it

PALM .
COMPUTING
PLATFORM

Developing Palm OS 3.0
Applications

Part IlI: System Management

Navigate this online document as follows:

To see bookmarks, Command-7 (Mac OS)

type: Ctrl-7 (Windows)
To navigate, any blue hypertext link
click on: any Table of Contents entry

any Index entry
arrows in the toolbar

Y A 7 7 777777777777 4

Developing Palm OS
3.0 Applications

Part Il: System
Management

Copyright © 1996 - 1998, 3Com Corporation or its subsidiaries (“3Com?”). All rights reserved. This docu-
mentation may be printed and copied solely for use in developing products for the Palm Computing plat-
form. In addition, two (2) copies of this documentation may be made for archival and backup purposes.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or
by any means or used to make any derivative work (such as translation, transformation or adaptation)
without express written consent from 3Com.

3Com reserves the right to revise this documentation and to make changes in content from time to time
without obligation on the part of 3Com to provide notification of such revision or changes. 3COM MAKES
NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR
THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMENTATION IS PROVIDED
ON AN “AS IS” BASIS. 3COM MAKES NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IM-
PLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING
WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, 3COM ALSO EXCLUDES FOR ITSELF AND ITS SUPPLI-
ERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR
DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY
KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION OR
DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF 3COM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3Com, the 3Com logo, HotSync, Palm Computing, and Graffiti are registered trademarks, and Palm IIl,
Palm OS, and the Palm Computing Platform logo are trademarks of 3Com Corporation or its subsidiaries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brand and product
names may be registered trademarks or trademarks of their respective holders.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Contact Information:

Metrowerks U.S.A. and international Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758

US.A.

Metrowerks Inc.

1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Metrowerks Mail order Voice: 1-800-377-5416
Fax: 1-512-873-4901

U.S.A.: 1-800-881-7256
elsewhere: 1-801-431-1536

http://ww. met r oner ks. com

Metrowerks Canada

3Com (Palm Computing Subsidiary) Canada: 800-891-6342

Mail Order
Metrowerks World Wide Web

Palm Computing World Wide Web
Registration information
Technical support

Sales, marketing, & licensing
CompuServe

http://ww. pal m com
regi st er @ret r oner ks. com
support @ret r ower ks. com
sal es@ret r ower ks. com

go Met r owner ks

Table of Contents

AboutThis Document. 13
Palm OS SDK Documentation 13
What This Guide Contains. 14
ConventionsUsed in ThisGuide15

1 Using Palm OS System Managers 17
The Alarm Manager. 18

Alarm Manager Overview. 18
Using the Alarm Manager. 20
Alarm Manager Function Summary 20
The Error Manager A |
Displaying DevelopmentErrors e |
Using the Error Manager Macros. . . . e e e 22
Understanding the Try-and-Catch Mechanlsm. ... 23
Using the Try and Catch Mechanism 24
Error Manager Function Summary 25
The Feature Manager25
The System Version Feature 26
Application-Defined Features 26
Using the Feature Manager 27
Feature Manager Function Summary 27
File Streaming Application Program Interface 28
Using the File Streaming API 28
File Streaming Data Structures 29
File Streaming Function Summary 35
The Sound Manager.235
Using the Sound Manager. e Y
Sound Preferences Compatlbllltylnformatlon - 2
Sound Manager Data Structures 46
Sound Manager Function Summary 52
The String Manager. X
String Manager Function Summary .« . .+ 53
The System Manager5
SystemBootandReset5

Developing Palm OS 3.0 Applications, Part Il v

Table of Contents

Power Management

The Microkernel .

Application Support . .

System Manager Function Summary
The System Event Manager . .

Event Translation: Pen Strokes to Key Events.

Pen Queue Management

Key Queue Management .

Auto-Off Control . o

System Event Manager Functlon Summary
The Time Manager . . .

Using Real-Time Clock Functlons

Using System Ticks Functions .

Time Manager Structures . .

Time Manager Function Summary .
Application Launcher .

2 Palm OS System Functions.

Alarm Manager API. Ce e
AlmGetAlarm .

AlmSetAlarm .
Functions for System Use Only

Error Manager Functions
ErrDisplay
EerlspIayFlleLlneI\/Isg
ErrFatalDisplaylf.
ErrNonFatalDisplayif.
ErrThrow . .

Event Manager Functlons .
EvtAddEventToQueue . .
EvtAddUniqueEventToQueue .
EvtCopyEvent .
EvtDequeuePenPoint .
EvtDequeuePenStrokelnfo.
EvtEnableGraffiti.
EvtEnqueueKey .

. 55
Y
. 58
. 63
. 63
. 64
. 65
. 66
. 67
. 67
. 68
. 68
. 68
. 69
. 70
. 70

. 13
. 13
. 14
.15
. 16
. 16
.07
. 18
. 19
. 80
. 80
. 80
. 81
. 81
. 82
. 83
. 83
. 84

vi Developing Palm OS 3.0 Applications, Part I

Table of Contents

EvtEventAvail285
EvtFlushKeyQueue.85
EvtFlushNextPenStroke. 86
EvtFlushPenQueue. 86
EvtGetEvent. o .o o ... 87
EvtGetPen. 87
EvtGetPenBtnList 88
EvtKeyQueueEmpty 88
EvtKeyQueueSize89
EvtPenQueueSize 89
EvtProcessSoftKeyStroke9
EvtResetAutoOffTimer 9
EvtSysEventAvail 9
EvtWakeup X §
FunctlonsforSystemUseOnIy. 4
Feature Manager Functions 93
FtrGet 9
FtrGetByIndex. %
FtrSet.09
FtrUnregister [
FunctlonsforSystemUseOnIy. [¢
Find Functions097
FindDrawHeader097
FindGetLineBounds 9
FindSaveMatch 98
FindStrinStr oo o000 09
Float Manager Functions 0 A
UsmgFloatlngPomtArlthmetlc . L0 X A
Using 1.0 Floating-Point Functionality101
FplAdd102
FplAToF.102
FplBaselOInfo10
FpIDiv104
FplFloatToLong1l04
FplFloatToULong105
FplFree105

Developing Palm OS 3.0 Applications, Part Il vii

Table of Contents

Miscellaneous System Fu

FplFTOA

Fplinit .
FplLongToFloat .
FpIMul . Co
FpIlSub

Crcl6CalcBlock
MdmDial .
MdmHangUp .
PhoneNumberLookup
ResLoadForm .
ResLoadMenu .

System Preferences Functions

PrefGetAppPreferences .

PrefGetAppPreferencesV10 .

PrefGetPreference
PrefGetPreferences .
PrefOpenPreferenceDBV10
PrefSetAppPreferences .
PrefSetAppPreferencesV10
PrefSetPreference.
PrefSetPreferences .

Password Functions.

PwdEXists .
PwdRemove.
PwdSet . .
PwdVerify. . . .

String Manager Functions .

StrATol . oo
StrCaselessCompare .
StrCat.

StrChr

StrCompare .

StrCopy . :
StrDelocalizeNumber .
StriToA .

nctions .

. 106
. 106
. 107
. 107
. 108
. 109
. 109
. 110
111
111
. 112
112
. 113
. 113
. 114
. 115
. 116
. 116
117
. 118
. 119
. 119
. 120
. 120
. 120
121
121
122
122
. 122
.123
. 123
124
124
125
125

viii Developing Palm OS 3.0 Applications, Part I

Table of Contents

StriToH.126
StrLen 126
StrLocalizeNumber.127
StrNCaselessCompare127
StrNCat.128
StrNCompare129
StrNCopy 129
StrPrintF130
StrStr. o . . oo oo oo oo s 130
StrToLower131
StrVPrintF. o000 L0000 131
File Streaming Functions.133
FileClearerr 133
FileClose 133
FileControl 134
FileDelete 136
FileDmRead 136
FileEOF 138
FileError 139
FileFlush 139
FileGetlLastError 140
FileOpen 140
FileRead 143
FileRewind 144
FileSeek 145
FileTell 146
FileTruncate 147
FileWrite 147
Functions For SystemUseOnly148
File Streaming ErrorCodes149
Sound Manager Functions150
SndCreateMidiL.ist 150
SndDoCmd 151
SndGetDefaultvolume152
SndPlaySMF 152
SndPlaySystemSound.155
Functions for System UseOnly.155

Developing Palm OS 3.0 Applications, Part Il ix

Table of Contents

System Functions.156
SysAppLaunch156
SysAppLauncherDialog.157
SysBatterylnfo 158
SysBatteryInfoV20 159
SysBinarySearch160
SysBroadcastActionCode162
SysCopyStringResource.162
SysCreateDataBaseList163
SysCreatePanelList.l64
SysCurAppDatabasel64
SysErrString.165
SysFatalAlert165
SysFormPointerArrayToStrings166
SysGetOSVersionString 166
SysGetRomToken 167
SysGetStackInfo 168
SysGraffitiReferenceDialog168
SysGremlins 169
SysHandleEvent170
SyslnsertionSort170
Sysinstall172
SysKeyboardDialog173
SysKeyboardDialogv10.173
SysLibFind174
SysLibLoad175
SysQSort176
SysRandom LA
SysReset
SysSetAutoOffTime.178
SysStringByIndex178
SysTaskDelay179
SysTicksPerSecond179
SysUIAppSwitch.179
Functions for System UseOnly.180

X Developing Palm OS 3.0 Applications, Part I

Table of Contents

Time Manager Functions189
DateAdjust189
DateDaysToDate189
DateSecondsToDate19
DateToAscii19
DateToDays191
DateToDOWDMFormat.19
DayOfMonth19
DayOfWeek19
DaysinMonth193
TimAdjust.193
TimDateTimeToSeconds.19
TimGetSeconds19%
TimGetTicks.194
TimSecondsToDateTime.19
TimSetSeconds.19%
TimeToAscii T R [
FunctlonsforSystemUseOnIy K [¢

Developing Palm OS 3.0 Applications, Part Il xi

Table of Contents

xii Developing Palm OS 3.0 Applications, Part I

= About This Document

Developing Palm OS 3.0 Applications, Part 11, is part of the Palm OS
Software Development Kit (SDK). This introduction provides an
overview of the SDK documentation, discusses what materials are
included in this document, and what conventions are used.

Palm OS SDK Documentation

The following documents are part of the SDK:

Document Description

Palm OS 3.0 Tutorial A number of Phases step developers through using the dif-
ferent parts of the system. Example applications for each
phase are included in the SDK.

Developing Palm OS A programmer’s guide and reference document that dis-
3.0 Applications. cusses all important aspects of developing an application.
Part I: Interface Man-

agement

Developing Palm OS A programmer’s guide and reference document for all sys-
3.0 Applications. tem managers, such as the string manager or the system
Part 1. System Man- event manager. See What This Guide Contains for details.
agement.

Developing Palm OS 3.0 Applications, Part Il 13

About This Document
What This Guide Contains

Document Description

Developing Palm OS Programmer’s guide and reference document for:

3.0 Applications, < Memory management; both the database manager and

Part I1l. Memory and the memory manager.

Communications Man- o])

agement - I‘r::ZtF')ng OS communications library for serial commu-
ication.

= The Palm OS network library, which provides basic net-
work services.

= The exchange manager and IR library, which provide in-
frared communication capabilities.

Palm OS 3.0 Cookbook. Provides a variety of design guidelines, including localiza-
tion, Ul design, and optimization. Information about using
CodeWarrior for Palm OS to create projects and executables.

What This Guide Contains

This section provides an overview of the chapters in this guide.

= Chapter 1, “Using Palm OS System Managers,” discusses the
managers that provide system functionality, including the sys-
tem event manager, time manager, and error manager.

= Chapter 2, “Palm OS System Functions,” provides reference-
style information for each API function that allows applica-
tions to interact with the system.

14 Developing Palm OS 3.0 Applications, Part I

About This Document
Conventions Used in This Guide

Conventions Used in This Guide

This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, field, bitfield.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).
blue and underlined Hot links.

black and underlined 3.0 function names (headings only)
red and underlined 3.0 function names (in Table of

Contents only)

Developing Palm OS 3.0 Applications, Part Il 15

About This Document
Conventions Used in This Guide

16 Developing Palm OS 3.0 Applications, Part I

-o0—
-—o—
—-oo—
.
.

™

Using Palm OS
System Managers

In contrast to desktop computer operating systems, Palm OS con-
sists of only one library. This library, however, contains several man-
agers, which are groups of functions that work together to imple-
ment certain functionality. As a rule, all functions that belong to one
manager use the same three-letter prefix and work together to im-
plement a certain aspect of functionality.

In this chapter, you learn about all Palm OS managers that aren’t di-
rectly responsible for interface management or memory manage-
ment. As you investigate the managers more closely you’ll find that
some of them are mostly services provided by the system, while
others contain a large number of API calls.

This chapter presents the managers in the following order:

= The Alarm Manager provides support for setting real-time
alarms to perform some periodic activity or display a reminder.

= The Error Manager can be used by applications or system soft-
ware for displaying unexpected runtime errors, such as those
that typically show up during program development.

Final production versions of applications or system software are
not expected to use error manager.

= The Feature Manager provides information about the system
software version and the optional system features and third-
party extensions that are installed. An application can also use
the feature manager to keep track of its own data.

= The Sound Manager lets applications and system modules con-
trol sound manager settings and play custom and predefined
system sounds.

Developing Palm OS 3.0 Applications, Part Il 17

Using Palm OS System Managers
The Alarm Manager

= The String Manager is a set of string manipulation functions
available to applications. Use these routines instead of the
standard C routines.

= The System Manager is responsible for the basic operation of
the system, including booting and resetting the system,
managing power, managing the microkernel, and
supporting applications.

= The System Event Manager provides an interface to the low-
level pen and key event queues, translates taps on silk-screened
icons into key events, sends pen strokes in the Graffiti area to the
Graffiti recognizer, and puts the system into low-power doze
mode when there is no user activity.

= The Time Manager provides real-time clock functions and sys-
tem tick functions.

The Alarm Manager

The Palm OS alarm manager provides support for setting real-time

alarms, for performing some periodic activity, or for displaying a re-
minder. This section helps you use the alarm manager by discussing
these topics:

« Alarm Manager Overview

e Using the Alarm Manager

« Alarm Manager Function Summary

Alarm Manager Overview
The alarm manager:
= Works closely with the time manager to handle real-time alarms.

= Sends launch codes to applications that set a specific time alarm
to inform the application the alarm is due.

= Handles alarms by application in a two cycle operation
— First, it notifies each application that the alarm has occurred.
— Second, it allows each application to display some UI.
= Allows only one alarm to be set per application
However, the alarm manager

18 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The Alarm Manager

= Doesn’t provide reminder dialog boxes.
= Doesn’t play the alarm sound.

The following section looks in some detail at how the alarm manag-
er and applications interact when processing an alarm.

Alarm Queue

The alarm gqueue contains all alarm requests. Triggered alarms are
queued up until the alarm manager can send the launch code to the
application that created the alarm. However, if the alarm queue be-
comes full, the oldest entry that has been both triggered and notified
is deleted to make room for a new alarm.

Alarm Manager Processing

When an alarm is triggered, the alarm manager notifies each appli-
cation that set an alarm for that alarm time via the sysAppLaunch-
CndAl ar nil'r i gger ed launch code.

After each application has processed this launch code, the alarm
manager sends each application the sysAppLaunchCndDi spl ay-
Al ar mlaunch code in order for the application to display the alarm.

If a new alarm time is triggered while an older alarm is still being
displayed, all applications with alarms scheduled for this second
alarm time are sent the sysAppLaunchCndAl ar mTri gger ed
launch code, but the display cycle is postponed until all earlier
alarms have finished displaying.

Alarm Scenario

The alarm manager typically first notifies each application that an
alarm has been triggered, then notifies each application to display
the alarm. Here’s how an application and the alarm manager typi-
cally interact when processing an alarm

1. When the alarm time is reached, the alarm manager finds the
first application in the alarm queue that set an alarm for this
alarm time.

2. The alarm manager sends this application the
sysAppLaunchCndAl ar mTri gger ed launch code.

Developing Palm OS 3.0 Applications, Part Il 19

Using Palm OS System Managers
The Alarm Manager

3. The application can now:
— Set the next alarm.
— Play a short sound.
— Perform some maintenance activity.

4. The alarm manager finds in the alarm queue the next appli-
cation that set an alarm and repeats steps 2 and 3.

5. This is process is repeated until no more applications are
found with this alarm time.

6. The alarm manager then finds once again the first application
in the alarm queue who set an alarm for this alarm time and
sends this application the sysAppLaunchCndDi spl ay-

Al ar mlaunch code

7. The application can now:
— Display a dialog box
— Display some other type of reminder

8. The alarm manager processes the alarm queue for the next
application that set an alarm for the alarm being triggered
and step 6 and 7 are repeated.

9. This is process is repeated until no more applications are
found with this alarm time.

Using the Alarm Manager

An applications can use the Palm OS function Al nfSet Al ar mto set
and/or clear an alarm.

An application can find out its current alarm setting by using the
Al nteet Al ar mfunction. This function returns the alarm date and
time (expressed in seconds since 1/1/1904). The return value is O if
no active alarm exists for the application.

Alarm Manager Function Summary

The following alarm manager functions are for application use:
e AlmGetAlarm

e AlmSetAlarm

20 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Error Manager

The Error Manager

The error manager can be used by applications or system software
for displaying unexpected runtime errors such as those that typical-
ly show up during program development. Final versions of applica-
tions or system software won’t use the error manager.

The error manager API consists of a set of functions for displaying
an alert with an error message, file name, and the line number
where the error occurred. If a debugger is connected, it is entered
when the error occurs.

The error manager also provides a “try and catch” mechanism that
applications can use for handling such runtime errors as out of
memory conditions, user input errors, etc. This mechanism is close-
ly modeled after the try/catch functionality of the recent ANSI C
specification.

This section helps you understand and use the error manager, dis-
cussing the following topics:

< Displaying Development Errors

= Understanding the Try-and-Catch Mechanism

« Using the Error Manager Macros

= Error Manager Function Summary

Displaying Development Errors

The error manager provides some compiler macros that can be used
in source code. These macros display a fatal alert dialog on the
screen and provide buttons to reset the device or enter the debugger
after the error is displayed. There are three macros: Er r Di spl ay,
Err Fatal Di spl ayl f,and Err NonFat al D spl ayl f.

= Err Di spl ay always displays the error message on the screen.

e ErrFat al D spl ayl f and Err NonFat al Di spl ayl f display
the error message only if their first argument is TRUE.

The error manager uses the compiler define ERROR_CHECK LEVEL
to control the level of error messages displayed. You can set the
value of the compiler define to control which level of error checking

Developing Palm OS 3.0 Applications, Part Il 21

Using Palm OS System Managers

The Error Manager

and display is compiled into the application. Three levels of error
checking are supported: none, partial, and full.

If you set The compiler...
ERR_CHECK_LEVEL to...

ERROR_CHECK_NONE (0) Doesn’t compile in any error calls.

ERROR _CHECK PARTI AL(1) Compilesinonly Err D spl ay
and Err Fat al Di spl ayl f calls.

ERROR _CHECK _FULL (2) Compiles in all three calls.

During development, it makes sense to set full error checking for
early development, partial error checking during alpha and beta test
periods, and no error checking for the final product. At partial error
checking, only fatal errors are displayed; error conditions that are
only possible are ignored under the assumption that the application
developer is already aware of the condition and designed the soft-
ware to operate that way.

Using the Error Manager Macros

Calls to the error manager to display errors are actually compiler
macros that are conditionally compiled into your program. Most of
the calls take a boolean parameter, which should be set to TRUE to
display the error, and a pointer to a text message to display if the
condition is true.

Typically, the boolean parameter is an in-line expression that evalu-
ates to TRUE if there is an error condition. As a result, both the ex-
pression that evaluates the error condition and the message text are
left out of the compiled code when error checking is turned off. You
cancall Err Fat al Di spl ayl f,or Err D spl ay, but using

Err Fat al Di spl ayl f makes your source code look neater.

For example, assume your source code looks like this:
result = DoSonet hi ng();

ErrFatal Di splaylf (result < 0, “unexpected
result from DoSonet hing”);

22 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The Error Manager

With error checking turned on, this code displays an error alert dia-
log if the result from DoSormret hi ng() is less than 0. Besides the
error message itself, this alert also shows the file name and line
number of the source code that called the error manager. With error
checking turned off, both the expression evaluationerr < 0 and
the error message text are left out of the compiled code.

The same net result can be achieved by the following code:
result = DoSonet hi ng();
#i f ERROR_CHECK_LEVEL != ERROR_CHECK_NONE
if (result < 0)
ErrDi splay (“unexpected result from
DoSonet hi ng”) ;
#endi f

However, this solution is longer and requires more work than sim-
ply calling Er r Fat al Di spl ayl f . It also makes the source code
harder to follow.

Understanding the Try-and-Catch Mechanism

The try-and-catch mechanism of the error manager is closely mod-
eled after the ANSI C try and catch standard.

The error manager is aware of the machine state of the Palm OS de-
vice and can therefore correctly save and restore this state. The built-
in try and catch of the compiler can’t be used because it’s machine
dependent.

Try and catch is basically a neater way of implementing a got o if an
error occurs. A typical way of handling errors in the middle of a
routine is to go to the end of the routine as soon as an error occurs
and have some general-purpose cleanup code at the end of every
routine. Errors in nested routines are even trickier because the result
code from every subroutine call must be checked before continuing.

When you set up a try/catch, you are providing the compiler with a
place to jump to when an error occurs. You can go to that error han-
dling routine at any time by calling Er r Thr ow. When the compiler
sees the Er r Thr owcall, it performs a got o to your error handling

Developing Palm OS 3.0 Applications, Part Il 23

Using Palm OS System Managers
The Error Manager

code. The greatest advantage to calling Er r Thr ow, however, is for
handling errors in nested subroutine calls.

Even if Er r Thr ow is called from a nested subroutine, execution im-
mediately goes to the same error handling code in the higher-level
call. The compiler and runtime environment automatically strip off
the stack frames that were pushed onto the stack during the nesting
process and go to the error handling section of the higher-level call.
You no longer have to check for result codes after calling every sub-
routine; this greatly simplifies your source code and reduces its size.

Using the Try and Catch Mechanism

The following example illustrates the possible layout for a a typical
routine using the error manager’s try and catch mechanism.

Listing 1.1 Try and Catch Mechanism Example

ErrTry {
p = MenPtrNew 1000);
if (!'p) ErrThrow err NoMenory);
MenSet (p, 1000, O0);
Creat eTabl e(p);
Print Tabl e(p);

}

ErrCatch(err) {
/'l Recover or cleanup aftera failure in the
/1 above Try block."err" is an int
/1l identifying the reason for the failure.

/1l You may call ErrThrow() if you want to
/1 junp out to the next Catch bl ock.

// The code in this Catch bl ock doesn't
/'l execute if the above Try bl ock conpl etes
// without a Thr ow.

if (err == errNoMenory)
ErrDisplay("Qut of Menory");
el se

24 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Feature Manager

ErrDi spl ay(" Sone other error");
} ErrEndCat ch
/1l You nmust structure your code exactly as
/ I above. You can’t have an ErrTry wi t hout an
[l ErrCatch { } ErrEndCatch, or vice versa.

Any call to Er r Thr owwithin the Er r Tr y block results in control
passing immediately to the Er r Cat ch block. Even if the subroutine
Cr eat eTabl e called Er r Thr ow, control would pass directly to the
Er r Cat ch block. If the Er r Tr y block completes without calling

Er r Thr ow, the Er r Cat ch block is not executed.

You can nest multiple Er r Tr y blocks. For example, if you wanted to
perform some cleanup at the end of Cr eat eTabl e in case of error,

e PutErr Try/Err Cat ch blocks in Cr eat eTabl e
= Clean up in the Er r Cat ch block first
e Call Er r Thr owto jump to the top-level Er r Cat ch

Error Manager Function Summary

The following error manager functions are available for application
use:

= ErrDisplay
ErrDisplayFileLineMsg

ErrFatalDisplaylf

ErrNonFatalDisplaylf

ErrThrow

The Feature Manager

A feature is a 32-bit value that has special meaning to both the fea-
ture publisher and to users of that feature. Features can be pub-
lished by the system or by applications.

Each feature is identified by a feature creator and a feature number:

= The feature creator is usually the database creator type of the ap-
plication that publishes the feature.

Developing Palm OS 3.0 Applications, Part Il 25

Using Palm OS System Managers

The Feature Manager

= The feature number is any 16-bit value used to distinguish be-
tween different features of a particular creator.

Once a feature is published, it remains present until it is explicitly
deleted. A feature published by an application sticks around even
after the application quits.

The System Version Feature

An example for a feature is the system version. This feature is pub-
lished by the system and contains a 32-bit representation of the sys-
tem version. The system version has a feature creator of “psys” and
a feature number of 1. Currently, the different versions of the system
software have the following numbers:

0x01003001 Pilot 1000 and Pilot 5000 (Palm OS 1.0)
0x02003000 PalmPilot and PalmPilot Professional (Palm OS 2.0)
0x03003000 Palm Il Connected Organizer (Palm OS 3.0)

Any application can find out the system version by looking for this
feature.

Application-Defined Features

When an application adds or removes capabilities from the base sys-
tem, it can create features to test for the presence or absence of those
capabilities. This allows an application to be compatible with multi-
ple versions of the system by refining its behavior, depending on
which capabilities are present or not. Future hardware platforms
may lack some capabilities present in the first platform, so checking
the system version feature is important.

This section introduces the feature manager by discussing these
topics:

« Using the Feature Manager

e Feature Manager Function Summary

26 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Feature Manager

Using the Feature Manager

Applications may find the feature manager useful for their own pri-
vate use. For example, an application may want to publish a feature
that contains a pointer to some private data it needs for processing
launch codes. Because an application’s global data is not generally
available while it processes launch codes, using the feature manager
is usually the easiest way for an application to get to its data.

To check whether a particular feature is present, call Ft r Get and
pass it the feature creator and feature number. If the feature exists,
Ft r Get returns the 32-bit value of the feature. If the feature doesn’t
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call
Ft r Set and pass the feature creator and number, and the 32-bit
value of the feature. A published feature remains available until it is
explicitly removed by a call to Ft r Unr eqgi st er or until the system
resets; simply quitting an application doesn’t remove a feature pub-
lished by that application.

Features are split into two groups: ROM-based and RAM-based.
ROM-based features are stored in a separate table in ROM and can
never be removed; only system-defined features are in this table. All
features installed at runtime are in the RAM table. Ft r Get Byl ndex
accepts a parameter that specifies whether to search the ROM table
or RAM table.

Call Ft r Unr egi st er to remove RAM-based features created at
runtime by calling Ft r Set .

You can get a complete list of all published features by calling

Ft r Get Byl ndex repeatedly. Passing an index value starting at 0 to
Ft r Get Byl ndex and incrementing repeatedly by 1 eventually re-
turns all available features.

Feature Manager Function Summary

The following feature manager functions are available for applica-
tion use:

e FtrGet
e FtrGetBylndex

Developing Palm OS 3.0 Applications, Part Il 27

Using Palm OS System Managers
File Streaming Application Program Interface

e FtrSet
= FtrUnregister

File Streaming Application Program Interface

The file streaming functions in Palm OS 3.0 let you work with large
blocks of data. File streams can be arbitrarily large—they are not
subject to the 64k maximum size limit imposed by the memory
manager on allocated objects. File streams can be used for perma-
nent data storage; in Palm OS 3.0, their underlying implementation
is a PalmOS database. You can read, write, seek to a specified offset,
truncate, and do everything else you'd expect to do with a desktop-
style file.

Other than backup/restore, Palm OS does not provide direct Hot
Sync support for file streams, and none is planned at this time.

The use of double-buffering imposes a performance penalty on file
streams that may make them unsuitable for certain applications.
Record-intensive applications tend to obtain better performance
from the Data Manager.

Using the File Streaming API

The File Streaming API is derived from the C programming lan-
guage’s <st di 0. h> interface. Any C book that explains the

<st di 0. h> interface should serve as a suitable introduction to the
concepts underlying the Palm OS File Streaming API. This section
provides only a brief overview of the most commonly used file
streaming functions.

The Fi | eOpen function opens a file, and the Fi | eRead function
reads it. The semantics of Fi | eRead and Fi | eW i t e are just like
their <st di 0. h> equivalents, the f r ead and f wri t e functions.
The other <st di 0. h> routines have obvious analogs in the File
Streaming API as well.

28 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
File Streaming Application Program Interface

For example,

theStream=Fil eOpen(cardld, "Ki || er AppDat aFi | e",
"KILR, "KILD , fileMddeReadOnly,
&err);

As on a desktop, the filename is the unique item. The creator ID and
filetype are for informational purposes and your code may require
that an opened file have the correct type and creator.

Normally, the Fi | eQpen function returns an error when it attempts
to open or replace an existing stream having a type and creator that
do not match those specified. To suppress this error, pass the

fil eMbdeAnyTypeCr eat or selector asaflag inthe openMde pa-
rameter to the Fi | eOpen function.

To read data, use the Fi | eRead function as in the following exam-
ple:

Fi |l eRead(t heStream &buf, objSize, nuntbjs,
&err);

To free the memory used to store stream data as the data is read, you
can use the Fi | eCont r ol function to switch the stream to destruc-
tive read mode. This mode is useful for manipulating temporary
data; for example, destructive read mode would be ideal for adding
the objects in a large data stream to a database when sufficient mem-
ory for duplicating the entire file stream is not available. You can
switch a stream to destructive read mode by passing the

fil eOpDestructi veReadMbde selector as the value of the op pa-
rameter to the Fi | eCont r ol function.

The Fi | eDnRead function can read data directly into a Database
Manager chunk for immediate addition to a PalmOS database.

File Streaming Data Structures

This section lists enumerated types used by file streaming functions.

Developing Palm OS 3.0 Applications, Part Il 29

Using Palm OS System Managers
File Streaming Application Program Interface

FileOpEnum

This data type describes the file streaming operation to perform. Itis
passed as the value of the op parameter to the Fi | eCont r ol func-
tion. Normally, you do not call the Fi | eCont r ol function yourself;
it is called for you by most of the other file streaming functions or
macros to perform common file streaming operations. However,
you may call Fi | eContr ol explicitly to enable specialized read
modes.

Listing 1.2 FileOpEnum type definition

t ypedef enum Fi | eOpEnum {

fil

fil
Il
/11
Il
Il
/11
Il
Il
/11
Il
Il
11
Il
Il
11
Il
Il
11
Il

fil
Il
11
/11
Il
Il

eOpNone = 0,// no-op

eQpDestructi veReadMode,

Enter destructive read node, and rewind streamto its
begi nning. Once in this node, there is no turning back:
streanis contents after closing (or crash) are undefi ned.
Destructive read node deletes file stream data bl ocks as
data is being read, thus freeing storage autonmatically.
You cannot call FileWite, FileSeek or FileTruncate on a
streamin this node. An exception to this rule applies to
streans opened in "wite + append” node and then switched
into destructive read node. FileWite appends data to this
stream while preserving the current file position, and
subsequent reads pick up where they left off (you can think
of this feature as a pseudo- pi pe).

ARGUMENTS:

stream = open stream handl e

val ueP = NULL

val ueLenP = NULL

RETURNS:

zero on success; fileErr... on error

eOpCGet EOFSt at us,

get end-of-file status (like Cruntine’s feof)
(err = fileErrECF) indicates end of file condition
use FileC earerr to clear this error status
ARGUMENTS:

stream = open stream handl e

30 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
File Streaming Application Program Interface

[/ val ueP = NULL

/1 val ueLenP = NULL

/| RETURNS:

/[l zero if _not_ end of file;
/1 non-zero if end of file

fileQpCetLastError,

/'l get error code fromlast operation on stream and clear the
/1l last error code value. Doesn’t change status of end-of-file
/[l or I/Oerrors -- use FileC earerr to reset all error codes.
/1 ARGUVMENTS:

/] stream = open stream handl e

/1l valueP = NULL

/1 val ueLenP = NULL

/'l RETURNS:

/'l Error code fromlast file stream operation

fileOpd earError,

/[l clear 1/O and end of file error status, and |ast error
/1 ARGUMENTS:

[l stream = open stream handl e

/1 val ueP = NULL

/1 val ueLenP = NULL

/| RETURNS:

/'l zero on success; fileErr... on error

fileOpGetl CErrorStatus,

/1l get 1/Oerror status (like Cruntine's ferror)
/'l use FileCearerr to clear this error status
/'l ARGUMENTS:

/'l stream = open stream handl e

/1 valueP = NULL

/1 val ueLenP = NULL

/1 RETURNS:

/[l zero if _not_1/Oerror;

/[l non-zero if I/Oerror is pending

fileOpGet CreatedSt at us,
[l find out whether file was created by FileOpen function
/1 ARGUMENTS:

Developing Palm OS 3.0 Applications, Part Il 31

Using Palm OS System Managers
File Streaming Application Program Interface

Il

Il
11
Il
11
/11
Il
Il

fi
Il
/11
Il
Il
11
Il
Il
11
Il
Il
11
Il
11
/11
Il
Il
/11

fi
/11
I
Il
11
Il
Il
11

stream = open stream handl e

val ueP = ptr to Bool ean type vari abl e

val ueLenP = ptr to Long variable set to sizeof (Bool ean)
RETURNS:

zero on success; fileErr... on error;

t he Bool ean variable will be set to

non-zero if the file was created.

epCet OpenDbRef

Get the open database reference (handle) of the underlying
dat abase that inplenments the stream (NULL if none); this is
needed for perform ng Pal nOS-specific operations on the
under| yi ng dat abase, such as changing or getting creator
and type, version, backup/reset bits, etc.

ARGUMENTS:

stream = open stream handl e

val ueP = ptr to DnOpenRef type variabl e

val ueLenP = ptr to Long variable set to sizeof (DnOpenRef)
RETURNS:

zero on success; fileErr... on error;

t he DnOpenRef variable will be set to the

file's open db reference that nay be passed

to Data Manager calls;

WARNI NG

Do not nmake any changes to the data of the underlying
dat abase -- doing so will corrupt the file stream
epFl ush,

flush any cached data to storage

ARGUMENTS:

stream = open stream handl e

val ueP = NULL

val ueLenP = NULL

RETURNS:

zero on success; fileErr... on error;

renoved systemuse-only info that appears here in FileStreamh

} Fil eOpEnum

32 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
File Streaming Application Program Interface

Listing 1.3

FileOriginEnum

This data type describes the origin of a seek operation on a file
stream. It is passed as the value of the or i gi n parameter to the
Fi | eSeek function.

FileOriginEnum type definition

t ypedef enum Fi

[eOri gi nEnum {

fileOriginBeginning = 1,
/'l fromthe beginning (first data byte of file)

fileOiginCur

rent,

/[l fromthe current position

fileOiginEnd

/1 fromthe end of file (one position beyond | ast data byte)
} FileOigi nEnum

Open Mode Constants

This section lists constants passed in the openMbde parameter to
the Fi | eOpen function. These constants specify the mode in which
a file stream is opened.

For each file stream, you must pass to the Fi | eQpen function only
one of the primary mode selectors listed in Table 1.1.

Table 1.1 Primary Open Mode Constants:
Primary Selectors (use only one) Comment
fil eMbdeReadOnly Open for read-only access
fil eModeReadWite Open/create for read/write access, dis-

fil eMbdeUpdat e

fil eMbdeAppend

carding any previous version of stream

Open/create for read/write, preserving
previous version of stream if it exists

Open/create for read/write, always
writing to the end of the stream

Developing Palm OS 3.0 Applications, Part Il 33

Using Palm OS System Managers
File Streaming Application Program Interface

You can use the | operator (bitwise inclusive OR) to append to a
primary mode selector one or more of the secondary mode selectors
listed in Table 1.2.

Table 1.2 Secondary Open Mode Constants

Secondary Selectors (append to primary) Comment

fileMbdeDont Overwite Preventsfi | eMbdeReadW i t e from
discarding an existing stream having
the same name; may only be specified
together with fi | eMbdeReadWite

fil eModeLeaveQpen Leave stream open when application
quits. Most applications should not use
this option.

fil eMbdeExcl usi ve No other application can open the

stream until the application that
opened it in this mode closes it.

fil eMbdeAnyTypeCreat or Accept any type/creator when opening

or replacing an existing stream. Nor-
mally, the Fi | eOpen function opens
only streams having the specified cre-
ator and type. Setting this option en-
ables the Fi | eOpen function to open
streams having a type or creator other
than those specified.

fil eMbdeTenporary Delete the stream automatically when it
is closed. For more information, see
Comment section of Fi | eOQpen func-
tion description.

34 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

File Streaming Function Summary
= FileClearerr

= FileClose

= FileControl

e FileDelete

e FileDmRead

e FileEOF

= FileError

e FileFlush

= FileGetLastError
= FileOpen

= FileRead

= FileReadlLow

= FileRewind
= FileSeek

= FileTell

e FileTruncate
e FileWrite

The Sound Manager

The Palm OS sound manager provides an extendable API for play-
ing custom sounds and system sounds, and for controlling default
sound settings. Although the sound APl accommodates multichan-
nel design, the system provides only a single sound channel at
present.

The sound hardware can play only one simple tone at a time
through an onboard piezoelectric speaker. Note that for a particular
amplitude level, the Palm Il device is slightly louder than its prede-
Cessors.

Single tones can be played by the SndDoCnd function and system
sounds are played by the SndPI aySyst enfSound function. The

Developing Palm OS 3.0 Applications, Part Il 35

Using Palm OS System Managers

The Sound Manager

end-user can control the amplitude of alarm sounds, game sounds,
and system sounds by means of the Preferences application. Sys-
tem-supplied sounds include the Information, Warning, Error, Start-
up, Alarm, Confirmation, and Click sounds.

Palm OS 3.0 introduces support for Standard MIDI Files (SMFs), for-
mat 0. An SMF is a note-by-note description of a tune—PalmQOS
doesn't support sampled sound, multiple voices or complex “instru-
ments.” You can download the SMF format specification from the
http://ww. m di . or g Web site.

The alarm sounds used in the built-in Date Book application are
SMFs stored in the System MIDI Sounds database and can be
played by the SndPI ay SMF function.

All SMF records in the System MIDI Sounds database are available
to the user. Developers can add their own alarm SMFs to this data-
base as a way to add variety and personalization to their devices.
You can use the sysFi | eTM di filetype and sysFi | eCSyst em
creator to open this database.

Each record in the database is a single SMF, with a header structure
containing the user-visible name. The record includes a song header,
then a track header, followed by any number of events. The system
only recognizes the keyDown, keyUp and t enpo events in a single
track; other commands which might be in the SMF are ignored. For
more information, see the following sections in this book:

= “Adding a Standard MIDI File to a Database” on page 38
= “MIDI Record Type” on page 46

« “MIDI Record Header” on page 47

You can use standard MIDI tools to create SMF blocks on desktop
computers, or you can write code to create them on the Palm OS de-
vice. The sample code project "RockMusic"”, particularly the routines
in the MakeSMF. c file, can be helpful to see how to create an SMF
programmatically.

Previous versions of PalmOS don't support SMFs or asynchronous
notes; don't use the new routines or commands when the Ft r Get
function returns a system version of less than 0x03000000. Doing
so will crash your application. For more information, see the
Retrieving the System Version Number section beginning on

36 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

Compatibility
Note

page 51 in the “Developing Palm OS Applications” chapter of Part |
of this documentation suite.

Synchronous and Asynchronous Sound

The SndDoCnd function executes synchronously or asynchronously
according to the operation it is to perform. The cndNot eOn and
cndFr egOn operations execute asynchronously; that is, they are
non-blocking and can be interrupted by another sound command.
In contrast, the cndFr eqDur at i onAnp operation is synchronous
and blocking (it cannot be interrupted).

The SndPl ay SMF function is also synchronous and blocking; how-
ever, the Sound Manager polls the key queue periodically during
playback and halts playback in progress if it finds events generated
by user interaction with the screen, digitizer, or hardware-based
buttons. Optionally, the caller can override this default behavior to
specify that the SndPl ay SMF function play the SMF to completion
without being interrupted by user events.

Using the Sound Manager

Before playing custom sounds that require a volume (amplitude)
setting, your code needs to discover the user’s current volume set-
tings. To do so in Palm OS 3.0, pass one of the pr ef SysSoundVol -
une, pr ef GameSoundVol une, or pr ef Al ar nSoundVol une selec-
tors to the Pr ef Get Pr ef er ence function.

See “Sound Preferences Compatibility Information” starting on
page 42 for important information regarding the correct use of
sound preferences in various versions of Palm OS.

You can pass the returned amplitude information to the

SndPl ay SMFE function as one element of a SndSnf Opt i onsType
parameter block. Alternatively, you can pass amplitude information
to the SndDoCnd function as an element of a SndConmandType
parameter block.

To execute a sound manager command, pass to the SndDoCnd func-
tion a sound channel pointer (presently, only NULL is supported and

Developing Palm OS 3.0 Applications, Part Il 37

Using Palm OS System Managers

The Sound Manager

maps to the shared channel), a pointer to a structure of
SndCommandType, and a flag indicating whether the command
should be performed asynchronously.

To play SMFs, call the SndPI ay SMF function. This function, which
is new in Palm OS 3.0, is used by the built in Date Book application
to play alarm sounds.

To play single notes, you can use either of the SndPl ay SMF or
SndDoCd functions. Of course, you can use the SndPl ay SMF func-
tion to play a single MIDI note from an SMF. You can also use the
SndDoCd function to play a single MIDI note by passing the snd-
CmdNot eOn command selector to this function. To specify by fre-
guency the note to be played, pass the sndCnmdFr eqOn command
selector to the SndDoCnrd function.You can pass the sndCndQui et
selector to this function to stop playback of the current note.

The system provides no specialized API for playing game sounds or
alarm sounds. When an alarm triggers, the application that set the
alarm must use the standard Sound Manager API to play the sound
associated with that alarm. Similarly, game sounds are implemented
by the game developer using any appropriate element of the Sound
Manager API. Games should observe the pr ef GameSoundVol une
setting, as described in the Sound Preferences Compatibility Infor-
mation section starting on page 42.

To play a default system sound, such as a click or an error beep, pass
the appropriate system sound ID to the SndPI aySyst enfSound
function, which will play that sound at the volume level specified
by the user’s system sound preference. For the complete list of sys-
tem sound IDs, see the SoundMyr . h file provided by the Palm OS
SDK.

Adding a Standard MIDI File to a Database

To add a format 0 standard MIDI file to the system MIDI database,
you can use code similar to the AddSnf ToDat abase example func-
tion shown in the following code listing. This function returns 0 if
successful, and returns a non-zero value otherwise. To use a differ-
ent database, pass different creator and type values to the
DmOpenDat abaseBy TypeCr eat or function.

38 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

Listing 1.4 AddSmfToDatabase

[l Useful structure field offset macro
#define prvFieldOfset(type, field)((DWrd) (& (type*)0)->field))

// returns O for success, nonzero for error
i nt AddSnf ToDat abase(Handl e snfH, CharPtr trackNane)

{
Err err = 0;
DmOpenRef dbP;
Ul nt recl ndex;
Voi dHand recH,;
Byt e* rechk;
Byt e* snf P;
Byt e bM di O f set ;
ULong dwsnt Si ze;

SndM di RecHdr Type recHdr;

bM di O fset = si zeof (SndM di RecHdr Type) + StrlLen(trackName) + 1;
dwsnf Si ze = MenHandl eSi ze(snf H) ;

recHdr. si gnature = sndM di RecSi gnat ur e;
recHdr.reserved = O;
recHdr. bDataOf f set = bM di O f set;

dbP = DnOpenDat abaseByTypeCreator (sysFil eTM di, sysFil eCSystem
dmvbdeReadWite | dmvbdeExcl usive);
if (!dbP)
return 1;

// Allocate a newrecord for the mdi resource
recl ndex = dmvaxRecor dl ndex;
recH = DrNewRecor d(dbP, &recl ndex, dwsnfSize + bMdi O fset);
if ('recH)
return 2;

/'l Lock down the source SMF and target record and copy the data
snf P = MenHandl eLock(snf H);
recP MenHandl eLock(recH);

Developing Palm OS 3.0 Applications, Part Il 39

Using Palm OS System Managers
The Sound Manager

err = DiWite(recP, 0, & ecHdr, sizeof(recHdr));

if (lerr) err = DnttrCopy(recP, prvFieldOfset(SndM di RecType,
nanme), trackNane);

if (lerr) err = DWWite(recP, bMdi Ofset, snfP, dwsSnfSi ze);

/1 Unlock the pointers

MenHandl eUnl ock(snf H);

MenHandl eUnl ock(recH);

/ | Because DmNewRecord marks the new record as busy,

/1 we nust call DnRel easeRecord before closing the database
DRel easeRecor d(dbP, reclndex, 1);

DCl oseDat abase(dbP) ;

return err;

Saving References to Standard MIDI Files

To save a reference to a SMF stored in a particular database, save its
record ID and the name of the database in which it is stored. Do not
store the database ID between invocations of your application, be-
cause various events, such as a Hot Sync, can invalidate database
IDs. Using an invalid database ID can crash your application.

Retrieving a Standard MIDI File From a Database

Standard MIDI Files (SMFs) are stored as individual records in a
MIDI record database—one SMF per record. Palm OS defines the
database type sysFi | eTM di for MIDI record databases. The sys-
tem MIDI database, with type sysFi | eTM di and creator sysFi -
| eCSyst em holds multiple system alarm sounds. In addition, your
applications can create their own private MIDI databases of type
sysFi | eTM di and your own creator.

To obtain a particular SMF, you need to identify the database in
which it resides and the specific database record which holds the
SMF data. The database record itself is always identified by record
ID. The MIDI database in which it resides may be identified by
name or by database ID. If you know the creator of the SMF, you can

40 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

use the SndCr eat eM di Li st utility function to retrieve this infor-
mation. Alternatively, you can use the Data Manager record API
functions to iterate through MIDI database records manually in
search of this information.

The SndCr eat eM di Li st utility function retrieves information
about Standard Midi Files from one or more MIDI databases. This
information is returned as a table of entries. Each entry contains the
name of an SMF; its unique record ID; and the database ID and card
number of the record database in which it resides.

Once you have the appropriate identifiers for the record and the da-
tabase in which it resides, you need to open the MIDI database. If
you have identified the database by type and creator, pass the
sysFi | eTM di type and an appropriate creator value to the
DnOpenDat abaseByTypeCr eat or function. For example, to re-
trieve a SMF from the system MIDI database, pass type

sysFi | eTM di and creator sysFi | eCSyst em The

DnOpenDat abaseByTypeCr eat or function returns a reference to
the open database.

If you have identified the database by name, rather than by creator,
you’ll need to discover its database ID in order to open it. The

DnFi ndDat abase function returns the database ID for a database
specified by name and card number. You can pass the returned ID to
the DnOpenDat abase function to open the database and obtain a
reference to it.

Once you have opened the MIDI database, call

DnFi ndRecor dByl Dto get the index of the SMF record. To retrieve
the record itself, pass this index value to either of the functions Dm
Quer yRecor d or Dneet Recor d. When you intend to modify the
record, use the Dnizet Recor d function—it marks the record as
busy. When you intend to use the record in read-only fashion, use
the DntQuer yRecor d function —it does not mark the record as
busy. You must lock the handle returned by either of these functions
before making further use of it.

To lock the database record’s handle, pass it to the MenHandl eLock
function, which returns a pointer to the locked record holding the
SMF data. You can pass this pointer to the SndPI ay SMF function in
the snf P parameter to play the MIDI file.

Developing Palm OS 3.0 Applications, Part Il 41

Using Palm OS System Managers
The Sound Manager

When you’ve finished using the record, unlock the pointer to it by
calling the MenPt r Unl ock function. If you’ve used DmGet Recor d
to open the record for editing, you must call DnRel easeRecor d to
make the record available once again to other callers. If you used
DnQuer yRecor d to open the record for read-only use, you need
not call DnRel easeRecor d.

Finally, close the database by calling the DnCl oseDat abase func-
tion.

Sound Preferences Compatibility Information

The sound preferences implementation and API varies slightly
among versions 1.0, 2.0, and 3.0 of Palm OS. This section describes
how to use sound preferences correctly for various versions of Palm
os.

Because versions 2.0 and 3.0 of Palm OS provide backward compat-
ibility with previous sound preference mechanisms, applications
written for an earlier version of the sound preferences API will get
correct sound preference information from newer versions of Palm
OS. However, it is strongly recommended that new applications use
the latest API.

Using Sound Preferences on All Palm OS Devices

Because the user chooses sound preference settings, your applica-
tion should respect them and adhere to their values. Further, you
should always treat sound preferences as read-only values.

At reset time, the sound manager reads stored preference values
and caches them for use at run time. The user interface controls up-
date both the stored preference values and the sound manager’s
cached values.

The Pr ef Set Pr ef er ence function writes to stored preference val-
ues without affecting cached values. New values are read at the next
system reset. The system-use-only SndSet Def aul t Vol une func-
tion updates cached values but not stored preferences. Applications
should avoid modifying stored preferences or cached values in
favor of respecting the user’s choices for preferences.

42 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

Using Palm OS v. 1.0 Sound Prefs

To read sound preference values in version 1.0 of Palm OS, call the
Pr ef Get Pr ef er ences function to obtain the data structure
shown in Listing 1.5. This Syst enPr ef er encesTypeV10 struc-
ture holds the current values of all system-wide preferences.You
must extract from this structure the values of the sysSoundLevel
and al ar nSoundLevel fields. These values are the only sound
preference information that Palm OS version 1.0 provides.

Each of these fields holds a value of either s| On (on) or sl O f (off).
Your code must interpret the values read from these fields as an in-
dication of whether those volumes should be on or off, then map
them to appropriate amplitude values to pass to Sound Manager
functions: map the sl On selector to the sndMaxAnp constant (de-
fined in SoundMgr.h) and map the s| O f selector to the value O (ze-
ro).

Listing 1.5 Syst enPref erencesTypeV10 data structure

t ypedef struct {
Wbrd version; // Version of preference info

/1l International preferences

CountryType country;// Country the device is in

Dat eFor mat Type dateFormat;// Format to display date in

Dat eFor mat Type | ongDat eFormat;// Format to display date in
Byt e weekStartDay;// Sunday or Monday

Ti meFor mat Type tinmeFormat;// Format to display tinme in

Nunmber For mat Type nunber Format;// Format to di splay nunbers in

/'l system preferences
Byte autoOrfDuration;// Time period before shutting off
SoundLevel TypeV20 sysSoundLevel ;//error beeps
SoundLevel TypeV20 al ar nSoundLevel ;//al arm only
Bool ean hi deSecret Records;// True to not display records with
/'l their secret bit attribute set
Bool ean devi ceLocked; // Device |ocked until the system
/1l password is entered
Wor dsysPref Fl ags;// M scel | aneous system pref flags copied into
/1 the gl obal GSysPrefFlags at boot tine.

Developing Palm OS 3.0 Applications, Part Il 43

Using Palm OS System Managers
The Sound Manager

SysBatt er yKi ndsysBatteryKind;// The type of batteries install ed.
/1l This is copied into the gl obals
/] GSysbatteryKind at boot tine.

} SystenPreferencesTypeV1O;

Using Palm OS v. 2.0 Sound Prefs

Version 2.0 of Palm OS introduces a new API for retrieving individ-
ual preference values from the system. You can pass any of the selec-
tors pr ef SysSoundLevel V20, pr ef GaneSoundLevel V20, or

pr ef Al ar nSoundLevel V20 to the Pr ef Get Pr ef er ence func-
tion to retrieve individual amplitude preference values for alarm
sounds, game sounds, or for overall (system) sound amplitude. As
in Palm OS 1.0, each of these settings holds values of either s| On
(on) or sl O f (off), as defined in the Preferences.h file. Your code
must interpret the values read from these fields as an indication of
whether those volumes should be on or off, then map them to ap-
propriate amplitude values to pass to Sound Manager functions:
map the sl On selector to the sndMaxAnp constant (defined in
SoundMgr.h file) and map the sl O f selector to the value 0 (zero).

For a complete listing of selectors you can pass to the
Pr ef Get Pr ef er ence function, see the Preferences.h file.

Using Palm OS v. 3.0 Sound Prefs

Palm OS version 3.0 enhances the resolution of sound preference
settings by providing discrete amplitude levels for games, alarms,
and the system overall. As usual, do not set preferences yourself,
but treat them as read-only values indicating the proper volume
level for your application to use.

Palm OS 3.0 defines the new sound amplitude selectors

pr ef SysSoundVol une, pr ef GaneSoundVol une, and

pr ef Al ar mSoundVol une for use with the Pr ef Get Pr ef er -
ence function. The values this function returns for these selectors
are actual amplitude settings that may be passed directly to Sound
Manager functions.

44 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

Compatibility
Note

The amplitude selectors used in previous versions of Palm OS (all
ending with the Level suffix, such as pr ef sGaneSoundLevel)
are obsoleted in version 3.0 of Palm OS and replaced by new se-
lectors. The old selectors remain available in Palm OS 3.0 to en-
sure backward compatibility and are suffixed V20 (for example,

pr ef sGaneSoundLevel V20).

Ensuring Sound Preferences Compatibility

For greatest compatibility with multiple versions of the sound pref-
erences mechanism, your application should condition its sound
preference code according to the version of Palm OS on which it is
running. Information on Retrieving the System Version Number is
available on page 51 of the “Developing Palm OS Applications”
chapter of Part | of this documentation suite.

When your application is launched, it should retrieve the system
version number and save the results in its global variables (or equiv-
alent structure) for use elsewhere. If the major version number is 3
(three) or greater, then use the 3.0 mechanism for obtaining sound
amplitude preferences, since this reflects the user’s selection most
accurately. If the major version number is 2 (two), then use the 2.0
mechanism described in Using Palm OS v. 2.0 Sound Prefs starting
on page 44 of this book. If it is 1 (one), then use the 1.0 mechanism
described in Using Palm OS v. 1.0 Sound Prefs starting on page 43 of
this book.

Avoid calling new API’s (including new selectors) when running on
older versions of Palm OS that do not implement them. In particu-
lar, note that violating any of the following conditions will cause
your application to crash:

= Do not call either of the SndPI ay SMF or SndCr eat eM di Li st
functions on versions of PalmOS prior to 3.0.

= Do not pass any selector other than sndCndFr eqDur at i onAnp
to the SndDoCnd function on versions of PalmQOS prior to 3.0.

Developing Palm OS 3.0 Applications, Part Il 45

Using Palm OS System Managers

The Sound Manager

Figure 1.1

Listing 1.6

Sound Manager Data Structures

This section describes the data structures that define the MIDI
records and parameter blocks used by sound manager functions.
Figure 1.1 depicts a Palm OS MIDI record graphically.

Palm OS Midi Record

signature (4 bytes)

sndMidiRecType

sndMidiRecHdrType
bDataOffset (1 byte)

reserved (1 byte)

name (1 or more bytes)
< null-terminated
* size varies

SMF 0

(standard
MIDI

track)

MIDI Record Type

This variable-length header precedes the actual MIDI data in a
PalmOS MIDI record. It consists of a fixed-size MIDI Record Header
followed by the name of the MIDI track.

SndMidiRecType structure

t ypedef struct

SndM di RecHdr Type
/1 fixed-size portion of the Palm COS M DI
name[1] ;
[l Track nane:

Char

/'l length of

SndM di RecType {
hdr ;
record header

1 or
nane,

nmore chars including NULL term nator.
including NULL term nator, nust not be

46 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

/'l greater than sndM di NanmeLength. The NULL character mnust
/'l always be provided, even for tracks that have no nane
} SndM di RecType;

MIDI Record Header

This structure defines the fixed-size portion of a Palm OS MIDI
record.

Listing 1.7 SndMidiRecHdrType structure

t ypedef struct SndM di RecHdr Type {
DWord si gnature;
/1l set to sndM di RecSi gnature
Byte bDataOfset;
/'l offset fromthe beginning of the record
/1l to the Standard Mdi File data stream
Byte reserved,
/'l set to zero
} SndM di RecHdr Type;

SndMidiListltemType

When the SndCr eat eM di Li st function returns TRUE, its ent HP
parameter holds a handle to a memory chunk containing an array of
SndM di Li st 1t enmType structs.

Listing 1.8 SndMidiListltemType structure

t ypedef struct SndM diListltenType{
Char nane[sndM di NaneLengt h] ;
/1 including NULL term nator
ULong uni queRecl D
Local | D dbl D;
Ul nt car dNo;
} SndM di Li stltenmlype;

Developing Palm OS 3.0 Applications, Part Il 47

Using Palm OS System Managers
The Sound Manager

SndCommandType

This structure is passed as the value of the cndP parameter to the
SndDoCd function. Its parameters are defined by the
SndCndl DTy pe enumerated constant.

Listing 1.9 SndCommandType structure

t ypedef struct SndCommandType {
SndCndl DType cnd;
/1 command id
Long parant,
/1l use varies according to value of cnd
U nt paran®;
/'l use varies according to value of cnd
U nt paranS,
/'l use varies according to value of cnd
} SndCommandType;

SndCmdIDType

This enumerated type defines the commands that may be specified
in the cnd field of the SndConmandType struct. Each command de-
fines its own specific use of the par aml, par an, and par anB
fields.

Listing 1.10 SndCmdIDType type definition

t ypedef enum SndCndl DType {
sndCrdFr eqDur ati onAnp = 1
/1l play a sound, blocking for the entire
[l duration (except for zero anplitude)
[l paraml = frequency in Hz
[l paran2 = duration in mlliseconds
[l paranB = anplitude (0 - sndMaxAnp);
/1 if value of paranB is O,return inmediately

/'l Commands added in PalmGS v3.0

[[***| MPORTANT* * *

/'l Please note that SndDoCnd() in Palm OS before v3.0 wi |
/'l Fatal Error on unknown commands (anything other than

48 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

/1 sndCrdFr eqDurati onAnp). For this reason, applications

/1 wishing to take advantage of these new commands whil e staying
/1l conpatible wwth the earlier version of the GS, _nust_ avoid
/1 using these conmmands when running on OS versions |ess than
/1 v3.0 (see sysFtrNumROWersion in Systemvgr. h).

/1 Beginning with v3.0, SndDoCnd has been fixed to return

/'l sndErrBadParam when an unknown command i s passed.

sndCndNot eOn,

/1l play sound at specified MD key index

/1 with max duration and vel ocity;

[l returninmrediately, without waiting for playback to conpl ete.
/1 any other sound play request nmade before

/1l this one conpletes will interrupt it.

[l paraml = M DI key index (0-127)

[l paranm2 = maxi mum duration in mlliseconds

/1l paramB = velocity (0 - 127) to be interpolated as anplitude
sndCdFr qOn,

/1 simlar to sndCrdNot eOn except note to play

/'l is specified as frequency in Hz.

/1l play sound at specified frequency

/1 with max duration and vel ocity;

[l return imedi ately, without waiting for playback to conplete
/1 any other sound play request nmade before

/1l this one conpletes will interrupt it.

[l paranml = frequency in Hz

[l paranm2 = maxi mum duration in mlliseconds

/1l paranmB = anplitude (0 - sndMaxAnmp)

sndCndQui et

/'l stop playback of current sound

[l paraml = 0

[l param2 = 0

/[l paranB = 0

} SndCndl DType;

Developing Palm OS 3.0 Applications, Part Il 49

Using Palm OS System Managers
The Sound Manager

SndSmfOptionsType

This struct is passed as the value of the sel P parameter to the
SndPI ay SMF function.

t ypedef struct SndSnf OptionsType {
/[l dwStartM|1iSec and dwendM | | i Sec are used as inputs to the
/1 fn for sndSnfCndPl ay and as outputs for sndSnf CndDurati on

DWor d dwStartM I |i Sec;

/'l position at which to begin playback, expressed as nunber of
/1 mlliseconds from begi nning of track

/[l 0 ="start fromthe begi nning"

DWor d dwendM I |'i Sec;
/1l position at which to stop playback, expressed as nunber of
/1 mlliseconds from begi nning of track

[l sndSnfPlayAllMIliSec = "play entire track";
/1l the default is "play entire track"
/1 if this structure is not passed in

Ul nt anpl i t ude;

/1 The anplitude and interruptible fields

[l are used only for sndSnf ChdPl ay

/'l relative volunme: 0 - sndMaxAnp, inclusively
/1l the default is sndMaxAnmp if this structure
/1l is not passed in; if 0, the play wll be

/'l skipped and the call will return inmediately

Bool ean i nterrupti bl e;

/1 If true, sound play will be interrupted if user interacts
/1 with the controls (digitizer, buttons, etc.) even if the
/1l interaction does not generate a sound command. If false,
/'l playback is not interrupted; the default behavior is

/1l "interruptible"” if this structure is not passed in

DWor d reserved;
/] RESERVED! -- MJST SET TO ZERO BEFORE PASSI NG
} SndSnf Qpti onsType;

50 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The Sound Manager

SndSmfChanRangeType

This struct is passed as the value of the chanRangeP parameter to
the SndPI ay SMF function.

Listing 1.11 SndSmfChanRangeType structure

t ypedef struct SndSnf ChanRangeType {
/'l specifies a range of enabl ed channel s.
/'l events for channels outside this range are ignored.
[l if this structure is not passed,
/1 all channels in track are honored.
Byt e bFi r st Chan;
/1l first MDI channel (0-15 decinal)
Byt e bLast Chan;
/1l last M DI channel (0-15 decinmal)}
SndSnf ChanRangeType;

Sound Callback Functions

These structures define callback functions to be executed by the
SndPI ay SMF function.

A non-null completion callback function is executed after playback
of the SMF completes.

t ypedef void SndConpl FuncType(voi d* chanP, DwWrd dwUser Dat a) ;
t ypedef SndConpl FuncType* SndConpl FuncPtr ;

A non-null blocking callback function is executed periodically dur-
ing playback of the SMF. This function returns TRUE to continue
playback, or FALSE to cancel playback. Suggested uses for this func-
tion include updating the user interface or checking for user input.
You can test sysTi cksAvai | abl e to determine the maximum
amount of time available for completion of this function.

t ypedef Bool ean SndBl ocki ngFuncType(voi d* chanP, DWrd dwUser Dat a,
Long sysTi cksAvail abl e);
t ypedef SndBl ocki ngFuncType* SndBl ocki ngFuncPtr ;

Developing Palm OS 3.0 Applications, Part Il 51

Using Palm OS System Managers
The Sound Manager

Both kinds of callbacks are wrapped in a SndCal | backl nf oType
struct.

t ypedef struct SndCal | backl nfoType {
Ptr funcP;
/'l pointer to the callback function (NULL = no function)
DWord dwUser Dat a;
/1l value to pass in dwJserData paraneter of callback function
} SndcCal | backl nf oType;

The SndSnf Cal | backsType struct is passed as the value of the
cal | backsP parameter to the SndPl ay SMF function.

t ypedef struct SndSnf Cal | backsType {
SndCal | backl nf oType conpl eti on;
/1 conpletion callback function (see SndConpl FuncType)
SndCal | backl nf oType bl ocki ng;
/'l bl ocki ng hook cal |l back function (see SndBl ocki ngFuncType)
SndCal | backl nf oType reserved;
/| RESERVED -- SET ALL FIELDS TO ZERO BEFORE PASSI NG

} SndSnf Cal | backsType;

Sound Manager Function Summary

The following sound manager functions are available for applica-
tion use:

= SndCreateMidiList
SndDoCmd
SndGetDefaultVolume

SndPlaySMF
SndPlaySystemSound

52 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The String Manager

The String Manager

The string manager provides a set of string manipulation functions.
The string manager API is closely modeled after the standard C
string-manipulation functions like st r cpy, str cat, etc.

Applications should use the functions built into the string manager
instead of the standard C functions, because doing so makes the ap-
plication smaller:

= When your application uses the string manager functions, the
actual code that implements the function is not linked into your
application but is already part of the operating system.

= When you use the standard C functions, the code for each func-
tion you use is linked into your application and results in a big-
ger executable.

In addition, many standard C functions don’t work on the Palm OS
device at all because the OS doesn’t provide all basic system func-
tions (such as mal | oc) and doesn’t support the subroutine calls
used by most standard C functions.

String Manager Function Summary

The following functions are available for application use:
= StrATol

= StrCat

= StrCaselessCompare

= StrChr

= StrCompare

= StrCopy
e StriIToA

= StrliToH

= StrLen

e StrStr

= StrTolLower

Developing Palm OS 3.0 Applications, Part Il 53

Using Palm OS System Managers
The System Manager

The System Manager

The Palm OS system manager is responsible for the general opera-
tion of the system, including boot-up, power-up, launching applica-
tions, library management, monitoring the battery, multitasking,
timing, and semaphore support. Applications need to be concerned
with very few system manager API functions. Most of what the sys-
tem manager does is transparent to applications and is explained
here as background information only.

In this section, you learn about the following aspects of the system
manager:

= System Boot and Reset — information about the different
reset operations, including system reset calls

= Power Management — the three different power modes and
guidelines for application developers

= The Microkernel— basic task management provided by the sys-
tem

= Application Support — event processing and interapplication
communication from the system’s point of view

= System Manager Function Summary — list of all system manag-
er functions available to applications

System Boot and Reset

The system manager provides support for booting the Palm OS de-
vice. Booting occurs only when the user presses the reset switch on
the device (see “Palm OS Device Reset Switch” in Developing Palm
OS Applications, Part 1). Palm OS differs from a traditional desktop
system in that it’s never really turned off. Power is constantly sup-
plied to essential subsystems and the on/off key is merely a way of
bringing the device in or out of low-power mode (see Palm OS
Power Modes). The obvious effect of pressing the on/off key is that
the LCD turns on or off. When the user presses the power key to
turn the device off, the LCD is disabled, which makes it appear as if
power to the entire unit is turned off. In fact, the memory system,
real-time clock, and interrupt generation circuitry are still running,
though they are consuming little current.

54 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Manager

In this version of Palm OS, there is only one user interface applica-
tion running at a time. The User Interface Application Shell (UIAS)
is responsible for managing the current user-interface application.
The UIAS launches the current user-interface application as a sub-
routine and doesn’t get control back until that application quits.
When control returns to the UIAS, the UIAS immediately launches
the next application as another subroutine. See Power Management
Calls for more information.

System Reset Calls

The system calls SysReset to reset the device. This call does a soft
reset and has the same effect as pressing the reset switch on the unit.
Normally, applications should not use this call.

SysReset is used, for example, by the Sync application. When the
user copies an extension onto the Palm OS device, the Sync applica-
tion automatically resets the device after the sync is completed to
allow the extension to install itself.

The SysCol dBoot call is similar, but even more dangerous. It per-
forms a hard reset that clears all user storage RAM on the device,
destroying all user data.

Power Management

This section looks at Palm OS power management, discussing the
following topics:

< Palm OS Power Modes

= Guidelines for Application Developers

= Power Management Calls

Palm OS Power Modes

At any time, the Palm OS device is in one of three power modes:
sleep, doze, or running. The system manager controls transitions be-
tween different power modes and provides an API for controlling
some aspects of the power management.

= Sleep mode. If the unit appears to be off, it is actually in
sleep mode and is consuming as little current as possible. At
this rate, a unit could sit for almost a year on a single set of

Developing Palm OS 3.0 Applications, Part Il 55

Using Palm OS System Managers

The System Manager

batteries without losing the contents of memory. To enter
sleep mode, the system puts as many peripherals as possible
into low-power mode and sets up the hardware so that an
interrupt from any hard key or the real-time clock wakes up
the system.

When the system gets one of these interrupts while in sleep

mode, it quickly checks that the battery is strong enough to com-
plete the wake-up and then takes each of the peripherals, for ex-
ample, the LCD, serial port, and timers, out of low-power mode.

The system reenters sleep mode when the user presses the on/
off key again, when the system has been idle for the minimum
auto-off time, or when the battery level reaches a critically low
level.

= Doze mode. In doze mode, the processor is halted, but all pe-
ripherals including the LCD are powered up. The system can
come out of doze mode much faster than it can come out of sleep
mode since none of the peripherals need to be woken up. In fact,
it takes no longer to come out of doze mode than to process an
interrupt. Usually, when the system appears on, it is actually in
doze mode and goes into running mode only for short periods of
time to process an interrupt or respond to user input like a pen
tap or key press.

< Running mode. Running means that the processor is executing
instructions and all peripherals are powered up. A typical appli-
cation puts the system into running mode only about 5% of the
time.

Guidelines for Application Developers

Normally, applications don’t need to be aware of power manage-
ment except for a few simple guidelines. When an application calls
Evt Get Event to ask the system for the next event to process, the
system automatically puts itself into doze mode until there is an
event to process. As long as an application uses Evt Get Event
power management occurs automatically. If there has been no user
input for the amount of time determined by the current setting of
the auto-off preference, the system automatically enters sleep mode
without intervention from the application.

Applications should avoid providing their own delay loops. In-
stead, they should use SysTaskDel ay, which puts the system into
doze mode during the delay to conserve as much power as possible.

56 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Manager

If an application needs to perform periodic work, it can pass a time
out to Evt Get Event ; this forces the unit to wake up out of doze
mode and to return to the application when the time out expires,
even if there is no event to process. Using these mechanisms pro-
vides the longest possible battery life.

Power Management Calls

The system calls Sys S| eep to put itself immediately into low-
power sleep mode. Normally, the system puts itself to sleep when
there has been no user activity for the minimum auto-off time or
when the user presses the power key.

The SysSet Aut o f Ti e routine changes the auto-off time value.
This routine is normally used by the system only during boot, and
by the Preferences application. The Preferences application saves
the user preference for the auto-off time in a preferences database,
and the system initializes the auto-off time to the value saved in the
preferences database during boot. While the auto-off feature can be
disabled entirely by calling SysSet Aut oOf f Ti ne with a time-out
of 0, doing this depletes the battery.

The current battery level and other information can be obtained
through the SysBat t er yl nf 0V20 routine. This call returns infor-
mation about the battery, including the current battery voltage in
hundredths of a volt, the warning thresholds for the low-battery
alerts, the battery type, and whether external power is applied to
the unit. This call can also change the battery warning thresholds
and battery type.

The Microkernel

Palm OS has a preemptive multitasking kernel that provides basic
task management.

Most applications don’t need the microkernel services because they
are handled automatically by the system. This functionality is pro-
vided mainly for internal use by the system software or for certain
special purpose applications.

The User Interface Application Shell (UIAS) is responsible for man-
aging the current user-interface application, as described in System
Boot and Reset.

Developing Palm OS 3.0 Applications, Part Il 57

Using Palm OS System Managers

The System Manager

Usually, the UIAS is the only task running. Occasionally though, an
application launches another task as a part of its normal operation.
One example of this is the Sync application, which launches a sec-
ond task to handle the serial communication with the desktop. The
Sync application creates a second task dedicated to the serial com-
munication and gives this task a lower priority than the main user-
interface task. The result is optimal performance over the serial port
without a delay in response to the user-interface controls.

Normally, there is no user interaction during a sync, so that the seri-
al communication task gets all of the processor’s time. However, if
the user does tap on the screen, for example, to cancel the sync, the
user-interface task immediately processes the tap, since it has a
higher priority. Alternatively, the Sync application could have been
written to use just one task, but then it would have to periodically
poll for user input during the serial communication, which would
hamper performance and user-interface response time.

Application Support

The system manager provides application support in several func-
tional areas. The following aspects of application support are dis-
cussed in this section:

« | aunching and Cleanup

Event Processing

Interapplication Communication

Retrieving Events

Opening Applications Programmatically

Launching and Cleanup

Usually, applications on the Palm OS device are launched when the
user presses one of the buttons on the case or selects an application
icon from the application launcher screen. Alternatively, an applica-
tion can programmatically launch another application by using the
system manager function SysApplLaunch.

When the current user-interface application quits, the system man-
ager cleans up by deleting any chunks in the dynamic heap(s) that
the application left around and closing any databases left open.

58 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Manager

Note, however, that applications should perform those kinds of
cleanup tasks themselves.

Event Processing

The system manager provides the infrastructure for event genera-
tion and also contains the support for handling most system-related
events. Hardware activity, such as taps on the digitizer and key
presses, is interpreted by interrupt handlers of the system manager
and converted into events that are eventually sent to the application
through the Evt Get Event call. In addition, many events returned
by Evt Get Event are system-related events that can be processed
by the system manager call SysHandl eEvent .Events in Palm OS
include hardware- and software-generated events. The following
table provides an overview:

Hardware-generated events Software-generated events

Caused directly by user interaction with the Generated by the system software as a
device, such as tapping on the screen with side effect of a user interaction.
the pen, or pressing a hardware button.

Include pen-downs, pen-ups (optionally in- Include events like the quit event that

cluding stroke data), and hard button press- causes an application to exit, or key-

es. board events generated by the Graffiti
recognizer. Applications can define
software-generated events for their
own use.

Typically posted by interrupt routines. Typically posted as the result of a sys-
tem call. Include application-quit
events, window-enter and window-exit
events, user-interface control events,
etc.

= Pen-generated events are stored in the Stored in the software event queue.
pen queue.

= Hard button press events are stored in
the key queue.

Developing Palm OS 3.0 Applications, Part Il 59

Using Palm OS System Managers
The System Manager

When Evt Get Event is called by the application, it first checks
whether any events are in the software event queue and returns the
topmost event if so.

If the software event queue is empty, Evt Get Event checks the key
and pen queues. The result is that all software events generated by a
particular hardware event are processed before the next hardware
event is processed. For example, a pen-down hardware event may
trigger the system software to generate window-exit and window-
enter software events. Both events are then pulled from the software
event queue and processed before the next hardware event is pro-
cessed.

Some event types returned by Evt Get Event are not actually posted
into the event queue, but are artificially generated by Evt Get Event
when all event queues are empty. One example is the pen-moved
event, which is returned if no other events are in the queues and the
pen has moved since the last time Evt Get Event was called. In this
way, the application is notified of low-priority events, such as pen
movements, but the event queue isn’t cluttered with them.

In a typical application, SysHandl eEvent is called immediately
after Evt Get Event . If Evt Get Event returns a pen-up event in the
Graffiti writing area, SysHandl eEvent calls the Graffiti recognizer
with the pen stroke information obtained from the pen queue and
uses the results of the Graffiti recognizer to post one or more key-
board events into the key queue. A similar process occurs for pen-
up events detected over a silk-screened icon. SysHandl eEvent
converts the pen-up to a keyboard event with a virtual key code rep-
resenting the silk-screened icon.

When an application calls Evt Get Event , the event manager checks
a number of system-event data structures and returns an event
record to the application with information about the highest-priori-
ty event that needs processing. Events in Palm OS are stored in one
of three event queues: a key queue, a pen queue, or a software event
gueue. The event queues are circular buffers containing event
records stored in a first-in, first-out (FIFO) sequence.

Here’s some additional information on hardware and software
events:

= Hardware events are posted into their appropriate event queue
by interrupt routines. The interrupt routine for handling key-

60 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Manager

board presses immediately enqueues the keyboard event into
the key queue and sets up a periodic interrupt routine to watch
for auto-repeat and for key debouncing.

= Software-generated events include window-enter and window-
exit events, application quit events, and user-interface object
events like control enter, control exit, etc. These events are typi-
cally generated as a side effect of a hardware-generated event
like a pen-down. Software can, however, also generate key
events, usually as a result of recognizing a Graffiti stroke or a tap
on a silk-screened icon.

Software-generated events are posted into the appropriate event
gueue, but are not typically posted at interrupt time. Many of
these events are inserted into the event queue by the various
user-interface managers. Others, like key events, are posted by
SysHandl eEvent after recognizing a Graffiti stroke or a tap on
a silk-screened icon.

Interapplication Communication

The system manager provides the API for interapplication commu-
nication. This API permits any application or system routine to send
a launch code to any other application and get results back. For ex-
ample, an application that is to work with the global find must sup-
port the find launch code.

Sending a launch code to another application is like calling a specif-
ic subroutine in that application: the application responding to the
launch code is responsible for determining what to do given the
launch code constant passed on the stack as a parameter.

Predefined launch codes are listed in “Developing Palm OS Appli-
cations, Part I’ and can be found in Syst emVgr . h. All the parame-
ters for a launch code are passed in a single parameter block, and
the results are returned in the same parameter block. “How Launch
Codes Control an Application” in “Developing Palm OS Applica-
tions, Part I, describes launch codes in more detail.

Retrieving Events

The SysHandl eEvent call allows applications to correctly respond
to system events like key presses, Graffiti strokes, low-battery warn-
ings, and taps on silk-screened icons. Every application should call
this routine from its event loop, usually before the application even

Developing Palm OS 3.0 Applications, Part Il 61

Using Palm OS System Managers

The System Manager

looks at the event. If an application needs to override any part of the
default system behavior, it could selectively filter out events before
calling SysHandl eEvent .

Opening Applications Programmatically

The system provides several APIs for opening applications pro-
grammatically. Under most circumstances, you would use the
SysUl AppSwi t ch routine to close your application and open a
specified application. This routine notifies the system which appli-
cation to launch next and feeds an application-quit event into the
event queue. If and when the current application responds to the
quit event and returns, the system launches the new application.

When you want to make use of another application’s functionality
and eventually return control of the system to your application, you
can use the SysAppLaunch function to open a specified application
as a subroutine of the calling application. It has numerous options,
including whether to launch the application as a separate task,
whether to allocate a globals world, and whether or not to give the
called application its own stack. For example, you would use this
function to request that the built in Address List application search
its databases for a specified phone number and return the results of
the search to your application. You could then call SysAppLaunch
again to use the modem handle to dial the number. (In fact, this is
how the built-in applications perform this task.) When calling
SysApplLaunch do not set Launch Flags yourself—the
SysAppLaunch function sets launch flags appropriately for you.

This routine is also used to send launch codes to applications (by
telling it to use the caller’s stack, no globals world, and not a sepa-
rate task). Usually, applications use it only for sending launch codes
to other user-interface applications. An alternative, simpler method
of sending launch codes is the SysBr oadcast Act i onCode call.
This routine automatically finds all other user-interface applications
and calls SysAppLaunch to send the launch code to each of them.

If your application is called to process a launch code, it is called as a
subroutine from the current user-interface application. Use the rou-
tine SysCur AppDat abase to get the card number and database ID
of the currently running user-interface application. This routine

62 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Event Manager

doesn’t return your application’s database ID but the database ID of
the application that initiated the launch code.

Palm OS 3.0 also provides a new application from which the end
user can launch any application installed on the Palm OS device.
For more information, see “Application Launcher” on page 70.

WARNING: Do not use the SysUl AppSwi t ch or SysAppLaunch
functions to open the Application Launcher application.

System Manager Function Summary

The following system manager functions are available for applica-
tion use:

= SysReset
SysBatteryInfoV20
SysSetAutoOffTime
SysHandleEvent
SysUIAppSwitch
SysCurAppDatabase

SysBroadcastActionCode

SysApplaunch

The System Event Manager

The system event manager
= Manages the low-level pen and key event queues.
= Translates taps on silk-screened icons into key events.
= Sends pen strokes in the Graffiti area to the Graffiti recognizer.

= Puts the system into low-power doze mode when there is no
user activity.

Most applications have no need to call the system event manager di-
rectly because most of the functionality they need comes from the
higher-level event manager or is automatically handled by the sys-
tem.

Developing Palm OS 3.0 Applications, Part Il 63

Using Palm OS System Managers
The System Event Manager

Applications that do use the system event manager directly might
do so to enqueue key events into the key queue or to retrieve each of
the pen points that comprise a pen stroke from the pen queue.

This section provides information about the system event manager
by discussing these topics:

e Event Translation: Pen Strokes to Key Events

e Pen Queue Management
= Auto-Off Control
« System Event Manager Function Summary

Event Translation: Pen Strokes to Key Events

One of the higher-level functions provided by the system event
manager is conversion of pen strokes on the digitizer to key events.
For example, the system event manager sends any stroke in the
Graffiti area of the digitizer automatically to the Graffiti recognizer
for conversion to a key event. Taps on silk-screened icons, such as
the application launcher, Menu button, and Find button, are also in-
tercepted by the system event manager and converted into the ap-
propriate key events.

When the system converts a pen stroke to a key event, it:

= Retrieves all pen points that comprise the stroke from the
pen queue

= Converts the stroke into the matching key event
= Enqueues that key event into the key queue

Eventually, the system returns the key event to the application as a
normal result of calling Evt Get Event .

Most applications rely on the following default behavior of the sys-
tem event manager:

= All strokes in the predefined Graffiti area of the digitizer are con-
verted to key events

= All taps on the silk-screened icons are convert to key events
= All other strokes are passed on to the application for processing

64 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The System Event Manager

Pen Queue Management

The pen queue is a preallocated area of system memory used for
capturing the most recent pen strokes on the digitizer. It is a circular
gueue with a first-in, first-out method of storing and retrieving pen
points. Points are usually enqueued by a low-level interrupt routine
and dequeued by the system event manager or application.

The following table summarizes pen management.

The user... The system...

Brings the pen down Stores a pen-down sequence in the pen

on the digitizer. gueue and starts the stroke capture.

Draws a character. Stores additional points in the pen queue
periodically.

Lifts the pen. Stores a pen-up sequence in the pen

gueue and turns off stroke capture.

The system event manager provides an API for initializing and
flushing the pen queue and for queuing and dequeueing points.
Some state information is stored in the queue itself: to dequeue a
stroke, the caller must first make a call to dequeue the stroke infor-
mation (Evt DequeuePensSt r okel nf 0) before the points for the
stroke can be dequeued. Once the last point is dequeued, another
Evt DequeuePensSt r okel nf o call must be made to get the next
stroke.

Applications usually don’t need to call Evt DequePenSt r okel nf o
because the event manager calls this function automatically when it
detects a complete pen stroke in the pen queue. After calling

Evt DequePensSt r okel nf o, the system event manager stores the
stroke bounds into the event record and returns the pen-up event to
the application. The application is then free to dequeue the stroke
points from the pen queue, or to ignore them altogether. If the
points for that stroke are not dequeued by the time Evt Get Event is
called again, the system event manager automatically flushes them.

Developing Palm OS 3.0 Applications, Part Il 65

Using Palm OS System Managers
The System Event Manager

User action

Hardware button
press.

Key Queue Management

The key queue is an area of system memory preallocated for captur-
ing key events. Key events come from one of two occurrences:

= As adirect result of the user pressing one of the buttons on the
case

= As aside effect of the user drawing a Graffiti stroke on the digi-
tizer, which is converted in software to a key event

The following table summarizes key management:

System response

Interrupt routine enqueues the appropriate key event into
the key queue, temporarily disables further hardware button
interrupts, and sets up a timer task to run every 10 ms.

Hold down key for ex- Timer task to supports auto-repeat of the key (timer task is
tended time period. also used to debounce the hardware).

Release key for certain Timer task reenables the hardware button interrupts.

amount of time.

Pen stroke in Graffiti System manager calls the Graffiti recognizer, which then re-

area of digitizer.

Pen stroke on silk-
screened icons.

moves the stroke from the pen queue, converts the stroke
into one or more key events, and finally enqueues these key
events into the key queue.

System event manager converts the stroke into the appropri-
ate key event and enqueues it into the key queue.

The system event manager provides an API for initializing and
flushing the key queue and for enqueuing and dequeuing key
events. Usually, applications have no need to dequeue key events;
the event manager does this automatically if it detects a key in the
gueue and returns a keyDownEvent (documented in “Developing
Palm OS Applications,” Part I) to the application through the

Evt Get Event call.

66 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The System Event Manager

Auto-Off Control

Because the system event manager manages hardware events like
pen taps and hardware button presses, it’s responsible for resetting
the auto-off timer on the device. Whenever the system detects a
hardware event, it automatically resets the auto-off timer to 0. If an
application needs to reset the auto-off timer manually, it can do so
through the system event manager call Evt Reset Aut oOf f Ti mer .

System Event Manager Function Summary

The following functions are part of the developer API to the system
event manager:

e EvtAddEventToQueue
e FviCopyEvent

= EviDequeuePenPoint

e EviDequeuePenStrokelnfo
e EvtEnableGraffiti
= EviEnqueueKey

e EvtFlushKeyQueue

= EvtFlushNextPenStroke
e EvtFlushPenQueue

= EvtGetEvent

= EvtGetPen

= EvtKeyQueueEmpty

e EvtKeyQueueSize

e EviKeyQueueEmpty
e EviGetPenBtnList
e EvtPenQueueSize

= EvtProcessSoftKeyStroke
e EvtResetAutoOffTimer

= EvtWakeup

Developing Palm OS 3.0 Applications, Part Il 67

Using Palm OS System Managers

The Time Manager

The Time Manager

The date and time manager (called time manager in this chapter)
provides access to both the 1-second and 0.01-second timing re-
sources on the Palm OS device.

= The 1-second timer keeps track of the real-time clock (date
and time), even when the unit is in sleep mode.

= The 0.01-second timer, also referred to as the system ticks, can be
used for finer timing tasks. This timer is not updated when the
unit is in sleep mode and is reset to 0 each time the unit resets.

The basic time-manager API provides support for setting and get-
ting the real-time clock in seconds and for getting the current system
ticks value (but not for setting it). The system manager provides
more advanced functionality for setting up a timer task that exe-
cutes periodically or in a given number of system ticks.

This section discusses the following topics:
= Using Real-Time Clock Functions

« Using System Ticks Functions

< Time Manager Function Summary

Using Real-Time Clock Functions

The real-time clock functions of the time manager include

Ti nSet Seconds and Ti nGet Seconds. Real time on the Palm OS
device is measured in seconds from midnight, Jan 1, 1904. Call

Ti mSecondsToDat eTi e and Ti nDat eTi neToSeconds to con-
vert between seconds and a structure specifying year, month, day;,
hour, minute, and second.

Using System Ticks Functions

The Palm OS device maintains a tick count that starts at 0 when the
device is reset. This tick increments

= 100 times per second when running on the Palm OS device

= 60 times per second when running on the Macintosh under the
Simulator

68 Developing Palm OS 3.0 Applications, Part I/

Using Palm OS System Managers
The Time Manager

Listing 1.12

For tick-based timing purposes, applications should use the macro
sysTi cksPer Second, which is conditionally compiled for differ-
ent platforms. Use the function Ti ncet Ti cks to read the current
tick count.

Although the Ti mGet Ti cks function could be used in a loop to im-
plement a delay, it is recommended that applications use the
SysTaskDel ay function instead. The SysTaskDel ay function au-
tomatically puts the unit into low-power mode during the delay.
Using Ti mGet Ti cks in a loop consumes much more current.

Time Manager Structures
The time manager uses these structures to store information.

Time Manager Structures

t ypedef struct{

Sword second;

Sword m nut e;

Swor d hour;

Swor d day;

Swor d nont h;

Sword year;

Sword weekDay; /1 Days since Sunday (0 to 6)
} Dat eTi neType,;

t ypedef DateTi neType* DateTi mePTr;

t ypedef struct {

Byte hours;
Byte m nutes;
} Ti meType;

t ypedef TineType * TinePtr;

t ypedef struct{

Wrd year :7; //years since 1904 (Mac fornat)
Word nont h: 4;

Wrd day :5;

} Dat eType;

t ypedef DateType * DatePtr;

Developing Palm OS 3.0 Applications, Part Il 69

Using Palm OS System Managers
Application Launcher

Time Manager Function Summary

The following time manager functions are available for application
use:

= DateAdjust

= DateDaysToDate

= DateSecondsToDate

= DateToAscii

= DateToDays

e DateToDOWDMFormatf
= DayOfMonth

= DayOfWeek

= DaysinMonth

= TimAdjust

= TimDateTimeToSeconds

< TimGetSeconds
e TimGetTicks
e TimSecondsToDateTime

e TimSetSeconds

e TimeToAscii

Note that two functions associated with the Date and Time object,
Sel ect Day and Sel ect Ti me are documented in Developing Palm
OS Applications Part I.

Application Launcher

The Application Launcher (accessed via the silkscreen "Applica-
tions" button) presents a window or menu from which the user can
open other applications present on the Palm device. Applications in-
stalled on the Palm device (resource databases of type APPL) appear
in the Application Launcher automatically.

70 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
Application Launcher

Compatibility
Note

Versions of Palm OS prior to 3.0 implemented the Launcher as a
popup. The SysAppLauncher Di al og function, which provides
the API to the old popup launcher, is still present in Palm OS 3.0
for compatibility purposes, but it has not been updated and, in
most cases, should not be used.

The Launcher application can beam applications to other Palm de-
vices. Only the application itself is beamed; associated storage data-
bases and preferences are not transmitted. To suppress the beaming
of your application by the Launcher, you can can set the

dnHdr At t r CopyPr event i on bit in your database header. (For a
runtime code example, see the “DrMcCoy”’sample application. Note
that you can also use compile-time code to suppress beaming.)

Normally, the Launcher represents installed applications graphical-
ly as icons that appear in the Launcher window. The Launcher ap-
plication also provides a list mode that allows the user to see more
applications at once than are normally visible in its default viewing
mode. You can use the Constructor tool to provide a small icon for
the list mode—you’ll need to create at Al B resource having 1001 as
the value of its ID.

The Launcher displays a version string from each application’s
t ver resource, ID 1000. This short string (usually 3 to 6 characters)
is displayed in the "Info" dialog.

Situations in which you need to open the Application Launcher pro-
grammatically are rare, but the system does provide an API for
doing so. To activate the Launcher from within your application, en-
gueue a keyDownEvent that contains al aunchChr, as shown in

Listing 1.13.

WARNING: Do not use the SysUl AppSwi t ch or SysAppLaunch
functions to open the Application Launcher application.

Developing Palm OS 3.0 Applications, Part Il 71

Using Palm OS System Managers
Application Launcher

Listing 1.13 Opening the Launcher

Event Type newEvent ;

newkvent . eType = KeyDownEvent;

newEvent . dat a. keyDown. chr = | aunchChr;

newkEvent . dat a. keyDown. nodi fi ers = comandKeyMask;
Evt AddEvent ToQueue (&newEvent);

For information on launching other applications programmatically,
see “Opening Applications Programmatically” on page 62.

72 Developing Palm OS 3.0 Applications, Part Il

-oo—
-—o—
—-oo—
.
.

Palm OS System
Functions

Alarm Manager API

Purpose

Prototype

Parameters

Result

AlmGetAlarm

Return the alarm date/time in seconds since 1/1/1904 and the call-
er-defined alarm reference value for the given application.

ULong Al mGet Alarm (Ul nt cardNo,
Local | D dbl D,
DWordPtr refP)

->cardNo Storage card number of the application.
->dbl D Local ID of the application.

<->refP Pointer to location for the alarm’s reference value.

Alarm seconds since 1/1/1904; if no alarm is active for the applica-
tion, 0 is returned for the alarm seconds and the reference value is
undefined.

Developing Palm OS 3.0 Applications, Part Il 73

Palm OS System Functions
Alarm Manager API

AlmSetAlarm

Purpose Setor cancel an alarm for the given application.

Prototype Err AlnBetAlarm (U nt cardNo,
Local | D dbl D,
DWord ref,
ULong al ar mSeconds,
Bool ean qui et)

Parameters ->cardNo Storage card number of the application.
->dbl D Local ID of the application.
->ref Caller-defined value to be passed with

notifications.

-> al ar nBeconds Alarm date/time in seconds since 1/1/1904,
or 0 to cancel the current alarm (if any).

-> qui et Reserved for future upgrade (set to zero).

Result O No error.
al nErr Menory Insufficient memory.
al nErr Ful | Alarm table is full.

Comments Ifanalarm for this application has already been set, it is replaced
with the new alarm. Action code notifications are sent after the
alarm is triggered and can be used by the application to set the next
alarm.

74 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Alarm Manager API

Functions for System Use Only

AlmAlarmCallback

Prototype void Al mAl arntCal | back (void)

WARNING: This function for use by system software only.

AlmCancelAll

Prototype void Al nCancel All (Bool ean enabl e)

WARNING: This function for use by system software only.

AlmDisplayAlarm

Prototype void Al nDisplayAl arm (Bool ean displayOnly)

WARNING: This function for use by system software only.

AlmEnableNotification

Prototype void Al nEnabl eNotificatio(Bool ean enabl e)

WARNING: This function for use by system software only.

Almlinit

Prototype FErr Almnit (void)

WARNING: This function for use by system software only.

Developing Palm OS 3.0 Applications, Part Il 75

Palm OS System Functions
Error Manager Functions

