

Developing Palm OS 3.0
Applications

Part III: Memory and
Communications Management

Navigate this online document as follows:

To see bookmarks,
type:

Command-7 (Mac OS)
Ctrl-7 (Windows)

To navigate,
click on:

any blue hypertext link
any Table of Contents entry
any Index entry
arrows in the toolbar

Developing Palm OS
3.0 Applications

Part III: Memory and
Communications

Management

Copyright © 1996 - 1998, 3Com Corporation or its subsidiaries (“3Com”). All rights reserved. This docu-
mentation may be printed and copied solely for use in developing products for the Palm Computing plat-
form. In addition, two (2) copies of this documentation may be made for archival and backup purposes.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or
by any means or used to make any derivative work (such as translation, transformation or adaptation)
without express written consent from 3Com.

3Com reserves the right to revise this documentation and to make changes in content from time to time
without obligation on the part of 3Com to provide notification of such revision or changes. 3COM MAKES
NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR
THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMENTATION IS PROVIDED
ON AN “AS IS” BASIS. 3COM MAKES NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IM-
PLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING
WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, 3COM ALSO EXCLUDES FOR ITSELF AND ITS SUPPLI-
ERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR
DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY
KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION OR
DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF 3COM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3Com, the 3Com logo, HotSync, Palm Computing, and Graffiti are registered trademarks, and Palm III,
Palm OS, and the Palm Computing Platform logo are trademarks of 3Com Corporation or its subsidiaries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brand and product
names may be registered trademarks or trademarks of their respective holders.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Contact Information:

Metrowerks U.S.A. and international

Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758
U.S.A.

Metrowerks Canada

Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Metrowerks Mail order

Voice: 1-800-377–5416
Fax: 1-512-873–4901

3Com (Palm Computing Subsidiary)
Mail Order

U.S.A.: 1-800-881-7256 Canada: 800-891-6342
elsewhere: 1-801-431-1536

Metrowerks World Wide Web

http://www.metrowerks.com

Palm Computing World Wide Web

http://www.palm.com

Registration information

register@metrowerks.com

Technical support

support@metrowerks.com

Sales, marketing, & licensing

sales@metrowerks.com

CompuServe

go

Metrowerks

Developing Palm OS 3.0 Applications, Part III

 v

Table of Contents

About This Document. . 17

Palm OS SDK Documentation 17
What This Guide Contains 18
Conventions Used in This Guide 19

1 Palm OS Memory Management . 21

Introduction to Memory Use on Palm OS 22
Hardware Architecture 22
PC Connectivity . 23

Memory Architecture 23
Heap Overview . 27

Overview of Memory Chunk Structure 28
The Memory Manager. 30

Memory Manager Structures. 30
Heap Structures 30
Chunk Structures 32
Local ID Structures 33

Using the Memory Manager 33
Overview of the Memory Manager API 33
Storage Heap Sizes and Memory Management Schemes. . 35
Optimizing Memory Manager Performance 35

Memory Manager Function Summary. 36
The Data Manager . 37

Records and Databases 38
Accessing Data With Local IDs. 38

Structure of a Database Header. 39
Database Header Fields. 39
Structure of a Record Entry in a Database Header 40

Using the Data Manager 41
Data Manager Function Summary 43

The Resource Manager 45
Structure of a Resource Database Header 46
Using the Resource Manager. 47
Resource Manager Functions 48

Table of Contents

vi

Developing Palm OS 3.0 Applications, Part III

2 Memory Management Functions 51

Memory Manager Functions 51
MemCardInfo . 51
MemCmp . 52
MemDebugMode 52
MemHandleCardNo 53
MemHandleDataStorage 53
MemHandleFree . 54
MemHandleHeapID 54
MemHandleLock. 55
MemHandleNew. 55
MemHandleResize 56
MemHandleSize . 57
MemHandleToLocalID 57
MemHandleUnlock. 58
MemHeapCheck . 58
MemHeapCompact. 59
MemHeapDynamic. 59
MemHeapFlags . 60
MemHeapFreeBytes 60
MemHeapID . 61
MemHeapScramble. 62
MemHeapSize . 62
MemLocalIDKind 63
MemLocalIDToGlobal 63
MemLocalIDToLockedPtr 64
MemLocalIDToPtr 64
MemMove . 65
MemNumCards . 65
MemNumHeaps . 66
MemNumRAMHeaps 66
MemPtrCardNo . 67
MemPtrDataStorage 67
MemPtrFree . 68
MemPtrHeapID . 68
MemPtrNew. 69

Table of Contents

Developing Palm OS 3.0 Applications, Part III

 vii

MemPtrRecoverHandle 69
MemPtrResize . 69
MemPtrSize . 70
MemPtrToLocalID 71
MemPtrUnlock . 71
MemSet . 72
MemSetDebugMode 72
MemStoreInfo . 73
Functions for System Use Only. 74

MemCardFormat 74
MemChunkFree 74
MemChunkNew. 74
MemHandleFlags 75
MemHandleLockCount. 75
MemHandleOwner 75
MemHandleResetLock 75
MemHandleSetOwner 75
MemHeapFreeByOwnerID 75
MemHeapInit . 76
MemInit . 76
MemInitHeapTable. 76
MemKernelInit 76
MemPtrFlags . 76
MemPtrOwner 77
MemPtrResetLock 77
MemPtrSetOwner 77
MemSemaphoreRelease. 77
MemSemaphoreReserve 77
MemStoreSetInfo 78

3 Data and Resource Manager Functions 79

Data Manager Functions. 79
DmArchiveRecord 79
DmAttachRecord. 80
DmAttachResource 81
DmCloseDatabase 82

Table of Contents

viii

Developing Palm OS 3.0 Applications, Part III

DmCreateDatabase 82
DmCreateDatabaseFromImage. 83
DmDatabaseInfo . 84
DmDatabaseProtect 85
DmDatabaseSize . 86
DmDeleteCategory 87
DmDeleteDatabase 87
DmDeleteRecord . 88
DmDetachRecord 89
DmDetachResource. 90
DmFindDatabase. 91
DmFindRecordByID 91
DmFindResource. 92
DmFindResourceType 93
DmFindSortPosition 94
DmFindSortPositionV10 95
DmGetAppInfoID 97
DmGetDatabase . 97
DmGetLastErr . 98
DmGetNextDatabaseByTypeCreator 99
DmGetRecord . 101
DmGetResource . 102
DmGetResourceIndex. 102
DmGet1Resource. 103
DmInsertionSort . 103
DmMoveCategory 105
DmMoveRecord . 106
DmNewHandle . 107
DmNewRecord . 108
DmNewResource 109
DmNextOpenDatabase 110
DmNextOpenResDatabase 110
DmNumDatabases 111
DmNumRecords 111
DmNumRecordsInCategory 112
DmNumResources 112

Table of Contents

Developing Palm OS 3.0 Applications, Part III

 ix

DmOpenDatabase 113
DmOpenDatabaseByTypeCreator 114
DmOpenDatabaseInfo 115
DmPositionInCategory 116
DmQueryNextInCategory 117
DmQueryRecord 117
DmQuickSort . 118
DmRecordInfo . . 119
DmReleaseRecord 120
DmReleaseResource 120
DmRemoveRecord 121
DmRemoveResource 122
DmRemoveSecretRecords 122
DmResetRecordStates. 123
DmResizeRecord 123
DmResizeResource 124
DmResourceInfo 125
DmSearchRecord. 126
DmSearchResource 127
DmSeekRecordInCategory 128
DmSet . 129
DmSetDatabaseInfo 129
DmSetRecordInfo 131
DmSetResourceInfo 132
DmStrCopy . 133
DmWrite . 134
DmWriteCheck . 135
Functions for System Use Only. 135

DmMoveOpenDBContext. 135

4 Palm OS Communications . 137

Byte Ordering . 137
Communications Architecture Hierarchy 138

Table of Contents

x

Developing Palm OS 3.0 Applications, Part III

The Serial Manager . 140
Using the Serial Manager 140
Serial Manager Function Summary 145

The Serial Link Protocol 146
SLP Packet Structures 146

SLP Packet Format 147
Packet Type Assignment 148
Socket ID Assignment 148
Transaction ID Assignment 149

Transmitting an SLP Packet 149
Receiving an SLP Packet 149

The Serial Link Manager. 150
Using the Serial Link Manager 150
Serial Link Manager Function Summary. 154

5 Communications Functions. 155

Serial Manager Functions 155
SerClearErr . 155
SerClose . 156
SerControl. . 157
SerGetSettings . . 158
SerGetStatus . . 159
SerOpen . 160
SerReceive . 161
SerReceive10 . 162
SerReceiveCheck 163
SerReceiveFlush . 163
SerReceiveWait . 164
SerSend . . 165
SerSend10 . . 166
SerSendWait . . 167
SerSetReceiveBuffer 168
SerSetSettings . 169

Table of Contents

Developing Palm OS 3.0 Applications, Part III

 xi

Functions Used Only by System Software 170
SerReceiveISP 170
SerReceiveWindowClose 170
SerReceiveWindowOpen 170
SerSetWakeupHandler 170
SerSleep . 170
SerWake . 170

Serial Link Manager Functions 171
SlkClose . 171
SlkCloseSocket . . 172
SlkFlushSocket. . 173
SlkOpen . 173
SlkOpenSocket . . 174
SlkReceivePacket 175
SlkSendPacket . . 177
SlkSetSocketListener 178
SlkSocketRefNum 179
SlkSocketSetTimeout 179
Functions for Use By System Software Only 180

SlkSysPktDefaultResponse 180
SlkProcessRPC 180

Miscellaneous Communications Functions 180
Crc16CalcBlock . 180

6 Palm OS Net Library. 181

Overview . 181
Structure . 182
System Requirements 182
Constraints . 183

The Programmer’s Interface 184
Net Library and Berkeley Sockets API: Differences 184
Example . 185

Table of Contents

xii

Developing Palm OS 3.0 Applications, Part III

Using the Net Library 186
Setup and Configuration Calls 186

Interface Specific Settings 187
General Settings 187
Settings for Interface Selection 187
Summary . . 188

Runtime Calls . 188
Initialization and Shutdown 188

Calls Made Before Opening the Net Library 189
Opening the Net Library 189
Closing the Net Library 189
Summary of Initialization 190
Initialization Example 190

Version Checking. 191
Network I/O and Utility Calls 192

7 Net Library Functions . 195

Library Open and Close 196
NetLibClose . . 196
NetLibConnectionRefresh 198
NetLibFinishCloseWait 199
NetLibOpen . . 200
NetLibOpenCount 202

Socket Creation and Deletion. 203
NetLibSocketClose 203
NetLibSocketOpen 204

Socket Options . . 206
NetLibSocketOptionGet 206
NetLibSocketOptionSet 208

Socket Connections . 212
NetLibSocketAccept 212
NetLibSocketAddr 214
NetLibSocketBind 216
NetLibSocketConnect 217
NetLibSocketListen 219
NetLibSocketShutdown 221

Table of Contents

Developing Palm OS 3.0 Applications, Part III

 xiii

Send and Receive Routines. 222
NetLibDmReceive 222
NetLibReceive . . 224
NetLibReceivePB. 226
NetLibSend . 227
NetLibSendPB . . 230

Utilities . 232
NetHToNL . 232
NetHToNS . 232
NetLibAddrAToIN 233
NetLibAddrINToA 234
NetLibGetHostByAddr 234
NetLibGetHostByName 236
NetLibGetMailExchangeByName 238
NetLibGetServByName 240
NetLibMaster . 242

netMasterInterfaceInfo 243
netMasterInterfaceStats 244
netMasterIPStats 245
netMasterICMPStats 245
netMasterUDPStats 245
netMasterTCPStats 245
netMasterTraceEventGet 245

NetLibSelect . . 246
NetLibTracePrintF 249
NetLibTracePutS 250
NetNToHL . 251
NetNToHS . 251

Configuration . 252
NetLibIFAttach . 252
NetLibIFDetach . 253
NetLibIFDown. . 254
NetLibIFGet . . 255
NetLibIFSettingGet 256
NetLibIFSettingSet 263
NetLibIFUp . 264

Table of Contents

xiv

Developing Palm OS 3.0 Applications, Part III

NetLibSettingGet. 266
NetLibSettingSet 270

Berkeley Sockets API Calls 272
Supported Socket Functions 273
Supported Network Utility Functions 276
Supported Byte Ordering Functions 277
Supported Network Address Conversion Functions 277
Supported System Utility Functions 278

8 Exchange Manager . 279

Overview . 279
Exchange Manager and Launch Codes 280
Exchange Manager Function Summary 282
Exchange Manager Functions 283

ExgAccept 283
ExgDBRead 284
ExgDBWrite 286
ExgDisconnect 288
ExgPut 290
ExgReceive 291
ExgRegisterData 292
ExgSend 294

9 IR Library . 295

IrDA Stack . . 295
Loading the IR Library 297
IR Data Structures . 297

IrConnect . 297
IrPacket . . 298
IrIASObject . 299
IrIasQuery . 299
IrCallbackParms . 300

IR Stack Callback Events. 301
LEVENT_DATA_IND. 301
LEVENT_DISCOVERY_CNF 301
LEVENT_LAP_CON_CNF 301
LEVENT_LAP_CON_IND. 301

Table of Contents

Developing Palm OS 3.0 Applications, Part III

 xv

LEVENT_LAP_DISCON_IND 302
LEVENT_LM_CON_CNF 302
LEVENT_LM_CON_IND 302
LEVENT_LM_DISCON_IND 302
LEVENT_PACKET_HANDLED 302
LEVENT_STATUS_IND 302
LEVENT_TEST_CNF 303
LEVENT_TEST_IND 303

IAS Query Callback Function. 303
IR Library Function Summary 304
IR Library Functions 305

IrAdvanceCredit 305
IrBind 306
IrClose 307
IrConnectIrLap 307
IrConnectReq 308
IrConnectRsp 310
IrDataReq 311
IrDisconnectIrLap 312
IrDiscoverReq 313
IrIsIrLapConnected 314
IrIsMediaBusy 314
IrIsNoProgress 314
IrIsRemoteBusy 315
IrLocalBusy 315
IrMaxRxSize 316
IrMaxTxSize 316
IrOpen 317
IrSetConTypeLMP 317
IrSetConTypeTTP 318
IrSetDeviceInfo 318
IrTestReq 319
IrUnbind 320

IAS Functions . 320
IrIAS_Add 321
IrIAS_GetInteger 322
IrIAS_GetIntLsap 322
IrIAS_GetObjectID 323
IrIAS_GetOctetString 323

Table of Contents

xvi

Developing Palm OS 3.0 Applications, Part III

IrIAS_GetOctetStringLen 323
IrIAS_GetType 324
IrIAS_GetUserString 324
IrIAS_GetUserStringCharSet 324
IrIAS_GetUserStringLen 325
IrIAS_Next 325
IrIAS_Query 326
IrIAS_SetDeviceName 327
IrIAS_StartResult 328

Index . 329

Developing Palm OS 3.0 Applications, Part III

17

About This Document

Developing Palm OS 3.0 Applications, Part III, is part of the Palm
OS Software Development Kit. This introduction provides an over-
view of SDK documentation. It discusses the materials included and
the conventions used in this document.

Palm OS SDK Documentation

The following documents are part of the SDK:

Document Description

Palm OS 3.0 Tutorial A number of Phases step developers through how to use the
different parts of the system. Each phase includes example
applications.

Developing Palm OS
3.0 Applications.
Part I: Interface
Management

A programmer’s guide and reference document that intro-
duces all important aspects of developing an applications.
See What This Guide Contains for details.

Developing Palm OS
3.0 Applications.
Part II: System
Management

A programmer’s guide and reference document for all sys-
tem managers, such as the string manager or the system
event manager.

About This Document

What This Guide Contains

18

 Developing Palm OS 3.0 Applications, Part III

What This Guide Contains

The following are chapter overviews for this guide.

• Chapter 1, “Palm OS Memory Management,” helps you under-
stand memory management on Palm OS. It first discusses mem-
ory layout and architecture, then explains how to use the three
memory managers, which comprise the memory management
API.

• Chapter 2, “Memory Management Functions,” provides ref-
erence-style information for each memory manager function.

• Chapter 3, “Data and Resource Manager Functions,” pro-
vides reference-style information for the data manager and
resource manager functions.

• Chapter 4, “Palm OS Communications,” discusses the com-
munications software, which provides the serial communica-
tions capabilities for Palm OS.

• Chapter 5, “Communications Functions,” provides reference
information for the serial manager functions, serial link man-
ager functions, and miscellaneous communications
functions.

• Chapter 6, “Palm OS Net Library,” introduces the Palm OS
net library and explains how to use it.

Developing Palm OS
3.0 Applications.
Part III. Memory and
Communications
Management

Programmer’s guide and reference document for

• Memory management; both the database manager and
the memory manager.

• The Palm OS communications library for serial com-
munication.

• The Palm OS net library, which provides basic net-
work services.

• The exchange manager and IR library, which provide
infrared communication capabilities.

Palm OS 3.0 Cookbook Information about using CodeWarrior for Palm OS to create
projects and executables. Also provides a variety of design
guidelines, including localization design guidelines.

Document Description

About This Document

Conventions Used in This Guide

Developing Palm OS 3.0 Applications, Part III

19

• Chapter 7, “Net Library Functions,” provides reference infor-
mation for all net library functions, as well as an overview of
the parallel Berkeley Sockets API calls.

• Chapter 8, “Exchange Manager,” discusses the exchange
manager, which provides a high-level interface to the IR com-
munications capabilities of the Palm OS. This chapter also in-
cludes a reference for all the exchange manager functions.

• Chapter 9, “IR Library,” discusses the IR library, which pro-
vides direct access to the IR communications capabilities of
the Palm OS. This chapter also includes a reference for all the
IR library functions.

Conventions Used in This Guide

This guide uses the following typographical conventions:

This style... Is used for...

fixed width font

Code elements such as function,
structure, field, bitfield.

fixed width underline

Emphasis (for code elements).

bold

Emphasis (for other elements).

blue and underlined Hot links.

black and underlined 3.0 function names (headings
only).

red and underlined 3.0 function names (in Table of
Contents only)

About This Document

Conventions Used in This Guide

20

 Developing Palm OS 3.0 Applications, Part III

Developing Palm OS 3.0 Applications, Part III

21

1

Palm OS Memory

Management

This chapter helps you understand memory use on Palm OS. It
starts with an introduction to memory layout and memory
architecture.

• Introduction to Memory Use on Palm OS provides information
about Palm OS hardware relevant to memory management. For
more information on Palm OS hardware, see “Basic Hardware”
in Chapter 1 of “Developing Palm OS Applications, Part 1.”

• Memory Architecture discusses in detail how memory is
structured on Palm OS. It also examines the structure of the
basic building blocks of Palm OS memory: heaps, chunks, and
records.

The second part of the chapter explains the different parts of the sys-
tem—the managers—that you can use for memory management.
The discussion of each manager includes a brief overview of the sig-
nificant functions composing its API; in the online version of this
book, each function name provides a hypertext link to its reference
description.
• The Memory Manager maintains the location and size of each

memory chunk in nonvolatile storage, volatile storage, and
ROM. It provides functions for allocating chunks, disposing of
chunks, resizing chunks, locking and unlocking chunks, and
compacting the heap when it becomes fragmented.

• The Data Manager manages user data, which is stored in
databases for convenient access.

• The Resource Manager can be used by applications to retrieve
and save chunks of data. It’s similar to the data manager, but
has the added capability of tagging each chunk with a unique
resource type and ID. These tagged data chunks, called

resources

, reside in a resource database and commonly are used
to store the application’s user interface elements (images, fonts,

Palm OS Memory Management

Introduction to Memory Use on Palm OS

22

 Developing Palm OS 3.0 Applications, Part III

dialog layouts, and so on) as well as application-specific static
data (not user data or temporary data.)

Introduction to Memory Use on Palm OS

The Palm OS system software supports applications on low-cost,
low-power, palm-top devices. Given these constraints, Palm OS is
efficient in its use of both memory and processing resources. This
section presents two aspects of Palm OS devices that contribute to
this efficiency: Hardware Architecture and PC Connectivity.

Hardware Architecture

The first implementation of Palm OS provides nearly instantaneous
response to user input while running on a 16 MHz Motorola

®

 68000
type processor with a minimum of 128K of nonvolatile storage
memory and 512 KB of ROM. Subsequent Palm OS devices provide
additional RAM and ROM in varying amounts.

The ROM and RAM for each Palm OS device resides on a memory
module known as a

card

. Each memory card can contain ROM,
RAM, or both. There is no RAM or ROM storage on the mother-
board of the device.

Though all Palm OS devices available as of May 1998 hold one card
in a user-accessible hardware slot, it is unwise to assume that any
Palm OS device has a memory module that can be removed physi-
cally. A “card” is simply a logical construct used by the operating
system—Palm OS devices can have one card, multiple cards, or no
cards. For example, the Simulator provided by the Palm OS SDK
can simulate a device that has two cards.

The ROM and RAM on each card is divided into one or more heaps.
All the RAM-based heaps on a memory card are treated as the RAM
store, and all the ROM-based heaps are treated as the ROM store.
The heaps for a store do not have to be adjacent to each other in ad-
dress space—they can be scattered throughout the memory space on
the card—but they must all reside on the same card.

The main suite of applications provided with each Palm OS device
is prebuilt into ROM. This design permits the user to replace the

Palm OS Memory Management

Memory Architecture

Developing Palm OS 3.0 Applications, Part III

23

operating system and the entire applications suite simply by install-
ing a single replacement module

.

Additional or replacement appli-
cations and system extensions can be loaded into RAM, but doing
so is not always practical in this RAM-constrained environment.

PC Connectivity

PC connectivity is an integral component of the Palm OS device.
The device comes with a cradle that connects to a desktop PC and
with software for the PC that provides “one-button” backup and
synchronization of all data on the device with the user’s PC.

Because all user data can be backed up on the PC, replacement of
the nonvolatile storage area of the Palm OS device becomes a simple
matter of installing the new module in place of the old one and re-
synchronizing with the PC. The format of the user’s data in storage
RAM can change with a new version of the ROM; the connectivity
software on the PC is responsible for translating the data into the
correct format when downloading it onto a device with a new ROM.

Memory Architecture

WARNING: This section describes the current (June 1998) imple-
mentation of Palm OS memory architecture. This implementation
may change as the Palm OS evolves. Do not rely on implementa-
tion-specific information described here; instead, always use the

API provided to manipulate memory.

The Palm OS system software is designed around a 32-bit architec-
ture. The system uses 32-bit addresses, and its basic data types are 8,
16, and 32 bits long.

The 32-bit addresses available to software provide a total of 4 GB of
address space for storing code and data. This address space affords
a large growth potential for future revisions of both the hardware
and software without affecting the execution model. Although a
large memory space is available, Palm OS was designed to work ef-
ficiently with small amounts of RAM. For example, the first

Palm OS Memory Management

Memory Architecture

24

 Developing Palm OS 3.0 Applications, Part III

commercial Palm OS device has less than 1 MB of memory, or .025%
of this address space.

The Motorola 68328 processor’s 32-bit registers and 32 internal ad-
dress lines support a 32-bit execution model as well, although the
external data bus is only 16 bits wide. This design reduces cost with-
out impacting the software model. The processor’s bus controller
automatically breaks down 32-bit reads and writes into multiple 16-
bit reads and writes externally.

Each memory card in the Palm OS device has 256 MB of address
space reserved for it. Memory card 0 starts at address $1000000,
memory card 1 starts at address $2000000, and so on.

The Palm OS divides the total available RAM store into two logical
areas:

dynamic

 RAM and

storage

 RAM. Dynamic RAM is used as
working space for temporary allocations, and is analogous to the
RAM installed in a typical desktop system. The remainder of the
available RAM on the card is designated as storage RAM and is
analogous to disk storage on a typical desktop system.

Because power is always applied to the memory system, both areas
of RAM preserve their contents when the device is turned “off” (i.e.,
is in low-power sleep mode.) See “Palm OS Power Modes” in Chap-
ter 6, “Using Palm OS Managers,” of “Developing Palm OS Appli-
cations, Part 1.” All of storage memory is preserved even when the
device is reset explicitly. As part of the boot sequence, the system
software reinitializes the dynamic area, and leaves the storage area
intact.

The entire dynamic area of RAM is used to implement a single heap
that provides memory for dynamic allocations. From this

dynamic
heap

, the system provides memory for dynamic data such as global
variables, system dynamic allocations (TCP/IP, IrDA, and so on, as
applicable), application stacks, temporary memory allocations, and
application dynamic allocations (such as those performed when the
application calls the

MemHandleNew

 function.)

The entire amount of RAM reserved for the dynamic heap is always
dedicated to this use, regardless of whether it is actually used for al-
locations. The size of the dynamic area of RAM on a particular de-
vice varies according to the OS version running, the amount of
physical RAM available, and the requirements of pre-installed soft-
ware such as the TCP/IP stack or IrDA stack. Table 1.1 on page 25

Palm OS Memory Management

Memory Architecture

Developing Palm OS 3.0 Applications, Part III

25

provides more information about the dynamic heap space that cur-
rently available combinations of OS and hardware provide.

Table 1.1 Dynamic heap space

The remaining portion of RAM not dedicated to the dynamic heap
is configured as one or more

storage heaps

 used to hold nonvolatile
user data such as appointments, to do lists, memos, address lists,
and so on. An application accesses a storage heap by calling the da-
tabase manager or resource manager, according to whether it needs
to manipulate user data or resources.

The size and number of storage heaps available on a particular de-
vice varies according to the OS version that is running; the amount
of physical RAM that is available; and the storage requirements of
end-user application software such as the Address List, Date Book,
or third-party applications.

RAM Usage OS 3.0

>

 1 MB
TCP/IP & IrDA

(Palm III)

OS 2.0
1 MB

TCP/IP only
(Professional)

OS 2.0/1.0
512 KB

no TCP/IP or IrDA
(Personal)

Total dynamic area 96 KB 64 KB 32 KB

System Globals
(screen buffer, UI globals, da-
tabase references, etc.)

~2.5 KB ~2.5 KB ~2.5 KB

TCP/IP stack 32 KB 32 KB 0 KB

System dynamic allocation
(IrDA, “Find” window, tem-
porary allocations)

variable
amount

~15 KB
(no IrDA in

this OS)

~15 KB

Application stack
(call stack and local vars)

4 KB
(default)

2.5 KB 2.5 KB

Remaining dynamic space
(dynamic allocations, appli-
cation global variables, and
static variables)

≤

 36 KB

≤

 12 KB

≤

 12 KB

Palm OS Memory Management

Memory Architecture

26

 Developing Palm OS 3.0 Applications, Part III

Versions 1.0 and 2.0 of Palm OS subdivide storage RAM into multi-
ple storage heaps of 64 KB each. Palm OS 3.0 configures all storage
RAM on a card as a single storage heap. Under all versions of Palm
OS, system overhead limits the maximum usable data storage avail-
able in a single chunk to slightly less than 64 KB.

In the Palm OS environment, all data are stored in memory manager
chunks. A

chunk

 is an area of contiguous memory between 1 byte
and slightly less than 64 KB in size that has been allocated by the
Palm OS memory manager. (Because system overhead requirements
may vary, an exact figure for the maximum amount of usable data
storage for all chunks cannot be specified.) Currently, all Palm OS
implementations limit the maximum size of any chunk to slightly
less than 64 KB; however, the API does not have this constraint, and
it may be relaxed in the future.

Each chunk resides in a heap. Some heaps are ROM-based and con-
tain only nonmovable chunks; some are RAM-based and may con-
tain movable or nonmovable chunks. A RAM-based heap may be a
dynamic heap or a storage heap. The Palm OS memory manager al-
locates memory in the dynamic heap (for dynamic allocations,
stacks, global variables, and so on). The Palm OS data manager allo-
cates memory in one or more storage heaps (for nonvolatile user
data.)

Every memory chunk used to hold storage data (as opposed to
memory chunks that store dynamic data) is a

record

 in a database
implemented by the Palm OS data manager. In the Palm OS envi-
ronment, a

database

 is simply a list of memory chunks and associat-
ed database header information. Normally, the items in a database
share some logical association; for example, a database may hold a
collection of all address book entries, all datebook entries, and so on.

A database is analogous to a file in a desktop system. Just as a tradi-
tional file system can create, delete, open, and close files, Palm OS
applications can create, delete, open, and close databases as neces-
sary. There is no restriction on where the records for a particular da-
tabase reside as long as they are all on the same memory card. The
records from one database can be interspersed with the records from
one or more other databases in memory.

Storing data by database fits nicely with the Palm OS memory man-
ager design. Each record in a database is in fact a memory manager

Palm OS Memory Management

Memory Architecture

Developing Palm OS 3.0 Applications, Part III

27

chunk. The data manager can use memory manager calls to allocate,
delete, and resize database records. All heaps except for the dynam-
ic heap are nonvolatile, so database records can be stored in any
heap except the dynamic heap. Because records can be stored any-
where on the memory card, databases can be distributed over multi-
ple discontiguous areas of physical RAM, but all records belonging
to a particular database must reside on the same card.

To understand how database records are manipulated, it helps to
know something about the way the memory manager allocates and
tracks memory chunks, as the next section describes.

Heap Overview

WARNING: This section describes the current (June 1998) imple-
mentation of Palm OS memory architecture. This implementation
may change as the Palm OS evolves. Do not rely on implementa-
tion-specific information described here; instead, always use the
API provided to manipulate memory.

Recall that a heap is a contiguous area of memory used to contain
and manage one or more smaller chunks of memory. When applica-
tions work with memory (allocate, resize, lock, etc.) they usually
work with chunks of memory. An application can specify whether
to allocate a new chunk of memory in the storage heap or the dy-
namic heap. The memory manager manages each heap indepen-
dently and rearranges chunks as necessary to defragment heaps and
merge free space.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a unique 16-bit value that the memory manager
uses to identify a heap within the Palm OS address space. Heap IDs
start at 0 and increment sequentially by units of 1. Values are as-
signed beginning with the RAM heaps on card 0, continuing with
the ROM heaps on card 0, and then continuing through RAM and
ROM heaps on subsequent cards. The sequence of heap IDs is con-
tinuous; that is, no values in the sequence are skipped.

The first heap (heap 0) on card 0 is the dynamic heap. This heap is
reinitialized every time the Palm OS device is reset. When an appli-
cation quits, the system frees any chunks allocated by that

Palm OS Memory Management
Memory Architecture

28 Developing Palm OS 3.0 Applications, Part III

application in the dynamic heap. All other heaps are nonvolatile
storage heaps that retain their contents through soft reset cycles.

When a Palm OS device is presented with multiple dynamic heaps,
the first heap (heap 0) on card 0 is the active dynamic heap. All other
potential dynamic heaps are ignored. For example, it is possible that
a future Palm OS device supporting multiple cards might be pre-
sented with two cards, each having its own dynamic heap; if so,
only the dynamic heap residing on card 0 would be active—the sys-
tem would not treat any heaps on other cards as dynamic heaps, nor
would heap IDs be assigned to these heaps. Subsequent storage
heaps would be assigned IDs in sequential order, as always begin-
ning with RAM heaps, followed by ROM heaps.

Overview of Memory Chunk Structure

Memory chunks can be movable or nonmovable. Applications need
to store data in movable chunks whenever feasible, thereby en-
abling the memory manager to move chunks as necessary to create
contiguous free space in memory for allocation requests.

When the memory manager allocates a nonmovable chunk it re-
turns a pointer to that chunk. The pointer is simply that chunk’s ad-
dress in memory. Because the chunk cannot move, its pointer re-
mains valid for the chunk’s lifetime; thus, the pointer can be passed
“as is” to the caller that requested the allocation.

When the memory manager allocates a moveable chunk, it gener-
ates a pointer to that chunk, just as it did for the nonmovable chunk,
but it does not return the pointer to the caller. Instead, it stores the
pointer to the chunk, called the master chunk pointer, in a master
pointer table that is used to track all of the moveable chunks in the
heap, and returns a reference to the master chunk pointer. This ref-
erence to the master chunk pointer is known as a handle. It is this
handle that the memory manager returns to the caller that requested
the allocation of a moveable chunk.

Using handles imposes a slight performance penalty over direct
pointer access but permits the memory manager to move chunks
around in the heap without invalidating any chunk references that
an application might have stored away. As long as an application
uses handles to reference data, only the master pointer to a chunk

Palm OS Memory Management
Memory Architecture

Developing Palm OS 3.0 Applications, Part III 29

needs to be updated by the memory manager when it moves a
chunk during defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the memory manager to mark that data
chunk as immobile. When an application no longer needs the data
chunk, it should unlock the handle immediately to keep heap frag-
mentation to a minimum.

Note that any handle is good only until the system is reset. When
the system resets, it reinitializes all dynamic memory areas and re-
launches applications. Therefore, you must not store a handle in a
database record or a resource.

Each chunk on a memory card is actually located by means of a
card–relative reference called a local ID. A local ID is a reference to a
data chunk that the system computes from the base address of the
card. The local ID of a nonmovable chunk is simply the offset of the
chunk from the base address of the card. The local ID of a movable
chunk is the offset of the master pointer to the chunk from the base
address of the card, but with the low-order bit set. Since chunks are
always aligned on word boundaries, only local IDs of movable
chunks have the low-order bit set. Once the base address of the card
is determined at runtime, a local ID can be converted quickly to a
pointer or handle.

For example, when an application needs the handle to a particular
data record, it calls the data manager to retrieve the record by index
from the appropriate database. The data manager fetches the local
ID of the record out of the database header and uses it to compute
the handle to the record. The handle to the record is never actually
stored in the database itself.

Although currently available Palm OS devices do not provide hard-
ware support for multiple cards, the use of local IDs provides sup-
port in software for future devices that may allow the user to re-
move or insert memory cards. If the user moves a memory card to a
slot having a different base address, the handle to a memory chunk
on that card is likely to change, but the local ID associated with that
chunk does not change.

Palm OS Memory Management
The Memory Manager

30 Developing Palm OS 3.0 Applications, Part III

The Memory Manager
The Palm OS memory manager is responsible for maintaining the
location and size of every memory chunk in nonvolatile storage,
volatile storage, and ROM. It provides an API for allocating new
chunks, disposing of chunks, resizing chunks, locking and unlock-
ing chunks, and compacting heaps when they become fragmented.
Because of the limited RAM and processor resources of the Palm OS
device, the memory manager is efficient in its use of processing
power and memory.

This section provides background information on the organization
of memory in Palm OS and provides an overview of the memory
manager API, discussing these topics:
• Memory Manager Structures
• Using the Memory Manager
• Memory Manager Function Summary

Memory Manager Structures
This section discusses the different structures the memory manager
uses:

• Heap Structures
• Chunk Structures
• Local ID Structures

Heap Structures

WARNING: Expect the heap structure to change in the future. Use
the API to work with heaps.

A heap consists of the heap header, master pointer table, and the
heap chunks.

• Heap header. The heap header is located at the beginning of the
heap. It holds the size of the heap and contains flags for the
heap that provide certain information to the memory manager;
for example, whether the heap is ROM-based.

Palm OS Memory Management
The Memory Manager

Developing Palm OS 3.0 Applications, Part III 31

• Master pointer table. Following the heap header is a master
pointer table. It is used to store 32-bit pointers to movable
chunks in the heap.

– When the memory manager moves a chunk to compact the
heap, the pointer for that chunk in the master pointer table is
updated to the chunk’s new location. The handles an applica-
tion uses to track movable chunks reference the address of
the master pointer to the chunk, not the chunk itself. In this
way, handles remain valid even after a chunk is moved. The
OS compacts the heap automatically when available contigu-
ous space is not sufficient to fulfill an allocation request.

– If the master pointer table becomes full, another is allocated
and its offset is stored in the nextMstrPtrTable field of the
previous master pointer table. Any number of master pointer
tables can be linked in this way. Because additional master
pointer chunks are nonmovable, they are allocated at the end
of the heap, according to the guidelines described in the
“Heap chunks” section following immediately.

• Heap chunks. Following the master pointer table are the actual
chunks in the heap.

– Movable chunks are generally allocated at the beginning of
the heap, and nonmovable chunks at the end of the heap.

– Nonmovable chunks do not need an entry in the master
pointer table since they are never relocated by the memory
manager.

– Applications can easily walk the heap by hopping from
chunk to chunk because each chunk header contains the size
of the chunk. All free and nonmovable chunks can be found
in this manner by checking the flags in each chunk header.

Because heaps can be ROM-based, there is no information in the
header that must be changed when using a heap. Also, ROM-
based heaps contain only nonmovable chunks and have a master
pointer table with 0 entries.

Palm OS Memory Management
The Memory Manager

32 Developing Palm OS 3.0 Applications, Part III

Chunk Structures

WARNING: Expect the chunk structure to change in the future.
Use the API to work with chunks.

Each chunk begins with an 8-byte header followed by that chunk’s
data. The chunk header consists of a Flags:size adjustment byte,
3 bytes of size information, a lock:owner byte, and 3 bytes of
hOffset information.
• Flags:sizeAdj byte.This byte contains flags in the high nibble

and a size adjustment in the low nibble.

– The flags nibble has 1 bit currently defined, which is set for
free chunks.

– The size adjustment nibble can be used to calculate the re-
quested size of the chunk, given the actual size. The request-
ed size is computed by taking the size as stored in the chunk
header and subtracting the size of the header and the size ad-
justment field. The actual size of a chunk is always a multiple
of two so that chunks always start on a word boundary.

• size field (3 bytes). This three-byte value describes the size of
the chunk, which is larger than the size requested by the
application and includes the size of the chunk header itself. The
maximum data size for a chunk is slightly less than 64 KB.

• Lock:owner byte. Following the size information is a byte that
holds the lock count in the high nibble and the owner ID in the
low nibble.

– The lock count is incremented every time a chunk is locked
and decremented every time a chunk is unlocked. A movable
chunk can be locked a maximum of 14 times before being un-
locked. Nonmovable chunks always have 15 in the lock field.

– The owner ID determines the owner of a memory chunk and
is set by the memory manager when allocating a new chunk.
Owner ID is information is useful for debugging and for gar-
bage collection when an application terminates abnormally.

• hOffset field (3 bytes). The last three bytes in the chunk
header is the distance from the master pointer for the chunk to
the chunk’s header, divided by two. Note that this offset could
be a negative value if the master pointer table is at a higher

Palm OS Memory Management
The Memory Manager

Developing Palm OS 3.0 Applications, Part III 33

address than the chunk itself. For nonmovable chunks that do
not need an entry in the master pointer table, this field is 0.

Local ID Structures

WARNING: Expect the local ID structure to change in the future.
Use the API to work with chunks.

Chunks that contain database records or other database information
are tracked by the data manager through local IDs. A local ID is card
relative and is always valid no matter what memory slot the card re-
sides in. A local ID can be easily converted to a pointer or the handle
to a chunk once the base address of the card is known.

The upper 31 bits of a local ID contain the offset of the chunk or
master pointer to the chunk from the beginning of the card. The
low-order bit is set for local IDs of handles and clear for local IDs of
pointers.

The MemLocalIDToGlobal function converts a local ID and card
number (either 0 or 1) to a pointer or handle. It looks at the card
number and adds the appropriate card base address to convert the
local ID to a pointer or handle for that card.

Using the Memory Manager
Use the memory manager API to allocate memory in the dynamic
heap (for dynamic allocations, stacks, global variables, and so on)
and use the data manager API to allocate memory in one or more
storage heaps (for user data.) The data manager calls the memory
manager as appropriate to perform low-level allocations. (See “The
Data Manager” on page 37 for more information.)

Overview of the Memory Manager API

To allocate a movable chunk, call MemHandleNew and pass the de-
sired chunk size. Before you can read or write data to this chunk,
you must call MemHandleLock to lock it and get a pointer to it.
Every time you lock a chunk, its lock count is incremented. You can
lock a chunk a maximum of 14 times before an error is returned.
(Recall that unmovable chunks hold the value15 in the lock field.)
MemHandleUnlock reverses the effect of MemHandleLock—it

Palm OS Memory Management
The Memory Manager

34 Developing Palm OS 3.0 Applications, Part III

decrements the value of the lock field by 1. When the lock count is
reduced to 0, the chunk is free to be moved by the memory manager.

When an application allocates memory in the dynamic heap, the
memory manager uses an owner ID to associate that chunk with the
application. The system further distinguishes chunks belonging to
the currently active allocation by setting a special bit in the ownerID
information. When the application quits, all chunks in the dynamic
heap having this bit set are freed automatically.

If the system needs to allocate a chunk that is not disposed of when
an application quits, it changes the chunk’s owner ID to 0 by calling
the system function MemHandleSetOwner. This function is not
used by applications, except in special circumstances. For example,
when passing a parameter block to an application that is being
launched, the owner of the block must be set to the system; other-
wise, when the application exits, the system deletes the block when
it frees all memory allocated by the application.

To determine the size of a movable chunk, pass its handle to
MemHandleSize. To resize it, call MemHandleResize. You gener-
ally cannot increase the size of a chunk if it’s locked unless there
happens to be free space in the heap immediately following the
chunk. If the chunk is unlocked, the memory manager is allowed to
move it to another area of the heap to increase its size.When you no
longer need the chunk, call MemHandleFree, which releases the
chunk even if it is locked.

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MemPtrRecoverHandle. In fact, all of the
MemPtrXxx calls, including MemPtrSize, also work on pointers to
locked, movable chunks.

To allocate a nonmovable chunk, call MemPtrNew and pass the de-
sired size of the chunk. This call returns a pointer to the chunk,
which can be used directly to read or write to it.

To determine the size of a nonmovable chunk, call MemPtrSize.
To resize it, call MemPtrResize. You generally can’t increase the
size of a nonmovable chunk unless there is free space in the heap
immediately following the chunk. When you no longer need the
chunk, call MemPtrFree, which releases the chunk even if it’s
locked.

Palm OS Memory Management
The Memory Manager

Developing Palm OS 3.0 Applications, Part III 35

Use the memory manager utility routines MemMove and MemSet to
move memory from one place to another or to fill memory with a
specific value.

In most situations, the proper way to free memory is by calling one
of the MemPtrFree or MemHandleFree functions.

Important For important cautions and practical advice regarding the proper
use of memory on Palm OS devices, be sure to read “Writing Ro-
bust Code,” on page 37 of Part I, Interface Management.

Storage Heap Sizes and Memory Management Schemes

In Palm OS version 1.0, individual storage heaps were limited to a
maximum size of 64 KB each and the memory manager moved ob-
jects automatically among multiple storage heaps to prevent any of
them from becoming too full. This strategy tended to decrease the
availability of contiguous space for large objects. The version 2.0
memory manager abandoned this approach, increasing the avail-
ability of contiguous heap space; however, it still limited the maxi-
mum size of individual heaps to 64 KB each. Palm OS version 3.0 re-
moves the 64 KB maximum size restriction on individual heaps and
creates just two heaps: one 96K dynamic heap and one storage heap
that is the size of all remaining RAM on the card.

Optimizing Memory Manager Performance

Because Palm OS applications must perform well in a RAM-con-
strained environment, proper code segmentation is critical to
achieving optimum performance.

If your application segments are too large, your application may not
perform well (or to run at all) when large contiguous blocks of
memory are not available. Conversely, if your application segments
are too small, performance may be hindered by the overhead re-
quired to find and load resources too frequently.

Unfortunately, it impossible to specify a single size for memory
chunks that will perform optimally for all applications.You will
need to experiment with segmenting your code in different ways
while measuring your application’s performance in order to discov-
er the size and arrangement of resource chunks that will optimize

Palm OS Memory Management
The Memory Manager

36 Developing Palm OS 3.0 Applications, Part III

your particular application’s responsiveness and overall perfor-
mance. Both the Palm OS Debugger and the Simulator provide tools
for examining the internal structure of heaps, viewing the amount
of free space available, manipulating blocks, and so on.

Memory Manager Function Summary

The following functions are available for application use:
• MemCardInfo

• MemChunkFree

• MemDebugMode

• MemHandleDataStorage

• MemHandleCardNo

• MemHandleFree

• MemHandleHeapID

• MemHandleLock

• MemHandleNew

• MemHandleResize

• MemHandleSize

• MemHandleToLocalID

• MemHandleUnlock

• MemHeapCheck

• MemHeapCompact

• MemHeapDynamic

• MemHeapFlags

• MemHeapFreeBytes

• MemHeapID

• MemHeapScramble

• MemHeapSize

• MemLocalIDKind

• MemLocalIDToGlobal

• MemLocalIDToLockedPtr

• MemLocalIDToPtr

• MemMove

Palm OS Memory Management
The Data Manager

Developing Palm OS 3.0 Applications, Part III 37

• MemNumCards

• MemNumHeaps

• MemNumRAMHeaps

• MemPtrCardNo

• MemPtrDataStorage

• MemPtrFree

• MemPtrHeapID

• MemPtrToLocalID

• MemPtrNew

• MemPtrRecoverHandle

• MemPtrResize

• MemSet

• MemSetDebugMode

• MemPtrSize

• MemPtrUnlock

• MemStoreInfo

The Data Manager
A traditional file system first reads all or a portion of a file into a
memory buffer from disk, using and/or updating the information
in the memory buffer, and then writes the updated memory buffer
back to disk. Because Palm OS devices have limited amounts of dy-
namic RAM and use nonvolatile RAM instead of disk storage, a tra-
ditional file system is not optimal for storing and retrieving Palm OS
user data.

Palm OS accesses and updates all information in place. This works
well because it reduces dynamic memory requirements and elimi-
nates the overhead of transferring the data to and from another
memory buffer involved in a file system.

As a further enhancement, data in the Palm OS device is broken
down into multiple, finite-size records that can be left scattered
throughout the memory space; thus, adding, deleting, or resizing a
record does not require moving other records around in memory.
Each record in a database is in fact a memory manager chunk. The

Palm OS Memory Management
The Data Manager

38 Developing Palm OS 3.0 Applications, Part III

data manager uses memory manager functions to allocate, delete,
and resize database records.

This section explains how to use the database manager by discuss-
ing these topics:

• Records and Databases
• Structure of a Database Header
• Using the Data Manager

Records and Databases
Databases organize related records; every record belongs to one and
only one database. A database may be a collection of all address
book entries, all datebook entries, and so on. A Palm OS application
can create, delete, open, and close databases as necessary, just as a
traditional file system can create, delete, open, and close a tradition-
al file. There is no restriction on where the records for a particular
database reside as long as they all reside on the same memory card.
The records from one database can be interspersed with the records
from one or more other databases in memory.

Storing data by database fits nicely with the Palm OS memory man-
ager design. All heaps except for the dynamic heap(s) are nonvola-
tile, so database records can be stored in any heap except the dy-
namic heap(s) (see Heap Overview). Because records can be stored
anywhere on the memory card, databases can be distributed over
multiple discontiguous areas of physical RAM.

Accessing Data With Local IDs

A database maintains a list of all records that belong to it by storing
the local ID of each record in the database header. Because local IDs
are used, the memory card can be placed into any memory slot of a
Palm OS device. An application finds a particular record in a data-
base by index. When an application requests a particular record, the
data manager fetches the local ID of the record from the database
header by index, converts the local ID to a handle using the card
number that contains the database header, and returns the handle to
the record.

Palm OS Memory Management
The Data Manager

Developing Palm OS 3.0 Applications, Part III 39

Structure of a Database Header

A database header consists of some basic database information and
a list of records in the database. Each record entry in the header has
the local ID of the record, 8 attribute bits, and a 3-byte unique ID for
the record.

This section provides information about database headers, discuss-
ing these topics:
• Database Header Fields
• Structure of a Record Entry in a Database Header.

WARNING: Expect the database header structure to change in the
future. Use the API to work with database structures.

Database Header Fields

The database header has the following fields:

• The name field holds the name of the database.
• The attributes field has flags for the database.
• The version field holds an application-specific version

number for that database.
• The modificationNumber is incremented every time a record

in the database is deleted, added, or modified. Thus
applications can quickly determine if a shared database has
been modified by another process.

• The appInfoID is an optional field that an application can use
to store application-specific information about the database. For
example, it might be used to store user display preferences for a
particular database.

• The sortInfoID is another optional field an application can
use for storing the local ID of a sort table for the database.

• The type and creator fields are each 4 bytes and hold the
database type and creator. The system uses these fields to
distinguish application databases from data databases and to
associate data databases with the appropriate application. See
“The System Manager” in Chapter 6, “Using Palm OS
Managers,” of “Developing Palm OS Applications, Part I” for
more information.

Palm OS Memory Management
The Data Manager

40 Developing Palm OS 3.0 Applications, Part III

• The numRecords field holds the number of record entries
stored in the database header itself. If all the record entries
cannot fit in the header, then nextRecordList has the local ID
of a recordList that contains the next set of records.

Each record entry stored in a record list has three fields and is 8
bytes in length. Each entry has the local ID of the record which
takes up 4 bytes: 1 byte of attributes and a 3-byte unique ID for
the record. The attribute field, shown in Figure 1.1, is 8 bits
long and contains 4 flags and a 4-bit category number. The cate-
gory number is used to place records into user-defined catego-
ries like “business” or “personal.”

Figure 1.1 Record Attributes

Structure of a Record Entry in a Database Header

Each record entry has the local ID of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

• Local IDs make the database slot-independent. Since all records
for a database reside on the same memory card as the header,
the handle of any record in the database can be quickly
calculated. When an application requests a specific record from
a database, the data manager returns a handle to the record that
it determines from the stored local ID.

A special situation occurs with ROM-based databases. Because
ROM-based heaps use nonmovable chunks exclusively, the local
IDs to records in a ROM-based database are local IDs of pointers,
not handles. So, when an application opens a ROM-based data-
base, the data manager allocates and initializes a fake handle for
each record and returns the appropriate fake handle when the
application requests a record. Because of this, applications can

Category (4)

secret bit
busy bit

dirty bit

delete bit

Palm OS Memory Management
The Data Manager

Developing Palm OS 3.0 Applications, Part III 41

use handles to access both RAM- and ROM-based database
records.

• The unique ID must be unique for each record within a
database. It remains the same for a particular record no matter
how many times the record is modified. It is used during
synchronization with the desktop to track records on the Palm
OS device with the same records on the desktop system.

When the user deletes or archives a record on Palm OS:

• The delete bit is set in the attributes flags, but its entry in
the database header remains until the next synchronization with
the PC.

• The dirty bit is set whenever a record is updated.
• The busy bit is set when an application currently has a record

locked for reading or writing.
• The secret bit is set for records that should not be displayed

before the user password has been entered on the device.

When a user “deletes” a record on the Palm OS device, the record’s
data chunk is freed, the local ID stored in the record entry is set to 0,
and the delete bit is set in the attributes. When the user archives a
record, the deleted bit is also set but the chunk is not freed and the
local ID is preserved. This way, the next time the user synchronizes
with the desktop system, the desktop can quickly determine which
records to delete (since their record entries are still around on the
Palm OS device). In the case of archived records, the desktop can
save the record data on the PC before it permanently removes the
record entry and data from the Palm OS device. For deleted records,
the PC just has to delete the same record from the PC before perma-
nently removing the record entry from the Palm OS device.

Using the Data Manager

Using the data manager is similar to using a traditional file manag-
er, except that the data is broken down into multiple records instead
of being stored in one contiguous chunk. To create or delete a data-
base, call DmCreateDatabase and DmDeleteDatabase.

Each memory card is akin to a disk drive and can contain multiple
databases. To open a database for reading or writing, you must first
get the database ID, which is simply the local ID of the database

Palm OS Memory Management
The Data Manager

42 Developing Palm OS 3.0 Applications, Part III

header. Calling DmFindDatabase searches a particular memory
card for a database by name and returns the local ID of the database
header. Alternatively, calling DmGetDatabase returns the database
ID for each database on a card by index.

After determining the database ID, you can open the database for
read-only or read/write access. When you open a database, the sys-
tem locks down the database header and returns a reference to a da-
tabase access structure, which tracks information about the open da-
tabase and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DmDatabaseInfo, DmSetDatabaseInfo, and
DmDatabaseSize to query or set information about a database,
such as its name, size, creation and modification dates, attributes,
type, and creator.

Call DmGetRecord, DmQueryRecord, and DmReleaseRecord
when viewing or updating a database.

• DmGetRecord takes a record index as a parameter, marks the
record busy, and returns a handle to the record. If a record is
already busy when DmGetRecord is called, an error is returned.

• DmQueryRecord is faster if the application only needs to view
the record; it doesn’t check or set the busy bit, so it’s not
necessary to call DmReleaseRecord when finished viewing the
record.

• DmReleaseRecord clears the busy bit, and updates the
modification number of the database and marks the record dirty
if the dirty parameter is true.

To resize a record to grow or shrink its contents, call
DmResizeRecord. This routine automatically reallocates the
record in another heap of the same card if the current heap does not
have enough space for it. Note that if the data manager needs to
move the record into another heap to resize it, the handle to the
record changes. DmResizeRecord returns the new handle to the
record.

To add a new record to a database, call DmNewRecord. This routine
can insert the new record at any index position, append it to the

Palm OS Memory Management
The Data Manager

Developing Palm OS 3.0 Applications, Part III 43

end, or replace an existing record by index. It returns a handle to the
new record.

There are three methods for removing a record: DmRemoveRecord,
DmDeleteRecord, and DmArchiveRecord.

• DmRemoveRecord removes the record’s entry from the
database header and disposes of the record data.

• DmDeleteRecord also disposes of the record data, but instead
of removing the record’s entry from the database header, it sets
the deleted bit in the record entry attributes field and clears the
local chunk ID.

• DmArchiveRecord does not dispose of the record’s data; it just
sets the deleted bit in the record entry.

Both DmDeleteRecord and DmArchiveRecord are useful for syn-
chronizing information with a desktop PC. Since the unique ID of
the deleted or archived record is still kept in the database header,
the desktop PC can perform the necessary operations on its own
copy of the database before permanently removing the record from
the Palm OS database.

Call DmRecordInfo and DmSetRecordInfo to retrieve or set the
record information stored in the database header, such as the at-
tributes, unique ID, and local ID of the record. Typically, these rou-
tines are used to set or retrieve the category of a record that is stored
in the lower four bits of the record’s attribute field.

To move records from one index to another or from one database to
another, call DmMoveRecord, DmAttachRecord, and
DmDetachRecord. DmDetachRecord removes a record entry from
the database header and returns the record handle. Given the han-
dle of a new record, DmAttachRecord inserts or appends that new
record to a database or replaces an existing record with the new
record. DmMoveRecord is an optimized way to move a record from
one index to another in the same database.

Data Manager Function Summary
• DmAttachRecord

• DmArchiveRecord

• DmCloseDatabase

• DmCreateDatabase

Palm OS Memory Management
The Data Manager

44 Developing Palm OS 3.0 Applications, Part III

• DmCreateDatabaseFromImage

• DmDatabaseInfo

• DmDatabaseSize

• DmDeleteDatabase

• DmDeleteRecord

• DmDetachRecord

• DmFindDatabase

• DmFindRecordByID

• DmFindSortPositionV10

• DmGetAppInfoID

• DmGetDatabase

• DmGetLastErr

• DmGetNextDatabaseByTypeCreator

• DmGetRecord

• DmInsertionSort

• DmMoveCategory

• DmMoveRecord

• DmNewHandle

• DmNewRecord

• DmNextOpenDatabase

• DmNumDatabases

• DmNumRecords

• DmNumRecordsInCategory

• DmOpenDatabase

• DmOpenDatabaseInfo

• DmOpenDatabaseByTypeCreator

• DmPositionInCategory

• DmQueryNextInCategory

• DmQueryRecord

• DmQuickSort

• DmRecordInfo

• DmReleaseRecord

• DmRemoveRecord

Palm OS Memory Management
The Resource Manager

Developing Palm OS 3.0 Applications, Part III 45

• DmRemoveSecretRecords

• DmResetRecordStates

• DmResizeRecord

• DmSearchRecord

• DmSeekRecordInCategory

• DmSet

• DmSetDatabaseInfo

• DmSetRecordInfo

• DmStrCopy

• DmWrite

• DmWriteCheck

The Resource Manager
Applications can use the resource manager much like the data man-
ager to retrieve and save chunks of data conveniently. The resource
manager has the added capability of tagging each chunk of data
with a unique resource type and resource ID. These tagged data
chunks, called resources, are stored in resource databases. Resource
databases are almost identical in structure to normal databases ex-
cept for a slight amount of increased storage overhead per resource
record (two extra bytes). In fact, the resource manager is nothing
more than a subset of routines in the data manager that are broken
out here for conceptual reasons only.

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, and so forth.
Part of building an application involves creating these resources and
merging them with the actual executable code. In the Palm OS envi-
ronment, an application is, in fact, simply a resource database with
the executable code stored as one or more code resources and the
graphics elements and other miscellaneous data stored in the same
database as other resource types.

Applications may also find the resource manager useful for storing
and retrieving application preferences, saved window positions,
state information, and so forth. These preferences settings can be
stored in a separate resource database.

Palm OS Memory Management
The Resource Manager

46 Developing Palm OS 3.0 Applications, Part III

This section explains how to work with the resource manager and
discusses these topics:

• Structure of a Resource Database Header
• Using the Resource Manager
• Resource Manager Functions

Structure of a Resource Database Header

A resource database header consists of some general database infor-
mation followed by a list of resources in the database. The first por-
tion of the header is identical in structure to a normal database
header. Resource database headers are distinguished from normal
database headers by the dmHdrAttrResDB bit in the attributes
field.

WARNING: Expect the resource database header structure to
change in the future. Use the API to work with resource database
structures.

• The name field holds the name of the resource database.
• The attributes field has flags for the database and always

has the dmHdrAttrResDB bit set.
• The modificationNumber is incremented every time a

resource in the database is deleted, added, or modified. Thus,
applications can quickly determine if a shared resource
database has been modified by another process.

• The appInfoID and sortInfoID fields are not normally
needed for a resource database but are included to match the
structure of a regular database. An application may optionally
use these fields for its own purposes.

• The type and creator fields hold 4-byte signatures of the
database type and creator as defined by the application that
created the database.

• The numResources field holds the number of resource info
entries that are stored in the header itself. In most cases, this is
the total number of resources. If all the resource info entries
cannot fit in the header, however, then nextResourceList
has the chunkID of a resourceList that contains the next set
of resource info entries.

Palm OS Memory Management
The Resource Manager

Developing Palm OS 3.0 Applications, Part III 47

Each 10-byte resource info entry in the header has the resource type,
the resource ID, and the local ID of the memory manager chunk that
contains the resource data.

Using the Resource Manager

You can create, delete, open, and close resource databases with the
routines used to create normal record-based databases (see Using
the Data Manager). This includes all database-level (not record-lev-
el) routines in the data manager such as DmCreateDatabase,
DmDeleteDatabase, DmDatabaseInfo, and so on.

When you create a new database using DmCreateDatabase, the
type of database created (record or resource) depends on the value
of the resDB parameter. If set, a resource database is created and the
dmHdrAttrResDB bit is set in the attributes field of the data-
base header. Given a database header ID, an application can deter-
mine which type of database it is by calling DmDatabaseInfo and
examining the dmHdrAttrResDB bit in the returned attributes
field.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
routines of the resource manager. Generally, applications use the
DmGetResource and DmReleaseResource routines.

DmGetResource returns a handle to a resource, given the type and
ID. This routine searches all open resource databases for a resource
of the given type and ID, and returns a handle to it. The search starts
with the most recently opened database. To search only the most re-
cently opened resource database for a resource instead of all open
resource databases, call DmGet1Resource.

DmReleaseResource should be called as soon as an application
finishes reading or writing the resource data. To resize a resource,
call DmResizeResource, which accepts a handle to a resource and
reallocates the resource in another heap of the same card if neces-
sary. It returns the handle of the resource, which might have been
changed if the resource had to be moved to another heap to be re-
sized.

The remaining resource manager routines are usually not required
for most applications. These include functions to get and set

Palm OS Memory Management
The Resource Manager

48 Developing Palm OS 3.0 Applications, Part III

resource attributes, move resources from one database to another,
get resources by index, and create new resources. Most of these
functions reference resources by index to optimize performance.
When referencing a resource by index, the DmOpenRef of the open
resource database that the resource belongs to must also be speci-
fied. Call DmSearchResource to find a resource by type and ID or
by pointer by searching in all open resource databases.

To get the DmOpenRef of the topmost open resource database, call
DmNextOpenResDatabase and pass nil as the current DmOpen-
Ref. To find out the DmOpenRef of each successive database, call
DmNextOpenResDatabase repeatedly with each successive
DmOpenRef.

Given the access pointer of a specific open resource database,
DmFindResource can be used to return the index of a resource,
given its type and ID. DmFindResourceType can be used to get
the index of every resource of a given type. To get a resource handle
by index, call DmGetResourceIndex.

To determine how many resources are in a given database, call
DmNumResources. To get and set attributes of a resource including
its type and ID, call DmResourceInfo and DmSetResourceInfo.
To attach an existing data chunk to a resource database as a new re-
source, call DmAttachResource. To detach a resource from a data-
base, call DmDetachResource.

To create a new resource, call DmNewResource and pass the desired
size, type, and ID of the new resource. To delete a resource, call
DmRemoveResource. Removing a resource disposes of its data
chunk and removes its entry from the database header.

Resource Manager Functions

To work with resources, you can use the functions listed in Data
Manager Function Summary as well as these functions:

• DmAttachResource

• DmDatabaseProtect

• DmDetachResource

• DmDeleteCategory

• DmFindResource

Palm OS Memory Management
The Resource Manager

Developing Palm OS 3.0 Applications, Part III 49

• DmFindResourceType

• DmFindSortPosition

• DmGetResource

• DmGetResourceIndex

• DmGet1Resource

• DmNewResource

• DmNextOpenResDatabase

• DmNumResources

• DmReleaseResource

• DmRemoveResource

• DmResizeResource

• DmSearchResource

• DmSetResourceInfo

Palm OS Memory Management
The Resource Manager

50 Developing Palm OS 3.0 Applications, Part III

Developing Palm OS 3.0 Applications, Part III 51

2
Memory Management
Functions

Memory Manager Functions

MemCardInfo

Purpose Return information about a memory card.

Prototype Err MemCardInfo (UInt cardNo,
CharPtr cardNameP,
CharPtr manufNamP,
UIntPtr versionP,
ULongPtr crDateP,
ULongPtr romSizeP,
ULongPTr ramSizeP,
ULongPtr freeBytesP)

Parameters cardNo Card number.
cardNameP Pointer to character array (32 bytes), or 0.
manufNameP Pointer to character array (32 bytes), or 0.
versionP Pointer to version variable, or 0.
crDateP Pointer to creation date variable, or 0.
romSizeP Pointer to ROM size variable, or 0.
ramSizeP Pointer to RAM size variable, or 0.
freeBytesP Pointer to free byte-count variable, or 0.

Result Returns 0 if no error.

Comments Pass 0 for those variables that you don’t want returned.

Memory Management Functions
Memory Manager Functions

52 Developing Palm OS 3.0 Applications, Part III

MemCmp

Purpose Compare two blocks of memory.

Prototype Int MemCmp (VoidPtr s1,
VoidPtr s2,
ULong numBytes)

Parameters s1, s2 Pointers to block of memory.

numBytes Number of bytes to compare.

Result Zero if they match, non-zero if not.

+ if s1 > s2

- if s1 < s2

MemDebugMode

Purpose Return the current debugging mode of the memory manager.

Prototype Word MemDebugMode (void)

Parameters No parameters.

Result Returns debug flags as described for MemSetDebugMode.

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 53

MemHandleCardNo

Purpose Return the card number a chunk resides in.

Prototype UInt MemHandleCardNo (VoidHand h)

Parameters -> h Chunk handle.

Result Returns the card number.

Comments Call this routine to retrieve the card number (0 or 1) a movable
chunk resides on.

See Also MemPtrCardNo

MemHandleDataStorage

Purpose Return TRUE if the given handle is part of a data storage heap. If not,
it’s a handle in the dynamic heap.

Prototype Boolean MemHandleDataStorage (VoidHand h)

Parameters -> h Chunk handle.

Result Returns TRUE if the handle is part of a data storage heap.

Comments Called by Fields package routines to determine if they need to
worry about data storage write-protection when editing a text field.

See Also MemPtrDataStorage

Memory Management Functions
Memory Manager Functions

54 Developing Palm OS 3.0 Applications, Part III

MemHandleFree

Purpose Dispose of a movable chunk.

Prototype Err MemHandleFree (VoidHand h)

Parameters -> h Chunk handle.

Result: Returns 0 if no error, or memErrInvalidParam if an error occurs.

Comments Call this routine to dispose of a movable chunk.

See Also MemHandleNew

MemHandleHeapID

Purpose Return the heap ID of a chunk.

Prototype UInt MemHandleHeapID (VoidHand h)

Parameters -> h Chunk handle.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

See Also MemPtrHeapID

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 55

MemHandleLock

Purpose Lock a chunk and obtain a pointer to the chunk’s data.

Prototype VoidPtr MemHandleLock (VoidHand h)

Parameters -> h Chunk handle.

Result Returns a pointer to the chunk.

Comments Call this routine to lock a chunk and obtain a pointer to the chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleNew, MemHandleUnlock

MemHandleNew

Purpose Allocate a new movable chunk in the dynamic heap and returns a
handle to it.

Prototype VoidHand MemHandleNew (ULong size)

Parameters -> size The desired size of the chunk.

Result Returns a handle to the new chunk, or 0 if unsuccessful.

Comments Use this call to allocate dynamic memory. Before you can write data
to the memory chunk that MemHandleNew allocates, you must call
MemHandleLock to lock the chunk and get a pointer to it.

See Also MemPtrFree, MemPtrNew, MemHandleFree, MemHandleLock

Memory Management Functions
Memory Manager Functions

56 Developing Palm OS 3.0 Applications, Part III

MemHandleResize

Purpose Resize a chunk.

Prototype Err MemHandleResize (VoidHandle h, ULong newSize)

Parameters -> h Chunk handle.

-> newSize The new desired size.

Result 0 No error.

memErrInvalidParam Invalid parameter passed.

memErrNotEnoughSpace Not enough free space in heap to
grow chunk.

memErrChunkLocked Can’t grow chunk because it’s
locked.

Comments Call this routine to resize a chunk. This routine is always successful
when shrinking the size of a chunk, even if the chunk is locked.
When growing a chunk, it first attempts to grab free space immedi-
ately following the chunk so that the chunk does not have to move.
If the chunk has to move to another free area of the heap to grow, it
must be movable and have a lock count of 0.

On devices running version 2.0 or earlier of Palm OS, the MemHan-
dleResize function tries to resize the chunk only within the same
heap, whereas DmResizeRecord will look for space in other data
heaps if it can’t find enough space in the original heap.

See Also MemHandleNew, MemHandleSize

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 57

MemHandleSize

Purpose Return the requested size of a chunk.

Prototype ULong MemHandleSize (VoidHand h)

Parameters -> h Chunk handle.

Result Returns the requested size of the chunk.

Comments Call this routine to get the size originally requested for a chunk.

See Also MemHandleResize

MemHandleToLocalID

Purpose Convert a handle into a local chunk ID which is card relative.

Prototype LocalID MemHandleToLocalID (VoidHand h)

Parameters -> h Chunk handle.

Result Returns local ID, or nil (0) if unsuccessful.

Comments Call this routine to convert a chunk handle to a local ID.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr

Memory Management Functions
Memory Manager Functions

58 Developing Palm OS 3.0 Applications, Part III

MemHandleUnlock

Purpose Unlock a chunk given a chunk handle.

Prototype Err MemHandleUnlock (VoidHand h)

Parameters -> h The chunk handle.

Result 0 No error.

memErrInvalidParam Invalid parameter passed.

Comments Call this routine to decrement the lock count for a chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleLock

MemHeapCheck

Purpose Check validity of a given heap.

Prototype Err MemHeapCheck (UInt heapID)

Parameters heapID ID of heap to check.

Result Returns 0 if no error.

See Also MemDebugMode, MemSetDebugMode

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 59

MemHeapCompact

Purpose Compact a heap.

Prototype Err MemHeapCompact (UInt heapID)

Parameters -> heapID ID of the heap to compact.

Result Always returns 0.

Comments Most applications never need to call this function explicitly. The sys-
tem software calls this function at various times; for example, dur-
ing memory allocation (if sufficient free space is not available) and
during system reboot.

Call this routine to compact a heap and merge all free space. This
routine attempts to move all movable chunks to the start of the heap
and merge all free space in the center of the heap.

MemHeapDynamic

Purpose Return TRUE if the given heap is a dynamic heap.

Prototype Boolean MemHeapDynamic (UInt heapID)

Parameters heapID ID of the heap to be tested.

Result Returns TRUE if dynamic, FALSE if not.

Comments Dynamic heaps are used for volatile storage, application stacks, glo-
bals, and dynamically allocated memory.

See Also MemNumHeaps, MemHeapID

Memory Management Functions
Memory Manager Functions

60 Developing Palm OS 3.0 Applications, Part III

MemHeapFlags

Purpose Return the heap flags for a heap.

Prototype UInt MemHeapFlags (UInt heapID)

Parameters -> heapID ID of heap.

Result Returns the heap flags.

Comments Call this routine to retrieve the heap flags for a heap. The flags can
be examined to determine if the heap is ROM based or not. ROM-
based heaps have the memHeapFlagReadOnly bit set.

See Also MemNumHeaps, MemHeapID

MemHeapFreeBytes

Purpose Return the total number of free bytes in a heap and the size of the
largest free chunk in the heap.

Prototype Err MemHeapFreeBytes (UInt heapID,
ULongPtr freeP,
ULongPtr maxP)

Parameters -> heapID ID of heap.

<-> freeP Pointer to a variable of type ULong for free
bytes.

<-> maxP Pointer to a variable of type ULong for max free
chunk size.

Result Always returns 0.

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 61

Comments This routine doesn’t compact the heap but may be used to deter-
mine in advance whether an allocation request will succeed. Before
allocating memory, call this function and test the return value of
maxP to determine whether enough free space to fulfill your alloca-
tion request exists. If not, you may make more space available by
calling the MemHeapCompact function. An alternative approach is
to just call the MemHeapCompact function as necessary when an
error is returned by the MemPtrNew or MemHandleNew functions.

See Also MemHeapSize, MemHeapID, MemHeapCompact

MemHeapID

Purpose Return the heap ID for a heap, given its index and the card number.

Prototype UInt MemHeapID (UInt cardNo, UInt heapIndex)

Parameters -> cardNo The card number, either 0 or 1.

-> heapIndex The heap index, anywhere from 0 to
MemNumHeaps - 1.

Result Returns the heap ID.

Comments Call this routine to retrieve the heap ID of a heap, given the heap
index and the card number. A heap ID must be used to obtain infor-
mation on a heap such as its size, free bytes, etc., and is also passed
to any routines which manipulate heaps.

See Also MemNumHeaps

Memory Management Functions
Memory Manager Functions

62 Developing Palm OS 3.0 Applications, Part III

MemHeapScramble

Purpose Scramble the specified heap.

Prototype Err MemHeapScramble (UInt heapID)

Parameters heapID ID of heap to scramble.

Comments The system attempts to move each movable chunk.

Useful for debugging.

Result Always returns 0.

See Also MemDebugMode, MemSetDebugMode

MemHeapSize

Purpose Return the total size of a heap including the heap header.

Prototype ULong MemHeapSize (UInt heapID)

Parameters -> heapID ID of heap.

Result Returns the total size of the heap.

See Also MemHeapFreeBytes, MemHeapID

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 63

MemLocalIDKind

Purpose Return whether or not a local ID references a handle or a pointer.

Prototype LocalIDKind MemLocalIDKind (LocalID local)

Parameters -> local Local ID to query

Result Returns LocalIDKind, or a memIDHandle or memIDPtr (see
MemoryMgr.h).

Comments This routine determines if the given local ID is to a nonmovable
(memIDPtr) or movable (memIDHandle) chunk.

MemLocalIDToGlobal

Purpose Convert a local ID, which is card relative, into a global pointer in the
designated card.

Prototype VoidPtr MemLocalIDToGlobal (LocalID local,
UInt cardNo)

Parameters -> local The local ID to convert.

-> cardNo Memory card the chunk resides in.

Result Returns pointer or handle to chunk.

See Also MemLocalIDKind, MemLocalIDToLockedPtr

Memory Management Functions
Memory Manager Functions

64 Developing Palm OS 3.0 Applications, Part III

MemLocalIDToLockedPtr

Purpose Return a pointer to a chunk given its local ID and card number.

Note: If the local ID references a movable chunk handle, this
routine automatically locks the chunk before returning.

Prototype VoidPtr MemLocalIDToLockedPtr(LocalID local,
UInt cardNo)

Parameters local Local chunk ID.

cardNo Card number.

Result Returns pointer to chunk, or 0 if an error occurs.

See Also MemLocalIDToGlobal, MemLocalIDToPtr, MemLocalIDKind,
MemPtrToLocalID, MemHandleToLocalID

MemLocalIDToPtr

Purpose Return pointer to chunk, given the local ID and card number.

Prototype VoidPtr MemLocalIDToPtr(LocalID local,
UInt cardNo)

Parameters -> local Local ID to query.

-> cardNo Card number the chunk resides in.

Result Returns a pointer to the chunk, or 0 if error.

Comments If the local ID references a movable chunk and that chunk is not
locked, this function returns 0 to indicate an error.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 65

MemMove

Purpose Move a range of memory to another range.

Prototype Err MemMove(VoidPtr dstP,
VoidPtr srcP,
ULong numBytes)

Parameters dstP Pointer to destination.

srcP Pointer to source.

numBytes Number of bytes to move.

Result Always returns 0.

Comments Handles overlapping ranges.

For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.

MemNumCards

Purpose Return the number of memory card slots in the system. Not all slots
need to be populated.

Prototype UInt MemNumCards (void)

Parameters None.

Result Returns number of slots in the system.

Memory Management Functions
Memory Manager Functions

66 Developing Palm OS 3.0 Applications, Part III

MemNumHeaps

Purpose Return the number of heaps available on a particular card.

Prototype UInt MemNumHeaps (UInt cardNo)

Parameters -> cardNo The card number; either 0 or 1.

Result Number of heaps available, including ROM- and RAM-based
heaps.

Comments Call this routine to retrieve the total number of heaps on a memory
card. The information can be obtained by calling MemHeapSize,
MemHeapFreeBytes, and MemHeapFlags on each heap using its
heap ID. The heap ID is obtained by calling MemHeapID with the
card number and the heap index, which can be any value from 0 to
MemNumHeaps.

MemNumRAMHeaps

Purpose Return the number of RAM heaps in the given card.

Prototype UInt MemNumRAMHeaps (UInt cardNo)

Parameters cardNo The card number.

Result Returns the number of RAM heaps.

See Also MemNumCards

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 67

MemPtrCardNo

Purpose Return the card number (0 or 1) a nonmovable chunk resides on.

Prototype UInt MemPtrCardNo (VoidPtr chunkP)

Parameters -> chunkP Pointer to the chunk.

Result Returns the card number.

See Also MemHandleCardNo

MemPtrDataStorage

Purpose Return TRUE if the given pointer is part of a data storage heap; if
not, it is a pointer in the dynamic heap.

Prototype Boolean MemPtrDataStorage (VoidPtr p)

Parameters p Pointer to a chunk.

Result Returns TRUE if the chunk is part of a data storage heap.

Comments Called by Fields package to determine if it needs to worry about
data storage write-protection when editing a text field.

See Also MemHeapDynamic

Memory Management Functions
Memory Manager Functions

68 Developing Palm OS 3.0 Applications, Part III

MemPtrFree

Purpose Macro to dispose of a chunk.

Prototype Err MemPtrFree (VoidPtr p)

Parameters -> p Pointer to a chunk.

Result 0 If no error or memErrInvalidParam (invalid
parameter).

Comments Call this routine to dispose of a nonmovable chunk.

MemPtrHeapID

Purpose Return the heap ID of a chunk.

Prototype UInt MemPtrHeapID (VoidPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 69

MemPtrNew

Purpose Allocate a new nonmovable chunk in the dynamic heap.

Prototype VoidPtr MemPtrNew (ULong size)

Parameters -> size The desired size of the chunk.

Result Returns pointer to the new chunk, or 0 if unsuccessful.

Comments This routine allocates a nonmovable chunk in the dynamic heap and
returns a pointer to the chunk. Applications can use it when allocat-
ing dynamic memory.

MemPtrRecoverHandle

Purpose Recover the handle of a movable chunk, given a pointer to its data.

Prototype VoidHand MemPtrRecoverHandle (VoidPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the handle of the chunk, or 0 if unsuccessful.

Comments Don’t call this function for pointers in ROM or nonmovable data
chunks.

MemPtrResize

Purpose Resize a chunk.

Prototype Err MemPtrResize (VoidPtr p, ULong newSize)

Parameters -> p Pointer to the chunk.

Memory Management Functions
Memory Manager Functions

70 Developing Palm OS 3.0 Applications, Part III

-> newSize The new desired size.

Result Returns 0 if no error, or memErrNotEnoughSpace
memErrInvalidParam, or memErrChunkLocked if an error occurs.

Comments Call this routine to resize a locked chunk. This routine is always suc-
cessful when shrinking the size of a chunk. When growing a chunk,
it attempts to use free space immediately following the chunk.

See Also MemPtrSize, MemHandleResize

MemPtrSize

Purpose Return the size of a chunk.

Prototype ULong MemPtrSize (VoidPtr p)

Parameters -> p Pointer to the chunk.

Result The requested size of the chunk.

Comments Call this routine to get the original requested size of a chunk.

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 71

MemPtrToLocalID

Purpose Convert a pointer into a card-relative local chunk ID.

Prototype LocalID MemPtrToLocalID (VoidPtr chunkP)

Parameters -> chunkP Pointer to a chunk.

Result Returns the local ID of the chunk.

Comments Call this routine to convert a chunk pointer to a local ID.

See Also MemLocalIDToPtr

MemPtrUnlock

Purpose Unlock a chunk, given a pointer to the chunk.

Prototype Err MemPtrUnlock (VoidPtr p)

Parameters p Pointer to a chunk.

Result 0 if no error, or memErrInvalidParam if an error occurs.

Comments A chunk must not be unlocked more times than it was locked.

See Also MemHandleLock

Memory Management Functions
Memory Manager Functions

72 Developing Palm OS 3.0 Applications, Part III

MemSet

Purpose Set a memory range in a dynamic heap to a specific value.

Prototype Err MemSet (VoidPtr dstP,
ULong numBytes,
Byte value)

Parameters dstP Pointer to the destination.

numBytes Number of bytes to set.

value Value to set.

Result Always returns 0.

Comments For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.

MemSetDebugMode

Purpose Set the debugging mode of the memory manager.

Prototype Err MemSetDebugMode (Word flags)

Parameters flags Debug flags.

Comments Use the logical OR operator (|) to provide any combination of one,
more, or none of the following flags:

memDebugModeCheckOnChange

memDebugModeCheckOnAll

memDebugModeScrambleOnChange

memDebugModeScrambleOnAll

memDebugModeFillFree

memDebugModeAllHeaps

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 73

memDebugModeRecordMinDynHeapFree

Result Returns 0 if no error, or -1 if an error occurs.

MemStoreInfo

Purpose Return information on either the RAM store or the ROM store for a
memory card.

Prototype Err MemStoreInfo (UInt cardNo,
UInt storeNumber,
UIntPtr versionP,
UIntPtr flagsP,
CharPtr nameP,
ULongPtr crDateP,
ULongPtr bckUpDateP,
ULongPtr heapListOffsetP,
ULongPtr initCodeOffset1P,
ULongPtr initCodeOffset2P,
LocalID* databaseDirIDP)

Parameters -> cardNo Card number, either 0 or 1.

-> storeNumber Store number; 0 for ROM, 1 for RAM.

<-> versionP Pointer to version variable, or 0.

<-> flagsP Pointer to flags variable, or 0.

<-> nameP Pointer to character array (32 bytes), or
 0.

<-> crDateP Pointer to creation date variable, or 0.

<-> bckUpDateP Pointer to backup date variable, or 0.

<-> heapListOffsetP
Pointer to heapListOffset variable, or 0.

<-> initCodeOffset1P
Pointer to initCodeOffset1 variable, or 0.

<-> initCodeOffset2P
Pointer to initCodeOffset2 variable, or 0.

Memory Management Functions
Memory Manager Functions

74 Developing Palm OS 3.0 Applications, Part III

<-> databaseDirIDP
Pointer to database directory chunk ID vari-
able, or 0.

Result Returns 0 if no error, or memErrCardNoPresent,
memErrRAMOnlyCard, or memErrInvalidStoreHeader if an
error occurs.

Comments Call this routine to retrieve any or all information on either the RAM
store or the ROM store for a card. Pass 0 for variables that you don’t
wish returned.

Functions for System Use Only

MemCardFormat

Prototype Err MemCardFormat (UInt cardNo,
CharPtr cardNameP,
CharPtr manufNameP,
CharPtr ramStoreNameP)

WARNING: This function for use by system software only.

MemChunkFree

Prototype Err MemChunkFree (VoidPtr chunkDataP)

WARNING: This function for use by system software only.

MemChunkNew

Prototype VoidPtr MemChunkNew (UInt heapID,
ULong size,
UInt attributes)

WARNING: This function for use by system software only.

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 75

MemHandleFlags

Prototype UInt MemHandleFlags (VoidHand h)

WARNING: This function for use by system software only.

MemHandleLockCount

Prototype UInt MemHandleLockCount (VoidHand h)

WARNING: This function for use by system software only.

MemHandleOwner

Prototype UInt MemHandleOwner (VoidHand h)

WARNING: This function for use by system software only.

MemHandleResetLock

Prototype Err MemHandleResetLock (VoidHand h)

WARNING: This function for use by system software only.

MemHandleSetOwner

Prototype Err MemHandleSetOwner (VoidHand h, UInt owner)

WARNING: This function for use by system software only.

MemHeapFreeByOwnerID

Prototype Err MemHeapFreeByOwnerID (UInt heapID,
UInt ownerID)

WARNING: This function for use by system software only.

Memory Management Functions
Memory Manager Functions

76 Developing Palm OS 3.0 Applications, Part III

MemHeapInit

Prototype Err MemHeapInit(UInt heapID,
Int numHandles,
Boolean initContents)

WARNING: This function for use by system software only.

MemInit

Prototype Err MemInit (void)

WARNING: This function for use by system software only.

MemInitHeapTable

Prototype Err MemInitHeapTable (UInt cardNo)

WARNING: This function for use by system software only.

MemKernelInit

Prototype Err MemKernelInit(void)

WARNING: This function for use by system software only.

MemPtrFlags

Prototype UInt MemPtrFlags (VoidPtr chunkDataP)

WARNING: This function for use by system software only.

Memory Management Functions
Memory Manager Functions

Developing Palm OS 3.0 Applications, Part III 77

MemPtrOwner

Prototype UInt MemPtrOwner (VoidPtr chunkDataP)

WARNING: This function for use by system software only.

MemPtrResetLock

Prototype Err MemPtrResetLock (VoidPtr chunkP)

WARNING: This function for use by system software only.

MemPtrSetOwner

Prototype Err MemPtrSetOwner (VoidPtr chunkP, UInt owner)

WARNING: This function for use by system software only.

MemSemaphoreRelease

Prototype Err MemSemaphoreRelease (Boolean writeAccess)

WARNING: This function for use by system software only.

MemSemaphoreReserve

Prototype Err MemSemaphoreReserve (Boolean writeAccess)

WARMING: This function for use by system software only.

Memory Management Functions
Memory Manager Functions

78 Developing Palm OS 3.0 Applications, Part III

MemStoreSetInfo

Prototype Err MemStoreSetInfo (UInt cardNo,
UInt storeNumber,
UIntPtr versionP,
UIntPtr flagsP,
CharPtr nameP,
ULongPtr crDateP,
ULongPtr bckUpDateP,
ULongPtr heapListOffsetP,
ULongPtr initCodeOffset1P,
ULongPtr initCodeOffset2P,
LocalID* databaseDirIDP)

WARNING: This function for use by system software only.

Developing Palm OS 3.0 Applications, Part III 79

3
Data and Resource
Manager Functions

Data Manager Functions

DmArchiveRecord

Purpose Mark a record as archived by leaving the record’s chunk around and
setting the delete bit for the next sync.

Prototype Err DmArchiveRecord (DmOpenRef dbR, UInt index)

Parameters -> dbR DmOpenRef to open database.
-> index Which record to archive.

Result Returns 0 if no error or dmErrIndexOutOfRange or
dmErrReadOnly if an error occurs.

Comments Marks the delete bit in the database header for the record but does
not dispose of the record’s data chunk.

See Also DmRemoveRecord, DmDetachRecord, DmNewRecord,
DmDeleteRecord

Data and Resource Manager Functions
Data Manager Functions

80 Developing Palm OS 3.0 Applications, Part III

DmAttachRecord

Purpose Attach an existing chunk ID handle to a database as a record.

Prototype Err DmAttachRecord (DmOpenRef dbR,
UIntPtr atP,
Handle newH,
Handle* oldHP)

Parameters -> dbR DmOpenRef to open database.
<-> atP Pointer to index where new record should be

placed.
-> newH Handle of new record.
<-> oldHP Pointer to return old handle if replacing exist-

ing record.

Result Returns 0 if no error, or dmErrIndexOutOfRange,
dmErrMemError, dmErrReadOnly, dmErrRecordInWrongCard,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments Given the handle of an existing chunk, this routine makes that
chunk a new record in a database and sets the dirty bit. The parame-
ter atP points to an index variable. If oldHP is NIL, the new record
is inserted at index *atP and all record indices that follow are shift-
ed down. If *atP is greater than the number of records currently in
the database, the new record is appended to the end and its index is
returned in *atP. If oldHP is not NIL, the new record replaces an ex-
isting record at index *atP and the handle of the old record is re-
turned in *oldHP so that the application can free it or attach it to an-
other database.

Useful for cutting and pasting between databases.

See Also DmDetachRecord, DmNewRecord, DmNewHandle

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 81

DmAttachResource

Purpose Attach an existing chunk ID to a resource database as a new
resource.

Prototype Err DmAttachResource (DmOpenRef dbR,
VoidHand newH,
ULong resType,
Int resID)

Parameters -> dbR DmOpenRef to open database.
-> newH Handle of new resource’s data.
-> resType Type of the new resource.
-> resID ID of the new resource.

Result Returns 0 if no error, or dmErrIndexOutOfRange,
dmErrMemError, dmErrReadOnly, dmErrRecordInWrongCard,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments Given the handle of an existing chunk with resource data in it, this
routine makes that chunk a new resource in a resource database.
The new resource will have the given type and ID.

See Also DmDetachResource, DmRemoveResource, DmNewHandle,
DmNewResource

Data and Resource Manager Functions
Data Manager Functions

82 Developing Palm OS 3.0 Applications, Part III

DmCloseDatabase

Purpose Close a database.

Prototype Err DmCloseDatabase (DmOpenRef dbR)

Parameters dbR Database access pointer.

Result Returns 0 if no error or dmErrInvalidParam if an error occurs.

Comments This routine doesn’t unlock any records in the database which have
been left locked, so the application should be careful not to leave
records locked. When performance is not an issue, call
DmResetRecordStates before closing the database in order to un-
lock all records and clear the busy bits.

See Also DmOpenDatabase, DmDeleteDatabase,
DmOpenDatabaseByTypeCreator

DmCreateDatabase

Purpose Create a new database on the specified card with the given name,
creator, and type.

Prototype Err DmCreateDatabase (UInt cardNo,
CharPtr nameP,
ULong creator,
ULong type,
Boolean resDB)

Parameters -> cardNo The card number to create the database on.
-> nameP Name of new database, up to 31 ASCII bytes

long.
-> creator Creator of the database.

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 83

-> type Type of the database.
-> resDB If TRUE, create a resource database.

Result Returns 0 if no error, or dmErrInvalidDatabaseName,
dmErrAlreadyExists, memErrCardNotPresent,
dmErrMemError, memErrChunkLocked, memErrInvalidParam,
memErrInvalidStoreHeader, memErrNotEnoughSpace, or
memErrRAMOnlyCard if an error occurs.

Comments Call this routine to create a new database on a specific card. If anoth-
er database with the same name already exists in RAM store, this
routine returns a dmErrAlreadyExists error code. Once created,
the database ID can be retrieved by calling DmFindDatabase and
the database opened using the database ID. To create a resource da-
tabase instead of a record-based database, set the resDB Boolean to
TRUE.

See Also DmCreateDatabaseFromImage, DmOpenDatabase,
DmDeleteDatabase

DmCreateDatabaseFromImage

Purpose Call to create an entire database from a single resource that contains
an image of the database; usually, make this call from an applica-
tion’s reset action code during boot.

Prototype Err DMCreateDatabaseFromImage (Ptr bufferP)

Parameters bufferP Pointer to locked resource containing database
image.

Result Returns 0 if no error

Comments Use this function to create the default database for an application.

See Also DmCreateDatabase, DmOpenDatabase

Data and Resource Manager Functions
Data Manager Functions

84 Developing Palm OS 3.0 Applications, Part III

DmDatabaseInfo

Purpose Retrieve information about a database.

Prototype Err DmDatabaseInfo (
UInt cardNo, LocalID dbID,
CharPtr nameP, UIntPtr attributesP,
UIntPtr versionP, ULongPtr crDateP,
ULongPtr modDateP, ULongPtr bckUpDateP,
ULongPtr modNumP, LocalID* appInfoIDP,
LocalID* sortInfoIDP, ULongPtr typeP,
ULongPtr creatorP)

Parameters -> cardNo Number of card database resides on.
-> dbID Database ID of the database.
<-> nameP Pointer to 32-byte character array for returning

the name, or NIL.
<-> attributesP Pointer to return attributes variable, or NIL.
versionP Pointer to new version, or NIL.
<-> crDateP Pointer to return creation date variable, or NIL.
<-> modDateP Pointer to return modification date variable, or

NIL.
<-> bckUpDateP Pointer to return backup date variable, or NIL.
<-> modNumP Pointer to return modification number variable,

or NIL.
<-> appInfoIDP Pointer to return appInfoID variable, or NIL.
<-> sortInfoIDP Pointer to return sortInfoID variable, or NIL.
<-> typeP Pointer to return type variable, or NIL.
<-> creatorP Pointer to return creator variable, or NIL.

Result Returns 0 if no error, or dmErrInvalidParam if an error occurs.

Comments Call this routine to retrieve any or all information about a database.
This routine accepts NIL for any return variable parameter pointer
you don’t want returned.

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 85

See Also DmSetDatabaseInfo, DmDatabaseSize, DmOpenDatabaseInfo,
DmFindDatabase, DmGetNextDatabaseByTypeCreator

DmDatabaseProtect

Purpose This routine can be used to prevent a database from being deleted
(by passing TRUE for 'protect'). It increments the protect count if
protect is TRUE and decrements it if protect is FALSE.

Use this function if you want to keep a particular record or resource
in a database locked down but don’t want to keep the database
open. This information is kept in the dynamic heap so all databases
are “unprotected” at system reset.

Prototype Err DmDatabaseProtect (UInt cardNo,
LocalID dbID,
Boolean protect)

Parameters cardNo Card number of database to protect/unprotect.
dbID Local ID of database to protect/unprotect.
protect If TRUE, protect count will be incremented. If

FALSE, protect count will be decremented.

Result Zero if successful.

Data and Resource Manager Functions
Data Manager Functions

86 Developing Palm OS 3.0 Applications, Part III

DmDatabaseSize

Purpose Retrieve size information on a database.

Prototype Err DmDatabaseSize (UInt cardNo,
ChunkID dbID,
ULongPtr numRecordsP,
ULongPtr totalBytesP,
ULongPtr dataBytesP)

Parameters -> cardNo Card number database resides on.
-> dbID Database ID of the database.
<-> numRecordsP Pointer to return numRecords variable, or NIL.
<-> totalBytesP Pointer to return totalBytes variable, or NIL.
<-> dataBytesP Pointer to return dataBytes variable, or NIL.

Result Returns 0 if no error, or dmErrMemError if an error occurs.

Comments Call this routine to retrieve the size of a database. Any of the return
data variable pointers can be NIL.

• The total number of records is returned in *numRecordsP.
• The total number of bytes used by the database including

the overhead is returned in *totalBytesP.
• The total number of bytes used to store just each record’s

data, not including overhead, is returned in
*dataBytesP.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 87

DmDeleteCategory

Purpose Delete all records in a category. The category name is not changed.

Prototype Err DmDeleteCategory (DmOpenRef dbR,
UInt categoryNum)

Parameters dbR Database access pointer.
categoryNum Category of records to delete.

Result Zero if there is no error, an error code otherwise.

DmDeleteDatabase

Purpose Delete a database and all its records.

Prototype Err DmDeleteDatabase (UInt cardNo, LocalID dbID)

Parameters --> cardNo Card number the database resides on.
--> dbID Database ID.

Result Returns 0 if no error, or dmErrCantFind, dmErrCantOpen,
memErrChunkLocked, dmErrDatabaseOpen, dmErrROMBased,
memErrInvalidParam, or memErrNotEnoughSpace if an error oc-
curs.

Comments Call this routine to delete a database. This routine accepts a database
ID as a parameter. To determine the database ID, call either
DmFindDatabase or DmGetDatabase with a database index.

See Also DmDeleteRecord, DmRemoveRecord, DmRemoveResource,
DmCreateDatabase, DmGetNextDatabaseByTypeCreator,
DmFindDatabase

Data and Resource Manager Functions
Data Manager Functions

88 Developing Palm OS 3.0 Applications, Part III

DmDeleteRecord

Purpose Delete a record’s chunk from a database but leave the record entry
in the header and set the delete bit for the next sync.

Prototype Err DmDeleteRecord (DmOpenRef dbR, UInt index)

Parameters -> dbR DmOpenRef to open database.
-> index Which record to delete.

Result Returns 0 if no error, or dmErrIndexOutOfRange,
dmErrReadOnly, or memErrInvalidParam if an error occurs.

Comments Marks the delete bit in the database header for the record and dis-
poses of the record’s data chunk. Does not remove the record entry
from the database header, but simply sets the localChunkID of the
record entry to NIL.

See Also DmDetachRecord, DmRemoveRecord, DmArchiveRecord,
DmNewRecord

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 89

DmDetachRecord

Purpose Detach and orphan a record from a database but don’t delete the
record’s chunk.

Prototype Err DmDetachRecord (DmOpenRef dbR,
UInt index,
Handle* oldHP)

Parameters -> dbR DmOpenRef to open.
-> index Index of the record to detach.
<-> oldHP Pointer to return handle of the detached record.

Result Returns 0 if no error or dmErrReadOnly (database is marked read
only), dmErrIndexOutOfRange (index out of range),
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments This routine detaches a record from a database by removing its
entry from the database header and returns the handle of the
record’s data chunk in *oldHP. Unlike DmDeleteRecord, this rou-
tine removes any traces of the record, including its entry in the data-
base header.

See Also DmAttachRecord, DmRemoveRecord, DmArchiveRecord,
DmDeleteRecord

Data and Resource Manager Functions
Data Manager Functions

90 Developing Palm OS 3.0 Applications, Part III

DmDetachResource

Purpose Detach a resource from a database and return the handle of the re-
source’s data.

Prototype Err DmDetachResource (DmOpenRef dbR,
Int index,
VoidHand* oldHP)

Parameters -> dbR DmOpenRef to open database.
-> index Index of resource to detach.
<-> oldHP Pointer to return handle of the detached record.

Result Returns 0 if no error, or dmErrCorruptDatabase,
dmErrIndexOutOfRange, dmErrReadOnly,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments This routine detaches a resource from a database by removing its
entry from the database header and returns the handle of the re-
source’s data chunk in *oldHP.

See Also DmAttachResource, DmRemoveResource

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 91

DmFindDatabase

Purpose Return the database ID of a database by card number and name.

Prototype LocalID DmFindDatabase (UInt cardNo,
CharPtr nameP)

Parameters -> cardNo Number of card to search.
-> nameP Name of the database to look for.

Result Returns the database ID, or 0 if not found.

See Also DmGetNextDatabaseByTypeCreator, DmDatabaseInfo,
DmOpenDatabase

DmFindRecordByID

Purpose Return the index of the record with the given unique ID.

Prototype Err DmFindRecordByID (DmOpenRef dbR,
ULong uniqueID,
UIntPtr indexP)

Parameters dbR Database access pointer.
uniqueID Unique ID to search for.
indexP Return index.

Result Returns 0 if found, otherwise dmErrUniqueIDNotFound.

See Also DmQueryRecord, DmGetRecord, DmRecordInfo

Data and Resource Manager Functions
Data Manager Functions

92 Developing Palm OS 3.0 Applications, Part III

DmFindResource

Purpose Search the given database for a resource by type and ID, or by point-
er if it is non-NIL.

Prototype Int DmFindResource (DmOpenRef dbR,
ULong resType,
Int resID,
VoidHand findResH)

Parameters -> dbR Open resource database access pointer.
-> resType Type of resource to search for.
-> resID ID of resource to search for.
->findResH Pointer to locked resource, or NIL.

Result Returns index of resource in resource database, or -1 if not found.

Comments Use this routine to find a resource in a particular resource database
by type and ID or by pointer. It is particularly useful when you want
to search only one database for a resource and that database is not
the topmost one.

If findResH is NIL, the resource is searched for by type and ID.

If findResH is not NIL, resType and resID are ignored and the
index of the given locked resource is returned.

Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResourceType

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 93

DmFindResourceType

Purpose Search the given database for a resource by type and type index.

Prototype Int DmFindResourceType (DmOpenRef dbR,
ULong resType,
Int typeIndex)

Parameters -> dbR Open resource database access pointer.
-> resType Type of resource to search for.
-> typeIndex Index of given resource type.

Result Index of resource in resource database, or -1 if not found.

Comments Use this routine to retrieve all the resources of a given type in a re-
source database. By starting at typeIndex 0 and incrementing until
an error is returned, the total number of resources of a given type
and the index of each of these resources can be determined. Once
the index of a resource is determined, it can be locked down and ac-
cessed by calling DmGetResourceIndex.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResource

Data and Resource Manager Functions
Data Manager Functions

94 Developing Palm OS 3.0 Applications, Part III

DmFindSortPosition

Purpose Return to where a record is or should be. Useful to find where to in-
sert a record. Uses a binary search.

Prototype UInt DmFindSortPosition (DmOpenRef dbR,
VoidPtr newRecord,
SortRecordInfoPtr newRecordInfo,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.
newRecord Pointer to the new record.
newRecordInfo Information about the new record.
compar Pointer to comparison.
other Other info for comparison.

Result The position where the record should be inserted.

The position should be viewed as between the record returned and
the record before it. Note that the return value may be one greater
than the number of records.

Caveat If there are deleted records in the database, DmFindSortPosition
only works if those records are at the end of the database.
DmFindSortPosition always assumes that a deleted record is
greater than or equal to any other record.

See Also DmFindSortPositionV10

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 95

DmFindSortPositionV10

Purpose Return to where a record is or should be.

Useful to find an existing record or find where to insert a record.
Uses a binary search.

Prototype UInt DmFindSortPositionV10 (DmOpenRef dbR,
VoidPtr newRecord,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.
newRecord Pointer to the new record.
compar Comparison function (see Comments).
other Any value the application wants to pass to the

comparison function.

Result Returns the position where the record should be inserted. The posi-
tion should be viewed as between the record returned and the
record before it. Note that the return value may be one greater than
the number of records.

Comments The comparison function, compar, accepts two arguments, elem1
and elem2, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result of the
comparison.

If the items... compar returns...

*elem1 < *elem2 an integer < 0

*elem1 == *elem2 0

*elem1 > *elem2 an integer > 0

Data and Resource Manager Functions
Data Manager Functions

96 Developing Palm OS 3.0 Applications, Part III

2.0 Note DmComparF has changed; it previously had three parameters but
now has six. DmComparF is the typedef of a callback used by
SysInsertionSort, DmInsertionSort, and
FindInsertPosition.

The new compar parameters allow a Palm OS application to pass
more information to the system than before, most noticeably the
record (and all associated information) which allows sorting by
unique ID, so that the Palm OS device and the desktop always
match.

The revised callback is used by new sorting routines (and can be
used the same way by your application):

typedef Int DmComparF (void *,

void *,

Int other,

SortRecordInfoPtr,

SortRecordInfoPtr,

 VoidHand appInfoH);

As a rule, the change in the number of arguments from three to six
doesn’t cause problems when a 1.0 application is run on a 2.0 de-
vice, because the system only pulls the arguments from the stack
that are there.

Keep in mind, however, that some optimized applications built with
tools other than Metrowerks CodeWarrior for Palm OS may have
problems as a result of the change in arguments when running on
a 2.0 or later device.

See Also DmFindSortPosition, DmQuickSort, DmInsertionSort

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 97

DmGetAppInfoID

Purpose Return the local ID of the application info block.

Prototype LocalID DmGetAppInfoID (DmOpenRef dbR).

Parameters dbR Database access pointer.

Result Returns local ID of the application info block

See Also DmDatabaseInfo, DmOpenDatabase

DmGetDatabase

Purpose Return the database header ID of a database by index and card
number.

Prototype LocalID DmGetDatabase (UInt cardNo, UInt index)

Parameters -> cardNo Card number of database.
-> index Index of database.

Result Returns the database ID, or 0 if an invalid parameter passed.

Comments Call this routine to retrieve the database ID of a database by index.
The index should range from 0 to DmNumDatabases-1. This routine
is useful for getting a directory of all databases on a card.

See Also DmOpenDatabase, DmNumDatabases, DmDatabaseInfo,
DmDatabaseSize

Data and Resource Manager Functions
Data Manager Functions

98 Developing Palm OS 3.0 Applications, Part III

DmGetLastErr

Purpose Return error code from last data manager call.

Prototype Err DmGetLastErr (void)

Parameters None.

Result Error code from last unsuccessful data manager call.

Comments Use this routine to determine why a data manager call failed. In par-
ticular, calls like DmGetRecord return 0 only if unsuccessful, so call-
ing DmGetLastErr is the only way to determine why they failed.

Note that DmGetLastErr does not always reflect the error status of
the last data manager call. Rather, it reflects the error status of data
manager calls that don’t return an error code. For some of those
calls, the saved error code value is not set to 0 when the call is
successful.

For example, if a call to DmOpenDatabaseByTypeCreator returns
NULL for database reference (that is, it fails), DmGetLastErr returns
something meaningful; otherwise, it returns the error value of some
previous data manager call.

Only the following data manager functions currently affect the
value returned by DmGetLastErr:

DmFindDatabase DmOpenDatabaseByTypeCreator

DmOpenDatabase DmNewRecord

DmQueryRecord DmGetRecord

DmQueryNextInCategory DmPositionInCategory

DmSeekRecordInCategory DmResizeRecord

DmGetResource DmGet1Resource

DmNewResource DmGetResourceIndex.

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 99

DmGetNextDatabaseByTypeCreator

Purpose Return a database header ID and card number given the type
and/or creator. This routine searches all memory cards for a match.

Prototype Err DmGetNextDatabaseByTypeCreator (
Boolean newSearch,
DmSearchStatePtr stateInfoP,
ULong type,
ULong creator,
Boolean onlyLatestVers,
UIntPtr cardNoP,
LocalID* dbIDP)

Parameters -> newSearch TRUE if starting a new search.
-> stateInfoP If newSearch is FALSE, this must point to the

same data used for the previous invocation.
-> type Type of database to search for, pass 0 as a

wildcard.
-> creator Creator of database to search for, pass 0 as a

wildcard.
-> onlyLatestVers

If TRUE, only latest version of each database
with a given type and creator is returned.

<- cardNoP On exit, the card number of the found database.
<- dbIDP Database local ID of the found database.

Result 0 No error.
dmErrCantFind No matches found.

Comments To start the search, pass TRUE for newSearch. To continue a search
where the previous one left off, pass FALSE for newSearch. When
continuing a search, stateInfoP must point to the same structure
passed during the previous call to this function.

The type and creator parameters specify search criteria which a
database must meet in order to be included in this function’s result.

Data and Resource Manager Functions
Data Manager Functions

100 Developing Palm OS 3.0 Applications, Part III

You may need to call this function successively to discover all data-
bases having a specified type/creator pair.

You can pass NIL as a wildcard operator for the type or creator pa-
rameters to conduct searches of wider scope. If the type parameter
is NIL, this routine can be called successively to return all databases
of the given creator. If the creator parameter is NIL, this routine
can be called successively to return all databases of the given type.
You can also pass NIL as the value for both of these parameters to
return all available databases without regard to type or creator.

Because databases are scattered freely throughout memory space,
they are not returned in any particular order—any database match-
ing the specified type/creator criteria can be returned.Thus, if the
value of the onlyLatestVers parameter is FALSE, this function
may return a database which is not the most recent version match-
ing the specified type/creator pair. To obtain only the latest version
of each database matching the search criteria, set the value of the
onlyLatestVers parameter to TRUE,.

See Also DmGetDatabase, DmFindDatabase, DmDatabaseInfo,
DmOpenDatabaseByTypeCreator, DmDatabaseSize

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 101

DmGetRecord

Purpose Return a handle to a record by index and mark the record busy.

Prototype VoidHand DmGetRecord (DmOpenRef dbR,
UInt index)

Parameters -> dbR DmOpenRef to open database.
-> index Which record to retrieve.

Result Returns handle to record data.

Comments Returns handle to given record and sets the busy bit for the record.
If another call to DmGetRecord for the same record is attempted be-
fore the record is released, an error is returned.

If the record is ROM-based (pointer accessed), this routine makes a
fake handle to it and store this handle in the DmAccessType
structure.

 DmReleaseRecord should be called as soon as the caller finishes
viewing or editing the record.

See Also DmSearchRecord, DmFindRecordByID, DmRecordInfo,
DmReleaseRecord, DmQueryRecord

Data and Resource Manager Functions
Data Manager Functions

102 Developing Palm OS 3.0 Applications, Part III

DmGetResource

Purpose Search all open resource databases and return a handle to a re-
source, given the resource type and ID.

Prototype VoidHand DmGetResource (ULong type, Int ID)

Parameters -> type The resource type.
->ID The resource ID.

Result Returns pointer to resource data, or NIL if unsuccessful.

Comments Searches all open resource databases starting with the most recently
opened one for a resource of the given type and ID. If found, the re-
source handle is returned. The application should call
DmReleaseRecord as soon as it finishes accessing the resource data
to avoid fragmenting the heap.

See Also DmGet1Resource, DmReleaseResource

DmGetResourceIndex

Purpose Return a handle to a resource by index.

Prototype VoidHand DmGetResourceIndex (DmOpenRef dbR,
Int index)

Parameters -> dbR Access pointer to open database.
-> index Index of resource to lock down.

Result Handle to resource data, or NIL if unsuccessful.

See Also DmFindResource, DmFindResourceType, DmSearchResource

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 103

DmGet1Resource

Purpose Search the most recently opened resource database and return a
handle to a resource given the resource type and ID.

Prototype VoidHand DmGet1Resource (ULong type, Int ID)

Parameters -> type The resource type.
-> ID The resource ID.

Result Returns a pointer to resource data, or NIL if unsuccessful.

Comments Searches the most recently opened resource database for a resource
of the given type and ID. If found, the resource handle is returned.
The application should call DmReleaseRecord as soon as it finishes
accessing the resource data in order to avoid fragmenting the heap.

See Also DmGetResource, DmReleaseResource

DmInsertionSort

 Purpose Sort records in a database.

Prototype Err DmInsertionSort (DmOpenRef dbR,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.
compar Comparison function (see below).
other Any value the application wants to pass to the

comparison function.

Result Returns 0 if no error, or dmErrReadOnly if read-only database. Re-
turns dmErrInvalidParam for an invalid parameter.

Data and Resource Manager Functions
Data Manager Functions

104 Developing Palm OS 3.0 Applications, Part III

Comments Deleted records are placed last in any order. All others are sorted ac-
cording to the passed comparison function. Only records which are
out of order move. Moved records are moved to the end of the range
of equal records. If a large number of records are being sorted, try to
use the quick sort.

The following insertion-sort algorithm is used: Starting with the sec-
ond record, each record is compared to the preceding record. Each
record not greater than the last is inserted into sorted position with-
in those already sorted. A binary insertion is performed. A moved
record is inserted after any other equal records.

The comparison function, compar, accepts two arguments, *elem1
and *elem2, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (*elem1 and
elem2), and returns an integer based on the result of the com-
parison.

DmInsertionSort is also called by SysAppLaunch (see Part 1) to
move an application database it is launching out of the system list
and into the application’s list.

2.0 Note DmComparF has changed; it previously had 3 parameters and now
has 6. DmComparF is the typedef of a callback used by
SysInsertionSort, DmInsertionSort, and
FindInsertPosition.

The new parameters allow a Palm OS application to pass more in-
formation to the system than before, most noticeably the record
(and all associated information) which allows sorting by unique ID,
so that the Palm OS device and the desktop always match.

The revised callback is used by new sorting routines (and can be
used the same way by your application):

If the items... compar returns...

*elem1 < *elem2 an integer < 0

*elem1 == *elem2 0

*elem1 > *elem2 an integer > 0

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 105

typedef Int DmComparF (void *,

void *,

Int other,

SortRecordInfoPtr,

SortRecordInfoPtr,

 VoidHand appInfoH);

As a rule, this change in the number of arguments doesn’t cause
problems when a 1.0 application is run on a 2.0 device, because
the system only pulls the arguments from the stack that are there.

Keep in mind, however, that some optimized applications built with
tools other than Metrowerks CodeWarrior for Palm OS may have
problems as a result of the change in arguments when running on
a 2.0 or later device.

See Also DmQuickSort

DmMoveCategory

Purpose Move all records in a category to another category.

Prototype Err DmMoveCategory (DmOpenRef dbR,
UInt toCategory,
UInt fromCategory,
Boolean dirty)

Parameters -> dbR DmOpenRef to open database.
<- toCategory Category to which to retrieve records.
-> fromCategory Category from which to retrieve records.
-> dirty If TRUE, set the dirty bit.

Result Returns 0 if successful, or dmErrReadOnly if read-only database.

Comments If dirty is TRUE, the moved records are marked as dirty.

Data and Resource Manager Functions
Data Manager Functions

106 Developing Palm OS 3.0 Applications, Part III

DmMoveRecord

Purpose Move a record from one index to another.

Prototype Err DmMoveRecord (DmOpenRef dbR,
UInt from,
UInt to)

Parameters -> dbR DmOpenRef to open database.
-> from Index of record to move.
-> to Where to move the record.

Result Returns 0 if no error or one of dmErrIndexOutOfRange,
dmErrReadOnly, memErrChunkLocked, memErrInvalidParam,
or memErrNotEnoughSpace if an error occurs.

Comments Insert the record at the to index and move other records down. The
to position should be viewed as an insertion position. This value
may be one greater than the index of the last record in the database.

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 107

DmNewHandle

Purpose Attempt to allocate a new chunk in the same data heap or card as
the database header of the passed database access pointer. If there is
not enough space in that data heap, try other heaps.

Prototype VoidHand DmNewHandle (DmOpenRef dbR, ULong size)

Parameters -> dbR DmOpenRef to open database.
-> size Size of new handle.

Result Returns the chunkID of new chunk, or 0 if not enough space.

Comments Allocates a new handle of the given size. Ensures that the new han-
dle is in the same memory card as the given database. This guaran-
tees that you can attach the handle to the database as a record to ob-
tain and save its LocalID in the appInfoID or sortInfoID fields
of the header.

Data and Resource Manager Functions
Data Manager Functions

108 Developing Palm OS 3.0 Applications, Part III

DmNewRecord

Purpose Return a handle to a new record in the database and mark the
record busy.

Prototype VoidHand DmNewRecord (DmOpenRef dbR,
UIntPtr atP,
ULong size)

Parameters -> dbR DmOpenRef to open database.
<-> atP Pointer to index where new record should be

placed.
-> size Size of new record.

Result Pointer to record data, or 0 if error.

Comments Allocates a new record of the given size, and returns a handle to the
record data. The parameter atP points to an index variable. The
new record is inserted at index *atP and all record indices that fol-
low are shifted down. If *atP is greater than the number of records
currently in the database, the new record is appended to the end
and its index is returned in *atP.

Both the busy and dirty bits are set for the new record and a
unique ID is automatically created.

See Also DmAttachRecord, DmRemoveRecord, DmDeleteRecord

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 109

DmNewResource

Purpose Allocate and add a new resource to a resource database.

Prototype VoidHand DmNewResource (DmOpenRef dbR,
ULong resType,
Int resID,
ULong size)

Parameters -> dbR DmOpenRef to open database.
-> resType Type of the new resource.
-> resID ID of the new resource.
-> size Desired size of the new resource.

Result Returns a handle to new resource, or NIL if unsuccessful.

Comments Allocates a memory chunk for a new resource and adds it to the
given resource database. The new resource has the given type and
ID. If successful, the application should call DmReleaseResource
as soon as it finishes initializing the resource.

See Also DmAttachResource, DmRemoveResource

Data and Resource Manager Functions
Data Manager Functions

110 Developing Palm OS 3.0 Applications, Part III

DmNextOpenDatabase

Purpose Return DmOpenRef to next open database for the current task.

Prototype DmOpenRef DmNextOpenDatabase (DmOpenRef currentP)

Parameters -> currentP Current database access pointer or NIL.

Result DmOpenRef to next open database, or NIL if there are no more.

Comments Call this routine successively to get the DmOpenRefs of all open da-
tabases. Pass NIL for currentP to get the first one. Applications
don’t usually call this function, but is useful for system information.

See Also DmOpenDatabaseInfo, DmDatabaseInfo

DmNextOpenResDatabase

Purpose Return access pointer to next open resource database in the search
chain.

Prototype DmOpenRef DmNextOpenResDatabase (DmOpenRef dbR)

Parameters dbR Database reference, or 0 to start search from the
top.

Result Pointer to next open resource database.

Comments Returns pointer to next open resource database. To get a pointer to
the first one in the search chain, pass NIL for dbR. This first database
is the first and only one searched when DmGet1Resource is called.

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 111

DmNumDatabases

Purpose Determine how many databases reside on a memory card.

Prototype UInt DmNumDatabases (UInt cardNo)

Parameters -> cardNo Number of the card to check.

Result Returns the number of databases found.

Comments This routine is helpful for getting a directory of all databases on a
card. The routine DmGetDatabase accepts an index from 0 to
DmNumDatabases -1 and returns a database ID by index.

See Also DmGetDatabase

DmNumRecords

Purpose Return the number of records in a database.

Prototype UInt DmNumRecords (DmOpenRef dbR)

Parameters -> dbR DmOpenRef to open database.

Result Returns the number of records in a database.

See Also DmNumRecordsInCategory, DmRecordInfo, DmSetRecordInfo

Data and Resource Manager Functions
Data Manager Functions

112 Developing Palm OS 3.0 Applications, Part III

DmNumRecordsInCategory

 Purpose Return the number of records of a specified category in a database.

 Prototype UInt DmNumRecordsInCategory (DmOpenRef dbR,
UInt category)

Parameters dbr DmOpenRef to open database.
category Category.

Result Returns the number of records.

Comments Because this function must examine all records in the database, it
can be slow to return, especially when called on a large database.

See Also DmNumRecords, DmQueryNextInCategory,
DmPositionInCategory, DmSeekRecordInCategory,
DmMoveCategory

DmNumResources

Purpose Return the total number of resources in a given resource database.

Prototype UInt DmNumResources (DmOpenRef dbR)

Parameters -> dbR DmOpenRef to open database.

Result Returns the total number of resources in the given database.

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 113

DmOpenDatabase

Purpose Open a database and return a reference to it.

Prototype DmOpenRef DmOpenDatabase (UInt cardNo,
LocalID dbID,
UInt mode)

Parameters -> cardNo Card number database resides on.
-> dbID The database ID of the database.
-> mode Which mode to open database in (see below).

Result Returns DmOpenRef to open database, or 0 if unsuccessful.

Comments Call this routine to open a database for reading or writing. The mode
parameter can be one or more of the following constants ORed
together:

This routine returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling DmGetLastErr.

See Also DmCloseDatabase, DmCreateDatabase, DmFindDatabase,
DmOpenDatabaseByTypeCreator, DmDeleteDatabase

dmModeReadWrite Read-write access.

dmModeReadOnly Read-only access.

dmModeLeaveOpen Leave database open even after applica-
tion quits.

dmModeExclusive Don’t let anyone else open this database.

Data and Resource Manager Functions
Data Manager Functions

114 Developing Palm OS 3.0 Applications, Part III

DmOpenDatabaseByTypeCreator

Purpose Open the most recent revision of a database with the given type and
creator.

Prototype DmOpenRef DmOpenDatabaseByTypeCreator (
ULong type,
ULong creator,
UInt mode)

Parameters type Type of database.
creator Creator of database.
mode Open mode; see Comments for

DmOpenDatabase.

Result DmOpenRef to open database, or 0 if unsuccessful.

See Also DmCreateDatabase, DmOpenDatabase, DmOpenDatabaseInfo,
DmCloseDatabase

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 115

DmOpenDatabaseInfo

Purpose Retrieve information about an open database.

Prototype Err DmOpenDatabaseInfo (DmOpenRef dbR,
LocalIDPtr dbIDP,
UIntPtr openCountP,
UIntPtr modeP,
UIntPtr cardNoP,
BooleanPtr resDBP)

Parameters -> dbR DmOpenRef to open database.
<-> dbIDP Pointer to return dbID variable, or NIL.
<-> openCountP Pointer to return openCount variable, or NIL.
<-> modeP Pointer to return mode variable, or NIL.
<-> cardNoP Pointer to return card number, or NIL.
<-> resDBP Pointer to return resDB Boolean, or NIL.

Result 0 No error.
dmErrInvalidParam Invalid parameter passed.

Comments This routine retrieves information about an open database. Any NIL
return parameter pointers are ignored.

See Also DmDatabaseInfo

Data and Resource Manager Functions
Data Manager Functions

116 Developing Palm OS 3.0 Applications, Part III

DmPositionInCategory

Purpose Return a position of a record within the specified category.

Prototype UInt DmPositionInCategory (DmOpenRef dbR,
UInt index,
UInt category)

Parameters dbR DmOpenRef to open database.
index Index of the record.
category Category to search.

Result Returns the position (zero-based).

Comments Because this function must examine all records up to the current
record, it can be slow to return, especially when called on a large
database.

If the record is ROM-based (pointer accessed) this routine makes a
fake handle to it and stores this handle in the DmAccessType
structure.

See Also DmQueryNextInCategory, DmSeekRecordInCategory,
DmMoveCategory

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 117

DmQueryNextInCategory

Purpose Return a handle to the next record in the specified category for read-
ing only (does not set the busy bit).

Prototype VoidHand DmQueryNextInCategory (DmOpenRef dbR,
UIntPtr indexP,
UInt category)

Parameters dbR DmOpenRef to open database.
indexP Index of a known record (often retrieved with

DmPositionInCategory).
category Which category to query.

Result Returns a handle to the record following a known record.

See Also DmNumRecordsInCategory, DmPositionInCategory,
DmSeekRecordInCategory

DmQueryRecord

Purpose Return a handle to a record for reading only (does not set the busy
bit).

Prototype VoidHand DmQueryRecord (DmOpenRef dbR, UInt index)

Parameters -> dbR DmOpenRef to open database.
-> index Which record to retrieve.

Result Returns record handle, or 0 if record is out of range or deleted.

Comments Returns handle to given record. Use this routine only when viewing
the record. This routine successfully returns a handle to the record
even if the record is busy.

If the record is ROM-based (pointer accessed) this routine returns
the fake handle to it.

Data and Resource Manager Functions
Data Manager Functions

118 Developing Palm OS 3.0 Applications, Part III

DmQuickSort

Purpose Sort records in a database.

Prototype Err DmQuickSort (const DmOpenRef dbR,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.
compar Comparison function (see Comments).
other Any value the application wants to pass to the

comparison function.

Result Returns 0 if no error or DmErrReadOnly if an error occurred.

Comments Deleted records are placed last in any order. All others are sorted ac-
cording to the passed comparison function.

The comparison function, compar, accepts two arguments, elem1
and elem2, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result of the
comparison.

See Also DmFindSortPositionV10, DmInsertionSort

If the items... compar returns...

*elem1 < *elem2 an integer < 0

*elem1 == *elem2 0

*elem1 > *elem2 an integer > 0

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 119

DmRecordInfo

Purpose Retrieve the record information as stored in the database header.

Prototype Err DmRecordInfo (DmOpenRef dbR,
UInt index,
UBytePtr attrP,
ULongPtr uniqueIDP,
LocalID* chunkIDP)

Parameters -> dbR DmOpenRef to open database.
-> index Index of record.
<-> attrP Pointer to return attribute variable, or NIL.
<-> uniqueIDP Pointer to return unique ID variable, or NIL.
<-> chunkIDP Pointer to return Local ID variable, or NIL.

Result Returns 0 if no error or dmErrIndexOutOfRange if an error
occurred.

Comments Retrieves information about a record. Any of the return variable
pointers can be NIL.

See Also DmNumRecords, DmSetRecordInfo, DmQueryNextInCategory

Data and Resource Manager Functions
Data Manager Functions

120 Developing Palm OS 3.0 Applications, Part III

DmReleaseRecord

Purpose Clear the busy bit for the given record and set the dirty bit if dirty
is TRUE.

Prototype Err DmReleaseRecord (DmOpenRef dbR,
UInt index,
Boolean dirty)

Parameters -> dbR DmOpenRef to open database.
-> index The record to unlock.
-> dirty If TRUE, set the dirty bit.

Result Returns 0 if no error or dmErrIndexOutOfRange if an error oc-
curred.

Comments Call this routine when you finish modifying or reading a record that
you’ve called DmGetRecord on.

See Also DmGetRecord

DmReleaseResource

Purpose Release a resource acquired with DmGetResource.

Prototype Err DmReleaseResource (VoidHand resourceH)

Parameters -> resourceH Handle to resource.

Result Returns 0 if no error.

Comments Marks a resource as being no longer needed by the application.

See Also DmGet1Resource, DmGetResource

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 121

DmRemoveRecord

Purpose Remove a record from a database and dispose of its data chunk.

Prototype Err DmRemoveRecord (DmOpenRef dbR,
UInt index)

Parameters -> dbR DmOpenRef to open database.
-> index Index of the record to remove.

Result Returns 0 if no error, or dmErrCorruptDatabase,
dmErrIndexOutOfRange, dmErrReadOnly,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments Disposes of a the record’s data chunk and removes the record’s
entry from the database header.

See Also DmDetachRecord, DmDeleteRecord, DmArchiveRecord,
DmNewRecord

Data and Resource Manager Functions
Data Manager Functions

122 Developing Palm OS 3.0 Applications, Part III

DmRemoveResource

Purpose Delete a resource from a resource database.

Prototype Err DmRemoveResource (DmOpenRef dbR, Int index)

Parameters -> dbR DmOpenRef to open database.
-> index Index of resource to delete.

Result Returns 0 if no error or dmErrCorruptDatabase,
dmErrIndexOutOfRange, dmErrReadOnly,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments This routine disposes of the memory manager chunk that holds the
given resource and removes its entry from the database header.

See Also DmDetachResource, DmRemoveResource, DmAttachResource

DmRemoveSecretRecords

Purpose Remove all secret records.

Prototype Err DmRemoveSecretRecords (DmOpenRef dbR)

Parameters dbR DmOpenRef to open database.

Result Returns 0 if no error or dmErrReadOnly (read-only database) if an
error occurred.

See Also DmRemoveRecord, DmRecordInfo, DmSetRecordInfo

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 123

DmResetRecordStates

Purpose Unlock all records in a database and clear all busy bits.

Prototype Err DmResetRecordStates (DmOpenRef dbR)

Parameters -> dbR DmOpenRef to open database.

Result Returns 0 if no error or dmErrROMBased if an error occurred.

Comments This routine unlocks all records in a database and clears all busy
bits. It can optionally be called before closing a database to ensure
that the records are all unlocked. For performance reasons, the data
manager does not call DmResetRecordStates automatically when
closing a database.

This routine automatically allocates the record in another data heap
if the current heap is too full.

DmResizeRecord

Purpose Resize a record by index.

Prototype VoidHand DmResizeRecord (DmOpenRef dbR,
UInt index,
ULong newSize)

Parameters -> dbR DmOpenRef to open database.
-> index Which record to retrieve.
-> newSize New size of record.

Result Pointer to resized record, or NIL if unsuccessful.

Comments This routine reallocates the record in another heap of the same
memory card if the current heap is not big enough. If this happens,
the handle changes, so be sure to use the returned handle to access
the resized resource.

Data and Resource Manager Functions
Data Manager Functions

124 Developing Palm OS 3.0 Applications, Part III

DmResizeResource

Purpose Resize a resource and return the new handle.

Prototype VoidHand DmResizeResource (VoidHand resourceH,
ULong newSize)

Parameters -> resourceH Handle to resource.
-> newSize Desired new size of resource.

Result Returns a handle to newly sized resource or NIL if unsuccessful.

Comments Resizes the resource and returns new handle. If necessary in order
to grow the resource, this routine will reallocate it in another heap
on the same memory card that it is currently in.

The handle may change if the resource had to be reallocated in a dif-
ferent data heap because there was not enough space in its present
data heap.

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 125

DmResourceInfo

Purpose Retrieve information on a given resource.

Prototype Err DmResourceInfo (DmOpenRef dbR,
Int index,
ULongPtr resTypeP,
IntPtr resIDP,
LocalID* chunkLocalIDP)

Parameters -> dbR DmOpenRef to open database.
-> index Index of resource to get info on.
<-> resTypeP Pointer to return resType variable, or NIL.
<-> resIDP Pointer to return resID variable, or NIL.
<-> chunkLocalIDP

Pointer to return chunkID variable, or NIL.

Result Returns 0 if no error or dmErrIndexOutOfRange if an error oc-
curred.

Comments Use this routine to retrieve all or a portion of the information on a
particular resource. Any or all of the return variable pointers can be
NIL. The type and ID of the resource are returned in *resTypeP and
*resIDP. The memory manager local ID of the resource data is re-
turned in *chunkLocalIDP.

See Also DmGetResource, DmGet1Resource, DmSetResourceInfo,
DmFindResource, DmFindResourceType

Data and Resource Manager Functions
Data Manager Functions

126 Developing Palm OS 3.0 Applications, Part III

DmSearchRecord

Purpose Search all open record databases for a record with the handle
passed.

Prototype Int DmSearchRecord (VoidHand recH,
DmOpenRef* dbRP)

Parameters recH Record handle.
dbRP Pointer to return variable of type DmOpenRef.

Result Returns the index of the record and database access pointer; if not
found, index will be -1 and *dbRP will be 0.

See Also DmGetRecord, DmFindRecordByID, DmRecordInfo

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 127

DmSearchResource

Purpose Search all open resource databases for a resource by type and ID, or
by pointer if it is non-NIL.

Prototype Int DmSearchResource (ULong resType,
Int resID,
VoidHand resH,
DmOpenRef* dbRP)

Parameters -> resType Type of resource to search for.
-> resID ID of resource to search for.
-> resH Pointer to locked resource, or NIL.
-> dbRP Pointer to return variable of type DmOpenRef.

Result Returns the index of the resource, stores DmOpenRef in dbRP.

Comments This routine can be used to find a resource in all open resource data-
bases by type and ID or by pointer. If resH is NIL, the resource is
searched for by type and ID. If resH is not NIL, resType and
resID is ignored and the index of the resource handle is returned.
On return *dbRP contains the access pointer of the resource data-
base that the resource was eventually found in. Once the index of a
resource is determined, it can be locked down and accessed by call-
ing DmGetResourceByIndex.

See Also DmGetResource, DmFindResourceType, DmResourceInfo,
DmGetResourceIndex, DmFindResource

Data and Resource Manager Functions
Data Manager Functions

128 Developing Palm OS 3.0 Applications, Part III

DmSeekRecordInCategory

Purpose Return the index of the record at the offset from the passed record
index. (The offset parameter indicates the number of records to
move forward or backward; the value for backward is negative.)

Prototype Err DmSeekRecordInCategory (DmOpenRef dbR,
UIntPtr indexP,
Int offset,
Int direction,
UInt category)

Parameters dbR DmOpenRef to open database.
index Pointer to the returned index.
offset Offset of the passed record index.
direction dmSeekForward or dmSeekBackward.
category Category ID.

Result Returns 0 if no error; returns dmErrIndexOutOfRange or
dmErrSeekFailed if an error occurred.

See Also DmNumRecordsInCategory, DmQueryNextInCategory,
DmPositionInCategory, DmMoveCategory

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 129

DmSet

Purpose Write a specified value into a section of a record. This function also
checks the validity of the pointer for the record and makes sure the
writing of the record information doesn’t exceed the bounds of the
record.

Prototype Err DmSet (VoidPtr recordP,
ULong offset,
ULong bytes,
Byte value)

Parameters recordP Pointer to locked data record (chunk pointer).
offset Offset within record to start writing.
bytes Number of bytes to write.
value Byte value to write.

Result Returns 0 if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

Comments Must be used to write to data manager records because the data
storage area is write-protected.

See Also DmWrite

DmSetDatabaseInfo

Purpose Set information about a database.

Prototype Err DmSetDatabaseInfo (UInt cardNo,
LocalID dbID, CharPtr nameP,
UIntPtr attributesP, UIntPtr versionP
ULongPtr crDateP, ULongPtr modDateP,
ULongPtr bckUpDateP, ULongPtr modNumP,
LocalID* appInfoIDP, LocalID* sortInfoIDP,
ULongPtr typeP, ULongPtr creatorP)

Data and Resource Manager Functions
Data Manager Functions

130 Developing Palm OS 3.0 Applications, Part III

Parameters -> cardNo Card number the database resides on.
-> dbID Database ID of the database.
-> nameP Pointer to 32-byte character array for new

name, or NIL.
-> attributesP Pointer to new attributes variable, or NIL.
versionP Pointer to new version, or NIL.
-> crDateP Pointer to new creation date variable, or NIL.
-> modDateP Pointer to new modification date variable, or

NIL.
-> bckUpDateP Pointer to new backup date variable, or NIL.
-> modNumP Pointer to new modification number variable,

or NIL.
-> appInfoIDP Pointer to new appInfoID variable, or NIL.
-> sortInfoIDP Pointer to new sortInfoID variable, or NIL.
-> typeP Pointer to new type variable, or NIL.
-> creatorP Pointer to new creator variable, or NIL.

Result Returns 0 if no error or dmErrInvalidParam if an error occurred.

Comments When this call changes appInfoID or sortInfoID, the old chunk
ID (if any) is marked as an orphan chunk and the new chunk ID is
unorphaned. Consequently, you shouldn’t replace an existing
appInfoID or sortInfoID if that chunk has already been attached
to another database.

Call this routine to set any or all information about a database ex-
cept for the card number and database ID. This routine sets the new
value for any non-NIL parameter.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 131

DmSetRecordInfo

Purpose Set record information stored in the database header.

Prototype Err DmSetRecordInfo (DmOpenRef dbR,
UInt index,
UBytePtr attrP,
ULongPtr uniqueIDP)

Parameters -> dbR DmOpenRef to open database.
-> index Index of record.
-> attrP Pointer to new attribute variable, or NIL.
-> uniqueIDP Pointer to new unique ID variable, or NIL.

Result Returns 0 if no error; returns dmErrIndexOutOfRange or
dmErrReadOnly if an error occurred.

Comments Sets information about a record.

See Also DmNumRecords, DmRecordInfo

Data and Resource Manager Functions
Data Manager Functions

132 Developing Palm OS 3.0 Applications, Part III

DmSetResourceInfo

Purpose Set information on a given resource.

Prototype Err DmSetResourceInfo (DmOpenRef dbR,
Int index,
ULongPtr resTypeP,
IntPtr resIDP)

Parameters -> dbR DmOpenRef to open database.
-> index Index of resource to set info for.
<-> resTypeP Pointer to new resType, or NIL.
<-> resIDP Pointer to new resID, or NIL.

Result Returns 0 if no error; returns dmErrIndexOutOfRange or
dmErrReadOnly if an error occurred.

Comments Use this routine to set all or a portion of the information on a partic-
ular resource. Any or all of the new info pointers can be NIL. If not
NIL, the type and ID of the resource are changed to *resTypeP and
*resIDP.

Normally, the unique ID for a record is automatically created by the
data manager when a record is created using DmNewRecord, so an
application would not typically change the unique ID.

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 133

DmStrCopy

Purpose Check the validity of the chunk pointer for the record and make
sure that writing the record will not exceed the chunk bounds.

Prototype Err DmStrCopy (VoidPtr recordP,
ULong offset,
CharPtr srcP)

Parameters recordP Pointer to data record (chunk pointer).
offset Offset within record to start writing.
srcP Pointer to 0-terminated string.

Result Returns 0 if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

See Also DmWrite, DmSet

Data and Resource Manager Functions
Data Manager Functions

134 Developing Palm OS 3.0 Applications, Part III

DmWrite

Purpose Must be used to write to data manager records because the data
storage area is write-protected. This routine checks the validity of
the chunk pointer for the record and makes sure that the write will
not exceed the chunk bounds.

Prototype Err DmWrite (VoidPtr recordP,
ULong offset,
VoidPtr srcP,
ULong bytes)

Parameters recordP Pointer to locked data record (chunk pointer).
offset Offset within record to start writing.
srcP Pointer to data to copy into record.
bytes Number of bytes to write.

Result Returns 0 if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

See Also DmSet

Data and Resource Manager Functions
Data Manager Functions

Developing Palm OS 3.0 Applications, Part III 135

DmWriteCheck

Purpose Check the parameters of a write operation to a data storage chunk
before actually performing the write.

Prototype Err DmWriteCheck (VoidPtr recordP,
ULong offset,
ULong bytes)

Parameters recordP Locked pointer to recordH.
offset Offset into record to start writing.
bytes Number of bytes to write.

Result Returns 0 if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

Functions for System Use Only

DmMoveOpenDBContext

Prototype Err DmMoveOpenDBContext (DmOpenRef* dstHeadP,
DmOpenRef dbR)

WARNING: System Use Only!

Data and Resource Manager Functions
Data Manager Functions

136 Developing Palm OS 3.0 Applications, Part III

Developing Palm OS 3.0 Applications, Part III 137

4
Palm OS
Communications
The Palm OS communications software provides high-performance
serial communications capabilities, including byte-level serial I/O,
best-effort packet-based I/O with CRC-16, reliable data transport
with retries and acknowledgments, connection management, and
modem dialing capabilities.

This chapter helps you understand the different parts of the com-
munications software and explains how to use them, discussing
these topics:

• Byte Ordering briefly explains the byte order used for all
data.

• Communications Architecture Hierarchy provides an over-
view of the hierarchy, including an illustration.

• The Serial Manager is responsible for byte-level serial I/O
and control of the RS232 signals.

• The Serial Link Protocol provides an efficient mechanism for
sending and receiving packets.

• The Serial Link Manager is the Palm OS implementation of
the serial link protocol.

Byte Ordering
By convention, all data coming from and going to the Palm OS de-
vice use Motorola byte ordering. That is, data of compound types
such as Word (2 bytes) and DWord (4 bytes), as well as their integral
counterparts, are packaged with the most-significant byte at the
lowest address. This contrasts with Intel byte ordering.

Palm OS Communications
Communications Architecture Hierarchy

138 Developing Palm OS 3.0 Applications, Part III

Communications Architecture Hierarchy
The communications software has multiple layers. Higher layers de-
pend on more primitive functionality provided by lower layers. Ap-
plications can use functionality of all layers. The software consists of
the following layers, described in more detail below:

• The serial manager, at the lowest layer, deals with the Palm
OS serial port and control of the RS232 signals, providing
byte-level serial I/O. See The Serial Manager.

• The modem manager provides modem dialing capabilities.
• The Serial Link Protocol (SLP) provides best-effort packet

send and receive capabilities with CRC-16. Packet delivery is
left to the higher-level protocols; SLP does not guarantee it.
See The Serial Link Protocol.

• The Packet Assembly/Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efficient protocol fea-
turing variable-size block transfers with robust error check-
ing and automatic retries. Applications don’t need access to
that part of the system.

• The Connection Management Protocol (CMP) provides
connection-establishment capabilities featuring baud rate ar-
bitration and exchange of communications software version
numbers.

• The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other subsystems.

DLP facilitates efficient data synchronization between desk-
top (PC, Macintosh, etc.) and Palm OS applications, database
backup, installation of code patches, extensions, applications,
and other databases, as well as Remote Interapplication
Communication (RIAC) and Remote Procedure Calls (RPC).

Figure 4.1 illustrates the communications layers.

Palm OS Communications
Communications Architecture Hierarchy

Developing Palm OS 3.0 Applications, Part III 139

Figure 4.1 Palm OS Communications Architecture

Modem Manager
Connection

Management
Protocol (CMP)

Desktop Link
Protocol (DLP)

Packet Assembly/Disassembly
Protocol (PAD)

Serial Link
Protocol (SLP)

Serial Manager

Serial Port

Modem
(optional)

Hardware

Palm OS Communications
The Serial Manager

140 Developing Palm OS 3.0 Applications, Part III

The Serial Manager
The Palm OS serial manager is responsible for byte-level serial I/O
and control of the RS232 signals.

In order to prolong battery life, the serial manager must be very effi-
cient in its use of processing power. To reach this goal, the serial
manager receiver is interrupt-driven. In the present implementa-
tion, the serial manager uses the polling mode to send data.

Using the Serial Manager

Before using the serial manager, call SysLibFind, passing Serial
Library for the library name to get the serial library reference
number. This reference number is used with all subsequent serial
manager calls. To obtain the number, call SysLibFind with “Serial
Library” as the library name. The system software automatically in-
stalls the serial library during system initialization.

To open the serial port, call SerOpen, passing the serial library ref-
erence number (returned by SysLibFind), 0 (zero) for the port
number, and the desired baud rate. An error code of 0 (zero) or
serErrAlreadyOpen indicates that the port was successfully
opened.

If the serial port is already open when SerOpen is called, the port’s
open count is incremented and an error code of
serErrAlreadyOpen is returned. This ability to open the serial
port multiple times allows cooperating tasks to share the serial port.

All other applications must refrain from sharing the serial port and
close it by calling SerClose when serErrAlreadyOpen is re-
turned. Error codes other than 0 (zero) or serErrAlreadyOpen in-
dicate failure. The application must open the serial port before mak-
ing other serial manager calls.

To close the serial port, call SerClose. Every successful call to
SerOpen must eventually be paired with a call to SerClose. Be-
cause an open serial port consumes more energy from the device’s

Palm OS Communications
The Serial Manager

Developing Palm OS 3.0 Applications, Part III 141

batteries, it is essential not to keep the port open any longer than
necessary.

To change serial port settings, such as the baud rate, CTS timeout,
number of data and stop bits, parity options, and handshaking op-
tions, call SerSetSettings. For baud rates above 19200, use of
hardware handshaking is advised.

To retrieve the current serial port settings, call SerGetStatus.

To retrieve the current line error status, call SerGetStatus, which
returns the cumulative status of all line errors being monitored. This
includes parity, hardware and software overrun, framing, break de-
tection, and handshake errors.

To reset the serial port error status, call SerClearErr, which resets
the serial port’s line error status. Other serial manager functions,
such as SerReceive, immediately return with the error code
serErrLineErr if any line errors are pending. Applications
should therefore check the result of serial manager function calls
and call SerClearErr if line error(s) occurred.

To send a stream of bytes, call SerSend. In the present implementa-
tion, SerSend blocks until all data are transferred to the UART or a
timeout error (if CTS handshaking is enabled) occurs. If your soft-
ware needs to detect when all data has been transmitted, consider
calling SerSendWait.

2.0 Note Both SerSend and SerReceive have been enhanced in version
2.0 of the system. See the function descriptions for more informa-
tion.

To wait until all data queued up for transmission has been transmit-
ted, call SerSendWait. SerSendWait blocks until all pending
data is transmitted or a CTS timeout error occurs (if CTS handshak-
ing is enabled).

To flush all bytes from the transmission queue, call SerSendWait.
This routine discards any data not yet transferred to the UART for
transmission.

Palm OS Communications
The Serial Manager

142 Developing Palm OS 3.0 Applications, Part III

To receive a stream of bytes from the serial port, call SerReceive,
specifying a buffer, the number of bytes desired, and the interbyte
time out. This call blocks until all the requested data have been re-
ceived or an error occurs.

To read bytes already in the receive queue, call SerReceiveCheck
(see below) to get the number of bytes presently in the receive queue
and then call SerReceive, specifying the number of bytes desired.
Because SerReceive returns immediately without any data if line
errors are pending, it is important to acknowledge the detection of
line errors by calling SerClearErr.

To wait for a specific number of bytes to be queued up in the receive
queue, call SerReceiveWait, passing the desired number of bytes
and an interbyte timeout. This call blocks until the desired number
of bytes have accumulated in the receive queue or an error occurs.
The desired number of bytes must be less than the current receive
queue size. The default queue size is 512 bytes. Because this call re-
turns immediately if line errors are pending, applications have to
call SerClearErr to detect any line errors. See also
SerReceiveCheck and SerSetReceiveBuffer.

To check how many bytes are presently in the receive queue, call
SerReceiveCheck.

To discard all data presently in the receive queue and to flush bytes
coming into the serial port, call SerReceiveFlush, specifying the
interbyte timeout. This call blocks until a time out occurs waiting for
the next byte to arrive.

To replace the default receive queue, call SerSetReceiveBuffer,
specifying the pointer to the buffer to be used for the receive queue
and its size. The default receive queue must be restored before the
serial port is closed. To restore the default receive queue, call
SerSetReceiveBuffer, passing 0 (zero) for the buffer size. The
serial manager does not free the custom receive queue.

To avoid having the system go to sleep while it’s waiting to receive
data, an application should call EvtResetAutoOffTimer periodi-
cally. For example, the serial link manager automatically calls
EvtResetAutoOffTimer each time a new packet is received. Note

Palm OS Communications
The Serial Manager

Developing Palm OS 3.0 Applications, Part III 143

that this facility is not part of the serial manager but part of the
event manager. See Chapter 12, “System Manager Functions,” of
“Developing Palm OS Applications, Part II.”

To perform a control function, applications can call SerControl.
This Palm OS function performs one of the control operations speci-
fied by SerCtlEnum, which has the following elements:

Element Description

serCtlFirstReserved = 0 Reserve 0

serCtlStartBreak Turn RS232 break signal on. Applications have to
make sure that the break is set long enough to gen-
erate a value BREAK!
valueP = 0; valueLenP = 0

serCtlStopBreak Turn RS232 break signal off:
valueP = 0; valueLenP = 0

serCtlBreakStatus Get RS232 break signal status (on or off):
valueP = ptr to Word for returning status

(0 = off, !0 = on)

*valueLenP = sizeof(Word)

serCtlStartLocalLoopback Start local loopback test;
valueP = 0, valueLenP = 0

serCtlStopLocalLoopback Stop local loopback test
valueP = 0, valueLenP = 0

serCtlMaxBaud valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)

serCtlHandshakeThreshold Retrieve HW handshake threshold; this is the maxi-
mum baud rate that does not require hardware
handshaking
valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)

Palm OS Communications
The Serial Manager

144 Developing Palm OS 3.0 Applications, Part III

Calling serControl with serCtlEmuSetBlockingHook replac-
es the mandatory need to define a YieldTime function. If the appli-
cation never sets the blocking hook, then no blocking hook calls will
be made.

The prototype for the blocking hook callback function is
SerBlockingHookHandler which is defined and described in de-
tail in SerialMgr.h.

Palm OS 1.0 developers that relied on the static YieldTime func-
tion for periodic processing such as draining the event queue and
checking for user cancel action, have to add a parameter to their
YieldTime function and call serCtlEmuSetBlockingHook to
set their YieldTime function as the blocking hook callback func-
tion.

When applications no longer want the callback function to be called,
they should call serControl with serCtlEmuSetBlocking-
Hook, passing NULL for funcP in the SerCallbackEntryType
structure.

serCtlEmuSetBlockingHook Set a blocking hook routine.

WARNING: For use with the Simulator on Mac OS
only: NOT SUPPORTED ON THE PALM DEVICE.

valueP = ptr to SerCallbackEntryType
*valueLenP=sizeof(SerCallbackEntryType)
Returns the old settings in the first argument.

serCtlLAST Add new address entries before this one.

Element Description

Palm OS Communications
The Serial Manager

Developing Palm OS 3.0 Applications, Part III 145

Serial Manager Function Summary

The following functions are available for application use:

• SerClearErr

• SerClose

• SerControl

• SerGetSettings

• SerGetStatus

• SerOpen

• SerReceive

• SerReceiveCheck

• SerReceiveFlush

• SerReceiveWait

• SerSend

• SerSendWait

• SerSetReceiveBuffer

• SerSetSettings

Palm OS Communications
The Serial Link Protocol

146 Developing Palm OS 3.0 Applications, Part III

The Serial Link Protocol
The Serial Link Protocol (SLP) provides an efficient packet send and
receive mechanism. SLP provides robust error detection with CRC-
16. SLP is a best-effort protocol; it does not guarantee packet deliv-
ery (packet delivery is left to the higher-level protocols). For en-
hanced error detection and implementation convenience of higher-
level protocols, SLP specifies packet type, source, destination, and
transaction ID information as an integral part of its data packet
structure.

SLP Packet Structures

The following sections describe:
• SLP Packet Format
• Packet Type Assignment
• Socket ID Assignment
• Transaction ID Assignment

Palm OS Communications
The Serial Link Protocol

Developing Palm OS 3.0 Applications, Part III 147

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer, as shown in Figure 4.2.

Figure 4.2 Structure of a Serial Link Packet

• The packet header contains the packet signature, the destina-
tion socket ID, the source socket ID, packet type, client data
size, transaction ID, and header checksum. The packet signa-
ture is composed of the three bytes 0xBE, 0xEF, 0xED, in that
order. The header checksum is an 8-bit arithmetic checksum

Packet header

Client data

signature (3): 0xBE
0xEF
0xED

destination socket (1)
source socket (1)
packet type (1)

transaction ID (1)
client data size (2)

header checksum (1)

Packet footer CRC-16(2)

Palm OS Communications
The Serial Link Protocol

148 Developing Palm OS 3.0 Applications, Part III

of the entire packet header, not including the checksum field
itself.

• The client data is a variable-size block of binary data speci-
fied by the user and is not interpreted by the Serial Link Pro-
tocol.

• The packet footer consists of the CRC-16 value computed
over the packet header and client data.

Packet Type Assignment

Packet type values in the range of 0x00 through 0x7F are reserved
for use by the system software. The following packet type assign-
ments are currently implemented:

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are “well-known” socket ID values that are re-
served by the components of the system software. The dynamic
socket IDs are assigned at runtime when requested by clients of SLP.
Static socket ID values in the ranges 0x00 through 0x03 and 0xE0
through 0xFF are reserved for use by the system software. The fol-
lowing static socket IDs are currently implemented or reserved:

0x00 Remote Debugger, Remote Console, and System Re-
mote Procedure Call packets.

0x02 PADP packets.

0x03 Loop-back test packets.

0x00 Remote Debugger socket.

0x01 Remote Console socket.

0x02 Remote UI socket.

0x03 Desktop Link Server socket.

Palm OS Communications
The Serial Link Protocol

Developing Palm OS 3.0 Applications, Part III 149

Transaction ID Assignment

Transaction ID values are not interpreted by the Serial Link Protocol
and are for the sole benefit of the higher-level protocols. The follow-
ing transaction ID values are currently reserved:

Transmitting an SLP Packet

This section provides an overview of the steps involved in transmit-
ting an SLP packet. The next section describes the implementation.

Transmission of an SLP packet consists of these steps:

1. Fill in the packet header and compute its checksum.

2. Compute the CRC-16 of the packet header and client data.

3. Transmit the packet header, client data, and packet footer.

4. Return an error code to the client.

Receiving an SLP Packet

Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its check-
sum.

0x04 -0xCF Reserved for dynamic assignment.

0xD0 - 0xDF Reserved for testing.

0x00 and 0xFF Reserved for use by the system software.

0x00 Reserved by the Palm OS implementation of SLP
to request automatic transaction ID generation.

0xFF Reserved for the connection manager’s WakeUp
packets.

Palm OS Communications
The Serial Link Manager

150 Developing Palm OS 3.0 Applications, Part III

3. Read in the client data.

4. Read in the packet footer and validate the packet CRC.

5. Dispatch/return an error code and the packet (if successful)
to the client.

The Serial Link Manager
The serial link manager is the Palm OS implementation of the Palm
OS Serial Link Protocol.

Serial link manager provides the mechanisms for managing multi-
ple client sockets, sending packets, and receiving packets both syn-
chronously and asynchronously. It also provides support for the Re-
mote Debugger and Remote Procedure Calls (RPC).

Using the Serial Link Manager

Before an application can use the services of the serial link manager,
the application must open the manager by calling SlkOpen. Success
is indicated by error codes of 0 (zero) or slkErrAlreadyOpen. The
return value slkErrAlreadyOpen indicates that the serial link
manager has already been opened (most likely by another task).
Other error codes indicate failure.

When you finish using the serial link manager, call SlkClose.
SlkClose may be called only if SlkOpen returned 0 (zero) or
slkErrAlreadyOpen. When open count reaches zero, SlkClose
frees resources allocated by SlkOpen.

To use the serial link manager socket services, open a Serial Link
socket by calling SlkOpenSocket. Pass a reference number of an
opened and initialized communications library (see SlkClose), a
pointer to a memory location for returning the socket ID, and a
Boolean indicating whether the socket is static or dynamic. If a static
socket is being opened, the memory location for the socket ID must
contain the desired socket number. If opening a dynamic socket, the
new socket ID is returned in the passed memory location. Sharing of
sockets is not supported. Success is indicated by an error code of 0

Palm OS Communications
The Serial Link Manager

Developing Palm OS 3.0 Applications, Part III 151

(zero). For information about static and dynamic socket IDs, see
Socket ID Assignment.

When you have finished using a Serial Link socket, close it by call-
ing SlkCloseSocket. This releases system resources allocated for
this socket by the serial link manager.

To obtain the communications library reference number for a partic-
ular socket, call SlkSocketRefNum. The socket must already be
open.

To set the interbyte packet receive timeout for a particular socket,
call SlkSocketSetTimeout.

To flush the receive stream for a particular socket, call
SlkFlushSocket, passing the socket number and the interbyte
timeout.

To register a socket listener for a particular socket, call
SlkSetSocketListener, passing the socket number of an open
socket and a pointer to the SlkSocketListenType structure. Be-
cause the serial link manager does not make a copy of the
SlkSocketListenType structure but instead saves the pointer
passed to it, the structure may not be an automatic variable (that is,
allocated on the stack). The SlkSocketListenType structure may
be a global variable in an application or a locked chunk allocated
from the dynamic heap. The SlkSocketListenType structure
specifies pointers to the socket listener procedure and the data
buffers for dispatching packets destined for this socket. Pointers to
two buffers must be specified:

• Packet header buffer (size of SlkPktHeaderType).

• Packet body buffer, which must be large enough for the larg-
est expected client data size.

Both buffers can be application global variables or locked chunks al-
located from the dynamic heap.

The socket listener procedure is called when a valid packet is re-
ceived for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The serial link manager does not free the

Palm OS Communications
The Serial Link Manager

152 Developing Palm OS 3.0 Applications, Part III

SlkSocketListenType structure or the buffers when the socket is
closed; freeing them is the responsibility of the application. For this
mechanism to function, some task needs to assume the responsibil-
ity to “drive” the serial link manager receiver by periodically calling
SlkReceivePacket.

To send a packet, call SlkSendPacket, passing a pointer to the
packet header (SlkPktHeaderType) and a pointer to an array of
SlkWriteDataType structures. SlkSendPacket stuffs the signa-
ture, client data size, and the checksum fields of the packet header.
The caller must fill in all other packet header fields. If the transac-
tion ID field is set to 0 (zero), the serial link manager automatically
generates and stuffs a new non-zero transaction ID. The array of
SlkWriteDataType structures enables the caller to specify the cli-
ent data part of the packet as a list of noncontiguous blocks. The end
of list is indicated by an array element with the size field set to 0
(zero). Listing 3.1 incorporates the processes described in this sec-
tion.

Listing 4.1 Sending a Serial Link Packet

Err err;
SlkPktHeaderType sendHdr;

//serial link packet header
SlkWriteDataType writeList[2];

//serial link write data segments
Byte body[20];

//packet body(example packet body)

// Initialize packet body
...

// Compose the packet header
sendHdr.dest = slkSocketDLP;
sendHdr.src = slkSocketDLP;
sendHdr.type = slkPktTypeSystem;
sendHdr.transId = 0;

// let Serial Link Manager set the transId
// Specify packet body
writeList[0].size = sizeof(body);

Palm OS Communications
The Serial Link Manager

Developing Palm OS 3.0 Applications, Part III 153

// first data block size
writeList[0].dataP = body;

// first data block pointer
writeList[1].size = 0;

// no more data blocks

// Send the packet
err = SlkSendPacket(&sendHdr, writeList);
...

}

Listing 4.2 Generating a New Transaction ID

//
// Example: Generating a new transaction ID given the previous
// transaction ID. Can start with any seed value.
//

Byte NextTransactionID (Byte previousTransactionID)
{
Byte nextTransactionID;

// Generate a new transaction id, avoid the
// reserved values (0x00 and 0xFF)
if (previousTransactionID >= (Byte)0xFE)
nextTransactionID = 1; // wrap around

else
nextTransactionID = previousTransactionID + 1;

// increment

return nextTransactionID;
}

To receive a packet, call SlkReceivePacket. You may request a
packet for the passed socket ID only or for any open socket that
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a timeout. The timeout in-
dicates how long the receiver should wait for a packet to begin ar-
riving before timing out. A timeout value of (-1) means “wait for-

Palm OS Communications
The Serial Link Manager

154 Developing Palm OS 3.0 Applications, Part III

ever.” If a packet is received for a socket with a registered socket
listener, the packet is dispatched via its socket listener procedure.

Serial Link Manager Function Summary

The following functions are available for application use:

• SlkClose

• SlkCloseSocket

• SlkFlushSocket

• SlkOpen

• SlkOpenSocket

• SlkReceivePacket

• SlkSendPacket

• SlkSetSocketListener

• SlkSocketRefNum

• SlkSocketSetTimeout

Developing Palm OS 3.0 Applications, Part III 155

5
Communications
Functions

Serial Manager Functions

SerClearErr

Purpose Reset the serial port’s line error status.

Prototype Err SerClearErr (UInt refNum)

Parameters -> refNum The serial library reference number.

Result 0 No error.

Caveats Call SerClearErr only after a serial manager function
(SerReceive, SerReceiveCheck, SerSend, etc.) returns with the
error code serErrLineErr.

The reason for this is that SerClearErr resets the serial port. So, if
SerClearErr is called unconditionally while a byte is coming into
the serial port, that byte is guaranteed to become corrupted.

The right strategy is to always check the error code returned by a se-
rial manager function. If it ‘s serErrLineErr, call SerClearErr
immediately. However, don’t make unsolicited calls to
SerClearErr.

When you get serErrLineErr, consider flushing the receive queue
for a fraction of a second by calling SerReceiveFlush.
SerReceiveFlush calls SerClearErr for you.

Communications Functions
Serial Manager Functions

156 Developing Palm OS 3.0 Applications, Part III

SerClose

Purpose Release the serial port previously acquired by SerOpen.

Prototype Err SerClose (UInt refNum)

Parameters -> refNum Serial library reference number.

Result 0 No error.

serErrNotOpen Port wasn’t open.

serErrStillOpenPort still held open by another process.

Comments Releases the serial port and shuts down serial port hardware if the
open count has reached 0. Open serial ports consume more energy
from the device’s batteries; it’s therefore essential to keep a port
open only as long as necessary.

Caveat Don’t call SerClose unless the return value from SerOpen was 0
(zero) or serErrAlreadyOpen.

See Also SerOpen

Communications Functions
Serial Manager Functions

Developing Palm OS 3.0 Applications, Part III 157

SerControl

Purpose Perform a control function.

Prototype Err SerControl (UInt refNum,
Word op,
VoidPtr valueP,
WordPtr valueLenP)

Parameters -> refNum Reference number of library.

-> op Control operation to perform(SerCtlEnum).

<-> valueP Pointer to value for operation.

<-> valueLenP Pointer to size of value.

Result 0 No error.

serErrBadParam Invalid parameter (unknown).

serErrNotOpen Library not open.

Comments This function provides extensible control features for the serial man-
ager. You can

• Turn on/off the RS232 break signal and check its status.

• Perform a local loopback test.

• Get the maximum supported baud rate.

• Get the hardware handshake threshold baud rate.

There is one emulator-only control,
serCtlEmuSetBlockingHook. See Using the Serial Manager for
more information.

Communications Functions
Serial Manager Functions

158 Developing Palm OS 3.0 Applications, Part III

SerGetSettings

Purpose Fill in SerSettingsType structure with current serial port
attributes.

Prototype Err SerGetSettings (UInt refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

<-> settingsP Pointer to SerSettingsType structure to be
filled in.

Result 0 No error.

serErrNotOpen The port wasn’t open.

Comments The information returned by this call includes the current baud rate,
CTS timeout, handshaking options, and data format options.

See the SerSettingsType structure for more details.

See Also SerSend

Communications Functions
Serial Manager Functions

Developing Palm OS 3.0 Applications, Part III 159

SerGetStatus

Purpose Return the pending line error status for errors that have been detect-
ed since the last time SerClearErr was called.

Prototype Word SerGetStatus (UInt refNum,
BooleanPtr ctsOnP,
BooleanPtr dsrOnP)

Parameters -> refNum Serial library reference number.

-> ctsOnP Pointer to location for storing a Boolean value.

-> dsrOnP Pointer to location for storing a Boolean value.

Result Returns any combination of the following constants, bitwise ORed
together:

serLineErrorParity Parity error.

serLineErrorHWOverrun Hardware overrun.

serLineErrorFraming Framing error.

serLineErrorBreak Break signal detected.

serLineErrorHShake Line handshake error.

serLineErrorSWOverrun Software overrun.

Comments When another serial manager function returns an error code of
serErrLineErr, SerGetStatus can be used to find out the spe-
cific nature of the line error(s).

The values returned via ctsOnP and dsrOnP are not meaningful in
the present version of the software

See Also SerClearErr

Communications Functions
Serial Manager Functions

160 Developing Palm OS 3.0 Applications, Part III

SerOpen

Purpose Acquire and open a serial port with given baud rate and default
settings.

Prototype Err SerOpen (UInt refNum, UInt port, ULong baud)

Parameters -> refNum Serial library reference number.

-> port Port number.

-> baud Baud rate.

Result 0 No error.
serErrAlreadyOpen Port was open. Enables port sharing

by “friendly” clients (not
recommended).

serErrBadParam Invalid parameter.
memErrNotEnoughSpace Insufficient memory.

Comments Acquires the serial port, powers it up, and prepares it for operation.
To obtain the serial library reference number, call SysLibFind with
“Serial Library” as the library name. This reference number must be
passed as a parameter to all serial manager functions. The device
currently contains only one serial port with port number 0 (zero).

The baud rate is an integral baud value (for example - 300, 1200,
2400, 9600, 19200, 38400, 57600, etc.). The Palm OS device has been
tested at the standard baud rates in the range of 300 - 57600 baud.
Baud rates through 1 Mbit are theoretically possible. Use CTS hand-
shaking at baud rates above 19200 (see SerSetSettings).

An error code of 0 (zero) or serErrAlreadyOpen indicates that
the port was successfully opened. If the port is already open when
SerOpen is called, the port’s open count is incremented and an
error code of serErrAlreadyOpen is returned. This ability to open
the serial port multiple times allows cooperating tasks to share the
serial port. Other tasks must refrain from using the port if
serErrAlreadyOpen is returned and close it by calling
SerClose.

Communications Functions
Serial Manager Functions

Developing Palm OS 3.0 Applications, Part III 161

SerReceive

Purpose Receives size bytes worth of data or returns with error if a line
error or timeout is encountered.

Prototype ULong SerReceive (UInt refNum,
VoidPtr rcvBufP,
ULong count,
Long timeout,
Err* errP)

Parameters refNum Serial library reference number.

<-> rcvBufP Buffer for receiving data.

-> count Number of bytes to receive.

-> timeout Interbyte timeout in ticks, 0 for none, -1 forever.

Result Number of bytes received:

*errP = 0 No error.

serErrLineErr RS232 line error.

serErrTimeOut Interbyte timeout.

See Also SerReceive10

Communications Functions
Serial Manager Functions

162 Developing Palm OS 3.0 Applications, Part III

SerReceive10

Purpose Receive a stream of bytes.

Prototype Err SerReceive (UInt refNum,
VoidPtr bufP,
ULong bytes,
Long timeout)

Parameters -> refNum The serial library reference number.

-> bufP Pointer to the buffer for receiving data.

-> bytes Number of bytes desired.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result 0 No error. Requested number of bytes was
received.

serErrTimeOut Interbyte time out exceeded while waiting for
the next byte to arrive.

serErrLineErr Line error occurred (see SerClearErr and
SerGetStatus).

Comments SerReceive blocks until all the requested data has been received
or an error occurs. Because this call returns immediately without
any data if line errors are pending, it is important to acknowledge
the detection of line errors by calling SerClearErr. If you just
need to retrieve all or some of the bytes which are already in the re-
ceive queue, call SerReceiveCheck first to get the count of bytes
presently in the receive queue.

Communications Functions
Serial Manager Functions

Developing Palm OS 3.0 Applications, Part III 163

SerReceiveCheck

Purpose Return the count of bytes presently in the receive queue.

Prototype Err SerReceiveCheck (UInt refNum,
ULongPtr numBytesP)

Parameters -> refNum Serial library reference number.

<-> numBytesP Pointer to location for returning the byte count.

Result 0 No error.

serErrLineErr Line error pending (see SerClearErr and
SerGetStatus).

Comments Because this call does not return the byte count if line errors are
pending, it is important to acknowledge the detection of line errors
by calling SerClearErr.

See also SerReceiveWait

SerReceiveFlush

Purpose Discard all data presently in the receive queue and flush bytes com-
ing into the serial port. Clear the saved error status.

Prototype void SerReceiveFlush (UInt refNum, Long timeout)

Parameters -> refNum Serial library reference number.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result Returns nothing.

Comments SerReceiveFlush blocks until a timeout occurs while waiting for
the next byte to arrive.

Communications Functions
Serial Manager Functions

164 Developing Palm OS 3.0 Applications, Part III

SerReceiveWait

Purpose Wait for at least bytes bytes of data to accumulate in the receive
queue.

Prototype Err SerReceiveWait (UInt refNum,
ULong bytes,
Long timeout)

Parameters -> refNum Serial library reference number.

-> bytes Number of bytes desired.

-> timeout Interbyte timeout in system ticks (-1 = forever).

Result 0 No error.

serErrTimeOut Interbyte timeout exceeded while waiting for
next byte to arrive.

serErrLineErr Line error occurred (see SerClearErr and
SerGetStatus).

Comments This is the preferred method of waiting for serial input, since it
blocks the current task and allows switching the processor into a
more energy-efficient state.

SerReceiveWait blocks until the desired number of bytes accu-
mulate in the receive queue or an error occurs. The desired number
of bytes must be less than the current receive queue size. The default
queue size is 512 bytes. Because this call returns immediately if line
errors are pending, it is important to acknowledge the detection of
line errors by calling SerClearErr.

See also SerReceiveCheck, SerSetReceiveBuffer

Communications Functions
Serial Manager Functions

Developing Palm OS 3.0 Applications, Part III 165

SerSend

Purpose Send one or more bytes of data over the serial port.

Prototype ULong SerSend (UInt refNum,
VoidPtr bufP,
ULong count,
Err* errP

Parameters -> refNum Serial library reference number.

-> bufP Pointer to data to send.

-> count Number of bytes to send.

<-> errP For returning error code.

Result Returns the number of bytes transferred.

Stores in errP:

0 No error.

serErrTimeOut Handshake timeout.

NOTE: The old versions of SerSend and SerReceive are still
available as SerSend10 and SerReceive10 (not V10).

The old calls worked, but they did not return enough info when
they failed. The new calls (available in Palm OS devices >= v2.0)
add more parameters to solve this problem and make serial commu-
nications programming simpler.

Don’t call the new functions when running on Palm OS 1.0.

Communications Functions
Serial Manager Functions

166 Developing Palm OS 3.0 Applications, Part III

SerSend10

Purpose Send a stream of bytes to the serial port.

Prototype Err SerSend10 (UInt refNum,
VoidPtr bufP,
ULong size)

Parameters -> refNum Serial library reference number.

-> bufP Pointer to the data to send.

-> size Size (in number of bytes) of the data to send.

Result 0 No error.

serErrTimeOut Handshake timeout (such as waiting for CTS to
become asserted).

Comments In the present implementation, SerSend blocks until all data is
transferred to the UART or a timeout error (if CTS handshaking is
enabled) occurs. Future implementations may queue up the request
and return immediately, performing transmission in the back-
ground. If your software needs to detect when all data has been
transmitted, see SerSendWait.

This routine observes the current CTS time out setting if CTS hand-
shaking is enabled (see SerGetSettings and SerSend).

Communications Functions
Serial Manager Functions

Developing Palm OS 3.0 Applications, Part III 167

SerSendWait

Purpose Wait until the serial transmit buffer empties.

Prototype Err SerSendWait (UInt refNum, Long timeout)

Parameters -> refNum Serial library reference number.

-> timeout Reserved for future enhancements. Set to (-1)
for compatibility.

Result 0 No error.

serErrTimeOut Handshake timeout (such as waiting for CTS to
become asserted).

Comments SerSendWait blocks until all data is transferred or a timeout error
(if CTS handshaking is enabled) occurs. This routine observes the
current CTS timeout setting if CTS handshaking is enabled (see
SerGetSettings and SerSend).

Communications Functions
Serial Manager Functions

168 Developing Palm OS 3.0 Applications, Part III

SerSetReceiveBuffer

Purpose Replace the default receive queue. To restore the original buffer,
pass bufSize = 0.

Prototype Err SerSetReceiveBuffer (UInt refNum,
VoidPtr bufP,
UInt bufSize)

Parameters -> refNum Serial library reference number.

-> bufP Pointer to buffer to be used as the new receive
queue.

-> bufSize Size of buffer, or 0 to restore the default receive
queue.

Result Returns 0 if successful.

Comments The specified buffer needs to contain 32 extra bytes for serial man-
ager overhead (its size should be your application’s requirement
plus 32 bytes). The default receive queue must be restored before
the serial port is closed. To restore the default receive queue, call
SerSetReceiveBuffer passing 0 (zero) for the buffer size. The
serial manager does not free the custom receive queue.

Communications Functions
Serial Manager Functions

Developing Palm OS 3.0 Applications, Part III 169

SerSetSettings

Purpose Set the serial port settings; that is, change its attributes.

Prototype Err SerSetSettings (UInt refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

<-> settingsP Pointer to the filled in SerSettingsType
structure.

Result 0 No error.

serErrNotOpen The port wasn’t open.

serErrBadParam Invalid parameter.

Comments The attributes set by this call include the current baud rate, CTS
timeout, handshaking options, and data format options. See the def-
inition of the SerSettingsType structure for more details.

To do 7E1 transmission, OR together:

serSettingsFlagBitsPerChar7 |
serSettingsFlagParityOnM |
serSettingsFlagParityEvenM |
serSettingsFlagStopBits1

If you’re trying to communicate at speeds greater than 19.2 KbPS,
you need to use hardware handshaking:
serSettingsFlagRTSAutoM | serSettingsFlagCTSAutoM.

See Also SerGetSettings

Communications Functions
Serial Manager Functions

170 Developing Palm OS 3.0 Applications, Part III

Functions Used Only by System Software
These routines are for use by the system software only and should
not be called by the applications under any circumstances.

SerReceiveISP

WARNING: This function for use by system software only.

SerReceiveWindowClose

WARNING: This function for System use only.

SerReceiveWindowOpen

WARNING: This function for System use only.

SerSetWakeupHandler

WARNING: This function for System use only.

SerSleep

WARNING: This function for use by system software only.

SerWake

WARNING: This function for use by system software only.

Communications Functions
Serial Link Manager Functions

Developing Palm OS 3.0 Applications, Part III 171

Serial Link Manager Functions

SlkClose

Purpose Close down the serial link manager.

Prototype Err SlkClose (void)

Parameters None.

Result 0 No error.

slkErrNotOpen The serial link manager was not open.

Comments When the open count reaches zero, this routine frees resources allo-
cated by serial link manager.

Communications Functions
Serial Link Manager Functions

172 Developing Palm OS 3.0 Applications, Part III

SlkCloseSocket

Purpose Closes a socket previously opened with SlkOpenSocket.

WARNING: The caller is responsible for closing the
communications library used by this socket, if necessary.

Prototype Err SlkCloseSocket (UInt socket)

Parameters socket The socket ID to close.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

Comments SlkCloseSocket frees system resources the serial link manager
allocated for the socket. It does not free resources allocated and
passed by the client, such as the buffers passed to
SlkSetSocketListener; this is the client’s responsibility. The
caller is also responsible for closing the communications library
used by this socket.

See Also SlkOpenSocket, SlkSocketRefNum

Communications Functions
Serial Link Manager Functions

Developing Palm OS 3.0 Applications, Part III 173

SlkFlushSocket

Purpose Flush the receive queue of the communications library associated
with the given socket.

Prototype ErrSlkFlushSocket (UInt socket, Long timeout)

Parameters -> socket Socket ID.

-> timeout Interbyte timeout in system ticks.

Result 0 No error.

slkErrSocketNotOpen The socket wasn’t open.

SlkOpen

Purpose Initialize the serial link manager.

Prototype Err SlkOpen (void)

Parameters None.

Result 0 No error.

slkErrAlreadyOpen No error.

Comments Initializes the serial link manager, allocating necessary resources.
Return codes of 0 (zero) and slkErrAlreadyOpen both indicate
success. Any other return code indicates failure. The
slkErrAlreadyOpen function informs the client that someone
else is also using the serial link manager. If the serial link manager
was successfully opened by the client, the client needs to call
SlkClose when it finishes using the serial link manager.

Communications Functions
Serial Link Manager Functions

174 Developing Palm OS 3.0 Applications, Part III

SlkOpenSocket

Purpose Open a serial link socket and associate it with a communications li-
brary. The socket may be a known static socket or a dynamically as-
signed socket.

Prototype Err SlkOpenSocket (UInt libRefNum,
UIntPtr socketP,
Boolean staticSocket)

Parameters libRefNum Comm library reference number for socket.

socketP Pointer to location for returning the socket ID.

staticSocket If TRUE, *socketP contains the desired static
socket number to open. If FALSE, any free sock-
et number is assigned dynamically and opened.

Result 0 No error.

slkErrOutOfSockets No more sockets can be opened.

Comments The communications library must already be initialized and opened
(see SerOpen). When finished using the socket, the caller must call
SlkCloseSocket to free system resources allocated for the socket.
For information about well-known static socket IDs, see The Serial
Link Protocol.

Communications Functions
Serial Link Manager Functions

Developing Palm OS 3.0 Applications, Part III 175

SlkReceivePacket

Purpose Receive and validate a packet for a particular socket or for any sock-
et. Check for format and checksum errors.

Prototype Err SlkReceivePacket (UInt socket,
Boolean andOtherSockets,
SlkPktHeaderPtr headerP,
void* bodyP,
UInt bodySize,
Long timeout)

Parameters -> socket The socket ID.

-> andOtherSockets If TRUE, ignore destination in packet
header.

<-> headerP Pointer to the packet header buffer (size of
SlkPktHeaderType).

<-> bodyP Pointer to the packet client data buffer.

-> bodySize Size of the client data buffer (maximum
client data size which can be
accommodated).

-> timeout Maximum number of system ticks to wait
for beginning of a packet; -1 means wait
forever.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

slkErrTimeOut Timed out waiting for a packet.

slkErrWrongDestSocket The packet being received had an un-
expected destination.

slkErrChecksum Invalid header checksum or packet
CRC-16.

slkErrBuffer Client data buffer was too small for
packet’s client data.

Communications Functions
Serial Link Manager Functions

176 Developing Palm OS 3.0 Applications, Part III

If andOtherSockets is FALSE, this routine returns with an error
code unless it gets a packet for the specific socket.

If andOtherSockets is TRUE, this routine returns successfully if it
sees any incoming packet from the communications library used by
socket.

Comments You may request to receive a packet for the passed socket ID only, or
for any open socket which does not have a socket listener. The pa-
rameters also specify buffers for the packet header and client data,
and a timeout. The timeout indicates how long the receiver should
wait for a packet to begin arriving before timing out. If a packet is
received for a socket with a registered socket listener, it will be dis-
patched via its socket listener procedure. On success, the packet
header buffer and packet client data buffer is filled in with the actual
size of the packet’s client data in the packet header’s bodySize
field.

Communications Functions
Serial Link Manager Functions

Developing Palm OS 3.0 Applications, Part III 177

SlkSendPacket

Purpose Send a serial link packet via the serial output driver.

Prototype Err SlkSendPacket (SlkPktHeaderPtr headerP,
SlkWriteDataPtr writeList)

Parameters <-> headerP Pointer to the packet header structure with cli-
ent information filled in (see Comments).

-> writeList List of packet client data blocks (see
Comments).

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

slkErrTimeOut Handshake timeout.

Comments SlkSendPacket stuffs the signature, client data size, and the
checksum fields of the packet header. The caller must fill in all other
packet header fields. If the transaction ID field is set to 0 (zero), the
serial link manager automatically generates and stuffs a new non-
zero transaction ID. The array of SlkWriteDataType structures
enables the caller to specify the client data part of the packet as a list
of noncontiguous blocks. The end of list is indicated by an array ele-
ment with the size field set to 0 (zero). This call blocks until the en-
tire packet is sent out or until an error occurs.

Communications Functions
Serial Link Manager Functions

178 Developing Palm OS 3.0 Applications, Part III

SlkSetSocketListener

Purpose Register a socket listener for a particular socket.

Prototype Err SlkSetSocketListener (UInt socket,
SlkSocketListenPtr socketP)

Parameters -> socket Socket ID.

-> socketP Pointer to a SlkSocketListenType
structure.

Result 0 No error.

slkErrBadParam Invalid parameter.

slkErrSocketNotOpen The socket was not open.

Comments Called by applications to set up a socket listener.

Since the serial link manager does not make a copy of the
SlkSocketListenType structure, but instead saves the passed
pointer to it, the structure

• must not be an automatic variable (that is, local variable allo-
cated on the stack)

• may be a global variable in an application

• may be a locked chunk allocated from the dynamic heap

The SlkSocketListenType structure specifies pointers to the
socket listener procedure and the data buffers for dispatching pack-
ets destined for this socket. Pointers to two buffers must be speci-
fied: the packet header buffer (size of SlkPktHeaderType), and
the packet body (client data) buffer. The packet body buffer must be
large enough for the largest expected client data size. Both buffers
may be application global variables or locked chunks allocated from
the dynamic heap.

The socket listener procedure is called when a valid packet is re-
ceived for the socket. Pointers to the packet header buffer and the

Communications Functions
Serial Link Manager Functions

Developing Palm OS 3.0 Applications, Part III 179

packet body buffer are passed as parameters to the socket listener
procedure.

Note: The application is responsible for freeing the
SlkSocketListenType structure or the allocated buffers when
the socket is closed. The serial link manager doesn’t do it.

SlkSocketRefNum

Purpose Get the reference number of the communications library associated
with a particular socket.

Prototype ErrSlkSocketRefNum (UInt socket, UIntPtr refNumP)

Parameters -> socket The socket ID.

<-> refNumP Pointer to location for returning the communi-
cations library reference number.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

SlkSocketSetTimeout

Purpose Set the interbyte packet receive-timeout for a particular socket.

Prototype Err SlkSocketSetTimeout (UInt socket,
Long timeout)

Parameters -> socket Socket ID.

-> timeout Interbyte packet receive-timeout in system
ticks.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

Communications Functions
Miscellaneous Communications Functions

180 Developing Palm OS 3.0 Applications, Part III

Functions for Use By System Software Only

SlkSysPktDefaultResponse

Prototype Err SlkSysPktDefaultResponse (
SlkPktHeaderPtr headerP,
void* bodyP)

WARNING: This function for use by system software only.

SlkProcessRPC

Prototype Err SlkProcessRPC (SlkPktHeaderPtr headerP,
void* bodyP)

WARNING: This function for use by system software only.

Miscellaneous Communications Functions

Crc16CalcBlock

Purpose Calculate the 16-bit CRC of a data block using the table lookup
method.

Prototype Word Crc16CalcBlock (VoidPtr bufP,
UInt count,
Word crc)

Parameters bufP Pointer to the data buffer.

count Number of bytes in the buffer.

crc Seed CRC value.

Result A 16-bit CRC for the data buffer.

Developing Palm OS 3.0 Applications, Part III 181

6
Palm OS Net Library
The Palm OS net library provides basic network services to applica-
tions. Using the net library, a Palm OS application can easily estab-
lish a connection with any other machine on the Internet and trans-
fer data to and from that machine using the standard TCP/IP
protocols.

The basic network services provided by the net library include:
• Stream-based, guaranteed delivery of data using TCP (Trans-

mission Control Protocol).
• Datagram-based, best-effort delivery of data using UDP

(User Datagram Protocol).

All higher-level Internet-based services (file transfer, e-mail, web
browsing, etc.) can be implemented by applications on top of these
basic data delivery services.

The application programming interface (API) for the net library is
designed to be general enough to support almost any network pro-
tocol including Novell IPX, AppleTalk. Note, however, that current-
ly only the TCP/IP protocols are implemented.

The API maps almost directly to the Berkeley UNIX sockets API, the
de facto standard API for Internet applications. By including the ap-
propriate header files, an application written to use the Berkeley
sockets API can be compiled for the Palm OS with only slight (if
any) changes to the source code.

Overview
This overview of the net library discusses the following topics:

• Structure
• System Requirements
• Constraints

Palm OS Net Library
Overview

182 Developing Palm OS 3.0 Applications, Part III

Structure
The net library is implemented as a system library. System libraries
are dynamically installed at runtime and don’t always have to be
present in the system. Since it is unclear whether all future plat-
forms will need or want network support (especially devices with
very limited amounts of memory), network support is an optional
part of the operating system. As a result, systems which do not re-
quire network support will not pay any RAM penalty (for added en-
tries in the system dispatch table, etc.).

The net library consists of two parts: a netlib interface and a net pro-
tocol stack. Neither part is actually linked in with an application. As
a result, developers can update them as necessary in the future
without having to recompile the applications that use them.

The netlib interface is the set of routines that an application calls di-
rectly when it makes a net library call. These routines execute in the
caller’s task like subroutines of the application. They are not linked
in with the application, however, but are called through the library
dispatch mechanism.

The net protocol stack runs as a separate task in the operating sys-
tem. Inside this task, the TCP/IP protocol stack runs, and received
packets are processed from the network device drivers. The netlib
interface communicates with the net protocol stack through an oper-
ating system mailbox queue. It posts requests from applications into
the queue and blocks until the net protocol stack processes the re-
quests.

Having the net protocol stack run as a separate task has two big ad-
vantages:

• The operating system can switch in the net protocol stack to pro-
cess incoming packets from the network even if one or more ap-
plications are currently busy.

• Even if an application is blocked waiting for some data to arrive
off the network, the net protocol stack can continue to process re-
quests for other applications.

System Requirements
The net library requires Palm OS 2.0 or better.

Palm OS Net Library
Overview

Developing Palm OS 3.0 Applications, Part III 183

When the net library itself is opened, it requires an estimated addi-
tional 32 KB of RAM. This in effect doubles the overall system RAM
requirements, currently 32 KB without the net library. It’s therefore
not practical to run the net library on any platform that has 128 KB
or less of total RAM available since the system itself will consume 64
KB of RAM (leaving only 64 KB for user storage in a 128 KB system).

Constraints
Developers must keep in mind that Palm OS is designed for small
devices with limited amounts of memory and other hardware re-
sources. All applications written for Palm OS must pay special at-
tention to memory and CPU usage. Devices that have the net library
installed will most likely have only 64 KB of RAM available for sys-
tem and applications. This does not include user storage RAM.
When the net library is opened and initialized, the total remaining
amount of RAM available to an application is approximately 14 KB.

The net library is built to allow a maximum of four open sockets at
one time to keep the memory requirements of the net library to a
minimum. Network applications have to be designed with this con-
straint in mind.

Network applications should also be careful about the amount of
data they try to send to a remote host at the same time. When using
TCP, the data that an application writes to a remote host is buffered
in the dynamic heap so that control can be returned to the caller be-
fore the data is actually transmitted out over the network. Obvious-
ly, sending a 16 KB block of data to a remote host will severely tax
the small dynamic memory space available to a Palm OS applica-
tion. When an application tries to send a large block of data, the net
library’s send routines automatically buffer only a portion of the
block of data, return the size of that portion to the caller, and rely on
the caller to issue additional send calls to finish the transmission.

If an application expects to also receive data during a large trans-
mission, it should therefore send a smaller block, then read back
whatever is available to read before sending the next block. In this
way, the amount of memory in the dynamic heap that must be used
to buffer data waiting to send out and data waiting to be read back
in by the application is kept to a minimum.

Palm OS Net Library
The Programmer’s Interface

184 Developing Palm OS 3.0 Applications, Part III

The Programmer’s Interface
The net library API was designed in such a way that a program
written to use the Berkeley sockets API can be compiled to use the
net library API simply by including the appropriate header files. Lit-
tle or no source code modification should be required. The
sys/socket.h header file provided with the Palm OS SDK in-
cludes a set of macros that map Berkeley sockets calls directly to net
library calls. That information is also included with the reference
page for each function (See Chapter 7, “Net Library Functions,”)

Net Library and Berkeley Sockets API:
Differences
There are four main reasons why the net library API is slightly dif-
ferent from the sockets API.

• Error Codes. The sockets API by convention returns error
codes in the application’s global variable errno. The net API
doesn’t rely on any application global variables. This allows
system code (which cannot have global variables) to use the
net library API.

• RefNum. All library calls in the Palm OS must have the li-
brary reference number (refnum) as their first parameter.

• Timeouts. In a consumer system such as the Palm OS device,
infinite timeouts don’t work well because the end user can’t
“kill” a process that’s stuck. A timeout parameter was there-
fore added to the API to allow the application to gracefully
recover from hung connections.

• Naming Conventions. The naming conventions in the sock-
ets API don’t match the naming conventions of the Palm OS.

The main differences between the net library API and the Berkeley
sockets API is that most net library API calls accept additional pa-
rameters for:

• A timeout

• The refNum of the net library

• The address for the return error code

The design of the Palm OS library manager requires that all library
calls have the library refNum as the first parameter.

Palm OS Net Library
The Programmer’s Interface

Developing Palm OS 3.0 Applications, Part III 185

The macros in sys/socket.h do the following:

Example
The following example illustrates how the API mapping works for
the Berkeley sockets call socket(), which has the calling conven-
tion:

int socket(int domain, int type, int protocol);

The equivalent net library call is NetLibSocketOpen, which has
the calling convention:

NetSocketRef NetLibSocketOpen(

Word libRefnum,
NetSocketAddrEnum domain,

NetSocketTypeEnum type,

 SWord protocol,

SDWord timeout,

Err* errP)

The macro for socket is:
#define socket(domain,type,protocol)\

NetLibSocketOpen(AppNetRefnum,

domain,

type,

protocol,

AppNetTimeout,

&errno)

The macro in sys/socket.h for the socket() call passes:

• The application global AppNetRefnum as the libRefnum.
• The address of the application global errno for errP.

For... The macros pass...

refNum AppNetRefnum (application global variable).

timeout AppNetTimeout (application global variable).

return
error code

Address of the application global errno.

Palm OS Net Library
Using the Net Library

186 Developing Palm OS 3.0 Applications, Part III

• A timeout value from the application global
AppNetTimeout.

All other parameters are passed as is. Consequently, there is no extra
layer of glue code penalty for using the sockets API instead of the
net library API directly. Of course, an application that uses the sock-
ets API with the Palm OS must declare and initialize the global vari-
ables AppNetTimeout, AppNetRefnum, and errno somewhere in
its source code.

Using the Net Library
The net library can be thought of as having two groups of API calls:
setup and configuration calls, and runtime calls. Normally, applica-
tions only use the runtime calls and leave all setup and configura-
tion up to the net library preference panel.

Applications that need to use the net library should assume that all
setup and configuration has occurred and focus on using the
runtime calls.

An exception to this rule is applications that allow the user to select
a particular “service” before trying to establish a connection. These
kinds of applications present a pick list of service names and allow
the user to select a service name. This functionality is provided via
the net library preference panel. The panel provides action codes
that allow an application to present a list of possible service names
to let the end user pick one. The preference panel then makes the
necessary net library setup and configuration calls to set up for that
particular service.

This section first discusses Setup and Configuration Calls, then pro-
vides some detail on Runtime Calls.

Setup and Configuration Calls
The setup and configuration API calls of the net library are normally
only used by the net library preference panel. This includes calls to
set IP addresses, host name, domain name, login script, interface
settings, and so on. Each setup and configuration call saves its set-
tings in the net library preferences database in nonvolatile storage
for later retrieval by the runtime calls.

Palm OS Net Library
Using the Net Library

Developing Palm OS 3.0 Applications, Part III 187

Usually, the setup and configuration calls are made while the library
is closed. A subset of the calls can also be issued while the library is
open and will have real-time effects on the behavior of the library.
Chapter 7, “Net Library Functions,” describes the behavior of each
call in more detail.

Interface Specific Settings

The net library configuration is structured so that network interface-
specific settings can be specified for each network interface indepen-
dently. These interface specific settings are called IF settings and are
set and retrieved through the NetLibIFSettingGet and
NetLibIFSettingSet calls.

• The NetLibIFSettingGet call takes a setting ID as a parame-
ter along with a buffer pointer and buffer size for the return
value of the setting. Some settings, like login script, are of vari-
able size so the caller must be prepared to allocate a buffer large
enough to retrieve the entire setting.

• The NetLibIFSettingSet call also takes a setting ID as a pa-
rameter along with a pointer to the new setting value and the
size of the new setting.

General Settings

In addition to the interface-specific settings, there’s a class of set-
tings that don’t apply to any one particular interface. These general
settings are set and retrieved through the NetLibSettingGet and
NetLibSettingSet calls. These calls take setting ID, buffer point-
er, and buffer size parameters.

Settings for Interface Selection

Finally, there is a set of calls for specifying which interface(s) should
be used by the net library. The NetLibIFGet call can be used to
find out which interfaces are currently set up to be used by the li-
brary. The NetLibIFAttach and NetLibIFDetach can be used to
attach and detach specific interfaces from the library.

These calls in particular can be called while the library is open or
closed. If the library is open, the specific interface is attached or de-
tached in real time. If the library is closed, the information is saved
in preferences and used the next time the library is opened.

Palm OS Net Library
Using the Net Library

188 Developing Palm OS 3.0 Applications, Part III

Summary

In summary, the preference panel needs to

• Set the general settings.

• Attach the appropriate network interfaces.

• Set the network specific settings for each interface.

The order in which this is done is not important since nothing is
done with the settings until the library is opened. The API descrip-
tion for each of the configuration calls lists in detail the possible set-
ting values for each call, which are required or optional, and the de-
fault values for each setting.

Runtime Calls
Most applications will use only the net library runtime calls. Most of
these calls have an equivalent function in the Berkeley sockets API.
The sys/socket.h header file allows source code written to the
Berkeley sockets API to be compiled directly for the Palm OS.

There is, however, some additional setup and shutdown code that
every Palm OS application must have in order to use the net library.
Because of the limited resources in the Palm OS environment, the
net library was designed so that it only takes up extra memory from
the system when an application is running that actually needs to use
its services. An Internet application must therefore inform the
system when it needs to use the net library by opening the net li-
brary when it starts up and by closing it when it exits.

Initialization and Shutdown

The following calls are available to open and close the net library:

• Calls Made Before Opening the Net Library

• Opening the Net Library

• Closing the Net Library

Palm OS Net Library
Using the Net Library

Developing Palm OS 3.0 Applications, Part III 189

Calls Made Before Opening the Net Library

Most net library calls don’t work before the library is opened. An ex-
ception to this rule are calls that specify which network interface(s)
to use, and the calls for setting the net library settings and the set-
tings for the network interfaces. These calls are NetLibIFGet,
NetLibIFAttach, NetLibIFDetach, NetLibIFSetting-
Get, NetLibIFSettingSet, NetLibSettingGet, and
NetLibSettingSet (see also Setup and Configuration Calls). All
of these calls save the settings in the net library Preferences database
used by NetLibOpen to initialize the library and establish the con-
nection.

It’s expected that most applications won’t need to use these calls be-
cause the network preferences panel is responsible for configuring
the net library.

Opening the Net Library

An application can call NetLibOpen to open the net library. Before
the net library is opened, most calls issued to it fail with a
netErrNotOpen error code.

If the net library is not already open for another application,
NetLibOpen starts up the net protocol stack task, allocates memory
for internal use by the net library, and brings up the network con-
nection. Most likely, the user has configured the Palm OS device to
establish a SLIP or PPP connection through a modem and in this
type of setup, NetLibOpen dials up the modem and establishes the
connection before returning.

If the net library is already open when NetLibOpen is called, it sim-
ply increments the open count and returns immediately.

Note that the NetLibOpen call may bring up UI elements to display
connection progress information, depending on which network in-
terfaces it is using. Because of this, the caller must call NetLibOpen
from the main UI task (that is, the main event loop of an application)
and not from a background task.

Closing the Net Library

Before an application quits, or if it no longer needs to do network
I/O, it should call NetLibClose.

Palm OS Net Library
Using the Net Library

190 Developing Palm OS 3.0 Applications, Part III

NetLibClose decrements the open count. If the open count has
reached 0, NetLibClose schedules a timer to shut down the net li-
brary unless another NetLibOpen is issued before the timer expires.
The close timer allows the user to quit from one network application
and launch another application within a certain time period without
having to wait for another network connection establishment.

If NetLibOpen is called before the close timer expires, it simply can-
cels the timer and marks the library as fully open with an open
count of 1 before returning. If the timer expires before another
NetLibOpen is issued, all existing network connections are brought
down, the net protocol stack task is terminated, and all memory al-
located for internal use by the net library is freed.

Summary of Initialization

In summary, any application that needs to do network I/O should
always call NetLibOpen first and NetLibClose before it quits. The
details of whether or not a connection needs to be established or
brought down are automatically handled by the library.

Note that all net library calls, including NetLibOpen and NetLib-
Close require the refNum of the net library as their first parameter.
To find this refNum, call SysLibFind, passing the name of the net
library, "Net.lib". In addition, if the application is using the sock-
ets API macros, it must save this refnum in the application global
variable AppNetRefnum.

Initialization Example

The following example code fragment illustrates how to find the net
library’s refnum and then open the library. Note that if the net li-
brary is not installed on the Palm OS device (on a pre-2.0 ROM, or a
128Kb machine for example), SysLibFind returns an error code.

#include <sys/socket.h>

....

err = SysLibFind("Net.lib", &AppNetRefnum);

if (err) {/* error handling here */}

err = NetLibOpen(AppNetRefnum, &ifErrs);

if (err || ifErrs) {/* error handling here */}

Palm OS Net Library
Using the Net Library

Developing Palm OS 3.0 Applications, Part III 191

Once the net library has been opened, sockets can be opened and
data sent to and received from remote hosts using either the Berke-
ley sockets API, or the native net library API. The following example
code fragment shows how to close down the net library when an ap-
plication exits or no longer needs network support:

err = NetLibClose(AppNetRefnum, false);

Version Checking
Besides using SysLibFind to determine if the net library is in-
stalled, an application can also look for the net library version fea-
ture. This feature is only present if the net library is installed. This
feature can be used to get the version number of the net library as
follows:

DWord version;

err = FtrGet(netFtrCreator, netFtrNumVersion,

&version);

If the net library is not installed, FtrGet returns a non-zero result
code.

The version number is encoded in the format 0xMMmfsbbb, where:

For example:

V1.1.2b3 would be encoded as 0x01122003

V2.0a2 would be encoded as 0x02001002

V1.0.1 would be encoded as 0x01013000

This document describes version 1.0 of the net library (0x01003000).

MM major version

m minor version

 f bug fix level

 s stage: 3-release, 2-beta, 1-alpha, 0-development

bbb build number for non-releases

Palm OS Net Library
Using the Net Library

192 Developing Palm OS 3.0 Applications, Part III

Network I/O and Utility Calls
Because of the close correlation with the Berkeley sockets API, the
reader is referred to one of the many books written on network com-
munications for an explanation of how to use the remaining calls in
the net library. Where applicable, the detailed function explanations
in Net Library Functions provide the equivalent sockets API call for
each native net library call.

Note that because the Berkeley sockets API requires some applica-
tion global variables and glue code, an application written for this
API must link with the module "NetSocket.c", which is included
as part of the Palm OS SDK. The following is a summary of the
mappings from the Berkeley sockets API to the native net library
API.

Berkeley
Sockets API

Net Library

accept NetLibSocketAccept

bcopy MemMove

bzero MemSet

bcmp MemCmp

bind NetLibSocketBind

close NetLibSocketClose

connect NetLibSocketConnect

fcntl NetLibSocketOptionSet/NetLibSocketOptionGet
(...,netSocketOptSockNonBlocking,...)

getdomainname NetLibSocketOptionGet(..,netSettingDomain-
Name,...)

gethostbyaddr NetLibGetHostByAddr

gethostbyname NetLibGetHostByName

Palm OS Net Library
Using the Net Library

Developing Palm OS 3.0 Applications, Part III 193

gethostname NetLibSettingGet(..,netSettingHostName,...)

getpeername NetLibSocketAddr

getservbyname NetLibGetServByName

getsockname NetLibSocketAddr

getsockopt NetLibSocketOptionGet

gettimeofday glue code using TimGetSeconds() (see Part II)

htonl macro

htons macro

inet_addr NetLibAddrAToIN

inet_lnaof glue code

inet_makeaddr glue code

inet_netof glue code

inet_network glue code

inet_ntoa NetLibAddrINToA

listen NetLibSocketListen

ntohl macro

ntohs macro

read NetLibReceive

recv NetLibReceive

recvfrom NetLibReceive

Berkeley
Sockets API

Net Library

Palm OS Net Library
Using the Net Library

194 Developing Palm OS 3.0 Applications, Part III

recvmsg NetLibReceivePB

send NetLibSend

sendmsg NetLibSendPB

sendto NetLibSend

setsockopt NetLibSocketOptionSet

shutdown NetLibSocketShutdown

sleep SysTaskDelay

socket NetLibSocketOpen

select NetLibSelect

setdomainname NetLibSettingSet(..,netSettingDomainName,...)

sethostname NetLibSettingSet(..,netSettingHostName,...)

settimeofday glue code using TimSetSeconds() (see Part II)

write NetLibSend

Berkeley
Sockets API

Net Library

Developing Palm OS 3.0 Applications, Part III 195

7
Net Library
Functions
This chapter lists the calls available in the net library and their Ber-
keley sockets equivalents. Each call has a purpose section which
gives a short description of what the call does; a prototype section
identifies the parameters to the call and their types; a parameters sec-
tion lists detailed information about each of the parameters; a result
section identifies the possible return codes; a sockets API equivalent
section gives the name of the corresponding sockets API call; and a
comments section gives a more detailed description of the call.

The functions are grouped as follows:

• Library Open and Close

• Socket Creation and Deletion

• Socket Options

• Socket Connections

• Send and Receive Routines

• Utilities

• Configuration

• Berkeley Sockets API Calls

• Supported Socket Functions

• Supported Network Utility Functions

• Supported Byte Ordering Functions

• Supported Network Address Conversion Functions

• Supported System Utility Functions

Net Library Functions
Library Open and Close

196 Developing Palm OS 3.0 Applications, Part III

Library Open and Close

NetLibClose

Purpose Closes the net library.

Prototype Err NetLibClose (Word libRefnum, Word immediate)

Parameters -> libRefnum Reference number of the net library.

-> immediate If TRUE, library will shut down immediately. If
FALSE, library will shut down only if close
timer expires before another NetLibOpen is
issued.

Result Codes 0 No error.

netErrNotOpen Library was not open.

netErrStillOpen
Not really an error; returned if library is still in
use by another application.

Sockets
Equivalent

None.

Comments Applications must call this function when they no longer need the
net library. If the net library open count is greater than 1 before this
call is made, the count is decremented and netErrStillOpen is
returned. If the open count was 1, the library takes the following ac-
tion:

• If immediate is TRUE, the library shuts down immediately.
All network interfaces are brought down, the net protocol
stack task is terminated, and all memory used by the net
library is freed.

• If immediate is FALSE, a close timer is created and this call
returns immediately without actually bringing the net
library down. Instead it leaves it up and running but marks
it as in the “close-wait” state. It remains in this state until

Net Library Functions
Library Open and Close

Developing Palm OS 3.0 Applications, Part III 197

either the timer expires or another NetLibOpen is issued. If
the timer expires, the library is shut down. If another
NetLibOpen call is issued before the timer expires (possibly
by another application), the timer is cancelled and the library
is marked as fully open.

It is expected that most applications will pass FALSE for
immediate. This allows the user to quit one Internet application
and launch another within a short period of time without having to
wait through the process of closing down and then re-establishing
dial-up network connections.

See Also NetLibOpen, NetLibOpenCount

Net Library Functions
Library Open and Close

198 Developing Palm OS 3.0 Applications, Part III

NetLibConnectionRefresh

Purpose This routine is a convenience call for applications. It checks the sta-
tus of all connections and optionally tries to open any that were
closed.

Prototype Err NetLibConnectionRefresh (Word refNum,
Boolean refresh,
BooleanPtr allInterfacesUpP,
WordPtr netIFErrP)

Parameters refnum Reference number of the net library.

refresh If TRUE, any connections that aren’t current-
ly open are opened.

allInterfacesUpP Set to TRUE if all connections are open.

netIFErrP First error encountered when reopening
connections that were closed.

Result Codes 0 No error.

Sockets
Equivalent

None.

Comments This function determines whether a connection is up based on the
internal status of the TCP/IP stack. To test the presence of a “physi-
cal connection” (phone line, modem, serial cable), a command
should be sent once it’s been determined that the logical connection
is up. If the physical connection is broken, nothing returns, and a
timeout error eventually occurs.

Net Library Functions
Library Open and Close

Developing Palm OS 3.0 Applications, Part III 199

NetLibFinishCloseWait

Purpose Forces the net library to do a complete close if it’s currently in the
close-wait state.

Prototype Err NetLibFinishCloseWait (Word libRefnum)

Parameters -> libRefnum Reference number of the net library.

Result Codes 0 No error.

Sockets
Equivalent

None.

Comments This call checks the current open state of the net library. If it’s in the
close-wait state (see NetLibClose), it forces the library to perform
an immediate, complete close operation.

This call will most likely only be used by the preferences panel that
configures the net library.

Net Library Functions
Library Open and Close

200 Developing Palm OS 3.0 Applications, Part III

NetLibOpen

Purpose Opens and initializes the net library.

Prototype Err NetLibOpen (Word libRefnum,
WordPtr netIFErrP)

Parameters -> libRefnum Reference number of the net library.

-> netIFErrP Pointer to return error code for interfaces.

Result 0 No error.

netErrAlreadyOpen
Not really an error; returned if library was al-
ready open and the open count was simply
incremented.

netErrOutOfMemory
Not enough memory available to open the
library.

netErrNoInterfaces
Incorrect setup.

netErrPrefNotFound
Incorrect setup.

Comments Applications must call this function before using the net library. If
the net library was already open, NetLibOpen increments its open
count. Otherwise, it opens the library, initializes it, starts up the net
protocol stack component of the library as a separate task, and
brings up all attached network interfaces.

NetLibOpen uses settings saved in the net library’s preferences da-
tabase during initialization. These settings include the interfaces to
attach, the IP addresses, etc. It’s assumed that these settings have
been previously set up by a preference panel or equivalent so an
application doesn’t normally have to set them up before calling
NetLibOpen.

Net Library Functions
Library Open and Close

Developing Palm OS 3.0 Applications, Part III 201

If the end user has configured the Palm OS device to connect
through a dialup interface, there’s a good chance that the interface
will display a progress dialog as it establishes a connection. For this
reason, NetLibOpen must be called from the main UI task (an ap-
plication’s main event loop), and not from a separate background
task.

If any of the attached interfaces fails to come up, *netIFErrP will
contain the error number of the first interface that encountered a
problem.

It’s possible, and quite likely, that the net library will be able to open
even though one or more interfaces failed to come up (due to bad
modem settings, service down, etc). Some applications may there-
fore wish to close the net library using NetLibClose if
*netIFErrP is non-zero and display an appropriate message for
the user. If an application needs more detailed information, e.g.
which interface(s) in particular failed to come up, it can loop
through each of the attached interfaces and ask each one if it is up or
not. Use the following calls to accomplish this:

• NetLibIFGet(...),

• NetLibIFSettingGet(..., netIFSettingUp, ...)

• NetLibIFSettingGet(..., netIFSettingName,...)

See Also SysLibFind, NetLibClose, NetLibOpenCount

Net Library Functions
Library Open and Close

202 Developing Palm OS 3.0 Applications, Part III

NetLibOpenCount

Purpose Retrieves the open count of the net library.

Prototype Err NetLibOpenCount (Word libRefnum,
WordPtr countP)

Parameters -> libRefnum Reference number of the net library.

<- countP Pointer to return count variable.

Result Codes 0 No error.

Sockets
Equivalent

None.

Comments This call will most likely only be used by the Network preference
panel. Most applications will simply call NetLibOpen uncondition-
ally during startup and NetLibClose when they exit.

Net Library Functions
Socket Creation and Deletion

Developing Palm OS 3.0 Applications, Part III 203

Socket Creation and Deletion

NetLibSocketClose

Purpose Close a socket.

Prototype SWord NetLibSocketClose (Word libRefnum,
NetSocketRef socketRef,
SDWord timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred. Error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

Sockets
Equivalent

int close(int socket);

Comments Closes down a socket and frees all memory associated with it.

See Also NetLibSocketOpen, NetLibSocketShutdown

Net Library Functions
Socket Creation and Deletion

204 Developing Palm OS 3.0 Applications, Part III

NetLibSocketOpen

Purpose Open a new socket.

Prototype NetSocketRef NetLibSocketOpen (Word libRefnum,
NetSocketAddrEnum domain,
NetSocketTypeEnum type,
SWord protocol,
Long timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> domain Address domain. Only netSocketAddrINET
is currently supported.

-> type Desired type of connection, either
netSocketTypeStream or
netSocketTypeDatagram.
netSocketTypeRaw is not currently
supported.

-> protocol Protocol to use. Currently ignored for the
netSocketAddrINET domain.

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes >= 0 Socket refNum of open socket.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout

netErrNotOpen

netErrParamErr

netErrNoMoreSockets

Net Library Functions
Socket Creation and Deletion

Developing Palm OS 3.0 Applications, Part III 205

Sockets
Equivalent

int socket(int domain, int type, int protocol);

Comments Allocates memory for a new socket and opens it.

Note that only stream-based and datagram-based sockets are sup-
ported. Raw sockets, in particular, are not currently supported.

See Also NetLibSocketClose

Net Library Functions
Socket Options

206 Developing Palm OS 3.0 Applications, Part III

Socket Options

NetLibSocketOptionGet

Purpose Retrieves the current value of a socket option.

Prototype SWord NetLibSocketOptionGet (Word libRefnum,
NetSocketRef socket,
Word level,
Word option,
VoidPtr optValueP,
WordPtr optValueLenP,
SDWord timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

-> level Level of the option, one of the
netSocketOptLevelXXX enum constants.

-> option One of the netSocketOptXXX enum
constants.

-> optValueP Pointer to variable holding new value of
option.

<-> optValueLenP
Size of variable pointed to by optValueP on
entry. Actual size of return value on exit.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Net Library Functions
Socket Options

Developing Palm OS 3.0 Applications, Part III 207

Errors 0 No error.

netErrTimeout

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrUnimplemented

netErrWrongSocketType

Sockets
Equivalent

int getsockopt (int socket, int level,
int option, const void*
optValueP, int* optValueLenP);

Comments Returns the current value of a socket option. The caller passes a
pointer to a variable to hold the returned value (in optValueP)
and the size of this variable (in *optValueLenP). On exit,
*optValueP is updated with the actual size of the return value.

For all of the fixed size options (every option except
netSockOptIPOptions), *optValueLenP is unmodified on exit
and this call does its best to return the value in the caller’s desired
type size.

For compatibility with existing Internet applications, this call is
quite flexible on the *optValueLenP parameter. If the desired type
for an option is FLAG, this call supports an *optValueLenP of 1, 2,
or 4. If the desired type for an option is int, it supports an
*optValueLenP of 2 or 4.

See NetLibSocketOptionSet for a list of available options.

See Also NetLibSocketOptionSet

Net Library Functions
Socket Options

208 Developing Palm OS 3.0 Applications, Part III

NetLibSocketOptionSet

Purpose Set a socket option.

Prototype SWord NetLibSocketOptionSet (Word libRefnum,
NetSocketRef socketRef,
Word level,
Word option,
VoidPtr optValueP,
Word optValueLen,
SDWord timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> level Level of the option, one of the
netSocketOptLevelXXX enum constants.

-> option One of the netSocketOptXXX enum con-
stants.

-> optValueP Pointer to the variable holding the new value of
the option.

-> optValueLen Size of variable pointed to by optValueP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

Net Library Functions
Socket Options

Developing Palm OS 3.0 Applications, Part III 209

netErrSocketNotOpen

netErrUnimplemented

netErrWrongSocketType

Sockets
Equivalent

int setsockopt (int socketRef,
int level, int option,
const void* optValueP,
int optValueLen);

Comments Sets various options associated with a socket. The caller passes a
pointer to the new option value in optValueP and the size of the
option in optValueLen.

The following table lists the available options.

• The Level column specifies the option level, which is one of
the netSocketOptLevelXXX constants.

• The Option column lists the option, which is one of the net-
SocketOptXXX constants.

• The G/S column lists whether this option can be fetched with
the NetLibSocketOptionGet call (G) and/or set (S) with
this call.

• The type column lists the type of the option.

• The I column specifies whether or not this option is currently
implemented.

Level Option G/S Type I Description

IP IPOptions GS Byte[] N Options in IP Header

TCP TCPNoDelay GS FLAG Y Don’t delay send to coalesce
packets

TCP TCPMaxSeg G int Y Get TCP maximum segment
size

Socket SockDebug GS FLAG N Turn on recording of debug
info

Net Library Functions
Socket Options

210 Developing Palm OS 3.0 Applications, Part III

For compatibility with existing Internet applications, this call is
quite flexible on the optValueLen parameter. If the desired type

Socket SockAcceptConn G FLAG N Socket has had listen

Socket SockReuseAddr GS FLAG N Allow local address reuse

Socket SockKeepAlive GS FLAG Y Keep connections alive

Socket SockDontRoute GS FLAG N Just use interface addresses

Socket SockBroadcast GS FLAG N Permit sending of broadcast
messages

Socket SockUseLoopback GS FLAG N Bypass hardware when possi-
ble

Socket SockLinger GS NetSock-
etLinger

Y Linger on close if data present

Socket SockOOBInLine GS FLAG N Leave received OOB data in-
line

Socket SockSndBufSize GS int N Send buffer size

Socket SockRcvBufSize GS int N Receive buffer size

Socket SockSndLowWater GS int N Send low-water mark

Socket SockRcvLowWater GS int Receive low-water mark

Socket SockSndTimeout GS int N Send timeout

Socket SockRcvTimeout GS int N Receive timeout

Socket SockErrorStatus G int Y Get error status and clear

Socket SockSocketType G int Y Get socket type

Socket SockNonBlocking GS FLAG Y Set non-blocking mode on/off

Level Option G/S Type I Description

Net Library Functions
Socket Options

Developing Palm OS 3.0 Applications, Part III 211

for an option is FLAG, this call accepts an optValueLen of 1, 2, or 4.
If the desired type for an option is int, it accepts an optValueLen
of 2 or 4.

Except for the SockNonBlocking option, all options listed above
have equivalents in the sockets API. The SockNonBlocking option
was added to this call in the net library in order to implement the
functionality of the UNIX fcntl() control call, which can be used
to turn nonblocking mode on and off for sockets.

See Also NetLibSocketOptionGet

Net Library Functions
Socket Connections

212 Developing Palm OS 3.0 Applications, Part III

Socket Connections

NetLibSocketAccept

Purpose Accept a connection from a stream-based socket.

Prototype SWord NetLibSocketAccept(Word libRefnum,
NetSocketRef socketRef,
NetSocketAddrType* remAddrP,
SWord* remAddrLenP,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

<- remAddrP Address of remote host is returned here.

<->remAddrLenP On entry, length of remAddrP buffer in bytes.
On exit, length of returned address stored in
*remAddrP.

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes >=0 NetSocketRef of new socket.

-1 Error occurred, error code in *errP.

Net Library Functions
Socket Connections

Developing Palm OS 3.0 Applications, Part III 213

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrNotConnected

netErrClosedByRemote

netErrWrongSocketType

netErrSocketNotListening

Sockets
Equivalent

int accept (int socket,
void* sockAddrP,
int* addrLenP);

Comments Accepts the next connection request from a remote client. This call is
only applicable to stream-based sockets. Before calling
NetLibSocketAccept on a socket, a server application needs to:

• Open the socket (NetLibSocketOpen).

• Bind the socket to a local address (NetLibSocketBind).

• Set the maximum pending connection-request queue length
(NetLibSocketListen).

NetLibSocketAccept will block until a successful connection re-
quest is obtained from a remote client. After a successful connection
is made, this call returns with the address of the remote host in
*remAddrP and the socketRef of a new socket as the return
value.

See Also NetLibSocketBind, NetLibSocketListen

Net Library Functions
Socket Connections

214 Developing Palm OS 3.0 Applications, Part III

NetLibSocketAddr

Purpose Returns the local and remote addresses currently associated with a
socket.

Prototype SWord NetLibSocketAddr (Word libRefnum,
NetSocketRef socketRef,
NetSocketAddrType* locAddrP,
SWord* locAddrLenP,
NetSocketAddrType* remAddrP,
SWord* remAddrLenP,
SDWord timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

<- locAddrP Local address of socket is returned here.

<->locAddrLenP On entry, length of locAddrPbuffer in bytes.
On exit, length of returned address stored in
*locAddrP.

<- remAddrP Address of remote host is returned here.

<->remAddrLenP On entry, length of remAddrP buffer in bytes.
On exit, length of returned address stored in
*remAddrP.

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Net Library Functions
Socket Connections

Developing Palm OS 3.0 Applications, Part III 215

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrClosedByRemote

Sockets
Equivalent

int getpeername (int s,
struct sockaddr* name,
int* namelen);

int getsockname (int s,
struct sockaddr* name,
int* namelen);

Comments This call is mainly useful for stream-based sockets. It allows the call-
er to find out what address was bound to a connected socket and the
address of the remote host that it’s connected to.

See Also NetLibSocketBind, NetLibSocketConnect,
NetLibSocketAccept

Net Library Functions
Socket Connections

216 Developing Palm OS 3.0 Applications, Part III

NetLibSocketBind

Purpose Assign a local address to a socket.

Prototype SWord NetLibSocketBind (Word libRefnum,
NetSocketRef socketRef,
NetSocketAddrType* socketAddrP,
SWord addrLen,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> sockAddrP Pointer to address.

-> addrLen Length of address in *sockAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrAlreadyConnected

netErrClosedByRemote

Sockets
Equivalent

int bind (int socket,
const void* sockAddrP,
int addrLen);

Net Library Functions
Socket Connections

Developing Palm OS 3.0 Applications, Part III 217

Comments Applications that want to wait for an incoming connection request
from a remote host must call this function. After calling
NetLibSocketBind, applications can call NetLibSocketListen
and then NetLibSocketAccept to make the socked ready to ac-
cept connection requests.

See Also NetLibSocketConnect, NetLibSocketListen,
NetLibSocketAccept

NetLibSocketConnect

Purpose Assign a destination address to a socket and initiate three-way
handshake if it’s stream based.

Prototype SWord NetLibSocketConnect (Word libRefnum,
NetSocketRef socketRef,
NetSocketAddrType* socketAddrP,
SWord addrLen,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> sockAddrP Pointer to address.

-> addrLen Length of address in *sockAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

Net Library Functions
Socket Connections

218 Developing Palm OS 3.0 Applications, Part III

netErrParamErr

netErrSocketNotOpen

netErrSocketBusy

netErrNoInterfaces

netErrPortInUse

netErrQuietTimeNotElapsed

netErrInternal

netErrAlreadyConnected

netErrClosedByRemote

netErrTooManyTCPConnections

Sockets
Equivalent

int connect (int socket,
const void* sockAddrP,
int addrLen);

See Also NetLibSocketBind

Net Library Functions
Socket Connections

Developing Palm OS 3.0 Applications, Part III 219

NetLibSocketListen

Purpose Put a stream-based socket into passive listen mode.

Prototype SWord NetLibSocketListen(Word libRefnum,
NetSocketRef socketRef,
Word queueLen,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> queueLen Maximum number of pending connections
allowed.

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Net Library Functions
Socket Connections

220 Developing Palm OS 3.0 Applications, Part III

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrOutOfResources

netErrSocketNotOpen

netErrSocketBusy

netErrNoInterfaces

netErrPortInUse

netErrInternal

netErrAlreadyConnected

netErrClosedByRemote

netErrWrongSocketType

Sockets
Equivalent

int listen (int socket, int queueLen);

Comments Sets the maximum allowable length of the queue for pending con-
nections. This call is only applicable to NetLibSocketAccept
sockets.

After a socket is created and bound to a local address using
NetLibSocketBind, a server application can call
NetLibSocketListen and then NetLibSocketAccept to ac-
cept connections from remote clients.

The queueLen is currently quietly limited to 1 (higher values are
ignored).

See Also NetLibSocketBind, NetLibSocketAccept

Net Library Functions
Socket Connections

Developing Palm OS 3.0 Applications, Part III 221

NetLibSocketShutdown

Purpose Shut down a socket in one or both directions.

Prototype SWord NetLibSocketShutdown (Word libRefnum,
NetSocketRef socketRef,
SWord direction,
SDWord timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> direction Direction to shut down. One of the
NetSocketDirXXX enum constants.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

Sockets
Equivalent

int shutdown (int socket, int direction);

Comments Shuts down communication in one or both directions on a socket.
Direction can be netSocketDirInput, netSocketDirOutput,
or netSocketDirBoth.

Net Library Functions
Send and Receive Routines

222 Developing Palm OS 3.0 Applications, Part III

If direction is netSocketDirInput, the socket is marked as down
in the receive direction and further read operations from it return a
netErrSocketInputShutdown error.

Send and Receive Routines

NetLibDmReceive

Purpose Receive data from a socket directly into a database record.

Prototype SWord NetLibDmReceive(Word libRefNum,
NetSocketRef socket,
VoidPtr recordP,
ULong recordOffset,
Word rcvLen,
Word flags,
VoidPtr fromAddrP,
WordPtr fromLenP,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

-> recordP Pointer to beginning of record.

-> recordOffset Offset from beginning of record to read data
into.

-> rcvLen Maximum number of bytes to read.

-> flags One or more netMsgFlagXXX flag.

-> fromAddrP Pointer to buffer to hold address of sender
(NetSocketAddrType).

<-> fromLenP On entry, size of fromAddrP buffer. On exit,
actual size of returned address in fromAddrP.

Net Library Functions
Send and Receive Routines

Developing Palm OS 3.0 Applications, Part III 223

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully received.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrWouldBlock

Comments This call behaves similarly to NetLibReceive but reads the data
directly into a database record, which is normally write-protected.
The caller must pass a pointer to the start of the record and an offset
into the record of where to start the read.

Net Library Functions
Send and Receive Routines

224 Developing Palm OS 3.0 Applications, Part III

NetLibReceive

Purpose Receive data from a socket into a single buffer.

Prototype SWord NetLibReceive (Word libRefNum,
NetSocketRef socket,
VoidPtr bufP,
Word bufLen,
Word flags,
VoidPtr fromAddrP,
WordPtr fromLenP,
Long timeout,
Err* errP);

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

-> bufP Pointer to buffer to hold received data.

-> bufLen Length of bufP buffer.

-> flags One or more netMsgFlagXXX flag.

-> fromAddrP Pointer to buffer to hold address of sender
(NetSocketAddrType).

<-> fromLenP On entry, size of fromAddrP buffer. On exit, ac-
tual size of returned address in fromAddrP.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully received,

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

Net Library Functions
Send and Receive Routines

Developing Palm OS 3.0 Applications, Part III 225

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrWouldBlock

Sockets
Equivalent

int recvfrom (int socket, const void* bufP,
int bufLen, int flags,
const void* fromAddrP,
int* fromLenP);

int recv (int socket, const void* bufP,
int bufLen, int flags);

int read (int socket, const void* bufP,
int bufLen);

Comments For stream-based sockets, this call reads whatever bytes are avail-
able and returns the number of bytes actually read into the caller’s
buffer. If there is no data available, this call will block until at least 1
byte arrives, until the socket is shut down by the remote host, or
until a timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the caller’s buff-
er is not large enough to hold the entire datagram, the end of the da-
tagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

The data is read into a single buffer pointed to by bufP.

See Also NetLibReceive, NetLibDmReceive, NetLibSend,
NetLibSendPB

Net Library Functions
Send and Receive Routines

226 Developing Palm OS 3.0 Applications, Part III

NetLibReceivePB

Purpose Receive data from a socket into a gather-read array.

Prototype SWord NetLibReceivePB (Word libRefnum,
NetSocketRef socket,
NetIOParamType* pbP,
Word flags,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> pbP Pointer to parameter block containing buffer
info.

-> flags One or more netMsgFlagXXX flag.

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully received.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrWouldBlock

Net Library Functions
Send and Receive Routines

Developing Palm OS 3.0 Applications, Part III 227

Sockets
Equivalent

int recvmsg (int socket,
const struct msghdr* pbP,
int flags);

Comments For stream-based sockets, this call reads whatever bytes are avail-
able and returns the number of bytes actually read into the caller’s
buffer. If no data is available, this call will block until at least 1 byte
arrives, until the socket is shut down by the remote host, or until a
timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the caller’s buff-
er is not large enough to hold the entire datagram, the end of the da-
tagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

The data is read into the gather-read array specified by the
pbP->iov array.

See Also NetLibReceive, NetLibDmReceive, NetLibSend,
NetLibSendPB

NetLibSend

Purpose Send data to a socket from a single buffer.

Prototype SWord NetLibSend (Word libRefNum,
NetSocketRef socket,
const VoidPtr bufP,
Word bufLen,
Word flags,
VoidPtr toAddrP,
Word toLen,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

Net Library Functions
Send and Receive Routines

228 Developing Palm OS 3.0 Applications, Part III

-> bufP Pointer to data to write.

-> bufLen Length of data to write

-> flags One or more of netMsgFlagXXX flags.

-> toAddrP Address to send to (NetSocketAddrType*),
or 0

-> toLen Size of addrP buffer.

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully sent.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrMessageTooBig

netErrSocketNotConnected

netErrClosedByRemote

netErrIPCantFragment

netErrIPNoRoute

netErrIPNoSrc

netErrIPNoDst

netErrIPPktOverflow

Sockets
Equivalent

int sendto (int socket, const void* bufP,
int bufLen, int flags,
const void* toAddrP, int toLen);

Net Library Functions
Send and Receive Routines

Developing Palm OS 3.0 Applications, Part III 229

int send (int socket, const void* bufP,
int bufLen, int flags);

int write (int socket, const void* bufP,
int bufLen,);

Comments This call attempts to write data to the specified socket and returns
the number of bytes actually sent, which may be less than or equal
to the requested number of bytes. The data is passed in a single buff-
er that bufP points to.

If the socket is a datagram socket and the data is too large to fit in a
single UDP packet, no data is sent and -1 is returned.

For stream-based sockets, toAddrP is always ignored, since by def-
inition a NetLibSocketAccept socket must have a connection es-
tablished with a remote host before data can be written. For data-
gram sockets, an error is returned if the socket was previously
connected and toAddrP is specified.

If there isn’t enough buffer space to send any data, this call will
block until there is enough buffer space, or until a timeout.

Note: For stream-based sockets, this call may write only a portion
of the desired data. It always returns the number of bytes actually
written. Consequently, the caller should be prepared to call this
routine repeatedly until the desired number of bytes have been
written, or until it returns 0 or -1.

See Also NetLibSendPB, NetLibReceive, NetLibReceivePB,
NetLibDmReceive

Net Library Functions
Send and Receive Routines

230 Developing Palm OS 3.0 Applications, Part III

NetLibSendPB

Purpose Send data to a socket from a scatter-write array.

Prototype SWord NetLibSendPB(Word libRefnum,
NetSocketRef socket,
NetIOParamType* pbP,
Word flags,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

-> pbP Pointer to parameter block containing buffer
info.

-> flags One or more netMsgFlagXXX flag.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully sent

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrMessageTooBig

netErrSocketNotConnected

netErrClosedByRemote

Net Library Functions
Send and Receive Routines

Developing Palm OS 3.0 Applications, Part III 231

netErrIPCantFragment

netErrIPNoRoute

netErrIPNoSrc

netErrIPNoDst

netErrIPPktOverflow

Sockets
Equivalent

int sendmsg (int socket,
const struct msghdr* pbP,
int flags);

Comments This call attempts to write data to the given socket and returns the
number of bytes actually sent, which may be less than or equal to
the requested number of bytes. The data is passed in the scatter-
write array specified in the pbP parameter block.

If the socket is a datagram socket and the data is too large to fit in a
single UDP packet, no data will be sent and -1 will be returned.

For stream-based sockets, pbP->addrP is always ignored since by
definition a NetLibSocketAccept socket must have a connection
established with a remote host before data can be written. For data-
gram sockets, an error will be returned if the socket was previously
connected and pbP->addrP is specified.

If there isn’t enough buffer space to send any data, this call will
block until there is space, or until a timeout.

Note: For stream-based sockets, this call may write only a portion
of the desired data. It always returns the number of bytes actually
written. Consequently, the caller should be prepared to call this
routine repeatedly until the desired number of bytes have been
written, or until it returns 0 or -1.

See Also NetLibSend, NetLibReceive, NetLibReceivePB,
NetLibDmReceive

Net Library Functions
Utilities

232 Developing Palm OS 3.0 Applications, Part III

Utilities

NetHToNL

Purpose Converts a 32-bit value from host to network byte order.

Prototype DWord NetHToNL (DWord x)

Parameters -> x 32-bit value to convert.

Result Returns x in network byte order.

Errors None

Sockets
Equivalent

htonl()

See Also NetNToHS, NetNToHL, NetHToNS

NetHToNS

Purpose Converts a 16-bit value from host to network byte order.

Prototype Word NetHToNS (Word x)

Parameters -> x 16-bit value to convert.

Result Returns x in network byte order.

Net Library Functions

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 233

Errors None

Sockets
Equivalent

htons()

See Also NetNToHS, NetNToHL, NetHToNL

NetLibAddrAToIN

Purpose Converts an ASCII string representing a dotted decimal IP address
into a 32 IP address in network byte order.

Prototype NetIPAddr NetLibAddrAToIN (Word libRefnum,
CharPtr nameP)

Parameters -> libRefNum Reference number of the net library.

-> nameP Pointer to ASCII dotted decimal string.

Result -1 Invalid nameP, nameP doesn’t represent a dot-
ted decimal IP address

!= -1 32-bit network byte order IP address

Sockets
Equivalent

unsigned long inet_addr(char* cp)

See Also NetLibAddrINToA

Net Library Functions
Utilities

234 Developing Palm OS 3.0 Applications, Part III

NetLibAddrINToA

Purpose Converts an IP address from 32-bit network byte order into a dotted
decimal ASCII string.

Prototype CharPtr NetLibAddrINToA (Word libRefnum,
NetIPAddr inet,
CharPtr spaceP)

Parameters -> libRefNum Reference number of the net library.

-> inet 32-bit IP address in network byte order.

-> spaceP Buffer used for holding return name.

Result spaceP Dotted decimal ASCII string representation of
IP address.

Sockets
Equivalent

char* inet_ntoa(struct in_addr in)

See Also NetLibAddrAToIN

NetLibGetHostByAddr

Purpose Looks up a host name given its IP address.

Prototype NetHostInfoPtr NetLibGetHostByAddr (
Word libRefnum,
BytePtr addrP,
Word len,
Word type,
NetHostInfoBufPtr bufP,
Long timeout,
Err* errP)

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 235

Parameters -> libRefNum Reference number of the net library.

-> addrP IP address of host to lookup.

-> len Length, in bytes, of *addrP.

-> type Type of addrP. netSocketAddrINET is cur-
rently the only supported type.

-> bufP Pointer to buffer to hold results of lookup.

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result 0 Name not found, *errP contains error code.

!=0 Pointer to NetHostInfoType portion of bufP
that contains results of the lookup.

Errors 0 No Error

netErrTimeout Call timed out.

netErrNotOpen

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

Net Library Functions
Utilities

236 Developing Palm OS 3.0 Applications, Part III

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

struct hostent* gethostbyaddr (char* addr,
int len,
int type);

Comments This call queries the domain name server(s) to look up a host name
given its IP address.

BufP must point to a structure of type NetHostInfoBufType that
will be used to store the results of the lookup. When this call returns,
it returns with a pointer to a structure of type NetHostInfoType
which is actually part of the NetHostInfoBufType that bufP
points to.

See Also NetLibGetHostByName

NetLibGetHostByName

Purpose Looks up a host IP address given a host name.

Prototype NetHostInfoPtr NetLibGetHostByName (
Word libRefnum,
CharPtr nameP,
NetHostInfoBufPtr bufP,
Long timeout,
Err* errP)

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 237

Parameters -> libRefNum Reference number of the net library.

-> nameP Name of host to look up.

-> bufP Pointer to buffer to hold results of look up.

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result 0 Name not found, *errP contains error code.

!=0 Pointer to NetHostInfoType portion of bufP
which contains results of the lookup.

Errors 0 No Error

netErrTimeout Call timed out.

netErrNotOpen

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

Net Library Functions
Utilities

238 Developing Palm OS 3.0 Applications, Part III

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

struct hostent *gethostbyname(char* name);

Comments This call first checks the local name -> IP address host table in the
net library preferences. If the entry is not found, it then queries the
domain name server(s).

BufP must point to a structure of type NetHostInfoBufType,
which is used to store the results of the lookup. When this call re-
turns, it returns with a pointer to a structure of type
NetHostInfoType which is actually part of the
NetHostInfoBufType pointed to bufP.

See Also NetLibGetHostByAddr, NetLibGetMailExchangeByName

NetLibGetMailExchangeByName

Purpose Looks up the name of a host to use for a given mail exchange.

Prototype SWord NetLibGetMailExchangeByName (Word libRefNum,
CharPtr mailNameP,
Word maxEntries,
Char hostNames[][netDNSMaxDomainName+1],
Word priorities[],
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> mailNameP Name of the mail exchange to look up.

-> maxEntries Maximum number of hostnames to return.

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 239

<- hostNames Array of character strings of length
netDNSMaxDomainName+1. The host name re-
sults are stored in this array. This array must be
able to hold at least maxEntries hostnames.

<- priorities Array of Words. The priorities of each host
name found are stored in this array. This array
must be at least maxEntries in length.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Address of variable used to return error code.

Result >=0 Number of entries successfully found.

<0 Error occurred, error code is in *errP.

Errors 0 No Error

netErrTimeout Call timed out.

netErrNotOpen

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

Net Library Functions
Utilities

240 Developing Palm OS 3.0 Applications, Part III

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

None

Comments This call looks up the name(s) of host(s) to use for sending an e-mail.
The caller passes the name of the mail exchange in mailNameP and
gets back a list of host names to which the mail message can be sent.

See Also NetLibGetHostByAddr, NetLibGetHostByName

NetLibGetServByName

Purpose Looks up the port number for a standard TCP/IP service, given the
desired protocol.

Prototype NetServInfoPtr NetLibGetServByName (
Word libRefnum,
CharPtr servNameP,
CharPtr protoNameP,
NetServInfoBufPtr bufP,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> servNameP Name of the service to look up.

-> protoNameP Desired protocol to use.

-> bufP Buffer to store results in.

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 241

-> timeout Maximum timeout in system ticks, -1 means
wait forever.

<- errP Address of variable used to return error code.

Result 0 Service not found, *errP contains error code.

!=0 Pointer to NetServInfoType portion of bufP
that contains results of the lookup.

Errors 0 No Error

netErrTimeout Call timed out.

netErrNotOpen

netErrUnknownProtocol

netErrUnknownService

Sockets
Equivalent

struct servent* getservbyname(
char* addr, char* proto);

Comments This call is a convenience call for looking up a standard port number
given the name of a service and the protocol to use (either “udp” or
“tcp”). It currently supports looking up the port number for the fol-
lowing services: “echo”, “discard”, “daytime”, “qotd”, “chargen”,
“ftp-data”, “ftp”, “telnet”, “smtp”, “time”, “name”, “finger”,
“pop2”, “pop3”, “nntp”, “imap2”.

BufP must point to a structure of type NetServInfoBufPtr that’s
used to store the results of the lookup. When this call returns, it re-
turns with a pointer to a structure of type NetServInfoType
which is actually part of the NetServInfoBufType pointed to
bufP.

See Also NetLibGetHostByName

Net Library Functions
Utilities

242 Developing Palm OS 3.0 Applications, Part III

NetLibMaster

Purpose Retrieves the network statistics, interface statistics, and the contents
of the trace buffer.

Prototype Err NetLibMaster (Word libRefnum,
Word cmd,
NetMasterPBPtr pbP,
Long timeout)

Parameters -> libRefNum Reference number of the net library.

-> cmd Function to perform (NetMasterEnum type).

-> pbP Command parameter block.

-> timeout Timeout in ticks, -1 means wait forever.

Result 0 No error

netErrNotOpen

netErrParamErr

netErrUnimplemented

Sockets
Equivalent

None

Comments This call allows applications to can get detailed information about
the net library. This information is usually helpful in debugging net-
work configuration problems.

This function takes a command word (cmd) and parameter block
pointer as arguments and returns its results in the parameter block
on exit.

The following commands are supported:

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 243

netMasterInterfaceInfo

pbP.interfaceInfo:

index -> Index of interface to fetch info about.

creator <- Creator of interface.

instance <- Instance of interface.

netIFP <- Private interface info pointer.

drvrName <- Driver type that interface uses (“PPP”,
“SLIP”, etc.).

hwName <- Hardware driver name (“Serial Li-
brary”, etc.).

localNetHdrLen <- Number of bytes in local net header.

localNetTrailerLen <- Number of bytes in local net trailer.

localNetMaxFrame <- Local net maximum frame size.

ifName <- Interface name with instance number
concatenated.

driverUp <- True if interface driver is up.

ifUp <- True if interface media layer is up.

hwAddrLen <- Length of interface’s hardware address.

hwAddr <- Interface’s hardware address.

mtu <- Maximum transfer unit of interface.

speed <- Speed in bits/sec.

Net Library Functions
Utilities

244 Developing Palm OS 3.0 Applications, Part III

netMasterInterfaceStats

pbP.interfaceStats:

lastStateChange <- Time in milliseconds of last state
change.

ipAddr <- IP address of interface.

subnetMask <- Subnet mask of local network.

broadcast <- Broadcast address of local network.

index -> Index of interface to fetch info about.

inOctets <- Number of octets received.

inUcastPkts <- Number of packets received.

inNUcastPkts <- Number of broadcast packets received.

inDiscards <- Number of incoming packets that were
discarded.

inErrors <- Number of packet errors encountered.

inUnknownProtos <- Number of unknown protocols encoun-
tered.

outOctets <- Number octets sent.

outUcastPkts <- Number of packets sent.

outNUcastPkts <- Number of broadcast packets sent.

outDiscards <- Number of packets discarded.

outErrors <- Number of outbound packet errors.

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 245

netMasterIPStats

pbP.ipStats:

netMasterICMPStats

pbP.icmpStats:

netMasterUDPStats

pbP.udpStats

netMasterTCPStats

pbP.tcpStats:

netMasterTraceEventGet

pbP.traceEventGet

See Also NetLibSettingSet

ipXXX <- see NetMgr.h for complete list of stats returned

icmpXXX <- see NetMgr.h for complete list of stats returned

updXXX <- see NetMgr.h for complete list of stats returned

tcpXXX <- see NetMgr.h for complete list of stats returned

index -> Index of event to fetch.

textP -> Pointer to text string to return event in. Should be
at least 256 bytes long.

Net Library Functions
Utilities

246 Developing Palm OS 3.0 Applications, Part III

NetLibSelect

Purpose Blocks until I/O is ready on one or more descriptors, where a de-
scriptor can represent socket input, socket output, or a user input
event like a pen tap or key press.

Prototype SWord NetLibSelect (Word libRefnum,
Word width,
NetFDSetType* readFDs,
NetFDSetType* writeFDs,
NetFDSetType* exceptFDs,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> width Number of descriptor bits to check in the
readFDs, writeFDs, and exceptFDs de-
scriptor sets.

<-> readFDs Pointer to NetFDSetType containing set of
bits representing descriptors to check for input.

<-> writeFDs Pointer to NetFDSetType containing set of
bits representing descriptors to check for
output.

<-> exceptFDs Pointer to NetFDSetType containing set of
bits representing descriptors to check for excep-
tion conditions.

-> timeout Maximum timeout in system ticks; -1 means
wait forever.

<- errP Address of variable used to return error code.

Result Codes >0 Sum total number of ready file descriptors in
*readFDs, *writeFDs, and *exceptFDs.

0 Timeout.

-1 Error occurred, error code in *errP.

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 247

Errors 0 No Error

netErrTimeout Call timed out.

netErrNotOpen

Sockets
Equivalent

int select (int width, fd_set* readfds,
fd_set* writefds, fd_set* exceptfds,
struct timeval* timeout);

Comments This call blocks until one or more descriptors are ready for I/O. In
the Palm OS environment, a descriptor is either a NetSocketRef
or the “stdin” descriptor, sysFileDescStdIn. The
sysFileDescStdIn descriptor will be ready for input whenever a
user event is available like a pen tap or key press.

The caller should set which bits in each descriptor set need to be
checked by using the netFDZero and netFDSet macros. After this
call returns, the macro netFDIsSet can be used to determine
which descriptors in each set are actually ready.

On exit, the total number of ready descriptors is returned and each
descriptor set is updated with the appropriate bits set for each ready
descriptor in that set.

The following example illustrates how to use this call to check for
input on a socket or a user event:

Net Library Functions
Utilities

248 Developing Palm OS 3.0 Applications, Part III

Err err;
NetSocketRef socketRef;
NetFDSetType readFDs,writeFDs,exceptFDs;
SWord numFDs;
Word width;

// Create the descriptor sets
netFDZero(&readFDs);
netFDZero(&writeFDs);
netFDZero(&exceptFDs);
netFDSet(sysFileDescStdIn, &readFDs);
netFDSet(socketRef, &readFDs);

// Calculate the max descriptor number and use
// that +1 as the max width.
// Alternatively, we could simply use the
// constant netFDSetSize as the width which is
// simpler but makes the NetLibSelect call
// slightly slower.
width = sysFileDescStdIn;
if (socketRef > width) width = socketRef;

// Wait for any one of the descriptors to be
// ready.
numFDs = NetLibSelect(AppNetRefnum, width+1,
&readFDs, &writeFDs, &exceptFDs,
AppNetTimeout, &err);

See Also NetLibSocketOptionSet

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 249

NetLibTracePrintF

Purpose Can be used by applications to store debugging information in the
net library’s trace buffer.

Prototype Err NetLibTracePrintF (Word libRefnum,
CharPtr formatStr, ...)

Parameters -> libRefNum Reference number of the net library.

-> formatStr A printf style format string.

-> ... Arguments to the format string.

Result 0 No error.

netErrNotOpen

Sockets
Equivalent

None

Comments This call is a convenient debugging tool for developing Internet ap-
plications. It will store a message into the net library’s trace buffer,
which can later be dumped using the NetLibMaster call. The net
library’s trace buffer is used to store run-time errors that the net li-
brary encounters as well as errors and messages from network inter-
faces and from applications that use this call.

The formatStr parameter is a printf style format string which
supports the following format specifiers:

%d, %i, %u, %x, %s, %c but it does NOT support field widths, lead-
ing 0’s etc.

Note that the netTracingAppMsgs bit of the
netSettingTraceBits setting must be set using the call
NetLibSettingSet(...netSettingTraceBits...). Other-
wise, this routine will do nothing.

See Also NetLibTracePutS, NetLibMaster, NetLibSettingSet

Net Library Functions
Utilities

250 Developing Palm OS 3.0 Applications, Part III

NetLibTracePutS

Purpose Can be used by applications to store debugging information in the
net library’s trace buffer.

Prototype Err NetLibTracePutS(Word libRefnum, CharPtr strP)

Parameters -> libRefNum Reference number of the net library.

-> strP String to store in the trace buffer.

Result 0 No error

netErrNotOpen

Sockets
Equivalent

None

Comments This call is a convenient debugging tool for developing internet ap-
plications. It will store a message into the net library’s trace buffer
which can later be dumped using the NetLibMaster call. The net
library’s trace buffer is used to store run-time errors that the net li-
brary encounters as well as errors and messages from network inter-
faces and from applications that use this call.

Note the netTracingAppMsgs bit of the netSettingTraceBits
setting must be set using the
NetLibSettingSet(...netSettingTraceBits...) call or
this routine will do nothing.

See Also NetLibTracePrintF, NetLibMaster, NetLibSettingSet.

Net Library Functions
Utilities

Developing Palm OS 3.0 Applications, Part III 251

NetNToHL

Purpose Converts a 32-bit value from network to host byte order.

Prototype DWord NetNToHL (DWord x)

Parameters -> x 32-bit value to convert.

Result Returns x in host byte order.

Errors none

Sockets
Equivalent

ntohl()

See Also NetNToHS, NetHToNL, NetHToNS

NetNToHS

Purpose Converts a 16-bit value from network to host byte order.

Prototype Word NetNToHS (Word x)

Parameters -> x 16-bit value to convert.

Result Returns x in host byte order.

Errors None

Sockets
Equivalent

ntohs()

See Also NetHToNL, NetNToHL, NetHToNS

Net Library Functions
Configuration

252 Developing Palm OS 3.0 Applications, Part III

Configuration

NetLibIFAttach

Purpose Attach a new network interface.

Prototype Err NetLibIFAttach (Word libRefnum,
DWord ifCreator,
Word ifInstance,
SDWord timeout)

Parameters -> libRefNum Reference number of the net library.
-> ifCreator Creator of interface to attach.
-> ifInstance Instance number of interface to attach.
-> timeout Timeout in ticks; -1 means infinite timeout.

Result 0 Success
netErrInterfaceNotFound

netErrTooManyInterfaces

Sockets
Equivalent

None

Comments This call can be used to attach a new network interface to the net li-
brary. Network interfaces are self-contained databases of type ‘neti’.
The ifCreator parameter to this function is used to locate the net-
work interface database of the given creator.

If the net library is already open when this call is made, the network
interface’s database will be located and then called to initialize itself
and attach itself to the protocol stack in real-time. If the net library is
not open when this call is made, the creator and instance number of
the interface are stored in the Net Prefs database and the interface is
initialized and attached to the stack the next time the net library is
opened.

See Also NetLibIFGet, NetLibIFDetach

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 253

NetLibIFDetach

Purpose Detach a network interface from the protocol stack.

Prototype Err NetLibIFDetach (Word libRefnum,
DWord ifCreator,
Word ifInstance,
SDWord timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to detach.

-> ifInstance Instance number of interface to detach.

-> timeout Timeout in ticks; -1 means infinite timeout.

Result 0 Success

netErrInterfaceNotFound

Sockets
Equivalent

None

Comments This call can be used to detach a network interface from the net li-
brary. If the net library is already open when this call is made, the in-
terface is brought down and detached from the protocol stack in
real-time. If the net library is not open when this call is made, the
creator and instance number of the interface are removed in the Net
Prefs database and the interface is not attached the next time the li-
brary is opened.

See Also NetLibIFGet, NetLibIFAttach

Net Library Functions
Configuration

254 Developing Palm OS 3.0 Applications, Part III

NetLibIFDown

Purpose Bring an interface down and hang up a connection.

Prototype Err NetLibIFDown (Word libRefnum,
DWord ifCreator,
Word ifInstance,
SDWord timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach.

-> timeout Timeout in ticks. -1means wait forever.

Result 0 Success

netErrNotOpen

netErrInterfaceNotFound

Sockets
Equivalent

None

Comments The net library must be open before this call can be made. For dial-
up interfaces, this call terminates a connection and hangs up the
modem if necessary.

NetLibClose automatically brings down any attached interfaces,
so this routine doesn’t normally have to be called.

If the interface is already down, this routine returns immediately
with no error.

See Also NetLibIFGet, NetLibIFAttach, NetLibIFDetach,
NetLibIFUp

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 255

NetLibIFGet

Purpose Get the creator and instance number of an installed interface by
index.

Prototype Err NetLibIFGet (Word libRefnum,
Word index,
DWordPtr ifCreatorP,
WordPtr ifInstanceP)

Parameters -> libRefNum Reference number of the net library.

-> index Index of the interface to get. Indices start at 0.

<- ifCreatorP Creator of interface is returned here.

<- ifInstanceP Instance number of interface is returned here.

Result 0 Success

netErrInvalidInterface Index too high

netErrPrefNotFound

Sockets
Equivalent

None

Comments To get a list of all installed interfaces, call this function with succes-
sively increasing indices starting from 0 until the error
netErrInvalidInterface is returned.

The ifCreator and ifInstance values returned from this call
can then be used with the NetLibSettingGet call to get more in-
formation about that particular interface.

See Also NetLibIFAttach, NetLibIFDetach

Net Library Functions
Configuration

256 Developing Palm OS 3.0 Applications, Part III

NetLibIFSettingGet

Purpose Retrieves a network interface specific setting.

Prototype Err NetLibIFSettingGet (Word libRefnum,
DWord ifCreator,
Word ifInstance,
Word setting,
VoidPtr bufP,
WordPtr bufLenP)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of the network interface.

-> ifInstance Instance number of the network interface.

-> setting Setting to retrieve; one of the
netIFSettingXXX enum constants.

-> bufP Space for return value of setting.

<-> bufLenP On entry, size of bufP. On exit, actual size of
setting.

Result 0 Success

netErrUnknownSetting Invalid setting constant.

netErrPrefNotFound No current value for setting.

netErrBufTooSmall bufP was too small to hold entire
setting. Setting value was truncated to
fit in bufP.

netErrUnimplemented

netErrInterfaceNotFound

netErrBufWrongSize

Sockets
Equivalent

None

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 257

Comments This call can be used to retrieve the current value of any network in-
terface setting. The caller must pass a pointer to a buffer to hold the
return value (bufP), the size of the buffer (*bufLenP), and the set-
ting ID (setting). The setting ID is one of the netIFSettingXXX
constants in the netSettingEnum type.

Some settings, such as the login script, are variable size. For these
types of settings, the caller can pass 0 for *bufLenP, ignore the re-
turn error code of netErrBufTooSmall, and get the actual size
from the *bufLenP variable after the call returns. The buffer can
then be allocated and the setting retrieved by passing the actual
buffer size in *bufLenP and calling NetLibSettingGet again.

The following table lists the network interface settings and the size
of each setting. Some are only applicable to certain types of interfac-
es. Settings not applicable to a specific interface can be safely ig-
nored and not set to any particular value.

Setting Type Description

ResetAll void Used for NetLibIFSettingSet only. This clears all
other settings for the interface to their default values.

Up Byte True if interface is currently up - Read-only

Name Char[32] Name of this interface - Read-only.

IPAddr DWord IP address of interface.

SubnetMask DWord Subnet mask for interface. Doesn’t need to be specified
for PPP or SLIP type connections.

Broadcast DWord Broadcast address for interface. Doesn’t need to be spec-
ified for PPP or SLIP type connections.

Username Char[32] Username. Only required if the login script uses the
username substitution escape sequence in it. Call
NetLibIFSettingSet with a bufLen of 0 to remove
this setting.

Net Library Functions
Configuration

258 Developing Palm OS 3.0 Applications, Part III

Password Char[32] Password. Optionally required if the login script uses
the password substitution escape sequence in it. Call
NetLibIFSettingSet with a bufLen of 0 to remove
this setting. If the login script uses password substitu-
tion and no password setting is set, the user will be
prompted for a password at connect time.

Dialback
Username

Char[32] Dialback Username. Only required if the login script
uses the dialback username substitution escape se-
quence in it. Call NetLibIFSettingSet with a
bufLen of 0 to remove this setting.

Dialback
Password

Char[32] Dialback Password. Optionally required if the login
script uses the dialback password substitution escape se-
quence in it. Call NetLibIFSettingSet with a bufLen
of 0 to remove this setting. If the login script uses pass-
word substitution and no password setting is set, the
user will be prompted for a password at connect time.

AuthUsername Char[32] Authentication Username. Only required if the authenti-
cation protocol uses a different username than the
what’s in the Username setting. If this setting is empty
(bufLen of 0), the Username setting will be used instead.
Call NetLibIFSettingSet with a bufLen of 0 to re-
move this setting.

AuthPassword Char[32] Authentication Password. If “$” then the user will be
prompted for the authentication password at connect
time. Else, if 0 length, then the Password setting or the
result of its prompt will be used instead. Call
NetLibIFSettingSet with a bufLen of 0 to remove
this setting.

ServiceName Char[] Service Name. Used for display purposes while showing
the connection progress dialog box. Call
NetLibIFSettingSet with a bufLen of 0 to remove
this setting.

Setting Type Description

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 259

LoginScript Char[] Login script. Only required if the particular service re-
quires a login sequence. Call NetLibIFSettingSet
with a bufLen of 0 to remove this setting. See below for a
description of the login script format.

ConnectLog Char[] Connect log. Generally, this setting is just retrieved, not
set. It contains a log of events from the most recent login.
To clear this setting, call NetLibIFSettingSet with a
bufLen of 0.

InactivityTimer Word Maximum number of seconds of inactivity allowed. Set
to 0 to ignore.

Establishment-
Timeout

Word Maximum delay, in seconds, allowed between each
stage of connection establishment or login script line.
Must be non-zero.

DynamicIP Byte If non-zero, negotiate for an IP address. If false, the IP
address specified in the IPAddr setting will be used. De-
fault is 0.

VJCompEnable Byte If non-zero, enable JV header compression. Default is
true for PPP and false for SLIP.

VJCompSlots Byte Number of slots to use for VJ compression. Default is 4
for PPP and 16 for SLIP. More slots require more memo-
ry so it is best to keep this number to a minimum.

MTU Word Maximum transmission unit in octets. Currently not im-
plemented in SLIP or PPP.

 AsyncCtlMap DWord Bitmask of characters to escape for PPP. Default is 0.

PortNum Word Which serial communication port to use. Port 0 is the
only port available on the device. Ports 0 (modem) and 1
(printer) are available on the Macintosh. Default is
port 0.

Setting Type Description

Net Library Functions
Configuration

260 Developing Palm OS 3.0 Applications, Part III

BaudRate DWord Serial port baud rate to use in bits/sec. MUST be
specified.

FlowControl Byte If bit 0 is 1, use hardware handshaking on the serial port.
Default is no hardware handshaking.

StopBits Byte Number of stop bits. Default is 1.

ParityOn Byte True if parity detection enabled. Default is false.

ParityEven Byte True for even parity detection. Default is true.

UseModem Byte If true, dial-up through modem. If false, go direct over
serial port

PulseDial Byte If true, pulse dial modem. Else, tone dial. Default is tone
dial.

ModemInit Char[] Zero-terminated modem initialization string, not includ-
ing the “AT”. If not specified (bufLen of 0), the modem
init string from system preferences are used.

ModemPhone Char[] Zero-terminated modem phone number string. Only re-
quired if UseModem is true.

RedialCount Word Number of times to redial modem when trying to estab-
lish a connection. Only required if UseModem is true.

TraceBits DWord A bitfield of various trace bits (netTracingXXX). De-
fault value is netTracingErrors which tells the inter-
face to record only run-time errors in the trace buffer. An
application can get a list of events in the trace buffer
using the NetLibMaster call. Each interface has its
own trace bits setting so that trace event recording in
each interface can be selectively enabled or disabled.

Setting Type Description

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 261

As noted above, the netIFSettingLoginScript setting is used
to store the login script for an interface. The login script format is a
rigidly formatted text string designed to be generated programmati-
cally from user input. If a syntactically incorrect login script is pre-
sented to the net library, the results will be unpredictable. The basic
format is a series of null terminated command lines followed by a
null byte at the end of the script. Each command line has the format:

<command-byte> [<parameter>]

where the command byte is the first character in the line and there is
1 and only 1 space between the command byte and the parameter
string. Following is a list of possible commands:

GlobalsPtr DWord Read-only. Interfaces pointer to its global variables.

ActualIPAddr DWord Read-only. The actual IP address that the interface ends
up using. The login script execution engine stores the re-
sult of the “g” (get IP address) command here as does
the PPP negotiation logic.

Setting Type Description

 Function Command Parameter Example

send s <string> ’s go PPP’

wait w <string> ’w password:’

delay d <seconds> ’d 1’

parity p e|o|n ’p n’

data bits b 7|8 ’b 8’

getIPAddr g ’g’

Net Library Functions
Configuration

262 Developing Palm OS 3.0 Applications, Part III

The parameter string to the send (’s’) command can contain the fol-
lowing escape sequences:

See Also NetLibIFSettingSet, NetLibSettingGet,
NetLibSettingSet

ask a <string> ’a Enter Name:’

callback c <seconds> ’c 30’
// hang up and wait
30 sec.s for callback

 Function Command Parameter Example

$USERID substitutes user name

$PASSWORD substitutes password

$DBUSERID substitutes dialback user name

$DBPASSWORD substitutes dialback password

 ^c if c is ‘@’ -> ‘_’, then byte value 0 -> 31
else if c is ‘a’ -> ‘z’, then byte value 1 -> 26
else c

<cr> carriage return (0x0D)

<lf> line feed (0x0A)

\" "

 \^ ^

 \< <

 \\ \

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 263

NetLibIFSettingSet

Purpose Sets a network interface specific setting.

Prototype Err NetLibIFSettingSet (Word libRefnum,
DWord ifCreator,
Word ifInstance,
Word setting,
VoidPtr bufP,
Word bufLen)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of the network interface.

-> ifInstance Instance number of the network interface.

-> setting The setting to retrieve, one of the
netSettingXXX enum constants.

-> bufP Space for return value of setting.

-> bufLen Size of new setting.

Result 0 Success.

netErrUnknownSetting Invalid setting constant.

netErrPrefNotFound No current value for setting.

netErrBufTooSmall bufP was too small to hold entire
setting. Setting value was truncated
to fit in bufP.

netErrUnimplemented

netErrInterfaceNotFound

netErrBufWrongSize

netErrReadOnlySetting

Sockets
Equivalent

None

Net Library Functions
Configuration

264 Developing Palm OS 3.0 Applications, Part III

Comments This call can be used to set the current value of any network inter-
face setting. The caller must pass a pointer to a buffer which holds
the new value (bufP), the size of the buffer (bufLen), and the set-
ting ID (setting). The setting ID is one of the netIFSettingXXX
constants in the netSettingEnum type.

See NetLibIFSettingGet for an explanation of each of the
settings.

Of particular interest is the netIFSettingResetAll setting,
which, if used, resets all settings for the interface to their default val-
ues. When using this setting, bufP and bufLen are ignored.

See Also NetLibIFSettingGet, NetLibSettingGet,
NetLibSettingSet

NetLibIFUp

Purpose Bring an interface up and establish a connection.

Prototype Err NetLibIFUp (Word libRefnum,
DWord ifCreator,
Word ifInstance)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach.

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 265

Result 0 Success

netErrNotOpen

netErrInterfaceNotFound

netErrUserCancel

netErrBadScript

netErrPPPTimeout

netErrAuthFailure

netErrPPPAddressRefused

Sockets
Equivalent

None

Comments The net library must be open before this call can be made. For dial-
up interfaces, this call will dial up the modem if necessary and run
through the connect script to establish the connection.

Important: Some interfaces need or want to display UI to show
progress information as the connection is established so. THIS
ROUTINE MUST BE CALLED FROM THE UI TASK!

NetLibOpen calls this routine for every interface that was specified
as attached in its preferences. NetLibOpen must therefore be called
from the UI task as well.

If the interface is already up, this routine returns immediately with
no error. This call doesn’t take a timeout parameter because it relies
on each interface to have its own established timeout setting.

See Also NetLibIFGet, NetLibIFAttach, NetLibIFDetach,
NetLibIFDown

Net Library Functions
Configuration

266 Developing Palm OS 3.0 Applications, Part III

NetLibSettingGet

Purpose Retrieves a general setting.

Prototype Err NetLibSettingGet (Word libRefnum,
Word setting,
VoidPtr bufP,
WordPtr bufLenP)

Parameters -> libRefNum Reference number of the net library.

-> setting Setting to retrieve, one of the netSettingXXX
enum constants.

-> bufP Space for return value of setting.

<-> bufLenP On entry, size of bufP. On exit, actual size of
setting.

Result 0 Success

netErrUnknownSetting Invalid setting constant

netErrPrefNotFound No current value for setting

netErrBufTooSmall bufP was too small to hold entire
setting. Setting value was truncated
to fit in bufP.

netErrBufWrongSize

Sockets
Equivalent

None

Comments This call retrieves the current value of any general setting. The caller
must pass a pointer to a buffer to hold the return value (bufP), the
size of the buffer (*bufLenP), and the setting ID (setting). The
setting ID is one of the netSettingXXX constants in the
netSettingEnum type.

Some settings are variable size, like the host table for example. For
these types of settings, the caller can pass 0 for *bufLenP, ignore the
return error code of netErrBufTooSmall, and get the actual size

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 267

from the *bufLenP variable after the call returns. The buffer can
then be allocated and the setting retrieved by passing the actual
buffer size in *bufLenP and calling NetLibSettingGet again.

The following table lists the general settings and the type of each
setting.

Setting Type Description

ResetAll void Used for NetLibSettingSet only. This will clear all
other settings to their default values.

PrimaryDNS DWord IP address of primary DNS server. This setting MUST
be set to a non-zero IP address in order to support any
of the name lookup calls.

SecondayDNS DWord IP address of primary DNS server. Set to 0 to have
stack ignore this setting.

DefaultRouter DWord IP address of default router. Default value is 0 which is
appropriate for most implementations with only 1 at-
tached interface (besides loopback). Packets with desti-
nation IP addresses that don’t lie in the subnet of an at-
tached interface will be sent to this router through the
default interface specified by the
DefaultIFCreator/DefaultIFInstance pair.

DefaultIFCreator DWord Creator of the default network interface. Default value
is 0, which is appropriate for most implementations.
Packets with destination IP addresses that don’t lie in
the subnet of a directly attached interface are sent
through this interface. If this setting is 0, the stack auto-
matically makes the first non-loopback interface the
default interface.

DefaultIFInstance Word Instance number of the default network interface.
Packets with destination IP addresses that don’t lie in
the subnet of an attached interface are sent through the
default interface. Default value is 0.

Net Library Functions
Configuration

268 Developing Palm OS 3.0 Applications, Part III

HostName Char[] A zero-terminated character string of 64 bytes or less
containing the host name of this machine. This setting
is not actually used by the stack. It’s present mainly for
informative purposes and to support the
gethostname/sethostname sockets API calls. To
clear the host name, call NetLibIFSettingSet with
a bufLen of 0.

DomainName Char[] A zero-terminated character string of 256 bytes or less
containing the default domain. This default domain
name is appended to all host names before name look-
ups are performed. If the name is not found, the host
name is looked up again without appending the do-
main name to it. To have the stack not use the domain
name, call NetLibIFSettingSet with a bufLen
of 0.

HostTbl Char[] A zero-terminated character string containing the host
table. This table is consulted first before sending a DNS
query to the DNS server(s). To have the stack not use a
host table, call NetLibIFSettingSet with a bufLen
of 0. The format of a host table is a series of lines sepa-
rated by ‘\n’ in the following format:host.compa-
ny.com A 111.222.333.444

CloseWaitTime DWord The close-wait time in milliseconds. This setting MUST
be specified. See the discussion of the NetLibOpen
and NetLibClose calls for an explanation of the
close-wait time.

TraceBits DWord A bitfield of various trace bits (netTracingXXX). De-
fault value is (netTracingErrors |
netTracingAppMsgs) which tells the net library to
record only run-time errors and application trace mes-
sages in its trace buffer. An application can get a list of
events in the trace buffer using the NetLibMaster
call.

Setting Type Description

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 269

See Also NetLibSettingSet, NetLibIFSettingSet,
NetLibIFSettingGet, NetLibMaster

TraceSize DWord Maximum trace buffer size in bytes. Setting this setting
always clears the existing trace buffer. Default is 2 KB.

TraceRoll Byte Boolean value, default is true (non-zero). If true, trace
buffer will roll over when it fills. If false, tracing will
stop as soon as trace buffer fills.

Setting Type Description

Net Library Functions
Configuration

270 Developing Palm OS 3.0 Applications, Part III

NetLibSettingSet

Purpose Sets a general setting.

Prototype Err NetLibSettingSet (Word libRefnum,
Word setting,
VoidPtr bufP,
Word bufLen)

Parameters -> libRefNum Reference number of the net library.

-> setting Setting to retrieve; one of the netSettingXXX
enum constants.

-> bufP Space for return value of setting.

-> bufLen Size of new setting.

Result 0 Success

netErrUnknownSetting Invalid setting constant.

netErrInvalidSettingSize
bufLen was invalid for the given
setting.

netErrBufTooSmall bufP was too small to hold entire
setting. Setting value was truncated
to fit in bufP.

netErrBufWrongSize

netErrReadOnlySetting

Sockets
Equivalent

None

Net Library Functions
Configuration

Developing Palm OS 3.0 Applications, Part III 271

Comments This call can be used to set the current value of any general setting.
The caller must pass a pointer to a buffer which holds the new value
(bufP), the size of the buffer (bufLen), and the setting ID
(setting). The setting ID is one of the netSettingXXX constants
in the netSettingEnum type.

See NetLibSettingGet for an explanation of each of the settings.

Of particular interest is the netSettingResetAll setting, which,
if used, will reset all general settings to their default values. When
using this setting, bufP and bufLen are ignored.

See Also NetLibSettingGet, NetLibSettingSet,
NetLibIFSettingSet, NetLibMaster

Net Library Functions
Berkeley Sockets API Calls

272 Developing Palm OS 3.0 Applications, Part III

Berkeley Sockets API Calls
When the <sys/socket.h> header file is included, code written to
the Berkeley sockets API can be compiled for the Palm OS environ-
ment with little or no source code modifications. The
<sys/socket.h> header file contains a set of macros which map
Berkeley sockets API calls into net library and Palm OS calls. In ad-
dition, a Palm OS application using the sockets API must link with
the module NetSocket.c which contains glue code and global
variables used by the sockets API.

Before an application can use any sockets API calls, it must open the
net library as described in Initialization and Shutdown. The code
fragment in that section correctly sets up the application global vari-
able AppNetRefnum with the refnum of the net library which is
used by the sockets API macros.

Another important global declared in “NetSocket.c” is
AppNetTimeout. This global gets passed as the timeout parame-
ter to the native net library call by sockets API macros. This timeout
variable is a 32-bit value representing the maximum number system
ticks to wait. Most applications will probably want to adjust this
timeout value and possibly adjust it for different sections of code.

Finally, the global errno must be declared in the application’s own
source code UNLESS the application is linked with the standard C
library which also declares it.

The following code fragment illustrates the above steps:

#include <sys/socket.h>
....
// Declare errno global; we don’t link with stdlib
Err errno;
...
// Open up the net library
err = SysLibFind("Net.lib", &AppNetRefnum);
if (err) {/* error handling here */}
err = NetLibOpen(AppNetRefnum, &ifErrs);
if (err || ifErrs) {/* error handling here */}

Net Library Functions

Net Library Functions
Supported Socket Functions

Developing Palm OS 3.0 Applications, Part III 273

// Change the default timeout
AppNetTimeout = SysTicksPerSecond() * 10;

// 10 seconds.

The following section list the calls in the Berkeley sockets API which
are supported by the net library. In some cases, the calls have limit-
ed functionality from what’s found in a full implementation of the
sockets API and these limitations are described here.

Supported Socket Functions

Function Description

bind() This function binds a socket to a local address

close() This function closes a socket

connect() This function connects a socket to a remote endpoint to establish a
connection.

fcntl() This function is supported only for socket refnums and the only
commands it supports are F_SETFL and F_GETFL. The
commands can be used to put a socket into non-blocking mode by
setting the FNDELAY flag in the argument parameter
appropriately — all other flags are ignored. The F_SETFL,
F_GETFL, and FNDELAY constants are defined in
<unix/fcntl.h>.

getpeername() This function gets the remote socket address for a connection.

getsockname() This function gets the local socket address of a connection.

getsockopt() This function gets control options of a socket. Only the following
options are implemented:

TCP_NODELAY This option returns the current state of the TCP_NODELAY
option. This option allows the application to disable the TCP
output buffering algorithm so that TCP sends small packets as
soon as possible. This constant is defined in <netinet/tcp.h>.

Net Library Functions
Supported Socket Functions

274 Developing Palm OS 3.0 Applications, Part III

TCP_MAXSEG This option allows the application to get the TCP maximum
segment size. This constant is defined in <netinet/tcp.h>.

SO_KEEPALIVE This option returns the keep-alive state. Keep-alive enables
periodic transmission of probe segments when there is no data
exchanged on a connection. If the remote endpoint doesn’t
respond, the connection is considered broken, and so_error is
set to ETIMEOUT.

SO_LINGER This option specifies what to do with the unsent data when a
socket is closed. It uses the linger structure defined in
sys/socket.h.

SO_ERROR This option returns the current value of the variable so_error,
defined in sys/socketvar.h.

SO_TYPE This option returns the socket type to the caller.

listen() Sets up the socket to listen for incoming connection requests. The
queue size is quietly limited to 1.

read(), recv(),
recvmsg(),
recvfrom()

These functions read data from a socket. The recv, recvmsg, and
recvfrom calls support the MSG_PEEK flag but NOT the
MSG_OOB or MSG_DONTROUTE flags.

Function Description

Net Library Functions
Supported Socket Functions

Developing Palm OS 3.0 Applications, Part III 275

select() This function allows the application to block on multiple I/O
events. The system will wake up the application process when any
of the multiple I/O events occurs.
This function uses the timeval structure defined in
<sys/time.h> and the fd_set structure defined in
sys/types.h.
Also associated with this function are the following four macros
defined in sys/types.h
FD_ZERO()
FD_SET()
FD_CLR()
FD_ISSET()
Besides socket descriptors, this function also works with the “st-
din” descriptor, sysFileDescStdIn. This descriptor is marked
as ready for input whenever a user or system event is available in
the event queue. This includes any event that would be returned
by EvtGetEvent. No other descriptors besides
sysFileDescStdIn and socket refnums are allowed.

send(),
sendmsg(),
sendto()

These functions write data to a socket. These calls, unlike the recv
calls, do support the MSG_OOB flag. The MSG_PEEK flag is not
applicable and the MSG_DONTROUTE flag is not supported.

setsockopt() This function sets control options of a socket. Only the following
options are allowed:

TCP_NODELAY This option allows the application to disable the TCP output
buffering algorithm so that TCP sends small packets as soon as
possible. This constant is defined in netinet/tcp.h.

SO_KEEPALIVE This option enables periodic transmission of probe segments
when there is no data exchanged on a connection. If the remote
endpoint doesn’t respond, the connection is considered broken,
and so_error is set to ETIMEOUT.

SO_LINGER This option specifies what to do with the unsent data when a
socket is closed. It uses the linger structure defined in
sys/socket.h.

Function Description

Net Library Functions
Supported Network Utility Functions

276 Developing Palm OS 3.0 Applications, Part III

Supported Network Utility Functions

shutdown() This function is similar to close(); however, it gives the caller
more control over a full-duplex connection.

socket() This function creates a socket for communication.The only valid
address family is AF_INET. The only valid socket types are
SOCK_STREAM and SOCK_DGRAM; SOCK_RAW is not
supported. The protocol parameter should be set to 0.

write() This function writes data to a socket.

Function Description

Function Description

getdomainname() This function returns the domain name of the local host

gethostbyaddr() This function looks up host information given the host’s IP
address. It returns a hostent structure, is defined in <netdb.h>.

gethostbyname() This function looks up host information given the host’s name. It
returns a hostent structure which is defined in <netdb.h>.

gethostname() This function returns the name of the local host

getservbyname() This function returns a servent structure, defined in <netdb.h>
given a service name.

gettimeofday() This function returns the current date and time.

setdomainname() This function sets the domain name of the local host

sethostname() This function sets the name of the local host

settimeofday() This function sets the current date and time.

Net Library Functions
Supported Byte Ordering Functions

Developing Palm OS 3.0 Applications, Part III 277

Supported Byte Ordering Functions
The byte ordering functions are defined in <netinet/in.h>.
They convert and integer between network byte order and the host
byte order.

Supported Network Address Conversion
Functions

The network address conversion functions are declared in the
<arpa/inet.h> header file. They convert a network address from
one format to another, or manipulate parts of a network address.

Function Description

htonl() Converts a 32-bit integer from host byte order to network byte order.

htons() Converts a 16-bit integer from host byte order to network byte order.

ntohl() Converts a 32-bit integer from network byte order to host byte order.

ntohs() Converts a 16-bit integer from network byte order to host byte order.

Function Description

inet_addr() Converts an IP address from dotted decimal format to 32-bit binary
format.

inet_network() Converts an IP network number from a dotted decimal format to a
32-bit binary format

inet_makeaddr() Returns an IP address in an in_addr structure given an IP network
number and an IP host number in 32-bit binary format.

inet_lnaof() Returns the host number part of an IP address.

Net Library Functions
Supported System Utility Functions

278 Developing Palm OS 3.0 Applications, Part III

Supported System Utility Functions
The following byte operation functions are not related to network
API per se. However, they are almost always used in BSD network
application source.

inet_netof() Returns the network number part of an IP address.

inet_ntoa() Converts an IP address from 32-bit format to dotted decimal
format.

Function Description

Function Description

bcopy() This function copies a block of data from one memory location to another.

bzero() This function sets a buffer to all zeros.

bcmp() This function compares data stored in two buffers.

sleep() This function causes the current task to sleep for a given period of time.

Developing Palm OS 3.0 Applications, Part III 279

8
Exchange Manager
The Palm OS exchange manager provides a simple interface for
Palm OS applications to send and receive typed data from any num-
ber of remote devices and protocols. The device at the remote end of
a connection does not need to know it is talking to a Palm OS de-
vice. The exchange manager can be used with industry standard
protocols and data formats. The burden of understanding the proto-
cols and data formats is on the Palm OS application using the ex-
change manager.

The exchange manager was developed to provide a facility by
which Palm OS applications could communicate directly with exter-
nal devices and foreign data formats, without having to be tied to
the HotSync mechanism and conduits. In the increasingly complex
world of the Internet, wireless communications, and infrared com-
munications, it cannot be expected that all these modes of commu-
nication must support HotSync and provide the appropriate con-
duits on the other end. The Palm OS device must be able to deal
directly with foreign data formats since there will not be conduits on
the remote end to prepare the data. The data may also be sent with-
out regard to the version or even the existence of particular software
on the device.

Overview
The exchange manager is designed as a generic communications fa-
cility by which typed data objects can be sent and received. It is de-
signed to support a variety of underlying transport mechanisms.
Currently, the exchange manager supports only the IR (beaming) ca-
pability of the Palm III devices (and upgraded PalmPilot devices).

Exchange Manager
Exchange Manager and Launch Codes

280 Developing Palm OS 3.0 Applications, Part III

NOTE: When used for IR communication, the exchange manag-
er uses the OBEX IrDA protocol. The only level of OBEX support-
ed currently is for the Put operation. The Palm III can act as both a
client and a server.

The exchange manager API provides a mechanism for exchanging
typed data objects between applications. An object is a stream of
bytes with some information about its contents attached. The con-
tent information includes a creator ID, a MIME data type and an op-
tional filename. An application that wants to send data using the ex-
change manager must provide at least one of these pieces of
information. An application that is able to receive an object registers
itself with the exchange manager (ExgRegisterData) and speci-
fies what data types and file extensions it can accept.

A key data structure used by the exchange manager is the
ExgSocketType data type. This exchange socket structure defines
information about the connection and the type of data to be
exchanged. When you are sending data, you must supply this
structure with the appropriate information filled in. When you are
receiving, this structure gives you information about the connection
and the incoming data. (Note that the use of the term “socket” in the
exchange manager API is not related to the term “socket” as used in
sockets communication programming.)

Exchange Manager and Launch Codes
When receiving incoming data, the exchange manager communi-
cates with applications via launch codes. The exchange manager
sends an application a series of three launch codes when it receives
data for it. These are:
• sysAppLaunchCmdExgAskUser

• sysAppLaunchCmdExgReceiveData

• sysAppLaunchCmdGoto

The exchange manager sends the first launch code,
sysAppLaunchCmdExgAskUser, when it has determined that in-
coming data is destined for a particular application (based on which

Exchange Manager
Exchange Manager and Launch Codes

Developing Palm OS 3.0 Applications, Part III 281

application has registered to receive data of that type). This launch
code lets the application tell the exchange manager whether or not
to display a dialog asking the user if they want to accept the data. If
the application chooses not to handle this launch command, the de-
fault course of action is that the exchange manager displays a dialog
asking the user if they want to accept the incoming data. In most
cases, applications won’t need to handle this launch code, since the
default action is the preferred alternative.

The application can respond to this launch code by setting the
result field in the parameter block to the appropriate value. If it
wants to allow the exchange manager to display a dialog, it should
leave the result field set to exgAskDialog (the default value). To
disable display of the dialog and to automatically accept the incom-
ing data (as if the user had pressed OK in the dialog), set the
result field to exgAskOk. To disable display of the dialog and to
automatically reject the incoming data (as if the user had pressed
Cancel in the dialog), set the result field to exgAskCancel. In the
later case, the data is discarded and no further action is taken by the
exchange manager.

If the application sets the result field to exgAskOk, or the dialog is
displayed and the user presses the OK button, then the exchange
manager sends the application the next launch code, sysAp-
pLaunchCmdExgReceiveData, so that it can actually receive the
data. This launch code notifies the application that it should receive
the data.

The application should use the exchange manager functions Ex-
gAccept, ExgReceive, and ExgDisconnect to receive the data
and store it or do whatever it needs to with the data.

The parameter block sent with this launch code is of the ExgSock-
etPtr data type. It is a pointer to the ExgSocketType structure
corresponding to the exchange manager connection via which the
data is arriving. You will need to pass this pointer to the ExgAc-
cept function to begin receiving the data. Note that in the socket
structure, the length field may not be accurate, so in your receive
loop you should be flexible in handling more or less data than
length specifies.

Exchange Manager
Exchange Manager Function Summary

282 Developing Palm OS 3.0 Applications, Part III

After you have finished receiving the data and before you return
from the PilotMain routine, you must set up the goToCreator
and goToParams fields in the socket structure. Set in the goToCre-
ator field the creator ID of the application that should be launched
to view the received data (normally the same application that re-
ceived the data). If no application should be launched, then set this
to NULL. Set in the goToParams structure information that identi-
fies the record to go to when the application is launched. It is recom-
mended that you use a unique ID to identify the record, rather than
the record index, since indexes might change. You can put unique
ID information into the goToParams.matchCustom field.

Note that the application may not be the active application, and
thus may not have globals available when it is launched with this
launch code. Be sure to check if you have globals available and don’t
try to access them if they are not available.

Assuming that everything has proceeded normally, the exchange
manager again launches the application identified in the goToCre-
ator field of the socket structure with the sysAppLaunchCmdGo-
to launch code. This allows the user to view the received item.

Exchange Manager Function Summary
The following functions are available for application use:

• ExgAccept

• ExgDBRead

• ExgDBWrite

• ExgDisconnect

• ExgPut

• ExgReceive

• ExgRegisterData

• ExgSend

Exchange Manager
Exchange Manager Functions

Developing Palm OS 3.0 Applications, Part III 283

Exchange Manager Functions

ExgAccept

Purpose Accepts a connection from a remote device.

Prototype Err ExgAccept (ExgSocketPtr socketP)

Parameters --> socketP Pointer to the socket structure.

Result Returns the following result codes:

Comments An application calls this function when it has been called with the
special application launch code
sysAppLaunchCmdExgReceiveData. The application is passed
socketP as a parameter and it should pass this parameter to Ex-
gAccept to accept the connection. Then call ExgReceive one or
more times to receive the data.

See Also ExgReceive

0 No error

exgErrBadLibrary Couldn't find default exchange library

exgErrStackInit Couldn't initialize the IR stack (not
enough battery power or unsupported
hardware)

Exchange Manager
Exchange Manager Functions

284 Developing Palm OS 3.0 Applications, Part III

ExgDBRead

Purpose Reads a Palm OS database in its internal format and writes it to stor-
age RAM. For example, this function might read in a database trans-
mitted by a beaming operation using the exchange manager.

Prototype Err ExgDBRead (ExgDBReadProcPtr readProcP,
ExgDBDeleteProcPtr deleteProcP,
void* userDataP,
LocalID* dbIDP,
Int cardNo,
Boolean* needResetP,
Boolean keepDates)

Parameters --> readProcP A pointer to a function that you supply that
reads in the database and passes it to
ExgDBRead. See the Comments section for
details.

--> deleteProcP A pointer to a function that is called if a data-
base with an identical name already exists on
the device, so you can erase it before
ExgDBRead stores the received database. See
the Comments section for details.

--> userDataP A pointer to any data you want to pass to either
the readProcP or deleteProcP functions.

<-- dbIDP The id of the database that ExgDBRead created
on the local device.

<-- cardNo The number of the card on which the database
was stored by ExgDBRead.

<-- needResetP Set to TRUE by ExgDBRead if the
dmHdrAttrResetAfterInstall attribute
bit is set in the received database.

--> keepDates Specify TRUE to retain the creation, modifica-
tion, and last backup dates as set in the received
database header. Specify FALSE to reset these
dates to the current date.

Exchange Manager
Exchange Manager Functions

Developing Palm OS 3.0 Applications, Part III 285

Result Returns 0 if successful; otherwise, returns one of the data manager
error codes (dmErr...) or a callback-specific error code (if the
readProcP function returns an error, it is also returned by
ExgDBRead).

Comments The readProcP parameter points to a function that you supply and
that is called by ExgDBRead to read in a database. The read callback
function is called with three parameters, as follows:

--> void* dataP A pointer to a buffer where this function should
place the database data.

<--> ULong* sizeP
The size of dataP. This value is set by
ExgDBRead to the number of bytes it expects to
receive in dataP. You must set this value to the
number of bytes you return in dataP (if it’s not
the same).

--> void* userDataP
The userDataP parameter passed to
ExgDBRead is simply passed on to the read
function. You can use it for application-specific
data.

The read callback function should return an error number, or 0 if
there is no error. If the callback function returns an error,
ExgDBRead deletes the database it was creating, cleans up any
memory it allocated, then exits, returning the error passed back
from the callback function.

The read callback function is called multiple times by ExgDBRead.
Each time, it passes in sizeP the number of bytes it expects to re-
ceive in the next chunk you are to return in dataP. In sizeP, it’s im-
portant to set the number of bytes that you actually place in dataP,
if it’s not the same as what ExgDBRead expected. ExgDBRead stops
calling the read callback function after it receives the entire database
(it knows when it’s got it all based on the header information).

The deleteProcP function is called if ExgDBRead finds that an
identically named database already exists on the local device. This
delete callback function gives you a chance to delete the existing

Exchange Manager
Exchange Manager Functions

286 Developing Palm OS 3.0 Applications, Part III

database, or take some other action (such as changing the database
name, if appropriate).

The delete callback function is called with five parameters, as
follows:

const char* nameP
A pointer to the name of the identical database
that already exists.

Word version The version of the identical database that al-
ready exists.

Int cardNo The card number of the identical database that
already exists.

LocalID dbID The database ID of the identical database that
already exists.

void* userDataP
The userDataP parameter passed to
ExgDBRead is simply passed on to the delete
function. You can use it for application-specific
data.

The delete callback function should return a Boolean value. TRUE
means that the delete callback function handled the situation suc-
cessfully; that is, it deleted, renamed, or moved the database so
there would no longer be a conflict with the one that ExgDBRead is
writing. FALSE means that the delete callback function did not han-
dle the situation successfully; in this case, ExgDBRead exits with no
error (same as if the user cancelled the operation).

See Also ExgDBWrite

ExgDBWrite

Purpose Reads a given Palm OS database in its internal format from the local
device and writes it out using a function you supply. For example,
this function might read a local database and transmit it by a beam-
ing operation using the exchange manager.

Exchange Manager
Exchange Manager Functions

Developing Palm OS 3.0 Applications, Part III 287

Prototype Err ExgDBWrite (ExgDBWriteProcPtr writeProcP,
void* userDataP,
const char* nameP,
LocalID dbID,
Int cardNo)

Parameters --> writeProcP A pointer to a function that you supply that
writes out the database identified by dbID. See
the Comments section for details.

--> userDataP A pointer to any data you want to pass to the
writeProcP function.

--> nameP A pointer to the name of the database that you
want ExgDBWrite to read and pass to
writeProcP.

--> dbID The id of the database that you want
ExgDBWrite to read and pass to writeProcP.
If you don’t supply an ID, then nameP is used
to search for the database by name.

--> cardNo The number of the card on which to look for the
database identified by nameP.

Result Returns 0 if successful; otherwise, returns one of the data manager
error codes (dmErr...) or a callback-specific error code (if the
writeProcP function returns an error, it is also returned by
ExgDBWrite).

Comments The writeProcP parameter points to a function that you supply
and that is called by ExgDBWrite to write out a database. For ex-
ample, you might use this function to call exchange manager func-
tions to beam the database to another unit.

The write callback function is called with three parameters, as
follows:

--> void* dataP A pointer to a buffer containing the database
data, placed there by ExgDBWrite.

Exchange Manager
Exchange Manager Functions

288 Developing Palm OS 3.0 Applications, Part III

<--> ULong* sizeP
The number of bytes placed in dataP by
ExgDBWrite. If you were unable to write out
or send all of the data in this chunk, on exit, you
should set sizeP to the number of bytes you
did write out.

--> void* userDataP
The userDataP parameter passed to
ExgDBWrite is simply passed on to the write
function. You can use it for application-specific
data.

The write callback function should return an error number, or 0 if
there is no error. If the callback function returns an error,
ExgDBWrite closes the database it was reading, cleans up any
memory it allocated, then exits, returning the error passed back
from the callback function.

The write callback function is called multiple times by
ExgDBWrite. In the sizeP parameter, ExgDBWrite passes the
number of bytes in dataP. Due to transport errors, timeouts, or
other problems, you may not be able to successfully send all this
data. If you didn’t handle it all, it’s important to set in sizeP the
number of bytes that you did handle successfully. ExgDBWrite
stops calling the write callback function after you write out the en-
tire database (it knows when you’ve done it all based on the header
information and number of bytes you return in sizeP each time).

See Also ExgDBRead

ExgDisconnect

Purpose Terminates an exchange manager transfer and disconnects.

Prototype Err ExgDisconnect(ExgSocketPtr socketP, Err error)

Exchange Manager
Exchange Manager Functions

Developing Palm OS 3.0 Applications, Part III 289

Parameters --> socketP Pointer to the socket structure identifying the
connection to terminate.

--> error Any application error that occurred.

Result Returns the following result codes:

Comments In the error parameter, pass any error that occurs during the appli-
cation loop, including errors returned from other exchange manager
functions. This ensures that the connection is shut down knowing
that it failed rather than succeeded.

It’s especially important to check the result code from this function,
since this will tell you if the transfer was successful. A 0 return value
means that the item was delivered to the destination successfully. It
does not mean that the user on the other end actually kept the data.

ExgDisconnect is used for sending and receiving. When receiv-
ing, the application can insert its creator ID into the goToCreator
field in the socket structure and add other goto information. After
the application returns from the
sysAppLaunchCmdExgReceiveData call, the system will launch
the application with a standard sysAppLaunchCmdGoto launch
code built from the information in the socket header gotoParams
field.

See Also ExgPut, ExgReceive, ExgSend

0 No error

exgErrBadLibrary Couldn't find default exchange library

exgMemError Couldn't read data to send

exgErrUserCancel User cancelled transfer

Exchange Manager
Exchange Manager Functions

290 Developing Palm OS 3.0 Applications, Part III

ExgPut

Purpose Initiates the transfer of data to the destination device.

Prototype Err ExgPut (ExgSocketPtr socketP)

Parameters --> socketP Pointer to the socket structure containing con-
nection information and information identify-
ing the object to send.

Result Returns the following result codes:

Comments If the connection does not already exist, this function establishes
one. You must create and pass a pointer to an ExgSocketType
structure containing information about the data to send and the des-
tination application. All unused fields in the structure MUST be
zeroed.

If no error is returned, this call MUST be followed by ExgSend, to
begin sending data, or ExgDisconnect, to disconnect. You may
need to call ExgSend multiple times to send all the data.

See Also ExgDisconnect, ExgSend

0 No error

exgErrBadLibrary Couldn't find default exchange library

exgErrStackInit Couldn't initialize the IR stack (not
enough battery power or unsupported
hardware)

exgMemError Not enough memory to initialize transfer

Exchange Manager
Exchange Manager Functions

Developing Palm OS 3.0 Applications, Part III 291

ExgReceive

Purpose Receives data from a remote device.

Prototype ULong ExgReceive (ExgSocketPtr socketP,
VoidPtr bufP,
const ULong bufLen,
Err * errP)

Parameters --> socketP Pointer to the socket structure.

--> bufP Pointer to the buffer to receive the data.

--> bufLen Number of bytes to receive.

<-- errP Pointer to an error code result.

Result Returns the number of bytes actually received. A zero result indi-
cates the end of the transmission. An error code is returned in the
address indicated by err. The error code exgErrUserCancel is
returned if the user cancels the operation.

Comments Call this function one or more times to receive all the data, following
a successful call to ExgAccept. After receiving the data, call
ExgDisconnect to terminate the connection.

This function blocks the application until the end of the transmis-
sion or until the requested number of bytes has been received. How-
ever, it does provide its own user interface that will be updated as
necessary and will allow the user to cancel the operation in
progress.

See Also ExgAccept, ExgDisconnect

Exchange Manager
Exchange Manager Functions

292 Developing Palm OS 3.0 Applications, Part III

ExgRegisterData

Purpose Registers an application to receive a specific type of data.

Prototype Err ExgRegisterData (const DWord creatorID,
const Word id,
const Char * const

dataTypesP)

Parameters --> creatorID Creator ID of the registering application.

--> id Registry ID identifying the type of the items
being registered. Specify
exgRegExtensionID or exgRegTypeID.

--> dataTypesP Pointer to a tab-delimited, null-terminated
string listing the items to register. These include
file extensions or MIME types. To unregister,
pass a null value.

Result Returns 0 if successful, otherwise, one of the data manager error
codes (dmErr...).

Exchange Manager
Exchange Manager Functions

Developing Palm OS 3.0 Applications, Part III 293

Comments Applications that wish to receive data from anything other than an-
other Palm OS device running the same application, must use this
function to register for the kinds of data they can receive. Call this
function when your application is loaded on the device.

Specify the exgRegExtensionID id to register to receive data that
has a filename with a particular extension. For example, if your ap-
plication wants to receive files with a .TXT extension, it could regis-
ter like this:

ExgRegisterData(myCreator, exgRegExtensionID,
"TXT");

Specify the exgRegTypeID id to register to receive data with a spe-
cific MIME type. For example, if your application wants to receive
“setext” text files, it could register like this:

ExgRegisterData(myCreator, exgRegTypeID,
"text/x-setext");

Registrations are active until the device is hard reset or until the ap-
plication is removed. The registration information is backed up and
restored across a soft reset. When an application is removed, its reg-
istry information is also automatically removed from the registry, so
there is not normally a need to unregister. If you want to unregister,
you can register with a nil value.

Exchange Manager
Exchange Manager Functions

294 Developing Palm OS 3.0 Applications, Part III

ExgSend

Purpose Sends data to the destination device.

Prototype ULong ExgSend (ExgSocketPtr socketP,
const void * const bufP,
const ULong bufLen,
Err * errP)

Parameters --> socketP Pointer to the socket structure.

--> bufP Pointer to the data to send.

--> bufLen Number of bytes to send.

<-- errP Pointer to an error code result.

Result Returns the number of bytes sent, normally the same number as
specified in bufLen. An error code is returned in the address indi-
cated by err. The error code exgErrUserCancel is returned if the
user cancels the operation.

Comments Call this function one or more times to send all the data, following a
successful call to ExgPut. After sending the data, call
ExgDisconnect to terminate the connection.

The lower level protocol may break large amounts of data into mul-
tiple packets or assemble small send commands together into larger
packets, but the application will not be aware of these transport
level details.

This function blocks the application until all the data is sent. How-
ever, it does provide its own user interface that will be updated as
necessary and will allow the user to cancel the operation in
progress.

See Also ExgDisconnect, ExgPut

Developing Palm OS 3.0 Applications, Part III 295

9
IR Library
The IR (InfraRed) library is a shared library that provides a direct in-
terface to the IR communications capabilities of the Palm OS. It is
designed for applications that want more direct access to the IR ca-
pabilities than the exchange manager provides.

The IR support provided by the Palm OS is compliant with the IrDA
specifications. IrDA (Infrared Data Association), is an industry body
consisting of representatives from a number of companies involved
in IR development. For a good introduction to the IrDA standards,
see the IrDA web site at:

http://www.IrDA.org.

IrDA Stack
The IrDA stack comprises a number of protocol layers, of which
some are required and some are optional. The complete stack looks
something like Figure 9.1.

Figure 9.1 IrDA Protocol Stack

IR Library
IrDA Stack

296 Developing Palm OS 3.0 Applications, Part III

The SIR/FIR layer is purely hardware. The SIR (Serial IR) layer sup-
ports speeds up to 115k bps while the FIR (Fast IR) layer supports
speeds up to 4M bps. IrLAP is the IR Link Access Protocol that pro-
vides a data pipe between IrDA devices. IrLMP, the IR Link Man-
agement Protocol, manages multiple sessions using the IrLAP. Tiny
TP is a lightweight transfer protocol on which some higher-level
IrDA layers are built.

One or more of SIR/FIR must be implemented, and Tiny TP, IrLMP
and IrLAP must also be implemented. IrComm provides serial and
parallel port emulation over an IR link and is optional (it is not cur-
rently supported in the Palm OS). IrLAN provides an access point to
Local Area Network protocol adapters. It too is optional (and is not
supported in the Palm OS).

OBEX is an object exchange protocol that can be used (for instance)
to transfer business cards, calendar entries or other objects between
devices. It too is optional and is supported in the Palm OS. The ca-
pabilities of OBEX are made available through the exchange manag-
er; there is no direct API for it.

The Palm OS implements all the required protocol layers (SIR,
IrLAP, IrLMP, and Tiny TP), as well as the OBEX layer, to support
the Exchange Manager. Palm III devices provide SIR (Serial IR)
hardware supporting the following speeds: 2400, 9600, 19200, 38400,
57600, and 115200 bps. The software (IrOpen) currently limits
bandwidth to 57600 bps by default, but you can specify a connection
speed of up to 115200 bps if desired.

The stack is capable of connection-based or connectionless sessions.

IrLMP Information Access Service (IAS) is a component of the
IrLMP protocol that you will see mentioned in the interface. IAS
provides a database service through which devices can register in-
formation about themselves and retrieve information about other
devices and the services they offer.

IR Library
Loading the IR Library

Developing Palm OS 3.0 Applications, Part III 297

Loading the IR Library
Before you can use the IR library, you must obtain a reference num-
ber for it by calling the function SysLibFind, as in this example:

err = SysLibFind(irLibName, &refNum);

This function returns the library reference number in the refNum
parameter. This parameter is passed to most of the other functions
in the IR library.

IR Data Structures
This section lists some of the more important data types used by IR
library functions.

IrConnect

This data structure is used to manage an IrLMP or Tiny TP
connection.

Listing 9.1 IrConnect Data Structure

/* Forward declaration of the IrConnect structure */
typedef struct _hconnect IrConnect;

/*---
*/
typedef struct _hconnect {
Byte lLsap; /* Local LSAP this connection will listen on */
Byte rLsap; /* Remote Lsap */

/*============== For Internal Use Only =======================
 *
 * The following is used internally by the stack and should not
be
 * modified by the user.
 *
 ===/

IR Library
IR Data Structures

298 Developing Palm OS 3.0 Applications, Part III

Byte flags; /* Flags containing state, type, etc. */
IrCallBack callBack; /* Pointer to callback function */

/* Tiny TP fields */
IrPacket packet; /* Packet for internal use */
ListEntry packets; /* List of packets to send */
Word sendCredit; /* Amount of credit from peer */
Byte availCredit; /* Amount of credit to give to peer */
Byte dataOff; /* Amount of data less than IrLAP size */
} _hconnect;

IrPacket

This data structure is used for sending IrDA packets.

Listing 9.2 IrPacket Data Structure

typedef struct _IrPacket {
/* The node field must be the first field in the structure. It is
 * used internally by the stack. */
ListEntry node;

/* The buff field is used to point to a buffer of data to send
and
 * len field indicates the number of bytes in buff. */
BytePtr buff;
Word len;

/*================== For Internal Use Only
======================
 *
 * The following is used internally by the stack and should not
be
 * modified by the upper layer.
 *

==/
IrConnect* origin; /* Pointer to connection which owns packet */

IR Library
IR Data Structures

Developing Palm OS 3.0 Applications, Part III 299

Byte headerLen; /* Number of bytes in the header */
Byte header[14]; /* Storage for the header */
} IrPacket;

IrIASObject

This data structure is used as storage for an IAS object managed by
the local IAS server. An object of this type is passed as the obj pa-
rameter to the IrIAS_Add function.

Listing 9.3 IrIASObject Data Structure

typedef struct _IrIasObject {
BytePtr name; /* Pointer to name of object */
Byte len; /* Length of object name */

Byte nAttribs; /* Number of attributes */
IrIasAttribute* attribs; /* A pointer to an array of attributes
*/
} IrIasObject;

IrIasQuery

This data structure is used for performing IAS queries. An object of
this type is passed as the token parameter to the IrIAS_Query
function (and several other functions as well).

Listing 9.4 IrIasQuery Data Structure

* Forward declaration of a structure used for performing IAS
* Queries so that a callback type can be defined for use in
* the structure. */
typedef struct _IrIasQuery IrIasQuery;
typedef void (*IrIasQueryCallBack)(IrStatus);

* Actual definition of the IrIasQuery structure. */
typedef struct _IrIasQuery
{

IR Library
IR Data Structures

300 Developing Palm OS 3.0 Applications, Part III

/* Query fields. The query buffer contains the class name and
 * class attribute whose value is being queried--it is as
follows:
 *
 * 1 byte - Length of class name
 * "Length" bytes - class name
 * 1 byte - length of attribute name
 * "Length" bytes - attribute name
 *
 * queryLen - contains the total number of byte in the query */
Byte queryLen; /* Total length of the query */
BytePtr queryBuf; /* Points to buffer containing the query */

/* Fields for the query result */
Word resultBufSize; /* Size of the result buffer */
Word resultLen; /* Actual number of bytes in the result buffer */
Word listLen; /* Number of items in the result list. */
Word offset; /* Offset into results buffer */
Byte retCode; /* Return code of operation */
Byte overFlow; /* Set TRUE if result exceeded result buffer
size*/
BytePtr result; /* Pointer to buffer containing result; */

/* Pointer to callback function */
IrIasQueryCallBack callBack;
} _IrIasQuery;

IrCallbackParms

This data structure is used to pass information from the stack to the
upper layer of the stack (application). Not all fields are valid at any
given time. The type of event determines which fields are valid. An
object of this type is passed as the second parameter to the
IrCallback function.

Listing 9.5 IRCallbackParms Data Structure

typedef struct {
IrEvent event; /* Event causing callback */

IR Library
IR Stack Callback Events

Developing Palm OS 3.0 Applications, Part III 301

BytePtr rxBuff; /* Receive buffer already advanced to app data */
Word rxLen; /* Length of data in receive buffer */
IrPacket* packet; /* Pointer to packet being returned */
IrDeviceList* deviceList; /* Pointer to discovery device list */
IrStatus status; /* Status of stack */
} IrCallBackParms;

IR Stack Callback Events
The IR stack calls the application via a callback function stored in
each IrConnect structure. The callback function is called with a
pointer to the IrConnect structure and a pointer to a parameter
structure. The parameter structure contains an event field, which
indicates the reason the callback is called, and other parameters,
which have meaning based on the event.

The meaning of the events is described in the following sections.

LEVENT_DATA_IND

Data has been received. The received data is accessed using fields
rxBuff and rxLen.

LEVENT_DISCOVERY_CNF

Indicates the completion of a discovery operation. The field
deviceList points to the discovery list.

LEVENT_LAP_CON_CNF

The requested IrLAP connection has been made successfully. The
callback function of all bound IrConnect structures is called.

LEVENT_LAP_CON_IND

Indicates that the IrLAP connection has come up. The callback of all
bound IrConnect structures is called.

IR Library
IR Stack Callback Events

302 Developing Palm OS 3.0 Applications, Part III

LEVENT_LAP_DISCON_IND

Indicates that the IrLAP connection has gone down. This means that
all IrLMP connections are also down. A callback with event
LEVENT_LM_CON_IND will not be given. The callback function of
all bound IrConnect structures is called.

LEVENT_LM_CON_CNF

The requested IrLMP/Tiny TP connection has been made success-
fully. Connection data from the other side is found using fields
rxBuff and rxLen.

LEVENT_LM_CON_IND

Other device has initiated a connection. IrConnectRsp should be
called to accept the connection. Any data associated with the con-
nection request can be found using fields rxBuff and rxLen, for
the data pointer and length, respectively.

LEVENT_LM_DISCON_IND

The IrLMP/Tiny TP connection has been disconnected. Any data as-
sociated with the disconnect indication can be found using fields
rxBuff and rxLen, for the data pointer and length, respectively.

LEVENT_PACKET_HANDLED

A packet is being returned. A pointer to the packet exists in field
packet.

LEVENT_STATUS_IND

Indicates that a status event from the stack has occurred. The
status field indicates the status generating the event. Possible sta-
tuses are as follows.

• IR_STATUS_NO_PROGRESS means that IrLAP has no progress
for 3 seconds threshold time (e.g. the beam is blocked).

IR Library
IAS Query Callback Function

Developing Palm OS 3.0 Applications, Part III 303

• IR_STATUS_LINK_OK indicates that the no progress condition
has cleared.

• IR_STATUS_MEDIA_NOT_BUSY indicates that the IR media has
transitioned from busy to not busy.

LEVENT_TEST_CNF

Indicates that a TEST command has completed. The status field
indicates if the test was successful. IR_STATUS_SUCCESS indicates
that operation was successful and the data in the test response can
be found by using the rxBuff and rxLen fields.
IR_STATUS_FAILED indicates that no TEST response was received.
The packet passed to perform the test command is passed back in
the packet field and is now available (no separate packet handled
event will occur).

LEVENT_TEST_IND

Indicates that a TEST command frame has been received. A pointer
to the received data is in rxBuff and rxLen. A pointer to the pack-
et that will be sent in response to the test command is in the packet
field. The packet is currently set up to respond with the same data
sent in the command TEST frame. If different data is desired as a re-
sponse, then modify the packet structure. This event is sent to the
callback function in all bound IrConnect structures. The IAS con-
nections ignore this event.

IAS Query Callback Function
The result of IAS queries is signaled by calling the callback function
pointed to by the callBack field of the IrIasQuery structure. The
callback has the following prototype:

void callBack(IrStatus);

The callback is called with a status as follows:

IR_STATUS_SUCCESS means the query operation finished success-
fully and the results can be parsed.

IR Library
IR Library Function Summary

304 Developing Palm OS 3.0 Applications, Part III

IR_STATUS_DISCONNECT means the link or IrLMP connection was
disconnected during the query, so the results are not valid.

IR Library Function Summary
The following general functions are available for application use:

• IrAdvanceCredit

• IrBind

• IrClose

• IrConnectIrLap

• IrConnectReq

• IrConnectRsp

• IrDataReq

• IrDisconnectIrLap

• IrDiscoverReq

• IrIsIrLapConnected

• IrIsMediaBusy

• IrIsNoProgress

• IrIsRemoteBusy

• IrLocalBusy

• IrMaxRxSize

• IrMaxTxSize

• IrOpen

• IrSetConTypeLMP

• IrSetConTypeTTP

• IrSetDeviceInfo

• IrTestReq

• IrUnbind

The following functions and macros are related to IAS databases:

• IrIAS_Add

IR Library
IR Library Functions

Developing Palm OS 3.0 Applications, Part III 305

• IrIAS_GetInteger

• IrIAS_GetIntLsap

• IrIAS_GetObjectID

• IrIAS_GetOctetString

• IrIAS_GetOctetStringLen

• IrIAS_GetType

• IrIAS_GetUserString

• IrIAS_GetUserStringCharSet

• IrIAS_GetUserStringLen

• IrIAS_Next

• IrIAS_Query

• IrIAS_SetDeviceName

• IrIAS_StartResult

IR Library Functions

IrAdvanceCredit

Purpose Advances credit to the other side of the connection.

Prototype void IrAdvanceCredit (IrConnect* con, Byte credit)

Parameters --> con Pointer to IrConnect structure representing
connection to which credit is advanced.

--> credit Amount of credit to advance.

Result Returns nothing.

Comments The total amount of credit should not exceed 127. The credit passed
by this function is added to the existing available credit, which is
must not exceed 127. This function only makes sense for a Tiny TP
connection.

IR Library
IR Library Functions

306 Developing Palm OS 3.0 Applications, Part III

IrBind

Purpose Obtains a local LSAP selector and registers the connection with the
protocol stack.

Prototype IrStatus IrBind (UInt refNum,
IrConnect* con,
IrCallBack callBack)

Parameters --> refnum IR library refNum.

<--> con Pointer to IrConnect structure.

--> callBack Pointer to a callBack function that handles the
indications and confirmation from the protocol
stack.

Result IR_STATUS_SUCCESS means the operation completed successfully.
The assigned LSAP can be found in con->lLsap.

IR_STATUS_FAILED means the operation failed for one of the fol-
lowing reasons:

• con is already bound to the stack

• no room in the connection table

Comments This IrConnect structure will be initialized. Any values stored in
the structure will be lost. The assigned LSAP will be in the lLsap
field of con. The type of the connection will be set to IrLMP. The
IrConnect must be bound to the stack before it can be used.

IR Library
IR Library Functions

Developing Palm OS 3.0 Applications, Part III 307

IrClose

Purpose Closes the IR library. This releases the global memory for the IR
stack and any system resources it uses. This must be called when an
application is done with the IR library.

Prototype Err IrClose (Word refnum)

Parameters --> refnum IR library refNum.

Result Returns 0 if successful.

IrConnectIrLap

Purpose Starts an IrLAP connection.

Prototype IrStatus IrConnectIrLap (UInt refNum,
IrDeviceAddr deviceAddr)

Parameters --> refnum IR library refNum.

--> deviceAddr 32-bit address of device to which connection
should be made.

Result IR_STATUS_PENDING means the operation is started successfully;
the result is returned via callback.

IR_STATUS_MEDIA_BUSY means the operation failed because the
media is busy. Media busy is caused by one of the following rea-
sons:

• Other devices are using the IR medium.

• An IrLAP connection already exists.

• A discovery process is in progress.

Comments The result is signaled to all bound IrConnect structures via the
callback function. The callback event is LEVENT_LAP_CON_CNF if
successful or LEVENT_LAP_DISCON_IND if unsuccessful.

IR Library
IR Library Functions

308 Developing Palm OS 3.0 Applications, Part III

IrConnectReq

Purpose Requests an IrLMP or Tiny TP connection.

Prototype IrStatus IrConnectReq (UInt refNum,
IrConnect* con,
IrPacket* packet,
Byte credit)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure for handling
the connection. The rLsap field must contain
the LSAP selector for the peer on the other de-
vice. Also the type of the connection must be
set. Use IR_SetConTypeLMP to set the type to
an IrLMP connection or IR_SetConTypeTTP
to set the type to a Tiny TP connection.

--> packet Pointer to a packet that contains connection
data. Even if no connection data is needed, the
packet must point to a valid IrPacket struc-
ture. The packet will be returned via the call-
back with the LEVENT_PACKET_HANDLED
event if no errors occur. The maximum size of
the packet is IR_MAX_CON_PACKET for an
IrLMP connection or
IR_MAX_TTP_CON_PACKET for a Tiny TP con-
nection.

--> credit Initial amount of credit advanced to the other
side. Must be less than 127. It is ANDed with
0x7f, so if it is greater than 127 unexpected re-
sults will occur. This parameter is ignored if the
connection is an IrLMP connection.

Result IR_STATUS_PENDING means the operation has been started suc-
cessfully and the result will be returned via the callback function
with the event LEVENT_LM_CON_CNF if the connection is made or

IR Library
IR Library Functions

Developing Palm OS 3.0 Applications, Part III 309

LEVENT_LM_DISCON_IND if connection fails. The packet is re-
turned via the callback with the event LEVENT_PACKET_HANDLED.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• Connection is busy (already involved in a connection)

• IrConnect structure is not bound to the stack

• Packet size exceeds maximum allowed

IR_STATUS_NO_IRLAP means the operation failed because there is
no IrLAP connection (the packet is available immediately).

Comments The result is signaled via the callback specified in the IrConnect
structure. The callback event is LEVENT_LM_CON_CNF indicates
that the connection is up and LEVENT_LM_DISCON_IND indicates
that the connection failed. Before calling this function the fields in
the con structure must be properly set.

IR Library
IR Library Functions

310 Developing Palm OS 3.0 Applications, Part III

IrConnectRsp

Purpose Accepts an incoming connection that has been signaled via the call-
back with the event LEVENT_LM_CON_IND.

Prototype IrStatus IrConnectRsp (UInt refNum,
IrConnect* con,
IrPacket* packet,
Byte credit)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure to managed
connection.

--> packet Pointer to a packet that contains connection
data. Even if no connection data is needed, the
packet must point to a valid IrPacket
structure. The packet will be returned via the
callback with the LEVENT_PACKET_HANDLED
event if no errors occur. The maximum size of
the packet is IR_MAX_CON_PACKET for an
IrLMP connection or
IR_MAX_TTP_CON_PACKET for a Tiny TP con-
nection.

--> credit Initial amount of credit advanced to the other
side. Must be less than 127. It is ANDed with
0x7f, so if it is greater than 127 unexpected re-
sults will occur. This parameter is ignored if the
connection is an IrLMP connection.

Result IR_STATUS_PENDING means the operation has been started suc-
cessfully and the packet will be returned via the callback function
with the event LEVENT_PACKET_HANDLED.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• Connection is not in the proper state to require a response

• IrConnect structure is not bound to the stack

IR Library
IR Library Functions

Developing Palm OS 3.0 Applications, Part III 311

• Packet size exceeds maximum allowed

IR_STATUS_NO_IRLAP means the operation failed because there is
no IrLAP connection (the packet is available immediately).

Comments IrConnectRsp can be called during the callback or later to accept
the connection. The type of the connection must already have been
set to IrLMP or Tiny TP before the LEVENT_LM_CON_IND event.

IrDataReq

Purpose Sends a data packet.

Prototype IrStatus IrDataReq (UInt refNum,
IrConnect* con,
IrPacket* packet)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure that specifies
the connection over which the packet should be
sent.

--> packet Pointer to a valid IrPacket structure that con-
tains data to send. The packet should not ex-
ceed the max size found with IrMaxTxSize.

Result IR_STATUS_PENDING means the packet has been queued by the
stack. The packet will be returned via the callback with event
LEVENT_PACKET_HANDLED.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• IrConnect structure is not bound to the stack

• Packet size exceeds maximum allowed

• IrConnect structure does not represent an active connection

Comments The packet is owned by the stack until it is returned via the callback
with event LEVENT_PACKET_HANDLED. The largest packet that can
be sent is found by calling IrMaxTxSize.

IR Library
IR Library Functions

312 Developing Palm OS 3.0 Applications, Part III

IrDisconnectIrLap

Purpose Disconnects an IrLAP connection.

Prototype IrStatus IrDisconnectIrLap (UInt refNum)

Parameters --> refnum IR library refNum.

Result IR_STATUS_PENDING means the operation started successfully
and all bound IrConnect structures will be called back when
complete.

IR_STATUS_NO_IRLAP means the operation failed because no
IrLAP connection exists.

Comments When the IrLAP connection goes down, the callback of all bound
IrConnect structures is called with event
LEVENT_LAP_DISCON_IND.

IR Library
IR Library Functions

Developing Palm OS 3.0 Applications, Part III 313

IrDiscoverReq

Purpose Starts an IrLMP discovery process.

Prototype IrStatus IrDiscoverReq (UInt refNum,
IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to a bound IrConnect structure.

Result IR_STATUS_PENDING means the operation is started successfully;
the result is returned via callback.

IR_STATUS_MEDIA_BUSY means the operation failed because the
media is busy. Media busy is caused by one of the following rea-
sons:

• Other devices are using the IR medium.

• A discovery process is already in progress.

• An IrLAP connection exists.

IR_STATUS_FAILED means the operation failed because the
IrConnect structure is not bound to the stack.

Comments The result will be signaled via the callback function specified in the
IrConnect structure with the event LEVENT_DISCOVERY_CNF.
Only one discovery can be invoked at a time.

IR Library
IR Library Functions

314 Developing Palm OS 3.0 Applications, Part III

IrIsIrLapConnected

Purpose Determines if an IrLAP connection exists.

Prototype BOOL IrIsIrLapConnected (UInt refNum)

Parameters --> refnum IR library refNum.

Result True if IrLAP is connected, false otherwise.

Comments Only available if IR_IS_LAP_FUNCS is defined.

IrIsMediaBusy

Purpose Determines if the IR media is busy.

Prototype BOOL IrIsMediaBusy (UInt refNum)

Parameters --> refnum IR library refNum.

Result True if IR media is busy, false otherwise.

IrIsNoProgress

Purpose Determines if IrLAP is not making progress.

Prototype BOOL IrIsNoProgress (UInt refNum)

Parameters --> refnum IR library refNum.

Result True if IrLAP is not making progress, false otherwise.

IR Library
IR Library Functions

Developing Palm OS 3.0 Applications, Part III 315

IrIsRemoteBusy

Purpose Determines if the other device's IrLAP is busy.

Prototype BOOL IrIsRemoteBusy (UInt refNum)

Parameters --> refnum IR library refNum.

Result True if the other device's IrLAP is busy, false otherwise.

IrLocalBusy

Purpose Sets the IrLAP local busy flag.

Prototype void IrLocalBusy (UInt refNum, BOOL flag)

Parameters --> refnum IR library refNum.

--> flag Value (true or false) to set for IrLAP's local busy
flag.

Result Returns nothing.

Comments If local busy is set to true, then the local IrLAP layer will send RNR
(Receive Not Ready) frames to the other side indicating it cannot re-
ceive any more data. If the local busy is set to false, IrLAP is ready to
receive frames.

The setting takes effect the next time IrLAP sends an RR (Receive
Ready) frame. If IrLAP has data to send, the data will be sent first,
so it should be used carefully.

This function should not be used when using Tiny TP or when mul-
tiple connections exist.

IR Library
IR Library Functions

316 Developing Palm OS 3.0 Applications, Part III

IrMaxRxSize

Purpose Returns the maximum size buffer that can be sent by the other
device.

Prototype Word IrMaxRxSize (UInt refNum, IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure that represents
an active connection.

Result Returns the maximum size buffer that can be sent by the other de-
vice (maximum bytes that can be received). The value returned is
only valid for active connections. The maximum size will vary for
each connection and is based on the negotiated IrLAP parameters
and the type of the connection.

IrMaxTxSize

Purpose Returns the maximum size allowed for a transmit packet.

Prototype Word IrMaxTxSize (UInt refNum, IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure that represents
an active connection.

Result Returns the maximum size allowed for a transmit packet. The value
returned is only valid for active connections. The maximum size
will vary for each connection and is based on the negotiated IrLAP
parameters and the type of the connection.

IR Library
IR Library Functions

Developing Palm OS 3.0 Applications, Part III 317

IrOpen

Purpose Opens the IR library. This allocates the global memory for the IR
stack and reserves the system resources it requires. This must be
done before any other IR library calls are made.

Prototype Err IrOpen (Word refnum, DWord options)

Parameters --> refnum IR library refNum. This value is returned from
the function SysLibFind, which you must call
first to load the IR library.

--> options Open options flags. See the Comments section
for details.

Result Returns 0 if successful.

Comments The following flags can be specified for the options parameter to
set the speed of the connection:

IrSetConTypeLMP

Purpose Sets the type of the connection to IrLMP. This function must be
called after the IrConnect structure is bound to the stack.

Prototype void IrSetConTypeLMP (IrConnect* con)

Parameters --> con Pointer to IrConnect structure.

Result Returns nothing.

irOpenOptSpeed115200 Set maximum negotiated baud rate

irOpenOptSpeed57600 Set 57600 bps (default if no flags given)

irOpenOptSpeed9600 Set 9600 bps

IR Library
IR Library Functions

318 Developing Palm OS 3.0 Applications, Part III

IrSetConTypeTTP

Purpose Sets the type of the connection to Tiny TP. This function must be
called after the IrConnect structure is bound to the stack.

Prototype void IrSetConTypeTTP (IrConnect* con)

Parameters --> con Pointer to IrConnect structure.

Result Returns nothing.

IrSetDeviceInfo

Purpose Sets the XID info string used during discovery to the given string
and length.

Prototype IrStatus IrSetDeviceInfo (UInt refNum,
BytePtr info,
Byte len)

Parameters --> refnum IR library refNum.

--> info Pointer to array of bytes.

--> len Number of bytes pointed to by info.

Result IR_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means the operation failed because info is
too big.

Comments The XID info string contains hints and the nickname of the device.
The size cannot exceed IR_MAX_DEVICE_INFO bytes.

IR Library
IR Library Functions

Developing Palm OS 3.0 Applications, Part III 319

IrTestReq

Purpose Requests a TEST command frame be sent in the NDM (Normal dis-
connect Mode) state.

Prototype IrStatus IrTestReq(UInt refNum,
IrDeviceAddr devAddr,
IrConnect* con,
IrPacket* packet)

Parameters --> refnum IR library refNum.

--> devAddr Device address of device where TEST will be
sent. This address is not checked so it can be the
broadcast address or 0.

--> con Pointer to IrConnect structure specifying the
callback function to call to report the result.

--> packet Pointer to an IrPacket structure that contains
the data to send in the TEST command packet.
The maximum size data that can be sent is
IR_MAX_TEST_PACKET. Even if no data is to
be sent, a valid packet must be passed.

Result IR_STATUS_PENDING means the operation has been started suc-
cessfully and the result will be returned via the callback function
with the event LEVENT_TEST_CNF. This is also the indication re-
turning the packet.

IR_STATUS_FAILED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

• IrConnect structure is not bound to the stack

• Packet size exceeds maximum allowed

IR_STATUS_MEDIA_BUSY means the operation failed because the
media is busy or the stack is not in the NDM state (the packet is
available immediately).

IR Library
IAS Functions

320 Developing Palm OS 3.0 Applications, Part III

Comments The result is signaled via the callback specified in the IrConnect
structure. The callback event is LEVENT_TEST_CNF and the status
field indicates the result of the operation. IR_STATUS_SUCCESS in-
dicates success and IR_STATUS_FAILED indicates no response was
received. A packet must be passed containing the data to send in the
TEST frame. The packet is returned when the LEVENT_TEST_CNF
event is given.

IrUnbind

Purpose Unbinds the IrConnect structure from the protocol stack, freeing
it's LSAP selector.

Prototype IrStatus IrUnbind (UInt refNum, IrConnect* con)

Parameters --> refnum IR library refNum.

--> con Pointer to IrConnect structure to unbind.

Result IR_STATUS_SUCCESS means the operation completed successfully.

IR_STATUS_FAILED means the operation failed for one of the fol-
lowing reasons:

• the IrConnect structure was not bound

• the lLsap field contained an invalid number

IAS Functions
This section describes functions and macros related to IAS
databases:

• IrIAS_Add

• IrIAS_GetInteger

• IrIAS_GetIntLsap

• IrIAS_GetObjectID

• IrIAS_GetOctetString

IR Library
IAS Functions

Developing Palm OS 3.0 Applications, Part III 321

• IrIAS_GetOctetStringLen

• IrIAS_GetType

• IrIAS_GetUserString

• IrIAS_GetUserStringCharSet

• IrIAS_GetUserStringLen

• IrIAS_Next

• IrIAS_Query

• IrIAS_SetDeviceName

• IrIAS_StartResult

IrIAS_Add

Purpose Adds an IAS object to the IAS Database.

Prototype IrStatus IrIAS_Add (UInt refNum, IrIasObject* obj)

Parameters --> refnum IR library refNum.

--> obj Pointer to an IrIASObject structure.

Result IR_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means the operation failed for one of the fol-
lowing reasons:

• No space in the database.

• An entry with the same class name already exists.

• The attributes of the object violate the IrDA Lite rules (attribute
name exceeds IR_MAX_IAS_NAME, or attribute value exceeds
IR_MAX_IAS_ATTR_SIZE).

• The class name exceeds IR_MAX_IAS_NAME.

Comments The object is not copied, so the memory for the object must exist for
as long as the object is in the database. The IAS database is designed
to allow only objects with unique class names, and it checks for this.
Class names and attributes names must not exceed

IR Library
IAS Functions

322 Developing Palm OS 3.0 Applications, Part III

IR_MAX_IAS_NAME. Also, attribute values must not exceed
IR_MAX_IAS_ATTR_SIZE.

IrIAS_GetInteger

Purpose Returns an integer value, assuming that the current result item is of
type IAS_ATTRIB_INTEGER. (Call IrIAS_GetType to determine
the type of the current result item.)

Prototype DWord IrIAS_GetInteger (IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Integer value.

IrIAS_GetIntLsap

Purpose Returns an integer value that represents an LSAP, assuming that the
current result item is of type IAS_ATTRIB_INTEGER. (Call
IrIAS_GetType to determine the type of the current result item.)
Usually integer values returned in a query are LSAP selectors.

Prototype Byte IrIAS_GetIntLsap (IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Integer value.

IR Library
IAS Functions

Developing Palm OS 3.0 Applications, Part III 323

IrIAS_GetObjectID

Purpose Returns the unique object ID of the current result item.

Prototype Word IrIAS_GetObjectID (IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Returns the object ID.

IrIAS_GetOctetString

Purpose Returns a pointer to an octet string, assuming that the current result
item is of type IAS_ATTRIB_OCTET_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype Byte* IrIAS_GetOctetString (IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Pointer to octet string.

IrIAS_GetOctetStringLen

Purpose Gets the length of an octet string, assuming that the current result
item is of type IAS_ATTRIB_OCTET_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype Word IrIAS_GetOctetStringLen (IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Length of octet string.

IR Library
IAS Functions

324 Developing Palm OS 3.0 Applications, Part III

IrIAS_GetType

Purpose Returns the type of the current result item.

Prototype Byte IrIAS_GetType (IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Type of result item such as IAS_ATTRIB_INTEGER,
IAS_ATTRIB_OCTET_STRING or IAS_ATTRIB_USER_STRING.

IrIAS_GetUserString

Purpose Returns a pointer to a user string, assuming that the current result
item is of type IAS_ATTRIB_USER_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype Byte* IrIAS_GetUserString(IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Pointer to result string.

IrIAS_GetUserStringCharSet

Purpose Returns the character set of the user string, assuming that the cur-
rent result item is of type IAS_ATTRIB_USER_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype IrCharSet IrIAS_GetUserStringCharSet
(IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Character set.

IR Library
IAS Functions

Developing Palm OS 3.0 Applications, Part III 325

IrIAS_GetUserStringLen

Purpose Gets the length of a user string, assuming that the current result
item is of type IAS_ATTRIB_USER_STRING. (Call
IrIAS_GetType to determine the type of the current result item.)

Prototype Byte IrIAS_GetUserStringLen (IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Length of user string.

IrIAS_Next

Purpose Moves the internal pointer to the next result item.

Prototype BytePtr IrIAS_Next (UInt refNum,IrIasQuery* token)

Parameters --> refnum IR library refNum.

--> token Pointer to an IrIasQuery structure.

Result Pointer to the next result item, or 0 if there are no more items.

Comments This function returns a pointer to the start of the next result item. If
the pointer is 0, then there are no more result items.

IR Library
IAS Functions

326 Developing Palm OS 3.0 Applications, Part III

IrIAS_Query

Purpose Makes an IAS query of another device’s IAS database.

Prototype IrStatus IrIAS_Query (UInt refNum,
IrIasQuery* token)

Parameters --> refnum IR library refNum.

--> token Pointer to an IrIasQuery structure initialized
as described in the Comments section.

Result IR_STATUS_SUCCESS means the operation is started successfully
and the result will be signaled via the callback function.

IR_STATUS_FAILED means the operation failed for one of the fol-
lowing reasons:

• The query exceeds IR_MAX_QUERY_LEN.

• The result field of token is 0.

• The resultBufSize field of token is 0.

• The callback field of token is 0.

• A query is already in progress.

IR_STATUS_NO_IRLAP means the operation failed because there is
no IrLAP connection.

Comments An IrLAP connection must exist to the other device. The IAS query
token must be initialized as described below. The result is signaled
by calling the callback function whose pointer exists in the
IrIasQuery structure. Only one query can be made at a time.

The IrIasQuery structure passed in the token parameter must be
initialized as follows:

• pointer to a callback function in which the result will signaled.

• result points to a buffer large enough to hold the result of the
query.

• resultBufSize is set to the size of the result buffer.

IR Library
IAS Functions

Developing Palm OS 3.0 Applications, Part III 327

• queryBuf must point to a valid query.

• queryLen is set to the number of bytes in queryBuf. The
length must not exceed IR_MAX_QUERY_LEN.

IrIAS_SetDeviceName

Purpose Sets the value field of the device name attribute of the “Device” ob-
ject in the IAS database.

Prototype IrStatus IrIAS_SetDeviceName (UInt refNum,
BytePtr name,
Byte len)

Parameters --> refnum IR library refNum.

--> name Pointer to an IAS value field for the device
name attribute of the device object. It includes
the attribute type, character set and device
name. This value field should be a constant
and the pointer must remain valid until
IrIAS_SetDeviceName is called with anoth-
er pointer.

--> len Total length of the value field. Maximum size
allowed is IR_MAX_IAS_ATTR_SIZE.

Result IR_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means len is too big, or the value field is
not a valid user string.

IR Library
IAS Functions

328 Developing Palm OS 3.0 Applications, Part III

IrIAS_StartResult

Purpose Puts the internal pointer to the start of the result buffer.

Prototype void IrIAS_StartResult (IrIasQuery* token)

Parameters --> token Pointer to an IrIasQuery structure.

Result Returns nothing.

Developing Palm OS 3.0 Applications, Part III 329

Index
Numerics
1.0 heaps 35
2.0 heaps 35
2.0 Note 96, 141
3.0 heaps 35
68328 processor 24

A
allocating chunks on dynamic heap 69
architecture of memory 23
archiving

marking record as archived 79

B
back-up of data to PC 23
battery life 140
baud rate, parity options 141
bcmp (Berkeley Sockets API) 278
bcopy (Berkeley Sockets API) 278
Berkeley Sockets API 181

and net library functions 192
calls 272–278
differences from net library 184
mapping example 185

bind (Berkeley Sockets API) 273
boot, and heap compacting 59
busy bit 117
byte ordering 137
bzero (Berkeley Sockets API) 278

C
card number 53
category

DmSeekRecordInCategory 128
moving records 105

changing serial port settings 141
chunks 31

card number 53
disposing of chunk 54
heap ID 54, 68
locking 55
resizing 34

size 34, 57
unlocking 58, 71

close (Berkeley Sockets API) 273
closing net library 189, 196
closing serial link manager 150
closing serial port 140
CMP 138
compacting heaps 59
comparing memory blocks 52
configuration, net library 186
connect (Berkeley Sockets API) 273
connection management protocol 138
CRC-16 146
Crc16CalcBlock 180
creating a chunk 33
creating database 41
creating resources 48
CTS timeout 141

D
data manager 37

error codes 98
using 41

data storage heap 67
handles 53

database headers 39
fields 39

database ID 91
databases 26, 38

closing 82
creating 82
cutting and pasting 80
deleting. See Also DmDatabaseProtect
getting and setting information 42

debugging and MemHeapScramble 62
debugging mode 52, 72
default receive queue, restoring 142
delete bit 88
deleting database 41
deleting databases See Also DmDatabaseProtect
deleting records 88
desktop link protocol 138
Desktop Link Server 148

Index

330 Developing Palm OS 3.0 Applications, Part III

DLP 138
DmArchiveRecord 79
DmAttachRecord 80
DmAttachResource 81
DmCloseDatabase 82
DmComparF 96, 104
DmCreateDatabase 41, 47, 82
DmCreateDatabaseFromImage 83
DmDatabaseInfo 42, 47, 84
DmDatabaseProtect 85
DmDatabaseSize 42, 86
DmDeleteCategory 87
DmDeleteDatabase 41, 47, 87
DmDeleteRecord 88
DmDetachRecord 89
DmDetachResource 90
dmErrAlreadyExists 83
dmErrCantFind 87
dmErrCantOpen 87
dmErrCorruptDatabase 90, 121
dmErrDatabaseOpen 87
dmErrIndexOutOfRange 79, 80, 81, 88, 89, 90, 106,

119, 121, 122, 125, 131, 132
dmErrInvalidDatabaseName 83
dmErrInvalidParam 82, 84
dmErrMemError 80, 81, 83, 86
dmErrNotValidRecord 129, 133, 134, 135
dmErrReadOnly 79, 80, 81, 88, 89, 90, 103, 106, 121,

122, 131, 132
dmErrRecordInWrongCard 80, 81
dmErrROMBased 87, 123
dmErrUniqueIDNotFound 91
dmErrWriteOutOfBounds 129, 133, 134, 135
DmFindDatabase 42, 83, 87, 91
DmFindRecordByID 91
DmFindResource 92
DmFindResourceType 93
DmFindSortPosition 94
DmFindSortPositionV10 95
DmGet1Resource 103, 110
DmGetAppInfoID 97
DmGetDatabase 42, 87, 97
DmGetLastErr 98

DmGetNextDatabaseByTypeCreator 99
DmGetRecord 42, 101
DmGetResource 102
DmGetResourceIndex 102
DmInsertionSort 103
DmMoveCategory 105
DmMoveRecord 106
DmNewHandle 107
DmNewRecord 108
DmNewResource 48, 109
DmNextOpenDatabase 110
DmNextOpenResDatabase 110
DmNumDatabases 111
DmNumRecords 111
DmNumRecordsInCategory 112
DmNumResources 112
DmOpenDatabase 113
DmOpenDatabaseByTypeCreator 114
DmOpenDatabaseInfo 115
DmPositionInCategory 116
DmQueryNextInCategory 117
DmQueryRecord 42, 117
DmQuickSort 118
DmRecordInfo 119
DmReleaseRecord 42, 101, 120
DmReleaseResource 47, 109, 120
DmRemoveRecord 121
DmRemoveResource 122
DmRemoveSecretRecords 122
DmResetRecordStates 123
DmResizeRecord 42, 123
DmResizeResource 124
DmResourceInfo 125
DmSearchRecord 126
DmSearchResource 127
DmSeekRecordInCategory 128
DmSet 129
DmSetDatabaseInfo 42, 129
DmSetRecordInfo 131
DmSetResourceInfo 132
DmStrCopy 133
DmWrite 134
DmWriteCheck 135

Index

Developing Palm OS 3.0 Applications, Part III 331

dynamic heap 151
adding chunk 55
allocating chunk 69
test 59

dynamic heap handles 53
dynamic RAM 24

E
error code from data manager call 98
error codes 184
EvtResetAutoOffTimer 142
exchange manager 279
ExgAccept 283
ExgDBRead 284
ExgDBWrite 286
ExgDisconnect 288
ExgPut 290
ExgReceive 291
ExgRegisterData 292
ExgSend 294

F
finding database 42
flushing serial port 142

G
getdomainname (Berkeley Sockets API) 276
gethostbyaddr (Berkeley Sockets API) 276
gethostbyname (Berkeley Sockets API) 276
gethostname (Berkeley Sockets API) 276
getpeername (Berkeley Sockets API) 273
getservbyname (Berkeley Sockets API) 276
getsockname (Berkeley Sockets API) 273
getsockopt (Berkeley Sockets API) 273
gettimeofday() (Berkeley Sockets API) 276
global variables 151

H
handshaking options 141
heap header 30
heap ID 61, 68

of chunk 54
heaps

and soft reset 28

compacting 59
free bytes 60
in Palm OS 1.0 35
in Palm OS 2.0 35
in Palm OS 3.0 35
overview 27
RAM and ROM based 22
ROM based 60
structure 30

htonl (Berkeley Sockets API) 277
htons (Berkeley Sockets API) 277

I
IAS Query Callback Function 303
ID

databases 91
heap 61
local 29

inet_addr (Berkeley Sockets API) 277
inet_lnaof (Berkeley Sockets API) 277
inet_makeaddr (Berkeley Sockets API) 277
inet_netof (Berkeley Sockets API) 278
inet_network (Berkeley Sockets API) 277
inet_ntoa (Berkeley Sockets API) 278
initialization 188
interface(s) used by net library 187
Internet 188
Internet applications 181
IPOptions 209
IR manager 295
IrAdvanceCredit 305
IrBind 306
IRCallbackParms 300
IrClose 307
IrConnect 297
IrConnectIrLap 307
IrConnectReq 308
IrConnectRsp 310
IrDA stack 295
IrDataReq 311
IrDisconnectIrLap 312
IrDiscoverReq 313
IrIAS_Add 321
IrIAS_GetInteger 322
IrIAS_GetIntLsap 322

Index

332 Developing Palm OS 3.0 Applications, Part III

IrIAS_GetObjectID 323
IrIAS_GetOctetString 323
IrIAS_GetOctetStringLen 323
IrIAS_GetType 324
IrIAS_GetUserString 324
IrIAS_GetUserStringCharSet 324
IrIAS_GetUserStringLen 325
IrIAS_Next 325
IrIAS_Query 326
IrIAS_SetDeviceName 327
IrIAS_StartResult 328
IrIASObject 299
IrIASQuery 299
IrIsIrLapConnected 314
IrIsMediaBusy 314
IrIsNoProgress 314
IrIsRemoteBusy 315
IrLocalBusy 315
IrMaxRxSize 316
IrMaxTxSize 316
IrOpen 317
IrPacket 298
IrSetConTypeLMP 317
IrSetConTypeTTP 318
IrSetDeviceInfo 318
IrTestReq 319
IrUnbind 320

L
LEVENT_DATA_IND 301
LEVENT_DISCOVERY_CNF 301
LEVENT_LAP_CON_CNF 301
LEVENT_LAP_CON_IND 301
LEVENT_LAP_DISCON_IND 302
LEVENT_LM_CON_CNF 302
LEVENT_LM_CON_IND 302
LEVENT_LM_DISCON_IND 302
LEVENT_PACKET_HANDLED 302
LEVENT_STATUS_IND 302
LEVENT_TEST_CNF 303
LEVENT_TEST_IND 303
library reference number 184
listen (Berkeley Sockets API) 274

local ID 63, 71
from chunk handle 57

local IDs 29, 38
locking a chunk 33
locking chunk 55
Loop-back Test 148

M
mailbox queue 182
master pointer table 31
MemCardInfo 51
MemCmp 52
MemDebugMode 52
memErrCardNotPresent 83
memErrChunkLocked 56, 80, 81, 83, 87, 89, 90, 106,

121, 122
memErrInvalidParam 56, 58, 68, 80, 81, 83, 87, 88,

89, 90, 106, 121, 122
memErrInvalidStoreHeader 83
memErrNotEnoughSpace 56, 80, 81, 83, 87, 89, 90,

106, 121, 122
memErrRAMOnlyCard 83
MemHandleCardNo 53
MemHandleDataStorage 53
MemHandleFree 34, 54
MemHandleHeapID 54
MemHandleLock 33, 55
MemHandleNew 33, 55
MemHandleResize 34, 56
MemHandleSize 34, 57
MemHandleToLocalID 57
MemHandleUnlock 33, 58
MemHeapCheck 58
MemHeapCompact 59
MemHeapDynamic 59
memHeapFlagReadOnly 60
MemHeapFlags 60
MemHeapFreeBytes 60
MemHeapID 61
MemHeapScramble 62
MemHeapSize 62
MemLocalIDKind 63
MemLocalIDToGlobal 63
MemLocalIDToGlobalNear 63

Index

Developing Palm OS 3.0 Applications, Part III 333

MemLocalIDToLockedPtr 64
MemLocalIDToPtr 64
MemMove 35, 65
MemNumCards 65
MemNumHeaps 61, 66
MemNumRAMHeaps 66
memory architecture 23
memory blocks, comparing 52
memory card information 51
memory functions for system use only 74
memory management

architecture 23
Introduction 22

memory manager
chunks 26
debugging mode 52, 72

memory manager See Also data manager
memory manager See Also resource manager
MemPtrCardNo 67
MemPtrDataStorage 67
MemPtrFree 68
MemPtrHeapID 68
MemPtrNew 34, 69
MemPtrRecoverHandle 34, 69
MemPtrResize 69
MemPtrSize 70
MemPtrToLocalID 71
MemPtrUnlock 71
MemSet 35, 72
MemSetDebugMode 72
MemStoreInfo 73
Modem Manager 138
Motorola byte ordering 137
moving memory 35

N
net library

closing 189
differences from Berkeley Sockets API 184
implementation as system library 182
open count 202
open sockets maximum 183
opening and closing 189, 196
OS requirement 182
preferences 186, 189

RAM requirement 183
runtime calls 188
setup and configuration 186
using 186
version checking 191

net protocol stack 182
as separate task 182

netErrAlreadyConnected 216, 218, 220
netErrAlreadyOpen 200
netErrAuthFailure 265
netErrBadScript 265
netErrBufTooSmall 256, 263, 266, 270
netErrBufWrongSize 256, 263, 266, 270
netErrClosedByRemote 213, 215, 216, 218, 220,

228, 230
netErrDNSAborted 236, 237, 239
netErrDNSAllocationFailure 235, 237, 239
netErrDNSBadName 235, 237, 239
netErrDNSBadProtocol 236, 237, 240
netErrDNSFormat 235, 237, 239
netErrDNSImpossible 235, 237, 239
netErrDNSIrrelevant 236, 238, 240
netErrDNSLabelTooLong 235, 237, 239
netErrDNSNameTooLong 235, 237, 239
netErrDNSNIY 235, 237, 239
netErrDNSNonexistantName 235, 237, 239
netErrDNSNoPort 236, 238, 240
netErrDNSNoRecursion 236, 238, 240
netErrDNSNoRRS 235, 237, 239
netErrDNSNotInLocalCache 236, 238, 240
netErrDNSRefused 235, 237, 239
netErrDNSServerFailure 235, 237, 239
netErrDNSTimeout 235, 237, 239
netErrDNSTruncated 236, 237, 240
netErrDNSUnreachable 235, 237, 239
netErrInterfaceNotFound 252, 253, 254, 256, 263,

265
netErrInternal 218, 220
netErrInvalidInterface 255
netErrInvalidSettingSize 270
netErrIPCantFragment 228, 231
netErrIPNoDst 228, 231
netErrIPNoRoute 228, 231
netErrIPNoSrc 228, 231
netErrIPPktOverflow 228, 231

Index

334 Developing Palm OS 3.0 Applications, Part III

netErrMessageTooBig 228, 230
netErrNoInterfaces 200, 218, 220
netErrNoMoreSockets 204
netErrNotConnected 213
netErrNotOpen 196, 203, 204, 207, 208, 213, 215,

216, 217, 220, 221, 223, 225, 226, 228, 230, 235, 237,
239, 241, 242, 249, 250, 254, 265

netErrOutOfMemory 200
netErrOutOfResources 220
netErrParamErr 203, 204, 207, 208, 213, 215, 216,

218, 220, 221, 223, 225, 226, 228, 230, 242
netErrPortInUse 218, 220
netErrPPPAddressRefused 265
netErrPPPTimeout 265
netErrPrefNotFound 200, 255, 256, 263, 266
netErrQuietTimeNotElapsed 218
netErrReadOnlySetting 263, 270
netErrSocketBusy 218, 220
netErrSocketNotConnected 228, 230
netErrSocketNotListening 213
netErrSocketNotOpen 203, 207, 209, 213, 215, 216,

218, 220, 221, 223, 225, 226, 228, 230
netErrStillOpen 196
netErrTimeout 203, 204, 207, 208, 213, 215, 216,

217, 220, 221, 223, 224, 226, 228, 230, 235, 237, 239,
241

netErrTooManyInterfaces 252
netErrTooManyTCPConnections 218
netErrUnimplemented 207, 209, 242, 256, 263
netErrUnknownProtocol 241
netErrUnknownService 241
netErrUnknownSetting 256, 263, 266, 270
netErrUserCancel 265
netErrWouldBlock 223, 225, 226
netErrWrongSocketType 207, 209, 213, 220
NetHToNL 232
NetHToNS 232
netlib interface introduction 182
NetLibAddrAToIN 233
NetLibAddrINToA 234
NetLibClose 196
NetLibConnectionRefresh 198
NetLibDmReceive 222
NetLibFinishCloseWait 199
NetLibGetHostByAddr 234

NetLibGetHostByName 236
NetLibGetMailExchangeByName 238
NetLibGetServByName 240
NetLibIFAttach 187, 252
NetLibIFDetach 187, 253
NetLibIFDown 254
NetLibIFGet 187, 255
NetLibIFSettingGet 187, 256
NetLibIFSettingSet 187, 263
NetLibIFUp 264
NetLibMaster 242
NetLibOpen 200
NetLibOpenCount 202
NetLibReceive 224
NetLibReceivePB 226
NetLibSelect 246
NetLibSend 227
NetLibSendPB 230
NetLibSettingGet 187, 266
NetLibSettingSet 187, 270
NetLibSocketAccept 212, 213, 229, 231
NetLibSocketAddr 214
NetLibSocketBind 216, 220
NetLibSocketClose 203
NetLibSocketConnect 217
NetLibSocketListen 219, 220
NetLibSocketOpen 204
NetLibSocketOptionGet 206
NetLibSocketOptionSet 208
NetLibSocketShutdown 221
NetLibTracePrintF 249
NetLibTracePutS 250
NetNToHL 251
NetNToHS 251
NetSocketRef 204
NetSockOptSockNonBlocking 211
network device drivers 182
network services 181
ntohl (Berkeley Sockets API) 277
ntohs (Berkeley Sockets API) 277

O
open count of net library 202
open sockets maximum (net library) 183

Index

Developing Palm OS 3.0 Applications, Part III 335

opening net library 189, 196
opening serial link manager 150
opening serial port 140

P
packet assembly/disassembly protocol 138
packet footer, SLP 148
packet header, SLP 147
packet receive timeout 151
PADP 138, 148
PC connectivity 23
preferences database

net library 186, 189

R
RAM store 22
RAM use 22
RAM-based heaps 66
read (Berkeley Sockets API) 274
receiving SLP packet 149
records 37

deleting 88
detaching 89
ID 91
retrieving information 119

recv (Berkeley Sockets API) 274
recvfrom (Berkeley Sockets API) 274
recvmsg (Berkeley Sockets API) 274
reference number for socket 151
refnum 184
Remote Console 148
Remote Console packets 148
Remote Debugger 148, 150
remote inter-application communication 138
Remote Procedure Call packets 148
remote procedure calls 138, 150
Remote UI 148
resource database header 46
resource manager 45

using 47
resource type 93
resources

retrieving 102
retrieving information 125

searching for 127
storing 45

restoring default receive queue 142
RIAC 138
ROM store 22
ROM use 22
ROM-based heaps 60, 66
ROM-based records 116, 117
RPC 138, 150
RS232 signals 140
runtime calls 188

S
secret records, removing 122
select (Berkeley Sockets API) 275
send (Berkeley Sockets API) 275
sending stream of bytes 141
sendmsg (Berkeley Sockets API) 275
sendto (Berkeley Sockets API) 275
SerBlockingHookHandler 144
SerClearErr 141, 155, 159
SerClose 156
SerControl 157
serCtlBreakStatus (in SerCtlEnum) 143
serCtlEmuSetBlockingHook (in SerCtlEnum) 144
SerCtlEnum 143
serCtlFirstReserved (in SerCtlEnum) 143
serCtlHandshakeThreshold (in SerCtlEnum) 143
serCtlLAST (in SerCtlEnum) 144
serCtlMaxBaud (in SerCtlEnum) 143
serCtlStartBreak (in SerCtlEnum) 143
serCtlStartLocalLoopback (in SerCtlEnum) 143
serCtlStopBreak (in SerCtlEnum) 143
serCtlStopLocalLoopback (in SerCtlEnum) 143
serErrAlreadyOpen 140, 156, 160
serErrLineErr 141
SerGetSettings 158
SerGetStatus 159
Serial Library 140, 160
serial link manager 150
serial link protocol 138, 146, 148, 150
serial manager 138, 140

function summary 145
prolonging battery life 140

Index

336 Developing Palm OS 3.0 Applications, Part III

serial port
changing settings 141
closing 140
flushing 142
opening 140

SerOpen 140, 160
SerReceive 141, 161, 162
SerReceive10 162
SerReceiveCheck 142, 163
SerReceiveFlush 142, 163
SerReceiveWait 142, 163, 164
SerSend 141, 165
SerSend10 166
SerSendWait 141, 167
SerSetReceiveBuffer 142, 168
SerSetSettings 141, 166, 169
SerSettingsPtr 169
SerSettingsType 158, 169
setdomainname (Berkeley Sockets API) 276
sethostname (Berkeley Sockets API) 276
setsockopt (Berkeley Sockets API) 275
settimeofday (Berkeley Sockets API) 276
setup, net library 186
shutdown (Berkeley Sockets API) 276
sleep (Berkeley Sockets API) 278
SlkClose 150, 171
SlkCloseSocket 151, 172
slkErrAlreadyOpen 150, 173
SlkFlushSocket 173
SlkOpen 150, 173
SlkOpenSocket 150, 174
SlkPktHeaderType 151, 152, 178
SlkReceivePacket 152, 153, 175
SlkSendPacket 152, 177
SlkSetSocketListener 178
SlkSocketListenType 151
SlkSocketRefNum 151, 179
SlkSocketSetTimeout 151, 179
SlkWriteDataType 152
SLP 138, 146
SLP packet

footer 148
header 147
receiving 149
transmitting 149

SLP packets 147
SO_ERROR (Berkeley Sockets API) 274
SO_KEEPALIVE (Berkeley Sockets API) 274, 275
SO_LINGER (Berkeley Sockets API) 274, 275
SO_TYPE (Berkeley Sockets API) 274
SockAcceptConn 210
SockBroadcast 210
SockDebug 209
SockDontRoute 210
SockErrorStatus 210
socket (Berkeley Sockets API) 276
socket listener 151, 153, 176
socket listener procedure 151, 154, 176, 178
sockets, opening serial link socket 150
SockKeepAlive 210
SockLinger 210
SockNonBlocking 210, 211
SockOOBInLine 210
SockRcvBufSize 210
SockRcvLowWater 210
SockRcvTimeout 210
SockReuseAddr 210
SockSndBufSize 210
SockSndLowWater 210
SockSndTimeout 210
SockSocketType 210
SockUseLoopback 210
soft reset 28
storage RAM 24
SysLibFind 140, 297

T
TCP/IP 181
TCP_MAXSEG (Berkeley Sockets API) 274
TCP_NODELAY (Berkeley Sockets API) 273, 275
TCPMaxSeg 209
TCPNoDelay 209
timeout 151
transmitting SLP packet 149

U
UDP 181
UI resources, storing 45
unlocking a chunk 33

Index

Developing Palm OS 3.0 Applications, Part III 337

user interface elements
storing (resource manager) 45

using the data manager 41

V
version checking 191

W
write (Berkeley Sockets API) 276

Index

338 Developing Palm OS 3.0 Applications, Part III

	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Guide Contains
	Conventions Used in This Guide

	Palm OS Memory Management
	Introduction to Memory Use on Palm OS
	Hardware Architecture
	PC Connectivity

	Memory Architecture
	Heap Overview
	Overview of Memory Chunk Structure

	The Memory Manager
	Memory Manager Structures
	Heap Structures
	Chunk Structures
	Local ID Structures

	Using the Memory Manager
	Overview of the Memory Manager API
	Storage Heap Sizes and Memory Management Schemes
	Optimizing Memory Manager Performance

	Memory Manager Function Summary

	The Data Manager
	Records and Databases
	Accessing Data With Local IDs

	Structure of a Database Header
	Database Header Fields
	Structure of a Record Entry in a Database Header

	Using the Data Manager
	Data Manager Function Summary

	The Resource Manager
	Structure of a Resource Database Header
	Using the Resource Manager
	Resource Manager Functions

	Memory Management Functions
	Memory Manager Functions
	MemCardInfo
	MemCmp
	MemDebugMode
	MemHandleCardNo
	MemHandleDataStorage
	MemHandleFree
	MemHandleHeapID
	MemHandleLock
	MemHandleNew
	MemHandleResize
	MemHandleSize
	MemHandleToLocalID
	MemHandleUnlock
	MemHeapCheck
	MemHeapCompact
	MemHeapDynamic
	MemHeapFlags
	MemHeapFreeBytes
	MemHeapID
	MemHeapScramble
	MemHeapSize
	MemLocalIDKind
	MemLocalIDToGlobal
	MemLocalIDToLockedPtr
	MemLocalIDToPtr
	MemMove
	MemNumCards
	MemNumHeaps
	MemNumRAMHeaps
	MemPtrCardNo
	MemPtrDataStorage
	MemPtrFree
	MemPtrHeapID
	MemPtrNew
	MemPtrRecoverHandle
	MemPtrResize
	MemPtrSize
	MemPtrToLocalID
	MemPtrUnlock
	MemSet
	MemSetDebugMode
	MemStoreInfo
	Functions for System Use Only
	MemCardFormat
	MemChunkFree
	MemChunkNew
	MemHandleFlags
	MemHandleLockCount
	MemHandleOwner
	MemHandleResetLock
	MemHandleSetOwner
	MemHeapFreeByOwnerID
	MemHeapInit
	MemInit
	MemInitHeapTable
	MemKernelInit
	MemPtrFlags
	MemPtrOwner
	MemPtrResetLock
	MemPtrSetOwner
	MemSemaphoreRelease
	MemSemaphoreReserve
	MemStoreSetInfo

	Data and Resource Manager Functions
	Data Manager Functions
	DmArchiveRecord
	DmAttachRecord
	DmAttachResource
	DmCloseDatabase
	DmCreateDatabase
	DmCreateDatabaseFromImage
	DmDatabaseInfo
	DmDatabaseProtect
	DmDatabaseSize
	DmDeleteCategory
	DmDeleteDatabase
	DmDeleteRecord
	DmDetachRecord
	DmDetachResource
	DmFindDatabase
	DmFindRecordByID
	DmFindResource
	DmFindResourceType
	DmFindSortPosition
	DmFindSortPositionV10
	DmGetAppInfoID
	DmGetDatabase
	DmGetLastErr
	DmGetNextDatabaseByTypeCreator
	DmGetRecord
	DmGetResource
	DmGetResourceIndex
	DmGet1Resource
	DmInsertionSort
	DmMoveCategory
	DmMoveRecord
	DmNewHandle
	DmNewRecord
	DmNewResource
	DmNextOpenDatabase
	DmNextOpenResDatabase
	DmNumDatabases
	DmNumRecords
	DmNumRecordsInCategory
	DmNumResources
	DmOpenDatabase
	DmOpenDatabaseByTypeCreator
	DmOpenDatabaseInfo
	DmPositionInCategory
	DmQueryNextInCategory
	DmQueryRecord
	DmQuickSort
	DmRecordInfo
	DmReleaseRecord
	DmReleaseResource
	DmRemoveRecord
	DmRemoveResource
	DmRemoveSecretRecords
	DmResetRecordStates
	DmResizeRecord
	DmResizeResource
	DmResourceInfo
	DmSearchRecord
	DmSearchResource
	DmSeekRecordInCategory
	DmSet
	DmSetDatabaseInfo
	DmSetRecordInfo
	DmSetResourceInfo
	DmStrCopy
	DmWrite
	DmWriteCheck
	Functions for System Use Only
	DmMoveOpenDBContext

	Palm OS Communications
	Byte Ordering
	Communications Architecture Hierarchy
	The Serial Manager
	Using the Serial Manager
	Serial Manager Function Summary

	The Serial Link Protocol
	SLP Packet Structures
	SLP Packet Format
	Packet Type Assignment
	Socket ID Assignment
	Transaction ID Assignment

	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager
	Serial Link Manager Function Summary

	Communications Functions
	Serial Manager Functions
	SerClearErr
	SerClose
	SerControl
	SerGetSettings
	SerGetStatus
	SerOpen
	SerReceive
	SerReceive10
	SerReceiveCheck
	SerReceiveFlush
	SerReceiveWait
	SerSend
	SerSend10
	SerSendWait
	SerSetReceiveBuffer
	SerSetSettings
	Functions Used Only by System Software
	SerReceiveISP
	SerReceiveWindowClose
	SerReceiveWindowOpen
	SerSetWakeupHandler
	SerSleep
	SerWake

	Serial Link Manager Functions
	SlkClose
	SlkCloseSocket
	SlkFlushSocket
	SlkOpen
	SlkOpenSocket
	SlkReceivePacket
	SlkSendPacket
	SlkSetSocketListener
	SlkSocketRefNum
	SlkSocketSetTimeout
	Functions for Use By System Software Only
	SlkSysPktDefaultResponse
	SlkProcessRPC

	Miscellaneous Communications Functions
	Crc16CalcBlock

	Palm OS Net Library
	Overview
	Structure
	System Requirements
	Constraints

	The Programmer’s Interface
	Net Library and Berkeley Sockets API: Differences
	Example

	Using the Net Library
	Setup and Configuration Calls
	Interface Specific Settings
	General Settings
	Settings for Interface Selection
	Summary

	Runtime Calls
	Initialization and Shutdown
	Calls Made Before Opening the Net Library
	Opening the Net Library
	Closing the Net Library
	Summary of Initialization
	Initialization Example

	Version Checking
	Network I/O and Utility Calls

	Net Library Functions
	Library Open and Close
	NetLibClose
	NetLibConnectionRefresh
	NetLibFinishCloseWait
	NetLibOpen
	NetLibOpenCount

	Socket Creation and Deletion
	NetLibSocketClose
	NetLibSocketOpen

	Socket Options
	NetLibSocketOptionGet
	NetLibSocketOptionSet

	Socket Connections
	NetLibSocketAccept
	NetLibSocketAddr
	NetLibSocketBind
	NetLibSocketConnect
	NetLibSocketListen
	NetLibSocketShutdown

	Send and Receive Routines
	NetLibDmReceive
	NetLibReceive
	NetLibReceivePB
	NetLibSend
	NetLibSendPB

	Utilities
	NetHToNL
	NetHToNS
	NetLibAddrAToIN
	NetLibAddrINToA
	NetLibGetHostByAddr
	NetLibGetHostByName
	NetLibGetMailExchangeByName
	NetLibGetServByName
	NetLibMaster
	netMasterInterfaceInfo
	netMasterInterfaceStats
	netMasterIPStats
	netMasterICMPStats
	netMasterUDPStats
	netMasterTCPStats
	netMasterTraceEventGet

	NetLibSelect
	NetLibTracePrintF
	NetLibTracePutS
	NetNToHL
	NetNToHS

	Configuration
	NetLibIFAttach
	NetLibIFDetach
	NetLibIFDown
	NetLibIFGet
	NetLibIFSettingGet
	NetLibIFSettingSet
	NetLibIFUp
	NetLibSettingGet
	NetLibSettingSet

	Berkeley Sockets API Calls
	Supported Socket Functions
	Supported Network Utility Functions
	Supported Byte Ordering Functions
	Supported Network Address Conversion Functions
	Supported System Utility Functions

	Exchange Manager
	Overview
	Exchange Manager and Launch Codes
	Exchange Manager Function Summary
	Exchange Manager Functions
	ExgAccept
	ExgDBRead
	ExgDBWrite
	ExgDisconnect
	ExgPut
	ExgReceive
	ExgRegisterData
	ExgSend

	IR Library
	IrDA Stack
	Loading the IR Library
	IR Data Structures
	IrConnect
	IrPacket
	IrIASObject
	IrIasQuery
	IrCallbackParms

	IR Stack Callback Events
	LEVENT_DATA_IND
	LEVENT_DISCOVERY_CNF
	LEVENT_LAP_CON_CNF
	LEVENT_LAP_CON_IND
	LEVENT_LAP_DISCON_IND
	LEVENT_LM_CON_CNF
	LEVENT_LM_CON_IND
	LEVENT_LM_DISCON_IND
	LEVENT_PACKET_HANDLED
	LEVENT_STATUS_IND
	LEVENT_TEST_CNF
	LEVENT_TEST_IND

	IAS Query Callback Function
	IR Library Function Summary
	IR Library Functions
	IrAdvanceCredit
	IrBind
	IrClose
	IrConnectIrLap
	IrConnectReq
	IrConnectRsp
	IrDataReq
	IrDisconnectIrLap
	IrDiscoverReq
	IrIsIrLapConnected
	IrIsMediaBusy
	IrIsNoProgress
	IrIsRemoteBusy
	IrLocalBusy
	IrMaxRxSize
	IrMaxTxSize
	IrOpen
	IrSetConTypeLMP
	IrSetConTypeTTP
	IrSetDeviceInfo
	IrTestReq
	IrUnbind

	IAS Functions
	IrIAS_Add
	IrIAS_GetInteger
	IrIAS_GetIntLsap
	IrIAS_GetObjectID
	IrIAS_GetOctetString
	IrIAS_GetOctetStringLen
	IrIAS_GetType
	IrIAS_GetUserString
	IrIAS_GetUserStringCharSet
	IrIAS_GetUserStringLen
	IrIAS_Next
	IrIAS_Query
	IrIAS_SetDeviceName
	IrIAS_StartResult

	Index

