
mode, it quickly checks that the battery is strong enough to com-
plete the wake-up and then takes each of the peripherals, for ex-
ample, the LCD, serial port, and timers, out of low-power mode.

The system reenters sleep mode when the user presses the on/
off key again, when the system has been idle for the minimum 
auto-off time, or when the battery level reaches a critically low 
level. 

• Doze mode. In doze mode, the processor is halted, but all pe-
ripherals including the LCD are powered up. The system can 
come out of doze mode much faster than it can come out of sleep 
mode since none of the peripherals need to be woken up. In fact, 
it takes no longer to come out of doze mode than to process an 
interrupt. Usually, when the system appears on, it is actually in 
doze mode and goes into running mode only for short periods of 
time to process an interrupt or respond to user input like a pen 
tap or key press. 

• Running mode. Running means that the processor is executing 
instructions and all peripherals are powered up. A typical appli-
cation puts the system into running mode only about 5% of the 
time.

Guidelines for Application Developers

Normally, applications don’t need to be aware of power manage-
ment except for a few simple guidelines. When an application calls 
EvtGetEvent to ask the system for the next event to process, the 
system automatically puts itself into doze mode until there is an 
event to process. As long as an application uses EvtGetEvent, 
power management occurs automatically. If there has been no user 
input for the amount of time determined by the current setting of 
the auto-off preference, the system automatically enters sleep mode 
without intervention from the application.

Applications should avoid providing their own delay loops. In-
stead, they should use SysTaskDelay, which puts the system into 
doze mode during the delay to conserve as much power as possible. 



Using Palm OS System Managers
The System Manager

Developing Palm OS 3.0 Applications, Part II   57

If an application needs to perform periodic work, it can pass a time 
out to EvtGetEvent; this forces the unit to wake up out of doze 
mode and to return to the application when the time out expires, 
even if there is no event to process. Using these mechanisms pro-
vides the longest possible battery life.

Power Management Calls

The system calls SysSleep to put itself immediately into low-
power sleep mode. Normally, the system puts itself to sleep when 
there has been no user activity for the minimum auto-off time or 
when the user presses the power key. 

The SysSetAutoOffTime routine changes the auto-off time value. 
This routine is normally used by the system only during boot, and 
by the Preferences application. The Preferences application saves 
the user preference for the auto-off time in a preferences database, 
and the system initializes the auto-off time to the value saved in the 
preferences database during boot. While the auto-off feature can be 
disabled entirely by calling SysSetAutoOffTime with a time-out 
of 0, doing this depletes the battery. 

The current battery level and other information can be obtained 
through the SysBatteryInfoV20 routine. This call returns infor-
mation about the battery, including the current battery voltage in 
hundredths of a volt, the warning thresholds for the low-battery 
alerts, the battery type, and whether external power is applied to 
the unit. This call can also change the battery warning thresholds 
and battery type. 

The Microkernel
Palm OS has a preemptive multitasking kernel that provides basic 
task management.

Most applications don’t need the microkernel services because they 
are handled automatically by the system. This functionality is pro-
vided mainly for internal use by the system software or for certain 
special purpose applications. 

The User Interface Application Shell (UIAS) is responsible for man-
aging the current user-interface application, as described in System 
Boot and Reset. 



Using Palm OS System Managers
The System Manager

58   Developing Palm OS 3.0 Applications, Part II 

Usually, the UIAS is the only task running. Occasionally though, an 
application launches another task as a part of its normal operation. 
One example of this is the Sync application, which launches a sec-
ond task to handle the serial communication with the desktop. The 
Sync application creates a second task dedicated to the serial com-
munication and gives this task a lower priority than the main user-
interface task. The result is optimal performance over the serial port 
without a delay in response to the user-interface controls. 

Normally, there is no user interaction during a sync, so that the seri-
al communication task gets all of the processor’s time. However, if 
the user does tap on the screen, for example, to cancel the sync, the 
user-interface task immediately processes the tap, since it has a 
higher priority. Alternatively, the Sync application could have been 
written to use just one task, but then it would have to periodically 
poll for user input during the serial communication, which would 
hamper performance and user-interface response time. 

Application Support
The system manager provides application support in several func-
tional areas. The following aspects of application support are dis-
cussed in this section: 

• Launching and Cleanup

• Event Processing

• Interapplication Communication

• Retrieving Events

• Opening Applications Programmatically

Launching and Cleanup

Usually, applications on the Palm OS device are launched when the 
user presses one of the buttons on the case or selects an application 
icon from the application launcher screen. Alternatively, an applica-
tion can programmatically launch another application by using the 
system manager function SysAppLaunch.

When the current user-interface application quits, the system man-
ager cleans up by deleting any chunks in the dynamic heap(s) that 
the application left around and closing any databases left open. 



Using Palm OS System Managers
The System Manager

Developing Palm OS 3.0 Applications, Part II   59

Note, however, that applications should perform those kinds of 
cleanup tasks themselves. 

Event Processing

The system manager provides the infrastructure for event genera-
tion and also contains the support for handling most system-related 
events. Hardware activity, such as taps on the digitizer and key 
presses, is interpreted by interrupt handlers of the system manager 
and converted into events that are eventually sent to the application 
through the EvtGetEvent call. In addition, many events returned 
by EvtGetEvent are system-related events that can be processed 
by the system manager call SysHandleEvent.Events in Palm OS 
include hardware- and software-generated events. The following 
table provides an overview:

Hardware-generated events Software-generated events

Caused directly by user interaction with the 
device, such as tapping on the screen with 
the pen, or pressing a hardware button. 

Generated by the system software as a 
side effect of a user interaction. 

Include pen-downs, pen-ups (optionally in-
cluding stroke data), and hard button press-
es.

Include events like the quit event that 
causes an application to exit, or key-
board events generated by the Graffiti 
recognizer. Applications can define 
software-generated events for their 
own use.

Typically posted by interrupt routines. Typically posted as the result of a sys-
tem call. Include application-quit 
events, window-enter and window-exit 
events, user-interface control events, 
etc. 

• Pen-generated events are stored in the 
pen queue.

• Hard button press events are stored in 
the key queue.

Stored in the software event queue.



Using Palm OS System Managers
The System Manager

60   Developing Palm OS 3.0 Applications, Part II 

When EvtGetEvent is called by the application, it first checks 
whether any events are in the software event queue and returns the 
topmost event if so. 

If the software event queue is empty, EvtGetEvent checks the key 
and pen queues. The result is that all software events generated by a 
particular hardware event are processed before the next hardware 
event is processed. For example, a pen-down hardware event may 
trigger the system software to generate window-exit and window-
enter software events. Both events are then pulled from the software 
event queue and processed before the next hardware event is pro-
cessed.

Some event types returned by EvtGetEvent are not actually posted 
into the event queue, but are artificially generated by EvtGetEvent 
when all event queues are empty. One example is the pen-moved 
event, which is returned if no other events are in the queues and the 
pen has moved since the last time EvtGetEvent was called. In this 
way, the application is notified of low-priority events, such as pen 
movements, but the event queue isn’t cluttered with them. 

In a typical application, SysHandleEvent is called immediately 
after EvtGetEvent. If EvtGetEvent returns a pen-up event in the 
Graffiti writing area, SysHandleEvent calls the Graffiti recognizer 
with the pen stroke information obtained from the pen queue and 
uses the results of the Graffiti recognizer to post one or more key-
board events into the key queue. A similar process occurs for pen-
up events detected over a silk-screened icon. SysHandleEvent 
converts the pen-up to a keyboard event with a virtual key code rep-
resenting the silk-screened icon. 

When an application calls EvtGetEvent, the event manager checks 
a number of system-event data structures and returns an event 
record to the application with information about the highest-priori-
ty event that needs processing. Events in Palm OS are stored in one 
of three event queues: a key queue, a pen queue, or a software event 
queue. The event queues are circular buffers containing event 
records stored in a first-in, first-out (FIFO) sequence. 

Here’s some additional information on hardware and software 
events:

• Hardware events are posted into their appropriate event queue 
by interrupt routines. The interrupt routine for handling key-



Using Palm OS System Managers
The System Manager

Developing Palm OS 3.0 Applications, Part II   61

board presses immediately enqueues the keyboard event into 
the key queue and sets up a periodic interrupt routine to watch 
for auto-repeat and for key debouncing. 

• Software-generated events include window-enter and window-
exit events, application quit events, and user-interface object 
events like control enter, control exit, etc. These events are typi-
cally generated as a side effect of a hardware-generated event 
like a pen-down. Software can, however, also generate key 
events, usually as a result of recognizing a Graffiti stroke or a tap 
on a silk-screened icon.

Software-generated events are posted into the appropriate event 
queue, but are not typically posted at interrupt time. Many of 
these events are inserted into the event queue by the various 
user-interface managers. Others, like key events, are posted by 
SysHandleEvent after recognizing a Graffiti stroke or a tap on 
a silk-screened icon.

Interapplication Communication

The system manager provides the API for interapplication commu-
nication. This API permits any application or system routine to send 
a launch code to any other application and get results back. For ex-
ample, an application that is to work with the global find must sup-
port the find launch code. 

Sending a launch code to another application is like calling a specif-
ic subroutine in that application: the application responding to the 
launch code is responsible for determining what to do given the 
launch code constant passed on the stack as a parameter. 

Predefined launch codes are listed in “Developing Palm OS Appli-
cations, Part I” and can be found in SystemMgr.h. All the parame-
ters for a launch code are passed in a single parameter block, and 
the results are returned in the same parameter block. “How Launch 
Codes Control an Application” in “Developing Palm OS Applica-
tions, Part I, describes launch codes in more detail.

Retrieving Events

The SysHandleEvent call allows applications to correctly respond 
to system events like key presses, Graffiti strokes, low-battery warn-
ings, and taps on silk-screened icons. Every application should call 
this routine from its event loop, usually before the application even 



Using Palm OS System Managers
The System Manager

62   Developing Palm OS 3.0 Applications, Part II 

looks at the event. If an application needs to override any part of the 
default system behavior, it could selectively filter out events before 
calling SysHandleEvent. 

Opening Applications Programmatically

The system provides several APIs for opening applications pro-
grammatically. Under most circumstances, you would use the 
SysUIAppSwitch routine to close your application and open a 
specified application. This routine notifies the system which appli-
cation to launch next and feeds an application-quit event into the 
event queue. If and when the current application responds to the 
quit event and returns, the system launches the new application.

When you want to make use of another application’s functionality 
and eventually return control of the system to your application, you 
can use the SysAppLaunch function to open a specified application 
as a subroutine of the calling application. It has numerous options, 
including whether to launch the application as a separate task, 
whether to allocate a globals world, and whether or not to give the 
called application its own stack. For example, you would use this 
function to request that the built in Address List application search 
its databases for a specified phone number and return the results of 
the search to your application. You could then call SysAppLaunch 
again to use the modem handle to dial the number. (In fact, this is 
how the built-in applications perform this task.) When calling 
SysAppLaunch do not set Launch Flags yourself—the 
SysAppLaunch function sets launch flags appropriately for you. 

This routine is also used to send launch codes to applications (by 
telling it to use the caller’s stack, no globals world, and not a sepa-
rate task). Usually, applications use it only for sending launch codes 
to other user-interface applications. An alternative, simpler method 
of sending launch codes is the SysBroadcastActionCode call. 
This routine automatically finds all other user-interface applications 
and calls SysAppLaunch to send the launch code to each of them.

If your application is called to process a launch code, it is called as a 
subroutine from the current user-interface application. Use the rou-
tine SysCurAppDatabase to get the card number and database ID 
of the currently running user-interface application. This routine 



Using Palm OS System Managers
The System Event Manager

Developing Palm OS 3.0 Applications, Part II   63

doesn’t return your application’s database ID but the database ID of 
the application that initiated the launch code.

Palm OS 3.0 also provides a new application from which the end 
user can launch any application installed on the Palm OS device. 
For more information, see “Application Launcher” on page 70.

WARNING: Do not use the SysUIAppSwitch or SysAppLaunch 
functions to open the Application Launcher application. 

System Manager Function Summary
The following system manager functions are available for applica-
tion use:

• SysReset

• SysBatteryInfoV20

• SysSetAutoOffTime

• SysHandleEvent

• SysUIAppSwitch

• SysCurAppDatabase

• SysBroadcastActionCode

• SysAppLaunch

The System Event Manager
The system event manager 

• Manages the low-level pen and key event queues. 

• Translates taps on silk-screened icons into key events.

• Sends pen strokes in the Graffiti area to the Graffiti recognizer. 

• Puts the system into low-power doze mode when there is no 
user activity. 

Most applications have no need to call the system event manager di-
rectly because most of the functionality they need comes from the 
higher-level event manager or is automatically handled by the sys-
tem.



Using Palm OS System Managers
The System Event Manager

64   Developing Palm OS 3.0 Applications, Part II 

Applications that do use the system event manager directly might 
do so to enqueue key events into the key queue or to retrieve each of 
the pen points that comprise a pen stroke from the pen queue. 

This section provides information about the system event manager 
by discussing these topics: 

• Event Translation: Pen Strokes to Key Events

• Pen Queue Management

• Auto-Off Control

• System Event Manager Function Summary

Event Translation: Pen Strokes to Key Events
One of the higher-level functions provided by the system event 
manager is conversion of pen strokes on the digitizer to key events. 
For example, the system event manager sends any stroke in the 
Graffiti area of the digitizer automatically to the Graffiti recognizer 
for conversion to a key event. Taps on silk-screened icons, such as 
the application launcher, Menu button, and Find button, are also in-
tercepted by the system event manager and converted into the ap-
propriate key events.

When the system converts a pen stroke to a key event, it:

• Retrieves all pen points that comprise the stroke from the 
pen queue

• Converts the stroke into the matching key event

• Enqueues that key event into the key queue

Eventually, the system returns the key event to the application as a 
normal result of calling EvtGetEvent. 

Most applications rely on the following default behavior of the sys-
tem event manager:

• All strokes in the predefined Graffiti area of the digitizer are con-
verted to key events

• All taps on the silk-screened icons are convert to key events

• All other strokes are passed on to the application for processing



Using Palm OS System Managers
The System Event Manager

Developing Palm OS 3.0 Applications, Part II   65

Pen Queue Management
The pen queue is a preallocated area of system memory used for 
capturing the most recent pen strokes on the digitizer. It is a circular 
queue with a first-in, first-out method of storing and retrieving pen 
points. Points are usually enqueued by a low-level interrupt routine 
and dequeued by the system event manager or application.

The following table summarizes pen management.

The system event manager provides an API for initializing and 
flushing the pen queue and for queuing and dequeueing points. 
Some state information is stored in the queue itself: to dequeue a 
stroke, the caller must first make a call to dequeue the stroke infor-
mation (EvtDequeuePenStrokeInfo) before the points for the 
stroke can be dequeued. Once the last point is dequeued, another 
EvtDequeuePenStrokeInfo call must be made to get the next 
stroke.

Applications usually don’t need to call EvtDequePenStrokeInfo  
because the event manager calls this function automatically when it 
detects a complete pen stroke in the pen queue. After calling 
EvtDequePenStrokeInfo, the system event manager stores the 
stroke bounds into the event record and returns the pen-up event to 
the application. The application is then free to dequeue the stroke 
points from the pen queue, or to ignore them altogether. If the 
points for that stroke are not dequeued by the time EvtGetEvent is 
called again, the system event manager automatically flushes them.

The user... The system...

Brings the pen down 
on the digitizer.

Stores a pen-down sequence in the pen 
queue and starts the stroke capture. 

Draws a character. Stores additional points in the pen queue 
periodically. 

Lifts the pen. Stores a pen-up sequence in the pen 
queue and turns off stroke capture. 



Using Palm OS System Managers
The System Event Manager

66   Developing Palm OS 3.0 Applications, Part II 

Key Queue Management
The key queue is an area of system memory preallocated for captur-
ing key events. Key events come from one of two occurrences: 

• As a direct result of the user pressing one of the buttons on the 
case 

• As a side effect of the user drawing a Graffiti stroke on the digi-
tizer, which is converted in software to a key event

The following table summarizes key management:

The system event manager provides an API for initializing and 
flushing the key queue and for enqueuing and dequeuing key 
events. Usually, applications have no need to dequeue key events; 
the event manager does this automatically if it detects a key in the 
queue and returns a keyDownEvent (documented in “Developing 
Palm OS Applications,” Part I) to the application through the 
EvtGetEvent call.

User action System response

Hardware button 
press.

Interrupt routine enqueues the appropriate key event into 
the key queue, temporarily disables further hardware button 
interrupts, and sets up a timer task to run every 10 ms. 

Hold down key for ex-
tended time period. 

Timer task to supports auto-repeat of the key (timer task is 
also used to debounce the hardware). 

Release key for certain 
amount of time.

Timer task reenables the hardware button interrupts.

Pen stroke in Graffiti 
area of digitizer.

System manager calls the Graffiti recognizer, which then re-
moves the stroke from the pen queue, converts the stroke 
into one or more key events, and finally enqueues these key 
events into the key queue. 

Pen stroke on silk-
screened icons.

System event manager converts the stroke into the appropri-
ate key event and enqueues it into the key queue.



Using Palm OS System Managers
The System Event Manager

Developing Palm OS 3.0 Applications, Part II   67

Auto-Off Control
Because the system event manager manages hardware events like 
pen taps and hardware button presses, it’s responsible for resetting 
the auto-off timer on the device. Whenever the system detects a 
hardware event, it automatically resets the auto-off timer to 0. If an 
application needs to reset the auto-off timer manually, it can do so 
through the system event manager call EvtResetAutoOffTimer.

System Event Manager Function Summary
The following functions are part of the developer API to the system 
event manager: 

• EvtAddEventToQueue

• EvtCopyEvent

• EvtDequeuePenPoint

• EvtDequeuePenStrokeInfo

• EvtEnableGraffiti

• EvtEnqueueKey

• EvtFlushKeyQueue

• EvtFlushNextPenStroke

• EvtFlushPenQueue

• EvtGetEvent

• EvtGetPen

• EvtKeyQueueEmpty

• EvtKeyQueueSize

• EvtKeyQueueEmpty

• EvtGetPenBtnList

• EvtPenQueueSize

• EvtProcessSoftKeyStroke

• EvtResetAutoOffTimer

• EvtWakeup



Using Palm OS System Managers
The Time Manager

68   Developing Palm OS 3.0 Applications, Part II 

The Time Manager
The date and time manager (called time manager in this chapter) 
provides access to both the 1-second and 0.01-second timing re-
sources on the Palm OS device. 

• The 1-second timer keeps track of the real-time clock (date 
and time), even when the unit is in sleep mode. 

• The 0.01-second timer, also referred to as the system ticks, can be 
used for finer timing tasks. This timer is not updated when the 
unit is in sleep mode and is reset to 0 each time the unit resets.

The basic time-manager API provides support for setting and get-
ting the real-time clock in seconds and for getting the current system 
ticks value (but not for setting it). The system manager provides 
more advanced functionality for setting up a timer task that exe-
cutes periodically or in a given number of system ticks.

This section discusses the following topics: 

• Using Real-Time Clock Functions

• Using System Ticks Functions

• Time Manager Function Summary

Using Real-Time Clock Functions
The real-time clock functions of the time manager include 
TimSetSeconds and TimGetSeconds. Real time on the Palm OS 
device is measured in seconds from midnight, Jan 1, 1904. Call 
TimSecondsToDateTime and TimDateTimeToSeconds to con-
vert between seconds and a structure specifying year, month, day, 
hour, minute, and second.

Using System Ticks Functions
The Palm OS device maintains a tick count that starts at 0 when the 
device is reset. This tick increments 

• 100 times per second when running on the Palm OS device

• 60 times per second when running on the Macintosh under the 
Simulator



Using Palm OS System Managers
The Time Manager

Developing Palm OS 3.0 Applications, Part II   69

For tick-based timing purposes, applications should use the macro 
sysTicksPerSecond, which is conditionally compiled for differ-
ent platforms. Use the function TimGetTicks to read the current 
tick count.

Although the TimGetTicks function could be used in a loop to im-
plement a delay, it is recommended that applications use the 
SysTaskDelay function instead. The SysTaskDelay function au-
tomatically puts the unit into low-power mode during the delay. 
Using TimGetTicks in a loop consumes much more current.

Time Manager Structures
The time manager uses these structures to store information. 

Listing 1.12 Time Manager Structures

typedef struct{
Sword second;
Sword minute;
Sword hour;
Sword day;
Sword month;
Sword year;
Sword weekDay; //Days since Sunday (0 to 6)
}DateTimeType;
typedef DateTimeType* DateTimePTr;

typedef struct {
Byte hours;
Byte minutes;
}TimeType;
typedef TimeType * TimePtr;

typedef struct{
Word year :7; //years since 1904 (Mac format)
Word month:4;
Word day :5;
}DateType;
typedef DateType * DatePtr;



Using Palm OS System Managers
Application Launcher

70   Developing Palm OS 3.0 Applications, Part II 

Time Manager Function Summary
The following time manager functions are available for application 
use:

• DateAdjust

• DateDaysToDate

• DateSecondsToDate

• DateToAscii

• DateToDays

• DateToDOWDMFormatf

• DayOfMonth

• DayOfWeek

• DaysInMonth

• TimAdjust

• TimDateTimeToSeconds

• TimGetSeconds

• TimGetTicks

• TimSecondsToDateTime

• TimSetSeconds

• TimeToAscii

Note that two functions associated with the Date and Time object, 
SelectDay and SelectTime are documented in Developing Palm 
OS Applications Part I. 

Application Launcher
The Application Launcher (accessed via the silkscreen "Applica-
tions" button) presents a window or menu from which the user can 
open other applications present on the Palm device. Applications in-
stalled on the Palm device (resource databases of type APPL) appear 
in the Application Launcher automatically. 



Using Palm OS System Managers
Application Launcher

Developing Palm OS 3.0 Applications, Part II   71

Compatibility
Note

Versions of Palm OS prior to 3.0 implemented the Launcher as a 
popup. The SysAppLauncherDialog function, which provides 
the API to the old popup launcher, is still present in Palm OS 3.0 
for compatibility purposes, but it has not been updated and, in 
most cases, should not be used.

The Launcher application can beam applications to other Palm de-
vices. Only the application itself is beamed; associated storage data-
bases and preferences are not transmitted. To suppress the beaming 
of your application by the Launcher, you can can set the 
dmHdrAttrCopyPrevention bit in your database header. (For a 
runtime code example, see the “DrMcCoy”sample application. Note 
that you can also use compile-time code to suppress beaming.) 

Normally, the Launcher represents installed applications graphical-
ly as icons that appear in the Launcher window. The Launcher ap-
plication also provides a list mode that allows the user to see more 
applications at once than are normally visible in its default viewing 
mode. You can use the Constructor tool to provide a small icon for 
the list mode—you’ll need to create a tAIB resource having 1001 as 
the value of its ID.

The Launcher displays a version string from each application’s 
tver resource, ID 1000. This short string (usually 3 to 6 characters) 
is displayed in the "Info" dialog.

Situations in which you need to open the Application Launcher pro-
grammatically are rare, but the system does provide an API for 
doing so. To activate the Launcher from within your application, en-
queue a keyDownEvent that contains a launchChr, as shown in 
Listing 1.13.

WARNING: Do not use the SysUIAppSwitch or SysAppLaunch 
functions to open the Application Launcher application. 



Using Palm OS System Managers
Application Launcher

72   Developing Palm OS 3.0 Applications, Part II 

Listing 1.13 Opening the Launcher

EventType newEvent;
newEvent.eType = KeyDownEvent;
newEvent.data.keyDown.chr = launchChr;
newEvent.data.keyDown.modifiers = commandKeyMask;
EvtAddEventToQueue (&newEvent);

For information on launching other applications programmatically, 
see “Opening Applications Programmatically” on page 62.



Developing Palm OS 3.0 Applications, Part II   73

2
Palm OS System 
Functions

Alarm Manager API

AlmGetAlarm

Purpose Return the alarm date/time in seconds since 1/1/1904 and the call-
er-defined alarm reference value for the given application.

Prototype ULong AlmGetAlarm ( UInt cardNo, 

LocalID dbID, 

DWordPtr refP)

Parameters -> cardNo Storage card number of the application.

-> dbID Local ID of the application.

<-> refP Pointer to location for the alarm’s reference value.

Result Alarm seconds since 1/1/1904; if no alarm is active for the applica-
tion, 0 is returned for the alarm seconds and the reference value is 
undefined.



Palm OS System Functions
Alarm Manager API

74   Developing Palm OS 3.0 Applications, Part II 

AlmSetAlarm

Purpose Set or cancel an alarm for the given application.

Prototype Err AlmSetAlarm ( UInt cardNo, 

LocalID dbID, 

DWord ref, 

ULong alarmSeconds, 

Boolean quiet)

Parameters -> cardNo Storage card number of the application.

-> dbID Local ID of the application.

-> ref Caller-defined value to be passed with 
notifications.

-> alarmSeconds Alarm date/time in seconds since 1/1/1904,
 or 0 to cancel the current alarm (if any).

-> quiet Reserved for future upgrade (set to zero).

Result 0 No error.

almErrMemory Insufficient memory.

almErrFull Alarm table is full.

Comments If an alarm for this application has already been set, it is replaced 
with the new alarm. Action code notifications are sent after the 
alarm is triggered and can be used by the application to set the next 
alarm.



Palm OS System Functions
Alarm Manager API

Developing Palm OS 3.0 Applications, Part II   75

Functions for System Use Only

AlmAlarmCallback

Prototype void AlmAlarmCallback (void)

WARNING: This function for use by system software only.

AlmCancelAll

Prototype void AlmCancelAll (Boolean enable)

WARNING: This function for use by system software only.

AlmDisplayAlarm

Prototype void AlmDisplayAlarm (Boolean displayOnly)

WARNING: This function for use by system software only.

AlmEnableNotification

Prototype void AlmEnableNotificatio(Boolean enable)

WARNING: This function for use by system software only.

AlmInit

Prototype Err AlmInit (void)

WARNING: This function for use by system software only.



Palm OS System Functions
Error Manager Functions

76   Developing Palm OS 3.0 Applications, Part II 

Error Manager Functions

ErrDisplay

Purpose Display an error alert if error checking is set to partial or full.

Prototype void ErrDisplay (char* message)

Parameters -> message Error message text.

Result No return value.

Comments Call this routine to display an error message, source code filename, 
and line number. This routine is actually a macro that is compiled 
into the code only if the compiler define ERROR_CHECK_LEVEL is set 
to 1 or 2 (ERROR_CHECK_PARTIAL or ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, “Using the Error 
Manager Macros.”



Palm OS System Functions
Error Manager Functions

Developing Palm OS 3.0 Applications, Part II   77

ErrDisplayFileLineMsg

Purpose Display a nonexitable dialog with an error message. Do not allow 
the user to continue.

Prototype void ErrDisplayFileLineMsg( CharPtr filename,

UInt lineno, 

CharPtr msg)

Parameters filename Source code filename. 

lineno Line number in the source code file. 

msg Message to display.

Result Never returns.

Comment Called by ErrFatalDisplayIf and ErrNonFatalDisplayIf. 
This function is useful when the application is already on the device 
and being tested by users. 

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay



Palm OS System Functions
Error Manager Functions

78   Developing Palm OS 3.0 Applications, Part II 

ErrFatalDisplayIf 

Purpose Display an error alert dialog if condition is TRUE and error check-
ing is set to partial or full. 

Prototype void ErrFatalDisplayIf ( Boolean condition, 

char* message)

Parameters -> condition If TRUE, display the error.

-> message Error message text.

Result No return value.

Comments Call this routine to display a fatal error message, source code filena-
me, and line number. The alert is displayed only if condition is 
TRUE. The dialog is cleared only when the user resets the system by 
responding to the dialog.

This routine is actually a macro that is compiled into the code if the 
compiler define ERROR_CHECK_LEVEL is set to 1 or 2 
(ERROR_CHECK_PARTIAL or ERROR_CHECK_FULL).

See Also ErrNonFatalDisplayIf, ErrDisplay, “Using the Error Manager 
Macros.”



Palm OS System Functions
Error Manager Functions

Developing Palm OS 3.0 Applications, Part II   79

ErrNonFatalDisplayIf 

Purpose Display an error alert dialog if condition is TRUE and error check-
ing is set to full. 

Prototype void ErrNonFatalDisplayIf ( Boolean condition,

char* message)

Parameters -> condition If TRUE, display the error.

-> message Error message text.

Result No return value.

Comments Call this routine to display a nonfatal error message, source code 
filename, and line number. The alert is displayed only if condition 
is TRUE. The alert dialog is cleared when the user selects to continue 
(or resets the system). 

This routine is actually a macro that is compiled into the code only if 
the compiler define ERROR_CHECK_LEVEL is set to 2 
(ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrDisplay, “Using the Error Manager 
Macros.”



Palm OS System Functions
Event Manager Functions

80   Developing Palm OS 3.0 Applications, Part II 

ErrThrow

Purpose Cause a jump to the nearest Catch block.

Prototype void ErrThrow (Long err)

Parameters err Error code.

Result Never returns.

Comments Use the macros ErrTry, ErrCatch, and ErrEndCatch in conjunc-
tion with this function. 

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay, 
“Using the Error Manager Macros.”

Event Manager Functions

EvtAddEventToQueue

Purpose Add an event to the event queue.

Prototype void EvtAddEventToQueue (EventPtr event)

Parameters event Pointer to the structure that contains the event.

error Pointer to any error encountered by this function.

Result Returns nothing.



Palm OS System Functions
Event Manager Functions

Developing Palm OS 3.0 Applications, Part II   81

EvtAddUniqueEventToQueue

Purpose Look for an event in the event queue of the same event type and ID 
(if specified). The routine replaces it with the new event, if found. 

• If no existing event is found, the new event is added. 

• If an existing event is found, the routine proceeds as follows:

– if inPlace is TRUE,the existing event is replaced with the 
new event 

– if inPlace is FALSE, the existing event is removed and 
the new event will be added to the end

Prototype void EvtAddUniqueEventToQueue 
( EventPtr eventP,DWord id, Boolean inPlace)

Parameters eventP Pointer to the structure that contains the event

id ID of event. 0 means match only on the type.

inPlace If TRUE, existing event are replaced. 
If FALSE, existing event is deleted and new event
added to end of queue.

Result Returns nothing.

EvtCopyEvent

Purpose Copy an event.

Prototype void EvtCopyEvent (EventPtr source, EventPtr dest)

Parameters source Pointer to the structure containing the event to copy.

dest Pointer to the structure to copy the event to.

Result Returns nothing.



Palm OS System Functions
Event Manager Functions

82   Developing Palm OS 3.0 Applications, Part II 

EvtDequeuePenPoint

Purpose Get the next pen point out of the pen queue. This function is called 
by recognizers. 

Prototype Err EvtDequeuePenPoint( PointType* retP)

Parameters retP Return point.

Result Always returns 0.

Comments Called by a recognizer that wishes to extract the points of a stroke. 
Returns the point (-1, -1) at the end of a stroke.

Before calling this routine, you must call 
EvtDequeuePenStrokeInfo.

See Also EvtDequeuePenStrokeInfo



Palm OS System Functions
Event Manager Functions

Developing Palm OS 3.0 Applications, Part II   83

EvtDequeuePenStrokeInfo

Purpose Initiate the extraction of a stroke from the pen queue. 

Prototype Err EvtDequeuePenStrokeInfo( PointType* startPtP,

 PointType* endPtP)

Parameters startPtP Start point returned here.

startPtP End point returned here.

Result Always returns 0.

Comments Called by the system function EvtGetSysEvent. This routine must 
be called before EvtDequeuePenPoint is called. 

Subsequent calls to EvtDequeuePenPoint return points at the 
starting point in the stroke and including the end point. After the 
end point is returned, the next call to EvtDequeuePenPoint re-
turns the point -1, -1.

See Also EvtDequeuePenPoint

EvtEnableGraffiti

Purpose Set Graffiti enabled or disabled.

Prototype void EvtEnableGraffiti (Boolean enable)

Parameters enable TRUE to enable Graffiti, FALSE to disable Graffiti.

Result Returns nothing.



Palm OS System Functions
Event Manager Functions

84   Developing Palm OS 3.0 Applications, Part II 

EvtEnqueueKey

Purpose Place keys into the key queue. 

Prototype Err EvtEnqueueKey ( UInt ascii, 

UInt keycode, 

UInt modifiers)

Parameters ascii ASCII code of key.

keycode Virtual key code of key.

modifiers Modifiers for key event.

Result Returns 0 if successful, or evtErrParamErr if an error occurs.

Comments Called by the keyboard interrupt routine and the Graffiti and Soft-
Keys recognizers. Note that because both interrupt- and noninter-
rupt-level code can post keys into the queue, this routine disables 
interrupts while the queue header is being modified.

Most keys in the queue take only 1 byte if they have no modifiers 
and no virtual key code, and are 8-bit ASCII. If a key event in the 
queue has modifiers or is a non-standard ASCII code, it takes up to 7 
bytes of storage and has the following format:

evtKeyStringEscape 1 byte

ASCII code 2 bytes

virtual key code 2 bytes

modifiers 2 bytes



Palm OS System Functions
Event Manager Functions

Developing Palm OS 3.0 Applications, Part II   85

EvtEventAvail

Purpose Return TRUE if an event is available.

Prototype Boolean EvtEventAvail (void)

Parameters None

Result Returns TRUE if an event is available, FALSE otherwise. 

EvtFlushKeyQueue

Purpose Flush all keys out of the key queue.

Prototype Err EvtFlushKeyQueue (void)

Parameters None.

Result Always returns 0.

Comments Called by the system function EvtSetPenQueuePtr. 



Palm OS System Functions
Event Manager Functions

86   Developing Palm OS 3.0 Applications, Part II 

EvtFlushNextPenStroke

Purpose Flush the next stroke out of the pen queue. 

Prototype Err EvtFlushNextPenStroke (void)

Parameters None

Result Always returns 0.

Comments Called by recognizers that need only the start and end points of a 
stroke. If a stroke has already been partially dequeued (by 
EvtDequeuePenStrokeInfo) this routine finishes the stroke de-
queueing. Otherwise, this routine flushes the next stroke in the 
queue.

See Also EvtDequeuePenPoint

EvtFlushPenQueue

Purpose Flush all points out of the pen queue.

Prototype Err EvtFlushPenQueue (void)

Parameters None

Result Always returns 0.

Comments Called by the system function EvtSetKeyQueuePtr.

See Also EvtPenQueueSize



Palm OS System Functions
Event Manager Functions

Developing Palm OS 3.0 Applications, Part II   87

EvtGetEvent

Purpose Return the next available event.

Prototype void EvtGetEvent (EventPtr event, Long timeout)

Parameters event Pointer to the structure to hold the event returned.

timeout Maximum number of ticks to wait before an event is 
returned (-1 means wait indefinitely).

Comments Pass timeout= -1 in most instances. When running on the device, 
this makes the CPU go into doze mode until the user provides in-
put. For applications that do animation, pass timeout >= 0.

Result Returns nothing.

EvtGetPen

Purpose Return the current status of the pen.

Prototype void EvtGetPen( Sword *pScreenX,  

Sword *pScreenY, 

Boolean *pPenDown)

Parameters pScreenX x location relative to display.

pScreenY y location relative to display.

pPenDown TRUE or FALSE.

Result Returns nothing.

Comments Called by various UI routines.

See Also KeyCurrentState (documented in Developing Palm OS Applica-
tions, Part I)



Palm OS System Functions
Event Manager Functions

88   Developing Palm OS 3.0 Applications, Part II 

EvtGetPenBtnList

Purpose Return a pointer to the silk-screen button array. 

Prototype PenBtnInfoPtr asm 

EvtGetPenBtnList( UIntPtr numButtons) 

Parameters numButtons Pointer to the variable to contain the
number of buttons in the array.

Result Returns a pointer to the array.

Comments The array returned contains the bounds of each silk-screened button 
and the ASCII code and modifiers byte to generate for each button.

See Also EvtProcessSoftKeyStroke

EvtKeyQueueEmpty

Purpose Return TRUE if the key queue is currently empty.

Prototype Boolean EvtKeyQueueEmpty (void)

Parameters None.

Result Returns TRUE if the key queue is currently empty, otherwise returns 
FALSE.

Comments Usually called by the key manager to determine if it should enqueue 
auto-repeat keys.



Palm OS System Functions
Event Manager Functions

Developing Palm OS 3.0 Applications, Part II   89

EvtKeyQueueSize

Purpose Return the size of the current key queue in bytes.

Prototype ULong EvtKeyQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Called by applications that wish to see how large the current key 
queue is.

EvtPenQueueSize

Purpose Return the size of the current pen queue in bytes.

Prototype ULong EvtPenQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Call this function to see how large the current pen queue is.



Palm OS System Functions
Event Manager Functions

90   Developing Palm OS 3.0 Applications, Part II 

EvtProcessSoftKeyStroke

Purpose Translate a stroke in the system area of the digitizer and enqueue the 
appropriate key events in to the key queue.

Prototype Err EvtProcessSoftKeyStroke( PointType* startPtP,

PointType* endPtP)

Parameters startPtP Start point of stroke.

endPtP End point of stroke.

Result Returns 0 if recognized, -1 if not recognized.

See Also EvtGetPenBtnList, GrfProcessStroke (documented in Devel-
oping Palm OS Applications, Part I)

EvtResetAutoOffTimer

Purpose Reset the auto-off timer to assure that the device doesn’t automati-
cally power off during a long operation without user input (for ex-
ample, serial port activity).  

Prototype Err EvtResetAutoOffTimer (void)

Parameters None.

Result Always returns 0.

Comments Called by SerialLinkMgr, Can be called periodically by other 
managers.

See Also SysSetAutoOffTime



Palm OS System Functions
Event Manager Functions

Developing Palm OS 3.0 Applications, Part II   91

EvtSysEventAvail

Purpose Return TRUE if a low-level system event (such as a pen or key event) 
is available.

Prototype Boolean EvtSysEventAvail(Boolean ignorePenUps)

Parameters ignorePenUps If TRUE, this routine ignores pen-up events
when determining if there are any system
events available.

Result Returns TRUE if a system event is available.

Comment Call EvtEventAvail to determine whether high-level software 
events are available.

EvtWakeup

Purpose Force the event manager to wake up and send a nilEvent to the 
current application. Events are documented in “Developing Palm OS 
Applications, Part I”). 

Prototype Err EvtWakeup (void)

Parameters None.

Result Always returns 0.

Comments Called by interrupt routines, like the sound manager and alarm 
manager.



Palm OS System Functions
Event Manager Functions

92   Developing Palm OS 3.0 Applications, Part II 

Functions for System Use Only

EvtDequeueKeyEvent

Prototype Err EvtDequeueKeyEvent (EventPtr eventP)

WARNING: System Use Only!

EvtEnqueuePenPoint

Prototype Err EvtEnqueuePenPoint (PointType* ptP)

WARNING: System Use Only!

EvtGetSysEvent

Prototype void EvtGetSysEvent ( EventPtr eventP, 

Long timeout)

WARNING: System Use Only!

EvtInitialize

Prototype void EvtInitialize (void)

WARNING: System Use Only!

EvtSetKeyQueuePtr

Prototype Err EvtSetKeyQueuePtr (Ptr keyQueueP, ULong size)

WARNING: System Use Only!



Palm OS System Functions
Feature Manager Functions

Developing Palm OS 3.0 Applications, Part II   93

EvtSetPenQueuePtr

Prototype Err EvtSetPenQueuePtr (Ptr penQueueP, ULong size) 

WARNING: System Use Only!

EvtSysInit

Prototype Err EvtSysInit (void)

WARNING: System Use Only!

Feature Manager Functions

FtrGet

Purpose Get a feature.

Prototype Err FtrGet ( DWord creator, 

UInt featureNum, 

DWordPtr valueP)

Parameters creator Creator type, should be same as the application
that owns this feature.

featureNum Feature number of the feature.

valueP Value of the feature is returned here.

Result Returns 0 if no error, or ftrErrNoSuchFtr or 
ftrErrInternalError if an error occurs.

Comments The value of the feature is application-dependent.

See Also FtrSet



Palm OS System Functions
Feature Manager Functions

94   Developing Palm OS 3.0 Applications, Part II 

FtrGetByIndex

Purpose Get a feature by index. 

Until the caller gets back ftrErrNoSuchFeature, it should pass 
indices for each table (ROM, RAM) starting at 0 and incrementing . 

Prototype Err FtrGetByIndex ( UInt index, 

Boolean romTable, 

DWordPtr creatorP, 

UIntPtr numP, 

DWordPtr valueP)

Parameters index Index of feature.

romTable If TRUE, index into ROM table; otherwise,
index into RAM table.

creatorP Feature creator is returned here.

numP Feature number is returned here.

valueP Feature value is returned here.

Result Returns 0 if no error, or ftrErrInternalError or 
ftrErrNoSuchFeature if an error occurs.

Comments This routine is normally only used by shell commands. Most appli-
cations don’t need it.



Palm OS System Functions
Feature Manager Functions

Developing Palm OS 3.0 Applications, Part II   95

FtrSet

Purpose Set a feature.

Prototype Err FtrSet ( DWord creator, 

UInt featureNum, 

DWord newValue)

Parameters creator Creator type, should be same as the application
that owns this feature.

featureNum Feature number of the feature.

newValue New value.

Result Returns 0 if no error, or ftrErrNoSuchFeature, 
memErrChunkLocked, memErrInvalidParam, or 
memErrNotEnoughSpace if an error occurs.

Comments The value of the feature is application-dependent.

See Also FtrGet



Palm OS System Functions
Feature Manager Functions

96   Developing Palm OS 3.0 Applications, Part II 

FtrUnregister

Purpose Unregister a feature.

Prototype Err FtrUnregister (DWord creator, 

UInt featureNum)

Parameters creator Creator type, should be same as the application
that owns the creator.

featureNum Feature number of the feature.

Result Returns 0 if no error, or ftrInternalError, 
ftrErrNoSuchFeature, memErrChunkLocked, 
memErrInvalidParam, or memErrNotEnoughSpace if an error oc-
curs.

Functions for System Use Only

FtrInit

Prototype Err FtrInit (void)

WARNING: This function for System use only



Palm OS System Functions
Find Functions

Developing Palm OS 3.0 Applications, Part II   97

Find Functions

FindDrawHeader

Purpose Draw the header line that separates, by database, the list of found 
items.

Prototype Boolean FindDrawHeader ( FindParamsPtr params,
CharPtr title)

Parameters params Handle of FindParamsPtr.

title Description of the database (for example Memos).

Result Returns TRUE if Find screen is filled up. Applications should exit 
from the search if this occurs.

FindGetLineBounds

Purpose Returns the bounds of the next available line for displaying a match 
in the Find Results dialog.

Prototype void FindGetLineBounds ( FindParamsPtr params,

RectanglePtr r)

Parameters params Handle of FindParamsPtr.

r Pointer to a structure to hold the bounds of the next
results line. 

Result Returns nothing.



Palm OS System Functions
Find Functions

98   Developing Palm OS 3.0 Applications, Part II 

FindSaveMatch

Purpose Saves the record and position within the record of a text search 
match. This information is saved so that it’s possible to later navi-
gate to the match.

Prototype void FindSaveMatch ( FindParamsPtr params,

UInt recordNum,

Word pos,

UInt fieldNum,

DWord appCustom,

UInt dbCardNo,

LocalID rdbID)

Parameters params Handle of FindParamsPtr.

recordNum Record index.

pos Offset of the match string from start of record. 

appCustom Extra data the application can save with a match.

dbCardNo Card number of the database that contains the match.

rdbID Local ID of the database that contains the match. 

Result Returns TRUE if the maximum number of displayable items has 
been exceeded

Comments Called by application code when it gets a match. 



Palm OS System Functions
Find Functions

Developing Palm OS 3.0 Applications, Part II   99

FindStrInStr

Purpose Perform a case-blind partial word search for a string in another 
string. This function assumes that the string to find is in lower-case 
characters.

Prototype void FindStrInStr( CharPtr strToSearch,

CharPtr strToFind,

WordPtr posP)

Parameters strToSearch String to search.

strToFind Converted, caseless version of the ASCII text
 string to be found. 

posP Pointer to offset in search string of the match. 

Result Returns TRUE if the string was found.

Comment To convert a standard ASCII, null-terminated text string into the ap-
propriate format for strToFind, use the conversion table returned 
by GetCharCaselessValue in code similar to the following:

CharPtr origStr;

/* Standard null-terminated ascii string */

CharPtr strToFind;      

/* Converted string to be passed to */
/* FindStrInStr */

BytePtr convTab;        

/* Conversion table returned from */
/* GetCharCaselessValue*/ 

int i;

convTab = GetCharCaselessValue();



Palm OS System Functions
Find Functions

100   Developing Palm OS 3.0 Applications, Part II 

for (i=0; origStr[i] != 0; i++)

   {

   strToFind[i] = convTab[origStr[i]];

   }

strToFind[i] = 0;

/* Now pass strToFind to 
FindStrInStr...*/

Note that the strToFind element of the parameter block passed by 
the system’s Find utility is preconverted, so it can be passed straight 
through to FindStrInStr, just as in the example in the tutorial. 

See Also GetCharCaselessValue (documented in “Developing Palm OS 
Applications, Part I) 



Palm OS System Functions
Float Manager Functions

Developing Palm OS 3.0 Applications, Part II   101

Float Manager Functions
Palm OS 2.0 and later implements floating point arithmetic differ-
ently than Palm OS 1.0 did. The floating-point library in OS versions 
2.0 and later provides 32-bit and 64-bit floating point arithmethic. 

Using Floating Point Arithmetic
To take advantage of the floating-point library, applications can now 
use the mathematical symbols + – * /instead of using functions like 
FlpAdd, FlpSub, etc.

When compiling the application, you have to link in the floating 
point library under certain circumstances. Choose from one of these 
options:

• Simulator application or application for 1.0 device — link in 
the floating point library explicitly. 

This library adds approximately 8KB to the size of your prc 
file. The library provides 32-bit and 64-bit floating-point 
arithmetic. The original Palm OS Fpl functions provided 
only 16-bit floating-point arithmetic. Linking in the library 
explicitly won’t cause problems when you complile for a 2.0 
or later device.

• 2.0 or later Palm OS device—It’s not necessary to link in the 
library.

The compiler generates trap calls to equivalent floating-point 
functionality in the system ROM.

There are control panel settings in the IDE which let you select the 
appropriate floating-point model.

Floating-point functionality is identical in either method. 

Using 1.0 Floating-Point Functionality
The original Fpl calls (documented in this section) are still avail-
able. They may be useful for applications that don’t need high preci-
sion, don’t want to incur the size penalty of the float library, and 
want to run on 1.0 devices only. To get 1.0 behavior, use the 1.0 calls 
(FplAdd, etc) and don’t link in the library. 



Palm OS System Functions
Float Manager Functions

102   Developing Palm OS 3.0 Applications, Part II 

FplAdd

Purpose Add two floating-point numbers (returns a + b).

Prototype FloatType FplAdd (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

 Result Returns the normalized floating-point result of the addition.

Comment Under Palm OS 2.0 and later, most applications will want to use the 
arithmetic symbols instead. See Using Floating Point Arithmetic.

FplAToF

Purpose Convert a zero-terminated ASCII string to a floating-point number. 
The string must be in the format : [-]x[.]yyyyyyyy[e[-]zz]

Prototype FloatType FplAToF (char* s)

Parameters s Pointer to the ASCII string.

 Result Returns the floating-point number.

Comment The mantissa of the number is limited to 32 bits.

See Also FplFToA



Palm OS System Functions
Float Manager Functions

Developing Palm OS 3.0 Applications, Part II   103

FplBase10Info

Purpose Extract detailed information on the base 10 form of a floating-point 
number: the base 10 mantissa, exponent, and sign. 

Prototype Err FplBase10Info ( FloatType a, 

ULong* mantissaP, 

Int* exponentP, 

Int* signP)

Parameters a The floating-point number.

mantissaP The base 10 mantissa (return value).

exponentP The base 10 exponent (return value).

signP The sign, 1 or -1 (return value).

Result Returns an error code, or 0 if no error.

Comments The mantissa is normalized so it contains at least 
kMaxSignificantDigits significant digits when printed as an 
integer value.

FlpBase10Info reports that zero is "negative"; that is, it returns a 
one for xSign.  If this is a problem, a simple workaround is:
    if (xMantissa == 0) {

        xSign = 0;



Palm OS System Functions
Float Manager Functions

104   Developing Palm OS 3.0 Applications, Part II 

FplDiv

Purpose Divide two floating-point numbers (result = dividend/divisor).

Prototype FloatType FplDiv ( FloatType dividend, 

FloatType divisor)

Parameters dividend Floating-point dividend.

divisor Floating-point divisor.

 Result Returns the normalized floating-point result of the division.

Under Palm OS 2.0 and later, most applications will want to use the 
arithmetic symbols instead. See Using Floating Point Arithmetic.

FplFloatToLong

Purpose Convert a floating-point number to a long integer.

Prototype Long FplFloatToLong (FloatType f)

Parameters f Floating-point number to be converted.

 Result Returns the long integer.

See Also FplLongToFloat, FplFloatToULong



Palm OS System Functions
Float Manager Functions

Developing Palm OS 3.0 Applications, Part II   105

FplFloatToULong

Purpose Convert a floating-point number to an unsigned long integer.

Prototype ULong FplFloatToULong (FloatType f)

Parameters f Floating-point number to be converted.

 Result Returns an unsigned long integer.

See Also FplLongToFloat, FplFloatToLong

FplFree

Purpose Release all memory allocated by the floating-point initialization. 

 Prototype void FplFree()

Parameters None.

Result Returns nothing.

Comments Applications must call this routine after they’ve called other func-
tions that are part of the float manager.

See Also FplInit



Palm OS System Functions
Float Manager Functions

106   Developing Palm OS 3.0 Applications, Part II 

FplFToA

Purpose Convert a floating-point number to a zero-terminated ASCII string 
in exponential format : [-]x.yyyyyyyye[-]zz

Prototype Err FplFToA (FloatType a, char* s)

Parameters a Floating-point number.

s Pointer to buffer to contain the ASCII string.

Result Returns an error code, or 0 if no error.

See Also FplAToF

FplInit

Purpose Initialize the floating-point conversion routines.

Allocate space in the system heap for floating-point globals.

Initialize the tenPowers array in the globals area to the powers of 
10 from -99 to +99 in floating-point format.

Prototype Err FplInit()

Parameters None.

Result Returns an error code, or 0 if no error.

Comments Applications must call this routine before calling any other fpl 
function.

See Also FplFree



Palm OS System Functions
Float Manager Functions

Developing Palm OS 3.0 Applications, Part II   107

FplLongToFloat

Purpose Convert a long integer to a floating-point number.

Prototype FloatType FplLongToFloat (Long x)

Parameters x A long integer.

 Result Returns the floating-point number.

FplMul

Purpose Multiply two floating-point numbers.

Prototype FloatType FplMul (FloatType a, FloatType b) 

Parameters a, b The floating-point numbers.

 Result Returns the normalized floating-point result of the multiplication.

Comment Under Palm OS 2.0 and later, most applications will want to use the 
arithmetic symbols instead. See Using Floating Point Arithmetic.



Palm OS System Functions
Float Manager Functions

108   Developing Palm OS 3.0 Applications, Part II 

FplSub

Purpose Subtract two floating-point numbers (returns a - b).

Prototype FloatType FplSub (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

 Result Returns the normalized floating-point result of the subtraction.

Comment Under Palm OS 2.0 and later, most applications will want to use the 
arithmetic symbols instead. See Using Floating Point Arithmetic.



Palm OS System Functions
Miscellaneous System Functions

Developing Palm OS 3.0 Applications, Part II   109

Palm OS System Functions

Miscellaneous System Functions

Crc16CalcBlock

Purpose Calculate the 16-bit CRC of a data block using the table lookup 
method.

Prototype Word Crc16CalcBlock (VoidPtr bufP, 

UInt count, 

Word crc)

Parameters bufP Pointer to the data buffer.

count Number of bytes in the buffer.

crc Seed crc value.

Result A 16-bit CRC for the data buffer.



Palm OS System Functions
Miscellaneous System Functions

110   Developing Palm OS 3.0 Applications, Part II 

MdmDial

Purpose Initialize the modem, dial the phone number and wait for result.

When executing this function, the system goes through these steps:

• Switch to the requested initial baud rate. 

• If HW hand-shake is requested, enable CTS/RTS hand-shak-
ing; otherwise, disable it.

• Reset the modem.

• Execute the setup string (if any).

• Configure the modem with required settings;

• Dial the phone number.

• Wait for CONNECT XXXXX or other response.

• If auto-baud is requested, switch to the connected baud rate.

Prototype Err MdmDial ( MdmInfoPtr modemP, 

CharPtr okDialP, 

CharPtr setupP, 

CharPtr phoneNumP)

Parameters modemP Pointer to modem info structure (filled in by caller)

okDialP (NOT IMPLEMENTED) Pointer to string of chars
allowed in dial string

setupP Pointer to modem setup string without the AT prefix.

phoneNumP Pointer to phone number string

Result 0 if successful; otherwise mdmErrNoTone, mdmErrNoDCD, 
mdmErrBusy, mdmErrUserCan, mdmErrCmdError



Palm OS System Functions
Miscellaneous System Functions

Developing Palm OS 3.0 Applications, Part II   111

MdmHangUp

Purpose Hang up the modem.

Prototype Err MdmHangUp (MdmInfoPtr modemP)

Parameters modemP Pointer to modem info structure (filled in by caller)

Result 0 if successful;

Warning: This function alters configuration of the serial port 
(without restoring it).

PhoneNumberLookup

Purpose This routine called the Address Book application to lookup a phone 
number. See the phonelookup.c example program for more infor-
mation. 

Prototype void PhoneNumberLookup (FieldPtr fld)

Parameters fld Field object in which the text to match is found.

Comments When trying to match a field, this function first tries to match select-
ed text. 

• If there is some selected text, the function replaces it with the 
phone number if there is a match. 

• If there is no selected text, the function replaces the text in 
which the insertion point is with the phone number if there is 
a match. 

• If there is no match, the function displays the Address Book 
short list. 

Result Nothing returned; it’s locked.



Palm OS System Functions
Miscellaneous System Functions

112   Developing Palm OS 3.0 Applications, Part II 

ResLoadForm

Purpose Copy and initialize a form resource. The structures are complete ex-
cept pointers updating. Pointers are stored as offsets from the begin-
ning of the form.

Prototype void* ResLoadForm (Word rscID)

Parameters rscID The resource ID of the form.

Result The handle of the memory block that the form is in, since the form 
structure begins with the WindowType structure, this is also a 
WindowHandle.

ResLoadMenu

Purpose Copy and initialize a menu resource. The structures are complete 
except pointers updating. Pointers are stored as offsets from the be-
ginning of the menu.

Prototype VoidPtr ResLoadMenu (Word rscID)

Parameters rscID The resource ID of the menu.

Result The handle of the memory block that the form is in, since the form 
structure begins with the WindowType structure this is also a 
WindowHandle.



Palm OS System Functions
System Preferences Functions

Developing Palm OS 3.0 Applications, Part II   113

System Preferences Functions

PrefGetAppPreferences

Purpose Return a copy of an application’s preferences. Sometimes, for vari-
able length resources, this routine is called twice: 

• Once with a NULL pointer and size ofk zero to find out how 
many bytes need to be read.

• A second time with an allocated buffer allocated of the cor-
rect size. Note that the application should always check that 
the return value is greater than or equal to prefsSize. 

Prototype SWord PrefGetAppPreferences (DWord creator, 

Word id, 

VoidPtr prefs, 

Word *prefsSize,

Boolean saved)

Parameters creator Application creator.

id ID number (lets an application have multiple 
preferences).

prefs Pointer to a buffer to hold preferences.

prefsSize Pointer to size the buffer passed.

saved If TRUE, retrieve the saved preferences. If FALSE, 
retrieve the current preferences.

Result Returns the constant noPreferenceFound if the preference re-
source wasn’t found. 

If the preference resource was found, the application should check 
that the value in prefsSize is equal or less than the return value. If 
it’s greater than the size passed, then some bytes were not retrieved.

See Also PrefSetPreferences, PrefGetAppPreferencesV10

Palm OS System Functions



Palm OS System Functions
System Preferences Functions

114   Developing Palm OS 3.0 Applications, Part II 

PrefGetAppPreferencesV10

Purpose Return a copy of an application’s preferences. 

Prototype Boolean PrefGetAppPreferencesV10 (ULong type, 

Int version, 

VoidPtr prefs, 

Word prefsSize)

Parameters type Application creator type.

version Version number of the application.

prefs Pointer to a buffer to hold preferences.

prefsSize Size of the buffer passed.

Result Returns FALSE if the preference resource was not found or the pref-
erence resource contains the wrong version number.

Comments The content and format of an application preference is application-
dependent. 

See Also PrefSetPreferences, PrefGetAppPreferences 



Palm OS System Functions
System Preferences Functions

Developing Palm OS 3.0 Applications, Part II   115

PrefGetPreference

Purpose Return a system preference. Use this instead of PrefGetPrefer-
ences.

Prototype DWord PrefGetPreference(

SystemPreferencesChoice choice)

Parameters System preference choice; see Preferences.h for available op-
tions.

Comments This function replaces the 1.0 function PrefGetPreferences. 
While PrefGetPreferences only let you retrieve the whole sys-
tem preferences structure, this function lets you specify which pref-
erences to retrieve. You can also choose among different preferences 
using an ID, or choose to access the saved or unsaved preferences. 

Result Returns the system preference.

See Also PrefSetPreferences, PrefGetAppPreferences, 
PrefGetAppPreferencesV10



Palm OS System Functions
System Preferences Functions

116   Developing Palm OS 3.0 Applications, Part II 

PrefGetPreferences

Purpose Return a copy of the system preferences.

Prototype void PrefGetPreferences (SystemPreferencesPtr p)

Parameters p Pointer to system preferences.

Result Returns nothing. Stores the system preferences in p.

Comments The p parameter points to a memory block allocated by the caller 
that is filled in by this function.

This function is often called in StartApplication to get localized 
settings. 

See Also PrefSetPreferences

PrefOpenPreferenceDBV10

Purpose Return a handle to the system preference database.

Prototype DmOpenRef PrefOpenPreferenceDBV10 (void)

Parameters Nothing.

Result Returns the handle, or 0 if an error results.

Comments This function is for system use only in Palm OS 2.0 and later.

See Also PrefGetPreferences, PrefSetPreferences



Palm OS System Functions
System Preferences Functions

Developing Palm OS 3.0 Applications, Part II   117

PrefSetAppPreferences

Purpose Set an application’s preferences in the preferences database.

Prototype void PrefSetAppPreferences ( DWord creator, 

Word id, 

SWord version, 

VoidPtr prefs, 

Word prefsSize, 

Boolean saved)

Parameters creator Application creator type.

id Resource ID (usually 0).

version Version number of the application.

prefs Pointer to a buffer that holds preferences.

prefsSize Size of the buffer passed.

saved If TRUE, set the saved preferences. If not, set the 
current preferences. 

Result Nothing.

See Also PrefSetAppPreferencesV10



Palm OS System Functions
System Preferences Functions

118   Developing Palm OS 3.0 Applications, Part II 

PrefSetAppPreferencesV10

Purpose Save an application’s preferences in the preferences database.

Prototype void PrefSetAppPreferencesV10 (ULong type, 

Int version, 

VoidPtr prefs, 

Word prefsSize)

Parameters type Application creator type.

version Version number of the application.

prefs Pointer to a buffer holding preferences.

prefsSize Size of the buffer passed.

Result Nothing.

Comments The content and format of an application preference is application-
dependent. 

See Also PrefSetAppPreferences, PrefGetPreferences



Palm OS System Functions
System Preferences Functions

Developing Palm OS 3.0 Applications, Part II   119

PrefSetPreference

Purpose Set a system preference. Using this function instead of 
PrefSetPreferences allows you to set selected preferences 
without having to access the whole structure.

Prototype void PrefSetPreference(

SystemPreferencesChoice choice, 

DWord value)

Parameters choice A SystemPreferencesChoice (see Preferences.h)

value Value to assign to the item in 
SystemPreferencesChoice.

Result Returns nothing. Changes the value of the system preference. 

PrefSetPreferences

Purpose Set the system preferences.

Prototype void PrefSetPreferences (SystemPreferencesPtr p)

Parameters p Pointer to system preferences.

Result Returns nothing.

Comments Unless there’s a reason for you to access the whole preferences 
structure, call PrefSetPreference instead.

See Also PrefGetPreferences



Palm OS System Functions
Password Functions

120   Developing Palm OS 3.0 Applications, Part II 

Password Functions

PwdExists

Purpose Return TRUE if the system password is set.

Prototype Boolean PwdExists()

Parameters None

Result Returns TRUE if the system password is set.

PwdRemove

Purpose Remove the encrypted password string and recover data hidden in 
databases.

Prototype extern void PwdRemove()

Parameters None

Result Returns nothing



Palm OS System Functions
Password Functions

Developing Palm OS 3.0 Applications, Part II   121

PwdSet

 Purpose Use a passed string as the new password. The password is stored in 
an encrypted form.

Prototype void PwdSet (CharPtr oldPassword, 

CharPtr newPassword)

Parameters oldPassword The old password must be successfully 
verified or the new password isn’t accepted

newPassword CharPtr to a string to use as the password. 
NULL means no password.

Result Returns nothing

PwdVerify

Purpose Verify that the string passed matches the system password.

Prototype Boolean PwdVerify (CharPtr string)

Parameters string String to compare to the system password. 
NULL means no current password.

Result Returns TRUE if the string matches the system password.



Palm OS System Functions
String Manager Functions

122   Developing Palm OS 3.0 Applications, Part II 

String Manager Functions

StrAToI

Purpose Convert a string to an integer. 

Prototype Int StrAToI (CharPtr str)

Parameters str String to convert.

Result Returns the integer.

Comments Use this function instead of the standard atoi routine.

StrCaselessCompare

Purpose Compare two strings with case and accent insensitivity. 

Prototype Int StrCaselessCompare (CharPtr s1, CharPtr s2)

Parameters Two string pointers.

Result Returns 0 if the two strings match, or non-zero if they don’t.

Comments Use this function instead of the standard stricmp routine. Use it to 
find strings but not sort them because it ignores case and accents.

See Also StrCompare



Palm OS System Functions
String Manager Functions

Developing Palm OS 3.0 Applications, Part II   123

StrCat

Purpose Concatenate one string to another.

Prototype CharPtr StrCat (CharPtr dst, CharPtr src)

Parameters dst Destination string pointer.

src Source string pointer. 

Result Returns a pointer to the destination string.

Comments Use this function instead of the standard strcat routine.

StrChr

Purpose Look for a character within a string. 

Prototype CharPtr StrChr (CharPtr str, Int chr)

Parameters str String to search.

chr Character to search for.

Result Returns a pointer to the first occurrence of character in str, or NULL 
if not found.

Comments Use this function instead of the standard strchr routine.

This routine does not correctly find a ‘\0’ character.

See Also StrStr



Palm OS System Functions
String Manager Functions

124   Developing Palm OS 3.0 Applications, Part II 

StrCompare

Purpose Compare two strings. 

Prototype Int StrCompare (CharPtr s1, CharPtr s2)

Parameters s1, s2 Two string pointers.

Result Returns 0 if the strings match.

Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

Comments This function is case sensitive.  Use it to sort strings but not to find 
them.

Use this function instead of the standard strcmp routine.

See Also StrCaselessCompare

StrCopy

Purpose Copy one string to another.

Prototype CharPtr StrCopy (CharPtr dst, CharPtr src)

Parameters s1, s2 Two string pointers.

Result Returns a pointer to the destination string.

Comments Use this function instead of the standard strcpy routine. 

This function does not return overlapping strings. 



Palm OS System Functions
String Manager Functions

Developing Palm OS 3.0 Applications, Part II   125

StrDelocalizeNumber

Purpose Delocalize a number passed in as a string. Convert the number from 
any localized notation to US notation (decimal point and thou-
sandth comma). The current thousand and decimal separators have 
to be passed in. 

Prototype CharPtr StrDelocalizeNumber(

CharPtr s, 

Char thousandSeparator, 

Char decimalSeparator)

Parameters s Pointer to the number ASCII string.

thousandSeparator Current thousand separator.

decimalSeparator Current decimal separator.

Result Returns a pointer to the changed number and modifies the string in 
s. 

See Also StrLocalizeNumber, LocGetNumberSeparators (documented 
in “Develping Palm OS Applications, Part I”)

StrIToA

Purpose Convert an integer to ASCII.

Prototype CharPtr StrIToA (CharPtr s, Long i)

Parameters s String pointer to store results.

i Integer to convert.

Result Returns a pointer to the result string. 

See Also StrAToI, StrIToH



Palm OS System Functions
String Manager Functions

126   Developing Palm OS 3.0 Applications, Part II 

StrIToH

Purpose Convert an integer to hexadecimal ASCII.

Prototype CharPtr StrIToH (CharPtr s, ULong i)

Parameters s String pointer to store results.

i Integer to convert.

Result Returns the string pointer s.

See Also StrIToA

StrLen

Purpose Compute the length of a string.

Prototype UInt StrLen (CharPtr src)

Parameters src String pointer

Result Returns the length of the string.

Comments Use this function instead of the standard strlen routine.



Palm OS System Functions
String Manager Functions

Developing Palm OS 3.0 Applications, Part II   127

StrLocalizeNumber

Purpose Convert a number (passed in as a string) to localized format, using a 
specified thousandSeparator and decimalSeparator. 

Prototype void StrLocalizeNumber(CharPtr s, 

Char thousandSeparator, 

Char decimalSeparator)

Parameters s Number ASCII string to localize

thousandSeparator Localized thousand separator.

decimalSeparator Localized decimal separator.

Result Returns nothing. Converts the number string in s. 

See Also StrDelocalizeNumber

StrNCaselessCompare

Purpose Compares two strings out to N characters with case and accent in-
sensitivity.

Prototype Int StrNCaselessCompare( const Char* s1, 

const Char* s2, 

DWord n)

Parameters s1 Pointer to first string.

s2 Pointer to second string. 

n Number of characters to compare.

Result 0 if they match, non-zero if not: positive if s1 > s2, negative if s1 < s2

See Also StrNCompare



Palm OS System Functions
String Manager Functions

128   Developing Palm OS 3.0 Applications, Part II 

StrNCat

Purpose Concatenates 1 string to another clipping the destination string to a 
max of N characters (including null at end).

Prototype CharPtr StrNCat( CharPtr dstP, 

const Char* srcP, 

Word n)

Parameters dstP Pointer to destination string. 

srcP Pointer to source string.

n Maximum number of characters for dstP. 

Result Returns a pointer to the destination string.

Comment This function differs from the standard C strncat function in these 
ways: 

• StrNCat treats the parameter n as the maximum size of 
dstP. The standard C function copies n characters from 
srcP into dstP. 

• StrNCat does not append the '\0' character to the end of 
the destination string if the size of the destination string is 
already n. That is, if you specify 6 as the value for n and the 
dstP string reaches a size of 6 characters when characters 
from srcP are added to it, StrNCat does not append '\0' to 
the dstP string.



Palm OS System Functions
String Manager Functions

Developing Palm OS 3.0 Applications, Part II   129

StrNCompare

Purpose Compare two strings out to N characters. This function is case and 
accent sensitive. 

Prototype Int StrNCompare(const Char* s1, 

const Char* s2, 

DWord n)

Parameters s1 Pointer to first string.

s2 Pointer to second string. 

n Number of characters to compare. 

Result Returns 0 if the strings match, non-zero if they don’t match. In that 
case:

+ if s1 > s2

- if s1 < s2

See Also StrNCaselessCompare

StrNCopy

Purpose Copies up to N characters from str string to dst string. Terminates 
dst string at index N-1 if src string length was N-1 or less.

Prototype CharPtr StrNCopy( CharPtr dstP, 

const Char* srcP, 

Word n)

Parameters dstP Destination string.

srcP Source string.

n Maximum number of bytes to copy from src string.

Result Returns a pointer to destination string



Palm OS System Functions
String Manager Functions

130   Developing Palm OS 3.0 Applications, Part II 

StrPrintF

Purpose Implements a subset of the ANSI C sprintf() call. 

Currently, only %d, %i, %u, %x and %s are implemented and don’t 
accept field length or format specifications except for the l (long) 
modifier.

Prototype SWord StrPrintF(CharPtr s, 
const Char* formatStr, 
...)

Parameters s  Destination string

formatStr  Format string.

 * ...  Arguments for format string.

Result Number of characters written to destination string.

See Also StrVPrintF

StrStr

Purpose Look for a substring within a string. 

Prototype CharPtr StrStr (CharPtr str, CharPtr token)

Parameters str String to search.

token String to search for.

Result Returns a pointer to the first occurrence of token in str, or NULL if 
not found.

Comments Use this function instead of the standard strstr routine.

See Also StrChr



Palm OS System Functions
String Manager Functions

Developing Palm OS 3.0 Applications, Part II   131

StrToLower

Purpose Convert all the characters in a string to lowercase. 

Prototype CharPtr StrToLower (CharPtr dst, CharPtr src)

Parameters dst, src Two string pointers.

Result Returns a pointer to the destination string.

Comments This function doesn’t convert accented characters.

StrVPrintF

Purpose Implements a subset of the ANSI C vsprintf() call. 

Currently, only %d, %i, %u, %x and %s are implemented and don’t 
accept field length or format specifications except for the l (long) 
modifier.

Prototype SWord StrVPrintF( CharPtr s, 

const Char* formatStr, 

VoidPtr argParam)

Parameters s Destination string.

formatStr Format string.

argParam Pointer to argument list.

Result Returns the number of characters written to destination string.



Palm OS System Functions
String Manager Functions

132   Developing Palm OS 3.0 Applications, Part II 

Example Here’s an example of how to use this call:
#include <stdarg.h>

void MyPrintF(CharPtr s, CharPtr formatStr, ...) 
{

va_list args;
Char text[0x100];

va_start(args, formatStr);
StrVPrintF(text, formatStr, args);
va_end(args);

MyPutS(text); 
}

See Also StrPrintF



Palm OS System Functions
File Streaming Functions

Developing Palm OS 3.0 Applications, Part II   133

File Streaming Functions

FileClearerr

Purpose Clear I/O error status,  end of file error status, and last error.

Prototype Err FileClearErr(FileHand stream) 

Parameters --> stream Handle to open stream. 

Result 0 if no error, or a fileErr code  if an error occurs. For a complete 
listing of File Streaming Error Codes, see the section beginning on 
page 149.

See Also FileGetLastError, FileRewind

FileClose

Purpose Close the file stream and destroy its handle.  If the stream was 
opened with fileModeTemporary, it is deleted upon closing. 

Prototype Err FileClose(FileHand stream)

Parameters --> stream Handle to open stream. 

Result 0 if no error, or a fileErr code  if an error occurs. For a complete 
listing of File Streaming Error Codes, see the section beginning on 
page 149.

Palm OS System Functions



Palm OS System Functions
File Streaming Functions

134   Developing Palm OS 3.0 Applications, Part II 

FileControl

Purpose Perform the operation specified by the op parameter on the stream 
file stream. 

Prototype Err FileControl(FileOpEnum op, FileHand stream, 
VoidPtr valueP, LongPtr 

valueLenP)

Parameters op The operation to perform, and its associated 
formal parameters,  as specified by one of the 
following selectors:
fileOpDestructiveReadMode
fileOpGetEOFStatus
fileOpGetLastError
fileOpClearError
fileOpGetIOErrorStatus
fileOpGetCreatedStatus
fileOpGetOpenDbRef
fileOpFlush
For details, see FileOpEnum on page 30.

--> stream Open stream handle if required for file stream 
operation. 

<--> valueP Pointer to value or buffer, as required. This pa-
rameter is defined by the selector passed as the 
value of the op parameter. For details, see 
FileOpEnum on page 30. 

<--> valueLenP Pointer to value or buffer, as required. This pa-
rameter is defined by the selector passed as the 
value of the op parameter. For details, see 
FileOpEnum on page 30.

Result Returns either a value defined by the selector passed as the argu-
ment to the op parameter, or an error code resulting from the re-
quested operation. For a complete listing of File Streaming Error 
Codes, see the section beginning on page 149.



Palm OS System Functions
File Streaming Functions

Developing Palm OS 3.0 Applications, Part II   135

Comments Normally, you do not call the FileControl function yourself; it is 
called for you by most of the other file streaming functions and mac-
ros to perform common file streaming operations. You can call  
FileControl yourself to enable specialized read modes. 

Pass the fileOpDestructiveReadMode selector as the value of 
the op parameter to the FileControl function to enable destruc-
tive read mode. This mode deletes blocks as data are read, thus free-
ing storage automatically. Once in destructive read mode, you can-
not re-use the file stream—the contents of the stream are undefined 
after it is closed or after a crash. 

Writing to files opened without write access or those that are in de-
structive read state is not allowed; thus, you cannot call the 
FileWrite, FileSeek,  or FileTruncate functions on a stream 
that is in destructive read mode. One exception to this rule applies 
to streams that were opened in “write + append” mode and then 
switched into destructive read state. In this case, the FileWrite 
function can append data to the stream, but it also preserves the cur-
rent stream position so that subsequent reads pick up where they 
left off (you can think of this as a pseudo-pipe).

See Also FileOpEnum, FileClearerr, FileEOF, FileError, File-
Flush, FileGetLastError, FileRewind



Palm OS System Functions
File Streaming Functions

136   Developing Palm OS 3.0 Applications, Part II 

FileDelete

Purpose Deletes the specified file stream from the specified card. Only a 
closed stream may be passed to this function. 

Prototype Err FileDelete(UInt cardNo, CharPtr nameP)

Parameters cardNo Card on which the file stream to delete resides. 
Currently, no Palm OS devices support multi-
ple cards, so this value must be 0.

nameP String that is the name of the stream to delete. 

Result 0 if no error, or a fileErr code  if an error occurs. For a complete 
listing of File Streaming Error Codes, see the section beginning on 
page 149.

See Also The fileModeTemporary argument to the openMode parameter 
of the  FileOpen function. 

FileDmRead

Purpose Read data from a file stream into a chunk, record, or resource resid-
ing in a database. 

Prototype Long FileDmRead(FileHand stream, 
VoidPtr startOfDmChunkP, 
Long destOffset,
Long objSize, Long numObj, 
Err* errP) 

Parameters --> stream Handle to open stream. 

--> startOfDmChunkP
Pointer to beginning of chunk, record or re-
source residing in a database. 

destOffset Offset from startOfDmChunkP (base pointer) 
to the destination area (must be >= 0). 



Palm OS System Functions
File Streaming Functions

Developing Palm OS 3.0 Applications, Part II   137

objSize Size of each stream object to read. 

numObj Number of stream objects to read. 

<--> errP Pointer to variable that is to hold the error code 
returned by this function. Pass NULL to ignore. 
For a list of file streaming error codes, see File 
Streaming Error Codes beginning on page 149.

Result The number of whole objects that were read—note that the number 
of objects actually read may be less than the number requested.

Comments When the number of objects actually read is less than the number re-
quested, you may be able to determine the cause of this result by ex-
amining the return value of the errP parameter or by calling the 
FileGetLastError function. If the cause is insufficient data in the 
stream to satisfy the full request, the current stream position is at 
end-of-file and the “end of file” indicator is set. If a non-NULL 
pointer was passed as the value of the errP parameter when the 
FileDmRead function was called and an error was encountered, 
*errP holds a non-zero error code when the function returns.  In 
addition, the FileError and FileEOF functions may be used to 
check for I/O errors.

See Also FileRead, FileReadLow, FileError, FileEOF



Palm OS System Functions
File Streaming Functions

138   Developing Palm OS 3.0 Applications, Part II 

FileEOF

Purpose Get end-of-file status (err = fileErrEOF indicates end of file condi-
tion).

Prototype Err FileEOF(FileHand stream) 

 Parameters --> stream Handle to open stream. 

Result 0 if not end of file; non-zero if end of file.  For a complete listing of 
File Streaming Error Codes, see the section beginning on page 149.

Comments This function’s behavior is similar to that of the feof function pro-
vided by the C programming language runtime library.

Use FileClearerr to clear the I/O error status. 

See Also FileClearerr, FileGetLastError, FileRewind



Palm OS System Functions
File Streaming Functions

Developing Palm OS 3.0 Applications, Part II   139

FileError

Purpose Get I/O error status.

Prototype Err FileError(FileHand stream) 

Parameters --> stream Handle to open stream. 

Result 0 if no error, and non-zero if an I/O error indicator has been set for 
this stream. For a complete listing of File Streaming Error Codes, see 
the section beginning on page 149.

Comments This function’s behavior is similar to that of the C programming lan-
guage’s ferror runtime function.

Use FileClearerr to clear the I/O error status. 

See Also FileClearerr, FileGetLastError, FileRewind

FileFlush

Purpose Flush cached data to storage.

Prototype Err FileFlush(FileHand stream) 

Parameters --> stream Handle to open stream. 

Result 0 if no error, or a fileErr code  if an error occurs. For a complete 
listing of File Streaming Error Codes, see the section beginning on 
page 149.

Comments It is not always necessary to call this function explicitly—certain op-
erations flush the contents of a stream automatically; for example, 
streams are flushed when they are closed. Because this function’s 
behavior is similar to that of the fflush function provided by the C 
programming language runtime library, you only need to call it ex-



Palm OS System Functions
File Streaming Functions

140   Developing Palm OS 3.0 Applications, Part II 

plicitly under circumstances similar to those in which you would 
call fflush explicitly. 

FileGetLastError

Purpose Get error code from last operation on file stream, and clear the last 
error code value (will not change end of file or I/O error status -- 
use FileClearerr to reset all error codes)

Prototype Err FileGetLastErr(FileHand stream)  

Parameters --> stream Handle to open stream. 

Result Error code returned by the last file stream operation. For a complete 
listing of File Streaming Error Codes, see the section beginning on 
page 149.

See Also FileClearerr, FileEOF, FileError 

FileOpen

Purpose Open existing file stream or create an open file stream for I/O in the 
mode specified by the openMode parameter. 

Prototype FileHand FileOpen (UInt cardNo, CharPtr nameP, 
ULong type, ULong creator, 
DWord openMode, Err* errP)

Parameters cardNo Card on which the file stream to open resides. 
Currently, no Palm OS devices support multi-
ple cards, so this value must be 0.

--> nameP Pointer to text string that is the name of the file 
stream to open or create. This value must be a 
valid name—no wildcards allowed, must not 
be NULL. 



Palm OS System Functions
File Streaming Functions

Developing Palm OS 3.0 Applications, Part II   141

type Filetype of stream to open or create. Pass 0 for 
wildcard, in which case 
sysFileTFileStream is used if the stream 
needs to be created and fileModeTemporary 
is not specified. If type is 0 and 
fileModeTemporary is specified, then 
sysFileTTemp is used for the filetype of the 
stream this function creates.

creator Creator of stream to open or create. Pass 0 for 
wildcard, in which case the current applica-
tion's creator ID is used for the creator of the 
stream this function creates.

openMode Mode in which to open the file stream. You 
must specify only one primary mode selector. 
Additionally, you can use the | operator (bit-
wise inclusive OR ) to append one or or more 
secondary mode selectors to the primary mode 
selector. The primary mode selectors are: 

fileModeReadOnly
Open for read-only access

fileModeReadWrite
Open/create for read/write access, 
discarding any previous version of 
stream

fileModeUpdate
Open/create for read/write, preserving 
previous version of stream if it exists

fileModeAppend
Open/create for read/write, always 
writing to the end of the stream

You can use the | operator (bitwise inclusive 
OR ) to append one or more of the following 
secondary mode selectors to the primary mode 
selector:

fileModeDontOverwrite
Prevents fileModeReadWrite from 
discarding an existing stream having the 



Palm OS System Functions
File Streaming Functions

142   Developing Palm OS 3.0 Applications, Part II 

same name;  may only be specified 
together with fileModeReadWrite

fileModeLeaveOpen
Leave stream open when application 
quits. Most applications should not use 
this option. See Comments at the end of 
this function description for more 
information. 

fileModeExclusive
No other application can open the 
stream until the application that opened 
it in this mode closes it. 

fileModeAnyTypeCreator
Accept any type/creator when opening 
or replacing an existing stream. 
Normally, the FileOpen function opens 
only streams having the specified 
creator and type. Setting this option 
enables the FileOpen function to open 
streams having a type or creator other 
than those specified.

fileModeTemporary
Delete the stream automatically when it 
is closed. See Comments at the end of 
this function description for more 
information. 

<--> errP Pointer to variable that is to hold the error code 
returned by this function. Pass NULL to ignore. 
For a list of file streaming error codes, see File 
Streaming Error Codes beginning on page 149.

Result If successful, returns a handle to an open file stream; otherwise, re-
turns 0. 

Comments The fileModeReadOnly, fileModeReadWrite, 
fileModeUpdate, and fileModeAppend modes are mutually ex-
clusive—pass only one of them to the FileOpen function!



Palm OS System Functions
File Streaming Functions

Developing Palm OS 3.0 Applications, Part II   143

When the fileModeTemporary open mode is used and the file 
type passed to FileOpen is 0, the FileOpen function uses 
sysFileTTemp (defined in SystemMgr.rh) for the file type, as 
recommended. In future versions of PalmOS, this configuration will 
enable the automatic cleanup of undeleted temporary files after a 
system crash. Automatic post-crash cleanup is not implemented in 
current versions of Palm OS.

To open a file stream even if it has a different type and creator than 
specified, pass the fileModeAnyTypeCreator selector as a flag in 
the openMode parameter to the FileOpen function. 

The fileModeLeaveOpen mode is an esoteric option that most ap-
plications should not use. It may be useful for a library that needs to 
open a stream from the current application’s context and keep it 
open even after the current application quits. By default, Palm OS 
automatically closes all databases that were opened in a particular 
application’s context when that application quits. The 
fileModeLeaveOpen option overrides this default behavior.

FileRead

Purpose Reads data from a stream into a buffer. Do not use this function to 
read data into a chunk, record or resource residing in a database—
you must use the FileDmRead function for such operations. 

Prototype Long FileRead(FileHand stream, VoidPtr bufP, 
Long objSize, Long numObj, 
Err* errP) 

Parameters --> stream Handle to open stream. 

--> bufP Pointer to beginning of buffer into which data 
is read

objSize Size of each stream object to read. 

numObj Number of stream objects to read. 

<--> errP Pointer to variable that is to hold the error code 
returned by this function. Pass NULL to ignore. 



Palm OS System Functions
File Streaming Functions

144   Developing Palm OS 3.0 Applications, Part II 

For a list of file streaming error codes, see File 
Streaming Error Codes beginning on page 149.

Result The number of whole objects that were read—note that the number 
of objects actually read may be less than the number requested.

Comments Do not use this function to read data into a chunk, record or re-
source residing in a database—you must use the FileDmRead func-
tion for such operations. 

When the number of objects actually read is fewer than the number 
requested, you may be able to determine the cause of this result by 
examining the return value of the errP parameter or by calling the 
FileGetLastError function. If the cause is insufficient data in the 
stream to satisfy the full request, the current stream position is at 
end-of-file and the “end of file” indicator is set. If a non-NULL 
pointer was passed as the value of the errP parameter when the 
FileRead function was called and an error was encountered, 
*errP holds a non-zero error code when the function returns.  In 
addition, the FileError and FileEOF functions may be used to 
check for I/O errors.

See Also FileDmRead

FileRewind

Purpose Reset position marker to beginning of stream and clear all error 
codes.

Prototype Err FileRewind(FileHand stream) 

Parameters --> stream Handle to open stream. 

Result 0 if no error, or a fileErr code  if an error occurs. For a complete 
listing of File Streaming Error Codes, see the section beginning on 
page 149.



Palm OS System Functions
File Streaming Functions

Developing Palm OS 3.0 Applications, Part II   145

See Also FileSeek, FileTell, FileClearerr, FileEOF, FileError, 
FileGetLastError 

FileSeek

Purpose Set current position within a file stream, extending the stream as 
necessary if it was opened with write access. 

Prototype Err FileSeek(FileHand stream, Long offset, 
FileOriginEnum origin) 

Parameters --> stream Handle to open stream. 

offset Position to set, expressed as the number of 
bytes from origin. This value may be positive, 
negative, or 0.

origin A structure of type FileOriginEnum, which 
describes the origin of the position change (be-
ginning, current, or end). 

Result 0 if no error, or a fileErr code  if an error occurs. For a complete 
listing of File Streaming Error Codes, see the section beginning on 
page 149.

Comments Attempting to seek beyond end-of-file in a read-only stream results 
in an I/O error. 

This function’s behavior is similar to that of the fseek function pro-
vided by the C programming language runtime library.

See Also FileRewind, FileTell



Palm OS System Functions
File Streaming Functions

146   Developing Palm OS 3.0 Applications, Part II 

FileTell

Purpose Get current position and, optionally, filesize. 

Prototype Long FileTell(FileHand stream, LongPtr fileSizeP, 
Err* errP) 

Parameters --> stream Handle to open stream. 

<-> fileSizeP Pointer to variable that holds value describing 
size of stream in bytes when this function re-
turns. Pass NULL to ignore. 

<--> errP Pointer to variable that is to hold the error code 
returned by this function. Pass NULL to ignore. 
For a list of file streaming error codes, see File 
Streaming Error Codes beginning on page 149.

Result If successful, returns current position, expressed as an offset in bytes 
from the beginning of the stream. If an error was encountered, re-
turns -1 as a signed long integer.

See Also FileRewind, FileSeek



Palm OS System Functions
File Streaming Functions

Developing Palm OS 3.0 Applications, Part II   147

FileTruncate

Purpose Truncate the file stream to a specified size; not allowed on streams 
open in destructive read mode or read-only mode.

Prototype Err FileTruncate(FileHand stream, Long newSize) 

Parameters --> stream Handle of open stream. 

newSize New size; must not exceed current stream size. 

Result 0 if no error, or a fileErr code  if an error occurs. For a complete 
listing of File Streaming Error Codes, see the section beginning on 
page 149.

See Also FileTell

FileWrite

Purpose Write data to a stream. 

Prototype Long FileWrite(FileHand stream, VoidPtr dataP, 
Long objSize, Long numObj,
Err* errP) 

Parameters --> stream Handle to open stream. 

--> dataP Pointer to buffer holding data to write. 

objSize Size of each stream object to write; must be ≥ 0.

numObj Number of stream objects to write. 

<--> errP Optional pointer to variable that holds the error 
code returned by this function. Pass NULL to ig-
nore. For a list of file streaming error codes, see 
File Streaming Error Codes beginning on 
page 149.



Palm OS System Functions
File Streaming Functions

148   Developing Palm OS 3.0 Applications, Part II 

Result The number of whole objects that were written—note that the num-
ber of objects actually written may be less than the number request-
ed. Should available storage be insufficient to satisfy the entire re-
quest, as much of the requested data as possible is written to the 
stream, which may result in the last object in the stream being in-
complete.

Comments Writing to files opened without write access or those that are in de-
structive read state is not allowed; thus, you cannot call the 
FileWrite, FileSeek,  or FileTruncate functions on a stream 
that is in destructive read mode. One exception to this rule applies 
to streams that were opened in "write + append" mode and then 
switched into destructive read state. In this case, the FileWrite 
function can append data to the stream, but it also preserves the cur-
rent stream position so that subsequent reads pick up where they 
left off (you can think of this as a pseudo-pipe).

Functions For System Use Only

FileReadLow

Purpose Low-level routine for reading data from a file stream. This function 
is for system use only—use the helper macros FileRead and 
FileDmRead instead of calling this function directly.

Prototype Long FileReadLow(FileHand stream, VoidPtr baseP,
Long offset, 
Boolean dataStoreBased, 
Long objSize, Long numObj, 
Err* errP)

WARNING: System Use Only!



Palm OS System Functions
File Streaming Functions

Developing Palm OS 3.0 Applications, Part II   149

File Streaming Error Codes
This section lists all error codes returned by the file streaming func-
tions. 

Error Code Value Meaning
fileErrMemErr (fileErrorClass|1) out of memory error
fileErrInvalidParam (fileErrorClass|2) invalid parameter value passed
fileErrCorruptFile (fileErrorClass|3) alleged stream is corrupted,

invalid, or not a stream
fileErrNotFound (fileErrorClass|4) couldn't find the stream
fileErrTypeCreatorMismatch

(fileErrorClass|5) type and/or creator not what 
was specified

fileErrReplaceError (fileErrorClass|6) couldn't replace existing stream
fileErrCreateError (fileErrorClass|7) couldn't create new stream
fileErrOpenError (fileErrorClass|8) generic open error
fileErrInUse (fileErrorClass|9) stream couldn't be opened or

deleted because it is in use
fileErrReadOnly (fileErrorClass|10) couldn't open in write mode 

because existing stream is 
read-only

fileErrInvalidDescriptor
(fileErrorClass|11) invalid file descriptor 

(FileHandle)
fileErrCloseError   (fileErrorClass|12) error closing the stream
fileErrOutOfBounds (fileErrorClass|13) attempted operation went out of 

bounds of the stream
fileErrPermissionDenied

(fileErrorClass|14) couldn't write to a stream open
for read-only access

fileErrIOError (fileErrorClass|15) generic I/O error
fileErrEOF (fileErrorClass|16) end-of-file error
fileErrNotStream (fileErrorClass|17) attempted to open an entity that

is not a stream



Palm OS System Functions
Sound Manager Functions

150   Developing Palm OS 3.0 Applications, Part II 

Sound Manager Functions

SndCreateMidiList

Purpose Generate a list of MIDI records having a specified creator.

 Prototype Boolean SndCreateMidiList(ULong creator, 
Boolean multipleDBs,
WordPtr wCountP,
Handle *entHP)

Parameters -->creator Creator of database in which to find MIDI 
records. Pass 0 for wildcard.

-->multipleDBs Pass TRUE to search multiple databases for 
MIDI records. Pass FALSE to search only in the 
first database found that meets search criteria.

<-->wCountP When the function returns, contains the num-
ber of MIDI records found. 

<-->entHP When the function returns, this handle holds a 
a memory chunk containing an array of 
SndMidiListItemType structs if MIDI 
records were found.

Result Returns FALSE if no MIDI records were found, TRUE if MIDI 
records were found. When this function returns TRUE, it updates the 
wCountP parameter to hold the number of MIDI records found and 
updates the entHP parameter to hold a handle to an array of 
SndMidiListItemTypestructs. Each record of this type holds the 
name, record ID, database ID, and card number of a MIDI record.

Comments This function is useful for displaying lists of sounds residing on the 
Palm device as MIDI records. 

See Also DmFindRecordByID, DmOpenDatabase, DmQueryRecord, 
DmOpenDatabaseByTypeCreator functions;  "Rock Music" sam-
ple code.



Palm OS System Functions
Sound Manager Functions

Developing Palm OS 3.0 Applications, Part II   151

SndDoCmd

Purpose Send a sound manager command to a specified sound channel.

Prototype Err SndDoCmd (  VoidPtr chanP, 

 SndCommandPtr cmdP, 

 Boolean noWait)

Parameters -> chanP Pointer to sound channel. Present implementa-
tion doesn’t support multiple channels. Must 
be NULL. 

-> cmdP Pointer to a SndCommandType  structure hold-
ing a parameter block that specifies the note to 
play, its duration, and amplitude. 

-> noWait Because asynchronous mode is not yet support-
ed for all commands, you must pass 0 for this 
value. In the future,
0 = await completion (synchronous)
!0 = immediate return (asynchronous).

Note Passing NULL for the channel pointer causes the command to be 
sent to the shared sound channel; currently, this is the only option.

Result 0 No error.

sndErrBadParam Invalid parameter.

sndErrBadChannel Invalid channel pointer.

sndErrQFull Sound queue is full.

Comments This function is useful for simple sound playback applications, such 
as playing a single note to provide user feedback. In addition to pro-
viding the same behavior it did in versions 1.0 and 2.0 of Palm OS, 
(specify the frequency, duration, and amplitude of a single note to 
be played) new command selectors provided in Palm OS 3.0 allow 
you to use MIDI values to specify pitch, duration, and amplitude of 
the note to play, and to stop the note currently being played. 



Palm OS System Functions
Sound Manager Functions

152   Developing Palm OS 3.0 Applications, Part II 

See Also SndCommandType, SndPlaySMF

SndGetDefaultVolume

Purpose Return default sound volume levels cached by Sound Manager.

Prototype void SndGetDefaultVolume ( UIntPtr alarmAmpP,

 UIntPtr sysAmpP, 

 UIntPtr defAmpP)

Parameters <->alarmAmpP Pointer to storage for alarm amplitude.

<-> sysAmpP Pointer to storage for system sound amplitude.

<-> defAmpP Pointer to storage for master amplitude.

Result Returns nothing.

Comments Any pointer arguments may be passed as NULL. In that case, the cor-
responding setting is not returned.

SndPlaySMF

Purpose Performs the operation specified by the cmd parameter: play the 
specified standard MIDI file (SMF) or return the number of millisec-
onds required to play the entire SMF. 

Prototype Err SndPlaySmf(void* chanP, 
SndSmfCmdEnum cmd, 
BytePtr smfP, 
SndSmfOptionsType* selP,
SndSmfChanRangeType* chanRangeP,
SndSmfCallbacksType* callbacksP,

Boolean bNoWait)

Parameters chanP The sound channel used to play the sound. This 
value must always be NULL because current 



Palm OS System Functions
Sound Manager Functions

Developing Palm OS 3.0 Applications, Part II   153

versions of Palm OS provide only one sound 
channel that all applications share.

cmd The operation to perform, as specified by one of 
the following selectors: 

sndSmfCmdPlay
play the selection synchronously

sndSmfCmdDuration 
return the duration of the entire SMF, 
expressed in milliseconds

--> smfP Pointer to the SMF data in memory. This point-
er can reference a valid SndMidiRecType 
structure followed by MIDI data, or it can point 
directly to the beginning of the SMF data. 

--> selP NULL or a pointer to a SndSmfOptionsType 
structure specifying options for playback vol-
ume, position in the SMF from which to begin 
playback, and whether playback can be inter-
rupted by user interaction with the display. See 
the SndSmfOptionsType structure for the 
default behavior specified by a NULL value.

--> chanRangeP NULL or a pointer to a SndSmfChanRange-
Type structure specifying a continuous range 
of MIDI channels 0 -15 to use for playback. If 
this value is NULL, all tracks are played.

--> callbacksP NULL or a pointer to a SndSmfCallback-
sType structure that holds your callback func-
tions. Functions of type SndBlockingFunc-
Type execute periodically while a note is 
playing, and functions of type SndCompl-
FuncType execute after playback of the SMF 
completes. For more information, see the 
Sound Callback Functions section beginning on 
page 51. 

bNoWait This value is ignored. This function always fin-
ishes playing the SMF selection before return-
ing; however, you can execute a callback func-
tion while the SMF is playing.



Palm OS System Functions
Sound Manager Functions

154   Developing Palm OS 3.0 Applications, Part II 

Result Returns 0 if no error. When an error occurs, this function returns 
one of the following values; for more information see the Sound-
Mgr.h file included with the Palm OS 3.0 SDK:
// bogus value passed to this function
sndErrBadParam (sndErrorClass | 1)

// invalid sound channel

sndErrBadChannel (sndErrorClass | 2)

// insufficient memory 
sndErrMemory (sndErrorClass | 3)

// tried to open channel that’s already open
sndErrOpen (sndErrorClass | 4)

// can’t accept more notes
sndErrQFull (sndErrorClass | 5)

//internal use - never returned to applications
sndErrQEmpty (sndErrorClass | 6)

// unsupported data format
sndErrFormat (sndErrorClass | 7)

// invalid data stream
sndErrBadStream (sndErrorClass | 8)

// play was interrupted
sndErrInterrupted (sndErrorClass | 9)

Comments Although this call is synchronous, a callback function can be called 
while a note is playing. If the callback does not return before the  
number of system ticks required to play the current sound have 
elapsed, the next note in the SMF will not start on time.

See Also SndDoCmd,SndCreateMidiList



Palm OS System Functions
Sound Manager Functions

Developing Palm OS 3.0 Applications, Part II   155

SndPlaySystemSound

Purpose Play a standard system sound.

Prototype void SndPlaySystemSound (SndSysBeepType beepID)

Parameters -> beepID System sound to play. 

Comments The SndSysBeepType enum is defined in SoundMgr.h  as fol-
lows:
typedef enum SndSysBeepType {

sndInfo = 1,

sndWarning,

sndError,

sndStartUp,

sndAlarm,

sndConfirmation,

sndClick

} SndSysBeepType;

Note that in versions of Palm OS prior to 3.0, all of these sounds 
were synchronous and blocking. In Palm OS 3.0, sndAlarm still 
blocks, but the rest of these system sounds are implemented asyn-
chronously. 

Result Returns nothing.

Functions for System Use Only

SndInit

Prototype Err SndInit(void)

WARNING: This function for use by system software only.



Palm OS System Functions
System Functions

156   Developing Palm OS 3.0 Applications, Part II 

SndSetDefaultVolume

Prototype void SndSetDefaultVolume ( UIntPtr alarmAmpP,

UIntPtr sysAmpP, 

UIntPtr defAmpP)

WARNING: This function for use by system software only.

System Functions

SysAppLaunch

Purpose Open an application from a specified database and card, with the 
appropriate launch flags—generally used to launch an application 
as a subroutine of the caller.

Prototype Err SysAppLaunch( UInt cardNo, LocalID dbID, 

UInt launchFlags, Word cmd, 

Ptr cmdPBP, DWord* resultP)

Parameters cardNo, dbID cardNo and dbID identify the application.

launchFlags Set to 0.

cmd Launch code.

cmdPBP Launch code parameter block.

resultP Pointer to what’s returned by the application’s 
PilotMain routine.

Result Returns 0 if no error, or one of sysErrParamErr, 
memErrNotEnoughSpace, sysErrOutOfOwnerIDs.

Comments Launching an application with all launch bits cleared makes the ap-
plication a subroutine call from the point of view of the caller. 



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   157

Do not use this function to open the system-supplied Application 
Launcher application. If another application has replaced the de-
fault launcher with one of its own, this function will open the cus-
tom launcher instead of the system-supplied one. To open the sys-
tem-supplied launcher reliably, enqueue a keyDownEvent that 
contains a launchChr, as shown in Listing 1.13, “Opening the 
Launcher,” on page 72.

NOTE: For important information regarding the correct use of this 
function, see “Opening Applications Programmatically” on 
page 62.

See Also SysBroadcastActionCode, SysUIAppSwitch, 
SysCurAppDatabase functions; Listing 1.13, “Opening the 
Launcher,” on page 72.

SysAppLauncherDialog

Purpose Display the launcher popup, get a choice, ask the system to launch 
the selected application, clean up, and leave. If there are no applica-
tions to launch, nothing happens. 

Prototype void SysAppLauncherDialog()

Parameters None.

Result The system may be asked to launch an application.

Comments Typically, this routine is called by the system as necessary. Most ap-
plications do not need to call this function themselves. 

In Palm OS version 3.0 the launcher is an application, rather than a 
popup. This function remains available for compatibility purposes 
only. 

See Also “Application Launcher.” starting on page 70; and the description of 
the SysAppLaunch function.



Palm OS System Functions
System Functions

158   Developing Palm OS 3.0 Applications, Part II 

SysBatteryInfo

Purpose Retrieve settings for the batteries. Set set to FALSE to retrieve bat-
tery settings. (Applications should not change any of the settings).

Warning: Use this function only to retrieve settings!

Prototype UInt SysBatteryInfo( Boolean set, 

UIntPtr warnThresholdP, 

UIntPtr criticalThresholdP,

UIntPtr maxTicksP, 

SysBatteryKind* kindP, 

Boolean* pluggedIn

BytePtr percentP)

Parameters set If FALSE, parameters with non-nil pointers are
retrieved. Never set this parameter to TRUE.

warnThresholdP Pointer to battery voltage warning threshold
in volts*100, or nil.

criticalThresholdP
Pointer to the battery voltage critical threshold
in volts*100, or nil.

maxTicksP Pointer to the battery timeout, or nil.

kindP Pointer to the battery kind, or nil.

pluggedIn Pointer to pluggedIn return value, or nil.

percentP Percentage of power remaining in the battery. 

Result Returns the current battery voltage in volts*100.

Comments Call this function to make sure an upcoming activity won’t be inter-
rupted by a low battery warning.

warnThresholdP and maxTicksP are the battery-warning volt-
age threshold and time out. If the battery voltage falls below the 
threshold, or the timeout expires, a lowBatteryChr key event is 



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   159

put on the queue. Normally, applications call SysHandleEvent 
which calls SysBatteryWarningDialog in response to this 
event. 

criticalThresholdP is the battery voltage threshold. If battery 
voltage falls below this level, the system turns itself off without 
warning and doesn’t turn on until battery voltage is above it again. 

See Also SysBatteryInfoV20

SysBatteryInfoV20

Purpose Retrieve settings for the batteries. Set set to FALSE to retrieve bat-
tery settings. (Applications should not change any of the settings).

Warning: Use this function only to retrieve settings!

Prototype UInt SysBatteryInfo( Boolean set, 

UIntPtr warnThresholdP, 

UIntPtr criticalThresholdP,

UIntPtr maxTicksP, 

SysBatteryKind* kindP, 

Boolean* pluggedIn)

Parameters set If FALSE, parameters with non-nil pointers are
retrieved. Never set this parameter to TRUE.

warnThresholdP Pointer to battery voltage warning threshold
in volts*100, or nil.

criticalThresholdP
Pointer to the battery voltage critical threshold
in volts*100, or nil.

maxTicksP Pointer to the battery timeout, or nil.

kindP Pointer to the battery kind, or nil.

pluggedIn Pointer to pluggedIn return value, or nil.



Palm OS System Functions
System Functions

160   Developing Palm OS 3.0 Applications, Part II 

Result Returns the current battery voltage in volts*100.

Comments Call this function to make sure an upcoming activity won’t be inter-
rupted by a low battery warning.

warnThresholdP and maxTicksP are the battery-warning volt-
age threshold and time out. If the battery voltage falls below the 
threshold, or the timeout expires, a lowBatteryChr key event is 
put on the queue. Normally, applications call SysHandleEvent 
which calls SysBatteryWarningDialog in response to this 
event. 

criticalThresholdP is the battery voltage threshold. If battery 
voltage falls below this level, the system turns itself off without 
warning and doesn’t turn on until battery voltage is above it again. 

See Also SysBatteryInfo

SysBinarySearch

Purpose Search elements in a sorted array for the specified data according to 
the specified comparison function. The array must be sorted in as-
cending order prior to the search. Use SysInsertionSort or SysQSort 
to sort the array.

Prototype Boolean SysBinarySearch (

VoidPtr baseP, Int numOfElements, 

Int width, SearchFuncPtr searchF, 

const VoidPtr searchData,const Long other, 

ULongPtr position, Boolean findFirst)

Parameters baseP Base pointer to an array of elements

numOfElements Number of elements to search, starting at 0 to 
numOfElements -1. Must be greater than 0.

width Width of an element comparison function.

searchF Search function. 



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   161

searchData Data to search for. This data is passed to the 
searchF function.

other Data to be passed as the third parameter (the 
other parameter) to the comparison function.

position Pointer to the position result.

findFirst If set to TRUE, the first matching element is 
returned. Use this parameter if the array 
contains duplicate entries to ensure that the 
first such entry will be the one returned.

Result Returns TRUE if an exact match was found. In this case, position 
points to the element number where the data was found. 

Returns FALSE if an exact match was not found. If FALSE is re-
turned, position points to the element number where the data 
should be inserted if it was to be added to the array in sorted order.

Comments The search starts at element 0 and ends at element (numOfEle-
ments - 1). 

The search function’s (searchF) prototype is:
Int _searchF (const VoidPtr, const VoidPtr, Long 
other);

The first parameter is the data for which to search, the second pa-
rameter is a pointer to an element in the array, and the third param-
eter is any other necessary data. 

The function returns:

• > 0 if the search data is greater than the element

• < 0 if the search data is less than the element

• 0 if the search data is the same as the element



Palm OS System Functions
System Functions

162   Developing Palm OS 3.0 Applications, Part II 

SysBroadcastActionCode

Purpose Send the specified action code  (launch code) and parameter block 
to the latest version of every UI application.

Prototype Err SysBroadcastActionCode (Word cmd, Ptr cmdPBP)

Parameters cmd Action code to send.

cmdPBP Action code parameter block to send.

Result Returns 0 if no error, or one of the following errors: 
sysErrParamErr, memErrNotEnoughSpace, 
sysErrOutOfOwnerIDs.

Comments Launch codes are discussed in some detail in Chapter 2 of Develop-
ing Palm OS Applications, Part I. 

See Also SysAppLaunch

SysCopyStringResource

Purpose Copy a resource string to a passed string.

Prototype void SysCopyStringResource ( CharPtr string, 

UInt theID)

Parameters string String to copy the resource string to.

theID Resource string ID.

Result Stores a copy of the resource string in string.



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   163

SysCreateDataBaseList

Purpose Generate a list of databases found on the memory cards matching a 
specific type and return the result. If lookupName is true then a 
name in a tAIN resource is used instead of the database’s name and 
the list is sorted. Only the last version of a database is returned. Da-
tabases with multiple versions are listed only once.

Prototype Boolean SysCreateDataBaseList( ULong type,
ULong creator, 
WordPtr dbCount, 
Handle *dbIDs, 
Boolean lookupName)

Parameters type Type of database to find (0 for wildcard).

creator Creator of database to find (0 for wildcard).

dbCount Pointer to contain count of matching databases.

dbIDs Pointer to handle allocated to contain the
database list.

lookupName Use tAIN names and sort the list.

Result Returns FALSE if no databases were found, TRUE if databases were 
found. dbCount is updated to the number of databases found; 
dbIDs is updated to the list of matching databases found.



Palm OS System Functions
System Functions

164   Developing Palm OS 3.0 Applications, Part II 

SysCreatePanelList

Purpose Generate a list of panels found on the memory cards and return the 
result. Multiple versions of a panel are listed once.

Prototype Boolean SysCreatePanelList(

WordPtr panelCount, 
Handle *panelIDs)

Parameters panelCountPointer to set to the number of panels.

panelIDs Pointer to handle containing a list of panels.

Result Returns FALSE if no panels were found, TRUE if panels were found. 
panelCount is updated to the number of panels found; panelIDs 
is updated to the IDs of panels found. 

SysCurAppDatabase

Purpose Return the card number and database ID of the current application’s 
resource database.

Prototype Err SysCurAppDatabase ( UIntPtr cardNoP, 

LocalID* dbIDP)

Parameters cardNoP Pointer to the card number; 0 or 1.

dbIDB Pointer to the database ID.

Result Returns 0 if no error, or SysErrParamErr if an error occurs.

See Also SysAppLaunch, SysUIAppSwitch



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   165

SysErrString

Purpose Returns text to describe an error number. This routine looks up the 
textual description of a system error number in the appropriate List 
resource and creates a string that can be used to display that error. 

The actual string will be of the form: "<error message> (XXXX)" 
where XXXX is the hexadecimal error number. 

This routine looks for a resource of type 'tstl' and resource ID of 
(err>>8). It then grabs the string at index (err & 0x00FF) out of that 
resource. 

Note: The first string in the resource is called index #1 by Con-
structor, NOT #0. For example, an error code of 0x0101 will fetch 
the first string in the resource. 

Prototype CharPtr SysErrString( Err err, 

CharPtr strP, 

Word maxLen)

Parameters err Error number

strP Pointer to space to form the string

maxLen Size of strP buffer.

Result Stores the error number string. 

SysFatalAlert

Purpose Display a fatal alert until the user taps a button in the alert.

Prototype UInt SysFatalAlert (CharPtr msg)

Parameters msg Message to display in the dialog.

Result The button tapped; first button is zero.



Palm OS System Functions
System Functions

166   Developing Palm OS 3.0 Applications, Part II 

SysFormPointerArrayToStrings

Purpose Form an array of pointers to strings in a block. Useful for setting the 
items of a list.

 Prototype VoidHand SysFormPointerArrayToStrings 

(CharPtr c,

Int stringCount)

Parameters c Pointer to packed block of strings, each 
terminated by NULL.

stringCount Count of strings in block.

Result Unlocked handle to allocated array of pointers to the strings in the 
passed block. The returned array points to the strings in the passed 
packed block. 

SysGetOSVersionString

Purpose Return the version number of the Palm operating system.

 Prototype CharPtr SysGetOSVersionString()

Parameters None.

Result Returns a string such as “v. 3.0.” 

Comments You must free the returned string using the MemPtrFree function. 



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   167

SysGetRomToken
Return from ROM a value specified by token.

Prototype Err SysGetROMToken(Word cardNo, DWord token,
BytePtr *dataP, WordPtr sizeP )

Parameters cardNo The card on which the ROM to be queried re-
sides. Currently, no Palm hardware provides 
multiple cards, so this value must be 0.

token The value to retrieve, as specified by one of the 
following tokens: 

sysROMTokenSerial
The serial number of the ROM, 
expressed as a text string with no null 
terminator.

<-- dataP Pointer to a text buffer that holds the requested 
value when the function returns. 

<-- sizeP The number of bytes in the dataP buffer.

Result Returns the requested value if no error, or an error code if an error 
occurs. If this function returns an error, or if the returned pointer to 
the buffer is NULL, or if the first byte of the text buffer is 0xFF, then 
no serial number is available.

Comments This function is available only on Palm OS version 3.0 and greater. 
Serial numbers are available only on flash ROM-based units.

The serial number is shown to the user in the Application Launcher, 
along with a checksum digit you can use to validate input when 
your users read the ID from their device and type it in or tell it to 
someone else. 

See Also “Retrieving the ROM Serial Number” starting on page 51 shows 
how to retrieve the ROM serial number and calculate its associated 
checksum. 



Palm OS System Functions
System Functions

168   Developing Palm OS 3.0 Applications, Part II 

SysGetStackInfo

Purpose Return the start and end of the current thread’s stack.

 Prototype Boolean SysGetStackInfo( Ptr *startPP, 
Ptr *endPP)

Parameters startPP Upon return, points to the start of the stack.

endPP Upon return, points to the end of the stack.

Result Returns TRUE if the stack has not overflowed, that is, the value of 
the stack overflow address has not been changed. Returns FALSE if 
the stack overflow value has been overwritten, meaning that a stack 
overflow has occurred.

SysGraffitiReferenceDialog

Purpose Pop up the Graffiti Reference Dialog.

Prototype void SysGraffitiReferenceDialog 

(ReferenceType referenceType)

Parameters referenceType Which reference to display. See 
GraffitiReference.h for more 
information.

Result Nothing returned.



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   169

SysGremlins

Purpose Query the Gremlins facility. You pass a selector for a function and 
parameters for that function. Gremlins performs the function call 
and returns the result. 

 Prototype DWord SysGremlins( GremlinFunctionType selector, 
GremlinParamsType *params)

Parameters selector The selector for a function to pass to Gremlins.

params Pointer to a parameter block used to pass parameters 
to the function specified by selector.

Result Returns the result of the function performed in Gremlins. 

Comments Currently, only one selector is defined, GremlinIsOn, which takes 
no parameters. GremlinIsOn returns 0 if Gremlins is not running, 
non-zero if it is running. 

Currently, non-zero values are returned only from the version of 
Gremlins in the Palm OS emulator. The Gremlins running in the 
simulator and over the serial line via the Palm Debugger return zero 
for GremlinIsOn.

Use this function if you need to alter the application’s behavior 
when Gremlins is running. For example, the debug 3.0 ROM refuses 
to bring up the digitizer panel when Gremlins is running under the 
emulator.



Palm OS System Functions
System Functions

170   Developing Palm OS 3.0 Applications, Part II 

SysHandleEvent

Purpose Handle defaults for system events such as hard and soft key presses. 

Prototype Boolean SysHandleEvent (EventPtr eventP)

Parameters eventP Pointer to an event.

Result Returns TRUE if the system handled the event.

Comments Applications should call this routine immediately after calling 
EvtGetEvent unless they want to override the default system be-
havior. However, overriding the default system behavior is almost 
never appropriate for an application. 

See Also EvtProcessSoftKeyStroke, KeyRates (documented in Devel-
oping Palm OS Applications, Part I)

SysInsertionSort

Purpose Sort elements in an array according to the passed comparison func-
tion. 

Prototype void SysInsertionSort (Byte baseP, 

Int numOfElements, 

Int width, 

CmpFuncPtr comparF,
Long other)

Parameters baseP Base pointer to an array of elements.

numOfElements Number of elements to sort (must be at least
2). 

width Width of an element.

comparF Comparison function (see Comments). 



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   171

other Other data passed to the comparison function.

Result Returns nothing.

Comments Only elements which are out of order move. Moved elements are 
moved to the end of the range of equal elements. If a large amount 
of elements are being sorted, try to use the quick sort (see SysQ-
Sort).

This is the insertion sort algorithm: Starting with the second ele-
ment, each element is compared to the preceding element. Each ele-
ment not greater than the last is inserted into sorted position within 
those already sorted. A binary search for the insertion point is per-
formed. A moved element is inserted after any other equal ele-
ments.

In Palm OS 2.0 and later, DmComparF has 6 parameters.

These parameters allow a Palm OS application to pass more infor-
mation to the system than before, most noticeably the record (and 
all associated information) which allows sorting by unique ID, so 
that the Palm OS device and the desktop always match. 

The revised callback is used by new sorting routines (and can be 
used the same way by your application): 

typedef Int DmComparF ( void *, 

void *, 

Int other,

SortRecordInfoPtr,

SortRecordInfoPtr,

 VoidHand appInfoH);

As a rule, this change in the number of arguments doesn’t cause 
problems when a 1.0 application is run on a 2.0 or later device, be-
cause the system only pulls the arguments from the stack that are 
there. 

Note, however, that some optimized applications built with tools 
other than Metrowerks CodeWarrior for Palm OS may have prob-



Palm OS System Functions
System Functions

172   Developing Palm OS 3.0 Applications, Part II 

lems as a result of the change in arguments when running on a 2.0 
or later device.

The 2.0 comparison function (comparF) has this prototype:
Int comparF (VoidPtr, VoidPtr, Long other);

The 1.0 comparison function (comparF) had this prototype: 
Int comparF (BytePtr A, BytePtr B, Long other);

The function returns:

• > 0 if A > B

• < 0 if A< B

• 0 if A = B

See Also SysQSort

SysInstall

Purpose Entry point for System code resource, ’CODE’ #0, in the System re-
source file.

Prototype void SysInstall (Ptr tableP[])

Parameters tableP Pointer to trap table.

Result Returns nothing

Comments Called by Init() in the ROMMain module.



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   173

SysKeyboardDialog

Purpose Pop up the system keyboard if there is a field object with the focus. 
The field object’s text chunk is edited directly.

Prototype void SysKeyboardDialog (KeyboardType kbdType)

Parameters kbdType The keyboard type. See keyboard.h.

Result Returns nothing. Changes the field’s text chunk.

See Also SysKeyboardDialogV10, FrmSetFocus (documented in "Devel-
oping Palm OS Applications, Part I)

SysKeyboardDialogV10

Purpose Pop up the system keyboard if there is a field object with the focus. 
The field object’s text chunk is edited directly.

Prototype void SysKeyboardDialogV10 ()

Parameters None.

Result Returns nothing. The field’s text chunk is changed.

See Also SysKeyboardDialog, FrmSetFocus (documented in "Develop-
ing Palm OS Applications, Part I)



Palm OS System Functions
System Functions

174   Developing Palm OS 3.0 Applications, Part II 

SysLibFind

Purpose A utility routine to return a reference number for a library that is al-
ready loaded, given its name.

Prototype Err SysLibFind (CharPtr nameP, UIntPtr refNumP)

Parameters nameP Pointer to the name of a loaded library.

refNumP Pointer to a variable for returning the library 
reference number (on failure, this variable is 
undefined)

Result 0 if no error; otherwise: sysErrLibNotFound (if the library is not 
yet loaded), or another error returned from the library's install entry 
point.

Comments Most built-in libraries (net, serial, IR) are preloaded automatically 
when the system is reset. Third-party libraries must be loaded be-
fore this call can succeed (use SysLibLoad). You can check if a li-
brary is already loaded by calling SysLibFind and checking for a 0 
error return value (it will return a non-zero value if the library is not 
loaded).



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   175

SysLibLoad

Purpose A utility routine to load a library given its database creator and 
type. 

Presently, the “load” functionality is NOT supported when you use 
the Palm OS Simulator. 

Prototype Err SysLibLoad( DWord libType, 

DWord libCreator, 

UIntPtr refNumP)

Parameters libType Type of library database.

libCreator Creator of library database.

refNumP Pointer to variable for returning the library
reference number(on failure, 
sysInvalidRefNum is returned in this 
variable)

Result 0 if no error; otherwise: sysErrLibNotFound, sysErrNoFreeR-
AM, sysErrNoFreeLibSlots, or other error returned from the li-
brary's install entry point

Comments When an application no longer needs a library that it SUCCESSFUL-
LY loaded via SysLibLoad, it is responsible for unloading the li-
brary by calling SysLibRemove and passing it the library reference 
number returned by SysLibLoad. More information is available in 
the white paper on shared libraries, which you can find on the Palm 
developer support web site.



Palm OS System Functions
System Functions

176   Developing Palm OS 3.0 Applications, Part II 

SysQSort

Purpose Sort elements in an array according to the passed comparison func-
tion. Equal records can be in any position relative to each other be-
cause a quick sort tends to scramble the ordering of records. As a re-
sult, calling SysQSort multiple times can result in a different order 
if the records are not completely unique. If you don’t want this be-
havior, use the insertion sort instead (see SysInsertionSort).

To pick the pivot point, the quick sort algorithm picks the middle of 
three records picked from around the middle of all records. That 
way, the algorithm can take advantage of partially sorted data. 

These optimizations are built in:

• The routine contains its own stack to limit uncontrolled 
recursion. When the stack is full, an insertion sort is used 
because it doesn't require more stack space. 

• An insertion sort is also used when the number of records is 
low. This avoids the overhead of a quick sort which is 
noticeable for small numbers of records. 

• If the records seem mostly sorted, an insertion sort is 
performed to move only those few records that need to be 
moved.

 Prototype void SysQSort ( Byte baseP, 

Int numOfElements, 

Int width, 

CmpFuncPtr comparF, 

Long other)

Parameters baseP Base pointer to an array of elements.

numOfElements Number of elements to sort 
(must be at least 2). 

width Width of an element.

comparF Comparison function. See Comments for 
SysInsertionSort.

other Other data passed to the comparison function.



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   177

Result Returns nothing.

See Also SysInsertionSort

SysRandom

Purpose Return a random number anywhere from 0 to sysRandomMax.

Prototype Int SysRandom (ULong newSeed)

Parameters newSeed New seed value, or 0 to use existing seed.

Result Returns a random number.

SysReset

Purpose Perform a soft reset and reinitialize the globals and the dynamic 
memory heap.

Prototype void SysReset (void)

Parameters None.

Result No return value.

Comments This routine resets the system, reinitializes the globals area and all 
system managers, and reinitializes the dynamic heap. All database 
information is preserved. This routine is called when the user press-
es the hidden reset switch on the device. 

When running an application using the simulator, this routine looks 
for two data files that represent the memory of card 0 and card 1. If 
these are found, the Palm OS memory image is created using them. 
If they are not found, they are created.

When running an application on the device, this routine simply 
looks for the memory cards at fixed locations.



Palm OS System Functions
System Functions

178   Developing Palm OS 3.0 Applications, Part II 

SysSetAutoOffTime

Purpose Set the time out value in seconds for auto-power-off. Zero means 
never power off.

Prototype UInt SysSetAutoOffTime (UInt seconds)

Parameters seconds Time out in seconds, or 0 for no time out.

Result Returns previous value of time out in seconds.

SysStringByIndex

Purpose Copy a string out of a string list resource by index. String list re-
sources are of type 'tSTL' and contain a list of strings and a prefix 
string. 

Warning: ResEdit always displays the items in the list as starting 
at 1, not 0. Consider this when creating your string list.

Prototype CharPtr SysStringByIndex( Word resID, 

Word index, 

CharPtr strP, 

Word maxLen)

Parameters resID Resource ID of the string list.

index String to get out of the list.

strP Pointer to space to form the string.

maxLen Size of strP buffer.

Result Returns a pointer to the copied string. The string returned from this 
call will be the prefix string appended with the designated index 
string. Indices are 0-based; index 0 is the first string in the resource. 



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   179

SysTaskDelay

Purpose Put the processor into doze mode for the specified number of ticks.

Prototype Err SysTaskDelay (Long delay)

Parameters delay Number of ticks to wait (see SysTicksPerSecond)

Result Returns 0 if no error.

See Also EvtGetEvent

SysTicksPerSecond

Purpose Return the number of ticks per second. This routine allows applica-
tions to be tolerant of changes to the ticks per second rate in the sys-
tem. 

Prototype Word SysTicksPerSecond(void)

Parameters None

Result Returns the number of ticks per second.

SysUIAppSwitch

Purpose Try to make the current UI application quit and then launch the UI 
application specified by card number and database ID.

NOTE: For important information regarding the correct use of this 
function, see “Opening Applications Programmatically” on 
page 62.



Palm OS System Functions
System Functions

180   Developing Palm OS 3.0 Applications, Part II 

Prototype Err SysUIAppSwitch( UInt cardNo, 

LocalID dbID, 

Word cmd, 

Ptr cmdPBP)

Parameters cardNo Card number for the new application; currently only
card 0 is valid.

dbID ID of the new application.

cmd Action code (launch code). See Developing Palm OS 
Applications, Part I. 

cmdPBP Action code (launch code) parameter block.

Result Returns 0 if no error.

Comments Do not use this function to open the system-supplied Application 
Launcher application. If another application has replaced the de-
fault launcher with one of its own, this function will open the cus-
tom launcher instead of the system-supplied one. To open the sys-
tem-supplied launcher reliably, enqueue a keyDownEvent that 
contains a launchChr, as shown in Listing 1.13, “Opening the 
Launcher,” on page 72.

See Also SysAppLaunch

Functions for System Use Only

SysAppExit

Prototype Err SysAppExit (SysAppInfoPtr appInfoP, 

Ptr prevGlobalsP, Ptr globalsP)

WARNING: System Use Only!



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   181

SysAppInfoPtr

Prototype SysAppInfoPtr SysCurAppInfoP (void)

WARNING: System Use Only!

SysAppStartup

Prototype Err SysAppStartup ( SysAppInfoPtr appInfoPP,

Ptr prevGlobalsP, Ptr globalsP)

WARNING: System Use Only!

SysBatteryDialog

Prototype void SysBatteryDialog (void)

WARNING: System Use Only!

SysCardImageDeleted

Prototype void SysCardImageDeleted (UInt cardNo)

WARNING: System Use Only!

SysCardImageInfo

Prototype Ptr SysCardImageInfo (UInt cardNo, ULongPtr sizeP)

WARNING: System Use Only!



Palm OS System Functions
System Functions

182   Developing Palm OS 3.0 Applications, Part II 

SysColdBoot

Purpose Perform a cold boot and reformat all RAM areas of both memory 
cards.

WARNING: System Use Only!

SysCurAppInfoP

Prototype SysCurAppInfoPtr SysCurrAppInfoP (void)

WARNING: System Use Only!

SysDisableInts

Prototype Word SysDisableInts (void)

WARNING: System Use Only!

SysDoze

Prototype void SysDoze (Boolean onlyNMI)

WARNING: System Use Only!

SysEvGroupCreate

Prototype Err SysEvGroupCreate(DWordPtr evIDP, DWordPtr 
tagP, DWord init)

WARNING: System Use Only!



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   183

SysGetAppInfo

Prototype SysAppInfoPtr SysGetAppInfo(
SysAppInfoPtr *uiAppPP, 
SysAppInfoPtr *actionCodeAppPP)

WARNING: System Use Only!

SysEvGroupRead

Prototype Err SysEvGroupRead(DWord evID, DWordPtr valueP)

WARNING: System Use Only!

SysEvGroupSignal

Prototype Err SysEvGroupSignal(DWord evID, DWord mask, DWord 
value, SDWord type)

WARNING: System Use Only!

SysEvGroupWait

Prototype Err SysEvGroupWait(DWord evID, DWord mask, DWord 
value, SDWord matchType, SDWord timeout)

WARNING: System Use Only!

SysGetTrapAddress

Prototype VoidPtr SysGetTrapAddress (UInt trapNum)

WARNING: System Use Only!



Palm OS System Functions
System Functions

184   Developing Palm OS 3.0 Applications, Part II 

SysInit

Prototype void SysInit (void)

WARNING: System Use Only!

SysKernelInfo

Prototype Err SysKernelInfo (VoidPtr paramP)

WARNING: System Use Only!

SysLaunchConsole 

Prototype Err SysLaunchConsole (void)

WARNING: System Use Only!

SysLibInstall

Prototype Err   SysLibInstall ( SysLibEntryProcPtr libraryP,

 UIntPtr refNumP)

WARNING: System Use Only!

SysLibRemove

Prototype Err SysLibRemove (UInt refNum)

WARNING: System Use Only!

SysLibTblEntry

Prototype SysLibTblEntryPtr SysLibTblEntry (UInt refNum)

WARNING: System Use Only!



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   185

SysMailboxCreate

Prototype Err SysMailboxCreate(DWordPtr mbIDP, DWordPtr 
tagP, DWord depth)

WARNING: System Use Only!

SysMailboxDelete

Prototype Err SysMailboxDelete(DWord mbID)

WARNING: System Use Only!

SysMailboxFlush

Prototype Err SysMailboxFlush(DWord mbID)

WARNING: System Use Only!

SysMailboxSend

Prototype Err SysMailboxSend(DWord mbID, VoidPtr msgP, DWord 
wAck)

WARNING: System Use Only!

SysMailboxWait

Prototype Err SysMailboxWait(DWord mbID, VoidPtr msgP, DWord 
priority, SDWord timeout)

WARNING: System Use Only!



Palm OS System Functions
System Functions

186   Developing Palm OS 3.0 Applications, Part II 

SysNewOwnerID

Prototype UInt SysNewOwnerID (void)

WARNING: System Use Only!

SysPowerOn

Prototype void SysPowerOn ( Ptr card0P, ULong card0Size, 

Ptr card1P, ULong card1Size, 

DWord sysCardHeaderOffset, 

Boolean reFormat)

WARNING: System Use Only!

SysRestoreStatus

Prototype void SysRestoreStatus (Word status)

WARNING: System Use Only!

SysSetA5

Prototype DWord SysSetA5 (DWord newValue)

WARNING: System Use Only!

SysSetTrapAddress

Prototype Err SysSetTrapAddress ( UInt trapNum, 

VoidPtr procP)

WARNING: System Use Only!



Palm OS System Functions
System Functions

Developing Palm OS 3.0 Applications, Part II   187

SysSleep

Prototype void SysSleep ( Boolean untilReset, 

Boolean emergency)

WARNING: System Use Only!

SysTaskResume

Prototype Err SysTaskResume(DWord taskID)

WARNING: System Use Only!

SysTaskSuspend

Prototype Err SysTaskSuspend(DWord taskID)

WARNING: System Use Only!

SysUILaunch

Prototype void SysUILaunch (void)

WARNING: System Use Only!

SysTaskWait

Prototype Err SysTaskWait(SDWord timeout)

WARNING: System Use Only!



Palm OS System Functions
System Functions

188   Developing Palm OS 3.0 Applications, Part II 

SysTaskWaitClr

Prototype Err SysTaskWaitClr(void)

WARNING: System Use Only!

SysTaskWake

Prototype Err SysTaskWake(DWord taskID)

WARNING: System Use Only!



Palm OS System Functions
Time Manager Functions

Developing Palm OS 3.0 Applications, Part II   189

Time Manager Functions

DateAdjust

Purpose Return a new date +/- the days adjustment. 

Prototype void DateAdjust (DatePtr dateP, Long adjustment)

Parameters dateP A DateType structure with the date to be  
adjusted (see DateTime.h).

adjustment The adjustment in number of days.

Result Changes dateP to contain the new date.

Comments This function is useful for advancing a day or week and not worry-
ing about month and year wrapping.

If the time is advanced out of bounds, it is cut at the bounds sur-
passed.

DateDaysToDate

Purpose Return the date, given days.

Prototype void DateDaysToDate (ULong days, DatePtr dateP)

Parameters days Days since 1/1/1904.

dateP Pointer to DateType structure (returned).

Result Returns nothing, stores the date in dateP.

See Also TimAdjust, DateToDays

Palm OS System Functions



Palm OS System Functions
Time Manager Functions

190   Developing Palm OS 3.0 Applications, Part II 

DateSecondsToDate

Purpose Return the date given seconds.

Prototype void DateSecondsToDate ( ULong seconds, 

DatePtr dateP)

Parameters seconds Seconds since 1/1/1904.

dateP Pointer to DateType structure (returned). 

Result Returns nothing; stores the date in dateP.

DateToAscii

Purpose Convert the time passed to an ASCII string in the passed 
DateFormatType. Handles long and short formats. 

Prototype void DateToAscii( Byte months, 

Byte days, 

Word years, 

DateFormatType dateFormat, 

CharPtr pString)

 Parameters months Months (1-12).

days Days (1-31).

years Years (for example 1995).

dateFormat Long or short DateFormatType.

pString Pointer to string which gets the result. Must be of
 length dateStringLength for standard formats or
 longDateStrLength for long  date formats.

 Result Returns nothing. Stores the result in pString.

See Also TimeToAscii, DateToDOWDMFormat



Palm OS System Functions
Time Manager Functions

Developing Palm OS 3.0 Applications, Part II   191

DateToDays

Purpose Return the date in days since 1/1/1904.

Prototype ULong DateToDays (DateType date)

Parameters date DateType structure.

 Result Returns the days since 1/1/1904.

See Also TimAdjust, DateDaysToDate

DateToDOWDMFormat

Purpose Convert the date passed to an ASCII string.

Prototype void DateToDOWDMFormat( Byte months, 

Byte days, 

Word years, 

DateFormatType 
dateFormat, 

CharPtr pString)

Parameters months Month (1-12).

days Day (1-31).

years Years (for example 1995).

dateFormat FALSE to use AM and PM.

pString Pointer to string which gets the result. The 
string must be of length timeStringLength.

Result Returns nothing; stores ASCII string in pString. 

See Also DateToAscii



Palm OS System Functions
Time Manager Functions

192   Developing Palm OS 3.0 Applications, Part II 

DayOfMonth

Purpose Return the day of a month on which the specified date occurs (for 
example, dom2ndTue).

Prototype UInt DayOfMonth (UInt month, UInt day, UInt year)

Parameters month Month (1-12).

day Day (1-31).

year Year (for example 1995).

Result Returns the day of the month as a DayOfWeekType, see 
DateTime.h.

DayOfWeek

 Purpose Return the day of the week.

Prototype UInt DayOfWeek (UInt month, UInt day, UInt year)

Parameters month Month (1-12).

day Day (1-31).

year Year (for example 1995).

Result Returns the day of the week (Sunday = 0, Monday = 1, etc.).



Palm OS System Functions
Time Manager Functions

Developing Palm OS 3.0 Applications, Part II   193

DaysInMonth

Purpose Return the number of days in the month.

Prototype UInt DaysInMonth (UInt month, UInt year)

Parameters month Month (1-12).

year Year (for example, 1995).

Result Returns the number of days in the month for that year.

TimAdjust

Purpose Return a new date, +/- the time adjustment. 

Prototype void TimAdjust( DateTimePtr dateTimeP, 

Long adjustment)

Parameters dateTimeP A DateType structure (see DateTime.h).

adjustment The adjustment in seconds. 

Result Returns nothing. Changes dateTimeP to the new date and time.

Comments This function is useful for advancing a day or week and not worry-
ing about month and year wrapping.

If the time is advanced out of bounds it is cut at the bounds sur-
passed.

See Also DateAdjust



Palm OS System Functions
Time Manager Functions

194   Developing Palm OS 3.0 Applications, Part II 

TimDateTimeToSeconds

 Purpose Return the date and time in seconds since 1/1/1904.

Prototype ULong TimDateTimeToSeconds (DateTimePtr dateTimeP)

Parameters dateTimeP A DateType structure (see DateTime.h).

Result The time in seconds since 1/1/1904.

See Also TimSecondsToDateTime

TimGetSeconds

Purpose Return seconds since 1/1/1904.

Prototype ULong TimGetSeconds (void)

Parameters None.

Result Returns the number of seconds. 

See Also TimSetSeconds

TimGetTicks

Purpose Return the tick count since the last reset. The tick count does not ad-
vance while the device is in sleep mode.

Prototype ULong TimGetTicks (void)

Parameters None.

Result Returns the tick count.



Palm OS System Functions
Time Manager Functions

Developing Palm OS 3.0 Applications, Part II   195

TimSecondsToDateTime

 Purpose Return the date and time, given seconds.

Prototype void TimSecondsToDateTime( ULong seconds,

 DateTimePtr dateTimeP)

Parameters seconds Seconds to advance from 1/1/1904.

dateTimeP A DateTimeType structure that’s filled by the 
function.

Result Returns nothing. Stores the date and time given seconds since 1/1/
1904 in dateTimeP.

See Also TimDateTimeToSeconds

TimSetSeconds

Purpose Return seconds since 1/1/1904.

Prototype void TimSetSeconds (ULong seconds) 

Parameters seconds Place to return the seconds since 1/1/1904.

Result Returns nothing; modifies seconds. 

See Also TimGetSeconds



Palm OS System Functions
Time Manager Functions

196   Developing Palm OS 3.0 Applications, Part II 

TimeToAscii

Purpose Convert the time passed to an ASCII string.

Prototype void TimeToAscii( Byte hours, 

Byte minutes, 

TimeFormatType timeFormat, 

CharPtr pString)

Parameters hours Hours (0-23).

minutes Minutes (0-59).

timeFormat FALSE to use AM and PM.

pString Pointer to string which gets the result. Must be 
of length timeStringLength.

Result Returns nothing. Stores pointer to the text of the current selection in 
pString.

See Also DateToAscii

Functions for System Use Only

TimGetAlarm

Prototype ULong TimGetAlarm (void)

WARNING: System use only!

TimHandleInterrupt

Prototype void TimHandleInterrupt (Boolean periodicUpdate)

Warning: System use only!



Palm OS System Functions
Time Manager Functions

Developing Palm OS 3.0 Applications, Part II   197

TimInit

Prototype Err TimInit (void)

Warning: System use only!

TimSetAlarm

Prototype ULong TimSetAlarm (ULong alarmSeconds)

Warning: System use only!



Palm OS System Functions
Time Manager Functions

198   Developing Palm OS 3.0 Applications, Part II 



Developing Palm OS 3.0 Applications, Part II   199

Index

Numerics
0.01-second timer 68
1-second timer 68

A
accented characters and StrToLower 131
adding event to event queue 80
alarm manager 18–20

and alarm sound 19
reminder dialog boxes 19

alarm sound 19, 36
alarms

canceling 74
setting 74

alerts
SysFatalAlert 165

AlmCancelAll 75
AlmDisplayAlarm 75
AlmEnableNotification 75
almErrFull 74
almErrMemory 74
AlmGetAlarm 73
AlmInit 75
AlmSetAlarm 20, 74
application preferences 113
application-defined features 26
auto-off 57

setting 178
timer 67, 90

auto-repeat 61, 66

B
base 10 form of floating-point number 103
battery 57
battery conservation using modes 56
battery timeout 158, 159
battery voltage warning threshold 158, 159
booting 54
bound of next line for global find 97
buttons

silk-screened icons 60

C
C library

and float manager 101
and string manager 53

canceling alarms 74
cleanup of dynamic heap 58
Click 36
code #0 resource 172
Confirmation sound 36
conserving battery using modes 56
Crc16CalcBlock 109

D
database ID

and launch codes 63
databases

SysCreateDataBaseList 163
date and time manager 68
DateAdjust 189
DateDaysToDate 189
DateSecondsToDate 190
dateStringLength 190
DateToAscii 190
DateToDays 191
DateToDOWDMFormat 191
DayOfMonth 192
DayOfWeek 192
DaysInMonth 193
dialog boxes (reminder) 19
digitizer

and pen queue 65
EvtProcessSoftKeyStroke 90
pen stroke to key event 64

DmComparF 171
doze mode 56

SysTaskDelay 179
dynamic heap

cleanup 58
reinitializing 177



Index

200   Developing Palm OS 3.0 Applications, Part II 

E
ErrCatch 80
ErrDisplay 21, 23, 76
ErrDisplayFileLineMsg 77
ErrEndCatch 80
ErrFatalDisplayIf 21, 22, 78
ErrNonFatalDisplayIf 79
error manager 21–25

try-and-catch mechanism 23
Error sound 36
ERROR_CHECK_FUL 76
ERROR_CHECK_FULL 79
ERROR_CHECK_LEVEL 21, 23, 76, 78, 79
ERROR_CHECK_PARTIAL 76
ErrThrow 23, 80
ErrTry 80
event processing 59
event queue

adding event 80
events

hard button presses 59
hardware generated 59, 60
software generated 59, 61

EvtAddEventToQueue 80
EvtAddUniqueEventToQueue 81
EvtCopyEvent 81
EvtDequePenStrokeInfo 65
EvtDequeuePenPoint 82
EvtDequeuePenStrokeInfo 83
EvtEnableGraffiti 83
EvtEnqueueKey 84
EvtEventAvail 85
EvtFlushKeyQueue 85
EvtFlushNextPenStroke 86
EvtFlushPenQueue 86
EvtGetEvent 59
EvtGetPen 87
EvtGetPenBtnList 88
EvtKeyQueueEmpty 88
EvtKeyQueueSize 89
EvtPenQueueSize 89
EvtProcessSoftKeyStroke 90
EvtResetAutoOffTimer 67, 90

EvtSysEventAvail 91
EvtWakeup 91

F
fatal alert 165
feature manager 25–28
features

 See  functions starting with Ftr
application-defined 26
system version 26

FIFO queue 60
file streaming functions 35
FileClearerr 133
FileClose 133
FileControl 134
FileDelete 136
FileDmRead 136
FileEOF 138
FileError 139
FileFlush 139
FileGetLastError 140
FileOpen 140
FileRead 143
FileReadLow 148
FileRewind 144
FileSeek 145
FileTell 146
FileTruncate 147
FileWrite 147
FindDrawHeader 97
FindGetLineBounds 97
FindSaveMatch 98
FindStrInStr 99
float manager overview 101
flushing pen queue 86
FplAdd 102
FplAToF 102
FplBase10Info 103
FplDiv 104
FplFloatToLong 104
FplFloatToULong 105
FplFree 105
FplFToA 106
FplInit 106



Index

Developing Palm OS 3.0 Applications, Part II   201

FplLongToFloat 107
FplMul 107
FplSub 108
ftrErrInternalError 93, 94
ftrErrNoSuchFeature 94, 95, 96
ftrErrNoSuchFtr 93
FtrGet 27, 93
FtrGetByIndex 27, 94
ftrInternalError 96
FtrSet 27, 95
FtrUnregister 27, 96

G
GetCharCaselessValue

and FindStrInStr 99
global find

FindDrawHeader 97
FindGetLineBounds 97

Graffiti
enabling and disabling 83
events 59

Graffiti recognizer 64
EvtDequeuPenPoint 82

Graffiti Reference Dialog 168

H
hard button press events 59
hardware-generated events 59, 60
header line for global find 97

I
insertion sort 171
interrrupting Sync application 58

K
kernel 57
key debouncing 61
key events

format 84
from pen strokes 64

key presses 59
key queue 66

size 89
keyboard display 173

L
launch codes 61

and returned database ID 63
SysBroadcastActionCode 62, 162

launcher screen 58
launching applications 58
library vs. managers 17
lists

setting items 166
longDateStrLength 190
low-battery warning 61

M
managers

naming convention 17
vs. libraries 17

MdmDial 110
mdmErrBusy 110
mdmErrCmdError 110
mdmErrNoDCD 110
mdmErrNoTone 110
mdmErrUserCan 110
MdmHangUp 111
memErrChunkLocked 95, 96
memErrInvalidParam 95, 96
memErrNotEnoughSpace 95, 96, 156, 162
modem 110
modes 55

efficient use 56
multiple preferences 113
multitasking kernel 57

N
nilEvent 91
noPreferenceFound 113

P
panel list (SysCreatePanelList) 164
password functions 120
pen

current status 87
strokes and key events 64

pen events 59
pen queue 65



Index

202   Developing Palm OS 3.0 Applications, Part II 

flushing 86
size 89

PhoneNumberLookup 111
power modes 55
preferences

auto-off 57
multiple application preferences 113

PrefGetAppPreferences 113
PrefGetAppPreferencesV10 114
PrefGetPreference 115
PrefGetPreferences 116
PrefOpenPreferenceDBV10 116
PrefSetAppPreferences 117
PrefSetAppPreferencesV10 118
PrefSetPreference 119
PrefSetPreferences 119
PwdExists 120
PwdRemove 120
PwdSet 121
PwdVerify 121

Q
quitting application 59

R
real-time clock 68
reinitializing dynamic memory heap 177
reminder dialog boxes 19
reset 177
ResLoadForm 112
ResLoadMenu 112
resource database (SysCurAppDatabase) 164
response time 58
running mode 56

S
searching for string 99
searching for substring 130
silk-screen buttons

EvtGetPenBtnList 88
silk-screened icons 60
sleep mode 55

and real-time clock 68
SndCreateMidiList 150

SndDoCmd 151
sndErrBadChannel 151
sndErrBadParam 151
sndErrQFull 151
SndGetDefaultVolume 152
SndInit 155
SndPlaySMF 152
SndPlaySystemSound 155
SndSetDefaultVolume 156
SndSysBeepType 155
soft reset 177
software-generated events 59, 61
sorting array elements 171
sound manager 35–52
sound manager functions 150–156
sprintf (StrPrintF) 130
StartApplication

and PrefGetPreferences 116
Startup sound 36
StrAToI 122
StrCaselessCompare 122
StrCat 123
StrChr 123
StrCompare 124
StrCopy 124
StrDelocalizeNumber 125
string

searching 99
string manager 53
string manager functions 122–132
string resource

copying 162
StrIToA 125
StrIToH 126
StrLen 126
StrLocalizeNumber 127
StrNCaselessCompare 127
StrNCat 128
StrNCompare 129
StrNCopy 129
strokes

capturing 65
translating 90

StrPrintF 130



Index

Developing Palm OS 3.0 Applications, Part II   203

StrStr 130
StrToLower 131
StrVPrintF 131
substring, searching for 130
Sync application 58
SysAppLaunch 58, 156
sysAppLaunchCmdAlarmTriggered 19
sysAppLaunchCmdDisplayAlarm 19
SysAppLauncherDialog 157
SysBatteryInfo 158
SysBatteryInfoV20 159
SysBinarySearch 160
SysBroadcastActionCode 62, 162
SysCopyStringResource 162
SysCreateDataBaseList 163
SysCreatePanelList 164
SysCurAppDatabase 62, 164
sysErrLibNotFound 174, 175
sysErrNoFreeLibSlots 175
sysErrNoFreeRAM 175
sysErrOutOfOwnerID 156
sysErrOutOfOwnerIDs 162
sysErrParamErr 156, 162
SysErrString 165
SysFatalAlert 165
SysFormPointerArrayToStrings 166
SysGetAppInfo 183
SysGetOSVersionString 166
SysGetRomToken 167
SysGetStackInfo 168
SysGraffitiReferenceDialog 168
SysGremlins 169
SysHandleEvent 59, 60, 170
SysInsertionSort 170
SysInstall 172
SysKeyboardDialog 173
SysKeyboardDialogV10 173
SysLibFind 174
SysLibLoad 175
SysQSort 176
SysRandom 177
sysRandomMax 177

SysReset 177
SysSetAutoOffTime 178
SysStringByIndex 178
SysTaskDelay 179
system event manager 63–67
system events

checking availability 91
system keyboard display 173
system ticks 68

and Simulator 68
on Palm OS device 68

system version feature 26
SysTicksPerSecond 179
sysTicksPerSecond 69
SysUIAppSwitch 62, 180

T
TimAdjust 193
TimDateTimeToSeconds 68, 194
time manager 68

structures 69
TimeToAscii 196
TimGetSeconds 68, 194
TimGetTicks 69, 194
timing 69
TimSecondsToDateTime 68, 195
TimSetSeconds 68, 195
try-and-catch mechanism 23

example 24

U
UIAS 55, 57
User Interface Application Shell 55, 57
using modes efficiently 56

V
voltage warning threshol 158, 159
vsprintf (StVPrintF) 131

W
Warning sound 36



Index

204   Developing Palm OS 3.0 Applications, Part II 


	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Guide Contains
	Conventions Used in This Guide

	Using Palm OS System Managers
	The Alarm Manager
	Alarm Manager Overview
	Alarm Queue
	Alarm Manager Processing
	Alarm Scenario

	Using the Alarm Manager
	Alarm Manager Function Summary

	The Error Manager
	Displaying Development Errors
	Using the Error Manager Macros
	Understanding the Try-and-Catch Mechanism
	Using the Try and Catch Mechanism
	Error Manager Function Summary

	The Feature Manager
	The System Version Feature
	Application-Defined Features
	Using the Feature Manager
	Feature Manager Function Summary

	File Streaming Application Program Interface
	Using the File Streaming API
	File Streaming Data Structures
	FileOpEnum
	FileOriginEnum
	Open Mode Constants

	File Streaming Function Summary

	The Sound Manager
	Synchronous and Asynchronous Sound
	Using the Sound Manager
	Adding a Standard MIDI File to a Database
	Saving References to Standard MIDI Files
	Retrieving a Standard MIDI File From a Database

	Sound Preferences Compatibility Information
	Using Sound Preferences on All Palm OS Devices
	Using Palm OS v. 1.0 Sound Prefs
	Using Palm OS v. 2.0 Sound Prefs
	Using Palm OS v. 3.0 Sound Prefs
	Ensuring Sound Preferences Compatibility

	Sound Manager Data Structures
	MIDI Record Type
	MIDI Record Header
	SndMidiListItemType
	SndCommandType
	SndCmdIDType
	SndSmfOptionsType
	SndSmfChanRangeType
	Sound Callback Functions

	Sound Manager Function Summary

	The String Manager
	String Manager Function Summary

	The System Manager
	System Boot and Reset
	System Reset Calls

	Power Management
	Palm OS Power Modes
	Guidelines for Application Developers
	Power Management Calls

	The Microkernel
	Application Support
	Launching and Cleanup
	Event Processing
	Interapplication Communication
	Retrieving Events
	Opening Applications Programmatically

	System Manager Function Summary

	The System Event Manager
	Event Translation: Pen Strokes to Key Events
	Pen Queue Management
	Key Queue Management
	Auto-Off Control
	System Event Manager Function Summary

	The Time Manager
	Using Real-Time Clock Functions
	Using System Ticks Functions
	Time Manager Structures
	Time Manager Function Summary

	Application Launcher

	Palm OS System Functions
	Alarm Manager API
	AlmGetAlarm
	AlmSetAlarm
	Functions for System Use Only
	AlmAlarmCallback
	AlmCancelAll
	AlmDisplayAlarm
	AlmEnableNotification
	AlmInit


	Error Manager Functions
	ErrDisplay
	ErrDisplayFileLineMsg
	ErrFatalDisplayIf
	ErrNonFatalDisplayIf
	ErrThrow

	Event Manager Functions
	EvtAddEventToQueue
	EvtAddUniqueEventToQueue
	EvtCopyEvent
	EvtDequeuePenPoint
	EvtDequeuePenStrokeInfo
	EvtEnableGraffiti
	EvtEnqueueKey
	EvtEventAvail
	EvtFlushKeyQueue
	EvtFlushNextPenStroke
	EvtFlushPenQueue
	EvtGetEvent
	EvtGetPen
	EvtGetPenBtnList
	EvtKeyQueueEmpty
	EvtKeyQueueSize
	EvtPenQueueSize
	EvtProcessSoftKeyStroke
	EvtResetAutoOffTimer
	EvtSysEventAvail
	EvtWakeup
	Functions for System Use Only
	EvtDequeueKeyEvent
	EvtEnqueuePenPoint
	EvtGetSysEvent
	EvtInitialize
	EvtSetKeyQueuePtr
	EvtSetPenQueuePtr
	EvtSysInit


	Feature Manager Functions
	FtrGet
	FtrGetByIndex
	FtrSet
	FtrUnregister
	Functions for System Use Only
	FtrInit


	Find Functions
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr

	Float Manager Functions
	Using Floating Point Arithmetic
	Using 1.0 Floating-Point Functionality
	FplAdd
	FplAToF
	FplBase10Info
	FplDiv
	FplFloatToLong
	FplFloatToULong
	FplFree
	FplFToA
	FplInit
	FplLongToFloat
	FplMul
	FplSub

	Miscellaneous System Functions
	Crc16CalcBlock
	MdmDial
	MdmHangUp
	PhoneNumberLookup
	ResLoadForm
	ResLoadMenu

	System Preferences Functions
	PrefGetAppPreferences
	PrefGetAppPreferencesV10
	PrefGetPreference
	PrefGetPreferences
	PrefOpenPreferenceDBV10
	PrefSetAppPreferences
	PrefSetAppPreferencesV10
	PrefSetPreference
	PrefSetPreferences

	Password Functions
	PwdExists
	PwdRemove
	PwdSet
	PwdVerify

	String Manager Functions
	StrAToI
	StrCaselessCompare
	StrCat
	StrChr
	StrCompare
	StrCopy
	StrDelocalizeNumber
	StrIToA
	StrIToH
	StrLen
	StrLocalizeNumber
	StrNCaselessCompare
	StrNCat
	StrNCompare
	StrNCopy
	StrPrintF
	StrStr
	StrToLower
	StrVPrintF

	File Streaming Functions
	FileClearerr
	FileClose
	FileControl
	FileDelete
	FileDmRead
	FileEOF
	FileError
	FileFlush
	FileGetLastError
	FileOpen
	FileRead
	FileRewind
	FileSeek
	FileTell
	FileTruncate
	FileWrite
	Functions For System Use Only
	FileReadLow

	File Streaming Error Codes

	Sound Manager Functions
	SndCreateMidiList
	SndDoCmd
	SndGetDefaultVolume
	SndPlaySMF
	SndPlaySystemSound
	Functions for System Use Only
	SndInit
	SndSetDefaultVolume


	System Functions
	SysAppLaunch
	SysAppLauncherDialog
	SysBatteryInfo
	SysBatteryInfoV20
	SysBinarySearch
	SysBroadcastActionCode
	SysCopyStringResource
	SysCreateDataBaseList
	SysCreatePanelList
	SysCurAppDatabase
	SysErrString
	SysFatalAlert
	SysFormPointerArrayToStrings
	SysGetOSVersionString
	SysGetRomToken
	SysGetStackInfo
	SysGraffitiReferenceDialog
	SysGremlins
	SysHandleEvent
	SysInsertionSort
	SysInstall
	SysKeyboardDialog
	SysKeyboardDialogV10
	SysLibFind
	SysLibLoad
	SysQSort
	SysRandom
	SysReset
	SysSetAutoOffTime
	SysStringByIndex
	SysTaskDelay
	SysTicksPerSecond
	SysUIAppSwitch
	Functions for System Use Only
	SysAppExit
	SysAppInfoPtr
	SysAppStartup
	SysBatteryDialog
	SysCardImageDeleted
	SysCardImageInfo
	SysColdBoot
	SysCurAppInfoP
	SysDisableInts
	SysDoze
	SysEvGroupCreate
	SysGetAppInfo
	SysEvGroupRead
	SysEvGroupSignal
	SysEvGroupWait
	SysGetTrapAddress
	SysInit
	SysKernelInfo
	SysLaunchConsole
	SysLibInstall
	SysLibRemove
	SysLibTblEntry
	SysMailboxCreate
	SysMailboxDelete
	SysMailboxFlush
	SysMailboxSend
	SysMailboxWait
	SysNewOwnerID
	SysPowerOn
	SysRestoreStatus
	SysSetA5
	SysSetTrapAddress
	SysSleep
	SysTaskResume
	SysTaskSuspend
	SysUILaunch
	SysTaskWait
	SysTaskWaitClr
	SysTaskWake


	Time Manager Functions
	DateAdjust
	DateDaysToDate
	DateSecondsToDate
	DateToAscii
	DateToDays
	DateToDOWDMFormat
	DayOfMonth
	DayOfWeek
	DaysInMonth
	TimAdjust
	TimDateTimeToSeconds
	TimGetSeconds
	TimGetTicks
	TimSecondsToDateTime
	TimSetSeconds
	TimeToAscii
	Functions for System Use Only
	TimGetAlarm
	TimHandleInterrupt
	TimInit
	TimSetAlarm



	Index

