it

PALM .
COMPUTING
PLATFORM

Developing Palm OS 3.0
Applications

Part IIl: Memory and
Communications Management

Navigate this online document as follows:

To see bookmarks, Command-7 (Mac OS)

type: Ctrl-7 (Windows)
To navigate, any blue hypertext link
click on: any Table of Contents entry

any Index entry
arrows in the toolbar

Y A 7 7 777777777777 4

Developing Palm OS
3.0 Applications

Part Ill: Memory and
Communications
Management

Copyright © 1996 - 1998, 3Com Corporation or its subsidiaries (“3Com?”). All rights reserved. This docu-
mentation may be printed and copied solely for use in developing products for the Palm Computing plat-
form. In addition, two (2) copies of this documentation may be made for archival and backup purposes.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or
by any means or used to make any derivative work (such as translation, transformation or adaptation)
without express written consent from 3Com.

3Com reserves the right to revise this documentation and to make changes in content from time to time
without obligation on the part of 3Com to provide notification of such revision or changes. 3COM MAKES
NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR
THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMENTATION IS PROVIDED
ON AN “AS IS” BASIS. 3COM MAKES NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IM-
PLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING
WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, 3COM ALSO EXCLUDES FOR ITSELF AND ITS SUPPLI-
ERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR
DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY
KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION OR
DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF 3COM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3Com, the 3Com logo, HotSync, Palm Computing, and Graffiti are registered trademarks, and Palm IIl,
Palm OS, and the Palm Computing Platform logo are trademarks of 3Com Corporation or its subsidiaries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brand and product
names may be registered trademarks or trademarks of their respective holders.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Contact Information:

Metrowerks U.S.A. and international Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758

US.A.

Metrowerks Inc.

1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Metrowerks Mail order Voice: 1-800-377-5416
Fax: 1-512-873-4901

U.S.A.: 1-800-881-7256
elsewhere: 1-801-431-1536

http://ww. met r oner ks. com

Metrowerks Canada

3Com (Palm Computing Subsidiary) Canada: 800-891-6342

Mail Order
Metrowerks World Wide Web

Palm Computing World Wide Web
Registration information
Technical support

Sales, marketing, & licensing
CompuServe

http://ww. pal m com
regi st er @ret r oner ks. com
support @ret r ower ks. com
sal es@ret r ower ks. com

go Met r owner ks

Table of Contents

AboutThis Document. 17
Palm OS SDK Documentation 17
What This Guide Contains. 18
Conventions Used in ThisGuide 19

1 Palm OS Memory Management. 21
Introduction to Memory UseonPalmOS 22

Hardware Architecture 22
PCConnectivity23
Memory Architecture 23
Heap Overview C e e e 27
Overview of MemoryChunkStructure e o 28
The Memory Manager.3
Memory Manager Structures. 30
Heap Structures30
Chunk Structures 3
Local ID Structures. 33
Using the Memory Manager I 1
Overview of the Memory ManagerAPI Ce e .. 33
Storage Heap Sizes and Memory Management Schemes. . 35
Optimizing Memory Manager Performance 35
Memory Manager Function Summary. 36
The Data Manager3
Records and Databases e 1
Accessing Data With LocaIIDs e £
Structure of a Database Header. 39
Database Header Fields.39
Structure of a Record EntrylnaDatabase Header 40
Using the Data Manager 4
Data Manager Function Summary 43
The Resource Manager R < 1)
Structure of a Resource Database Header e
Using the Resource Manager. 47
Resource Manager Functions 48

Developing Palm OS 3.0 Applications, Part Il v

Table of Contents

2 Memory Management Functions 51
Memory Manager Functions bl
MemCardinfo51
MemCmp.05
MemDebugMode52
MemHandleCardNo53
MemHandleDataStorage 53
MemHandleFree b
MemHandleHeaplD b4
MemHandleLock.55
MemHandleNew.55
MemHandleResize56
MemHandleSize 57
MemHandleToLocallD57
MemHandleUnlock.58
MemHeapCheck58
MemHeapCompact.59
MemHeapDynamic.59
MemHeapFlags60
MemHeapFreeBytes60
MemHeaplD61
MemHeapScramble. 62
MemHeapSize. 62
MemLocallDKind63
MemLocallDToGlobal 63
MemLocallDToLockedPtr 64
MemLocallDToPtr 64
MemMove065
MemNumCards©65
MemNumHeaps.66
MemNumRAMHeaps 66
MemPtrCardNo 67
MemPtrDataStorage 067
MemPtrFree. 68
MemPtrHeap!D 68
MemPtrNew. 09

vi Developing Palm OS 3.0 Applications, Part 111

Table of Contents

MemPtrRecoverHandle. 69
MemPtrResize69
MemPtrSize10
MemPtrToLocallD11
MemPtrUnlock11
MemSet. 12
MemSetDebugMode 712
MemStorelnfo13
Functions for SystemUseOnly. 74
MemCardFormat74
MemChunkFree T4
MemChunkNew. 74
MemHandleFlags 715
MemHandleLockCount. 75
MemHandleOwner 75
MemHandleResetLock 75
MemHandleSetOwner 75
MemHeapFreeByOwneriD 75
MemHeaplnit. 176
Memlinit176
MemlnitHeapTable.76
MemKernellnit 176
MemPtrFlags 1716
MemPtrOwner 17
MemPtrResetLock T7
MemPtrSetOwner17
MemSemaphoreRelease. 717
MemSemaphoreReserve 717
MemStoreSetinfo 718

3 Data and Resource Manager Functions 79
Data Manager Functions.79

DmArchiveRecord 19
DmAttachRecord. 80
DmAttachResource.81
DmCloseDatabase82

Developing Palm OS 3.0 Applications, Part 11 vii

Table of Contents

DmCreateDatabase . .
DmCreateDatabaseFromlmage.
DmbDatabaselnfo .
DmbDatabaseProtect
DmbDatabaseSize .
DmDeleteCategory .
DmbDeleteDatabase .
DmbDeleteRecord .
DmbDetachRecord
DmbDetachResource.
DmFindDatabase.
DmFindRecordByID .
DmFindResource.
DmFindResourceType
DmFindSortPosition .
DmFindSortPositionVV10
DmGetAppinfolD .
DmGetDatabase .
DmGetLastErr .

DmGetNextDatabaseByTypeCreator .

DmGetRecord .
DmGetResource .
DmGetResourcelndex.
DmGetlResource.
DmlnsertionSort .
DmMoveCategory .
DmMoveRecord .
DmNewHandle .
DmNewRecord
DmNewResource
DmNextOpenDatabase .
DmNextOpenResDatabase
DmNumbDatabases .
DmNumRecords .
DmNumRecordsIinCategory .
DmNumResources .

. 82
. 83
. 84
. 85
. 86
. 87
. 87
. 88
. 89
. 90
.91
o9
.92
. 93
. 94
. 95
.97
.97
. 98
.99
.101
. 102
. 102
. 103
. 103
. 105
. 106
. 107
. 108
. 109
. 110
. 110
111
111
. 112
112

viii Developing Palm OS 3.0 Applications, Part 11l

Table of Contents

DmOpenDatabase e
DmOpenDatabaseByTypeCreator A
DmOpenDatabaselnfo15
DmPositionInCategory116
DmQueryNextinCategory.117
DmQueryRecord. 1y
DmQuickSort18
DmRecordinfo.19
DmReleaseRecord12
DmReleaseResource12
DmRemoveRecord12
DmRemoveResource122
DmRemoveSecretRecords122
DmResetRecordStates.123
DmResizeRecord.123
DmResizeResource.124
DmResourcelnfo.125
DmSearchRecord.126
DmSearchResource.l127
DmSeekRecordInCategory128
DmSet0129
DmSetDatabaselnfo129
DmSetRecordIinfo13
DmSetResourcelinfo00, 132
DmStrCopy133
DmWrite134
DmWriteCheck O 11
Functions for System UseOnIy T < 15
DmMoveOpenDBContext.135
4 Palm OS Communications 137
Byte Ordering e Y4
Communications Architecture Hlerarchy coe 138

Developing Palm OS 3.0 Applications, Part Il ix

Table of Contents

The Serial Manager140
Using the Serial Manager140
Serial Manager Function Summary145

The Serial Link Protocol146
SLP Packet Structures.l46

SLP PacketFormat.147
Packet Type Assignment148
Socket ID Assignment148
Transaction ID Assignment149
Transmittingan SLPPacket149
Receivingan SLP Packet149

The Serial Link Manager.150
Using the Serial Link Manager150
Serial Link Manager Function Summary.154

5 Communications Functions. 155

Serial Manager Functions155
SerClearErr15
SerClose15
SerControl.157
SerGetSettings.158
SerGetStatus.15
SerOpen160
SerReceive 1601
SerReceivel0162
SerReceiveCheck.163
SerReceiveFlush163
SerReceiveWaitl64
SerSend.165
SerSend10.l66
SerSendWait. 167
SerSetReceiveBuffer168
SerSetSettings169

x Developing Palm OS 3.0 Applications, Part 111

Table of Contents

Functions Used Only by System Software170
SerReceivelSP170
SerReceiveWindowClose170
SerReceiveWindowOpen170
SerSetWakeupHandler170
SerSleep17
SerWake e ()

Serial Link I\/IanagerFunctlons Y e §

SlkkClose1n

SIkCloseSocket.172

SIkFlushSocket.173

SkkOpen173

SlkOpenSocket.174

SIkReceivePacket.175

SlkSendPacket 1T

SIkSetSocketListener178

SIkSocketRefNum179

SlkSocketSetTimeout e A°

Functions for Use By System Software Only180
SIkSysPktDefaultResponse180
SIkProcessRPC180

Miscellaneous Communications Functions.180

CrcleCalcBlock180

6 Palm OS Net Library. 181
Overview

Structureo 0000182

System Requirements.182

Constraints183

The Programmer’s Interface 184

Net Library and BerkeleySocketsAPI le'ferences 184

Example18

Developing Palm OS 3.0 Applications, Part 11 xi

Table of Contents

Using the Net Library186
Setup and ConfigurationCalls186
Interface Specific Settings187
General Settings187
Settings for Interface Selection.187
Summary.188
RuntimeCalls188
Initialization and Shutdown188
Calls Made Before Opening the Net L|brary. Co.o....189
Opening the Net Library189
Closing the Net Library.189
Summary of Initialization.19
Initialization Example190
\ersion Checking. N A X A
Network 170 and UtllltyCaIIs K 4
7 Net Library Functions 195
Library OpenandClose196
NetLibClose. . . . [
NetleConnectlonRefresh <
NetLibFinishCloseWait199
NetLibOpen.20
NetLibOpenCount202
Socket Creation and Deletion.203
NetLibSocketClose203
NetLibSocketOpen204
Socket Options A0 [¢}
NetleSocketOptlonGet 0]
NetLibSocketOptionSet208
Socket Connections212
NetLibSocketAccept212
NetLibSocketAddr214
NetLibSocketBind216
NetLibSocketConnect.217
NetLibSocketListen.219
NetLibSocketShutdown.221

xii Developing Palm OS 3.0 Applications, Part I11

Table of Contents

Send and Receive Routines.
NetLibDmReceive .
NetLibReceive .
NetLibReceivePB.
NetLibSend .
NetLibSendPB .

Utilities .

NetHToNL

NetHToNS :
NetLibAddrATolN .
NetLibAddrINTOA .
NetLibGetHostByAddr .
NetLibGetHostByName.

NetLibGetMailExchangeByName

NetLibGetServByName .
NetLibMaster .

netMasterinterfacelnfo .
netMasterInterfaceStats .

netMasterIPStats.
netMasterICMPStats .
netMasterUDPStats
netMasterTCPStats.

netMasterTraceEventGet .

NetLibSelect.
NetLibTracePrintF .
NetLibTracePutS .
NetNToHL
NetNToHS
Configuration
NetLiblFAttach
NetLiblFDetach .
NetLibIFDown.
NetLiblFGet .
NetLibIFSettingGet.
NetLiblFSettingSet .
NetLibIFUp .

. 222
. 222
224
. 226
. 227
. 230
. 232
. 232
. 232
. 233
. 234
.234
. 236
. 238
. 240
. 242
. 243
. 244
. 245
. 245
. 245
. 245
. 245
. 246
. 249
. 250
.251
. 251
. 252
. 252
. 253
. 254
. 255
. 256
. 263
. 264

Developing Palm OS 3.0 Applications, Part 11 xiii

Table of Contents

8 Exchange Manager

9 IR Library

NetLibSettingGet.
NetLibSettingSet .
Berkeley Sockets API Calls .
Supported Socket Functions .
Supported Network Utility Functlons
Supported Byte Ordering Functions.

Supported Network Address Conversion Functlons.

Supported System Utility Functions.

Overview . .
Exchange Manager and Launch Codes
Exchange Manager Function Summary .
Exchange Manager Functions

ExgAccept

ExgDBRead

ExgDBWrite

ExgDisconnect

ExgPut

ExgReceive

ExgReqisterData

ExgSend

IrDA Stack.

Loading the IR L|brary

IR Data Structures
IrConnect .

IrPacket.
IrlASObject .
IrlasQuery
IrCallbackParms .

IR Stack Callback Events.
LEVENT _DATA IND.
LEVENT_DISCOVERY_CNF
LEVENT_LAP_CON_CNF
LEVENT LAP_CON_IND.

. 266
. 270
.212
. 273
. 276
L2177
L2177
. 278

xiv Developing Palm OS 3.0 Applications, Part 111

Table of Contents

LEVENT_LAP_DISCON_IND .
LEVENT_LM_CON_CNF .
LEVENT_LM_CON_IND .
LEVENT_LM_DISCON_IND

LEVENT_PACKET_HANDLED .

LEVENT_STATUS_IND.
LEVENT_TEST_CNF .
LEVENT_TEST_IND .
IAS Query Callback Function.
IR Library Function Summary .

IR Library Functions
IrAdvanceCredit
IrBind
IrClose
IrConnectlrLap
IrConnectReq
IrConnectRsp
IrDataReq
IrDisconnectlrLap
IrDiscoverReq
IrisirLapConnected
IrisMediaBusy
IrlIsNoProgress
IrIsRemoteBusy
IrLocalBusy
IrMaxRxSize
IrMaxTxSize
IrOpen
IrSetConTypel MP
IrSetConTypeTTP
IrSetDevicelnfo
IrTestReq
IrUnbind

IAS Functions .
IrlAS_Add
IrlAS_Getlnteger
IrlAS_GetIntLsap
IrlAS_GetObjectiD
IrlAS_GetOctetString

. 302
. 302
. 302
. 302
. 302

. 303
. 303
.30
.30

. 305
305
306
307

w
w

w
I

w
S
N

W
o
(e}

W
—
o

w
[
[EEN

(€8]
—
N

W
—
wW

w
[y
N

o
H
~

wW
H
~

w
[y
(O3}

(€8]
—
(€]

W
—
[ep]

w
[y
[ep]

W
H
~

W
H
~

w
[y
[ee]

(€8]
—
(0]

W
—
(<o)

w
N
o

w W
NN
= O

w
N
N

w
N
N

w
N
w

w
N
w

Developing Palm OS 3.0 Applications, Part I11 xv

Table of Contents

IrlAS_GetOctetStringlLen 323
IrlAS_GetType 324
IrlAS_GetUserString 324
IrlIAS_GetUserStringCharSet 324
IrlAS_GetUserStringlen 325
IrTAS _Next 325
IrIAS_Query 326
IrlAS_SetDeviceName 327
IrlAS_StartResult 328
INdex e e 329

xvi Developing Palm OS 3.0 Applications, Part 11l

™

iz

About This Document

Developing Palm OS 3.0 Applications, Part 11, is part of the Palm
OS Software Development Kit. This introduction provides an over-
view of SDK documentation. It discusses the materials included and
the conventions used in this document.

Palm OS SDK Documentation

The following documents are part of the SDK:

Document Description

Palm OS 3.0 Tutorial A number of Phases step developers through how to use the
different parts of the system. Each phase includes example
applications.

Developing Palm OS A programmer’s guide and reference document that intro-

3.0 Applications. duces all important aspects of developing an applications.

Part I: Interface See What This Guide Contains for details.

Management

Developing Palm OS A programmer’s guide and reference document for all sys-

3.0 Applications. tem managers, such as the string manager or the system

Part 1I: System event manager.

Management

Developing Palm OS 3.0 Applications, Part Ill 17

About This Document
What This Guide Contains

Document Description

Developing Palm OS Programmer’s guide and reference document for
3.0 Applications.
Part 1l1l. Memory and
Communications
Management

< Memory management; both the database manager and
the memory manager.

= The Palm OS communications library for serial com-
munication.

= The Palm OS net library, which provides basic net-
work services.

= The exchange manager and IR library, which provide
infrared communication capabilities.

Palm OS 3.0 Cookbook Information about using CodeWarrior for Palm OS to create
projects and executables. Also provides a variety of design
guidelines, including localization design guidelines.

What This Guide Contains

The following are chapter overviews for this guide.

= Chapter 1, “Palm OS Memory Management,” helps you under-
stand memory management on Palm OS. It first discusses mem-
ory layout and architecture, then explains how to use the three
memory managers, which comprise the memory management
API.

= Chapter 2, “Memory Management Functions,” provides ref-
erence-style information for each memory manager function.

= Chapter 3, “Data and Resource Manager Functions,” pro-
vides reference-style information for the data manager and
resource manager functions.

= Chapter 4, “Palm OS Communications,” discusses the com-
munications software, which provides the serial communica-
tions capabilities for Palm OS.

= Chapter 5, “Communications Functions,” provides reference
information for the serial manager functions, serial link man-
ager functions, and miscellaneous communications
functions.

= Chapter 6, “Palm OS Net Library,” introduces the Palm OS
net library and explains how to use it.

18 Developing Palm OS 3.0 Applications, Part Il

About This Document
Conventions Used in This Guide

= Chapter 7, “Net Library Functions,” provides reference infor-
mation for all net library functions, as well as an overview of
the parallel Berkeley Sockets API calls.

= Chapter 8, “Exchange Manager,” discusses the exchange
manager, which provides a high-level interface to the IR com-
munications capabilities of the Palm OS. This chapter also in-
cludes a reference for all the exchange manager functions.

= Chapter 9, “IR Library.” discusses the IR library, which pro-
vides direct access to the IR communications capabilities of
the Palm OS. This chapter also includes a reference for all the
IR library functions.

Conventions Used in This Guide

This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, field, bitfield.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).

blue and underlined Hot links.

black and underlined 3.0 function names (headings
only).

red and underlined 3.0 function names (in Table of

Contents only)

Developing Palm OS 3.0 Applications, Part Il 19

About This Document
Conventions Used in This Guide

20 Developing Palm OS 3.0 Applications, Part Il

.... Palm OS Memory
== Management

This chapter helps you understand memory use on Palm OS. It
starts with an introduction to memory layout and memory
architecture.

= Introduction to Memory Use on Palm OS provides information
about Palm OS hardware relevant to memory management. For
more information on Palm OS hardware, see “Basic Hardware”
in Chapter 1 of “Developing Palm OS Applications, Part 1.”

= Memory Architecture discusses in detail how memory is
structured on Palm OS. It also examines the structure of the
basic building blocks of Palm OS memory: heaps, chunks, and
records.

The second part of the chapter explains the different parts of the sys-
tem—the managers—that you can use for memory management.
The discussion of each manager includes a brief overview of the sig-
nificant functions composing its API; in the online version of this
book, each function name provides a hypertext link to its reference
description.

= The Memory Manager maintains the location and size of each
memory chunk in nonvolatile storage, volatile storage, and
ROM. It provides functions for allocating chunks, disposing of
chunks, resizing chunks, locking and unlocking chunks, and
compacting the heap when it becomes fragmented.

= The Data Manager manages user data, which is stored in
databases for convenient access.

= The Resource Manager can be used by applications to retrieve
and save chunks of data. It’s similar to the data manager, but
has the added capability of tagging each chunk with a unique
resource type and ID. These tagged data chunks, called
resources, reside in a resource database and commonly are used
to store the application’s user interface elements (images, fonts,

Developing Palm OS 3.0 Applications, Part Ill 21

Palm OS Memory Management
Introduction to Memory Use on Palm OS

dialog layouts, and so on) as well as application-specific static
data (not user data or temporary data.)

Introduction to Memory Use on Palm OS

The Palm OS system software supports applications on low-cost,
low-power, palm-top devices. Given these constraints, Palm OS is
efficient in its use of both memory and processing resources. This
section presents two aspects of Palm OS devices that contribute to
this efficiency: Hardware Architecture and PC Connectivity.

Hardware Architecture

The first implementation of Palm OS provides nearly instantaneous
response to user input while running on a 16 MHz Motorola® 68000
type processor with a minimum of 128K of nonvolatile storage
memory and 512 KB of ROM. Subsequent Palm OS devices provide
additional RAM and ROM in varying amounts.

The ROM and RAM for each Palm OS device resides on a memory
module known as a card. Each memory card can contain ROM,
RAM, or both. There is no RAM or ROM storage on the mother-
board of the device.

Though all Palm OS devices available as of May 1998 hold one card
in a user-accessible hardware slot, it is unwise to assume that any
Palm OS device has a memory module that can be removed physi-
cally. A *“card” is simply a logical construct used by the operating
system—~Palm OS devices can have one card, multiple cards, or no
cards. For example, the Simulator provided by the Palm OS SDK
can simulate a device that has two cards.

The ROM and RAM on each card is divided into one or more heaps.
All the RAM-based heaps on a memory card are treated as the RAM
store, and all the ROM-based heaps are treated as the ROM store.
The heaps for a store do not have to be adjacent to each other in ad-
dress space—they can be scattered throughout the memory space on
the card—»but they must all reside on the same card.

The main suite of applications provided with each Palm OS device
is prebuilt into ROM. This design permits the user to replace the

22 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
Memory Architecture

operating system and the entire applications suite simply by install-
ing a single replacement module. Additional or replacement appli-
cations and system extensions can be loaded into RAM, but doing
so is not always practical in this RAM-constrained environment.

PC Connectivity

PC connectivity is an integral component of the Palm OS device.
The device comes with a cradle that connects to a desktop PC and
with software for the PC that provides “one-button” backup and
synchronization of all data on the device with the user’s PC.

Because all user data can be backed up on the PC, replacement of
the nonvolatile storage area of the Palm OS device becomes a simple
matter of installing the new module in place of the old one and re-
synchronizing with the PC. The format of the user’s data in storage
RAM can change with a new version of the ROM; the connectivity
software on the PC is responsible for translating the data into the
correct format when downloading it onto a device with a new ROM.

Memory Architecture

WARNING: This section describes the current (June 1998) imple-
mentation of Palm OS memory architecture. This implementation
may change as the Palm OS evolves. Do not rely on implementa-
tion-specific information described here; instead, always use the
API provided to manipulate memory.

The Palm OS system software is designed around a 32-bit architec-
ture. The system uses 32-bit addresses, and its basic data types are 8,
16, and 32 bits long.

The 32-bit addresses available to software provide a total of 4 GB of
address space for storing code and data. This address space affords
a large growth potential for future revisions of both the hardware
and software without affecting the execution model. Although a
large memory space is available, Palm OS was designed to work ef-
ficiently with small amounts of RAM. For example, the first

Developing Palm OS 3.0 Applications, Part Ill 23

Palm OS Memory Management

Memory Architecture

commercial Palm OS device has less than 1 MB of memory, or .025%
of this address space.

The Motorola 68328 processor’s 32-bit registers and 32 internal ad-
dress lines support a 32-bit execution model as well, although the
external data bus is only 16 bits wide. This design reduces cost with-
out impacting the software model. The processor’s bus controller
automatically breaks down 32-bit reads and writes into multiple 16-
bit reads and writes externally.

Each memory card in the Palm OS device has 256 MB of address
space reserved for it. Memory card 0 starts at address $1000000,
memory card 1 starts at address $2000000, and so on.

The Palm OS divides the total available RAM store into two logical
areas: dynamic RAM and storage RAM. Dynamic RAM is used as
working space for temporary allocations, and is analogous to the
RAM installed in a typical desktop system. The remainder of the
available RAM on the card is designated as storage RAM and is
analogous to disk storage on a typical desktop system.

Because power is always applied to the memory system, both areas
of RAM preserve their contents when the device is turned “off” (i.e.,
is in low-power sleep mode.) See “Palm OS Power Modes” in Chap-
ter 6, “Using Palm OS Managers,” of “Developing Palm OS Appli-
cations, Part 1.” All of storage memory is preserved even when the
device is reset explicitly. As part of the boot sequence, the system
software reinitializes the dynamic area, and leaves the storage area
intact.

The entire dynamic area of RAM is used to implement a single heap
that provides memory for dynamic allocations. From this dynamic

heap, the system provides memory for dynamic data such as global
variables, system dynamic allocations (TCP/IP, IrDA, and so on, as
applicable), application stacks, temporary memory allocations, and
application dynamic allocations (such as those performed when the
application calls the MenHand| eNew function.)

The entire amount of RAM reserved for the dynamic heap is always
dedicated to this use, regardless of whether it is actually used for al-
locations. The size of the dynamic area of RAM on a particular de-
vice varies according to the OS version running, the amount of
physical RAM available, and the requirements of pre-installed soft-
ware such as the TCP/IP stack or IrDA stack. Table 1.1 on page 25

24 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
Memory Architecture

provides more information about the dynamic heap space that cur-
rently available combinations of OS and hardware provide.

Table 1.1 Dynamic heap space
RAM Usage 0S 3.0 0S 2.0 0S 2.0/1.0
>1 MB 1 MB 512 KB
TCP/IP & IrDA TCP/IPonly no TCP/IP or IrDA

(Palm III) (Professional) (Personal)

Total dynamic area 96 KB 64 KB 32 KB

System Globals ~2.5 KB ~2.5 KB ~2.5 KB

(screen buffer, Ul globals, da-

tabase references, etc.)

TCP/IP stack 32 KB 32 KB 0 KB

System dynamic allocation variable ~15 KB ~15 KB

(IrDA, “Find” window, tem- amount (no IrDAIn

porary allocations) this OS)

Application stack 4 KB 2.5 KB 2.5KB

(call stack and local vars) (default)

Remaining dynamic space < 36 KB <12KB <12 KB

(dynamic allocations, appli-
cation global variables, and

static variables)

The remaining portion of RAM not dedicated to the dynamic heap
is configured as one or more storage heaps used to hold nonvolatile
user data such as appointments, to do lists, memos, address lists,
and so on. An application accesses a storage heap by calling the da-
tabase manager or resource manager, according to whether it needs
to manipulate user data or resources.

The size and number of storage heaps available on a particular de-
vice varies according to the OS version that is running; the amount
of physical RAM that is available; and the storage requirements of
end-user application software such as the Address List, Date Book,
or third-party applications.

Developing Palm OS 3.0 Applications, Part Il 25

Palm OS Memory Management
Memory Architecture

Versions 1.0 and 2.0 of Palm OS subdivide storage RAM into multi-
ple storage heaps of 64 KB each. Palm OS 3.0 configures all storage
RAM on a card as a single storage heap. Under all versions of Palm
OS, system overhead limits the maximum usable data storage avail-
able in a single chunk to slightly less than 64 KB.

In the Palm OS environment, all data are stored in memory manager
chunks. A chunk is an area of contiguous memory between 1 byte
and slightly less than 64 KB in size that has been allocated by the
Palm OS memory manager. (Because system overhead requirements
may vary, an exact figure for the maximum amount of usable data
storage for all chunks cannot be specified.) Currently, all Palm OS
implementations limit the maximum size of any chunk to slightly
less than 64 KB; however, the APl does not have this constraint, and
it may be relaxed in the future.

Each chunk resides in a heap. Some heaps are ROM-based and con-
tain only nonmovable chunks; some are RAM-based and may con-
tain movable or nonmovable chunks. A RAM-based heap may be a
dynamic heap or a storage heap. The Palm OS memory manager al-
locates memory in the dynamic heap (for dynamic allocations,
stacks, global variables, and so on). The Palm OS data manager allo-
cates memory in one or more storage heaps (for nonvolatile user
data.)

Every memory chunk used to hold storage data (as opposed to
memory chunks that store dynamic data) is a record in a database
implemented by the Palm OS data manager. In the Palm OS envi-
ronment, a database is simply a list of memory chunks and associat-
ed database header information. Normally, the items in a database
share some logical association; for example, a database may hold a
collection of all address book entries, all datebook entries, and so on.

A database is analogous to a file in a desktop system. Just as a tradi-
tional file system can create, delete, open, and close files, Palm OS
applications can create, delete, open, and close databases as neces-
sary. There is no restriction on where the records for a particular da-
tabase reside as long as they are all on the same memory card. The
records from one database can be interspersed with the records from
one or more other databases in memory.

Storing data by database fits nicely with the Palm OS memory man-
ager design. Each record in a database is in fact a memory manager

26 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
Memory Architecture

chunk. The data manager can use memory manager calls to allocate,
delete, and resize database records. All heaps except for the dynam-
ic heap are nonvolatile, so database records can be stored in any
heap except the dynamic heap. Because records can be stored any-
where on the memory card, databases can be distributed over multi-
ple discontiguous areas of physical RAM, but all records belonging
to a particular database must reside on the same card.

To understand how database records are manipulated, it helps to
know something about the way the memory manager allocates and
tracks memory chunks, as the next section describes.

Heap Overview

WARNING: This section describes the current (June 1998) imple-
mentation of Palm OS memory architecture. This implementation
may change as the Palm OS evolves. Do not rely on implementa-
tion-specific information described here; instead, always use the
API provided to manipulate memory.

Recall that a heap is a contiguous area of memory used to contain
and manage one or more smaller chunks of memory. When applica-
tions work with memory (allocate, resize, lock, etc.) they usually
work with chunks of memory. An application can specify whether
to allocate a new chunk of memory in the storage heap or the dy-
namic heap. The memory manager manages each heap indepen-
dently and rearranges chunks as necessary to defragment heaps and
merge free space.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a unique 16-bit value that the memory manager
uses to identify a heap within the Palm OS address space. Heap IDs
start at 0 and increment sequentially by units of 1. Values are as-
signed beginning with the RAM heaps on card 0, continuing with
the ROM heaps on card 0, and then continuing through RAM and
ROM heaps on subsequent cards. The sequence of heap IDs is con-
tinuous; that is, no values in the sequence are skipped.

The first heap (heap 0) on card 0 is the dynamic heap. This heap is
reinitialized every time the Palm OS device is reset. When an appli-
cation quits, the system frees any chunks allocated by that

Developing Palm OS 3.0 Applications, Part Ill 27

Palm OS Memory Management
Memory Architecture

application in the dynamic heap. All other heaps are nonvolatile
storage heaps that retain their contents through soft reset cycles.

When a Palm OS device is presented with multiple dynamic heaps,
the first heap (heap 0) on card 0 is the active dynamic heap. All other
potential dynamic heaps are ignored. For example, it is possible that
a future Palm OS device supporting multiple cards might be pre-
sented with two cards, each having its own dynamic heap; if so,
only the dynamic heap residing on card 0 would be active—the sys-
tem would not treat any heaps on other cards as dynamic heaps, nor
would heap IDs be assigned to these heaps. Subsequent storage
heaps would be assigned IDs in sequential order, as always begin-
ning with RAM heaps, followed by ROM heaps.

Overview of Memory Chunk Structure

Memory chunks can be movable or nonmovable. Applications need
to store data in movable chunks whenever feasible, thereby en-
abling the memory manager to move chunks as necessary to create
contiguous free space in memory for allocation requests.

When the memory manager allocates a nonmovable chunk it re-
turns a pointer to that chunk. The pointer is simply that chunk’s ad-
dress in memory. Because the chunk cannot move, its pointer re-
mains valid for the chunk’s lifetime; thus, the pointer can be passed
“as is” to the caller that requested the allocation.

When the memory manager allocates a moveable chunk, it gener-
ates a pointer to that chunk, just as it did for the nonmovable chunk,
but it does not return the pointer to the caller. Instead, it stores the
pointer to the chunk, called the master chunk pointer, in a master
pointer table that is used to track all of the moveable chunks in the
heap, and returns a reference to the master chunk pointer. This ref-
erence to the master chunk pointer is known as a handle. It is this
handle that the memory manager returns to the caller that requested
the allocation of a moveable chunk.

Using handles imposes a slight performance penalty over direct
pointer access but permits the memory manager to move chunks
around in the heap without invalidating any chunk references that
an application might have stored away. As long as an application
uses handles to reference data, only the master pointer to a chunk

28 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
Memory Architecture

needs to be updated by the memory manager when it moves a
chunk during defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the memory manager to mark that data
chunk as immobile. When an application no longer needs the data
chunk, it should unlock the handle immediately to keep heap frag-
mentation to a minimum.

Note that any handle is good only until the system is reset. When
the system resets, it reinitializes all dynamic memory areas and re-
launches applications. Therefore, you must not store a handle in a
database record or a resource.

Each chunk on a memory card is actually located by means of a
card-relative reference called a local ID. Alocal ID is a reference to a
data chunk that the system computes from the base address of the
card. The local ID of a nonmovable chunk is simply the offset of the
chunk from the base address of the card. The local ID of a movable
chunk is the offset of the master pointer to the chunk from the base
address of the card, but with the low-order bit set. Since chunks are
always aligned on word boundaries, only local IDs of movable
chunks have the low-order bit set. Once the base address of the card
is determined at runtime, a local ID can be converted quickly to a
pointer or handle.

For example, when an application needs the handle to a particular
data record, it calls the data manager to retrieve the record by index
from the appropriate database. The data manager fetches the local
ID of the record out of the database header and uses it to compute
the handle to the record. The handle to the record is never actually
stored in the database itself.

Although currently available Palm OS devices do not provide hard-
ware support for multiple cards, the use of local IDs provides sup-
port in software for future devices that may allow the user to re-
move or insert memory cards. If the user moves a memory card to a
slot having a different base address, the handle to a memory chunk
on that card is likely to change, but the local ID associated with that
chunk does not change.

Developing Palm OS 3.0 Applications, Part Il 29

Palm OS Memory Management
The Memory Manager

The Memory Manager

The Palm OS memory manager is responsible for maintaining the
location and size of every memory chunk in nonvolatile storage,
volatile storage, and ROM. It provides an API for allocating new
chunks, disposing of chunks, resizing chunks, locking and unlock-
ing chunks, and compacting heaps when they become fragmented.
Because of the limited RAM and processor resources of the Palm OS
device, the memory manager is efficient in its use of processing
power and memory.

This section provides background information on the organization
of memory in Palm OS and provides an overview of the memory
manager API, discussing these topics:

« Memory Manager Structures
= Using the Memory Manager
< Memory Manager Function Summary

Memory Manager Structures

This section discusses the different structures the memory manager
uses:

= Heap Structures

= Chunk Structures

= Local ID Structures

Heap Structures

WARNING: Expect the heap structure to change in the future. Use
the API to work with heaps.

A heap consists of the heap header, master pointer table, and the
heap chunks.

= Heap header. The heap header is located at the beginning of the
heap. It holds the size of the heap and contains flags for the
heap that provide certain information to the memory manager;
for example, whether the heap is ROM-based.

30 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Memory Manager

= Master pointer table. Following the heap header is a master
pointer table. It is used to store 32-bit pointers to movable
chunks in the heap.

— When the memory manager moves a chunk to compact the
heap, the pointer for that chunk in the master pointer table is
updated to the chunk’s new location. The handles an applica-
tion uses to track movable chunks reference the address of
the master pointer to the chunk, not the chunk itself. In this
way, handles remain valid even after a chunk is moved. The
OS compacts the heap automatically when available contigu-
ous space is not sufficient to fulfill an allocation request.

— If the master pointer table becomes full, another is allocated
and its offset is stored in the next Mst r Pt r Tabl e field of the
previous master pointer table. Any number of master pointer
tables can be linked in this way. Because additional master
pointer chunks are nonmovable, they are allocated at the end
of the heap, according to the guidelines described in the
“Heap chunks” section following immediately.

= Heap chunks. Following the master pointer table are the actual
chunks in the heap.

— Movable chunks are generally allocated at the beginning of
the heap, and nonmovable chunks at the end of the heap.

— Nonmovable chunks do not need an entry in the master
pointer table since they are never relocated by the memory
manager.

— Applications can easily walk the heap by hopping from
chunk to chunk because each chunk header contains the size
of the chunk. All free and nonmovable chunks can be found
in this manner by checking the flags in each chunk header.

Because heaps can be ROM-based, there is no information in the
header that must be changed when using a heap. Also, ROM-
based heaps contain only nonmovable chunks and have a master
pointer table with 0 entries.

Developing Palm OS 3.0 Applications, Part Il 31

Palm OS Memory Management
The Memory Manager

Chunk Structures

WARNING: Expect the chunk structure to change in the future.
Use the API to work with chunks.

Each chunk begins with an 8-byte header followed by that chunk’s
data. The chunk header consists of a Fl ags: si ze adjustment byte,
3 bytes of size information, al ock: owner byte, and 3 bytes of

hOr f set information.

= Fl ags: si zeAd] byte.This byte contains flags in the high nibble
and a size adjustment in the low nibble.

— The flags nibble has 1 bit currently defined, which is set for
free chunks.

— The size adjustment nibble can be used to calculate the re-
quested size of the chunk, given the actual size. The request-
ed size is computed by taking the size as stored in the chunk
header and subtracting the size of the header and the size ad-
justment field. The actual size of a chunk is always a multiple
of two so that chunks always start on a word boundary.

= si ze field (3 bytes). This three-byte value describes the size of
the chunk, which is larger than the size requested by the
application and includes the size of the chunk header itself. The
maximum data size for a chunk is slightly less than 64 KB.

= Lock: owner byte. Following the size information is a byte that
holds the lock count in the high nibble and the owner ID in the
low nibble.

— The lock count is incremented every time a chunk is locked
and decremented every time a chunk is unlocked. A movable
chunk can be locked a maximum of 14 times before being un-
locked. Nonmovable chunks always have 15 in the lock field.

— The owner ID determines the owner of a memory chunk and
is set by the memory manager when allocating a new chunk.
Owner ID is information is useful for debugging and for gar-
bage collection when an application terminates abnormally.

e hOF f set field (3 bytes). The last three bytes in the chunk
header is the distance from the master pointer for the chunk to
the chunk’s header, divided by two. Note that this offset could
be a negative value if the master pointer table is at a higher

32 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Memory Manager

address than the chunk itself. For nonmovable chunks that do
not need an entry in the master pointer table, this field is 0.

Local ID Structures

WARNING: Expect the local ID structure to change in the future.
Use the API to work with chunks.

Chunks that contain database records or other database information
are tracked by the data manager through local IDs. A local ID is card
relative and is always valid no matter what memory slot the card re-
sides in. Allocal ID can be easily converted to a pointer or the handle
to a chunk once the base address of the card is known.

The upper 31 bits of a local ID contain the offset of the chunk or
master pointer to the chunk from the beginning of the card. The
low-order bit is set for local IDs of handles and clear for local IDs of
pointers.

The Menmiocal | DTo@ obal function converts a local ID and card
number (either 0 or 1) to a pointer or handle. It looks at the card
number and adds the appropriate card base address to convert the
local ID to a pointer or handle for that card.

Using the Memory Manager

Use the memory manager API to allocate memory in the dynamic
heap (for dynamic allocations, stacks, global variables, and so on)
and use the data manager API to allocate memory in one or more
storage heaps (for user data.) The data manager calls the memory
manager as appropriate to perform low-level allocations. (See “The
Data Manager” on page 37 for more information.)

Overview of the Memory Manager API

To allocate a movable chunk, call MenHandl eNewand pass the de-
sired chunk size. Before you can read or write data to this chunk,
you must call MenHandl eLock to lock it and get a pointer to it.
Every time you lock a chunk, its lock count is incremented. You can
lock a chunk a maximum of 14 times before an error is returned.
(Recall that unmovable chunks hold the valuel5 in the lock field.)
MenHandl eUnl ock reverses the effect of MenHandl eLock—it

Developing Palm OS 3.0 Applications, Part Ill 33

Palm OS Memory Management
The Memory Manager

decrements the value of the lock field by 1. When the lock count is
reduced to 0, the chunk is free to be moved by the memory manager.

When an application allocates memory in the dynamic heap, the
memory manager uses an owner ID to associate that chunk with the
application. The system further distinguishes chunks belonging to
the currently active allocation by setting a special bit in the ownerID
information. When the application quits, all chunks in the dynamic
heap having this bit set are freed automatically.

If the system needs to allocate a chunk that is not disposed of when
an application quits, it changes the chunk’s owner ID to 0 by calling
the system function MenHand|l eSet Oaner . This function is not
used by applications, except in special circumstances. For example,
when passing a parameter block to an application that is being
launched, the owner of the block must be set to the system; other-
wise, when the application exits, the system deletes the block when
it frees all memory allocated by the application.

To determine the size of a movable chunk, pass its handle to
MenHandl eSi ze. To resize it, call MenHand| eResi ze. You gener-
ally cannot increase the size of a chunk if it’s locked unless there
happens to be free space in the heap immediately following the
chunk. If the chunk is unlocked, the memory manager is allowed to
move it to another area of the heap to increase its size.When you no
longer need the chunk, call MenHandl eFr ee, which releases the
chunk even if it is locked.

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MenPt r Recover Handl e. In fact, all of the
MenPt r Xxx calls, including MenPt r Si ze, also work on pointers to
locked, movable chunks.

To allocate a nonmovable chunk, call MenPt r Newand pass the de-
sired size of the chunk. This call returns a pointer to the chunk,
which can be used directly to read or write to it.

To determine the size of a nonmovable chunk, call MenPt r Si ze.
To resize it, call MenPt r Resi ze. You generally can’t increase the
size of a nonmovable chunk unless there is free space in the heap
immediately following the chunk. When you no longer need the
chunk, call MenPt r Fr ee, which releases the chunk even if it’s
locked.

34 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Memory Manager

Important

Use the memory manager utility routines MeniVbve and MenfSet to
move memory from one place to another or to fill memory with a
specific value.

In most situations, the proper way to free memory is by calling one
of the MenPt r Fr ee or MenHandl eFr ee functions.

For important cautions and practical advice regarding the proper
use of memory on Palm OS devices, be sure to read “Writing Ro-
bust Code,” on page 37 of Part I, Interface Management.

Storage Heap Sizes and Memory Management Schemes

In Palm OS version 1.0, individual storage heaps were limited to a
maximum size of 64 KB each and the memory manager moved ob-
jects automatically among multiple storage heaps to prevent any of
them from becoming too full. This strategy tended to decrease the
availability of contiguous space for large objects. The version 2.0
memory manager abandoned this approach, increasing the avail-
ability of contiguous heap space; however, it still limited the maxi-
mum size of individual heaps to 64 KB each. Palm OS version 3.0 re-
moves the 64 KB maximum size restriction on individual heaps and
creates just two heaps: one 96K dynamic heap and one storage heap
that is the size of all remaining RAM on the card.

Optimizing Memory Manager Performance

Because Palm OS applications must perform well in a RAM-con-
strained environment, proper code segmentation is critical to
achieving optimum performance.

If your application segments are too large, your application may not
perform well (or to run at all) when large contiguous blocks of
memory are not available. Conversely, if your application segments
are too small, performance may be hindered by the overhead re-
quired to find and load resources too frequently.

Unfortunately, it impossible to specify a single size for memory
chunks that will perform optimally for all applications.You will
need to experiment with segmenting your code in different ways
while measuring your application’s performance in order to discov-
er the size and arrangement of resource chunks that will optimize

Developing Palm OS 3.0 Applications, Part Ill 35

Palm OS Memory Management
The Memory Manager

your particular application’s responsiveness and overall perfor-
mance. Both the Palm OS Debugger and the Simulator provide tools
for examining the internal structure of heaps, viewing the amount
of free space available, manipulating blocks, and so on.

Memory Manager Function Summary

The following functions are available for application use:
e MentCardl nfo

¢ MenChunkFr ee

¢ MenDebugMode

¢ MenHandl eDat aSt or age
¢ MenHandl eCar dNo

¢« MenHandl eFr ee

¢ MenHandl eHeapl D

¢« MenHandl eLock

¢ MenHandl eNew

¢ MenHandl eResi ze

¢ MenHandl eSi ze

¢ MenHandl eTolLocal I D
¢ MenHandl eUnl ock

« MenHeapCheck

* MenHeapConpact

* MenHeapDynam c

¢ MenHeapFl ags

s MenHeapFr eeByt es

¢ MenHeapl D
* MenHeapScr anbl e

36 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Data Manager

MemNunCar ds
MemNunHeaps
MemNunRAMHeaps
MenPt r Car dNo

MenPt r Dat aSt or age
MenPt r Free

MenPt r Heapl D
MenPt r ToLocal I D
MenPt r New

MenPt r Recover Handl e
MenPt r Resi ze
Mentet

Mentet Debugh©ode
MenPtrSi ze

MenPt r Unl ock

Mentst or el nf o

The Data Manager

A traditional file system first reads all or a portion of a file into a
memory buffer from disk, using and/or updating the information
in the memory buffer, and then writes the updated memory buffer
back to disk. Because Palm OS devices have limited amounts of dy-
namic RAM and use nonvolatile RAM instead of disk storage, a tra-
ditional file system is not optimal for storing and retrieving Palm OS
user data.

Palm OS accesses and updates all information in place. This works
well because it reduces dynamic memory requirements and elimi-
nates the overhead of transferring the data to and from another
memory buffer involved in a file system.

As a further enhancement, data in the Palm OS device is broken
down into multiple, finite-size records that can be left scattered
throughout the memory space; thus, adding, deleting, or resizing a
record does not require moving other records around in memory.
Each record in a database is in fact a memory manager chunk. The

Developing Palm OS 3.0 Applications, Part Ill 37

Palm OS Memory Management

The Data Manager

data manager uses memory manager functions to allocate, delete,
and resize database records.

This section explains how to use the database manager by discuss-
ing these topics:

= Records and Databases

= Structure of a Database Header

= Using the Data Manager

Records and Databases

Databases organize related records; every record belongs to one and
only one database. A database may be a collection of all address
book entries, all datebook entries, and so on. A Palm OS application
can create, delete, open, and close databases as necessary, just as a
traditional file system can create, delete, open, and close a tradition-
al file. There is no restriction on where the records for a particular
database reside as long as they all reside on the same memory card.
The records from one database can be interspersed with the records
from one or more other databases in memory.

Storing data by database fits nicely with the Palm OS memory man-
ager design. All heaps except for the dynamic heap(s) are nonvola-
tile, so database records can be stored in any heap except the dy-
namic heap(s) (see Heap Overview). Because records can be stored
anywhere on the memory card, databases can be distributed over
multiple discontiguous areas of physical RAM.

Accessing Data With Local IDs

A database maintains a list of all records that belong to it by storing
the local ID of each record in the database header. Because local IDs
are used, the memory card can be placed into any memory slot of a
Palm OS device. An application finds a particular record in a data-
base by index. When an application requests a particular record, the
data manager fetches the local ID of the record from the database
header by index, converts the local ID to a handle using the card
number that contains the database header, and returns the handle to
the record.

38 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Data Manager

Structure of a Database Header

A database header consists of some basic database information and
a list of records in the database. Each record entry in the header has
the local ID of the record, 8 attribute bits, and a 3-byte unique ID for
the record.

This section provides information about database headers, discuss-
ing these topics:

< Database Header Fields

« Structure of a Record Entry in a Database Header.

WARNING: Expect the database header structure to change in the
future. Use the API to work with database structures.

Database Header Fields
The database header has the following fields:

= The nane field holds the name of the database.
e The attri but es field has flags for the database.

= The ver si on field holds an application-specific version
number for that database.

= The nodi fi cati onNunber is incremented every time a record
in the database is deleted, added, or modified. Thus
applications can quickly determine if a shared database has
been modified by another process.

e The appl nf ol Dis an optional field that an application can use
to store application-specific information about the database. For
example, it might be used to store user display preferences for a
particular database.

e Thesort | nf ol Dis another optional field an application can
use for storing the local ID of a sort table for the database.

= Thet ype and cr eat or fields are each 4 bytes and hold the
database type and creator. The system uses these fields to
distinguish application databases from data databases and to
associate data databases with the appropriate application. See
“The System Manager” in Chapter 6, “Using Palm OS
Managers,” of “Developing Palm OS Applications, Part I’ for
more information.

Developing Palm OS 3.0 Applications, Part Ill 39

Palm OS Memory Management
The Data Manager

e The nunmRecor ds field holds the number of record entries
stored in the database header itself. If all the record entries
cannot fit in the header, then next Recor dLi st has the local ID
of arecordLi st that contains the next set of records.

Each record entry stored in a record list has three fields and is 8
bytes in length. Each entry has the local ID of the record which
takes up 4 bytes: 1 byte of attributes and a 3-byte unique 1D for
the record. The at t ri but e field, shown in Figure 1.1, is 8 bits
long and contains 4 flags and a 4-bit category number. The cate-
gory number is used to place records into user-defined catego-
ries like “business” or “personal.”

Figure 1.1 Record Attributes

Category (4)

L secret bit
busy bit
di rty bit
del et e bit

Structure of a Record Entry in a Database Header

Each record entry has the local ID of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

= Local IDs make the database slot-independent. Since all records
for a database reside on the same memory card as the header,
the handle of any record in the database can be quickly
calculated. When an application requests a specific record from
a database, the data manager returns a handle to the record that
it determines from the stored local ID.

A special situation occurs with ROM-based databases. Because
ROM-based heaps use nonmovable chunks exclusively, the local
IDs to records in a ROM-based database are local IDs of pointers,
not handles. So, when an application opens a ROM-based data-
base, the data manager allocates and initializes a fake handle for
each record and returns the appropriate fake handle when the
application requests a record. Because of this, applications can

40 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Data Manager

use handles to access both RAM- and ROM-based database
records.

= The unique ID must be unique for each record within a
database. It remains the same for a particular record no matter
how many times the record is modified. It is used during
synchronization with the desktop to track records on the Palm
OS device with the same records on the desktop system.

When the user deletes or archives a record on Palm OS:

e The del et e bitissetintheattri but es flags, but its entry in
the database header remains until the next synchronization with
the PC.

e The di rty bit is set whenever a record is updated.

= The busy bit is set when an application currently has a record
locked for reading or writing.

e The secr et bit is set for records that should not be displayed
before the user password has been entered on the device.

When a user “deletes” a record on the Palm OS device, the record’s
data chunk is freed, the local ID stored in the record entry is set to 0O,
and the del et e bitis set in the attributes. When the user archives a
record, the deleted bit is also set but the chunk is not freed and the
local ID is preserved. This way, the next time the user synchronizes
with the desktop system, the desktop can quickly determine which
records to delete (since their record entries are still around on the
Palm OS device). In the case of archived records, the desktop can
save the record data on the PC before it permanently removes the
record entry and data from the Palm OS device. For deleted records,
the PC just has to delete the same record from the PC before perma-
nently removing the record entry from the Palm OS device.

Using the Data Manager

Using the data manager is similar to using a traditional file manag-
er, except that the data is broken down into multiple records instead
of being stored in one contiguous chunk. To create or delete a data-
base, call DnCr eat eDat abase and DnDel et eDat abase.

Each memory card is akin to a disk drive and can contain multiple
databases. To open a database for reading or writing, you must first
get the database 1D, which is simply the local ID of the database

Developing Palm OS 3.0 Applications, Part Il 41

Palm OS Memory Management

The Data Manager

header. Calling Dnfi ndDat abase searches a particular memory
card for a database by name and returns the local ID of the database
header. Alternatively, calling DniGet Dat abase returns the database
ID for each database on a card by index.

After determining the database ID, you can open the database for
read-only or read/write access. When you open a database, the sys-
tem locks down the database header and returns a reference to a da-
tabase access structure, which tracks information about the open da-
tabase and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DnDat abasel nf o, DnSet Dat abasel nf o, and

DDat abaseSi ze to query or set information about a database,
such as its name, size, creation and modification dates, attributes,
type, and creator.

Call DntGet Recor d, DrQuer yRecor d, and DnRel easeRecor d
when viewing or updating a database.

= Dnteet Recor d takes a record index as a parameter, marks the
record busy, and returns a handle to the record. If a record is
already busy when Dntzet Recor d is called, an error is returned.

= Dnfuer yRecor d is faster if the application only needs to view
the record; it doesn’t check or set the busy bit, so it’s not
necessary to call DnRel easeRecor d when finished viewing the
record.

= DnRel easeRecor d clears the busy bit, and updates the
modification number of the database and marks the record dirty
if the di rt y parameter is true.

To resize a record to grow or shrink its contents, call

DnResi zeRecor d. This routine automatically reallocates the
record in another heap of the same card if the current heap does not
have enough space for it. Note that if the data manager needs to
move the record into another heap to resize it, the handle to the
record changes. DnResi zeRecor d returns the new handle to the
record.

To add a new record to a database, call DnriNewRecor d. This routine
can insert the new record at any index position, append it to the

42 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Data Manager

end, or replace an existing record by index. It returns a handle to the
new record.

There are three methods for removing a record: DnRenoveRecor d,
DmDel et eRecor d, and DnAr chi veRecor d.

< DnRRenmoveRecor d removes the record’s entry from the
database header and disposes of the record data.

= DnDel et eRecor d also disposes of the record data, but instead
of removing the record’s entry from the database header, it sets
the deleted bit in the record entry attributes field and clears the
local chunk ID.

= DmAr chi veRecor d does not dispose of the record’s data; it just
sets the deleted bit in the record entry.

Both DnDel et eRecor d and DnmAr chi veRecor d are useful for syn-
chronizing information with a desktop PC. Since the unique ID of
the deleted or archived record is still kept in the database header,
the desktop PC can perform the necessary operations on its own
copy of the database before permanently removing the record from
the Palm OS database.

Call DnRecor dl nf o and DnSet Recor dl nf o to retrieve or set the
record information stored in the database header, such as the at-
tributes, unique ID, and local ID of the record. Typically, these rou-
tines are used to set or retrieve the category of a record that is stored
in the lower four bits of the record’s attribute field.

To move records from one index to another or from one database to
another, call DnivbveRecor d, DmAt t achRecor d, and

DDet achRecor d. DnDet achRecor d removes a record entry from
the database header and returns the record handle. Given the han-
dle of a new record, DAt t achRecor d inserts or appends that new
record to a database or replaces an existing record with the new
record. DmvbveRecor d is an optimized way to move a record from
one index to another in the same database.

Data Manager Function Summary

DmAt t achRecord
DmAr chi veRecord
DnCl oseDat abase
DnCr eat eDat abase

Developing Palm OS 3.0 Applications, Part Ill 43

Palm OS Memory Management
The Data Manager

DnCr eat eDat abaseFr om nage
DDat abasel nf o

DDat abaseSi ze

DnDel et eDat abase

DmDel et eRecord

DmDet achRecor d

DnFi ndDat abase

Dnfi ndRecor dByl D

Dnti ndSort Posi ti onV10
DnGet Appl nf ol D

DnGet Dat abase

Dnet Last Err

DGet Next Dat abaseBy TypeCr eat or

DGet Recor d

Dm nsertionSort
DnmvbveCat egory
DmvbveRecord

DmNewHand| e

DmNewRecor d

DmNext QpenDat abase
DmNunDat abases
DmiNunRecor ds
DmNunmRecor dsl| nCat egory
DmOpenDat abase
DmOpenDat abasel nf o
DmOpenDat abaseByTypeCr eat or
DnPosi ti onl nCat egory
Dmuer yNext | nCat egory
DnQuer yRecor d

DmQui ckSor t

DrRecordl nfo

DnRel easeRecord
DrRenoveRecor d

44 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Resource Manager

DrRenoveSecr et Recor ds
DrReset Recor dSt at es
DnResi zeRecord

DntSear chRecord
DnSeekRecor dl nCat egory
DnfSet

DnSet Dat abasel nf o
DnSet Recor dl nf o

Dntst r Copy

DnVite

DmMN it eCheck

The Resource Manager

Applications can use the resource manager much like the data man-
ager to retrieve and save chunks of data conveniently. The resource
manager has the added capability of tagging each chunk of data
with a unique resource type and resource ID. These tagged data
chunks, called resources, are stored in resource databases. Resource
databases are almost identical in structure to normal databases ex-
cept for a slight amount of increased storage overhead per resource
record (two extra bytes). In fact, the resource manager is nothing
more than a subset of routines in the data manager that are broken
out here for conceptual reasons only.

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, and so forth.
Part of building an application involves creating these resources and
merging them with the actual executable code. In the Palm OS envi-
ronment, an application is, in fact, simply a resource database with
the executable code stored as one or more code resources and the
graphics elements and other miscellaneous data stored in the same
database as other resource types.

Applications may also find the resource manager useful for storing
and retrieving application preferences, saved window positions,
state information, and so forth. These preferences settings can be
stored in a separate resource database.

Developing Palm OS 3.0 Applications, Part Il 45

Palm OS Memory Management

The Resource Manager

This section explains how to work with the resource manager and
discusses these topics:

e Structure of a Resource Database Header
e Using the Resource Manager
« Resource Manager Functions

Structure of a Resource Database Header

A resource database header consists of some general database infor-
mation followed by a list of resources in the database. The first por-
tion of the header is identical in structure to a normal database
header. Resource database headers are distinguished from normal
database headers by the dnHdr At t r ResDB bitinthe at t ri but es
field.

WARNING: Expect the resource database header structure to
change in the future. Use the API to work with resource database
structures.

The nane field holds the name of the resource database.

The at t ri but es field has flags for the database and always
has the dmHdr At t r Res DB bit set.

The nodi fi cati onNunber isincremented every time a
resource in the database is deleted, added, or modified. Thus,
applications can quickly determine if a shared resource
database has been modified by another process.

The appl nf ol Dand sor t | nf ol Dfields are not normally
needed for a resource database but are included to match the
structure of a regular database. An application may optionally
use these fields for its own purposes.

The t ype and cr eat or fields hold 4-byte signatures of the
database t ype and cr eat or as defined by the application that
created the database.

The nunResour ces field holds the number of resource info
entries that are stored in the header itself. In most cases, this is
the total number of resources. If all the resource info entries
cannot fit in the header, however, then next Resour ceLi st
has the chunkl Dof ar esour ceLi st that contains the next set
of resource info entries.

46 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Resource Manager

Each 10-byte resource info entry in the header has the resource type,
the resource ID, and the local ID of the memory manager chunk that
contains the resource data.

Using the Resource Manager

You can create, delete, open, and close resource databases with the
routines used to create normal record-based databases (see Using
the Data Manager). This includes all database-level (not record-lev-
el) routines in the data manager such as DnCr eat eDat abase,
DDel et eDat abase, DnDat abasel nf 0, and so on.

When you create a new database using DnCr eat eDat abase, the
type of database created (record or resource) depends on the value
of the r es DB parameter. If set, a resource database is created and the
dnHdr At t r ResDB bit is set in the at t ri but es field of the data-
base header. Given a database header ID, an application can deter-
mine which type of database it is by calling DnDat abasel nf o and
examining the drmHdr At t r ResDB bit in the returned at t ri but es
field.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
routines of the resource manager. Generally, applications use the
Dncet Resour ce and DnRel easeResour ce routines.

DGet Resour ce returns a handle to a resource, given the type and
ID. This routine searches all open resource databases for a resource
of the given type and ID, and returns a handle to it. The search starts
with the most recently opened database. To search only the most re-
cently opened resource database for a resource instead of all open
resource databases, call Dnizet 1Resour ce.

DnRel easeResour ce should be called as soon as an application
finishes reading or writing the resource data. To resize a resource,
call DnResi zeResour ce, which accepts a handle to a resource and
reallocates the resource in another heap of the same card if neces-
sary. It returns the handle of the resource, which might have been
changed if the resource had to be moved to another heap to be re-
sized.

The remaining resource manager routines are usually not required
for most applications. These include functions to get and set

Developing Palm OS 3.0 Applications, Part Ill 47

Palm OS Memory Management
The Resource Manager

resource attributes, move resources from one database to another,
get resources by index, and create new resources. Most of these
functions reference resources by index to optimize performance.
When referencing a resource by index, the DmOpenRef of the open
resource database that the resource belongs to must also be speci-
fied. Call DnfSear chResour ce to find a resource by type and ID or
by pointer by searching in all open resource databases.

To get the DnOpenRef of the topmost open resource database, call
DNext OpenResDat abase and pass nil as the current DnOpen-
Ref . To find out the DnOpenRef of each successive database, call
DmNext QpenResDat abase repeatedly with each successive

DmOpenRef .

Given the access pointer of a specific open resource database,

DnFi ndResour ce can be used to return the index of a resource,
given its type and ID. Dni ndResour ceType can be used to get
the index of every resource of a given type. To get a resource handle
by index, call DnGet Resour cel ndex.

To determine how many resources are in a given database, call
DmNunResour ces. To get and set attributes of a resource including
its type and ID, call DniResour cel nf 0 and DnSet Resour cel nf o.
To attach an existing data chunk to a resource database as a new re-
source, call DAt t achResour ce. To detach a resource from a data-
base, call DnDet achResour ce.

To create a new resource, call DniNewResour ce and pass the desired
size, type, and ID of the new resource. To delete a resource, call
DrRenpveResour ce. Removing a resource disposes of its data
chunk and removes its entry from the database header.

Resource Manager Functions

To work with resources, you can use the functions listed in Data
Manager Function Summary as well as these functions:

* DmAtt achResource

DnDat abasePr ot ect
DmDet achResour ce
DmDel et eCat egory
DnFi ndResour ce

48 Developing Palm OS 3.0 Applications, Part Il

Palm OS Memory Management
The Resource Manager

DnFi ndResour ceType

DnFi ndSort Posi tion

Deet Resour ce

DnGet Resour cel ndex

Dntzet 1Resour ce

DnNewResour ce

Dnm\ext OpenResDat abase

DmNunResour ces

DnRel easeResour ce

DnRenpbveResour ce

DnResi zeResour ce

DntSear chResour ce

DntSet Resour cel nf o

Developing Palm OS 3.0 Applications, Part Il 49

Palm OS Memory Management
The Resource Manager

50 Developing Palm OS 3.0 Applications, Part Il

«_. Memory Management

== Functions

Memory Manager Functions

MemCardinfo
Purpose Returninformation about a memory card.

Prototype Err MenCardlinfo (U nt cardNo,

Char Ptr car dNaneP,
Char Pt r manuf NanP,

U ntPtr versionP,
ULongPtr cr Dat eP,
ULongPtr ronti zeP,
ULongPTr ranti zeP,
ULongPtr freeBytesP)

Parameters cardNo Card number.
car dNanmeP Pointer to character array (32 bytes), or 0.
manuf NameP Pointer to character array (32 bytes), or 0.
ver si onP Pointer to version variable, or 0.
cr Dat eP Pointer to creation date variable, or 0.
rontsi zeP Pointer to ROM size variable, or 0.
rantsi zeP Pointer to RAM size variable, or 0.
freeBytesP Pointer to free byte-count variable, or 0.

Result Returns 0 if no error.

Comments Pass 0 for those variables that you don’t want returned.

Developing Palm OS 3.0 Applications, Part Ill 51

Memory Management Functions
Memory Manager Functions

MemCmp

Purpose Compare two blocks of memory.

Prototype Int MenCp (VoidPtr sl,
Voi dPtr s2,
ULong nunByt es)

Parameters s1, s2 Pointers to block of memory.
nunByt es Number of bytes to compare.

Result Zero if they match, non-zero if not.
+ifsl>s2
-ifsl<s2

MemDebugMode

Purpose Return the current debugging mode of the memory manager.
Prototype Word MenDebughMde (voi d)

Parameters No parameters.

Result Returns debug flags as described for MentSet DebugMbde.

52 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

MemHandleCardNo

Return the card number a chunk resides in.
UlInt MemHandleCardNo (VoidHand h)
->h Chunk handle.

Returns the card number.

Call this routine to retrieve the card number (0 or 1) a movable
chunk resides on.

MenPt r Car dNo

MemHandleDataStorage

Return TRUE if the given handle is part of a data storage heap. If not,
it’s a handle in the dynamic heap.

Bool ean MenHandl eDat aSt or age (Voi dHand h)
->h Chunk handle.

Returns TRUE if the handle is part of a data storage heap.

Called by Fields package routines to determine if they need to
worry about data storage write-protection when editing a text field.

MenPt r Dat aSt or age

Developing Palm OS 3.0 Applications, Part Il 53

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters
Result:
Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

MemHandleFree

Dispose of a movable chunk.

Err MenHandl eFree (Voi dHand h)

->h Chunk handle.

Returns 0 if no error, or menEr r | nval i dPar amif an error occurs.
Call this routine to dispose of a movable chunk.

MenHandl eNew

MemHandleHeaplID

Return the heap ID of a chunk.

U nt MenHandl eHeapl D (Voi dHand h)

->h Chunk handle.

Returns the heap ID of a chunk.

Call this routine to get the heap ID of the heap a chunk resides in.

MenPt r Heapl D

54 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

MemHandleLock

Lock a chunk and obtain a pointer to the chunk’s data.
Voi dPtr MenmHandl eLock (Voi dHand h)
->h Chunk handle.
Returns a pointer to the chunk.

Call this routine to lock a chunk and obtain a pointer to the chunk.
MenHandl eLock and MenHandl eUnl ock should be used in pairs.

MenHandl eNew, MenHandl eUnl ock

MemHandleNew

Allocate a new movable chunk in the dynamic heap and returns a
handle to it.

Voi dHand MenHandl eNew (ULong si ze)
->sjze The desired size of the chunk.

Returns a handle to the new chunk, or 0 if unsuccessful.

Use this call to allocate dynamic memory. Before you can write data
to the memory chunk that MenmHandl eNewallocates, you must call
MenHandl eLock to lock the chunk and get a pointer to it.

MenPt r Fr ee, MenPt r New, MenHandl eFr ee, MenHandl eLock

Developing Palm OS 3.0 Applications, Part Il 55

Memory Management Functions
Memory Manager Functions

MemHandleResize

Purpose Resize achunk.

Prototype Err MenHandl eResi ze (Voi dHandl e h, ULong newSi ze)

Parameters ->h Chunk handle.
->newsi ze The new desired size.
Result 0 No error.

menEr r | nval i dPar am Invalid parameter passed.

menkr r Not EnoughSpace Not enough free space in heap to
grow chunk.

menEr r ChunkLocked Can’t grow chunk because it’s
locked.

Comments Call this routine to resize a chunk. This routine is always successful
when shrinking the size of a chunk, even if the chunk is locked.
When growing a chunk, it first attempts to grab free space immedi-
ately following the chunk so that the chunk does not have to move.
If the chunk has to move to another free area of the heap to grow, it
must be movable and have a lock count of 0.

On devices running version 2.0 or earlier of Palm OS, the MenHan-

dl eResi ze function tries to resize the chunk only within the same
heap, whereas DnResi zeRecor d will look for space in other data

heaps if it can’t find enough space in the original heap.

See Also MenHandl eNew, MenHandl| eSi ze

56 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters
Result
Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

MemHandleSize

Return the requested size of a chunk.
ULong MenHandl eSi ze (Voi dHand h)
->h Chunk handle.
Returns the requested size of the chunk.

Call this routine to get the size originally requested for a chunk.

MenHandl eResi ze

MemHandleToLocallD

Convert a handle into a local chunk ID which is card relative.
Local | D MenHandl eToLocal I D (Voi dHand h)

->h Chunk handle.
Returns local 1D, or nil (0) if unsuccessful.

Call this routine to convert a chunk handle to a local ID.

Menlocal | DTod obal , MenLocal | DToLockedPt r

Developing Palm OS 3.0 Applications, Part Il 57

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

MemHandleUnlock

Unlock a chunk given a chunk handle.
Err MenmHandl eUnl ock (Voi dHand h)

->h The chunk handle.

0 No error.

menEr r | nval i dPar am Invalid parameter passed.

Call this routine to decrement the lock count for a chunk.
MenHandl eLock and MenHandl eUnl ock should be used in pairs.

MenHandl eLock

MemHeapCheck

Check validity of a given heap.
Err MenHeapCheck (Ul nt heapl D)
heapl D ID of heap to check.

Returns 0 if no error.

MenDebugMode, MentSet DebugVbde

58 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result

Comments

See Also

MemHeapCompact

Compact a heap.
Err MenmHeapConpact (U nt heapl D)

-> heapl D ID of the heap to compact.

Always returns 0.

Most applications never need to call this function explicitly. The sys-
tem software calls this function at various times; for example, dur-
ing memory allocation (if sufficient free space is not available) and
during system reboot.

Call this routine to compact a heap and merge all free space. This
routine attempts to move all movable chunks to the start of the heap
and merge all free space in the center of the heap.

MemHeapDynamic

Return TRUE if the given heap is a dynamic heap.
Bool ean MenHeapDynanmi ¢ (Ul nt heapl D)
heapl D ID of the heap to be tested.

Returns TRUE if dynamic, FALSE if not.

Dynamic heaps are used for volatile storage, application stacks, glo-
bals, and dynamically allocated memory.

MenmNunHeaps, MenHeapl D

Developing Palm OS 3.0 Applications, Part Il 59

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

MemHeapFlags

Return the heap flags for a heap.

U nt MenHeapFl ags (Ul nt heapl D)
-> heapl D ID of heap.

Returns the heap flags.

Call this routine to retrieve the heap flags for a heap. The flags can
be examined to determine if the heap is ROM based or not. ROM-
based heaps have the menmHeapFl agReadOnl y bit set.

MemNunteaps, MentHeapl D

MemHeapFreeBytes

Return the total number of free bytes in a heap and the size of the
largest free chunk in the heap.

Err MenHeapFreeBytes (U nt heapl D,
ULongPtr freeP,
ULongPtr maxP)

-> heapl D ID of heap.

<->freeP Pointer to a variable of type ULong for free
bytes.

<->maxP Pointer to a variable of type ULong for max free
chunk size.

Always returns 0.

60 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Comments

See Also

Purpose
Prototype

Parameters

Result

Comments

See Also

This routine doesn’t compact the heap but may be used to deter-
mine in advance whether an allocation request will succeed. Before
allocating memory, call this function and test the return value of
max P to determine whether enough free space to fulfill your alloca-
tion request exists. If not, you may make more space available by
calling the MenHeapConpact function. An alternative approach is
to just call the MenHeapConpact function as necessary when an
error is returned by the MenPt r Newor MenmHandl eNew functions.

MenHeapSi ze, MenHeapl D, MenHeapConpact

MemHeapID

Return the heap ID for a heap, given its index and the card number.
U nt MenHeapl D (U nt cardNo, U nt heapl ndex)

->car dNo The card number, either 0 or 1.

-> heapl ndex The heap index, anywhere from 0 to
MenmNuntHeaps - 1.

Returns the heap ID.

Call this routine to retrieve the heap ID of a heap, given the heap
index and the card number. A heap ID must be used to obtain infor-
mation on a heap such as its size, free bytes, etc., and is also passed
to any routines which manipulate heaps.

MemNunHeaps

Developing Palm OS 3.0 Applications, Part Ill 61

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters

Comments

Result

See Also

Purpose
Prototype
Parameters
Result

See Also

MemHeapScramble
Scramble the specified heap.
Err MenHeapScranbl e (U nt heapl D)
heapl D

ID of heap to scramble.

The system attempts to move each movable chunk.
Useful for debugging.

Always returns 0.

MenDebughWbde, Mentet Debughbde

MemHeapSize

Return the total size of a heap including the heap header.
ULong MenHeapSi ze (Ul nt heapl D)
-> heapl D ID of heap.

Returns the total size of the heap.

MenHeapFr eeByt es, Menteapl D

62 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters

Result

Comments

Purpose

Prototype

Parameters

Result

See Also

MemLocallDKind

Return whether or not a local ID references a handle or a pointer.
Local | DKi nd Memiocal | DKi nd (Local I D | ocal)
->| ocal Local ID to query

Returns Local | DKi nd, or a menl DHandl e or nem DPt r (see
MemoryMgr.h).

This routine determines if the given local ID is to a nonmovable
(mem DPt r) or movable (mem DHandl e) chunk.

MemLocallDToGlobal

Converta local ID, which is card relative, into a global pointer in the
designated card.

Voi dPtr MenlLocal | DTod obal (Local I D | ocal,

U nt cardNo)
->| ocal The local ID to convert.
->car dNo Memory card the chunk resides in.

Returns pointer or handle to chunk.

Menmliocal | DKi nd, MenLocal | DToLockedPtr

Developing Palm OS 3.0 Applications, Part Il 63

Memory Management Functions
Memory Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

MemLocallDToLockedPtr

Return a pointer to a chunk given its local ID and card number.

Note: If the local ID references a movable chunk handle, this
routine automatically locks the chunk before returning.

Voi dPtr MenlLocal | DToLockedPtr (Local I D | ocal ,
U nt car dNo)

| ocal Local chunk ID.

car dNo Card number.

Returns pointer to chunk, or 0 if an error occurs.

Menlocal | DTod obal , MeniLocal | DToPtr, MenLocal | DKi nd,

MenPtr ToLocal | D, MenHandl eTolLocal | D

MemLocallIDToPtr

Return pointer to chunk, given the local ID and card number.

Voi dPtr MenLocal | DToPtr(Local I D | ocal,
U nt car dNo)
->| ocal Local ID to query.
->car dNo Card number the chunk resides in.

Returns a pointer to the chunk, or 0 if error.

If the local ID references a movable chunk and that chunk is not
locked, this function returns 0 to indicate an error.

Menliocal | DTod obal , MenLocal | DToLockedPtr

64 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype
Parameters

Result

MemMove

Move a range of memory to another range.

Err MemMVbve(Voi dPtr dstP,
Voi dPtr srcP,
ULong nunByt es)

dst P Pointer to destination.
srcP Pointer to source.
nunByt es Number of bytes to move.

Always returns 0.
Handles overlapping ranges.
For operations where the destination is in a data heap, see DnSet ,

DM i t e, and related functions.

MemNumCards

Return the number of memory card slots in the system. Not all slots
need to be populated.

U nt MenNumCards (voi d)
None.

Returns number of slots in the system.

Developing Palm OS 3.0 Applications, Part Il 65

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters

Result

Comments

Purpose
Prototype
Parameters
Result

See Also

MemNumHeaps

Return the number of heaps available on a particular card.
U nt MemNumHeaps (Ul nt car dNo)
->car dNo The card number; either 0 or 1.

Number of heaps available, including ROM- and RAM-based
heaps.

Call this routine to retrieve the total number of heaps on a memory
card. The information can be obtained by calling MenHeapSi ze,
MenHeapFr eeByt es, and MenHeapFl ags on each heap using its

heap ID. The heap ID is obtained by calling MenHeapl D with the
card number and the heap index, which can be any value from 0 to
MermNunmHeaps.

MemNumRAMHeaps

Return the number of RAM heaps in the given card.
U nt MemNunmRAMHeaps (Ul nt car dNo)

car dNo The card number.

Returns the number of RAM heaps.

MenmNuntCar ds

66 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

MemPtrCardNo

Return the card number (0 or 1) a nonmovable chunk resides on.
U nt MenPtrCardNo (Voi dPtr chunkP)
-> chunkP Pointer to the chunk.

Returns the card number.

MenHandl eCar dNo

MemPtrDataStorage

Return TRUE if the given pointer is part of a data storage heap; if
not, it is a pointer in the dynamic heap.

Bool ean MenPt r Dat aSt or age (Voi dPtr p)
p Pointer to a chunk.
Returns TRUE if the chunk is part of a data storage heap.

Called by Fields package to determine if it needs to worry about
data storage write-protection when editing a text field.

MenHeapDynam ¢

Developing Palm OS 3.0 Applications, Part Ill 67

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters

Result

Comments

Purpose
Prototype
Parameters
Result

Comments

MemPtrFree

Macro to dispose of a chunk.

Err MenPtrFree (VoidPtr p)

-=>p Pointer to a chunk.
0 If no error or menEr r | nval i dPar am(invalid
parameter).

Call this routine to dispose of a nonmovable chunk.

MemPtrHeaplID

Return the heap ID of a chunk.

U nt MenPtrHeapl D (VoidPtr p)
->p Pointer to the chunk.
Returns the heap ID of a chunk.

Call this routine to get the heap ID of the heap a chunk resides in.

68 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype

Parameters

MemPtrNew

Allocate a new nonmovable chunk in the dynamic heap.
Voi dPtr MenPtr New (ULong si ze)
->si ze The desired size of the chunk.

Returns pointer to the new chunk, or 0 if unsuccessful.

This routine allocates a nonmovable chunk in the dynamic heap and
returns a pointer to the chunk. Applications can use it when allocat-
ing dynamic memory.

MemPtrRecoverHandle

Recover the handle of a movable chunk, given a pointer to its data.
Voi dHand MenPt r Recover Handl e (Voi dPtr p)

->p Pointer to the chunk.

Returns the handle of the chunk, or 0 if unsuccessful.

Don’t call this function for pointers in ROM or nonmovable data
chunks.

MemPtrResize
Resize a chunk.
Err MenPtrResize (VoidPtr

p, ULong newSi ze)

->p Pointer to the chunk.

Developing Palm OS 3.0 Applications, Part Il 69

Memory Management Functions
Memory Manager Functions

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

->newsSi ze The new desired size.

Returns 0 if no error, or menEr r Not EnoughSpace
menEr r 1 nval i dPar amornmentr r ChunkLocked ifanerroroccurs.

Call this routine to resize a locked chunk. This routine is always suc-
cessful when shrinking the size of a chunk. When growing a chunk,
it attempts to use free space immediately following the chunk.

MenPtr Si ze, MenHandl eResi ze

MemPtrSize

Return the size of a chunk.

ULong MenPtrSize (Voi dPtr p)
-=>p Pointer to the chunk.
The requested size of the chunk.

Call this routine to get the original requested size of a chunk.

70 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Purpose
Prototype
Parameters
Result
Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

MemPtrToLocallD

Convert a pointer into a card-relative local chunk ID.
Local I D MenPtr ToLocal | D (Voi dPtr chunkP)
-> chunkP Pointer to a chunk.
Returns the local ID of the chunk.

Call this routine to convert a chunk pointer to a local ID.

Menliocal | DToPtr

MemPtrUnlock

Unlock a chunk, given a pointer to the chunk.

Err MenPtrUnl ock (VoidPtr p)

p Pointer to a chunk.

0 if no error, or menkr r I nval i dPar amif an error occurs.

A chunk must not be unlocked more times than it was locked.

MenHandl eLock

Developing Palm OS 3.0 Applications, Part Ill 71

Memory Management Functions
Memory Manager Functions

Purpose

Prototype

Parameters

Result

Comments

Purpose
Prototype
Parameters

Comments

MemSet

Set a memory range in a dynamic heap to a specific value.

Err Mentet (VoidPtr dstP,
ULong nunByt es,
Byt e val ue)

dst P Pointer to the destination.
nunByt es Number of bytes to set.
val ue Value to set.

Always returns 0.

For operations where the destination is in a data heap, see DnfSet ,
DM i t e, and related functions.

MemSetDebugMode

Set the debugging mode of the memory manager.
Err Mentet DebugMode (Word fl ags)
fl ags Debug flags.

Use the logical OR operator (|) to provide any combination of one,
more, or none of the following flags:

menDebugMbdeCheckOnChange
menmDebugMbdeCheckOnAl |
menDebugModeScr anbl eOnChange
menDebugModeScr anbl eOnAl |
menDebugModeFi | | Free
menmDebugModeAl | Heaps

72 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

menDebugMbdeRecor dM nDynHeapFr ee

Result Returns 0 if no error, or -1 if an error occurs.

MemStorelnfo

Purpose Return information on either the RAM store or the ROM store for a
memory card.

Prototype FErr MenBtorelnfo (U nt cardNo,
U nt storeNunber,
UntPtr versionP,
UuntpPtr fl agsP,
Char Ptr naneP,
ULongPtr crDat eP,
ULongPtr bckUpDat eP,
ULongPtr heapLi st O f set P,
ULongPtr init CodeOfset 1P,
ULongPtr initCodeO fset 2P,
Local | D* dat abaseDi r| DP)

Parameters ->cardNo Card number, either 0 or 1.
-> st or eNunber Store number; 0 for ROM, 1 for RAM.
<->versi onP Pointer to version variable, or 0.
<->fl agsP Pointer to flags variable, or 0.
<->naneP Pointer to character array (32 bytes), or
0.
<->cr Dat eP Pointer to creation date variable, or 0.

<->bckUpDat eP Pointer to backup date variable, or 0.

<->heapLi st fset P
Pointer to heapLi st O f set variable, or 0.

<->initCodeCffsetlP
Pointer to i ni t CodeX f set 1 variable, or 0.

<->jnit CodeX f set 2P
Pointer toi ni t CodeX f set 2 variable, or 0.

Developing Palm OS 3.0 Applications, Part Ill 73

Memory Management Functions
Memory Manager Functions

<->dat abaseDi r | DP
Pointer to database directory chunk ID vari-
able, or 0.

Result Returns 0 if no error, or mener r Car dNoPr esent
menkr r RAMOnl yCar d, or nentr r I nval i dSt or eHeader if an
error occurs.

Comments Call this routine to retrieve any or all information on either the RAM
store or the ROM store for a card. Pass 0 for variables that you don’t
wish returned.

Functions for System Use Only

MemCardFormat

Prototype Err MenCardFormat (U nt cardNo,
Char Ptr car dNaneP,
Char Pt r manuf NanmeP,
Char Ptr rantst or eNaneP)

WARNING: This function for use by system software only.

MemChunkFree

Prototype Err MenChunkFree (Voi dPtr chunkDat aP)

WARNING: This function for use by system software only.

MemChunkNew

Prototype Voi dPtr MenChunkNew (Ul nt heapl D,
ULong si ze,
Unt attributes)

WARNING: This function for use by system software only.

74 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Prototype

Prototype

Prototype

Prototype

Prototype

Prototype

MemHandleFlags

U nt MenHandl eFl ags (Voi dHand h)

WARNING: This function for use by system software only.

MemHandleLockCount

U nt MenHandl eLockCount (Voi dHand h)

WARNING: This function for use by system software only.

MemHandleOwner

U nt MenHandl eOwmner (Voi dHand h)

WARNING: This function for use by system software only.

MemHandleResetLock

Err MenHandl eReset Lock (Voi dHand h)

WARNING: This function for use by system software only.

MemHandleSetOwner

Err MenHandl eSet Omer (Voi dHand h, U nt owner)

WARNING: This function for use by system software only.

MemHeapFreeByOwnerID

Err MenHeapFreeByOmer I D (U nt heapl D,
U nt ownerl D)

WARNING: This function for use by system software only.

Developing Palm OS 3.0 Applications, Part Ill 75

Memory Management Functions
Memory Manager Functions

Prototype

Prototype

Prototype

Prototype

Prototype

MemHeaplInit

Err MenHeapl nit(U nt heapl D,
I nt nunHandl es,
Bool ean i nit Cont ents)

WARNING: This function for use by system software only.

MemlInit

Err Memnit (void)

WARNING: This function for use by system software only.

MemiInitHeapTable

Err Menm ni t HeapTabl e (U nt car dNo)

WARNING: This function for use by system software only.

MemKernellnit

Err MenKernel I nit(void)

WARNING: This function for use by system software only.

MemPtrFlags

U nt MenPtrFlags (Voi dPtr chunkDat aP)

WARNING: This function for use by system software only.

76 Developing Palm OS 3.0 Applications, Part Il

Memory Management Functions
Memory Manager Functions

Prototype

Prototype

Prototype

Prototype

Prototype

MemPtrOwner

U nt MenPtrOmer (VoidPtr chunkDat aP)

WARNING: This function for use by system software only.

MemPtrResetLock

Err MenPtrReset Lock (Voi dPtr chunkP)

WARNING: This function for use by system software only.

MemPtrSetOwner

Err MenPtr Set Owmer (Voi dPtr chunkP, Ul nt owner)

WARNING: This function for use by system software only.

MemSemaphoreRelease

Err MenSemaphor eRel ease (Bool ean writeAccess)

WARNING: This function for use by system software only.

MemSemaphoreReserve

Err MenSemaphor eReserve (Bool ean writeAccess)

WARMING: This function for use by system software only.

Developing Palm OS 3.0 Applications, Part Ill 77

Memory Management Functions
Memory Manager Functions

MemStoreSetinfo

Prototype Err MenttoreSetinfo (U nt cardNo,
U nt storeNunber,
U ntPtr versionP,
untbPtr fl agsP,
Char Ptr naneP,
ULongPtr crDat eP,
ULongPtr bckUpDat eP,
ULongPtr heapLi st O fset P,
ULongPtr initCodeO fset 1P,
ULongPtr initCodeO fset 2P,
Local | D* dat abaseDi r | DP)

WARNING: This function for use by system software only.

78 Developing Palm OS 3.0 Applications, Part Il

3

- Data and Resoqrce
= Manager Functions

Data Manager Functions

DmArchiveRecord

Purpose Markarecord as archived by leaving the record’s chunk around and
setting the delete bit for the next sync.

Prototype Err DmArchiveRecord (DmOpenRef dbR, Ul nt index)

Parameters ->dbR DmOpenRef to open database.
-> | ndex Which record to archive.

Result ReturnsO if no error or dnEr r | ndexQut Of Range or
dnEr r ReadOnl y if an error occurs.

Comments Marks the delete bit in the database header for the record but does
not dispose of the record’s data chunk.

See Also DnRenpveRecor d, DmbDet achRecor d, DriNewRecor d,
DnDel et eRecord

Developing Palm OS 3.0 Applications, Part Ill 79

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmAttachRecord

Attach an existing chunk ID handle to a database as a record.

Err DmAttachRecord (DmOpenRef dbR,
UntPtr atP,
Handl e newH,
Handl e* ol dHP)

->dbR DmOpenRef to open database.

<->atP Pointer to index where new record should be
placed.

-> newH Handle of new record.

<->ol dHP Pointer to return old handle if replacing exist-
ing record.

Returns 0 if no error, or dnEr r | ndexQut OF Range,

dmEr r Menkr r or ,dnEr r ReadOnl y,dnEr r Recor dl nW ongCar d,
menkr r ChunkLocked, menEr r | nval i dPar am or

menEr r Not EnoughSpace if an error occurs.

Given the handle of an existing chunk, this routine makes that
chunk a new record in a database and sets the dirty bit. The parame-
ter at P points to an index variable. If ol dHP is NI L, the new record
is inserted at index *at P and all record indices that follow are shift-
ed down. If *at P is greater than the number of records currently in
the database, the new record is appended to the end and its index is
returned in *at P. If ol dHP is not NI L, the new record replaces an ex-
isting record at index *at P and the handle of the old record is re-
turned in *ol dHP so that the application can free it or attach it to an-
other database.

Useful for cutting and pasting between databases.

DnDet achRecor d, DnriNewRecor d, DriNewHandl e

80 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmAttachResource

Attach an existing chunk ID to a resource database as a new
resource.

Err DmAttachResource (DmOpenRef dbR,
Voi dHand newH,
ULong resType,

Int reslD)
->dbR DmOpenRef to open database.
->newH Handle of new resource’s data.
->resType Type of the new resource.
->reslD ID of the new resource.

Returns 0 if no error, or dkr r I ndexQut Of Range,

dnEr r Mentr r or ,dEr r ReadOnl y,dnEr r Recor dl nW ongCar d,
menkr r ChunkLocked, menErr | nval i dPar am or

menEr r Not EnoughSpace if an error occurs.

Given the handle of an existing chunk with resource data in it, this
routine makes that chunk a new resource in a resource database.
The new resource will have the given type and ID.

DnDet achResour ce, DnRenpbveResour ce, DniNewHandl e,
DmNewResour ce

Developing Palm OS 3.0 Applications, Part Ill 81

Data and Resource Manager Functions
Data Manager Functions

DmCloseDatabase
Purpose Close a database.
Prototype Err DnCl oseDat abase (DnmOpenRef dbR)
Parameters dbR Database access pointer.
Result Returns 0 if no error or dnEr r | nval i dPar amif an error occurs.

Comments This routine doesn’t unlock any records in the database which have
been left locked, so the application should be careful not to leave
records locked. When performance is not an issue, call
DnReset Recor dSt at es before closing the database in order to un-
lock all records and clear the busy bits.

See Also DmOpenDat abase, DnDel et eDat abase,
DntOpenDat abaseByTypeCr eat or

DmCreateDatabase

Purpose Create a new database on the specified card with the given name,
creator, and type.

Prototype Err DnCreat eDatabase (Ul nt cardNo,
Char Ptr naneP,
ULong creat or,
ULong type,
Bool ean resDB)

Parameters ->cardNo The card number to create the database on.
-> naneP Name of new database, up to 31 ASCII bytes
long.
->cCcreator Creator of the database.

82 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Result

Comments

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

->type Type of the database.
->resDB If TRUE, create a resource database.

Returns 0 if no error, or dikr r | nval i dDat abaseNane,

dnErr Al r eadyExi st s, menkr r Car dNot Pr esent ,

der r MenEr r or , mentr r ChunkLocked, menErr | nval i dPar am
menEr r | nval i dSt or eHeader , mentr r Not EnoughSpace, or
menEr r RAMOnl yCar d if an error occurs.

Call this routine to create a new database on a specific card. If anoth-
er database with the same name already exists in RAM store, this
routine returns a dner r Al r eadyEXxi st s error code. Once created,
the database ID can be retrieved by calling DnFi ndDat abase and
the database opened using the database ID. To create a resource da-
tabase instead of a record-based database, set the r es DB Boolean to
TRUE.

DnCr eat eDat abaseFr oml mage, DnOpenDat abase,
DnDel et eDat abase

DmCreateDatabaseFromimage

Call to create an entire database from a single resource that contains
an image of the database; usually, make this call from an applica-
tion’s reset action code during boot.

Err DMCr eat eDat abaseFrom mage (Ptr bufferP)

bufferP Pointer to locked resource containing database
image.

Returns 0O if no error
Use this function to create the default database for an application.

DnCr eat eDat abase, DnOpenDat abase

Developing Palm OS 3.0 Applications, Part Il 83

Data and Resource Manager Functions
Data Manager Functions

DmDatabaselnfo

Purpose Retrieve information about a database.

Prototype Err DnDat abaselnfo (
U nt cardNo, Local I D dbl D,
CharPtr nanmeP, UntPtr attributesP,
UntPtr versionP, ULongPtr crDateP,
ULongPtr nodDat eP, ULongPtr bckUpDat eP,
ULongPtr nodNunP, Local | D* appl nf ol DP,
Local | D* sortlnfol DP, ULongPtr typeP,
ULongPtr creatorP)

Parameters ->cardNo Number of card database resides on.
->dbl D Database ID of the database.
<->nameP Pointer to 32-byte character array for returning

the name, or NI L.
<->attri butesP Pointer to return attributes variable, or NI L.

ver si onP Pointer to new version, or NI L.

<->cr Dat eP Pointer to return creation date variable, or NI L.

<->nodDat eP Pointer to return modification date variable, or
NI L.

<->bckUpDat eP Pointer to return backup date variable, or NI L.

<-> modNumP Pointer to return modification number variable,
or NI L.

<->appl nf ol DP Pointer to return appl nf ol Dvariable, or NI L.
<->sort | nfol DP Pointertoreturnsort| nf ol Dvariable, or NI L.
<->typeP Pointer to return type variable, or NI L.
<->creatorP Pointer to return creator variable, or NI L.

Result Returns O if no error, or direr r | nval i dPar amif an error occurs.

Comments Call this routine to retrieve any or all information about a database.
This routine accepts NI L for any return variable parameter pointer
you don’t want returned.

84 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

See Also

Purpose

Prototype

Parameters

Result

DntSet Dat abasel nf o,.DnDat abaseSi ze DnlOpenDat abasel nf o,
DnfFi ndDat abase, DnGet Next Dat abaseByTypeCr eat or

DmDatabaseProtect

This routine can be used to prevent a database from being deleted
(by passing TRUE for 'pr ot ect '). It increments the protect count if
pr ot ect is TRUE and decrements it if pr ot ect is FALSE.

Use this function if you want to keep a particular record or resource
in a database locked down but don’t want to keep the database
open. This information is kept in the dynamic heap so all databases
are “unprotected” at system reset.

Err DmDat abaseProtect (Ul nt cardNo,
Local | D dbl D,
Bool ean protect)

car dNo Card number of database to protect/unprotect.
dbl D Local ID of database to protect/unprotect.
pr ot ect If TRUE, pr ot ect count will be incremented. If

FALSE, pr ot ect count will be decremented.

Zero if successful.

Developing Palm OS 3.0 Applications, Part Il 85

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmDatabaseSize

Retrieve size information on a database.

Err DnDat abaseSi ze (U nt cardNo,
Chunkl D dbl D,
ULongPtr nunRecordsP,
ULongPtr total BytesP,
ULongPt r dat aByt esP)

->car dNo Card number database resides on.

->dbl D Database ID of the database.

<->nunRecor dsP Pointer to return nunRecor ds variable, or NI L.
<->t ot al Byt esP Pointer toreturnt ot al Byt es variable, or NI L.
<->dat aByt esP Pointer to return dat aByt es variable, or NI L.

Returns 0 if no error, or dnir r MenEr r or if an error occurs.

Call this routine to retrieve the size of a database. Any of the return
data variable pointers can be NI L.

e The total number of records is returned in * nunRecor dsP.

= The total number of bytes used by the database including
the overhead is returned in *t ot al Byt esP.

= The total number of bytes used to store just each record’s
data, not including overhead, is returned in
*dat aByt esP.

DnDat abasel nf o, DnOpenDat abasel nf o, DnFi ndDat abase,
DnGet Next Dat abaseByTypeCr eat or

86 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

Comments

See Also

DmDeleteCategory

Delete all records in a category. The category name is not changed.

Err DmDel et eCat egory (DmOpenRef dbR,
U nt cat egoryNum

dbR Database access pointer.
cat egor yNum Category of records to delete.

Zero if there is no error, an error code otherwise.

DmDeleteDatabase

Delete a database and all its records.
Err DmDel et eDat abase (U nt cardNo, Local I D dbl D)

-->car dNo Card number the database resides on.
-->dbl D Database ID.

Returns 0 if no error, or dkr r Cant Fi nd, dnEr r Cant Open,

menkr r ChunkLocked, der r Dat abaseOpen, dnEr r ROVBased,
mener r 1 nval i dPar amornentr r Not EnoughSpace ifanerroroc-
curs.

Call this routine to delete a database. This routine accepts a database
ID as a parameter. To determine the database ID, call either
DnFi ndDat abase or Dntzet Dat abase with a database index.

DnDel et eRecor d, DnRenpbveRecor d, DnRenbveResour ce,

DnCr eat eDat abase, DniGet Next Dat abaseByTypeCr eat or ,

DnFi ndDat abase

Developing Palm OS 3.0 Applications, Part Il 87

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmDeleteRecord

Delete a record’s chunk from a database but leave the record entry
in the header and set the del et e bit for the next sync.

Err DmDel et eRecord (DmOpenRef dbR, U nt index)

-> dbR DmOpenRef to open database.
-> | ndex Which record to delete.

Returns 0 if no error, or dkr r I ndexQut Of Range,
dnEr r ReadOnl y, or nentr r I nval i dPar amif an error occurs.

Marks the del et e bit in the database header for the record and dis-
poses of the record’s data chunk. Does not remove the record entry

from the database header, but simply sets the | ocal Chunkl| Dof the
record entry to NI L.

DnDet achRecor d, DnRenpoveRecor d, DmAr chi veRecord,
DmiNewRecor d

88 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmDetachRecord

Detach and orphan a record from a database but don’t delete the
record’s chunk.

Err DmDet achRecord (DmOpenRef dbR,
U nt index,
Handl e* ol dHP)

->dbR DmOpenRef to open.
-> | ndex Index of the record to detach.
<-> 0l dHP Pointer to return handle of the detached record.

Returns 0 if no error or dnEr r ReadOnl y (database is marked read
only), dnEr r I ndexQut OF Range (index out of range),

menkr r ChunkLocked, rnenkrrlnval i dParam or

menEr r Not EnoughSpace if an error occurs.

This routine detaches a record from a database by removing its
entry from the database header and returns the handle of the
record’s data chunk in * ol dHP. Unlike DnDel et eRecor d, this rou-
tine removes any traces of the record, including its entry in the data-
base header.

DmAt t achRecor d, DnRenpveRecor d, DmAr chi veRecor d,
DnDel et eRecord

Developing Palm OS 3.0 Applications, Part Il 89

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmDetachResource

Detach a resource from a database and return the handle of the re-
source’s data.

Err DmDet achResour ce (DmOpenRef dbR,
I nt i ndex,
Voi dHand* ol dHP)

->dbR DmOpenRef to open database.
-> | ndex Index of resource to detach.
<->0l dHP Pointer to return handle of the detached record.

Returns 0 if no error, or dnEr r Cor r upt Dat abase,
dnEr r I ndexQut O Range, dnEr r ReadOnl y,
menkr r ChunkLocked, menEr r | nval i dPar am or
menEr r Not EnoughSpace if an error occurs.

This routine detaches a resource from a database by removing its
entry from the database header and returns the handle of the re-
source’s data chunk in *ol dHP.

DmAt t achResour ce, DrRenpbveResour ce

90 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

DmFindDatabase

Return the database ID of a database by card number and name.

Local | D Dn¥i ndDat abase (U nt car dNo,
Char Ptr naneP)

->car dNo Number of card to search.
-> naneP Name of the database to look for.

Returns the database ID, or 0 if not found.

DnGet Next Dat abaseByTypeCr eat or, DnDat abasel nf o,

DmOpenDat abase

DmFindRecordByID

Return the index of the record with the given unique ID.

Err DnFi ndRecor dByl D (DnmOpenRef dbR,
ULong uni quel D,
UntPtr indexP)

dbR Database access pointer.
uni quel D Unique ID to search for.
i ndexP Return index.

Returns 0 if found, otherwise diEr r Uni quel DNot Found.

DnQuer yRecor d, DnGet Recor d, DnrRecor dl nf o

Developing Palm OS 3.0 Applications, Part Il 91

Data and Resource Manager Functions
Data Manager Functions

DmFindResource

Purpose Search the given database for a resource by type and ID, or by point-
erifitis non-NI L.

Prototype Int DnFindResource (DnmOpenRef dbR,
ULong resType,
Int reslD,
Voi dHand fi ndResH)

Parameters ->dbR Open resource database access pointer.
->resType Type of resource to search for.
->reslD ID of resource to search for.
->f i ndResH Pointer to locked resource, or NI L.

Result Returns index of resource in resource database, or -1 if not found.

Comments Use this routine to find a resource in a particular resource database
by type and ID or by pointer. It is particularly useful when you want
to search only one database for a resource and that database is not
the topmost one.

If fi ndResHis NI L, the resource is searched for by type and ID.

Iffi ndResHisnotNI L, resType and r esl Dare ignored and the
index of the given locked resource is returned.

Once the index of a resource is determined, it can be locked down
and accessed by calling Dntzet Resour cel ndex.

See Also DntGet Resour ce, DnfSear chResour ce, DnResour cel nf o,
DntGet Resour cel ndex, Dni ndResour ceType

92 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmFindResourceType

Search the given database for a resource by type and type index.

| nt DnFi ndResour ceType (DmOpenRef dbR,
ULong resType,
I nt typel ndex)

->dbR Open resource database access pointer.
->resType Type of resource to search for.
->typel ndex Index of given resource type.

Index of resource in resource database, or -1 if not found.

Use this routine to retrieve all the resources of a given type in a re-
source database. By starting att ypel ndex 0 and incrementing until
an error is returned, the total number of resources of a given type
and the index of each of these resources can be determined. Once
the index of a resource is determined, it can be locked down and ac-
cessed by calling DmGet Resour cel ndex.

DnGet Resour ce, DnSear chResour ce, DnResour cel nf o,
DnGet Resour cel ndex, DnFi ndResour ce

Developing Palm OS 3.0 Applications, Part Il 93

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Caveat

See Also

DmFindSortPosition

Return to where a record is or should be. Useful to find where to in-
sert a record. Uses a binary search.

U nt DnFi ndSort Position (DnmOpenRef dbR,
Voi dPtr newRecord,
Sort Recordl nfoPtr newRecordl nf o,
DnConpar F *conpar,

I nt ot her)
dbR Database access pointer.
newRecor d Pointer to the new record.
newRecor dl nfo Information about the new record.
conpar Pointer to comparison.
ot her Other info for comparison.

The position where the record should be inserted.

The position should be viewed as between the record returned and
the record before it. Note that the return value may be one greater
than the number of records.

If there are deleted records in the database, Dnfi ndSor t Posi ti on
only works if those records are at the end of the database.

DnFi ndSor t Posi ti on always assumes that a deleted record is
greater than or equal to any other record.

Dni ndSor t Posi ti onV10

94 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

DmFindSortPositionV10

Return to where a record is or should be.

Useful to find an existing record or find where to insert a record.
Uses a binary search.

U nt DnFi ndSort PositionV10 (DmOpenRef dbR,
Voi dPtr newRecord,
DnConpar F *conpar,

I nt ot her)
dbR Database access pointer.
newRecor d Pointer to the new record.
conpar Comparison function (see Comments).
ot her Any value the application wants to pass to the

comparison function.

Returns the position where the record should be inserted. The posi-
tion should be viewed as between the record returned and the
record before it. Note that the return value may be one greater than
the number of records.

The comparison function, conpar , accepts two arguments, el eml
and el en®, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (* el eni and

* el enR), and returns an integer based on the result of the
comparison.

If the items... conpar returns...
*elenl < *el ent an integer <0
*eleml == *el en® 0

*elenl > *el ent an integer >0

Developing Palm OS 3.0 Applications, Part Il 95

Data and Resource Manager Functions
Data Manager Functions

2.0 Note

See Also

DConpar F has changed; it previously had three parameters but
now has six. DnConpar F is the t ypedef of a callback used by
SyslnsertionSort, DM nsertionSort, and

Fi ndl nsert Posi ti on.

The new conpar parameters allow a Palm OS application to pass
more information to the system than before, most noticeably the
record (and all associated information) which allows sorting by
unique ID, so that the Palm OS device and the desktop always
match.

The revised callback is used by new sorting routines (and can be
used the same way by your application):

t ypedef Int DmConparF (void *,
void *,
| nt ot her,
Sort Recordl nf oPtr,
Sort Recordl nfoPtr,
Voi dHand appl nf oH) ;

As a rule, the change in the number of arguments from three to six
doesn’t cause problems when a 1.0 application is run on a 2.0 de-
vice, because the system only pulls the arguments from the stack
that are there.

Keep in mind, however, that some optimized applications built with
tools other than Metrowerks CodeWarrior for Palm OS may have
problems as a result of the change in arguments when running on
a 2.0 or later device.

DnfFi ndSort Posi ti on, DrQui ckSort, Dml nserti onSort

96 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

DmGetApplInfolD

Return the local ID of the application info block.
Local | D Dntzet Appl nf ol D (DmOpenRef dbR).
dbR Database access pointer.

Returns local ID of the application info block

DnDat abasel nf o, DnOpenDat abase

DmGetDatabase

Return the database header ID of a database by index and card
number.

Local | D Dncet Dat abase (Ul nt cardNo, Ul nt index)

Card number of database.
Index of database.

->car dNo
->| ndex

Returns the database ID, or 0 if an invalid parameter passed.

Call this routine to retrieve the database ID of a database by index.
The index should range from 0 to DniNunDat abases-1. This routine
is useful for getting a directory of all databases on a card.

DmOpenDat abase, DriNunDat abases, DnDat abasel nf o,
DnDat abaseSi ze

Developing Palm OS 3.0 Applications, Part Il 97

Data and Resource Manager Functions
Data Manager Functions

Purpose
Prototype
Parameters
Result

Comments

DmGetLastErr

Return error code from last data manager call.

Err DnGet LastErr (void)

None.

Error code from last unsuccessful data manager call.

Use this routine to determine why a data manager call failed. In par-
ticular, calls like DniGet Recor d return 0 only if unsuccessful, so call-
ing DnGet Last Err is the only way to determine why they failed.

Note that Dnicet Last Er r does not always reflect the error status of
the last data manager call. Rather, it reflects the error status of data
manager calls that don’t return an error code. For some of those
calls, the saved error code value is not set to 0 when the call is
successful.

For example, if a call to DnOpenDat abaseBy TypeCr eat or returns
NULL for database reference (that s, it fails), DniGet Last Er r returns
something meaningful; otherwise, it returns the error value of some
previous data manager call.

Only the following data manager functions currently affect the
value returned by DntGet Last Err:

DnFi ndDat abase DmOpenDat abaseBy TypeCr eat or
DmOpenDat abase DmNewRecor d
DmQuer yRecor d DmGet Recor d

DmQuer yNext I nCat egory DnPosi ti onl nCat egory
DnSeekRecor dl nCat egory DnResi zeRecord

DnGet Resour ce Dnet 1Resour ce
DmNewResour ce DnGet Resour cel ndex.

98 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

DmGetNextDatabaseByTypeCreator

Return a database header ID and card number given the type
and/or creator. This routine searches all memory cards for a match.

Err DmGet Next Dat abaseByTypeCreat or (
Bool ean newSear ch,
DnSear chSt at ePtr st at el nf oP,
ULong type,
ULong creat or,
Bool ean onl yLat est Vers,
U ntPtr cardNoP,
Local | D* dbl DP)

-> newSear ch TRUE if starting a new search.

->statelnfoP If newSear ch is FALSE, this must point to the
same data used for the previous invocation.

->type Type of database to search for, pass 0 as a
wildcard.

->Creat or Creator of database to search for, pass 0 as a
wildcard.

->onl yLat est Vers
If TRUE, only latest version of each database
with a given type and creator is returned.

<-car dNoP On exit, the card number of the found database.
<-dbl DP Database local 1D of the found database.
0 No error.

dnErr Cant Fi nd No matches found.

To start the search, pass TRUE for newSear ch. To continue a search
where the previous one left off, pass FALSE for newSear ch. When
continuing a search, st at el nf oP must point to the same structure
passed during the previous call to this function.

Thet ype and cr eat or parameters specify search criteria which a
database must meet in order to be included in this function’s result.

Developing Palm OS 3.0 Applications, Part Il 99

Data and Resource Manager Functions
Data Manager Functions

You may need to call this function successively to discover all data-
bases having a specified type/creator pair.

You can pass NI L as a wildcard operator for the type or creator pa-
rameters to conduct searches of wider scope. If the t ype parameter
is NI L, this routine can be called successively to return all databases
of the given creator. If the cr eat or parameter is Nl L, this routine
can be called successively to return all databases of the given type.
You can also pass NI L as the value for both of these parameters to
return all available databases without regard to type or creator.

Because databases are scattered freely throughout memory space,
they are not returned in any particular order—any database match-
ing the specified type/creator criteria can be returned.Thus, if the
value of the onl yLat est Ver s parameter is FALSE, this function
may return a database which is not the most recent version match-
ing the specified type/creator pair. To obtain only the latest version
of each database matching the search criteria, set the value of the
onl yLat est Ver s parameter to TRUE,.

See Also DntGet Dat abase, Dnfi ndDat abase, DnDat abasel nf o,
DmOpenDat abaseBy TypeCr eat or , DnDat abaseSi ze

100 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmGetRecord

Return a handle to a record by index and mark the record busy.

Voi dHand DnGet Record (DmOpenRef dbR,

U nt index)
-> dbR DmOpenRef to open database.
-> | ndex Which record to retrieve.

Returns handle to record data.

Returns handle to given record and sets the busy bit for the record.
If another call to DnGet Recor d for the same record is attempted be-
fore the record is released, an error is returned.

If the record is ROM-based (pointer accessed), this routine makes a
fake handle to it and store this handle in the DmAccessType
structure.

DnRel easeRecor d should be called as soon as the caller finishes
viewing or editing the record.

DntSear chRecor d, DnFi ndRecor dByl D, DnRecor dl nf o,
DnRel easeRecor d, DnQuer yRecor d

Developing Palm OS 3.0 Applications, Part Il 101

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

DmGetResource

Search all open resource databases and return a handle to a re-
source, given the resource type and ID.

Voi dHand DnGet Resource (ULong type, Int |ID)

The resource type.
The resource ID.

->type
> D

Returns pointer to resource data, or NI L if unsuccessful.

Searches all open resource databases starting with the most recently
opened one for a resource of the given type and ID. If found, the re-
source handle is returned. The application should call

DnRel easeRecor d assoon as it finishes accessing the resource data
to avoid fragmenting the heap.

DnGet 1Resour ce, DnRel easeResour ce

DmGetResourcelndex

Return a handle to a resource by index.

Voi dHand DmGet Resour cel ndex (DnmOpenRef dbR,

I nt index)
-> dbR Access pointer to open database.
-> | ndex Index of resource to lock down.

Handle to resource data, or NI L if unsuccessful.

DnFi ndResour ce, DnFi ndResour ceType, DnSear chResour ce

102 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

DmGetlResource

Search the most recently opened resource database and return a
handle to a resource given the resource type and ID.

Voi dHand DmGet 1Resource (ULong type, Int ID)

->type The resource type.
>|D The resource ID.

Returns a pointer to resource data, or NI L if unsuccessful.

Searches the most recently opened resource database for a resource
of the given type and ID. If found, the resource handle is returned.

The application should call DnRel easeRecor d assoon as it finishes
accessing the resource data in order to avoid fragmenting the heap.

DnGet Resour ce, DnRel easeResour ce

DminsertionSort

Sort records in a database.

Err Dm nsertionSort (DnOpenRef dbR,
DnConpar F *conpar,

I nt ot her)
dbR Database access pointer.
conmpar Comparison function (see below).
ot her Any value the application wants to pass to the

comparison function.

Returns 0 if no error, or dnEr r ReadOnl y if read-only database. Re-
turns dnEr r I nval i dPar amfor an invalid parameter.

Developing Palm OS 3.0 Applications, Part Il 103

Data and Resource Manager Functions
Data Manager Functions

Comments

2.0 Note

Deleted records are placed last in any order. All others are sorted ac-
cording to the passed comparison function. Only records which are
out of order move. Moved records are moved to the end of the range
of equal records. If a large number of records are being sorted, try to
use the quick sort.

The following insertion-sort algorithm is used: Starting with the sec-
ond record, each record is compared to the preceding record. Each
record not greater than the last is inserted into sorted position with-
in those already sorted. A binary insertion is performed. A moved
record is inserted after any other equal records.

The comparison function, conpar , accepts two arguments, * el eml
and * el en®, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (* el enil and

*el en), and returns an integer based on the r esul t * of the com-
parison.

If the items... conpar returns...
*elenl < *el ent an integer <0
*eleml == *el en® 0

*elenl > *el ent an integer >0

Dm nsertionSort isalso called by SysAppLaunch (see Part 1) to
move an application database it is launching out of the system list
and into the application’s list.

DmConpar F has changed,; it previously had 3 parameters and now
has 6. DmConpar F is the typedef of a callback used by
SyslnsertionSort, DM nsertionSort, and

Fi ndl nsert Posi tion.

The new parameters allow a Palm OS application to pass more in-
formation to the system than before, most noticeably the record
(and all associated information) which allows sorting by unique ID,
so that the Palm OS device and the desktop always match.

The revised callback is used by new sorting routines (and can be
used the same way by your application):

104 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

typedef Int DnmConparF (void *,
void *,
| nt ot her,
Sort Recordl nfoPtr,
Sort Recordl nf oPtr,
Voi dHand appl nf oH) ;

As a rule, this change in the number of arguments doesn’t cause
problems when a 1.0 application is run on a 2.0 device, because
the system only pulls the arguments from the stack that are there.

Keep in mind, however, that some optimized applications built with
tools other than Metrowerks CodeWarrior for Palm OS may have
problems as a result of the change in arguments when running on
a 2.0 or later device.

DmQui ckSor t

DmMoveCategory

Move all records in a category to another category.

Err Dm\VoveCat egory (DnOpenRef dbR,
U nt toCategory,
U nt fronCategory,
Bool ean dirty)

->dbR DmOpenRef to open database.

<-toCat egory Category to which to retrieve records.
->frontCat egory Category from which to retrieve records.
>dirty If TRUE, set the di rty bit.

Returns 0 if successful, or dnEr r ReadOnl y if read-only database.

If di rty is TRUE, the moved records are marked as dirty.

Developing Palm OS 3.0 Applications, Part Il 105

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

DmMoveRecord

Move a record from one index to another.

Err DmvoveRecord (DnOpenRef dbR,

Unt from

U nt to)
->dbR DmOpenRef to open database.
->from Index of record to move.
->to0 Where to move the record.

Returns 0 if no error or one of dnEr r | ndexQut O Range,
dnEr r ReadOnl y, mentr r ChunkLocked, menEr r I nval i dPar am
or memer r Not EnoughSpace if an error occurs.

Insert the record at the t o index and move other records down. The
t o position should be viewed as an insertion position. This value
may be one greater than the index of the last record in the database.

106 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

DmNewHandle

Attempt to allocate a new chunk in the same data heap or card as
the database header of the passed database access pointer. If there is
not enough space in that data heap, try other heaps.

Voi dHand DnNewHandl e (DnOpenRef dbR, ULong size)

->dbR DmOpenRef to open database.
->si ze Size of new handle.

Returns the chunkl D of new chunk, or 0 if not enough space.

Allocates a new handle of the given size. Ensures that the new han-

dle is in the same memory card as the given database. This guaran-

tees that you can attach the handle to the database as a record to ob-
tain and save its Local | Din the appl nf ol Dor sort | nf ol Dfields
of the header.

Developing Palm OS 3.0 Applications, Part Il 107

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmNewRecord

Return a handle to a new record in the database and mark the
record busy.

Voi dHand DmNewRecord (DmOpenRef dbR,

UntbPtr atP,
ULong si ze)
->dbR DmOpenRef to open database.
<->atP Pointer to index where new record should be
placed.
->sjze Size of new record.

Pointer to record data, or O if error.

Allocates a new record of the given size, and returns a handle to the
record data. The parameter at P points to an index variable. The
new record is inserted at index * at P and all record indices that fol-
low are shifted down. If * at P is greater than the number of records
currently in the database, the new record is appended to the end
and its index is returned in * at P.

Both the busy and di rt y bits are set for the new record and a
unique ID is automatically created.

DmAt t achRecor d, DnRenpoveRecor d, DnDel et eRecord

108 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmNewResource

Allocate and add a new resource to a resource database.

Voi dHand DmNewResour ce (DnOpenRef dbR,
ULong resType,

Int resl D,

ULong si ze)
->dbR DmOpenRef to open database.
->resType Type of the new resource.
->reslD ID of the new resource.
->sj ze Desired size of the new resource.

Returns a handle to new resource, or NI L if unsuccessful.

Allocates a memory chunk for a new resource and adds it to the
given resource database. The new resource has the given type and
ID. If successful, the application should call DniRel easeResour ce
as soon as it finishes initializing the resource.

DmAt t achResour ce, DrRenpbveResour ce

Developing Palm OS 3.0 Applications, Part Il 109

Data and Resource Manager Functions
Data Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

DmNextOpenDatabase

Return DmOpenRef to next open database for the current task.
DmOpenRef DniNext OpenDat abase (DnOpenRef current P)
->currentP Current database access pointer or NI L.

DmOpenRef to next open database, or NI L if there are no more.

Call this routine successively to get the DmOpenRef s of all open da-
tabases. Pass NI L for cur r ent P to get the first one. Applications
don’t usually call this function, but is useful for system information.

DnOpenDat abasel nf o, DnDat abasel nf o

DmNextOpenResDatabase

Return access pointer to next open resource database in the search
chain.

DmOpenRef DniNext OpenResDat abase (DmOpenRef dbR)

dbR Database reference, or 0 to start search from the

top.
Pointer to next open resource database.

Returns pointer to next open resource database. To get a pointer to
the first one in the search chain, pass NI L for dbR. This first database
is the first and only one searched when DnGet 1Resour ce is called.

110 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

DmNumDatabases

Determine how many databases reside on a memory card.
U nt DmNunDat abases (Ul nt car dNo)
->car dNo Number of the card to check.

Returns the number of databases found.

This routine is helpful for getting a directory of all databases on a
card. The routine Dntcet Dat abase accepts an index from 0 to
DmNunDat abases -1 and returns a database 1D by index.

DnGet Dat abase

DmNumRecords

Return the number of records in a database.
U nt DmNunRecords (DnOpenRef dbR)
->dbR DmOpenRef to open database.

Returns the number of records in a database.

DnmNunRecor dsl| nCat egor y,DnRecor dl nf o,DnfSet Recor dl nf o

Developing Palm OS 3.0 Applications, Part Ill 111

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters

Result

DmNumRecordsInCategory

Return the number of records of a specified category in a database.

U nt DmNunRecor dsl nCat egory (DnOpenRef dbR,
U nt category)

dbr DmOpenRef to open database.
cat egory Category.

Returns the number of records.

Because this function must examine all records in the database, it
can be slow to return, especially when called on a large database.

DmNunmRecor ds, DnQuer yNext | nCat eqgor y,

DnPosi ti onl nCat egor v, DnSeekRecor dl nCat egory,

DnivbveCat eqory

DmNumResources

Return the total number of resources in a given resource database.

U nt DmNunResour ces (DnOpenRef dbR)

->dbR DmOpenRef to open database.

Returns the total number of resources in the given database.

112 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmOpenDatabase

Open a database and return a reference to it.

DmOpenRef DnOpenDat abase (Ul nt car dNo,
Local I D dbl D,

U nt node)
->car dNo Card number database resides on.
->dbl D The database ID of the database.
-> node Which mode to open database in (see below).

Returns DnOpenRef to open database, or 0 if unsuccessful.

Call this routine to open a database for reading or writing. The node
parameter can be one or more of the following constants ORed
together:

dnmivodeReadWite Read-write access.
dmvbdeReadOnl y Read-only access.

dmvbdelLeaveOpen Leave database open even after applica-
tion quits.

dmvbdeExcl usi ve Don’t let anyone else open this database.
This routine returns a DnOpenRef which must be used to access

particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling DnCGet Last Err.

DnCl oseDat abase, DnCr eat eDat abase, DnFi ndDat abase,
DnOpenDat abaseByTypeCr eat or, DnDel et eDat abase

Developing Palm OS 3.0 Applications, Part Ill 113

Data and Resource Manager Functions
Data Manager Functions

DmOpenDatabaseByTypeCreator

Purpose Open the most recent revision of a database with the given type and
creator.

Prototype DnOpenRef DnOpenDat abaseByTypeCreator (

ULong type,
ULong creat or,
U nt node)
Parameters type Type of database.
creat or Creator of database.
node Open mode; see Comments for

DnOpenDat abase.

Result DrOpenRef to open database, or 0 if unsuccessful.

See Also DnCreat eDat abase, DmOpenDat abase, DhiOpenDat abasel nf o,
DnCl oseDat abase

114 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

DmOpenDatabaselnfo

Purpose Retrieve information about an open database.

Prototype Err DnOpenDat abasel nfo (DnOpenRef dbR,
Local | DPtr dbl DP,

U ntPtr openCount P,
U ntPtr nodeP,

U ntPtr cardNoP,
Bool eanPtr resDBP)

Parameters ->dbR DmOpenRef to open database.
<->dbl DP Pointer to return dbl Dvariable, or NI L.
<->openCount P Pointer to return openCount variable, or NI L.
<->nodeP Pointer to return node variable, or NI L.
<->car dNoP Pointer to return card number, or NI L.
<->r esDBP Pointer to return r esDB Boolean, or NI L.
Result 0 No error.

dnErrlnval i dParam Invalid parameter passed.

Comments This routine retrieves information about an open database. Any NI L
return parameter pointers are ignored.

See Also DnDat abasel nf o

Developing Palm OS 3.0 Applications, Part Ill 115

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmPositioninCategory

Return a position of a record within the specified category.

U nt DnPositionl nCategory (DmOpenRef dbR,
U nt i ndex,
U nt category)

dbR DmOpenRef to open database.
i ndex Index of the record.
cat egory Category to search.

Returns the position (zero-based).

Because this function must examine all records up to the current
record, it can be slow to return, especially when called on a large
database.

If the record is ROM-based (pointer accessed) this routine makes a
fake handle to it and stores this handle in the DmAccessType
structure.

DnmQuer yNext | nCat egor v, DnSeekRecor dl nCat egor y,
DnmivbveCat eqory

116 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

DmQueryNextinCategory

Return a handle to the next record in the specified category for read-
ing only (does not set the busy bit).

Voi dHand DmQuer yNext | nCat egory (DnOpenRef dbR,
U ntPtr indexP,
U nt category)

dbR DmOpenRef to open database.

i ndexP Index of a known record (often retrieved with
DnPosi ti onl nCat egory).

cat egory Which category to query.

Returns a handle to the record following a known record.

DnmiNunRecor dsl nCat egor y, DnPosi ti onl nCat egory,
DnSeekRecor dl nCat eqgor y

DmQueryRecord

Return a handle to a record for reading only (does not set the busy
bit).

Voi dHand DmQuer yRecord (DmOpenRef dbR, Ul nt index)

-> dbR DmOpenRef to open database.
-> | ndex Which record to retrieve.

Returns record handle, or 0 if record is out of range or deleted.

Returns handle to given record. Use this routine only when viewing
the record. This routine successfully returns a handle to the record
even if the record is busy.

If the record is ROM-based (pointer accessed) this routine returns
the fake handle to it.

Developing Palm OS 3.0 Applications, Part Ill 117

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmQuickSort

Sort records in a database.

Err DmQui ckSort (const DmOpenRef dbR,
DnConpar F *conpar,

I nt ot her)
dbR Database access pointer.
conpar Comparison function (see Comments).
ot her Any value the application wants to pass to the

comparison function.

Returns 0 if no error or DEr r ReadOnl y if an error occurred.

Deleted records are placed last in any order. All others are sorted ac-
cording to the passed comparison function.

The comparison function, conpar , accepts two arguments, el el
and el en®, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (* el enil and

*el en), and returns an integer based on the result of the
comparison.

If the items... conpar returns...
*elenl < *el ent an integer <0
*eleml == *el en® 0

*elenl > *el ent an integer >0

DntFi ndSor t Posi ti onV10, DM nserti onSort

118 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmRecordInfo

Retrieve the record information as stored in the database header.

Err DmRecordl nfo (DmOpenRef dbR,
U nt i ndex,
UBytePtr attrP,
ULongPt r uni quel DP,
Local I D* chunkl DP)

-> dbR DmOpenRef to open database.

-> | ndex Index of record.

<->attrP Pointer to return attribute variable, or NI L.
<->uni quel DP Pointer to return unique ID variable, or NI L.
<->chunkl! DP Pointer to return Local ID variable, or NI L.

Returns 0 if no error or drEr r | ndexQut Of Range if an error
occurred.

Retrieves information about a record. Any of the return variable
pointers can be NI L.

DmiNunRecor ds, DnSet Recor dl nf o, DnQuer yNext | nCat egor y

Developing Palm OS 3.0 Applications, Part Ill 119

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

DmReleaseRecord

Clear the busy bit for the given record and set the di r t y bit if dirty
is TRUE.

Err DnRel easeRecord (DnOpenRef dbR,
U nt i ndex,
Bool ean dirty)

->dbR DmOpenRef to open database.
-> | ndex The record to unlock.
>dirty If TRUE, set the di rty bit.

Returns 0 if no error or dnEr r | ndexQut O Range if an error oc-
curred.

Call this routine when you finish modifying or reading a record that
you’ve called Dntzet Recor d on.

DnGet Recor d

DmReleaseResource

Release a resource acquired with DnGet Resour ce.

Err DnRel easeResource (Voi dHand resourceH)
->resourceH Handle to resource.
Returns 0 if no error.

Marks a resource as being no longer needed by the application.

Dntzet 1Resour ce, Dntzet Resour ce

120 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmRemoveRecord

Remove a record from a database and dispose of its data chunk.

Err DmRenoveRecord (DnOpenRef dbR,

U nt index)
-> dbR DmOpenRef to open database.
-> | ndex Index of the record to remove.

Returns 0 if no error, or der r Cor r upt Dat abase,
dnEr r 1 ndexQut O Range, dnErr ReadOnl vy,
menEr r ChunkLocked, nentrr | nval i dPar am or
menkr r Not EnoughSpace if an error occurs.

Disposes of a the record’s data chunk and removes the record’s
entry from the database header.

DnDet achRecor d, DnDel et eRecor d, DmAr chi veRecord,
DmiNewRecor d

Developing Palm OS 3.0 Applications, Part Ill 121

Data and Resource Manager Functions
Data Manager Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters

Result

See Also

DmRemoveResource
Delete a resource from a resource database.
Err DmRenoveResour ce (DmOpenRef dbR, Int

i ndex)

->dbR
-> | ndex

DnmOpenRef to open database.
Index of resource to delete.

Returns 0 if no error or drer r Cor r upt Dat abase,
dnEr r 1 ndexQut O Range, dnkrr ReadOnl vy,
menkr r ChunkLocked, menErr | nval i dPar am or
menEr r Not EnoughSpace if an error occurs.

This routine disposes of the memory manager chunk that holds the
given resource and removes its entry from the database header.

DnDet achResour ce, DnRenpbveResour ce, DmAt t achResour ce

DmRemoveSecretRecords

Remove all secret records.

Err DmRenpveSecr et Records (DnOpenRef dbR)
dbR

DmOpenRef to open database.

Returns 0 if no error or drEr r ReadOnl y (read-only database) if an
error occurred.

DnRenoveRecor d, DnRecor dl nf o, DnSet Recor dl nf o

122 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose

Prototype

Parameters

Result

Comments

DmResetRecordStates

Unlock all records in a database and clear all busy bits.

Err DnmReset Recor dSt at es (DnOpenRef dbR)

-> dbR DmOpenRef to open database.

Returns 0 if no error or dnEr r ROVBased if an error occurred.

This routine unlocks all records in a database and clears all busy
bits. It can optionally be called before closing a database to ensure
that the records are all unlocked. For performance reasons, the data
manager does not call DhniReset Recor dSt at es automatically when
closing a database.

This routine automatically allocates the record in another data heap
if the current heap is too full.

DmResizeRecord

Resize a record by index.

Voi dHand DnResi zeRecord (DnOpenRef dbR,
U nt 1 ndex,
ULong newsSi ze)

->dbR DmOpenRef to open database.
->| ndex Which record to retrieve.
->newsi ze New size of record.

Pointer to resized record, or NI L if unsuccessful.

This routine reallocates the record in another heap of the same
memory card if the current heap is not big enough. If this happens,
the handle changes, so be sure to use the returned handle to access
the resized resource.

Developing Palm OS 3.0 Applications, Part Ill 123

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

DmResizeResource

Resize a resource and return the new handle.

Voi dHand DnResi zeResource (Voi dHand resour ceH,
ULong newsSi ze)

->resourceH Handle to resource.
->newsSi ze Desired new size of resource.

Returns a handle to newly sized resource or NI L if unsuccessful.

Resizes the resource and returns new handle. If necessary in order
to grow the resource, this routine will reallocate it in another heap
on the same memory card that it is currently in.

The handle may change if the resource had to be reallocated in a dif-
ferent data heap because there was not enough space in its present
data heap.

124 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmResourcelnfo

Retrieve information on a given resource.

Err DmResourcel nfo (DnOpenRef dbR,
I nt index,
ULongPtr resTypeP,
IntPtr resl DP,
Local I D* chunkLocal | DP)

-> dbR DmOpenRef to open database.

-> | ndex Index of resource to get info on.
<->resTypeP Pointer to return r esType variable, or NI L.
<->resl| DP Pointer to return r esl Dvariable, or NI L.

<->chunkLocal | DP
Pointer to return chunk| Dvariable, or NI L.

Returns 0 if no error or dnEr r | ndexQut O Range if an error oc-
curred.

Use this routine to retrieve all or a portion of the information on a
particular resource. Any or all of the return variable pointers can be
NI L. The type and ID of the resource are returned in *r esTypePand
*r es| DP. The memory manager local ID of the resource data is re-
turned in *chunkLocal | DP.

DnGet Resour ce, DnGet 1Resour ce, DnSet Resour cel nf o,
DnFi ndResour ce, DnFi ndResour ceType

Developing Palm OS 3.0 Applications, Part Ill 125

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

See Also

DmSearchRecord

Search all open record databases for a record with the handle
passed.

| nt DmBSear chRecord (Voi dHand recH,
DmOpenRef * dbRP)

recH Record handle.
dbRP Pointer to return variable of type DnmOpenRef .

Returns the index of the record and database access pointer; if not
found, index will be -1 and * dbRP will be 0.

DnGet Recor d, DnfFi ndRecor dByl D, DnRecor dl nf o

126 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmSearchResource

Search all open resource databases for a resource by type and ID, or
by pointer if it isnon-NI L.

| nt DmBSear chResource (ULong resType,
Int resl D,
Voi dHand resH,
DmOpenRef * dbRP)

->resType Type of resource to search for.

->reslD ID of resource to search for.

->resH Pointer to locked resource, or NI L.

-> dbRP Pointer to return variable of type DnOpenRef .

Returns the index of the resource, stores DnOpenRef in dbRP.

This routine can be used to find a resource in all open resource data-
bases by type and ID or by pointer. If r esHis NI L, the resource is
searched for by type and ID. IfresHisnot NI L, r esType and

resl D isignored and the index of the resource handle is returned.
On return * dbRP contains the access pointer of the resource data-
base that the resource was eventually found in. Once the index of a
resource is determined, it can be locked down and accessed by call-
ing DnCGet Resour ceByl ndex.

DnGet Resour ce, DnFi ndResour ceType, DnResour cel nf 0,

DnGet Resour cel ndex, DnFi ndResour ce

Developing Palm OS 3.0 Applications, Part Ill 127

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

See Also

DmSeekRecordInCategory

Return the index of the record at the offset from the passed record
index. (The of f set parameter indicates the number of records to
move forward or backward; the value for backward is negative.)

Err DntSeekRecor dl nCat egory (DmOpenRef dbR,
U ntPtr indexP,
I nt of fset,
Int direction,
U nt category)

dbR DmOpenRef to open database.

i ndex Pointer to the returned index.

of f set Offset of the passed record index.

di rection dnSeekFor war d or dnmSeek Backwar d.
cat egory Category ID.

Returns 0 if no error; returns der r | ndexQut Of Range or
dnEr r SeekFai | ed if an error occurred.

DmiNunRecor dsl nCat egor y, DniQuer yNext | nCat egory,
DnPosi ti onl nCat egor y, DrivbveCat egory

128 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

DmSet

Write a specified value into a section of a record. This function also
checks the validity of the pointer for the record and makes sure the
writing of the record information doesn’t exceed the bounds of the
record.

Err DnBet (VoidPtr recordP,
ULong of f set,
ULong byt es,
Byte val ue)

recor dP Pointer to locked data record (chunk pointer).
of f set Offset within record to start writing.

byt es Number of bytes to write.

val ue Byte value to write.

Returns 0 if no error; returns dnEr r Not Val i dRecor d or
dnErr Wi t eCut O Bounds if an error occurred.

Must be used to write to data manager records because the data
storage area is write-protected.

Dnivite

DmSetDatabaselnfo

Set information about a database.

Err Dntet Dat abasel nfo (Ul nt car dNo,
Local I D dbl D, CharPtr naneP,
UntPtr attributesP, UntPtr versionP
ULongPtr crDateP, ULongPtr nodDat eP,
ULongPtr bckUpDat eP, ULongPtr nodNunP,
Local | D* appl nfol DP, Local | D* sortl nfol DP,
ULongPtr typeP, ULongPtr creatorP)

Developing Palm OS 3.0 Applications, Part Ill 129

Data and Resource Manager Functions
Data Manager Functions

Parameters ->cardNo Card number the database resides on.
->dbl D Database ID of the database.
-> naneP Pointer to 32-byte character array for new

name, or NI L.
->attri butesP Pointer to new attributes variable, or NI L.

ver si onP Pointer to new version, or NI L.

->cr Dat eP Pointer to new creation date variable, or NI L.

->nodDat eP Pointer to new modification date variable, or
NI L.

->pbckUpDat eP Pointer to new backup date variable, or NI L.

-> nodNunP Pointer to new modification number variable,
or NI L.

->appl nfol DP Pointer to new appl nf ol Dvariable, or NI L.
->sortlnfol DP Pointer to new sort | nf ol Dvariable, or NI L.
->typeP Pointer to new t ype variable, or NI L.
->creatorP Pointer to new cr eat or variable, or NI L.

Result Returns O if noerror or dner r | nval i dPar amif an error occurred.

Comments When this call changes appl nf ol Dor sort | nf ol D, the old chunk
ID (if any) is marked as an orphan chunk and the new chunk ID is
unorphaned. Consequently, you shouldn’t replace an existing
appl nf ol Dorsort | nf ol Dif that chunk has already been attached
to another database.

Call this routine to set any or all information about a database ex-
cept for the card number and database ID. This routine sets the new
value for any non-NlI L parameter.

See Also DnDat abasel nf o, DnOpenDat abasel nf o, DnFi ndDat abase,
DGet Next Dat abaseBy TypeCr eat or

130 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

DmSetRecordInfo

Set record information stored in the database header.

Err DnfSet Recordl nfo (DnOpenRef dbR,
U nt i ndex,
UBytePtr attrP,
ULongPt r uni quel DP)

->dbR DmOpenRef to open database.

-> | ndex Index of record.

SattrP Pointer to new attribute variable, or NI L.
->uni quel DP Pointer to new unique ID variable, or NI L.

Returns 0 if no error; returns dnEr r | ndexQut Of Range or
dnEr r ReadOnl y if an error occurred.

Sets information about a record.

DmNunRecor ds, DnRecor dl nf o

Developing Palm OS 3.0 Applications, Part Ill 131

Data and Resource Manager Functions
Data Manager Functions

DmSetResourcelnfo

Purpose Setinformation on a given resource.

Prototype Err Dntet Resourcel nfo (DmCpenRef dbR,
I nt index,
ULongPtr resTypeP,
IntPtr resl DP)

Parameters ->dbR DmOpenRef to open database.
-> | ndex Index of resource to set info for.
<->resTypeP Pointer to new r esType, or NI L.
<->resl| DP Pointer tonew resl D, or NI L.

Result Returns 0 if no error; returns dner r I ndexQut Of Range or
dnEr r ReadOnl y if an error occurred.

Comments Use this routine to set all or a portion of the information on a partic-
ular resource. Any or all of the new info pointers can be NI L. If not
NI L, the type and ID of the resource are changed to *r esTypeP and
*res| DP.

Normally, the unique ID for a record is automatically created by the
data manager when a record is created using DniNewRecor d, so an
application would not typically change the unique ID.

132 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

See Also

DmStrCopy

Check the validity of the chunk pointer for the record and make
sure that writing the record will not exceed the chunk bounds.

Err DnttrCopy (VoidPtr recordP,
ULong of fset,
CharPtr srcP)

recor dP Pointer to data record (chunk pointer).
of f set Offset within record to start writing.
srcP Pointer to O-terminated string.

Returns 0 if no error; returns dnEr r Not Val i dRecor d or
dnErr Wi t eCut O Bounds if an error occurred.

DN i t e, DnSet

Developing Palm OS 3.0 Applications, Part Ill 133

Data and Resource Manager Functions
Data Manager Functions

Purpose

Prototype

Parameters

Result

See Also

DmWrite

Must be used to write to data manager records because the data
storage area is write-protected. This routine checks the validity of
the chunk pointer for the record and makes sure that the write will
not exceed the chunk bounds.

Err DVWite (VoidPtr recordP,
ULong of f set,
Voi dPtr srcP,
ULong byt es)

recor dP Pointer to locked data record (chunk pointer).
of f set Offset within record to start writing.

srcP Pointer to data to copy into record.

byt es Number of bytes to write.

Returns 0 if no error; returns dnEr r Not Val i dRecor d or
dnErr Wi t eCut O Bounds if an error occurred.

Dntet

134 Developing Palm OS 3.0 Applications, Part Il

Data and Resource Manager Functions
Data Manager Functions

DmWriteCheck

Purpose Check the parameters of a write operation to a data storage chunk
before actually performing the write.

Prototype Err DnmWiteCheck (VoidPtr recordP,
ULong of fset,
ULong byt es)

Parameters recordP Locked pointer tor ecor dH.
of f set Offset into record to start writing.
byt es Number of bytes to write.

Result Returns 0 if no error; returns dnr r Not Val i dRecor d or
dnErr Wi t eCut O Bounds if an error occurred.

Functions for System Use Only

DmMoveOpenDBContext

Prototype Err DmvbveOpenDBCont ext (DnOpenRef* dst HeadP,
DmOpenRef dbR)

WARNING: System Use Only!

Developing Palm OS 3.0 Applications, Part Ill 135

Data and Resource Manager Functions
Data Manager Functions

136 Developing Palm OS 3.0 Applications, Part Il

- Palm OS
Communications

il

The Palm OS communications software provides high-performance
serial communications capabilities, including byte-level serial 170,
best-effort packet-based 1/0 with CRC-16, reliable data transport
with retries and acknowledgments, connection management, and
modem dialing capabilities.

This chapter helps you understand the different parts of the com-
munications software and explains how to use them, discussing
these topics:

= Byte Ordering briefly explains the byte order used for all
data.

= Communications Architecture Hierarchy provides an over-
view of the hierarchy, including an illustration.

= The Serial Manager is responsible for byte-level serial 1/0
and control of the RS232 signals.

= The Serial Link Protocol provides an efficient mechanism for
sending and receiving packets.

= The Serial Link Manager is the Palm OS implementation of
the serial link protocol.

Byte Ordering

By convention, all data coming from and going to the Palm OS de-
vice use Motorola byte ordering. That is, data of compound types
such as Word (2 bytes) and DWord (4 bytes), as well as their integral
counterparts, are packaged with the most-significant byte at the
lowest address. This contrasts with Intel byte ordering.

Developing Palm OS 3.0 Applications, Part Il 137

Palm OS Communications
Communications Architecture Hierarchy

Communications Architecture Hierarchy

The communications software has multiple layers. Higher layers de-
pend on more primitive functionality provided by lower layers. Ap-
plications can use functionality of all layers. The software consists of

the following layers, described in more detail below:

The serial manager, at the lowest layer, deals with the Palm
OS serial port and control of the RS232 signals, providing
byte-level serial 1/0. See The Serial Manager.

The modem manager provides modem dialing capabilities.

The Serial Link Protocol (SLP) provides best-effort packet
send and receive capabilities with CRC-16. Packet delivery is
left to the higher-level protocols; SLP does not guarantee it.
See The Serial Link Protocol.

The Packet Assembly/Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efficient protocol fea-
turing variable-size block transfers with robust error check-
ing and automatic retries. Applications don’t need access to
that part of the system.

The Connection Management Protocol (CMP) provides
connection-establishment capabilities featuring baud rate ar-
bitration and exchange of communications software version
numbers.

The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other subsystems.

DLP facilitates efficient data synchronization between desk-
top (PC, Macintosh, etc.) and Palm OS applications, database
backup, installation of code patches, extensions, applications,
and other databases, as well as Remote Interapplication
Communication (RIAC) and Remote Procedure Calls (RPC).

Figure 4.1 illustrates the communications layers.

138 Developing Palm OS 3.0 Applications, Part Il

Palm OS Communications
Communications Architecture Hierarchy

Connection Desktop Link
Modem Manager Management
Protocgl (CMP) Protocol (DLP)

Packet Assembl?// Dlsassembly
Protocol (PAD)

Serial Link
Protocol (SLP)

Serial Manager

Serial Port

Modem
(optional)

Hardware

Figure 4.1 Palm OS Communications Architecture

Developing Palm OS 3.0 Applications, Part Ill 139

Palm OS Communications

The Serial Manager

The Serial Manager

The Palm OS serial manager is responsible for byte-level serial 1/0
and control of the RS232 signals.

In order to prolong battery life, the serial manager must be very effi-
cient in its use of processing power. To reach this goal, the serial
manager receiver is interrupt-driven. In the present implementa-
tion, the serial manager uses the polling mode to send data.

Using the Serial Manager

Before using the serial manager, call SysLi bFi nd, passing Seri al
Li brary for the library name to get the serial library reference
number. This reference number is used with all subsequent serial
manager calls. To obtain the number, call SysLi bFi nd with “Serial
Library” as the library name. The system software automatically in-
stalls the serial library during system initialization.

To open the serial port, call Ser Qpen, passing the serial library ref-
erence number (returned by SysLi bFi nd), 0 (zero) for the port
number, and the desired baud rate. An error code of 0 (zero) or
ser Err Al r eadyOpen indicates that the port was successfully
opened.

If the serial port is already open when Ser Open is called, the port’s
open count is incremented and an error code of

ser Err Al readyQpen is returned. This ability to open the serial
port multiple times allows cooperating tasks to share the serial port.

All other applications must refrain from sharing the serial port and
close it by calling Ser O ose when ser Err Al r eadyQpen is re-
turned. Error codes other than 0 (zero) or ser Er r Al r eadyOpen in-
dicate failure. The application must open the serial port before mak-
ing other serial manager calls.

To close the serial port, call Ser Cl ose. Every successful call to
Ser Open must eventually be paired with a call to Ser Cl ose. Be-
cause an open serial port consumes more energy from the device’s

140 Developing Palm OS 3.0 Applications, Part Il

Palm OS Communications
The Serial Manager

2.0 Note

batteries, it is essential not to keep the port open any longer than
necessary.

To change serial port settings, such as the baud rate, CTS timeout,
number of data and stop bits, parity options, and handshaking op-
tions, call Ser Set Set t i ngs. For baud rates above 19200, use of
hardware handshaking is advised.

To retrieve the current serial port settings, call Ser Get St at us.

To retrieve the current line error status, call Ser Get St at us, which
returns the cumulative status of all line errors being monitored. This
includes parity, hardware and software overrun, framing, break de-
tection, and handshake errors.

To reset the serial port error status, call Ser Cl ear Er r , which resets
the serial port’s line error status. Other serial manager functions,
such as Ser Recei ve, immediately return with the error code

ser Err Li neErr if any line errors are pending. Applications
should therefore check the result of serial manager function calls
and call Ser C ear Er r_if line error(s) occurred.

To send a stream of bytes, call Ser Send. In the present implementa-
tion, Ser Send blocks until all data are transferred to the UART or a
timeout error (if CTS handshaking is enabled) occurs. If your soft-
ware needs to detect when all data has been transmitted, consider
calling Ser SendWai t .

Both Ser Send and Ser Recei ve have been enhanced in version
2.0 of the system. See the function descriptions for more informa-
tion.

To wait until all data queued up for transmission has been transmit-
ted, call Ser SendWai t . Ser SendWai t blocks until all pending
data is transmitted or a CTS timeout error occurs (if CTS handshak-
ing is enabled).

To flush all bytes from the transmission queue, call Ser Send\Wai t .
This routine discards any data not yet transferred to the UART for
transmission.

Developing Palm OS 3.0 Applications, Part Ill 141

Palm OS Communications

The Serial Manager

To receive a stream of bytes from the serial port, call Ser Recei ve,
specifying a buffer, the number of bytes desired, and the interbyte
time out. This call blocks until all the requested data have been re-
ceived or an error occurs.

To read bytes already in the receive queue, call Ser Recei veCheck
(see below) to get the number of bytes presently in the receive queue
and then call Ser Recei ve, specifying the number of bytes desired.
Because Ser Recei ve returns immediately without any data if line
errors are pending, it is important to acknowledge the detection of
line errors by calling Ser Cl ear Err .

To wait for a specific number of bytes to be queued up in the receive
gueue, call Ser Recei veWai t , passing the desired number of bytes
and an interbyte timeout. This call blocks until the desired number
of bytes have accumulated in the receive queue or an error occurs.
The desired number of bytes must be less than the current receive
gueue size. The default queue size is 512 bytes. Because this call re-
turns immediately if line errors are pending, applications have to
call Ser Cl ear Err to detect any line errors. See also

Ser Recei veCheck and Ser Set Recei veBuf f er..

To check how many bytes are presently in the receive queue, call
Ser Recei veCheck.

To discard all data presently in the receive queue and to flush bytes
coming into the serial port, call Ser Recei veFl ush, specifying the
interbyte timeout. This call blocks until a time out occurs waiting for
the next byte to arrive.

To replace the default receive queue, call Ser Set Recei veBuf f er,
specifying the pointer to the buffer to be used for the receive queue
and its size. The default receive queue must be restored before the
serial port is closed. To restore the default receive queue, call

Ser Set Recei veBuf f er, passing 0 (zero) for the buffer size. The
serial manager does not free the custom receive queue.

To avoid having the system go to sleep while it’s waiting to receive
data, an application should call Evt Reset Aut oOf f Ti ner periodi-
cally. For example, the serial link manager automatically calls

Evt Reset Aut oOf f Ti mer each time a new packet is received. Note

142 Developing Palm OS 3.0 Applications, Part Il

Palm OS Communications
The Serial Manager

that this facility is not part of the serial manager but part of the
event manager. See Chapter 12, “System Manager Functions,” of
“Developing Palm OS Applications, Part I1.”

To perform a control function, applications can call Ser Cont r ol .
This Palm OS function performs one of the control operations speci-
fied by Ser Ct | Enum which has the following elements:

Element

serCtl FirstReserved = 0

serCt| Start Break

ser Ct | St opBr eak

ser Ct| BreakSt at us

serCt| StartLocal Loopback

ser Ct | St opLocal Loopback

ser Ct | MaxBaud

ser Ct | HandshakeThr eshol d

Description

Reserve 0

Turn RS232 break signal on. Applications have to
make sure that the break is set long enough to gen-
erate a value BREAK!

val ueP = 0; valueLenP =0
Turn RS232 break signal off:
val ueP = 0; valueLenP =0

Get RS232 break signal status (on or off):
val ueP = ptr to Word for returning status
(0 = off, 10 =0n)

*val ueLenP = si zeof (Word)

Start local loopback test;

val ueP = 0, valuelLenP =0
Stop local loopback test
val ueP = 0, valueLenP = 0

val ueP = ptr to DWbr d for returned baud
*val ueLenP = si zeof (DWr d)

Retrieve HW handshake threshold; this is the maxi-
mum baud rate that does not require hardware
handshaking

val ueP=ptr to DWord for returned baud

*val ueLenP = si zeof (DWr d)

Developing Palm OS 3.0 Applications, Part Ill 143

Palm OS Communications

The Serial Manager

Element

Description

ser Ct | EmuSet Bl ocki ngHook Set a blocking hook routine.

ser Ct| LAST

WARNING: For use with the Simulator on Mac OS
only: NOT SUPPORTED ON THE PALM DEVICE.

val ueP = ptr to SerCallbackEntryType
*val ueLenP=si zeof (Ser Cal | backEnt ryType)
Returns the old settings in the first argument.

Add new address entries before this one.

Calling ser Cont r ol with ser Ct | EnuSet Bl ocki ngHook replac-
es the mandatory need to define a Yi el dTi e function. If the appli-
cation never sets the blocking hook, then no blocking hook calls will
be made.

The prototype for the blocking hook callback function is
Ser Bl ocki ngHookHandl er which is defined and described in de-
tail in Seri al Myr. h.

Palm OS 1.0 developers that relied on the static Yi el dTi me func-
tion for periodic processing such as draining the event queue and
checking for user cancel action, have to add a parameter to their
Yi el dTi me function and call ser Ct | EnuSet Bl ocki ngHook to
set their Yi el dTi me function as the blocking hook callback func-
tion.

When applications no longer want the callback function to be called,
they should call ser Cont r ol with ser Ct | EnuSet Bl ocki ng-
Hook, passing NULL for f uncP in the Ser Cal | backEnt ryType
structure.

144 Developing Palm OS 3.0 Applications, Part Il

Palm OS Communications
The Serial Manager

Serial Manager Function Summary

The following functions are available for application use:

e Serd earkrr

¢ Serd ose

¢ Ser Control

e SerCet Settings
o SerGet St at us

¢ Ser Open

¢ SerReceive

¢ Ser Recei veCheck
¢ Ser Recei veFl ush
¢ SerRecei veWi t

W

Ser Send

Ser SendWi t

Ser Set Recei veBuf f er
Ser Set Settings

Developing Palm OS 3.0 Applications, Part Ill 145

Palm OS Communications
The Serial Link Protocol

The Serial Link Protocol

The Serial Link Protocol (SLP) provides an efficient packet send and
receive mechanism. SLP provides robust error detection with CRC-
16. SLP is a best-effort protocol; it does not guarantee packet deliv-
ery (packet delivery is left to the higher-level protocols). For en-
hanced error detection and implementation convenience of higher-
level protocols, SLP specifies packet type, source, destination, and
transaction ID information as an integral part of its data packet
structure.

SLP Packet Structures

The following sections describe:
= SLP Packet Format
= Packet Type Assignment
= Socket ID Assignment
= Transaction ID Assignment

146 Developing Palm OS 3.0 Applications, Part Il

Palm OS Communications
The Serial Link Protocol

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer, as shown in Figure 4.2.

signature (3): OXBE
OXEF
OxED

destination socket (1)
Packet header source socket (1)
packet type (1)

client data size (2)
transaction 1D (1)
header checksum (1)

Client data

Packet footer CRC-16(2)

Figure 4.2 Structure of a Serial Link Packet

= The packet header contains the packet signature, the destina-
tion socket ID, the source socket ID, packet type, client data
size, transaction ID, and header checksum. The packet signa-
ture is composed of the three bytes OXxBE, OXEF, OXED, in that
order. The header checksum is an 8-bit arithmetic checksum

Developing Palm OS 3.0 Applications, Part Ill 147

Palm OS Communications
The Serial Link Protocol

of the entire packet header, not including the checksum field
itself.

= The client data is a variable-size block of binary data speci-
fied by the user and is not interpreted by the Serial Link Pro-
tocol.

= The packet footer consists of the CRC-16 value computed
over the packet header and client data.

Packet Type Assignment

Packet type values in the range of 0x00 through O0x7F are reserved
for use by the system software. The following packet type assign-
ments are currently implemented:

0x00 Remote Debugger, Remote Console, and System Re-
mote Procedure Call packets.

0x02 PADP packets.

0x03 Loop-back test packets.

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are “well-known” socket ID values that are re-
served by the components of the system software. The dynamic
socket IDs are assigned at runtime when requested by clients of SLP.
Static socket ID values in the ranges 0x00 through 0x03 and OXEQ
through OxFF are reserved for use by the system software. The fol-
lowing static socket IDs are currently implemented or reserved:

0x00 Remote Debugger socket.
0x01 Remote Console socket.
0x02 Remote Ul socket.

0x03 Desktop Link Server socket.

148 Developing Palm OS 3.0 Applications, Part Il

Palm OS Communications
The Serial Link Protocol

0x04 -0xCF Reserved for dynamic assignment.

0xDO0 - OXDF Reserved for testing.

Transaction ID Assignment

Transaction ID values are not interpreted by the Serial Link Protocol
and are for the sole benefit of the higher-level protocols. The follow-
ing transaction ID values are currently reserved:

0x00 and OxFF Reserved for use by the system software.

0x00 Reserved by the Palm OS implementation of SLP
to request automatic transaction ID generation.

OXFF Reserved for the connection manager’s WakeUp
packets.

Transmitting an SLP Packet

This section provides an overview of the steps involved in transmit-
ting an SLP packet. The next section describes the implementation.
Transmission of an SLP packet consists of these steps:

1. Fill in the packet header and compute its checksum.

2. Compute the CRC-16 of the packet header and client data.

3. Transmit the packet header, client data, and packet footer.

4. Return an error code to the client.

Receiving an SLP Packet

Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its check-
sum.

Developing Palm OS 3.0 Applications, Part Ill 149

Palm OS Communications
The Serial Link Manager

3. Read in the client data.
4. Read in the packet footer and validate the packet CRC.

5. Dispatch/return an error code and the packet (if successful)
to the client.

The Serial Link Manager

The serial link manager is the Palm OS implementation of the Palm
OS Serial Link Protocol.

Serial link manager provides the mechanisms for managing multi-
ple client sockets, sending packets, and receiving packets both syn-
chronously and asynchronously. It also provides support for the Re-
mote Debugger and Remote Procedure Calls (RPC).

Using the Serial Link Manager

Before an application can use the services of the serial link manager,
the application must open the manager by calling SI kQpen. Success
is indicated by error codes of 0 (zero) or sl KEr r Al r eadyOpen. The
return value sl kEr r Al r eadyQpen indicates that the serial link
manager has already been opened (most likely by another task).
Other error codes indicate failure.

When you finish using the serial link manager, call SI kC ose.

Sl kCl ose may be called only if S| kOQpen returned 0 (zero) or

sl kErr Al r eadyOpen. When open count reaches zero, Sl kCl ose
frees resources allocated by SI kOpen.

To use the serial link manager socket services, open a Serial Link
socket by calling SI kOpenSocket . Pass a reference number of an
opened and initialized communications library (see SI kCl ose), a
pointer to a memory location for returning the socket ID, and a
Boolean indicating whether the socket is static or dynamic. If a static
socket is being opened, the memory location for the socket ID must
contain the desired socket number. If opening a dynamic socket, the
new socket ID is returned in the passed memory location. Sharing of
sockets is not supported. Success is indicated by an error code of 0

150 Developing Palm OS 3.0 Applications, Part Il

Palm OS Communications
The Serial Link Manager

(zero). For information about static and dynamic socket IDs, see
Socket ID Assignment.

When you have finished using a Serial Link socket, close it by call-
ing SI kAl oseSocket . This releases system resources allocated for
this socket by the serial link manager.

To obtain the communications library reference number for a partic-
ular socket, call SI kSocket Ref Num The socket must already be
open.

To set the interbyte packet receive timeout for a particular socket,
call S| kSocket Set Ti meout .

To flush the receive stream for a particular socket, call
S| kFl ushSocket , passing the socket number and the interbyte
timeout.

To register a socket listener for a particular socket, call

Sl kSet Socket Li st ener , passing the socket number of an open
socket and a pointer to the S| kSocket Li st enType structure. Be-
cause the serial link manager does not make a copy of the

Sl kSocket Li st enType structure but instead saves the pointer
passed to it, the structure may not be an automatic variable (that is,
allocated on the stack). The Sl kSocket Li st enType structure may
be a global variable in an application or a locked chunk allocated
from the dynamic heap. The SI kSocket Li st enType structure
specifies pointers to the socket listener procedure and the data
buffers for dispatching packets destined for this socket. Pointers to
two buffers must be specified:

= Packet header buffer (size of SI kPkt Header Type).

= Packet body buffer, which must be large enough for the larg-
est expected client data size.

Both buffers can be application global variables or locked chunks al-
located from the dynamic heap.

The socket listener procedure is called when a valid packet is re-
ceived for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The serial link manager does not free the

Developing Palm OS 3.0 Applications, Part Ill 151

Palm OS Communications
The Serial Link Manager

Sl kSocket Li st enType structure or the buffers when the socket is
closed; freeing them is the responsibility of the application. For this
mechanism to function, some task needs to assume the responsibil-
ity to “drive” the serial link manager receiver by periodically calling
Sl kRecei vePacket .

To send a packet, call S| kSendPacket , passing a pointer to the
packet header (Sl kPkt Header Type) and a pointer to an array of
S| kWi t eDat aType structures. S| kSendPacket stuffs the signa-
ture, client data size, and the checksum fields of the packet header.
The caller must fill in all other packet header fields. If the transac-
tion ID field is set to 0 (zero), the serial link manager automatically
generates and stuffs a new non-zero transaction ID. The array of

S| kW i t eDat aType structures enables the caller to specify the cli-
ent data part of the packet as a list of noncontiguous blocks. The end
of list is indicated by an array element with the si ze field setto 0
(zero). Listing 3.1 incorporates the processes described in this sec-
tion.

Listing 4.1 Sending a Serial Link Packet
Err err;
S| kPkt Header Type sendHdr;
/lserial |ink packet header
S| kWiteDataType witeList[2];
/lserial link wite data segnents
Byt e body[20] ;

/ | packet body(exanpl e packet body)

/1 Initialize packet body

/'l Conpose the packet header

sendHdr . dest

sendHdr.src =

sendHdr . t ype

sl kSocket DLP;

sl kSocket DLP;

sl kPkt TypeSyst em

sendHdr.transld = O;

/1l let Serial Link Manager set the transld
/'l Specify packet body
writeList[O].size = sizeof(body);

152 Developing Palm OS 3.0 Applications, Part Il

Palm OS Communications
The Serial Link Manager

/[l first data block size
writelList[O].dataP = body;

/[l first data bl ock pointer
witeList[1l].size = 0;

/1 no nore data bl ocks

/1 Send the packet
err = Sl kSendPacket (&sendHdr, witeList);

}

Listing 4.2 Generating a New Transaction ID

11
/'l Exanple: Generating a new transaction ID given the previous

/1l transaction ID. Can start with any seed val ue.
I

Byt e Next Transactionl D (Byte previousTransacti onl D)

{

Byt e next Transacti onl D;

/'l CGenerate a new transaction id, avoid the
/'l reserved val ues (0x00 and OxFF)
if (previousTransactionl D >= (Byte)OxFE)
next Transactionl D = 1; /1 wrap around
el se
next Transactionl D = previ ousTransactionl D + 1;
/'l increnent

return next Transacti onl D;

To receive a packet, call S| kRecei vePacket . You may request a
packet for the passed socket ID only or for any open socket that
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a timeout. The timeout in-
dicates how long the receiver should wait for a packet to begin ar-
riving before timing out. A timeout value of (-1) means “wait for-

Developing Palm OS 3.0 Applications, Part Ill 153

Palm OS Communications
The Serial Link Manager

ever.” If a packet is received for a socket with a registered socket
listener, the packet is dispatched via its socket listener procedure.

Serial Link Manager Function Summary

The following functions are available for application use:

« SIkd ose

¢ Sl kC oseSocket

¢ Sl kFl ushSocket

¢ Sl kOpen

¢ Sl kOpenSocket

* Sl kRecei vePacket

* Sl kSendPacket

* Sl kSet Socket Li st ener
¢ Sl kSocket Ref Num

¢ Sl kSocket Set Ti neout

154 Developing Palm OS 3.0 Applications, Part Il

il

Communications
Functions

Serial Manager Functions

Purpose
Prototype
Parameters
Result

Caveats

SerClearErr

Reset the serial port’s line error status.

Err SerCearErr (Unt refNum

->ref Num The serial library reference number.
0 No error.

Call Ser A ear Err only after a serial manager function
(Ser Recei ve, Ser Recei veCheck, Ser Send, etc.) returns with the
error code ser Err Li neErr.

The reason for this is that Ser Cl ear Er r resets the serial port. So, if
Ser d ear Er r is called unconditionally while a byte is coming into
the serial port, that byte is guaranteed to become corrupted.

The right strategy is to always check the error code returned by a se-
rial manager function. If it ‘s ser Err Li neErr, call Ser Cl ear Err
immediately. However, don’t make unsolicited calls to

SerCl earErr.

Whenyou getser Er r Li neEr r, consider flushing the receive queue
for a fraction of a second by calling Ser Recei veFl ush.
Ser Recei veFl ush calls Ser C ear Err for you.

Developing Palm OS 3.0 Applications, Part Ill 155

Communications Functions
Serial Manager Functions

Purpose
Prototype
Parameters

Result

Comments

Caveat

See Also

SerClose

Release the serial port previously acquired by Ser Open.
Err Serd ose (U nt refNum
->ref Num Serial library reference number.

0 No error.
ser Er r Not OQpen Port wasn’t open.
serErr Stil | OpenPort still held open by another process.

Releases the serial port and shuts down serial port hardware if the
open count has reached 0. Open serial ports consume more energy
from the device’s batteries; it’s therefore essential to keep a port
open only as long as necessary.

Don’t call Ser Cl ose unless the return value from Ser Open was 0
(zero) or ser Err Al r eadyQpen.

Ser Open

156 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SerControl

Perform a control function.

Err SerControl (U nt refNum
Word op,
Voi dPtr val ueP,
WordPtr val ueLenP)

->ref Num Reference number of library.
-=>o0p Control operation to perform(Ser Ct | Enum).
<->val ueP Pointer to value for operation.

<->val ueLenP Pointer to size of value.

0 No error.
ser Err BadPar am Invalid parameter (unknown).
ser Err Not Open Library not open.

This function provides extensible control features for the serial man-
ager. You can

= Turn on/off the RS232 break signal and check its status.
= Perform a local loopback test.

= Get the maximum supported baud rate.

= Get the hardware handshake threshold baud rate.

There is one emulator-only control,
ser Ct | EmuSet Bl ocki ngHook. See Using the Serial Manager for
more information.

Developing Palm OS 3.0 Applications, Part Ill 157

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

SerGetSettings

Fill in Ser Set t i ngsType structure with current serial port
attributes.

Err SerGetSettings (U nt refNum
Ser SettingsPtr settingsP)

->ref Num Serial library reference number.

<->settingsP Pointerto Ser Setti ngsType structure to be
filled in.

0 No error.

ser Err Not OQpen The port wasn’t open.

The information returned by this call includes the current baud rate,
CTS timeout, handshaking options, and data format options.

See the Ser Set t i ngsType structure for more details.

Ser Send

158 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

SerGetStatus

Return the pending line error status for errors that have been detect-
ed since the last time Ser Cl ear Er r was called.

Word SerGet Status (U nt ref Num
Bool eanPtr ctsOnP,
Bool eanPtr dsr OnP)

->ref Num Serial library reference number.
->ctsOnP Pointer to location for storing a Boolean value.
->dsr OnP Pointer to location for storing a Boolean value.

Returns any combination of the following constants, bitwise ORed
together:

serLineErrorParity Parity error.
ser Li neError HAOver run Hardware overrun.

ser Li neError Fram ng Framing error.
ser Li neError Break Break signal detected.
ser Li neErr or HShake Line handshake error.

ser Li neError SWOverrun Software overrun.

When another serial manager function returns an error code of
ser ErrLi neErr, Ser Get St at us can be used to find out the spe-
cific nature of the line error(s).

The values returned via ct sOnP and dsr OnP are not meaningful in
the present version of the software

Ser d ear Err

Developing Palm OS 3.0 Applications, Part Ill 159

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SerOpen

Acquire and open a serial port with given baud rate and default
settings.

Err SerOpen (U nt ref Num U nt port, ULong baud)

->ref Num Serial library reference number.

->port Port number.

-> paud Baud rate.

0 No error.

ser Err Al readyQpen Port was open. Enables port sharing
by “friendly” clients (not
recommended).

ser Err BadPar am Invalid parameter.

menEr r Not EnoughSpace Insufficient memory.

Acquires the serial port, powers it up, and prepares it for operation.
To obtain the serial library reference number, call SysLi bFi nd with
“Serial Library” as the library name. This reference number must be
passed as a parameter to all serial manager functions. The device
currently contains only one serial port with port number 0 (zero).

The baud rate is an integral baud value (for example - 300, 1200,
2400, 9600, 19200, 38400, 57600, etc.). The Palm OS device has been
tested at the standard baud rates in the range of 300 - 57600 baud.
Baud rates through 1 Mbit are theoretically possible. Use CTS hand-
shaking at baud rates above 19200 (see Ser Set Set ti ngs).

An error code of 0 (zero) or ser Er r Al r eadyOpen indicates that
the port was successfully opened. If the port is already open when
Ser Open is called, the port’s open count is incremented and an
error code of ser Err Al r eadyQpen is returned. This ability to open
the serial port multiple times allows cooperating tasks to share the
serial port. Other tasks must refrain from using the port if

ser Err Al readyQpen is returned and close it by calling

Ser d ose.

160 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Manager Functions

SerReceive

Purpose Receivessi ze bytes worth of data or returns with error if a line
error or timeout is encountered.

Prototype ULong SerReceive (U nt refNum
Voi dPtr rcvBuf P,
ULong count,
Long ti nmeout,

Err* errP)
Parameters ref Num Serial library reference number.
<->rcvBufP Buffer for receiving data.
-> count Number of bytes to receive.
-=>ti meout Interbyte timeout in ticks, 0 for none, -1 forever.

Result Number of bytes received:
*errP =0 No error.
serErrLi neErr RS232 line error.

ser Err Ti meQut Interbyte timeout.

See Also Ser Recei vel0

Developing Palm OS 3.0 Applications, Part Ill 161

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SerReceivelO

Receive a stream of bytes.

Err Ser Receive (U nt refNum
Voi dPtr buf P,
ULong bytes,
Long ti neout)

->ref Num The serial library reference number.

-> buf P Pointer to the buffer for receiving data.

-> byt es Number of bytes desired.

->ti meout Interbyte time out in system ticks (-1 = forever).

0 No error. Requested number of bytes was
received.

ser Err Ti meQut Interbyte time out exceeded while waiting for
the next byte to arrive.

ser ErrLi neErr Line error occurred (see Ser Cl ear Err and
Ser Get St at us).

Ser Recei ve blocks until all the requested data has been received
or an error occurs. Because this call returns immediately without
any data if line errors are pending, it is important to acknowledge
the detection of line errors by calling Ser G ear Er r . If you just
need to retrieve all or some of the bytes which are already in the re-
ceive queue, call Ser Recei veCheck first to get the count of bytes
presently in the receive queue.

162 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See also

Purpose

Prototype

Parameters

Result

Comments

SerReceiveCheck

Return the count of bytes presently in the receive queue.

Err Ser Recei veCheck (Ul nt refNum
ULongPtr nunByt esP)

-=>ref Num Serial library reference number.

<->nunByt esP Pointer to location for returning the byte count.

0 No error.

ser ErrLi neErr Line error pending (see Ser Cl ear Err and

Ser Get St at us).

Because this call does not return the byte count if line errors are
pending, it is important to acknowledge the detection of line errors
by calling Ser Cl ear Err..

Ser Recei veWi t

SerReceiveFlush

Discard all data presently in the receive queue and flush bytes com-
ing into the serial port. Clear the saved error status.

voi d Ser Recei veFl ush (U nt ref Num Long tineout)

-=>ref Num Serial library reference number.

->ti meout Interbyte time out in system ticks (-1 = forever).

Returns nothing.

Ser Recei veFl ush blocks until a timeout occurs while waiting for
the next byte to arrive.

Developing Palm OS 3.0 Applications, Part Ill 163

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See also

SerReceiveWalit

Wait for at least byt es bytes of data to accumulate in the receive
queue.

Err SerReceiveWait (U nt refNum
ULong bytes,
Long ti neout)

->ref Num Serial library reference number.

-> byt es Number of bytes desired.

->t 1 meout Interbyte timeout in system ticks (-1 = forever).
0 No error.

ser Err Ti meQut Interbyte timeout exceeded while waiting for
next byte to arrive.

ser ErrLi neErr Line error occurred (see Ser Cl ear Err and
Ser Get St at us).

This is the preferred method of waiting for serial input, since it
blocks the current task and allows switching the processor into a
more energy-efficient state.

Ser Recei veWai t blocks until the desired number of bytes accu-
mulate in the receive queue or an error occurs. The desired number
of bytes must be less than the current receive queue size. The default
gueue size is 512 bytes. Because this call returns immediately if line
errors are pending, it is important to acknowledge the detection of
line errors by calling Ser Cl ear Err.

Ser Recei veCheck, Ser Set Recei veBuf f er

164 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

SerSend

Send one or more bytes of data over the serial port.

ULong Ser Send (Ul nt ref Num
Voi dPtr buf P,
ULong count,

Err* errP
->ref Num Serial library reference number.
-> puf P Pointer to data to send.
-> count Number of bytes to send.
<->errP For returning error code.

Returns the number of bytes transferred.
StoresinerrP:

0 No error.

serErr Ti meQut Handshake timeout.

NOTE: The old versions of Ser Send and Ser Recei ve are still
available as Ser Send10 and Ser Recei vel0 (not V10).

The old calls worked, but they did not return enough info when
they failed. The new calls (available in Palm OS devices >=v2.0)
add more parameters to solve this problem and make serial commu-
nications programming simpler.

Don’t call the new functions when running on Palm OS 1.0.

Developing Palm OS 3.0 Applications, Part Ill 165

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SerSend10

Send a stream of bytes to the serial port.

Err SerSendl10 (U nt ref Num
Voi dPtr buf P,

ULong si ze)
->ref Num Serial library reference number.
->puf P Pointer to the data to send.
->si ze Size (in number of bytes) of the data to send.
0 No error.

ser Err Ti meQut Handshake timeout (such as waiting for CTS to
become asserted).

In the present implementation, Ser Send blocks until all data is
transferred to the UART or a timeout error (if CTS handshaking is
enabled) occurs. Future implementations may queue up the request
and return immediately, performing transmission in the back-
ground. If your software needs to detect when all data has been
transmitted, see Ser SendWai t .

This routine observes the current CTS time out setting if CTS hand-
shaking is enabled (see Ser Get Set ti ngs and Ser Send).

166 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Manager Functions

SerSendWait

Purpose Wait until the serial transmit buffer empties.
Prototype Err SerSendWait (U nt refNum Long tineout)

Parameters ->ref Num Serial library reference number.

-=>ti meout Reserved for future enhancements. Set to (-1)
for compatibility.

Result 0 No error.

ser Err Ti meQut Handshake timeout (such as waiting for CTS to
become asserted).

Comments Ser SendWai t blocks until all data is transferred or a timeout error
(if CTS handshaking is enabled) occurs. This routine observes the
current CTS timeout setting if CTS handshaking is enabled (see
Ser Get Set ti ngs and Ser Send).

Developing Palm OS 3.0 Applications, Part Ill 167

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SerSetReceiveBuffer

Replace the default receive queue. To restore the original buffer,
pass buf Si ze =0.

Err Ser Set Recei veBuffer (U nt refNum
Voi dPtr buf P,
U nt bufSize)

->ref Num Serial library reference number.

->buf P Pointer to buffer to be used as the new receive
gueue.

->buf Si ze Size of buffer, or 0 to restore the default receive
gueue.

Returns 0 if successful.

The specified buffer needs to contain 32 extra bytes for serial man-
ager overhead (its size should be your application’s requirement
plus 32 bytes). The default receive queue must be restored before
the serial port is closed. To restore the default receive queue, call
Ser Set Recei veBuf f er passing 0 (zero) for the buffer size. The
serial manager does not free the custom receive queue.

168 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

SerSetSettings

Set the serial port settings; that is, change its attributes.

Err SerSetSettings (U nt refNum
Ser SettingsPtr settingsP)

-=>ref Num Serial library reference number.

<->settingsP Pointerto the filled in Ser Setti ngsType
structure.

0 No error.

ser Err Not OQpen The port wasn’t open.
ser Err BadPar am Invalid parameter.

The attributes set by this call include the current baud rate, CTS
timeout, handshaking options, and data format options. See the def-
inition of the Ser Set t i ngsType structure for more details.

To do 7E1 transmission, OR together:

ser SettingsFl agBi t sPer Char 7 |
ser SettingsFl agParityOnM |
ser Setti ngsFl agParityEvenM |
serSettingsFl agSt opBitsl

If you’re trying to communicate at speeds greater than 19.2 KbPS,
you need to use hardware handshaking:
ser Setti ngsFl agRTSAut oM| ser Sett i ngsFl agCTSAut oM

Ser Get Set ti ngs

Developing Palm OS 3.0 Applications, Part Ill 169

Communications Functions
Serial Manager Functions

Functions Used Only by System Software

These routines are for use by the system software only and should
not be called by the applications under any circumstances.

SerReceivelSP

WARNING: This function for use by system software only.

SerReceiveWindowClose

WARNING: This function for System use only.

SerReceiveWindowOpen

WARNING: This function for System use only.

SerSetWakeupHandler

WARNING: This function for System use only.

SerSleep

WARNING: This function for use by system software only.

SerWake

WARNING: This function for use by system software only.

170 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Link Manager Functions

Serial Link Manager Functions

Purpose
Prototype
Parameters

Result

Comments

SlkClose

Close down the serial link manager.
Err Sl kd ose (void)

None.

0 No error.
sl kErr Not Open The serial link manager was not open.

When the open count reaches zero, this routine frees resources allo-
cated by serial link manager.

Developing Palm OS 3.0 Applications, Part Ill 171

Communications Functions
Serial Link Manager Functions

Purpose

Prototype
Parameters

Result

Comments

See Also

SlkCloseSocket

Closes a socket previously opened with S| kQpenSocket .

WARNING: The caller is responsible for closing the
communications library used by this socket, if necessary.

Err Sl kCl oseSocket (U nt socket)
socket The socket ID to close.

0 No error.
sl KErr Socket Not Open The socket was not open.

Sl kCl oseSocket frees system resources the serial link manager
allocated for the socket. It does not free resources allocated and
passed by the client, such as the buffers passed to

S| kSet Socket Li st ener ; this is the client’s responsibility. The
caller is also responsible for closing the communications library
used by this socket.

Sl kOpenSocket , S| kSocket Ref Num

172 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype
Parameters

Result

Comments

SlkFlushSocket

Flush the receive queue of the communications library associated
with the given socket.

Err Sl kKFl ushSocket (U nt socket, Long timeout)

->socket Socket ID.
-=>ti meout Interbyte timeout in system ticks.
0 No error.

sl kErr Socket Not Open The socket wasn’t open.

SIkOpen

Initialize the serial link manager.

Err Sl kOpen (void)

None.
0 No error.
sl kErr Al readyQpen No error.

Initializes the serial link manager, allocating necessary resources.
Return codes of 0 (zero) and sl KEr r Al r eadyOpen both indicate
success. Any other return code indicates failure. The

sl kErr Al r eadyOpen function informs the client that someone
else is also using the serial link manager. If the serial link manager
was successfully opened by the client, the client needs to call

Sl kCQ ose when it finishes using the serial link manager.

Developing Palm OS 3.0 Applications, Part Ill 173

Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SlkOpenSocket

Open a serial link socket and associate it with a communications li-
brary. The socket may be a known static socket or a dynamically as-
signed socket.

Err Sl kOpenSocket (Ul nt |ibRef Num
U ntPtr socketP,
Bool ean stati cSocket)

I i bRef Num Comm library reference number for socket.
socket P Pointer to location for returning the socket ID.

stati cSocket If TRUE, *socket P contains the desired static
socket number to open. If FALSE, any free sock-
et number is assigned dynamically and opened.

0 No error.
sl KErr Qut O Socket s No more sockets can be opened.

The communications library must already be initialized and opened
(see Ser Open). When finished using the socket, the caller must call
Sl kG oseSocket to free system resources allocated for the socket.
For information about well-known static socket IDs, see The Serial
Link Protocol.

174 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

SlkReceivePacket

Receive and validate a packet for a particular socket or for any sock-
et. Check for format and checksum errors.

Err Sl kRecei vePacket (U nt socket,

->socket
->andQ her Socket s

<-> header P

<->bodyP
->bodySi ze

->ti nmeout

0

Bool ean andQt her Socket s,
S| kPkt Header Pt r header P,
voi d* bodyP,

U nt bodySi ze,

Long ti neout)

The socket ID.

If TRUE, ignore destination in packet
header.

Pointer to the packet header buffer (size of
Sl kPkt Header Type).

Pointer to the packet client data buffer.

Size of the client data buffer (maximum
client data size which can be
accommodated).

Maximum number of system ticks to wait
for beginning of a packet; -1 means wait
forever.

No error.

sl kErr Socket Not Open The socket was not open.

sl kEr r Ti meQut

Timed out waiting for a packet.

sl kErr W ongDest Socket The packet being received had an un-

sl kErr Checksum

sl kEr r Buf f er

expected destination.

Invalid header checksum or packet
CRC-16.

Client data buffer was too small for
packet’s client data.

Developing Palm OS 3.0 Applications, Part Ill 175

Communications Functions
Serial Link Manager Functions

Comments

If andQt her Socket s is FALSE, this routine returns with an error
code unless it gets a packet for the specific socket.

If andQx her Socket s is TRUE, this routine returns successfully if it
sees any incoming packet from the communications library used by
socket .

You may request to receive a packet for the passed socket ID only, or
for any open socket which does not have a socket listener. The pa-
rameters also specify buffers for the packet header and client data,
and a timeout. The timeout indicates how long the receiver should
wait for a packet to begin arriving before timing out. If a packet is
received for a socket with a registered socket listener, it will be dis-
patched via its socket listener procedure. On success, the packet
header buffer and packet client data buffer is filled in with the actual
size of the packet’s client data in the packet header’s bodySi ze
field.

176 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SlkSendPacket

Send a serial link packet via the serial output driver.

Err Sl kSendPacket (S| kPkt Header Ptr header P,
SlkWiteDataPtr writelList)

<->header P Pointer to the packet header structure with cli-
ent information filled in (see Comments).

->witelList List of packet client data blocks (see
Comments).

0 No error.

sl kErr Socket Not Open The socket was not open.
sl KEr r Ti meQut Handshake timeout.

S| kSendPacket stuffs the signature, client data size, and the
checksum fields of the packet header. The caller must fill in all other
packet header fields. If the transaction ID field is set to 0 (zero), the
serial link manager automatically generates and stuffs a new non-
zero transaction ID. The array of S| kW i t eDat aType structures
enables the caller to specify the client data part of the packet as a list
of noncontiguous blocks. The end of list is indicated by an array ele-
ment with the si ze field set to 0 (zero). This call blocks until the en-
tire packet is sent out or until an error occurs.

Developing Palm OS 3.0 Applications, Part Ill 177

Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

Comments

SlkSetSocketListener

Register a socket listener for a particular socket.

Err Sl kSet Socket Li stener (U nt socket,
Sl kSocket Li stenPtr socket P)

->socket Socket ID.

->socket P Pointer to a Sl kSocket Li st enType
structure.

0 No error.

sl kEr r BadPar am Invalid parameter.

sl kErr Socket Not Open The socket was not open.

Called by applications to set up a socket listener.

Since the serial link manager does not make a copy of the
Sl kSocket Li st enType structure, but instead saves the passed
pointer to it, the structure

= must not be an automatic variable (that is, local variable allo-
cated on the stack)

= may be a global variable in an application
= may be a locked chunk allocated from the dynamic heap

The Sl kSocket Li st enType structure specifies pointers to the
socket listener procedure and the data buffers for dispatching pack-
ets destined for this socket. Pointers to two buffers must be speci-
fied: the packet header buffer (size of SI kPkt Header Type), and
the packet body (client data) buffer. The packet body buffer must be
large enough for the largest expected client data size. Both buffers
may be application global variables or locked chunks allocated from
the dynamic heap.

The socket listener procedure is called when a valid packet is re-
ceived for the socket. Pointers to the packet header buffer and the

178 Developing Palm OS 3.0 Applications, Part Il

Communications Functions
Serial Link Manager Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

packet body buffer are passed as parameters to the socket listener
procedure.

Note: The application is responsible for freeing the
Sl kSocket Li st enType structure or the allocated buffers when
the socket is closed. The serial link manager doesn’t do it.

SlkSocketRefNum

Get the reference number of the communications library associated
with a particular socket.

Err Sl kSocket Ref Num (Ul nt socket, U ntPtr refNunP)

->socket The socket ID.

<->ref NunP Pointer to location for returning the communi-
cations library reference number.

0 No error.
sl kErr Socket Not Open The socket was not open.

SlkSocketSetTimeout
Set the interbyte packet receive-timeout for a particular socket.

Err Sl kSocket Set Ti neout (Ul nt socket,
Long ti neout)

->socket Socket ID.

->t i meout Interbyte packet receive-timeout in system
ticks.

0 No error.

sl KErr Socket Not Open The socket was not open.

Developing Palm OS 3.0 Applications, Part Ill 179

Communications Functions
Miscellaneous Communications Functions

Prototype

Prototype

Functions for Use By System Software Only

SIkSysPktDefaultResponse

Err Sl kSysPkt Def aul t Response (
S| kPkt Header Pt r header P,
voi d* bodyP)

WARNING: This function for use by system software only.

SlkProcessRPC

Err Sl kProcessRPC (Sl kPkt Header Pt r header P,
voi d* bodyP)

WARNING: This function for use by system software only.

Miscellaneous Communications Functions

Purpose

Prototype

Parameters

Result

Crcl6CalcBlock

Calculate the 16-bit CRC of a data block using the table lookup
method.

Wrd Crcl6éCal cBl ock (VoidPtr bufP,

U nt count,

Word crc)
buf P Pointer to the data buffer.
count Number of bytes in the buffer.
crc Seed CRC value.

A 16-bit CRC for the data buffer.

180 Developing Palm OS 3.0 Applications, Part Il

™

-o-0—
—o—e-—
-o-0—
———
—-——

Overview

6
Palm OS Net Library

The Palm OS net library provides basic network services to applica-
tions. Using the net library, a Palm OS application can easily estab-
lish a connection with any other machine on the Internet and trans-
fer data to and from that machine using the standard TCP/IP
protocols.

The basic network services provided by the net library include:

= Stream-based, guaranteed delivery of data using TCP (Trans-
mission Control Protocol).

= Datagram-based, best-effort delivery of data using UDP
(User Datagram Protocol).

All higher-level Internet-based services (file transfer, e-mail, web
browsing, etc.) can be implemented by applications on top of these
basic data delivery services.

The application programming interface (API) for the net library is
designed to be general enough to support almost any network pro-
tocol including Novell IPX, AppleTalk. Note, however, that current-
ly only the TCP/IP protocols are implemented.

The API maps almost directly to the Berkeley UNIX sockets API, the
de facto standard API for Internet applications. By including the ap-
propriate header files, an application written to use the Berkeley
sockets API can be compiled for the Palm OS with only slight (if
any) changes to the source code.

This overview of the net library discusses the following topics:

* Structure
= System Requirements
« Constraints

Developing Palm OS 3.0 Applications, Part Ill 181

Palm OS Net Library

Overview

Structure

The net library is implemented as a system library. System libraries
are dynamically installed at runtime and don’t always have to be
present in the system. Since it is unclear whether all future plat-
forms will need or want network support (especially devices with
very limited amounts of memory), network support is an optional
part of the operating system. As a result, systems which do not re-
guire network support will not pay any RAM penalty (for added en-
tries in the system dispatch table, etc.).

The net library consists of two parts: a netlib interface and a net pro-
tocol stack. Neither part is actually linked in with an application. As
a result, developers can update them as necessary in the future
without having to recompile the applications that use them.

The netlib interface is the set of routines that an application calls di-
rectly when it makes a net library call. These routines execute in the
caller’s task like subroutines of the application. They are not linked
in with the application, however, but are called through the library
dispatch mechanism.

The net protocol stack runs as a separate task in the operating sys-
tem. Inside this task, the TCP/IP protocol stack runs, and received
packets are processed from the network device drivers. The netlib
interface communicates with the net protocol stack through an oper-
ating system mailbox queue. It posts requests from applications into
the queue and blocks until the net protocol stack processes the re-
quests.

Having the net protocol stack run as a separate task has two big ad-
vantages:

= The operating system can switch in the net protocol stack to pro-
cess incoming packets from the network even if one or more ap-
plications are currently busy.

= Even if an application is blocked waiting for some data to arrive
off the network, the net protocol stack can continue to process re-
guests for other applications.

System Requirements
The net library requires Palm OS 2.0 or better.

182 Developing Palm OS 3.0 Applications, Part Il

Palm OS Net Library
Overview

When the net library itself is opened, it requires an estimated addi-
tional 32 KB of RAM. This in effect doubles the overall system RAM
requirements, currently 32 KB without the net library. It’s therefore
not practical to run the net library on any platform that has 128 KB
or less of total RAM available since the system itself will consume 64
KB of RAM (leaving only 64 KB for user storage in a 128 KB system).

Constraints

Developers must keep in mind that Palm OS is designed for small
devices with limited amounts of memory and other hardware re-
sources. All applications written for Palm OS must pay special at-
tention to memory and CPU usage. Devices that have the net library
installed will most likely have only 64 KB of RAM available for sys-
tem and applications. This does not include user storage RAM.
When the net library is opened and initialized, the total remaining
amount of RAM available to an application is approximately 14 KB.

The net library is built to allow a maximum of four open sockets at
one time to keep the memory requirements of the net library to a
minimum. Network applications have to be designed with this con-
straint in mind.

Network applications should also be careful about the amount of
data they try to send to a remote host at the same time. When using
TCP, the data that an application writes to a remote host is buffered
in the dynamic heap so that control can be returned to the caller be-
fore the data is actually transmitted out over the network. Obvious-
ly, sending a 16 KB block of data to a remote host will severely tax
the small dynamic memory space available to a Palm OS applica-
tion. When an application tries to send a large block of data, the net
library’s send routines automatically buffer only a portion of the
block of data, return the size of that portion to the caller, and rely on
the caller to issue additional send calls to finish the transmission.

If an application expects to also receive data during a large trans-
mission, it should therefore send a smaller block, then read back
whatever is available to read before sending the next block. In this
way, the amount of memory in the dynamic heap that must be used
to buffer data waiting to send out and data waiting to be read back
in by the application is kept to a minimum.

Developing Palm OS 3.0 Applications, Part Ill 183

Palm OS Net Library
The Programmer’s Interface

The Programmer’s Interface

The net library APl was designed in such a way that a program
written to use the Berkeley sockets APl can be compiled to use the
net library APl simply by including the appropriate header files. Lit-
tle or no source code modification should be required. The

sys/ socket . h header file provided with the Palm OS SDK in-
cludes a set of macros that map Berkeley sockets calls directly to net
library calls. That information is also included with the reference
page for each function (See Chapter 7, “Net Library Functions,”)

Net Library and Berkeley Sockets API:
Differences

There are four main reasons why the net library API is slightly dif-
ferent from the sockets API.

= Error Codes. The sockets API by convention returns error
codes in the application’s global variable er r no. The net API
doesn’t rely on any application global variables. This allows
system code (which cannot have global variables) to use the
net library APL.

< RefNum. All library calls in the Palm OS must have the li-
brary reference number (r ef nun) as their first parameter.

= Timeouts. In a consumer system such as the Palm OS device,
infinite timeouts don’t work well because the end user can’t
“Kkill” a process that’s stuck. A timeout parameter was there-
fore added to the API to allow the application to gracefully
recover from hung connections.

= Naming Conventions. The naming conventions in the sock-
ets APl don’t match the naming conventions of the Palm OS.

The main differences between the net library APl and the Berkeley
sockets API is that most net library API calls accept additional pa-
rameters for:

= Atimeout
e Ther ef Numof the net library
= The address for the return error code

The design of the Palm OS library manager requires that all library
calls have the library r ef Numas the first parameter.

184 Developing Palm OS 3.0 Applications, Part Il

Palm OS Net Library
The Programmer’s Interface

The macros in sys/ socket . h do the following:

For... The macros pass...

ref Num AppNet Ref num(application global variable).

timeout AppNet Ti neout (application global variable).
return Address of the application global er r no.
error code

Example

The following example illustrates how the APl mapping works for
the Berkeley sockets call socket (), which has the calling conven-
tion:

int socket(int domain, int type, int protocol);
The equivalent net library call is Net Li bSocket Open, which has
the calling convention:

Net Socket Ref Net Li bSocket Open(

Wrd |i bRef num
Net Socket Addr Enum domai n,

Net Socket TypeEnum t ype,
SWord protocol,

SDWord ti meout,

Err* errP)

The macro for socket is:
#def i ne socket (domai n, t ype, protocol)\
Net Li bSocket Open(AppNet Ref num
domai n,
type,
pr ot ocol ,
AppNet Ti neout ,
&errno)

The macro in sys/ socket . h for the socket () call passes:

= The application global AppNet Ref numas the | i bRef num
= The address of the application global er r no for er r P.

Developing Palm OS 3.0 Applications, Part Ill 185

Palm OS Net Library
Using the Net Library

= Atimeout value from the application global
AppNet Ti meout .

All other parameters are passed as is. Consequently, there is no extra
layer of glue code penalty for using the sockets API instead of the
net library API directly. Of course, an application that uses the sock-
ets APl with the Palm OS must declare and initialize the global vari-
ables AppNet Ti neout , AppNet Ref num and er r no somewhere in
its source code.

Using the Net Library

The net library can be thought of as having two groups of API calls:
setup and configuration calls, and runtime calls. Normally, applica-
tions only use the runtime calls and leave all setup and configura-
tion up to the net library preference panel.

Applications that need to use the net library should assume that all
setup and configuration has occurred and focus on using the
runtime calls.

An exception to this rule is applications that allow the user to select
a particular “service” before trying to establish a connection. These
kinds of applications present a pick list of service names and allow
the user to select a service name. This functionality is provided via
the net library preference panel. The panel provides action codes
that allow an application to present a list of possible service names
to let the end user pick one. The preference panel then makes the
necessary net library setup and configuration calls to set up for that
particular service.

This section first discusses Setup and Configuration Calls, then pro-
vides some detail on Runtime Calls.

Setup and Configuration Calls

The setup and configuration API calls of the net library are normally
only used by the net library preference panel. This includes calls to
set IP addresses, host name, domain name, login script, interface
settings, and so on. Each setup and configuration call saves its set-
tings in the net library preferences database in nonvolatile storage
for later retrieval by the runtime calls.

186 Developing Palm OS 3.0 Applications, Part Il

Palm OS Net Library
Using the Net Library

Usually, the setup and configuration calls are made while the library
is closed. A subset of the calls can also be issued while the library is
open and will have real-time effects on the behavior of the library.
Chapter 7, “Net Library Functions,” describes the behavior of each
call in more detail.

Interface Specific Settings

The net library configuration is structured so that network interface-
specific settings can be specified for each network interface indepen-
dently. These interface specific settings are called IF settings and are
set and retrieved through the Net Li bl FSet t i ngGet and

Net Li bl FSet ti ngSet calls.

e TheNet Li bl FSet ti ngGet call takes a setting ID as a parame-
ter along with a buffer pointer and buffer size for the return
value of the setting. Some settings, like login script, are of vari-
able size so the caller must be prepared to allocate a buffer large
enough to retrieve the entire setting.

e The Net Li bl FSet ti ngSet call also takes a setting ID as a pa-
rameter along with a pointer to the new setting value and the
size of the new setting.

General Settings

In addition to the interface-specific settings, there’s a class of set-
tings that don’t apply to any one particular interface. These general
settings are set and retrieved through the Net Li bSet t i ngGet and
Net Li bSet ti ngSet calls. These calls take setting 1D, buffer point-
er, and buffer size parameters.

Settings for Interface Selection

Finally, there is a set of calls for specifying which interface(s) should
be used by the net library. The Net Li bl FGet call can be used to
find out which interfaces are currently set up to be used by the li-
brary. The Net Li bl FAt t ach and Net Li bl FDet ach can be used to
attach and detach specific interfaces from the library.

These calls in particular can be called while the library is open or
closed. If the library is open, the specific interface is attached or de-
tached in real time. If the library is closed, the information is saved
in preferences and used the next time the library is opened.

Developing Palm OS 3.0 Applications, Part Ill 187

Palm OS Net Library
Using the Net Library

Summary
In summary, the preference panel needs to
= Set the general settings.
= Attach the appropriate network interfaces.
= Set the network specific settings for each interface.

The order in which this is done is not important since nothing is
done with the settings until the library is opened. The API descrip-
tion for each of the configuration calls lists in detail the possible set-
ting values for each call, which are required or optional, and the de-
fault values for each setting.

Runtime Calls

Most applications will use only the net library runtime calls. Most of
these calls have an equivalent function in the Berkeley sockets API.
The sys/ socket . h header file allows source code written to the
Berkeley sockets API to be compiled directly for the Palm OS.

There is, however, some additional setup and shutdown code that
every Palm OS application must have in order to use the net library.
Because of the limited resources in the Palm OS environment, the
net library was designed so that it only takes up extra memory from
the system when an application is running that actually needs to use
its services. An Internet application must therefore inform the
system when it needs to use the net library by opening the net li-
brary when it starts up and by closing it when it exits.

Initialization and Shutdown

The following calls are available to open and close the net library:
= Calls Made Before Opening the Net Library

* Opening the Net Library

« Closing the Net Library

188 Developing Palm OS 3.0 Applications, Part Il

Palm OS Net Library
Using the Net Library

Calls Made Before Opening the Net Library

Most net library calls don’t work before the library is opened. An ex-
ception to this rule are calls that specify which network interface(s)
to use, and the calls for setting the net library settings and the set-
tings for the network interfaces. These calls are Net Li bl FGet ,

Net Li bl FAttach, NetLi bl FDetach, NetlLi bl FSetting-
Get, NetLiblFSettingSet, NetLibSettingGet, and

Net Li bSet ti ngSet (see also Setup and Configuration Calls). All
of these calls save the settings in the net library Preferences database
used by Net Li bOpen to initialize the library and establish the con-
nection.

It’s expected that most applications won’t need to use these calls be-
cause the network preferences panel is responsible for configuring
the net library.

Opening the Net Library

An application can call Net Li bOpen to open the net library. Before
the net library is opened, most calls issued to it fail with a
net Er r Not Qpen error code.

If the net library is not already open for another application,

Net Li bQpen starts up the net protocol stack task, allocates memory
for internal use by the net library, and brings up the network con-
nection. Most likely, the user has configured the Palm OS device to
establish a SLIP or PPP connection through a modem and in this
type of setup, Net Li bOpen dials up the modem and establishes the
connection before returning.

If the net library is already open when Net Li bOpen is called, it sim-
ply increments the open count and returns immediately.

Note that the Net Li bOpen call may bring up Ul elements to display
connection progress information, depending on which network in-

terfaces it is using. Because of this, the caller must call Net Li bOpen
from the main Ul task (that is, the main event loop of an application)
and not from a background task.

Closing the Net Library

Before an application quits, or if it no longer needs to do network
170, it should call Net Li bCl ose.

Developing Palm OS 3.0 Applications, Part Ill 189

Palm OS Net Library

Using the Net Library

Net Li bCl ose decrements the open count. If the open count has
reached 0, Net Li bCl ose schedules a timer to shut down the net li-
brary unless another Net Li bOpen is issued before the timer expires.
The close timer allows the user to quit from one network application
and launch another application within a certain time period without
having to wait for another network connection establishment.

If Net Li bOpen is called before the close timer expires, it simply can-
cels the timer and marks the library as fully open with an open
count of 1 before returning. If the timer expires before another

Net Li bQpen isissued, all existing network connections are brought
down, the net protocol stack task is terminated, and all memory al-
located for internal use by the net library is freed.

Summary of Initialization

In summary, any application that needs to do network 170 should
always call Net Li bQpen firstand Net Li bCl ose before it quits. The
details of whether or not a connection needs to be established or
brought down are automatically handled by the library:.

Note that all net library calls, including Net Li bOpen and Net Li b-
Cl ose require the r ef Numof the net library as their first parameter.
To find thisr ef Num call SysLi bFi nd, passing the name of the net
library, "Net . | i b". In addition, if the application is using the sock-
ets APl macros, it must save this r ef numin the application global
variable AppNet Ref num

Initialization Example

The following example code fragment illustrates how to find the net
library’s r ef numand then open the library. Note that if the net li-
brary is not installed on the Palm OS device (on a pre-2.0 ROM, or a
128Kb machine for example), SysLi bFi nd returns an error code.

#i ncl ude <sys/socket. h>

err = SysLibFind("Net.lib", &AppNetRefnum;

if (err) {/* error handling here */}

err = Net Li bOpen(AppNet Ref num & fErrs);

if (err || ifErrs) {/* error handling here */}

190 Developing Pa

Im OS 3.0 Applications, Part Il

Palm OS Net Library
Using the Net Library

Once the net library has been opened, sockets can be opened and
data sent to and received from remote hosts using either the Berke-
ley sockets API, or the native net library API. The following example
code fragment shows how to close down the net library when an ap-
plication exits or no longer needs network support:

err = NetLi bC ose(AppNet Ref num fal se);

Version Checking

Besides using SysLi bFi nd to determine if the net library is in-
stalled, an application can also look for the net library version fea-
ture. This feature is only present if the net library is installed. This
feature can be used to get the version number of the net library as
follows:

DWord versi on;

err = FtrGet(netFtrCreator, netFtrNunVersion,

&version);

If the net library is not installed, Ft r Get returns a non-zero result
code.

The version number is encoded in the format Ox Mvhf sbbb, where:

MM major version

m minor version
f bug fix level
S stage: 3-release, 2-beta, 1-alpha, 0-development

bbb build number for non-releases

For example:
V1.1.2b3 would be encoded as 0x01122003
VV2.0a2 would be encoded as 0x02001002
V1.0.1 would be encoded as 0x01013000
This document describes version 1.0 of the net library (0x01003000).

Developing Palm OS 3.0 Applications, Part Ill 191

Palm OS Net Library

Using the Net Library

Network I/O and Utility Calls

Because of the close correlation with the Berkeley sockets API, the
reader is referred to one of the many books written on network com-
munications for an explanation of how to use the remaining calls in
the net library. Where applicable, the detailed function explanations
in Net Library Functions provide the equivalent sockets API call for
each native net library call.

Note that because the Berkeley sockets API requires some applica-
tion global variables and glue code, an application written for this
API must link with the module " Net Socket . ¢c", which is included
as part of the Palm OS SDK. The following is a summary of the
mappings from the Berkeley sockets API to the native net library
API.

Berkeley Net Library

Sockets API

accept Net Li bSocket Accept

bcopy MemVbve

bzero Mentet

bcnp MenCnp

bi nd Net Li bSocket Bi nd

cl ose Net Li bSocket C ose

connect Net Li bSocket Connect

fentl Net Li bSocket Opti onSet/ Net Li bSocket Opti onGet

get domai nnane

get host byaddr

get host bynane

(..., net Socket Opt SockNonBIl ocki ng, .. .)

Net Li bSocket Opti onCGet (.., net Setti ngDomai n-
Nane, ...)

Net Li bGet Host By Addr

Net Li bGet Host ByNane

192 Developing Palm OS 3.0 Applications, Part Il

Palm OS Net Library
Using the Net Library

Berkeley
Sockets API

Net Library

get host nane
get peer nane
get servbynane
get socknane
get sockopt

get ti neof day

ht onl

ht ons

i net _addr
i net _| naof

i net _makeaddr

net net of

i net _network
i net _ntoa
[isten

nt ohl

nt ohs

read

recv

recvfrom

Net Li bSettingGet(.., netSettingHost Nane, ...)

Net Li bSocket Addr

Net Li bGet Ser vBy Nane

Net Li bSocket Addr

Net Li bSocket Opti onGet

glue code using Ti nGet Seconds() (see Part Il)
macro
macro

Net Li bAddr ATol N

glue code
glue code
glue code
glue code

Net Li bAddr | NToA

Net Li bSocket Li st en

macro
macro

Net Li bRecei ve

Net Li bRecei ve

Net Li bRecei ve

Developing Palm OS 3.0 Applications, Part Il

193

Palm OS Net Library

Using the Net Library

Berkeley Net Library
Sockets API

recvisg Net Li bRecei vePB
send Net Li bSend
sendnsg Net Li bSendPB
sendt o Net Li bSend

set sockopt
shut down

sl eep

socket

sel ect

set donmai nnane
set host nane
set ti neof day

wite

Net Li bSocket Opti onSet

Net Li bSocket Shut down

SysTaskDel ay

Net Li bSocket Open

Net Li bSel ect

Net Li bSettingSet (.., netSettingDonmai nNane, ...)

Net Li bSettingSet (.., netSettingHost Nane, ...)

glue code using Ti nSet Seconds() (see Part Il)

Net Li bSend

194 Developing Palm OS 3.0 Applications, Part Il

™

-o-0—
—o—e-—
-o-0—
———
—-——

Net Library
Functions

This chapter lists the calls available in the net library and their Ber-

keley sockets equivalents. Each call has a purpose section which

gives a short description of what the call does; a prototype section
identifies the parameters to the call and their types; a parameters sec-
tion lists detailed information about each of the parameters; a result
section identifies the possible return codes; a sockets API equivalent
section gives the name of the corresponding sockets API call; and a

comments section gives a more detailed description of the call.
The functions are grouped as follows:

Library Open and Close

Socket Creation and Deletion

« Socket Options
= Socket Connections

« Send and Receive Routines

= Utilities

= Configuration

= Berkeley Sockets API Calls

= Supported Socket Functions

= Supported Network Utility Functions
= Supported Byte Ordering Functions

« Supported Network Address Conversion Functions

« Supported System Utility Functions

Developing Palm OS 3.0 Applications, Part Il

195

Net Library Functions
Library Open and Close

Library Open and Close

Purpose
Prototype

Parameters

Result Codes

Sockets
Equivalent

Comments

NetLibClose

Closes the net library.
Err NetLi bd ose (Wrd |ibRefnum Wrd i mmedi at e)

->| i bRef num Reference number of the net library.

-> | nmedi at e If TRUE, library will shut down immediately. If
FALSE, library will shut down only if close
timer expires before another Net Li bQpen is
issued.

0 No error.
net Er r Not OQpen Library was not open.

netErrStill Open
Not really an error; returned if library is still in
use by another application.

None.

Applications must call this function when they no longer need the
net library. If the net library open count is greater than 1 before this
call is made, the count is decremented and net Err Sti | | Open is
returned. If the open count was 1, the library takes the following ac-
tion:

< Ifi nmedi at e is TRUE, the library shuts down immediately.
All network interfaces are brought down, the net protocol
stack task is terminated, and all memory used by the net
library is freed.

= Ifi nedi at e is FALSE, a close timer is created and this call
returns immediately without actually bringing the net
library down. Instead it leaves it up and running but marks
it as in the “close-wait” state. It remains in this state until

196 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Library Open and Close

See Also

either the timer expires or another Net Li bOpen is issued. If
the timer expires, the library is shut down. If another

Net Li bQpen call is issued before the timer expires (possibly
by another application), the timer is cancelled and the library
is marked as fully open.

It is expected that most applications will pass FALSE for

i mredi at e. This allows the user to quit one Internet application
and launch another within a short period of time without having to
wait through the process of closing down and then re-establishing
dial-up network connections.

Net Li bOpen, Net Li bOpenCount

Developing Palm OS 3.0 Applications, Part Ill 197

Net Library Functions
Library Open and Close

Purpose

Prototype

Parameters

Result Codes

Sockets
Equivalent

Comments

NetLibConnectionRefresh

This routine is a convenience call for applications. It checks the sta-
tus of all connections and optionally tries to open any that were
closed.

Err Net Li bConnecti onRefresh (Word ref Num
Bool ean refresh,
Bool eanPtr al |l I nterfacesUpP,
WordPtr netl FErr P)

ref num Reference number of the net library.

refresh If TRUE, any connections that aren’t current-
ly open are opened.

al I I nterfacesUpP Setto TRUE if all connections are open.

net| FErr P First error encountered when reopening
connections that were closed.

0 No error.

None.

This function determines whether a connection is up based on the
internal status of the TCP/IP stack. To test the presence of a “physi-
cal connection” (phone line, modem, serial cable), a command
should be sent once it’s been determined that the logical connection
is up. If the physical connection is broken, nothing returns, and a
timeout error eventually occurs.

198 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Library Open and Close

Purpose

Prototype
Parameters
Result Codes

Sockets
Equivalent

Comments

NetLibFinishCloseWait

Forces the net library to do a complete close if it’s currently in the
close-wait state.

Err Net Li bFi ni shC oseWait (Wrd |i bRef num
->| i bRef num Reference number of the net library.
0 No error.

None.

This call checks the current open state of the net library. If it’s in the
close-wait state (see Net Li bCl ose), it forces the library to perform
an immediate, complete close operation.

This call will most likely only be used by the preferences panel that
configures the net library.

Developing Palm OS 3.0 Applications, Part Ill 199

Net Library Functions
Library Open and Close

NetLibOpen

Purpose Opens and initializes the net library.

Prototype Err NetLibOpen (Word |ibRefnum
WordPtr net | FErr P)

Parameters ->1ibRef num Reference number of the net library.
->netl FErrP Pointer to return error code for interfaces.

Result 0 No error.

net Err Al readyOpen
Not really an error; returned if library was al-
ready open and the open count was simply
incremented.

net Er r Qut Of Menory
Not enough memory available to open the
library.

net Err Nol nt er f aces
Incorrect setup.

net Er r Pr ef Not Found
Incorrect setup.

Comments Applications must call this function before using the net library. If
the net library was already open, Net Li bQpen increments its open
count. Otherwise, it opens the library, initializes it, starts up the net
protocol stack component of the library as a separate task, and
brings up all attached network interfaces.

Net Li bQpen uses settings saved in the net library’s preferences da-
tabase during initialization. These settings include the interfaces to
attach, the IP addresses, etc. It’s assumed that these settings have
been previously set up by a preference panel or equivalent so an
application doesn’t normally have to set them up before calling

Net Li bOpen.

200 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Library Open and Close

See Also

If the end user has configured the Palm OS device to connect
through a dialup interface, there’s a good chance that the interface
will display a progress dialog as it establishes a connection. For this
reason, Net Li bOpen must be called from the main Ul task (an ap-
plication’s main event loop), and not from a separate background
task.

If any of the attached interfaces fails to come up, *net | FEr r P will
contain the error number of the first interface that encountered a
problem.

It’s possible, and quite likely, that the net library will be able to open
even though one or more interfaces failed to come up (due to bad
modem settings, service down, etc). Some applications may there-
fore wish to close the net library using Net Li bd ose if

*net | FEr r P is non-zero and display an appropriate message for
the user. If an application needs more detailed information, e.g.
which interface(s) in particular failed to come up, it can loop
through each of the attached interfaces and ask each one if itis up or
not. Use the following calls to accomplish this:

e Net Li bl FGet (.. .),
e NetLi bl FSettingGet (..., netlFSettingUp, ...)
e NetLi bl FSettingGet (..., netlFSettingNane,...)

SysLi bFi nd, Net Li bCl ose, Net Li bOpenCount

Developing Palm OS 3.0 Applications, Part Ill 201

Net Library Functions
Library Open and Close

Purpose

Prototype

Parameters

Result Codes

Sockets
Equivalent

Comments

NetLibOpenCount

Retrieves the open count of the net library.

Err Net Li bOpenCount (Word |i bRef num
WordPtr count P)

->| i bRef num Reference number of the net library.

<-countP Pointer to return count variable.
0 No error.
None.

This call will most likely only be used by the Network preference
panel. Most applications will simply call Net Li bOpen uncondition-
ally during startup and Net Li bCl ose when they exit.

202 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Creation and Deletion

Socket Creation and Deletion

Purpose

Prototype

Parameters

Result Codes

Errors

Sockets
Equivalent

Comments

See Also

NetLibSocketClose

Close a socket.

SWord Net Li bSocket Cl ose (Wrd |i bRef num
Net Socket Ref socket Ref,
SDWrd ti neout,
Err* errP)

->| i bRef Num Reference number of the net library.

->socket Ref Socket Ref of the open socket.

->ti meout Maximum timeout in system ticks, -1 means
wait forever.

<-errP Address of variable used to return error code.

0 No error.

-1 Error occurred. Error code in *err P.

0 No error.

net Err Ti meout Call timed out.
net Er r Not Open

net Er r Par antrr

net Er r Socket Not Open

int close(int socket);

Closes down a socket and frees all memory associated with it.

Net Li bSocket Open, Net Li bSocket Shut down

Developing Palm OS 3.0 Applications, Part Ill 203

Net Library Functions
Socket Creation and Deletion

Purpose

Prototype

Parameters

Result Codes

Errors

NetLibSocketOpen

Open a new socket.

Net Socket Ref Net Li bSocket Open (Wbrd |i bRef num
Net Socket Addr Enum donai n,
Net Socket TypeEnum t ype,
SWord protocol,
Long tinmeout, Err* errP)

->| i bRef Num Reference number of the net library.

->domai n Address domain. Only net Socket Addr | NET
is currently supported.

->type Desired type of connection, either
net Socket TypeSt r eamor
net Socket TypeDat agr am
net Socket TypeRawis not currently

supported.
-> pr ot ocol Protocol to use. Currently ignored for the
net Socket Addr | NET domain.
-=>ti meout Maximum timeout in system ticks, -1 means
wait forever.
<-errP Address of variable used to return error code.
>=0 Socket r ef Numof open socket.
-1 Error occurred, error code in *err P.
0 No error.

net Err Ti meout

net Er r Not Open

net Err Par antr r

net Er r NoMor eSocket s

204 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Creation and Deletion

Sockets
Equivalent

Comments

See Also

int socket(int domain, int type, int protocol);

Allocates memory for a new socket and opens it.

Note that only stream-based and datagram-based sockets are sup-
ported. Raw sockets, in particular, are not currently supported.

Net Li bSocket C ose

Developing Palm OS 3.0 Applications, Part Ill 205

Net Library Functions
Socket Options

Socket Options

NetLibSocketOptionGet

Purpose Retrieves the current value of a socket option.

Prototype SWord NetLi bSocket OptionGet (Word |ibRefnum

Parameters ->1ibRef Num
->socket
->| evel

->option

-> opt Val ueP

Net Socket Ref socket,
Word | evel,

Word option,

Voi dPtr opt Val ueP,
Wor dPt r opt Val ueLenP,
SDWord ti meout,

Err* errP)

Reference number of the net library.
Socket Ref of the open socket.

Level of the option, one of the
net Socket Opt Level XXX enum constants.

One of the net Socket Opt XXX enum
constants.

Pointer to variable holding new value of
option.

<->opt Val ueLenP

->1ti nmeout

<-errP

o

Result Codes

Size of variable pointed to by opt Val ueP on
entry. Actual size of return value on exit.

Maximum timeout in system ticks; -1 means
wait forever.

Address of variable used to return error code.

No error.
Error occurred, error code in *err P.

206 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Options

Errors

Sockets
Equivalent

Comments

See Also

0 No error.
net Err Ti meout

net Er r Not Open

net Err Par antr r

net Er r Socket Not Open
net Er r Uni npl ement ed
net Er r W ongSocket Type

i nt getsockopt (int socket, int |evel,
int option, const void*
opt Val ueP, int* optVal ueLenP);

Returns the current value of a socket option. The caller passes a
pointer to a variable to hold the returned value (i n opt Val ueP)
and the size of this variable (i n * opt Val ueLenP). On exit,
*opt Val ueP is updated with the actual size of the return value.

For all of the fixed size options (every option except

net SockOpt | POpt i ons), *opt Val ueLenP is unmodified on exit
and this call does its best to return the value in the caller’s desired
type size.

For compatibility with existing Internet applications, this call is
quite flexible on the * opt Val ueLenP parameter. If the desired type
for an option is FLAG this call supports an * opt Val ueLenP of 1, 2,
or 4. If the desired type for an option isi nt, it supports an

*opt Val ueLenP of 2 or 4.

See Net Li bSocket Opt i onSet for a list of available options.

Net Li bSocket Opt i onSet

Developing Palm OS 3.0 Applications, Part Ill 207

Net Library Functions

Socket Options
NetLibSocketOptionSet
Purpose Setasocket option.
Prototype SWord NetLi bSocket QptionSet (Word |ibRef num
Net Socket Ref socket Ref,
Word | evel,
Word opti on,
Voi dPt r opt Val ueP,
Wor d opt Val uelLen,
SDWord ti neout,
Err* errP)
Parameters ->1i bRef Num Reference number of the net library.
->socket Ref Socket Ref of the open socket.
->| evel Level of the option, one of the
net Socket Opt Level XXX enum constants.
->option One of the net Socket Opt XXX enum con-
stants.
-> opt Val ueP Pointer to the variable holding the new value of

Result Codes

Errors

-> opt Val uelLen
->t i nmeout

<-errP

0
-1

0

net Err Ti meout
net Er r Not Open
net Er r Par antr r

the option.
Size of variable pointed to by opt Val ueP.

Maximum timeout in system ticks; -1 means
wait forever.

Address of variable used to return error code.

No error.

Error occurred, error code in *er r P.

No error.
Call timed out.

208 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Options

Sockets
Equivalent

Comments

net Er r Socket Not Open
net Er r Uni npl enent ed
net Er r W ongSocket Type

i nt setsockopt (int socketRef,
int level, int option,
const voi d* opt Val ueP,
i nt opt Val ueLen);

Sets various options associated with a socket. The caller passes a
pointer to the new option value in opt Val ueP and the size of the
option in opt Val ueLen.

The following table lists the available options.

= The Level column specifies the option level, which is one of
the net Socket Opt Level XXX constants.

= The Option column lists the option, which is one of the net -
Socket Opt XXX constants.

e The G/S column lists whether this option can be fetched with
the Net Li bSocket Opt i onGet call (G) and/or set (S) with
this call.

= The type column lists the type of the option.

= The I column specifies whether or not this option is currently
implemented.

Level

Option

G/S Type I Description

IP

TCP

TCP

Socket

IPOptions GS Byte[] N Options in IP Header

TCPNoDelay GS FLAG Y Don’t delay send to coalesce

packets

TCPMaxSeg G int Y Get TCP maximum segment

size

SockDebug GS FLAG N Turn on recording of debug

info

Developing Palm OS 3.0 Applications, Part Ill 209

Net Library Functions

Socket Options
Level Option G/S Type I Description
Socket SockAcceptConn G FLAG N Socket has had listen
Socket SockReuseAddr GS FLAG N Allow local address reuse
Socket SockKeepAlive GS FLAG Y Keep connections alive
Socket SockDontRoute GS FLAG N Just use interface addresses
Socket SockBroadcast GS FLAG N Permit sending of broadcast
messages
Socket SockUseLoopback GS FLAG N lI§>Iypass hardware when possi-
e
Socket SockLinger GS NetSock- Y Linger on close if data present
etLinger
Socket SockOOBInLine GS FLAG N Leave received OOB data in-
line
Socket SockSndBufSize GS int N Send buffer size
Socket SockRcvBufSize GS int N Receive buffer size
Socket SockSndLowWater GS int N Send low-water mark
Socket SockRcvLowWater GS int Receive low-water mark
Socket SockSndTimeout GS int N Send timeout
Socket SockRcvTimeout GS int N Receive timeout
Socket SockErrorStatus G int Y Geterror status and clear
Socket SockSocketType G int Y Get socket type
Socket SockNonBlocking GS FLAG Y Set non-blocking mode on/off

For compatibility with existing Internet applications, this call is
quite flexible on the opt Val ueLen parameter. If the desired type

210 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Options

See Also

for an option is FLAG this call accepts an opt Val ueLen of 1, 2, or 4.
If the desired type for an option isi nt, it accepts an opt Val ueLen
of 2 or 4.

Except for the SockNonBl ocki ng option, all options listed above
have equivalents in the sockets API. The SockNonBI ocki ng option
was added to this call in the net library in order to implement the
functionality of the UNIXfcnt | () control call, which can be used
to turn nonblocking mode on and off for sockets.

Net Li bSocket Opti onGet

Developing Palm OS 3.0 Applications, Part Ill 211

Net Library Functions
Socket Connections

Socket Connections

NetLibSocketAccept

Purpose Accept a connection from a stream-based socket.

Prototype SWord NetLi bSocket Accept (Word | i bRef num
Net Socket Ref socket Ref,
Net Socket Addr Type* remAddr P,
SWor d* remAddr LenP,
Long ti neout,
Err* errP)

Parameters ->1ibRef Num Reference number of the net library.
->socket Ref Socket Ref of the open socket.
<-remAddr P Address of remote host is returned here.

<->r emAddr LenP On entry, length of r emAddr P buffer in bytes.
On exit, length of returned address stored in

*rremAddr P.
->ti meout Maximum timeout in system ticks, -1 means
wait forever.
<-errP Address of variable used to return error code.
Result Codes >=0 Net Socket Ref of new socket.
-1 Error occurred, error code in *er r P.

212 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Connections

Errors

Sockets
Equivalent

Comments

See Also

0 No error.

net Err Ti meout Call timed out.
net Er r Not Open

net Err Par antr r

net Er r Socket Not Open

net Er r Not Connect ed

net Er r O osedByRenot e

net Er r W ongSocket Type

net Er r Socket Not Li st eni ng

int accept (int socket,
voi d* sockAddr P,
i nt* addrLenP);

Accepts the next connection request from a remote client. This call is
only applicable to stream-based sockets. Before calling
Net Li bSocket Accept on a socket, a server application needs to:

= Open the socket (Net Li bSocket Open).
= Bind the socket to a local address (Net Li bSocket Bi nd).

= Set the maximum pending connection-request queue length
(Net Li bSocket Li st en).

Net Li bSocket Accept will block until a successful connection re-
guest is obtained from a remote client. After a successful connection
is made, this call returns with the address of the remote host in

*r emAddr P and the socket Ref of a new socket as the return
value.

Net Li bSocket Bi nd, Net Li bSocket Li st en

Developing Palm OS 3.0 Applications, Part Ill 213

Net Library Functions

Socket Connections

Purpose

Prototype

Parameters

Result Codes

NetLibSocketAddr

Returns the local and remote addresses currently associated with a

socket.

SWrd NetLi bSocket Addr (Word | i bRef num

->| i bRef Num
->socket Ref

<-| ocAddr P
<->| ocAddr LenP

<-remAddr P
<->r emAddr LenP

->ti nmeout

<-errP

o

Net Socket Ref socket Ref,

Net Socket Addr Type* | ocAddr P,
SWor d* | ocAddr LenP,

Net Socket Addr Type* remAddr P,
SWor d* remAddr LenP,

SDWrd ti nmeout,

Err* errP)

Reference number of the net library.
Socket Ref of the open socket.
Local address of socket is returned here.

On entry, length of | ocAddr Pbuf f er in bytes.
On exit, length of returned address stored in
*| ocAddr P.

Address of remote host is returned here.

On entry, length of r emAddr P buffer in bytes.
On exit, length of returned address stored in
*rremAddr P.

Maximum timeout in system ticks, -1 means
wait forever.

Address of variable used to return error code.

No error.
Error occurred, error code in *err P.

214 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Connections

Errors

Sockets
Equivalent

Comments

See Also

0 No error.

net Err Ti meout Call timed out.
net Er r Not Open

net Err Par antr r

net Er r Socket Not Open

net Er r Cl osedByRenot e

i nt getpeernane (int s,
struct sockaddr* nane,
i nt* nanel en);

i nt getsocknane (int s,
struct sockaddr* nane,
i nt* nanel en);

This call is mainly useful for stream-based sockets. It allows the call-
er to find out what address was bound to a connected socket and the
address of the remote host that it’s connected to.

Net Li bSocket Bi nd, Net Li bSocket Connect,,
Net Li bSocket Accept

Developing Palm OS 3.0 Applications, Part Ill 215

Net Library Functions
Socket Connections

Purpose

Prototype

Parameters

NetLibSocketBind

Assign a local address to a socket.

SWrd NetLi bSocket Bind (Word | i bRef num

->| i bRef Num
->socket Ref
->sockAddr P

Net Socket Ref socket Ref,

Net Socket Addr Type* socket Addr P,
SWrd addr Len,

Long ti neout,

Err* errP)

Reference number of the net library.
Socket Ref of the open socket.
Pointer to address.

-> addr Len Length of address in *sock Addr P.
->ti meout Maximum timeout in system ticks; -1 means
wait forever.
<-errP Address of variable used to return error code.
Result Codes 0 No error.
-1 Error occurred, error code in *err P.
Errors O No error.
net Err Ti meout Call timed out.
net Er r Not Open
net Er r Par antrr
net Er r Socket Not Open
net Err Al readyConnect ed
net Er r Cl osedByRenot e
Sockets int bind (int socket,
Equivalent const voi d* sockAddr P,

i nt addrLen);

216 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Connections

Comments Applications that want to wait for an incoming connection request
from a remote host must call this function. After calling
Net Li bSocket Bi nd, applicationscan call Net Li bSocket Li st en
and then Net Li bSocket Accept to make the socked ready to ac-
cept connection requests.

See Also Net Li bSocket Connect, Net Li bSocket Li st en,
Net Li bSocket Accept

NetLibSocketConnect

Purpose Assign a destination address to a socket and initiate three-way
handshake if it’s stream based.

Prototype SWord NetLi bSocket Connect (Word |ibRefnum
Net Socket Ref socket Ref,
Net Socket Addr Type* socket Addr P,
SWrd addr Len,
Long ti neout,
Err* errP)

Parameters ->1i bRef Num Reference number of the net library.

->socket Ref Socket Ref of the open socket.
->sockAddr P Pointer to address.
->addr Len Length of address in *sock Addr P.
->t 1 meout Maximum timeout in system ticks; -1 means
wait forever.
<-errP Address of variable used to return error code.
Result Codes 0 No error.
-1 Error occurred, error code in *err P.
Errors 0 No error.

net Err Ti neout Call timed out.
net Er r Not Open

Developing Palm OS 3.0 Applications, Part Ill 217

Net Library Functions

Socket Connections

Sockets
Equivalent

See Also

net Err Par antr r

net Er r Socket Not Open

net Er r Socket Busy

net Err Nol nt er f aces

net ErrPort| nUse

net Er r Qui et Ti neNot El apsed
net Errl nternal

net Err Al readyConnect ed

net Er r Cl osedByRenot e

net Er r TooMany TCPConnect i ons

int connect (int socket,
const voi d* sockAddr P,
i nt addrLen);

Net Li bSocket Bi nd

218 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Connections

Purpose

Prototype

Parameters

Result Codes

NetLibSocketListen

Put a stream-based socket into passive listen mode.

SWord NetLi bSocket Li sten(Wbrd |i bRef num
Net Socket Ref socket Ref,
Word queuelLen,
Long ti nmeout,
Err* errP)

->| i bRef Num Reference number of the net library.

->socket Ref Socket Ref of the open socket.

-> queuelLen Maximum number of pending connections
allowed.

->ti meout Maximum timeout in system ticks, -1 means
wait forever.

<-errP Address of variable used to return error code.

0 No error.

-1 Error occurred, error code in *er r P.

Developing Palm OS 3.0 Applications, Part Ill 219

Net Library Functions
Socket Connections

Errors O No error.
net ErrTimeout Call tinmed out.
net Er r Not Open
net Err Par antr r
net Err Qut O Resour ces
net Er r Socket Not Open
net Er r Socket Busy
net Err Nol nt er f aces
net Err Port | nUse
net Errl nternal
net Err Al r eadyConnect ed
net Er r Cl osedByRenot e
net Er r W ongSocket Type

Sockets int listen (int socket, int queuelLen);
Equivalent

Comments Sets the maximum allowable length of the queue for pending con-
nections. This call is only applicable to Net Li bSocket Accept
sockets.

After a socket is created and bound to a local address using

Net Li bSocket Bi nd, a server application can call

Net Li bSocket Li st en and then Net Li bSocket Accept to ac-
cept connections from remote clients.

The queuelLen is currently quietly limited to 1 (higher values are
ignored).

See Also Net Li bSocket Bi nd, Net Li bSocket Accept

220 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Socket Connections

Purpose

Prototype

Parameters

Result Codes

Errors

Sockets
Equivalent

Comments

NetLibSocketShutdown

Shut down a socket in one or both directions.

SWord Net Li bSocket Shut down (Word | i bRef num
Net Socket Ref socket Ref,
SwWrd direction,
SDWrd ti nmeout,
Err* errP)

->| i bRef Num Reference number of the net library.

->socket Ref Socket Ref of the open socket.
->direction Direction to shut down. One of the
Net Socket Di r XXX enum constants.
->ti meout Maximum timeout in system ticks; -1 means
wait forever.
<-errP Address of variable used to return error code.
0 No error.
-1 Error occurred, error code in *err P.
0 No error.

net Err Ti meout Call timed out.
net Er r Not Open

net Err Par antr r

net Er r Socket Not Open

int shutdown (int socket, int direction);
Shuts down communication in one or both directions on a socket.

Direction can be net Socket Di r | nput, net Socket Di r Qut put ,
or net Socket Di r Bot h.

Developing Palm OS 3.0 Applications, Part Ill 221

Net Library Functions
Send and Receive Routines

If direction is net Socket Di r | nput , the socket is marked as down
in the receive direction and further read operations from it return a
net Err Socket | nput Shut down error.

Send and Receive Routines

NetLibDmReceive

Purpose Receive data from a socket directly into a database record.

Prototype SWord NetLi bDnRecei ve(Word |i bRef Num

Parameters ->1ibRef Num
->socket
->recordP
->recorddfset

->rcvbLen
->fl ags
->fromAddr P

<->fronLenP

Net Socket Ref socket,
Voi dPtr recordP,
ULong recordO fset,
Word rcvlen,

word fl ags,

Voi dPtr fromAddr P,
WordPtr fronienP,
Long ti nmeout,

Err* errP)

Reference number of the net library.
Socket Ref of the open socket.
Pointer to beginning of record.

Offset from beginning of record to read data
into.

Maximum number of bytes to read.
One or more net MsgFl agXXX flag.

Pointer to buffer to hold address of sender
(Net Socket Addr Type).

On entry, size of f r omAddr P buffer. On exit,
actual size of returned address inf r omAddr P.

222 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Send and Receive Routines

Result Codes

Errors

Comments

->t i meout Maximum timeout in system ticks, -1 means
wait forever.

<-errP Address of variable used to return error code.

0 Socket has been shut down by remote host.

>0 Number of bytes successfully received.

-1 Error occurred, error code in *er r P.

0 No error.

net Err Ti meout Call timed out.

net Er r Not Open

net Err Par antr r

net Er r Socket Not Open
net Er r Wul dBI ock

This call behaves similarly to Net Li bRecei ve but reads the data
directly into a database record, which is normally write-protected.
The caller must pass a pointer to the start of the record and an offset
into the record of where to start the read.

Developing Palm OS 3.0 Applications, Part Ill 223

Net Library Functions
Send and Receive Routines

Purpose

Prototype

Parameters

Result Codes

Errors

NetLibReceive

Receive data from a socket into a single buffer.

SWord NetLi bRecei ve (Word | i bRef Num

->| i bRef Num
->socket

-> puf P

-> puf Len
->f| ags
->fromAddr P

<->fronLenP
->ti nmeout

<-errP

0
>0
-1

0

net Er r Ti neout

Net Socket Ref socket,
Voi dPtr buf P,

Word buf Len,

Word fl ags,

Voi dPtr fromAddr P,
WordPtr fronlienP,
Long ti neout,

Err* errP);

Reference number of the net library.
Socket Ref of the open socket.
Pointer to buffer to hold received data.
Length of buf P buffer.

One or more net MsgFl agXXX flag.

Pointer to buffer to hold address of sender
(Net Socket Addr Type).

On entry, size of f r omAddr P buffer. On exit, ac-
tual size of returned address in f r omAddr P.

Maximum timeout in system ticks; -1 means
wait forever.

Address of variable used to return error code.

Socket has been shut down by remote host.
Number of bytes successfully received,
Error occurred, error code in *err P.

No error.
Call timed out.

224 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Send and Receive Routines

Sockets
Equivalent

Comments

See Also

net Er r Not Qpen

net Er r Par antrr

net Er r Socket Not Open
net Er r Woul dBl ock

int recvfrom (int socket, const void* bufP,
I nt buflLen, int flags,
const voi d* fromAddrP,
int* fromLenP);

int recv (int socket, const void* bufP,
int buflLen, int flags);

int read (int socket, const void* bufP,
i nt buflLen);

For stream-based sockets, this call reads whatever bytes are avail-
able and returns the number of bytes actually read into the caller’s
buffer. If there is no data available, this call will block until at least 1
byte arrives, until the socket is shut down by the remote host, or
until a timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the caller’s buff-
er is not large enough to hold the entire datagram, the end of the da-
tagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

The data is read into a single buffer pointed to by buf P.

Net Li bRecei ve, Net Li bDnRecei ve, Net Li bSend,
Net Li bSendPB

Developing Palm OS 3.0 Applications, Part Ill 225

Net Library Functions
Send and Receive Routines

Purpose

Prototype

Parameters

Result Codes

Errors

NetLibReceivePB

Receive data from a socket into a gather-read array.

SWrd NetLi bRecei vePB (Wrd |i bRef num

->| i bRef Num
->socket Ref
->pbP

->f| ags
-=>ti meout

<-errP

0
>0
-1

0
net Err Ti meout
net Er r Not Open

net Err Par antrr

Net Socket Ref socket,
Net | OPar anType* pbP,
word fl ags,

Long ti neout,

Err* errP)

Reference number of the net library.
Socket Ref of the open socket.

Pointer to parameter block containing buffer
info.

One or more net MsgFl agXXX flag.

Maximum timeout in system ticks, -1 means
wait forever.

Address of variable used to return error code.

Socket has been shut down by remote host.
Number of bytes successfully received.
Error occurred, error code in *er r P.

No error.

Call timed out.

net Er r Socket Not Open
net Er r Wul dBl ock

226 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Send and Receive Routines

Sockets int recvnsg (int socket,
Equivalent const struct nsghdr* pbP,
int flags);

Comments For stream-based sockets, this call reads whatever bytes are avail-
able and returns the number of bytes actually read into the caller’s
buffer. If no data is available, this call will block until at least 1 byte
arrives, until the socket is shut down by the remote host, or until a
timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the caller’s buff-
er is not large enough to hold the entire datagram, the end of the da-
tagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

The data is read into the gather-read array specified by the
pbP- >i ov array.

See Also Net Li bRecei ve, Net Li bDnRecei ve, Net Li bSend,
Net Li bSendPB

NetLibSend

Purpose Send data to a socket from a single buffer.

Prototype SWord NetLibSend (Wrd |ibRef Num
Net Socket Ref socket,
const Voi dPtr bufP,
Word buf Len,
Word fl ags,
Voi dPtr t oAddr P,
Word tolen,
Long ti neout,
Err* errP)

Parameters ->1i bRef Num Reference number of the net library.

->socket Socket Ref of the open socket.

Developing Palm OS 3.0 Applications, Part Ill 227

Net Library Functions
Send and Receive Routines

->puf P

-> puf Len
->f| ags
->t oAddr P

->tolLen
->1ti nmeout

<-errP

Result Codes ©
>0
-1

Errors O
net Err Ti meout

net Er r Not Open

net Err Par antrr

Pointer to data to write.
Length of data to write
One or more of net MsgFl agXXX flags.

Address to send to (Net Socket Addr Type*),
or0

Size of addr P buffer.

Maximum timeout in system ticks, -1 means
wait forever.

Address of variable used to return error code.

Socket has been shut down by remote host.
Number of bytes successfully sent.

Error occurred, error code in *err P.

No error.

Call timed out.

net Er r Socket Not Open

net Err MessageTooBi g

net Er r Socket Not Connect ed
net Er r Gl osedByRenot e

net Er r | PCant Fr agnent

net Err | PNoRout e

net Err| PNoSr c
net Err | PNoDst

net Err | PPkt Over fl ow

Sockets int sendto (int socket, const void* bufP,
Equivalent int buflLen, int flags,
const voi d* toAddrP, int tolLen);

228 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Send and Receive Routines

Comments

See Also

int send (int socket, const void* bufP,
int buflLen, int flags);

int wite (int socket, const void* bufP,
i nt buflLen,);

This call attempts to write data to the specified socket and returns
the number of bytes actually sent, which may be less than or equal
to the requested number of bytes. The data is passed in a single buff-
er that buf P points to.

If the socket is a datagram socket and the data is too large to fit in a
single UDP packet, no data is sent and -1 is returned.

For stream-based sockets, t oAddr P is always ignored, since by def-
inition a Net Li bSocket Accept socket must have a connection es-
tablished with a remote host before data can be written. For data-
gram sockets, an error is returned if the socket was previously
connected and t oAddr P is specified.

If there isn’t enough buffer space to send any data, this call will
block until there is enough buffer space, or until a timeout.

Note: For stream-based sockets, this call may write only a portion
of the desired data. It always returns the number of bytes actually
written. Consequently, the caller should be prepared to call this
routine repeatedly until the desired number of bytes have been
written, or until it returns O or -1.

Net Li bSendPB, Net Li bRecei ve, Net Li bRecei vePB,

Net Li bDnRecei ve

Developing Palm OS 3.0 Applications, Part Ill 229

Net Library Functions
Send and Receive Routines

Purpose

Prototype

Parameters

Result Codes

Errors

NetLibSendPB

Send data to a socket from a scatter-write array.

SWrd NetLi bSendPB(Word | i bRef num
Net Socket Ref socket,
Net | OPar anlType* pbP,

word fl ags,
Long ti neout,
Err* errP)
->| i bRef Num Reference number of the net library.
->socket Socket Ref of the open socket.
->pbP Pointer to parameter block containing buffer
info.
->f| ags One or more net MsgFl agXXX flag.
->t 1 meout Maximum timeout in system ticks; -1 means
wait forever.
<-errP Address of variable used to return error code.
0 Socket has been shut down by remote host.
>0 Number of bytes successfully sent
-1 Error occurred, error code in *er r P.
0 No error.

net Err Ti meout Call timed out.
net Er r Not Open

net Err Par antr r

net Er r Socket Not Open

net Err MessageTooBi g

net Er r Socket Not Connect ed
net Er r G osedByRenot e

230 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Send and Receive Routines

Sockets
Equivalent

Comments

See Also

net Er r | PCant Fr agnent
net Err | PNoRout e

net Errl PNoSrc

net Err | PNoDst

net Err | PPkt Over fl ow

int sendnsg (int socket,
const struct nsghdr* pbP,
int flags);

This call attempts to write data to the given socket and returns the
number of bytes actually sent, which may be less than or equal to
the requested number of bytes. The data is passed in the scatter-
write array specified in the pbP parameter block.

If the socket is a datagram socket and the data is too large to fit in a
single UDP packet, no data will be sent and -1 will be returned.

For stream-based sockets, pbP- >addr P is always ignored since by
definition a Net Li bSocket Accept socket must have a connection
established with a remote host before data can be written. For data-
gram sockets, an error will be returned if the socket was previously
connected and pbP- >addr P is specified.

If there isn’t enough buffer space to send any data, this call will
block until there is space, or until a timeout.

Note: For stream-based sockets, this call may write only a portion
of the desired data. It always returns the number of bytes actually
written. Consequently, the caller should be prepared to call this
routine repeatedly until the desired number of bytes have been
written, or until it returns 0 or -1.

Net Li bSend, Net Li bRecei ve, Net Li bRecei vePB,
Net Li bDnRecei ve

Developing Palm OS 3.0 Applications, Part Ill 231

Net Library Functions

Utilities
Utilities
NetHTONL
Purpose Converts a 32-bit value from host to network byte order.
Prototype DwWrd Net HTONL (DWrd x)
Parameters ->Xx 32-bit value to convert.
Result Returns x in network byte order.
Errors None
Sockets htonl ()
Equivalent
See Also Net NToHS, Net NToHL, Net HTONS
NetHTONS
Purpose Converts a 16-bit value from host to network byte order.
Prototype Word Net HTONS (Wrd x)
Parameters ->X 16-bit value to convert.
Result Returns x in network byte order.

232 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Utilities

Errors

Sockets
Equivalent

See Also

Purpose

Prototype

Parameters

Result

Sockets
Equivalent

See Also

None

ht ons()

Net NToHS, Net NToHL, Net HToNL

NetLibAddrATolN

Converts an ASCII string representing a dotted decimal IP address
into a 32 IP address in network byte order.

Net | PAddr Net Li bAddr ATol N (Word | i bRef num
Char Ptr nanmeP)
->| i bRef Num Reference number of the net library.
-> nameP Pointer to ASCII dotted decimal string.
-1 Invalid naneP, naneP doesn’t represent a dot-
ted decimal IP address
I=-1 32-bit network byte order IP address

unsi gned | ong inet_addr(char* cp)

Net Li bAddr | NToA

Developing Palm OS 3.0 Applications, Part Ill 233

Net Library Functions

Utilities
NetLibAddrINTOA
Purpose Converts an IP address from 32-bit network byte order into a dotted
decimal ASCII string.
Prototype CharPtr NetLi bAddr| NToA (Word |ibRef num
Net | PAddr i net,
Char Ptr spaceP)
Parameters ->1i bRef Num Reference number of the net library.
-> 1| net 32-bit IP address in network byte order.
->spaceP Buffer used for holding return name.
Result spaceP Dotted decimal ASCII string representation of
IP address.
Sockets char* inet_ntoa(struct in_addr in)
Equivalent
See Also Net Li bAddr ATol N
NetLibGetHostByAddr
Purpose Looks up a host name given its IP address.
Prototype NetHostlnfoPtr NetLi bGetHostByAddr (

Word | i bRef num

Byt ePtr addrP,

Word | en,

Word type,

Net Host | nf oBuf Pt r buf P,
Long ti neout,

Err* errP)

234 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Utilities

Parameters

Result

Errors

->| i bRef Num
->addr P

> en
->type

->buf P
->1ti nmeout

<-errP

net Err Ti meout
net Er r Not Open

Reference number of the net library.
IP address of host to lookup.
Length, in bytes, of *addr P.

Type of addr P. net Socket Addr | NET is cur-
rently the only supported type.

Pointer to buffer to hold results of lookup.

Maximum timeout in system ticks, -1 means
wait forever.

Address of variable used to return error code.

Name not found, *er r P contains error code.

Pointer to Net Host | nf oType portion of buf P
that contains results of the lookup.

No Error
Call timed out.

net Er r DNSNaneTooLong

net Er r DNSBadNane

net Er r DNSLabel TooLong

net Er r DNSAI | ocati onFai | ure
net Er r DNSTi neout

net Er r DNSUnr eachabl e

net Er r DNSFor nat

net Er r DNSSer ver Fai | ur e
net Er r DNSNonexi st ant Nane

net Er r DNSNI Y

net Er r DNSRef used
net Er r DNSI npossi bl e

net Er r DNSNoRRS

Developing Palm OS 3.0 Applications, Part Ill 235

Net Library Functions
Utilities

net Er r DNSAbor t ed

net Er r DNSBadPr ot ocol

net Er r DNSTr uncat ed

net Er r DNSNoRecur si on

net Err DNSI rr el evant

net Er r DNSNot | nLocal Cache
net Er r DNSNoPor t

Sockets struct hostent* gethostbyaddr (char* addr,
Equivalent int |en,
int type);

Comments This call queries the domain name server(s) to look up a host name
given its IP address.

Buf P must point to a structure of type Net Host | nf oBuf Type that
will be used to store the results of the lookup. When this call returns,
it returns with a pointer to a structure of type Net Host | nf oType
which is actually part of the Net Host | nf oBuf Type that buf P
points to.

See Also Net Li bGet Host ByNane

NetLibGetHostByName

Purpose Looks up a host IP address given a host name.

Prototype NetHostlInfoPtr NetLibGetHostByNane (
Word |i bRef num
Char Ptr naneP,
Net Host | nf oBuf Pt r buf P,
Long ti neout,
Err* errP)

236 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions

Utilities
Parameters ->1i bRef Num Reference number of the net library.
-> nameP Name of host to look up.
->puf P Pointer to buffer to hold results of look up.
->t i meout Maximum timeout in system ticks, -1 means
wait forever.
<-errP Address of variable used to return error code.
Result 0 Name not found, *er r P contains error code.
1=0 Pointer to Net Host | nf oType portion of buf P
which contains results of the lookup.
Errors O No Error

net Err Ti meout Call timed out.
net Er r Not Open

net Er r DNSNaneTooLong

net Er r DNSBadNane

net Er r DNSLabel TooLong

net Er r DNSAI | ocat i onFai | ure
net Er r DNSTi neout

net Er r DNSUnr eachabl e

net Er r DNSFor mat

net Er r DNSSer ver Fai | ure

net Er r DNSNonexi st ant Nane
net Er r DNSNI Y

net Er r DNSRef used

net Er r DNSI npossi bl e

net Er r DNSNoRRS

net Er r DNSAbor t ed

net Er r DNSBadPr ot ocol

net Er r DNSTr uncat ed

Developing Palm OS 3.0 Applications, Part Il

237

Net Library Functions
Utilities

net Er r DNSNoRecur si on

net Err DNSI rr el evant

net Er r DNSNot | nLocal Cache
net Er r DNSNoPor t

Sockets struct hostent *gethostbyname(char* nane);
Equivalent

Comments This call first checks the local nane - > | P address host table in the
net library preferences. If the entry is not found, it then queries the
domain name server(s).

Buf P must point to a structure of type Net Host | nf oBuf Type,
which is used to store the results of the lookup. When this call re-
turns, it returns with a pointer to a structure of type

Net Host | nf oType which is actually part of the

Net Host | nf oBuf Type pointed to buf P.

See Also Net Li bGet Host ByAddr , Net Li bGet Mai | ExchangeByNane

NetLibGetMailExchangeByName

Purpose Looks up the name of a host to use for a given mail exchange.

Prototype SWord Net Li bGet Mai | ExchangeByNanme (Word | i bRef Num
Char Ptr rmai | NaneP,
Word maxEntri es,
Char host Nanmes|[][net DNSMaxDomai nNane+1] ,
Wrd priorities[],
Long ti nmeout,
Err* errP)

Parameters ->1ibRef Num Reference number of the net library.
->mai | NameP Name of the mail exchange to look up.

->maxEntri es Maximum number of hostnames to return.

238 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Utilities

Result

Errors

<- host Nanes Array of character strings of length
net DNSMaxDormai nNamre+1. The host name re-
sults are stored in this array. This array must be
able to hold at least maxEnt r i es hostnames.

<-priorities Array of Words. The priorities of each host
name found are stored in this array. This array
must be at least maxEnt r i es in length.

->ti meout Maximum timeout in system ticks; -1 means
wait forever.

<-errP Address of variable used to return error code.

>=(Number of entries successfully found.

<0 Error occurred, error code is in *er r P.

0 No Error

net Err Ti meout Call timed out.
net Er r Not Open

net Er r DNSNaneTooLong

net Er r DNSBadNane

net Er r DNSLabel TooLong

net Er r DNSAI | ocati onFai |l ure
net Er r DNSTi neout

net Er r DNSUnr eachabl e

net Er r DNSFor mat

net Er r DNSSer ver Fai | ure

net Er r DNSNonexi st ant Nane
net Er r DNSNI Y

net Er r DNSRef used

net Er r DNSI npossi bl e

net Er r DNSNoRRS

net Er r DNSAbor t ed

Developing Palm OS 3.0 Applications, Part Ill 239

Net Library Functions
Utilities

net Er r DNSBadPr ot ocol

net Err DNSTr uncat ed

net Er r DNSNoRecur si on

net Err DNSI rr el evant

net Er r DNSNot | nLocal Cache
net Er r DNSNoPor t

Sockets None
Equivalent

Comments Thiscall looks up the name(s) of host(s) to use for sending an e-mail.
The caller passes the name of the mail exchange in mai | NarmeP and
gets back a list of host names to which the mail message can be sent.

See Also Net Li bGet Host ByAddr , Net Li bGet Host ByNane

NetLibGetServByName

Purpose Looks up the port number for a standard TCP/IP service, given the
desired protocol.

Prototype NetServinfoPtr NetLibGetServByNane (
Word | i bRef num
Char Ptr servNaneP,
Char Ptr pr ot oNaneP,
Net Ser vl nf oBuf Pt r buf P,
Long ti nmeout,
Err* errP)

Parameters ->1|i bRef Num Reference number of the net library.
->ser vNanmeP Name of the service to look up.
-> pr ot oNaneP Desired protocol to use.
-> puf P Buffer to store results in.

240 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Utilities

Result

Errors

Sockets
Equivalent

Comments

See Also

->t i meout Maximum timeout in system ticks, -1 means
wait forever.

<-errP Address of variable used to return error code.

0 Service not found, *er r P contains error code.

1=0 Pointer to Net Ser vl nf oType portion of buf P
that contains results of the lookup.

0 No Error

net Err Ti meout Call timed out.
net Er r Not Open

net Er r UnknownPr ot ocol

net Er r UnknownSer vi ce

struct servent* getservbyname(
char* addr, char* proto);

This call is a convenience call for looking up a standard port number
given the name of a service and the protocol to use (either “udp” or
“tcp”). It currently supports looking up the port number for the fol-
lowing services: “echo”, “discard”, “daytime”, “qotd”, “chargen”,
“ftp-data”, “ftp”, “telnet”, “smtp”, “time”, “name”, “finger”,

“pop2”, “pop3”, “nntp”, “imap2”.

Buf P must point to a structure of type Net Ser vl nf oBuf Pt r that’s
used to store the results of the lookup. When this call returns, it re-
turns with a pointer to a structure of type Net Ser vl nf oType
which is actually part of the Net Ser vI nf oBuf Type pointed to
buf P.

Net Li bGet Host By Nane

Developing Palm OS 3.0 Applications, Part Ill 241

Net Library Functions
Utilities

NetLibMaster

Pu rpose Retrieves the network statistics, interface statistics, and the contents
of the trace buffer.

Prototype Err NetLibMaster (Word |ibRefnum
Wrd cnd,
Net Mast er PBPtr pbP,
Long timeout)

Parameters ->1i bRef Num Reference number of the net library.

->cnd Function to perform (Net Mast er Enumtype).

-> pbP Command parameter block.

->t 1 meout Timeout in ticks, -1 means wait forever.
Result 0 No error

net Er r Not Open
net Err Par antr r
net Er r Uni npl ement ed

Sockets None
Equivalent

Comments This call allows applications to can get detailed information about
the net library. This information is usually helpful in debugging net-
work configuration problems.

This function takes a command word (cnd) and parameter block
pointer as arguments and returns its results in the parameter block
on exit.

The following commands are supported:

242 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Utilities

netMasterinterfacelnfo

pbP.interfacelnfo:

index
creator
instance

netlFP

drvrName

hwName

localNetHdrLen
localNetTrailerLen

localNetMaxFrame

ifName

driverUp
ifUp
hwAddrLen
hwAddr
mtu

speed

Index of interface to fetch info about.
Creator of interface.
Instance of interface.

Private interface info pointer.

Driver type that interface uses (“PPP”,
“SLIP”, etc.).

Hardware driver name (“Serial Li-
brary”, etc.).

Number of bytes in local net header.
Number of bytes in local net trailer.

Local net maximum frame size.

Interface name with instance number
concatenated.

True if interface driver is up.

True if interface media layer is up.
Length of interface’s hardware address.
Interface’s hardware address.
Maximum transfer unit of interface.

Speed in bits/sec.

Developing Palm OS 3.0 Applications, Part Ill 243

Net Library Functions
Utilities

lastStateChange

ipAddr
subnetMask

broadcast

netMasterInterfaceStats

pbP.interfaceStats:

index
inOctets
inUcastPkts
inNUcastPkts

inDiscards

inErrors

inUnknownProtos

outOctets
outUcastPkts
outNUcastPkts
outDiscards

OUtErrors

Time in milliseconds of last state
change.

IP address of interface.
Subnet mask of local network.

Broadcast address of local network.

Index of interface to fetch info about.
Number of octets received.

Number of packets received.

Number of broadcast packets received.

Number of incoming packets that were
discarded.

Number of packet errors encountered.

Number of unknown protocols encoun-
tered.

Number octets sent.

Number of packets sent.

Number of broadcast packets sent.
Number of packets discarded.

Number of outbound packet errors.

244 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Utilities

See Also

netMasterIPStats
pbP.ipStats:

IpXXX <- see Net Myr. h for complete list of stats returned

netMasterICMPStats
pbP.icmpStats:

icmpXXX <- see Net Myr. h for complete list of stats returned

netMasterUDPStats
pbP.udpStats

updXXX <- see Net Myr. h for complete list of stats returned

netMasterTCPStats
pbP.tcpStats:

tepXXX <- see Net Myr. h for complete list of stats returned

netMasterTraceEventGet

pbP.traceEventGet
index -> Index of event to fetch.
textP -> Pointer to text string to return event in. Should be

at least 256 bytes long.

Net Li bSetti ngSet

Developing Palm OS 3.0 Applications, Part Ill 245

Net Library Functions
Utilities

NetLibSelect

Purpose Blocks until 170 is ready on one or more descriptors, where a de-
scriptor can represent socket input, socket output, or a user input
event like a pen tap or key press.

Prototype SWord NetLibSel ect (Word |ibRefnum

Parameters ->1ibRef Num
->w dth

<->r eadFDs

<->witeFDs

<->except FDs

->1ti meout

<-errP

Result Codes >0

Word wi dt h,

Net FDSet Type* readFDs,
Net FDSet Type* wr it eFDs,
Net FDSet Type* except FDs,
Long ti nmeout,

Err* errP)

Reference number of the net library.

Number of descriptor bits to check in the
readFDs, w it eFDs, and except FDs de-
scriptor sets.

Pointer to Net FDSet Type containing set of
bits representing descriptors to check for input.

Pointer to Net FDSet Type containing set of
bits representing descriptors to check for
output.

Pointer to Net FDSet Type containing set of
bits representing descriptors to check for excep-
tion conditions.

Maximum timeout in system ticks; -1 means
wait forever.

Address of variable used to return error code.

Sum total number of ready file descriptors in
*r eadFDs, *wr i t eFDs, and *except FDs.

Timeout.
Error occurred, error code in *err P.

246 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Utilities

Errors

Sockets
Equivalent

Comments

0 No Error
net Err Ti neout Call timed out.
net Er r Not Open

int select (int wwdth, fd_set* readfds,
fd set* witefds, fd set* exceptfds,
struct tineval* tineout);

This call blocks until one or more descriptors are ready for 1/0. In
the Palm OS environment, a descriptor is either a Net Socket Ref
or the “stdin” descriptor, sysFi | eDescSt dl n. The

sysFi | eDescSt dI n descriptor will be ready for input whenever a
user event is available like a pen tap or key press.

The caller should set which bits in each descriptor set need to be
checked by using the net FDZer o and net FDSet macros. After this
call returns, the macro net FDI sSet can be used to determine
which descriptors in each set are actually ready.

On exit, the total number of ready descriptors is returned and each
descriptor set is updated with the appropriate bits set for each ready
descriptor in that set.

The following example illustrates how to use this call to check for
input on a socket or a user event:

Developing Palm OS 3.0 Applications, Part Ill 247

Net Library Functions

Utilities

See Also

Err err;

Net Socket Ref socket Ref ;

Net FDSet Type readFDs, wi t eFDs, except FDs;
Swrd nuntDs;

Wor d w dt h;

/'l Create the descriptor sets

net FDZer o(& eadFDs) ;

net FDZer o(&w i t eFDs) ;

net FDZer o(&except FDs) ;

net FDSet (sysFi | eDescStdl n, &readFDs);
net FDSet (socket Ref, &readFDs);

/1l Calculate the nmax descriptor nunber and use
/1 that +1 as the max w dth.

/'l Alternatively, we could sinply use the

/'l constant netFDSet Si ze as the width which is
/1 sinpler but nakes the NetLibSel ect call

/'l slightly slower.

wi dth = sysFil eDescStdl n;

if (socketRef > width) width = socket Ref;

/1 Wait for any one of the descriptors to be
/1 ready.

nunFDs = Net Li bSel ect (AppNet Ref num w dt h+1,
& eadFDs, &wmiteFDs, &except FDs,

AppNet Ti meout, &err);

Net Li bSocket Opt i onSet

248 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Utilities

Purpose

Prototype

Parameters

Result

Sockets
Equivalent

Comments

See Also

NetLibTracePrintF

Can be used by applications to store debugging information in the
net library’s trace buffer.

Err NetLibTracePrintF (Word |ibRef num
CharPtr formatStr, ...)

->| i bRef Num Reference number of the net library.

>format Str Aprintf style format string.
> Arguments to the format string.
0 No error.

net Er r Not Open

None

This call is a convenient debugging tool for developing Internet ap-
plications. It will store a message into the net library’s trace buffer,
which can later be dumped using the Net Li biast er call. The net
library’s trace buffer is used to store run-time errors that the net li-
brary encounters as well as errors and messages from network inter-
faces and from applications that use this call.

The f or mat St r parameterisapri ntf style format string which
supports the following format specifiers:

%d, %i, %u, %X, %s, %c but it does NOT support field widths, lead-
ing O’s etc.

Note that the net Tr aci ngAppMsgs bit of the

net Setti ngTraceBi t s setting must be set using the call

Net Li bSettingSet(...netSettingTraceBits...).Other-
wise, this routine will do nothing.

Net Li bTracePut S, Net Li bMast er, Net Li bSet ti ngSet

Developing Palm OS 3.0 Applications, Part Ill 249

Net Library Functions

Utilities
NetLibTracePutS
Purpose Can be used by applications to store debugging information in the
net library’s trace buffer.
Prototype Err NetLibTracePut S(Word |ibRefnum CharPtr strP)
Parameters ->1i bRef Num Reference number of the net library.
>strP String to store in the trace buffer.
Result © No error
net Er r Not Open
Sockets None
Equivalent
Comments Thiscall is a convenient debugging tool for developing internet ap-
plications. It will store a message into the net library’s trace buffer
which can later be dumped using the Net Li bivast er call. The net
library’s trace buffer is used to store run-time errors that the net li-
brary encounters as well as errors and messages from network inter-
faces and from applications that use this call.
Note the net Tr aci ngAppMsgs bitofthenet Setti ngTraceBits
setting must be set using the
Net Li bSettingSet(...netSettingTraceBits...) callor
this routine will do nothing.
See Also NetLibTracePrintF, NetLi bMaster,NetLi bSettingSet.

250 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Utilities

Purpose
Prototype
Parameters
Result
Errors

Sockets
Equivalent

See Also

Purpose
Prototype
Parameters
Result
Errors

Sockets
Equivalent

See Also

NetNToHL

Converts a 32-bit value from network to host byte order.
DWord Net NToHL (DWord x)

-> X 32-bit value to convert.
Returns x in host byte order.

none

nt ohl ()

Net NToHS, Net HToONL, Net HTONS

NetNToHS

Converts a 16-bit value from network to host byte order.
Word Net NToHS (Word x)

-> X 16-bit value to convert.
Returns x in host byte order.

None

nt ohs()

Net HToNL, Net NToHL, Net HTONS

Developing Palm OS 3.0 Applications, Part Il

251

Net Library Functions
Configuration

Configuration

NetLiblFAttach

Purpose Attach a new network interface.

Prototype Err NetLiblFAttach (Wrd |ibRefnum
DWrd ifCreator,
Word iflnstance,
SDWord ti meout)

Parameters ->1i bRef Num Reference number of the net library.

->ifCreator Creator of interface to attach.

->jflnstance Instance number of interface to attach.

->1ti meout Timeout in ticks; -1 means infinite timeout.
Result 0 Success

net Err | nt er f aceNot Found
net Err TooManyl nt er f aces

Sockets None
Equivalent

Comments This call can be used to attach a new network interface to the net li-
brary. Network interfaces are self-contained databases of type ‘neti’.
Thei f Cr eat or parameter to this function is used to locate the net-
work interface database of the given creator.

If the net library is already open when this call is made, the network
interface’s database will be located and then called to initialize itself
and attach itself to the protocol stack in real-time. If the net library is
not open when this call is made, the creator and instance number of
the interface are stored in the Net Prefs database and the interface is
initialized and attached to the stack the next time the net library is
opened.

See Also Net Li bl FGet, Net Li bl FDet ach

252 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

Purpose

Prototype

Parameters

Result

Sockets
Equivalent

Comments

See Also

NetLiblFDetach

Detach a network interface from the protocol stack.

Err NetLi bl FDetach (Wbrd |i bRef num
DWord ifCreator,
Word iflnstance,
SDWord ti neout)

->| i bRef Num Reference number of the net library.

->ifCreator Creator of interface to detach.
->jflnstance Instance number of interface to detach.
->ti meout Timeout in ticks; -1 means infinite timeout.
0 Success

net Err | nt er f aceNot Found

None

This call can be used to detach a network interface from the net li-
brary. If the net library is already open when this call is made, the in-
terface is brought down and detached from the protocol stack in
real-time. If the net library is not open when this call is made, the
creator and instance number of the interface are removed in the Net
Prefs database and the interface is not attached the next time the li-
brary is opened.

Net Li bl FGet , Net Li bl FAt t ach

Developing Palm OS 3.0 Applications, Part Ill 253

Net Library Functions
Configuration

NetLibIFDown

Purpose Bring an interface down and hang up a connection.

Prototype Err NetLibl FDown (Wrd |ibRefnum
DWrd ifCreator,
Wird iflnstance,
SDWord ti neout)

Parameters ->1i bRef Num Reference number of the net library.

->ifCreator Creator of interface to attach.

->jflnstance Instance number of interface to attach.

->ti meout Timeout in ticks. -1means wait forever.
Result O Success

net Er r Not Open
net Errl nt er f aceNot Found

Sockets None
Equivalent

Comments The net library must be open before this call can be made. For dial-
up interfaces, this call terminates a connection and hangs up the
modem if necessary.

Net Li bCl ose automatically brings down any attached interfaces,
so this routine doesn’t normally have to be called.

If the interface is already down, this routine returns immediately
with no error.

See Also NetLibl FGet,Net Li bl FAttach, Net Li bl FDet ach,
Net Li bl FUp

254 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

Purpose

Prototype

Parameters

Result

Sockets
Equivalent

Comments

See Also

NetLiblIFGet

Get the creator and instance number of an installed interface by
index.

Err NetLibl FGet (Word |i bRef num
Word i ndex,
DWordPtr i fCreatorP,
WordPtr iflnstanceP)

->| i bRef Num Reference number of the net library.
-> | ndex Index of the interface to get. Indices start at 0.
<-ifCreatorP Creator of interface is returned here.

<-i fl nstanceP Instance number of interface is returned here.

0 Success
net Errlnvalidlnterface Indextoo high
net Er r Pr ef Not Found

None

To get a list of all installed interfaces, call this function with succes-
sively increasing indices starting from 0 until the error
net Errl nval i dl nterface isreturned.

Thei f Creator andi f I nst ance values returned from this call
can then be used with the Net Li bSet ti ngCGet call to get more in-
formation about that particular interface.

Net Li bl FAt t ach, Net Li bl FDet ach

Developing Palm OS 3.0 Applications, Part Ill 255

Net Library Functions
Configuration

NetLibIFSettingGet

Purpose Retrieves a network interface specific setting.

Prototype Err NetlLiblFSettingGet (Wrd |ibRefnum

Parameters ->1ibRef Num
->|fCreator
->jflnstance

->setting

->buf P
<-> puf LenP

DWwrd ifCreator,
Word iflnstance,
Wrd setting,
Voi dPtr buf P,
Wor dPtr buf LenP)

Reference number of the net library.
Creator of the network interface.
Instance number of the network interface.

Setting to retrieve; one of the
net | FSet t i ngXXX enum constants.

Space for return value of setting.

On entry, size of buf P. On exit, actual size of
setting.

Result 0 Success
net Err UnknownSet ti ng Invalid setting constant.
net Er r Pr ef Not Found No current value for setting.
net Er r Buf TooSmal | buf P was too small to hold entire

setting. Setting value was truncated to
fitin buf P.

net Er r Uni npl enent ed

net Err | nt er f aceNot Found

net Er r Buf WongSi ze

Sockets None
Equivalent

256 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

Comments

This call can be used to retrieve the current value of any network in-
terface setting. The caller must pass a pointer to a buffer to hold the
return value (buf P), the size of the buffer (* buf LenP), and the set-

ting ID (set t i ng). The setting ID is one of the net | FSet t i ngXXX
constants in the net Set t i ngEnumtype.

Some settings, such as the login script, are variable size. For these
types of settings, the caller can pass 0 for * buf LenP, ignore the re-
turn error code of net Er r Buf TooSmal | , and get the actual size
from the * buf LenP variable after the call returns. The buffer can
then be allocated and the setting retrieved by passing the actual
buffer size in * buf LenP and calling Net Li bSet t i ngGet again.

The following table lists the network interface settings and the size
of each setting. Some are only applicable to certain types of interfac-
es. Settings not applicable to a specific interface can be safely ig-
nored and not set to any particular value.

Setting

Type Description

ResetAll

Up
Name
IPAddr

SubnetMask

Broadcast

Username

void Used for Net Li bl FSet ti ngSet only. This clears all

other settings for the interface to their default values.
Byte True if interface is currently up - Read-only
Char[32] Name of this interface - Read-only.
DWord IP address of interface.

DWord Subnet mask for interface. Doesn’t need to be specified
for PPP or SLIP type connections.

DWord Broadcast address for interface. Doesn’t need to be spec-
ified for PPP or SLIP type connections.

Char[32] Username. Only required if the login script uses the

username substitution escape sequence in it. Call
Net Li bl FSet t i ngSet with a bufLen of 0 to remove
this setting.

Developing Palm OS 3.0 Applications, Part Ill 257

Net Library Functions

Configuration

Setting

Type

Description

Password

Dialback
Username

Dialback

Password

AuthUsername

AuthPassword

ServiceName

Char[32]

Char[32]

Char[32]

Char[32]

Char[32]

Charf]

Password. Optionally required if the login script uses
the password substitution escape sequence in it. Call
Net Li bl FSet ti ngSet with a buf Len of 0 to remove
this setting. If the login script uses password substitu-
tion and no password setting is set, the user will be
prompted for a password at connect time.

Dialback Username. Only required if the login script
uses the dialback username substitution escape se-
guence in it. Call Net Li bl FSet ti ngSet with a
buf Len of 0 to remove this setting.

Dialback Password. Optionally required if the login
script uses the dialback password substitution escape se-
guence in it. Call Net Li bl FSet t i ngSet with a bufLen
of 0 to remove this setting. If the login script uses pass-
word substitution and no password setting is set, the
user will be prompted for a password at connect time.

Authentication Username. Only required if the authenti-
cation protocol uses a different username than the
what’s in the Username setting. If this setting is empty
(bufLen of 0), the Username setting will be used instead.
Call Net Li bl FSetti ngSet with a buf Len of 0 to re-
move this setting.

Authentication Password. If “$” then the user will be
prompted for the authentication password at connect
time. Else, if 0 length, then the Password setting or the
result of its prompt will be used instead. Call

Net Li bl FSet ti ngSet with a buf Len of 0 to remove
this setting.

Service Name. Used for display purposes while showing
the connection progress dialog box. Call

Net Li bl FSet t i ngSet with a buf Len of 0 to remove
this setting.

258 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

Setting Type Description

LoginScript Charf[] Login script. Only required if the particular service re-
quires a login sequence. Call Net Li bl FSet t i ngSet
with a bufLen of 0 to remove this setting. See below for a
description of the login script format.

ConnectLog Charf] Connect log. Generally, this setting is just retrieved, not
set. It contains a log of events from the most recent login.
To clear this setting, call Net Li bl FSet ti ngSet with a
buf Len of 0.

InactivityTimer Word Maximum number of seconds of inactivity allowed. Set
to 0 to ignore.

Establishment- Word Maximum delay, in seconds, allowed between each

Timeout stage of connection establishment or login script line.
Must be non-zero.

DynamiclP Byte If non-zero, negotiate for an IP address. If false, the IP
address specified in the | PAddr setting will be used. De-
fault is 0.

VJCompEnable Byte If non-zero, enable JV header compression. Default is
true for PPP and false for SLIP.

VICompsSlots Byte Number of slots to use for V] compression. Default is 4
for PPP and 16 for SLIP. More slots require more memo-
ry so it is best to keep this number to a minimum.

MTU Word Maximum transmission unit in octets. Currently not im-
plemented in SLIP or PPP.

AsyncCtiIMap DWord Bitmask of characters to escape for PPP. Default is 0.

PortNum Word Which serial communication port to use. Port 0 is the

only port available on the device. Ports 0 (modem) and 1
(printer) are available on the Macintosh. Default is
port 0.

Developing Palm OS 3.0 Applications, Part Ill 259

Net Library Functions

Configuration

Setting Type Description

BaudRate DWord Serial port baud rate to use in bits/sec. MUST be
specified.

FlowControl Byte If bit 0 is 1, use hardware handshaking on the serial port.
Default is no hardware handshaking.

StopBits Byte Number of stop bits. Default is 1.

ParityOn Byte True if parity detection enabled. Default is false.

ParityEven Byte True for even parity detection. Default is true.

UseModem Byte If true, dial-up through modem. If false, go direct over
serial port

PulseDial Byte If true, pulse dial modem. Else, tone dial. Default is tone
dial.

Modeminit Charf] Zero-terminated modem initialization string, not includ-
ing the “AT”. If not specified (bufLen of 0), the modem
init string from system preferences are used.

ModemPhone Char]] Zero-terminated modem phone number string. Only re-
quired if UseModemis true.

RedialCount Word Number of times to redial modem when trying to estab-
lish a connection. Only required if UseMbdemis true.

TraceBits DWord A bitfield of various trace bits (net Tr aci ngXXX). De-

fault value is net Tr aci ngEr r or s which tells the inter-
face to record only run-time errors in the trace buffer. An
application can get a list of events in the trace buffer
using the Net Li bMast er call. Each interface has its
own trace bits setting so that trace event recording in
each interface can be selectively enabled or disabled.

260 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

Setting

Type Description

GlobalsPtr

ActuallPAddr

DWord Read-only. Interfaces pointer to its global variables.

DWord Read-only. The actual IP address that the interface ends
up using. The login script execution engine stores the re-
sult of the “g” (get IP address) command here as does
the PPP negotiation logic.

As noted above, the net | FSet ti ngLogi nScri pt setting is used
to store the login script for an interface. The login script format is a
rigidly formatted text string designed to be generated programmati-
cally from user input. If a syntactically incorrect login script is pre-
sented to the net library, the results will be unpredictable. The basic
format is a series of null terminated command lines followed by a
null byte at the end of the script. Each command line has the format:

<command- byt e> [<par anet er >]

where the command byte is the first character in the line and there is
1 and only 1 space between the command byte and the parameter
string. Following is a list of possible commands:

Function Command Parameter Example

send S <string> 's go PPP’
wait w <string> 'w password:’
delay d <seconds> 'dl

parity p ejo]n pn

data bits b 718 ‘b8
getIPAddr g ‘g’

Developing Palm OS 3.0 Applications, Part Ill 261

Net Library Functions
Configuration

Function = Command Parameter Example

ask a <string> ‘a Enter Name:’

callback c <seconds> 'c 30’
// hang up and wait
30 sec.s for callback

The parameter string to the send (’s’) command can contain the fol-
lowing escape sequences:

$USERID substitutes user name
$PASSWORD substitutes password
$DBUSERID substitutes dialback user name

$DBPASSWORD substitutes dialback password

e ifcis‘@ ->"*_’, then byte value 0 -> 31
else if cis ‘a’ -> ‘2, then byte value 1 -> 26
elsec

<cr> carriage return (Ox0D)

<If> line feed (0x0A)

\Il

\/\ N\

\< <

\\ \

See Also NetLiblFSettingSet,NetlLibSettingGet,
Net Li bSetti ngSet

262 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

Purpose

Prototype

Parameters

Result

Sockets
Equivalent

NetLiblFSettingSet

Sets a network interface specific setting.

Err NetLiblFSettingSet (Wrd |ibRefnum
DWord ifCreator,
Word iflnstance,
Wrd setting,
Voi dPtr buf P,
Word buf Len)

->| i bRef Num Reference number of the net library.
->jfCreator Creator of the network interface.
->j flnstance Instance number of the network interface.
->setting The setting to retrieve, one of the
net Set t i ngXXX enum constants.
-> buf P Space for return value of setting.
-> puf Len Size of new setting.
0 Success.

net Err UnknownSetti ng Invalid setting constant.

net Er r Pr ef Not Found No current value for setting.

net Er r Buf TooSnal | buf P was too small to hold entire
setting. Setting value was truncated
to fitin buf P.

net Er r Uni npl ement ed

net Err | nt er f aceNot Found
net Er r Buf W ongSi ze

net Err ReadOnl ySet ti ng

None

Developing Palm OS 3.0 Applications, Part Ill 263

Net Library Functions
Configuration

Comments This call can be used to set the current value of any network inter-
face setting. The caller must pass a pointer to a buffer which holds
the new value (buf P), the size of the buffer (buf Len), and the set-
ting ID (set t i ng). The setting ID is one of the net | FSet t i ngXXX
constants in the net Set t i ngEnumtype.

See Net Li bl FSet ti ngGet for an explanation of each of the
settings.

Of particular interest is the net | FSet t i ngReset Al | setting,
which, if used, resets all settings for the interface to their default val-
ues. When using this setting, buf P and buf Len are ignored.

See Also NetLiblFSettingGet,NetlLibSettingGet,
Net Li bSet ti ngSet

NetLibIFUp

Purpose Bring an interface up and establish a connection.

Prototype Err NetLiblFUp (Word IibRefnum
DWrd ifCreator,
Word iflnstance)

Parameters ->1i bRef Num Reference number of the net library.
->|fCreator Creator of interface to attach.

->jiflnstance Instance number of interface to attach.

264 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

Result

Sockets
Equivalent

Comments

See Also

0 Success
net Er r Not Open

net Errl nt erfaceNot Found
net Err User Cancel

net Er r BadScr i pt

net Er r PPPTi meout

net Err Aut hFai | ure

net Er r PPPAddr essRef used

None
The net library must be open before this call can be made. For dial-

up interfaces, this call will dial up the modem if necessary and run
through the connect script to establish the connection.

Important: Some interfaces need or want to display Ul to show
progress information as the connection is established so. THIS
ROUTINE MUST BE CALLED FROM THE Ul TASK!

Net Li bQpen calls this routine for every interface that was specified

as attached in its preferences. Net Li bOpen must therefore be called
from the Ul task as well.

If the interface is already up, this routine returns immediately with
no error. This call doesn’t take a timeout parameter because it relies
on each interface to have its own established timeout setting.

Net Li bl FGet , Net Li bl FAtt ach, Net Li bl FDet ach,

Net Li bl FDown

Developing Palm OS 3.0 Applications, Part Ill 265

Net Library Functions

Configuration

Purpose

Prototype

Parameters

Result

Sockets
Equivalent

Comments

NetLibSettingGet

Retrieves a general setting.

Err NetLibSettingGet (Word | i bRef num
Word setting,
Voi dPtr buf P,
Wor dPt r buf LenP)

->| i bRef Num Reference number of the net library.

->setting Setting to retrieve, one of the net Set t i ngXXX
enum constants.

->puf P Space for return value of setting.

<->bpuf LenP On entry, size of buf P. On exit, actual size of
setting.

0 Success

net Err UnknownSetti ng Invalid setting constant

net Er r Pr ef Not Found No current value for setting

net Er r Buf TooSnal | buf P was too small to hold entire
setting. Setting value was truncated
to fitin buf P.

net Er r Buf WongSi ze

None

This call retrieves the current value of any general setting. The caller
must pass a pointer to a buffer to hold the return value (buf P), the
size of the buffer (*buf LenP), and the setting ID (set t i ng). The
setting ID is one of the net Set t i ngXXX constants in the

net Set t i ngEnumtype.

Some settings are variable size, like the host table for example. For
these types of settings, the caller can pass 0 for *buf LenP, ignore the
return error code of net Er r Buf TooSnal | , and get the actual size

266 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

from the *buf LenP variable after the call returns. The buffer can
then be allocated and the setting retrieved by passing the actual
buffer size in *buf LenP and calling Net Li bSet t i ngGet again.

The following table lists the general settings and the type of each

setting.

Setting

Type

Description

ResetAll

PrimaryDNS

SecondayDNS

DefaultRouter

DefaultlFCreator

DefaultlFInstance

void

DWord

DWord

DWord

DWord

Word

Used for Net Li bSet t i ngSet only. This will clear all
other settings to their default values.

IP address of primary DNS server. This setting MUST
be set to a non-zero IP address in order to support any
of the name lookup calls.

IP address of primary DNS server. Set to 0 to have
stack ignore this setting.

IP address of default router. Default value is 0 which is
appropriate for most implementations with only 1 at-
tached interface (besides loopback). Packets with desti-
nation IP addresses that don’t lie in the subnet of an at-
tached interface will be sent to this router through the
default interface specified by the

Def aul t | FCr eat or /Def aul t | FI nst ance pair.

Creator of the default network interface. Default value
is 0, which is appropriate for most implementations.
Packets with destination IP addresses that don’t lie in
the subnet of a directly attached interface are sent
through this interface. If this setting is 0, the stack auto-
matically makes the first non-loopback interface the
default interface.

Instance number of the default network interface.
Packets with destination IP addresses that don’t lie in
the subnet of an attached interface are sent through the
default interface. Default value is 0.

Developing Palm OS 3.0 Applications, Part Ill 267

Net Library Functions

Configuration

Setting

Type

Description

HostName

DomainName

HostThbl

CloseWaitTime

TraceBits

Charf]

Charf]

Charf]

DWord

DWord

A zero-terminated character string of 64 bytes or less
containing the host name of this machine. This setting
is not actually used by the stack. It’s present mainly for
informative purposes and to support the

get host nane/set host name sockets API calls. To
clear the host name, call Net Li bl FSet t i ngSet with
abuf Len of 0.

A zero-terminated character string of 256 bytes or less
containing the default domain. This default domain
name is appended to all host names before name look-
ups are performed. If the name is not found, the host
name is looked up again without appending the do-
main name to it. To have the stack not use the domain
name, call Net Li bl FSet t i ngSet with a buf Len

of 0.

A zero-terminated character string containing the host
table. This table is consulted first before sending a DNS
guery to the DNS server(s). To have the stack not use a
host table, call Net Li bl FSet t i ngSet with abuf Len
of 0. The format of a host table is a series of lines sepa-
rated by “\n’ in the following format:host.compa-
ny.com A 111.222.333.444

The close-wait time in milliseconds. This setting MUST
be specified. See the discussion of the Net Li bOpen
and Net Li bd ose calls for an explanation of the
close-wait time.

A bitfield of various trace bits (netTracingXXX). De-
fault value is (net Tr aci ngErrors |

net Tr aci ngAppMsgs) which tells the net library to
record only run-time errors and application trace mes-
sages in its trace buffer. An application can get a list of
events in the trace buffer using the Net Li bivast er
call.

268 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

Setting Type Description

TraceSize DWord Maximum trace buffer size in bytes. Setting this setting
always clears the existing trace buffer. Default is 2 KB.

TraceRoll Byte Boolean value, default is true (non-zero). If true, trace
buffer will roll over when it fills. If false, tracing will
stop as soon as trace buffer fills.

See Also NetLi bSettingSet, NetLi bl FSetti ngSet,
Net Li bl FSetti ngGet, Net Li bMVast er

Developing Palm OS 3.0 Applications, Part Ill 269

Net Library Functions
Configuration

NetLibSettingSet

Purpose Sets a general setting.

Prototype Err NetLibSettingSet (Wrd |ibRefnum
Word setting,
Voi dPtr buf P,
Word buf Len)

Parameters ->1i bRef Num Reference number of the net library.

->setting Setting to retrieve; one of the net Set t i ngXXX
enum constants.
->puf P Space for return value of setting.
-> puf Len Size of new setting.
Result 0 Success

net Err UnknownSet ti ng Invalid setting constant.

net ErrlnvalidSettingSi ze
buf Len was invalid for the given
setting.

net Er r Buf TooSnal | buf P was too small to hold entire
setting. Setting value was truncated
to fitin buf P.

net Er r Buf W ongSi ze
net Err ReadOnl ySet ti ng

Sockets None
Equivalent

270 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Configuration

Comments

See Also

This call can be used to set the current value of any general setting.
The caller must pass a pointer to a buffer which holds the new value
(buf P), the size of the buffer (buf Len), and the setting ID
(setting). The setting ID is one of the net Set t i ngXXX constants
in the net Set t i ngEnumtype.

See Net Li bSetti ngGet for an explanation of each of the settings.

Of particular interest is the net Set t i ngReset Al | setting, which,
if used, will reset all general settings to their default values. When
using this setting, buf P and buf Len are ignored.

Net Li bSetti ngGet, Net Li bSetti ngSet,

Net Li bl FSetti ngSet, Net Li bMVast er

Developing Palm OS 3.0 Applications, Part Ill 271

Net Library Functions
Berkeley Sockets API Calls

Berkeley Sockets API Calls

When the <sys/ socket . h> header file is included, code written to
the Berkeley sockets API can be compiled for the Palm OS environ-
ment with little or no source code modifications. The

<sys/ socket . h> header file contains a set of macros which map
Berkeley sockets API calls into net library and Palm OS calls. In ad-
dition, a Palm OS application using the sockets APl must link with
the module Net Socket . ¢ which contains glue code and global
variables used by the sockets API.

Before an application can use any sockets API calls, it must open the
net library as described in Initialization and Shutdown. The code
fragment in that section correctly sets up the application global vari-
able AppNet Ref numwith the r ef numof the net library which is
used by the sockets APl macros.

Another important global declared in “Net Socket . c” is

AppNet Ti meout . This global gets passed as the t i meout parame-
ter to the native net library call by sockets APl macros. This timeout
variable is a 32-bit value representing the maximum number system
ticks to wait. Most applications will probably want to adjust this
timeout value and possibly adjust it for different sections of code.

Finally, the global er r no must be declared in the application’s own
source code UNLESS the application is linked with the standard C
library which also declares it.

The following code fragment illustrates the above steps:
#i ncl ude <sys/socket. h>

/'l Declare errno global; we don’t link with stdlib
Err errno;

[l Open up the net library

err = SysLibFind("Net.lib", &AppNetRefnum;

if (err) {/* error handling here */}

err = Net Li bOpen(AppNet Ref num & fErrs);

if (err || ifErrs) {/* error handling here */}

272 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Supported Socket Functions

/1 Change the default tineout
AppNet Ti meout = SysTi cksPer Second() * 10;
/1 10 seconds.

The following section list the calls in the Berkeley sockets API which
are supported by the net library. In some cases, the calls have limit-
ed functionality from what’s found in a full implementation of the
sockets APl and these limitations are described here.

Supported Socket Functions

Function Description

bind() This function binds a socket to a local address

close() This function closes a socket

connect() This function connects a socket to a remote endpoint to establish a
connection.

fentl() This function is supported only for socket r ef nuns and the only
commands it supports are F_SETFL and F_GETFL. The
commands can be used to put a socket into non-blocking mode by
setting the FNDELAY flag in the argument parameter
appropriately — all other flags are ignored. The F_SETFL,
F_GETFL, and FNDELAY constants are defined in
<uni x/fcntl . h>.

getpeername() This function gets the remote socket address for a connection.

getsockname() This function gets the local socket address of a connection.

getsockopt() This function gets control options of a socket. Only the following

TCP_NODELAY

options are implemented:

This option returns the current state of the TCP_NODELAY
option. This option allows the application to disable the TCP
output buffering algorithm so that TCP sends small packets as
soon as possible. This constant is defined in <neti net/tcp. h>.

Developing Palm OS 3.0 Applications, Part Ill 273

Net Library Functions
Supported Socket Functions

Function

Description

TCP_MAXSEG

SO_KEEPALIVE

SO_LINGER

SO_ERROR

SO_TYPE

listen()

read(), recv(),
recvmsg(),
recvfrom()

This option allows the application to get the TCP maximum
segment size. This constant is defined in <net i net/t cp. h>.

This option returns the keep-alive state. Keep-alive enables
periodic transmission of probe segments when there is no data
exchanged on a connection. If the remote endpoint doesn’t
respond, the connection is considered broken, and so_error is
set to ETIMEOUT.

This option specifies what to do with the unsent data when a
socket is closed. It uses the | i nger structure defined in
sys/ socket . h.

This option returns the current value of the variable so_err or,
defined in sys/ socket var. h.

This option returns the socket type to the caller.

Sets up the socket to listen for incoming connection requests. The
queue size is quietly limited to 1.

These functions read data from a socket. The recv, recvmsg, and
recvfrom calls support the MSG_PEEK flag but NOT the
MSG_OOB or MSG_DONTROUTE flags.

274 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Supported Socket Functions

Function

Description

sel ect ()

send(),
sendmsg(),
sendto()
setsockopt()

TCP_NODELAY

SO_KEEPALIVE

SO_LINGER

This function allows the application to block on multiple 1/0
events. The system will wake up the application process when any
of the multiple 1/0 events occurs.

This function uses the timeval structure defined in

<sys/ti nme. h>and the fd_set structure defined in

sys/types. h.

Also associated with this function are the following four macros
defined in sys/ types. h

FD_ZERO()

FD_SET()

FD_CLR()

FD_ISSET()

Besides socket descriptors, this function also works with the *“st-
din” descriptor, sysFi | eDescSt dI n. This descriptor is marked
as ready for input whenever a user or system event is available in
the event queue. This includes any event that would be returned
by Evt Get Event . No other descriptors besides

sysFi | eDescSt dl n and socket r ef nuns are allowed.

These functions write data to a socket. These calls, unlike the recv
calls, do support the MSG_OOB flag. The MSG_PEEK flag is not
applicable and the MSG_DONTROUTE flag is not supported.

This function sets control options of a socket. Only the following
options are allowed:

This option allows the application to disable the TCP output
buffering algorithm so that TCP sends small packets as soon as
possible. This constant is defined inneti net/tcp. h.

This option enables periodic transmission of probe segments
when there is no data exchanged on a connection. If the remote
endpoint doesn’t respond, the connection is considered broken,
andso_error issetto ETIMEOUT.

This option specifies what to do with the unsent data when a
socket is closed. It uses the linger structure defined in
sys/ socket . h.

Developing Palm OS 3.0 Applications, Part Ill 275

Net Library Functions
Supported Network Utility Functions

Function Description

shutdown() This function is similar to cl ose() ; however, it gives the caller
more control over a full-duplex connection.

socket() This function creates a socket for communication.The only valid
address family is AF_INET. The only valid socket types are
SOCK_STREAM and SOCK_DGRAM; SOCK_RAW is not
supported. The protocol parameter should be set to 0.

write() This function writes data to a socket.

Supported Network Utility Functions

Function

Description

getdomainname()

gethostbyaddr()

gethostbyname()

gethostname()

getservbyname()

gettimeofday()
setdomainname()
sethostname()

settimeofday()

This function returns the domain name of the local host

This function looks up host information given the host’s IP
address. It returns a hostent structure, is defined in <net db. h>.

This function looks up host information given the host’s name. It
returns a hostent structure which is defined in <net db. h>.

This function returns the name of the local host

This function returns a servent structure, defined in <net db. h>
given a service name.

This function returns the current date and time.
This function sets the domain name of the local host
This function sets the name of the local host

This function sets the current date and time.

276 Developing Palm OS 3.0 Applications, Part Il

Net Library Functions
Supported Byte Ordering Functions

Supported Byte Ordering Functions

The byte ordering functions are defined in <neti net/in. h>.
They convert and integer between network byte order and the host
byte order.

Function Description

htonl() Converts a 32-bit integer from host byte order to network byte order.
htons() Converts a 16-bit integer from host byte order to network byte order.
ntohl() Converts a 32-bit integer from network byte order to host byte order.
ntohs() Converts a 16-bit integer from network byte order to host byte order.

Supported Network Address Conversion
Functions
The network address conversion functions are declared in the

<ar pa/ i net . h> header file. They convert a network address from
one format to another, or manipulate parts of a network address.

Function Description
inet_addr() Converts an IP address from dotted decimal format to 32-bit binary
format.

inet_network() Converts an IP network number from a dotted decimal format to a
32-bit binary format

inet_makeaddr() Returns an IP address in an in_addr structure given an IP network
number and an IP host number in 32-bit binary format.

inet_Inaof() Returns the host number part of an IP address.

Developing Palm OS 3.0 Applications, Part Ill 277

Net Library Functions
Supported System Utility Functions

Function Description

inet_netof() Returns the network number part of an IP address.

inet_ntoa() Converts an IP address from 32-bit format to dotted decimal
format.

Supported System Utility Functions

The following byte operation functions are not related to network
API per se. However, they are almost always used in BSD network
application source.

Function Description

bcopy() This function copies a block of data from one memory location to another.
bzero() This function sets a buffer to all zeros.
bcmp() This function compares data stored in two buffers.

sleep() This function causes the current task to sleep for a given period of time.

278 Developing Palm OS 3.0 Applications, Part Il

™

—e-e—
-—o—
—-o>0—
.
.

Overview

8

Exchange Manager

The Palm OS exchange manager provides a simple interface for
Palm OS applications to send and receive typed data from any num-
ber of remote devices and protocols. The device at the remote end of
a connection does not need to know it is talking to a Palm OS de-
vice. The exchange manager can be used with industry standard
protocols and data formats. The burden of understanding the proto-
cols and data formats is on the Palm OS application using the ex-
change manager.

The exchange manager was developed to provide a facility by
which Palm OS applications could communicate directly with exter-
nal devices and foreign data formats, without having to be tied to
the HotSync mechanism and conduits. In the increasingly complex
world of the Internet, wireless communications, and infrared com-
munications, it cannot be expected that all these modes of commu-
nication must support HotSync and provide the appropriate con-
duits on the other end. The Palm OS device must be able to deal
directly with foreign data formats since there will not be conduits on
the remote end to prepare the data. The data may also be sent with-
out regard to the version or even the existence of particular software
on the device.

The exchange manager is designed as a generic communications fa-
cility by which typed data objects can be sent and received. It is de-
signed to support a variety of underlying transport mechanisms.
Currently, the exchange manager supports only the IR (beaming) ca-
pability of the Palm Il devices (and upgraded PalmPilot devices).

Developing Palm OS 3.0 Applications, Part Ill 279

Exchange Manager
Exchange Manager and Launch Codes

NOTE: When used for IR communication, the exchange manag-
er uses the OBEX IrDA protocol. The only level of OBEX support-
ed currently is for the Put operation. The Palm Il can act as both a
client and a server.

The exchange manager API provides a mechanism for exchanging
typed data objects between applications. An object is a stream of
bytes with some information about its contents attached. The con-
tent information includes a creator ID, a MIME data type and an op-
tional filename. An application that wants to send data using the ex-
change manager must provide at least one of these pieces of
information. An application that is able to receive an object registers
itself with the exchange manager (ExgReaqi st er Dat a) and speci-
fies what data types and file extensions it can accept.

A key data structure used by the exchange manager is the
ExgSocket Type data type. This exchange socket structure defines
information about the connection and the type of data to be
exchanged. When you are sending data, you must supply this
structure with the appropriate information filled in. When you are
receiving, this structure gives you information about the connection
and the incoming data. (Note that the use of the term *“socket” in the
exchange manager API is not related to the term “socket” as used in
sockets communication programming.)

Exchange Manager and Launch Codes

When receiving incoming data, the exchange manager communi-
cates with applications via launch codes. The exchange manager
sends an application a series of three launch codes when it receives
data for it. These are:

¢ sysAppLaunchCndExgAskUser
¢ sysAppLaunchCndExgRecei veDat a
¢ sysAppLaunchCndGot o

The exchange manager sends the first launch code,
sysAppLaunchCnrdExgAskUser , when it has determined that in-
coming data is destined for a particular application (based on which

280 Developing Palm OS 3.0 Applications, Part Il

Exchange Manager
Exchange Manager and Launch Codes

application has registered to receive data of that type). This launch
code lets the application tell the exchange manager whether or not
to display a dialog asking the user if they want to accept the data. If
the application chooses not to handle this launch command, the de-
fault course of action is that the exchange manager displays a dialog
asking the user if they want to accept the incoming data. In most
cases, applications won’t need to handle this launch code, since the
default action is the preferred alternative.

The application can respond to this launch code by setting the
resul t field in the parameter block to the appropriate value. If it
wants to allow the exchange manager to display a dialog, it should
leave ther esul t field set to exgAskDi al og (the default value). To
disable display of the dialog and to automatically accept the incom-
ing data (as if the user had pressed OK in the dialog), set the

resul t field to exgAsk k. To disable display of the dialog and to
automatically reject the incoming data (as if the user had pressed
Cancel in the dialog), setther esul t field to exgAskCancel . In the
later case, the data is discarded and no further action is taken by the
exchange manager.

If the application sets the result field to exgAskCk, or the dialog is
displayed and the user presses the OK button, then the exchange
manager sends the application the next launch code, sysAp-
pLaunchCdExgRecei veDat a, so that it can actually receive the
data. This launch code notifies the application that it should receive
the data.

The application should use the exchange manager functions Ex-
gAccept , ExgRecei ve, and ExgDi sconnect to receive the data
and store it or do whatever it needs to with the data.

The parameter block sent with this launch code is of the ExgSock-
et Pt r data type. It is a pointer to the ExgSocket Type structure
corresponding to the exchange manager connection via which the
data is arriving. You will need to pass this pointer to the ExgAc-
cept function to begin receiving the data. Note that in the socket
structure, the | engt h field may not be accurate, so in your receive
loop you should be flexible in handling more or less data than

| engt h specifies.

Developing Palm OS 3.0 Applications, Part Ill 281

Exchange Manager
Exchange Manager Function Summary

After you have finished receiving the data and before you return
from the Pi | ot Mai n routine, you must set up the goToCr eat or
and goToPar ans fields in the socket structure. Set in the goToCr e-
at or field the creator ID of the application that should be launched
to view the received data (normally the same application that re-
ceived the data). If no application should be launched, then set this
to NULL. Set in the goToPar ans structure information that identi-
fies the record to go to when the application is launched. It is recom-
mended that you use a unique ID to identify the record, rather than
the record index, since indexes might change. You can put unique
ID information into the goToPar ans. mat chCust omfield.

Note that the application may not be the active application, and
thus may not have globals available when it is launched with this
launch code. Be sure to check if you have globals available and don’t
try to access them if they are not available.

Assuming that everything has proceeded normally, the exchange
manager again launches the application identified in the goToCr e-
at or field of the socket structure with the sysAppLaunchCndGo-
t o launch code. This allows the user to view the received item.

Exchange Manager Function Summary

The following functions are available for application use:

¢ ExgAccept

¢ ExgDBRead

* ExgDBWite

¢ ExgDi sconnect

* ExgPut

¢ ExgRecei ve

* ExgReqi sterData

¢ ExgSend

282 Developing Palm OS 3.0 Applications, Part Il

Exchange Manager
Exchange Manager Functions

Exchange Manager Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

ExgAccept

Accepts a connection from a remote device.
Err ExgAccept (ExgSocketPtr socketP)
-->socket P Pointer to the socket structure.

Returns the following result codes:

0 No error
exgEr r BadLi brary Couldn't find default exchange library

exgErr St ackl ni t Couldn't initialize the IR stack (not
enough battery power or unsupported
hardware)

An application calls this function when it has been called with the
special application launch code

sysAppLaunchCrdExgRecei veDat a. The application is passed
socket P as a parameter and it should pass this parameter to Ex-
gAccept to accept the connection. Then call ExgRecei ve one or
more times to receive the data.

ExgRecei ve

Developing Palm OS 3.0 Applications, Part Ill 283

Exchange Manager
Exchange Manager Functions

Purpose

Prototype

Parameters

ExgDBRead

Reads a Palm OS database in its internal format and writes it to stor-
age RAM. For example, this function might read in a database trans-
mitted by a beaming operation using the exchange manager.

Err ExgDBRead (ExgDBReadProcPtr readProcP,

-->r eadPr ocP

-->del et eProcP

-->user Dat aP

<--dbl DP

<--car dNo

<-- needReset P

--> keepDat es

ExgDBDel et eProcPtr del et ePr ocP,
voi d* user Dat aP,

Local | D* dbl DP,

I nt cardNo,

Bool ean* needReset P,

Bool ean keepDat es)

A pointer to a function that you supply that
reads in the database and passes it to
ExgDBRead. See the Comments section for
details.

A pointer to a function that is called if a data-
base with an identical name already exists on
the device, so you can erase it before
ExgDBRead stores the received database. See
the Comments section for details.

A pointer to any data you want to pass to either
the r eadPr ocP or del et ePr ocP functions.

The id of the database that ExgDBRead created
on the local device.

The number of the card on which the database
was stored by ExgDBRead.

Set to TRUE by ExgDBRead if the
dnHdr At t r Reset Aft er | nst al | attribute
bit is set in the received database.

Specify TRUE to retain the creation, modifica-
tion, and last backup dates as set in the received
database header. Specify FALSE to reset these
dates to the current date.

284 Developing Palm OS 3.0 Applications, Part Il

Exchange Manager
Exchange Manager Functions

Result

Comments

Returns 0 if successful; otherwise, returns one of the data manager
error codes (dnEr r. . .) or a callback-specific error code (if the

r eadPr ocP function returns an error, it is also returned by
ExgDBRead).

The r eadPr ocP parameter points to a function that you supply and
that is called by ExgDBRead to read in a database. The read callback
function is called with three parameters, as follows:

-->voi d* dat aP A pointer to a buffer where this function should
place the database data.

<-->ULong* si zeP
The size of dat aP. This value is set by
ExgDBRead to the number of bytes it expects to
receive in dat aP. You must set this value to the
number of bytes you return in dat aP (if it’s not
the same).

-->voi d* user Dat aP
The user Dat aP parameter passed to
ExgDBRead is simply passed on to the read
function. You can use it for application-specific
data.

The read callback function should return an error number, or O if
there is no error. If the callback function returns an error,
ExgDBRead deletes the database it was creating, cleans up any
memory it allocated, then exits, returning the error passed back
from the callback function.

The read callback function is called multiple times by ExgDBRead.
Each time, it passes in si zeP the number of bytes it expects to re-
ceive in the next chunk you are to return in dat aP. Insi zeP, it’s im-
portant to set the number of bytes that you actually place in dat aP,
if it’s not the same as what ExgDBRead expected. ExgDBRead stops
calling the read callback function after it receives the entire database
(it knows when it’s got it all based on the header information).

The del et ePr ocP function is called if ExgDBRead finds that an
identically named database already exists on the local device. This
delete callback function gives you a chance to delete the existing

Developing Palm OS 3.0 Applications, Part Ill 285

Exchange Manager
Exchange Manager Functions

database, or take some other action (such as changing the database
name, if appropriate).

The delete callback function is called with five parameters, as
follows:

const char* naneP
A pointer to the name of the identical database
that already exists.

Word version The version of the identical database that al-
ready exists.

| nt car dNo The card number of the identical database that
already exists.

Local | D dbl D The database ID of the identical database that
already exists.

voi d* user Dat aP
The user Dat aP parameter passed to
ExgDBRead is simply passed on to the delete
function. You can use it for application-specific
data.

The delete callback function should return a Boolean value. TRUE
means that the delete callback function handled the situation suc-
cessfully; that is, it deleted, renamed, or moved the database so
there would no longer be a conflict with the one that ExgDBRead is
writing. FALSE means that the delete callback function did not han-
dle the situation successfully; in this case, ExgDBRead exits with no
error (same as if the user cancelled the operation).

See Also ExgDBWite

ExgDBWrite

Purpose Reads agiven Palm OS database in its internal format from the local
device and writes it out using a function you supply. For example,
this function might read a local database and transmit it by a beam-
ing operation using the exchange manager.

286 Developing Palm OS 3.0 Applications, Part Il

Exchange Manager
Exchange Manager Functions

Prototype

Parameters

Result

Comments

Err ExgDBWite (ExgDBWiteProcPtr witeProcP,
voi d* user Dat aP,
const char* naneP,
Local | D dbl D,
I nt car dNo)

-->writeProcP A pointer to a function that you supply that
writes out the database identified by dbl D. See
the Comments section for details.

--> user Dat aP A pointer to any data you want to pass to the
wr i t ePr ocP function.

--> naneP A pointer to the name of the database that you
want ExgDBW i t e to read and pass to
writeProcP.

-->dbl D The id of the database that you want
ExgDBW i t e toread and passtowr i t ePr ocP.
If you don’t supply an ID, then naneP is used
to search for the database by name.

-->car dNo The number of the card on which to look for the
database identified by naneP.

Returns 0 if successful; otherwise, returns one of the data manager
error codes (dnEr r. . .) or a callback-specific error code (if the

wr i t ePr ocP function returns an error, it is also returned by
ExgDBW i t e).

The wr i t ePr ocP parameter points to a function that you supply
and that is called by ExgDBW i t e to write out a database. For ex-
ample, you might use this function to call exchange manager func-
tions to beam the database to another unit.

The write callback function is called with three parameters, as
follows:

-->voi d* dat aP A pointer to a buffer containing the database
data, placed there by ExgDBW i t e.

Developing Palm OS 3.0 Applications, Part Ill 287

Exchange Manager
Exchange Manager Functions

<-->ULong* si zeP
The number of bytes placed in dat aP by
ExgDBW i t e. If you were unable to write out
or send all of the data in this chunk, on exit, you
should set si zeP to the number of bytes you
did write out.

-->voi d* user Dat aP
The user Dat aP parameter passed to
ExgDBW i t e is simply passed on to the write
function. You can use it for application-specific
data.

The write callback function should return an error number, or 0 if
there is no error. If the callback function returns an error,
ExgDBW i t e closes the database it was reading, cleans up any
memory it allocated, then exits, returning the error passed back
from the callback function.

The write callback function is called multiple times by

ExgDBW i t e. In the si zeP parameter, ExgDBW i t e passes the
number of bytes in dat aP. Due to transport errors, timeouts, or
other problems, you may not be able to successfully send all this
data. If you didn’t handle it all, it’s important to set in si zeP the
number of bytes that you did handle successfully. ExgDBW i t e
stops calling the write callback function after you write out the en-
tire database (it knows when you’ve done it all based on the header
information and number of bytes you return in si zeP each time).

See Also ExgDBRead

ExgDisconnect

Purpose Terminates an exchange manager transfer and disconnects.

Prototype Err ExgDi sconnect (ExgSocket Ptr socketP, Err error)

288 Developing Palm OS 3.0 Applications, Part Il

Exchange Manager
Exchange Manager Functions

Parameters

Result

Comments

See Also

-->socket P Pointer to the socket structure identifying the
connection to terminate.

-->error Any application error that occurred.
Returns the following result codes:

0 No error
exgErr BadLi brary Couldn't find default exchange library
exgMenEr r or Couldn't read data to send

exgErr User Cancel User cancelled transfer

In the er r or parameter, pass any error that occurs during the appli-
cation loop, including errors returned from other exchange manager
functions. This ensures that the connection is shut down knowing
that it failed rather than succeeded.

It’s especially important to check the result code from this function,
since this will tell you if the transfer was successful. A 0 return value
means that the item was delivered to the destination successfully. It
does not mean that the user on the other end actually kept the data.

ExgDi sconnect is used for sending and receiving. When receiv-
ing, the application can insert its creator ID into the goToCr eat or
field in the socket structure and add other goto information. After
the application returns from the

sysAppLaunchCndExgRecei veDat a call, the system will launch
the application with a standard sysAppLaunchCndGot o launch
code built from the information in the socket header got oPar ans
field.

ExgPut , ExgRecei ve, ExgSend

Developing Palm OS 3.0 Applications, Part Ill 289

Exchange Manager
Exchange Manager Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

ExgPut

Initiates the transfer of data to the destination device.
Err ExgPut (ExgSocketPtr socketP)

-->socket P Pointer to the socket structure containing con-
nection information and information identify-
ing the object to send.

Returns the following result codes:

0 No error
exgEr r BadLi brary Couldn't find default exchange library

exgErrStacklnit Couldn'tinitialize the IR stack (not
enough battery power or unsupported
hardware)

exgMentrror Not enough memory to initialize transfer

If the connection does not already exist, this function establishes
one. You must create and pass a pointer to an ExgSocket Type
structure containing information about the data to send and the des-
tination application. All unused fields in the structure MUST be
zeroed.

If no error is returned, this call MUST be followed by ExgSend, to
begin sending data, or ExgDi sconnect , to disconnect. You may
need to call ExgSend multiple times to send all the data.

ExgDi sconnect , ExgSend

290 Developing Palm OS 3.0 Applications, Part Il

Exchange Manager
Exchange Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

ExgReceive

Receives data from a remote device.

ULong ExgRecei ve (ExgSocketPtr socket P,
Voi dPtr buf P,
const ULong buf Len,

Err * errP)
-->socket P Pointer to the socket structure.
-->buf P Pointer to the buffer to receive the data.
-->buf Len Number of bytes to receive.
<--errP Pointer to an error code result.

Returns the number of bytes actually received. A zero result indi-
cates the end of the transmission. An error code is returned in the
address indicated by er r . The error code exgEr r User Cancel is
returned if the user cancels the operation.

Call this function one or more times to receive all the data, following
a successful call to ExgAccept . After receiving the data, call
ExgDi sconnect to terminate the connection.

This function blocks the application until the end of the transmis-
sion or until the requested number of bytes has been received. How-
ever, it does provide its own user interface that will be updated as
necessary and will allow the user to cancel the operation in
progress.

ExgAccept , ExgDi sconnect

Developing Palm OS 3.0 Applications, Part Ill 291

Exchange Manager
Exchange Manager Functions

ExgReqgisterData

Purpose Registers an application to receive a specific type of data.

Prototype Err ExgRegisterData (const DWrd creatorlD,
const Word id,
const Char * const
dat aTypesP)

Parameters -->creatorlD Creator ID of the registering application.

->id Registry ID identifying the type of the items
being registered. Specify
exgRegExt ensi onl Dor exgRegTypel D.

-->dat aTypesP Pointer to a tab-delimited, null-terminated
string listing the items to register. These include
file extensions or MIME types. To unregister,
pass a null value.

Result Returns 0 if successful, otherwise, one of the data manager error
codes (dnErr ...).

292 Developing Palm OS 3.0 Applications, Part Il

Exchange Manager
Exchange Manager Functions

Comments

Applications that wish to receive data from anything other than an-
other Palm OS device running the same application, must use this
function to register for the kinds of data they can receive. Call this
function when your application is loaded on the device.

Specify the exgRegExt ensi onl Did to register to receive data that
has a filename with a particular extension. For example, if your ap-
plication wants to receive files with a .TXT extension, it could regis-
ter like this:

ExgRegi st er Dat a(nyCr eat or, exgRegExt ensi onl D,
n TXTII) ;

Specify the exgRegTypel Did to register to receive data with a spe-
cific MIME type. For example, if your application wants to receive
“setext” text files, it could register like this:

ExgRegi st er Dat a(myCr eat or, exgRegTypel D,
"text/x-setext");

Registrations are active until the device is hard reset or until the ap-
plication is removed. The registration information is backed up and
restored across a soft reset. When an application is removed, its reg-
istry information is also automatically removed from the registry, so
there is not normally a need to unregister. If you want to unregister,
you can register with a nil value.

Developing Palm OS 3.0 Applications, Part Ill 293

Exchange Manager
Exchange Manager Functions

ExgSend

Purpose Sends data to the destination device.

Prototype ULong ExgSend (ExgSocketPtr socketP,
const void * const bufP,
const ULong buf Len,

Err * errP)
Parameters -->socketP Pointer to the socket structure.
-->buf P Pointer to the data to send.
-->bpuf Len Number of bytes to send.
<--errP Pointer to an error code result.

Result Returns the number of bytes sent, normally the same number as
specified in buf Len. An error code is returned in the address indi-
cated by er r . The error code exgEr r User Cancel is returned if the
user cancels the operation.

Comments Call this function one or more times to send all the data, following a
successful call to ExgPut . After sending the data, call
ExgDi sconnect to terminate the connection.

The lower level protocol may break large amounts of data into mul-
tiple packets or assemble small send commands together into larger
packets, but the application will not be aware of these transport
level details.

This function blocks the application until all the data is sent. How-
ever, it does provide its own user interface that will be updated as
necessary and will allow the user to cancel the operation in
progress.

See Also ExgDi sconnect , ExgPut

294 Developing Palm OS 3.0 Applications, Part Il

™

-o-0—
—o—e-—
-o-0—
———
—-——

IrDA Stack

Figure 9.1

IR Library

The IR (InfraRed) library is a shared library that provides a direct in-
terface to the IR communications capabilities of the Palm OS. It is
designed for applications that want more direct access to the IR ca-
pabilities than the exchange manager provides.

The IR support provided by the Palm OS is compliant with the IrDA
specifications. IrDA (Infrared Data Association), is an industry body
consisting of representatives from a number of companies involved
in IR development. For a good introduction to the IrDA standards,
see the IrDA web site at:

http://ww. I rDA. org.

The IrDA stack comprises a number of protocol layers, of which
some are required and some are optional. The complete stack looks
something like Figure 9.1.

IrDA Protocol Stack

IrComim ItLAN OBEE

TinyTF

I+ L MF

[tLAF

SIE FIE

Developing Palm OS 3.0 Applications, Part Ill 295

IR Library
IrDA Stack

The SIR/FIR layer is purely hardware. The SIR (Serial IR) layer sup-
ports speeds up to 115k bps while the FIR (Fast IR) layer supports
speeds up to 4M bps. IrLAP is the IR Link Access Protocol that pro-
vides a data pipe between IrDA devices. IrLMP, the IR Link Man-
agement Protocol, manages multiple sessions using the IrLAP. Tiny
TP is a lightweight transfer protocol on which some higher-level
IrDA layers are built.

One or more of SIR/FIR must be implemented, and Tiny TP, IrLMP
and IrLAP must also be implemented. IrComm provides serial and
parallel port emulation over an IR link and is optional (it is not cur-
rently supported in the Palm OS). IrLAN provides an access point to
Local Area Network protocol adapters. It too is optional (and is not
supported in the Palm OS).

OBEX is an object exchange protocol that can be used (for instance)
to transfer business cards, calendar entries or other objects between
devices. It too is optional and is supported in the Palm OS. The ca-
pabilities of OBEX are made available through the exchange manag-
er; there is no direct API for it.

The Palm OS implements all the required protocol layers (SIR,
IrLAP, IrLMP, and Tiny TP), as well as the OBEX layer, to support
the Exchange Manager. Palm 11l devices provide SIR (Serial IR)
hardware supporting the following speeds: 2400, 9600, 19200, 38400,
57600, and 115200 bps. The software (I r Open) currently limits
bandwidth to 57600 bps by default, but you can specify a connection
speed of up to 115200 bps if desired.

The stack is capable of connection-based or connectionless sessions.

IrLMP Information Access Service (IAS) is a component of the
IrLMP protocol that you will see mentioned in the interface. IAS
provides a database service through which devices can register in-
formation about themselves and retrieve information about other
devices and the services they offer.

296 Developing Palm OS 3.0 Applications, Part Il

IR Library
Loading the IR Library

Loading the IR Library

Before you can use the IR library, you must obtain a reference num-
ber for it by calling the function SysLi bFi nd, as in this example:

err = SysLi bFi nd(irLi bNanme, &refNun);
This function returns the library reference number in the r ef Num

parameter. This parameter is passed to most of the other functions
in the IR library.

IR Data Structures

This section lists some of the more important data types used by IR
library functions.

IrConnect

This data structure is used to manage an IrLMP or Tiny TP
connection.

Listing 9.1 IrConnect Data Structure

/* Forward decl aration of the |IrConnect structure */
t ypedef struct _hconnect IrConnect;

| ® o o e e e e e e e e e e e e e e e emeeeao-
*/

t ypedef struct _hconnect {

Byte | Lsap; /* Local LSAP this connection will listen on */

Byte rLsap; /* Renpte Lsap */
| * ============== For |Internal Use Onl Yy =======================
* The following is used internally by the stack and shoul d not

be
* nmodified by the user.

Developing Palm OS 3.0 Applications, Part Ill 297

IR Library
IR Data Structures

Byte flags; /* Flags containing state, type, etc. */
I rCal |l Back cal |l Back; /* Pointer to callback function */

[* Tiny TP fields */

| r Packet packet; /* Packet for internal use */

Li stEntry packets; /* List of packets to send */

Wrd sendCredit; /* Amount of credit from peer */

Byte avail Credit; /* Amount of credit to give to peer */
Byte dataOif; /* Amount of data |ess than IrLAP size */
} _hconnect;

IrPacket

This data structure is used for sending IrDA packets.

Listing 9.2 IrPacket Data Structure

t ypedef struct _IrPacket {

/* The node field nmust be the first field in the structure. It is
* used internally by the stack. */

Li stEntry node;

/* The buff field is used to point to a buffer of data to send
and

* len field indicates the nunber of bytes in buff. */

BytePtr buff;

Word |en;

| * ========—=—=—=—=—=—=—=—=—== For Internal Use Onl Yy

* The following is used internally by the stack and shoul d not
be
* nodified by the upper |ayer.

| rConnect* origin; /* Pointer to connection which owns packet */

298 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Data Structures

Byt e headerLen; /* Nunber of bytes in the header */
Byte header[14]; /* Storage for the header */
} IrPacket;

IrIASObject

This data structure is used as storage for an IAS object managed by
the local IAS server. An object of this type is passed as the obj pa-
rameter to the | r | AS_Add function.

Listing 9.3 IrlASObject Data Structure

typedef struct _IrlasObject {
BytePtr nanme; /* Pointer to name of object */
Byte len; /* Length of object nane */

Byte nAttribs; /* Nunber of attributes */

IrlasAttribute* attribs; /* A pointer to an array of attributes
*/

} IrlasQbject;

IrlasQuery

This data structure is used for performing IAS queries. An object of
this type is passed as the t oken parametertothelrl AS Query
function (and several other functions as well).

Listing 9.4 IrlasQuery Data Structure

* Forward declaration of a structure used for performng |IAS
* Queries so that a call back type can be defined for use in
* the structure. */

typedef struct _IrlasQuery IrlasQuery;

typedef void (*IrlasQueryCall Back) (IrStatus);

* Actual definition of the IrlasQuery structure. */
typedef struct _IrlasQuery
{

Developing Palm OS 3.0 Applications, Part Ill 299

IR Library
IR Data Structures

/[* Query fields. The query buffer contains the class nane and
* class attribute whose value is being queried--it is as
fol |l ows:
*

1 byte - Length of class nane

"Lengt h" bytes - class nane

1 byte - length of attribute nane

"Length" bytes - attribute nane

* X k% ¥

* queryLen - contains the total nunber of byte in the query */
Byte querylLen; /* Total |ength of the query */
BytePtr queryBuf; /* Points to buffer containing the query */

/* Fields for the query result */

Wrd resultBuf Size; /* Size of the result buffer */

Wrd resultlLen; /* Actual nunber of bytes in the result buffer */
Wrd listLen; /* Nunber of items in the result list. */

Wrd offset; /* Ofset into results buffer */

Byte retCode; /* Return code of operation */

Byte overFlow, /* Set TRUE if result exceeded result buffer
size*/

BytePtr result; /* Pointer to buffer containing result; */

/* Pointer to call back function */
I rlasQueryCal | Back cal | Back;

} _IrlasQuery;

IrCallbackParms

This data structure is used to pass information from the stack to the
upper layer of the stack (application). Not all fields are valid at any
given time. The type of event determines which fields are valid. An
object of this type is passed as the second parameter to the

| r Cal | back function.

Listing 9.5 IRCallbackParms Data Structure

t ypedef struct {
| rEvent event; /* Event causing call back */

300 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Stack Callback Events

BytePtr rxBuff; /* Receive buffer already advanced to app data */
Wrd rxLen; /* Length of data in receive buffer */

| r Packet * packet; /* Pointer to packet being returned */

| r Devi ceLi st* devicelList; /* Pointer to discovery device list */
IrStatus status; /* Status of stack */

} IrCall BackPar ns;

IR Stack Callback Events

The IR stack calls the application via a callback function stored in
each | r Connect structure. The callback function is called with a
pointer to the | r Connect structure and a pointer to a parameter
structure. The parameter structure contains an event field, which
indicates the reason the callback is called, and other parameters,
which have meaning based on the event.

The meaning of the events is described in the following sections.

LEVENT_DATA_IND

Data has been received. The received data is accessed using fields
rxBuf f andrxLen.

LEVENT_DISCOVERY_CNF

Indicates the completion of a discovery operation. The field
devi celi st points to the discovery list.

LEVENT_LAP_CON_CNF

The requested IrLAP connection has been made successfully. The
callback function of all bound | r Connect structures is called.

LEVENT _LAP_CON_IND

Indicates that the IrLAP connection has come up. The callback of all
bound I r Connect structures is called.

Developing Palm OS 3.0 Applications, Part Ill 301

IR Library

IR Stack Callback Events

LEVENT _LAP_DISCON_IND

Indicates that the IrLAP connection has gone down. This means that
all IrLMP connections are also down. A callback with event
LEVENT_LM CON_I NDwill not be given. The callback function of
all bound | r Connect structures is called.

LEVENT _LM_CON_CNF

The requested IrLMP/Tiny TP connection has been made success-
fully. Connection data from the other side is found using fields
rxBuf f andrxLen.

LEVENT LM_CON_IND

Other device has initiated a connection. | r Connect Rsp should be
called to accept the connection. Any data associated with the con-
nection request can be found using fields r xBuf f and r xLen, for
the data pointer and length, respectively.

LEVENT _LM_DISCON_IND

The IrLMP/Tiny TP connection has been disconnected. Any data as-
sociated with the disconnect indication can be found using fields
r xBuf f and r xLen, for the data pointer and length, respectively.

LEVENT_PACKET_HANDLED

A packet is being returned. A pointer to the packet exists in field
packet .

LEVENT_STATUS_IND

Indicates that a status event from the stack has occurred. The
st at us field indicates the status generating the event. Possible sta-
tuses are as follows.

e | R_STATUS NO_PROGRESS means that IrLAP has no progress
for 3 seconds threshold time (e.g. the beam is blocked).

302 Developing Palm OS 3.0 Applications, Part Il

IR Library
IAS Query Callback Function

e | R_STATUS LI NK_CK indicates that the no progress condition
has cleared.

e | R_ STATUS MEDI A NOT_BUSY indicates that the IR media has
transitioned from busy to not busy.

LEVENT_TEST_CNF

Indicates that a TEST command has completed. The st at us field
indicates if the test was successful. | R_STATUS SUCCESS indicates
that operation was successful and the data in the test response can
be found by using the r xBuf f and r xLen fields.

| R_STATUS_FAI LEDindicates that no TEST response was received.
The packet passed to perform the test command is passed back in
the packet field and is now available (no separate packet handled
event will occur).

LEVENT _TEST_IND

Indicates that a TEST command frame has been received. A pointer
to the received data is in r xBuf f and r xLen. A pointer to the pack-
et that will be sent in response to the test command is in the packet
field. The packet is currently set up to respond with the same data
sent in the command TEST frame. If different data is desired as a re-
sponse, then modify the packet structure. This event is sent to the
callback function in all bound | r Connect structures. The IAS con-
nections ignore this event.

IAS Query Callback Function

The result of IAS queries is signaled by calling the callback function
pointed to by the cal | Back field of the | r | asQuer y structure. The
callback has the following prototype:

voi d cal | Back(Ir Status);
The callback is called with a status as follows:

| R_STATUS_ SUCCESS means the query operation finished success-
fully and the results can be parsed.

Developing Palm OS 3.0 Applications, Part Ill 303

IR Library
IR Library Function Summary

| R_STATUS_ DI SCONNECT means the link or IrLMP connection was
disconnected during the query, so the results are not valid.

IR Library Function Summary

The following general functions are available for application use:
IrAdvanceCredit

= IrBind

= IrClose

= |rConnectirLap

= |rConnectReq

* [IrConnectRsp

= IrDataReq
e |rDisconnectirLap

= [rDiscoverReq

e |rislrLapConnected

* |rIsMediaBusy

= |rIsNoProgress

= |rIsRemoteBusy

= IrLocalBusy
e IrMaxRxSize

= IrMaxTxSize

= IrOpen

= IrSetConTypelL MP
= IrSetConTypeTTP
= IrSetDevicelnfo

= IrTestReq
e IrUnbind

The following functions and macros are related to IAS databases:
= IrlAS_Add

304 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Library Functions

= IrlAS_Getinteger

= IrlIAS_GetlntLsap

= IrlAS_GetObjectID

= IrlAS_GetOctetString

= IrlAS_GetOctetStringLen
= IrlAS_GetType

= IrlAS_GetUserString

= IrlAS_GetUserStringCharSet
= IrlAS_GetUserStringlLen
= IrlAS_Next

= IrlAS_Query

= IrlAS_SetDeviceName

= IrlAS_StartResult

IR Library Functions

Purpose
Prototype

Parameters

Result

Comments

IrAdvanceCredit

Advances credit to the other side of the connection.
voi d I rAdvanceCredit (IrConnect* con, Byte credit)

-->con Pointer to | r Connect structure representing
connection to which credit is advanced.

-->credit Amount of credit to advance.

Returns nothing.

The total amount of credit should not exceed 127. The credit passed
by this function is added to the existing available credit, which is
must not exceed 127. This function only makes sense for a Tiny TP
connection.

Developing Palm OS 3.0 Applications, Part Ill 305

IR Library
IR Library Functions

Purpose

Prototype

Parameters

Result

Comments

IrBind

Obtains a local LSAP selector and registers the connection with the
protocol stack.

IrStatus IrBind (U nt ref Num
| r Connect* con,
| rCal | Back cal | Back)

-->ref num IR library refNum.

<-->con Pointer to | r Connect structure.

-->cal | Back Pointer to a callBack function that handles the
indications and confirmation from the protocol
stack.

| R_STATUS_ SUCCESS means the operation completed successfully.
The assigned LSAP can be found in con- >| Lsap.

| R_STATUS_FAI LED means the operation failed for one of the fol-
lowing reasons:

= con is already bound to the stack
< no room in the connection table

This | r Connect structure will be initialized. Any values stored in
the structure will be lost. The assigned LSAP will be inthe | Lsap
field of con. The type of the connection will be set to IrLMP. The

| r Connect must be bound to the stack before it can be used.

306 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Library Functions

Purpose

Prototype
Parameters

Result

Purpose

Prototype

Parameters

Result

Comments

IrClose

Closes the IR library. This releases the global memory for the IR
stack and any system resources it uses. This must be called when an
application is done with the IR library.

Err 1rClose (Wrd refnum
-->ref num IR library refNum.
Returns 0 if successful.

[rConnectirLap

Starts an IrLAP connection.

IrStatus IrConnectlrLap (U nt refNum
| r Devi ceAddr devi ceAddr)

-->ref num IR library refNum.

-->devi ceAddr 32-bit address of device to which connection
should be made.

| R_STATUS_PENDI NGmeans the operation is started successfully;
the result is returned via callback.

| R_STATUS MEDI A BUSY means the operation failed because the
media is busy. Media busy is caused by one of the following rea-
sons:

= Other devices are using the IR medium.
= An IrLAP connection already exists.
= Adiscovery process is in progress.

The result is signaled to all bound | r Connect structures via the
callback function. The callback event is LEVENT _LAP_CON_CNF if
successful or LEVENT_LAP_DI SCON_I ND if unsuccessful.

Developing Palm OS 3.0 Applications, Part Ill 307

IR Library
IR Library Functions

Purpose

Prototype

Parameters

Result

IrConnectReq

Requests an IrLMP or Tiny TP connection.

IrStatus IrConnectReq (U nt refNum

-->ref num
-->con

--> packet

-->credit

| r Connect* con,
| r Packet * packet,
Byte credit)

IR library refNum.

Pointer to | r Connect structure for handling
the connection. The r Lsap field must contain
the LSAP selector for the peer on the other de-
vice. Also the type of the connection must be
set. Use | R_Set ConTypeLMP to set the type to
an IrLMP connection or | R_Set ConTypeTTP
to set the type to a Tiny TP connection.

Pointer to a packet that contains connection
data. Even if no connection data is needed, the
packet must point to a valid | r Packet struc-
ture. The packet will be returned via the call-
back with the LEVENT _PACKET_HANDLED
event if no errors occur. The maximum size of
the packet is | R_MAX_ CON_PACKET for an
IrLMP connection or

| R_MAX_TTP_CON_PACKET for a Tiny TP con-
nection.

Initial amount of credit advanced to the other
side. Must be less than 127. It is ANDed with
Ox7f, so if it is greater than 127 unexpected re-
sults will occur. This parameter is ignored if the
connection is an IrLMP connection.

| R_STATUS PENDI NG means the operation has been started suc-
cessfully and the result will be returned via the callback function
with the event LEVENT_LM CON_CNF if the connection is made or

308 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Library Functions

LEVENT_LM DI SCON_I NDif connection fails. The packet is re-
turned via the callback with the event LEVENT _PACKET _HANDLED.

| R_STATUS_FAI LED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

= Connection is busy (already involved in a connection)
e | r Connect structure is not bound to the stack
= Packet size exceeds maximum allowed

| R_STATUS_NO_ I RLAP means the operation failed because there is
no IrLAP connection (the packet is available immediately).

Comments Theresultis signaled via the callback specified in the | r Connect
structure. The callback event is LEVENT LM CON_CNF indicates
that the connection is up and LEVENT_LM DI SCON_| NDindicates
that the connection failed. Before calling this function the fields in
the con structure must be properly set.

Developing Palm OS 3.0 Applications, Part Ill 309

IR Library
IR Library Functions

Purpose

Prototype

Parameters

Result

IrConnectRsp

Accepts an incoming connection that has been signaled via the call-
back with the event LEVENT _LM CON _| ND.

IrStatus IrConnectRsp (U nt refNum

-->ref num
-->con

--> packet

->credit

I r Connect * con,
| r Packet * packet,
Byte credit)

IR library refNum.

Pointer to | r Connect structure to managed
connection.

Pointer to a packet that contains connection
data. Even if no connection data is needed, the
packet must point to a valid | r Packet
structure. The packet will be returned via the
callback with the LEVENT _PACKET _HANDLED
event if no errors occur. The maximum size of
the packet is | R_MAX_CON_PACKET for an
IrLMP connection or

| R_MAX_TTP_CON_PACKET for a Tiny TP con-
nection.

Initial amount of credit advanced to the other
side. Must be less than 127. It is ANDed with
Ox7f, so if it is greater than 127 unexpected re-
sults will occur. This parameter is ignored if the
connection is an IrLMP connection.

| R_STATUS_PENDI NG means the operation has been started suc-
cessfully and the packet will be returned via the callback function
with the event LEVENT _PACKET_HANDLED.

| R_STATUS_FAI LED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.

= Connection is not in the proper state to require a response

e | r Connect structure is not bound to the stack

310 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Library Functions

Comments

Purpose

Prototype

Parameters

Result

Comments

= Packet size exceeds maximum allowed

| R_STATUS_NO I RLAP means the operation failed because there is
no IrLAP connection (the packet is available immediately).

| r Connect Rsp can be called during the callback or later to accept
the connection. The type of the connection must already have been
set to IrLMP or Tiny TP before the LEVENT_LM CON_| NDevent.

IrDataReq

Sends a data packet.

IrStatus IrDataReq (U nt ref Num
| r Connect* con,
| r Packet * packet)

-->ref num IR library refNum.

-->con Pointer to | r Connect structure that specifies
the connection over which the packet should be
sent.

--> packet Pointer to a valid | r Packet structure that con-

tains data to send. The packet should not ex-
ceed the max size found with IrMaxTxSize.

| R_STATUS_ PENDI NG means the packet has been queued by the
stack. The packet will be returned via the callback with event
LEVENT _PACKET _HANDLED.

| R_STATUS_FAI LED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.
= | r Connect structure is not bound to the stack
= Packet size exceeds maximum allowed
= | r Connect structure does not represent an active connection

The packet is owned by the stack until it is returned via the callback
with event LEVENT _PACKET _HANDLED. The largest packet that can
be sent is found by calling IrMaxTxSize.

Developing Palm OS 3.0 Applications, Part Ill 311

IR Library
IR Library Functions

Purpose
Prototype
Parameters

Result

Comments

IrDisconnectlrLap

Disconnects an IrLAP connection.

IrStatus |IrDi sconnectlrLap (U nt refNum

-->ref num IR library refNum.

| R_STATUS_PENDI NG means the operation started successfully
and all bound | r Connect structures will be called back when
complete.

| R_STATUS_NO_I RLAP means the operation failed because no
IrLAP connection exists.

When the IrLAP connection goes down, the callback of all bound
| r Connect structures is called with event
LEVENT _LAP_DI SCON | ND.

312 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Library Functions

Purpose

Prototype

Parameters

Result

Comments

IrDiscoverReq

Starts an IrLMP discovery process.

IrStatus |IrDi scoverReq (U nt refNum
I r Connect* con)

-->ref num IR library refNum.

-->con Pointer to a bound | r Connect structure.

| R_STATUS_PENDI NGmeans the operation is started successfully;
the result is returned via callback.

| R_STATUS MEDI A BUSY means the operation failed because the
media is busy. Media busy is caused by one of the following rea-
sons:

= Other devices are using the IR medium.
= Adiscovery process is already in progress.
= An IrLAP connection exists.

| R_STATUS_FAI LED means the operation failed because the
| r Connect structure is not bound to the stack.

The result will be signaled via the callback function specified in the
| r Connect structure with the event LEVENT DI SCOVERY_CNF.
Only one discovery can be invoked at a time.

Developing Palm OS 3.0 Applications, Part Ill 313

IR Library

IR Library Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters

Result

Purpose
Prototype
Parameters

Result

IrisirLapConnected

Determines if an IrLAP connection exists.
BOOL IrlslrLapConnected (U nt refNum
-->ref num IR library refNum.

True if IrLAP is connected, false otherwise.

Only available if | R_ I S_LAP_FUNCS is defined.

IrisMediaBusy

Determines if the IR media is busy.
BOOL IrlsMediaBusy (U nt refNum
-->ref num IR library refNum.

True if IR media is busy, false otherwise.

IriIsNoProgress

Determines if IFLAP is not making progress.
BOOL IrlsNoProgress (U nt refNum
-->ref num IR library refNum.

True if IrLAP is not making progress, false otherwise.

314 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Library Functions

Purpose
Prototype
Parameters

Result

Purpose
Prototype

Parameters

Result

Comments

IriIsRemoteBusy

Determines if the other device's IrLAP is busy.

BOOL IrlsRenoteBusy (U nt refNum

-->ref num IR library refNum.

True if the other device's IrLAP is busy, false otherwise.

IrLocalBusy

Sets the IrLAP local busy flag.

voi d IrLocal Busy (U nt refNum BOOL fl ag)

-->ref num IR library refNum.
-->fl ag Value (true or false) to set for IrLAP's local busy
flag.

Returns nothing.

If local busy is set to true, then the local IrLAP layer will send RNR
(Receive Not Ready) frames to the other side indicating it cannot re-
ceive any more data. If the local busy is set to false, IFLAP is ready to
receive frames.

The setting takes effect the next time IrLAP sends an RR (Receive
Ready) frame. If IrLAP has data to send, the data will be sent first,
so it should be used carefully.

This function should not be used when using Tiny TP or when mul-
tiple connections exist.

Developing Palm OS 3.0 Applications, Part Ill 315

IR Library
IR Library Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

IrMaxRxSize

Returns the maximum size buffer that can be sent by the other
device.

Word I rMaxRxSi ze (U nt refNum |rConnect* con)

-->ref num IR library refNum.

-->con Pointer to] r Connect structure that represents
an active connection.

Returns the maximum size buffer that can be sent by the other de-
vice (maximum bytes that can be received). The value returned is

only valid for active connections. The maximum size will vary for
each connection and is based on the negotiated IrLAP parameters
and the type of the connection.

IrMaxTxSize

Returns the maximum size allowed for a transmit packet.
Word I rMaxTxSi ze (Ulnt refNum |IrConnect* con)

-->ref num IR library refNum.

-->con Pointer to] r Connect structure that represents
an active connection.

Returns the maximum size allowed for a transmit packet. The value
returned is only valid for active connections. The maximum size
will vary for each connection and is based on the negotiated IrLAP
parameters and the type of the connection.

316 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Library Functions

IrOpen

Purpose Opens the IR library. This allocates the global memory for the IR
stack and reserves the system resources it requires. This must be
done before any other IR library calls are made.

Prototype Err IrOpen (Word refnum DWrd options)

Parameters -->refnum IR library refNum. This value is returned from
the function SysLi bFi nd, which you must call
first to load the IR library.

-->options Open options flags. See the Comments section
for details.

Result Returns 0 if successful.

Comments The following flags can be specified for the opt i ons parameter to
set the speed of the connection:

i rQpenOpt Speed115200 Set maximum negotiated baud rate
i r QpenOpt Speed57600 Set 57600 bps (default if no flags given)
i r QpenOpt Speed9600 Set 9600 bps

IrSetConTypeLMP

Purpose Sets the type of the connection to IrLMP. This function must be
called after the | r Connect structure is bound to the stack.

Prototype void IrSet ConTypeLMP (IrConnect* con)
Parameters -->Ccon Pointer to | r Connect structure.

Result Returns nothing.

Developing Palm OS 3.0 Applications, Part Ill 317

IR Library
IR Library Functions

Purpose

Prototype
Parameters

Result

Purpose

Prototype

Parameters

Result

Comments

IrSetConTypeTTP

Sets the type of the connection to Tiny TP. This function must be
called after the I r Connect structure is bound to the stack.

voi d IrSet ConTypeTTP (IrConnect* con)
-->con Pointer to | r Connect structure.
Returns nothing.

IrSetDevicelnfo

Sets the XID info string used during discovery to the given string
and length.

IrStatus IrSetDevicelnfo (Unt ref Num
BytePtr info,

Byte | en)
-->ref num IR library refNum.
-->jinfo Pointer to array of bytes.
->|en Number of bytes pointed to by i nf o.

| R_STATUS_ SUCCESS means the operation is successful.

| R_STATUS_FAI LED means the operation failed because i nf o is
too big.

The XID info string contains hints and the nickname of the device.
The size cannot exceed | R_MAX _DEVI CE_| NFObytes.

318 Developing Palm OS 3.0 Applications, Part Il

IR Library
IR Library Functions

Purpose

Prototype

Parameters

Result

IrTestReq

Requests a TEST command frame be sent in the NDM (Normal dis-
connect Mode) state.

IrStatus IrTestReq(U nt refNum
| r Devi ceAddr devAddr,
| r Connect* con,
| r Packet * packet)

-->ref num IR library refNum.

-->devAddr Device address of device where TEST will be
sent. This address is not checked so it can be the
broadcast address or O.

-->con Pointer to | r Connect structure specifying the
callback function to call to report the result.

--> packet Pointer to an | r Packet structure that contains
the data to send in the TEST command packet.
The maximum size data that can be sent is
| R_MAX_TEST_PACKET. Even if no data is to
be sent, a valid packet must be passed.

| R_STATUS PENDI NG means the operation has been started suc-
cessfully and the result will be returned via the callback function

with the event LEVENT_TEST _CNF. This is also the indication re-
turning the packet.

| R_STATUS_FAI LED means the operation failed because of one of
the following reasons. Note that the packet is available immediately.
= | r Connect structure is not bound to the stack
= Packet size exceeds maximum allowed
| R_STATUS_MEDI A_BUSY means the operation failed because the

media is busy or the stack is not in the NDM state (the packet is
available immediately).

Developing Palm OS 3.0 Applications, Part Ill 319

IR Library
IAS Functions

Comments The result is signaled via the callback specified in the | r Connect
structure. The callback event is LEVENT_TEST _CNF and the status
field indicates the result of the operation. | R_STATUS_SUCCESS in-
dicates successand | R_STATUS_FAI LEDindicates no response was
received. A packet must be passed containing the data to send in the
TEST frame. The packet is returned when the LEVENT_TEST _CNF
event is given.

IrUnbind

Purpose Unbindsthe |l r Connect structure from the protocol stack, freeing
it's LSAP selector.

Prototype IrStatus IrUnbind (U nt refNum IrConnect* con)

Parameters -->refnum IR library refNum.
-->con Pointer to | r Connect structure to unbind.

Result | R _STATUS SUCCESS means the operation completed successfully.
| R_STATUS_FAI LED means the operation failed for one of the fol-
lowing reasons:

= the I r Connect structure was not bound
= the | Lsap field contained an invalid number

IAS Functions

This section describes functions and macros related to 1AS
databases:

e Ir1 AS Add

e Ir1 AS Cetlnteger

e Ir1AS CetlntlLsap

e I rl AS CGet QbjectlD

e Irl1AS GetQctetString

320 Developing Palm OS 3.0 Applications, Part Il

IR Library
IAS Functions

Purpose
Prototype

Parameters

Result

Comments

e Irl1AS GetQctetStringlen

e IrlAS CGet Type

e IrlAS GetUserString

e Irl1 AS GetUser StringChar Set
I rl AS GetUserStringlLen

e Irl AS Next

[r1 AS_Query

I r 1 AS Set Devi ceNane

Irl AS StartResult

IrIAS_Add

Adds an IAS object to the 1AS Database.
IrStatus Irl AS_ Add (Uint refNum IrlasQbject* obj)

-->ref num IR library refNum.
--> ob)j Pointer to an | r | ASQbj ect_structure.

| R_STATUS_SUCCESS means the operation is successful.

IR_STATUS_FAILED means the operation failed for one of the fol-
lowing reasons:

= No space in the database.
= An entry with the same class name already exists.

= The attributes of the object violate the IrDA Lite rules (attribute
name exceeds | R_MAX | AS_NAME, or attribute value exceeds
| R_MAX_| AS_ATTR_SI ZE).

= The class name exceeds | R_MAX | AS NAME.

The object is not copied, so the memory for the object must exist for
as long as the object is in the database. The IAS database is designed
to allow only objects with unique class names, and it checks for this.
Class names and attributes names must not exceed

Developing Palm OS 3.0 Applications, Part Ill 321

IR Library
IAS Functions

Purpose

Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

| R_MAX | AS_NAME. Also, attribute values must not exceed
| R_MAX_| AS_ATTR_SI ZE.

IrIAS_GetInteger

Returns an integer value, assuming that the current result item is of
type | AS_ATTRI B_| NTEGER (Call I r I AS_Get Type to determine
the type of the current result item.)

DWord Irl1 AS Getlnteger (IrlasQuery* token)
-->t oken Pointertoan | r | asQuer y structure.

Integer value.

IrlAS GetlntLsap

Returns an integer value that represents an LSAP, assuming that the
current result item is of type | AS_ATTRI B_| NTEGER. (Call

| rI AS_Get Type to determine the type of the current result item.)
Usually integer values returned in a query are LSAP selectors.

Byte Irl AS GetlntLsap (lrlasQuery* token)
-->t oken Pointertoan | r | asQuery structure.

Integer value.

322 Developing Palm OS 3.0 Applications, Part Il

IR Library
IAS Functions

Purpose
Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

IrIAS GetObjectID

Returns the unique object ID of the current result item.
Wrd Irl AS Get bjectI D (IrlasQuery* token)
-->t oken

Pointertoan | r | asQuer y structure.

Returns the object ID.

IrIAS GetOctetString

Returns a pointer to an octet string, assuming that the current result
item is of type IAS_ATTRIB_OCTET_STRING. (Call
| rI AS_Get Type to determine the type of the current result item.)

Byte* IrlAS GetCctetString (IrlasQuery* token)
-->t oken Pointertoan | r | asQuery structure.

Pointer to octet string.

IrIAS_GetOctetStringlLen

Gets the length of an octet string, assuming that the current result
item is of type | AS_ATTRI B_OCTET_STRI NG (Call
| rI AS_Get Type to determine the type of the current result item.)

Wrd Irl AS GetCctetStringlen (IrlasQuery* token)
-->t oken Pointertoan | r |1 asQuery structure.

Length of octet string.

Developing Palm OS 3.0 Applications, Part Ill 323

IR Library
IAS Functions

Purpose
Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

Purpose

Prototype

Parameters

Result

IrIAS GetType

Returns the type of the current result item.
Byte Irl AS Get Type (IrlasQuery* token)
-->t oken

Pointertoan | r | asQuer y structure.

Type of result item such as| AS_ATTRI B_| NTEGER,
| AS ATTRI B_OCTET_STRI NGor | AS ATTRI B_USER_STRI NG

IrIAS_GetUserString

Returns a pointer to a user string, assuming that the current result
item is of type | AS_ATTRI B_USER _STRI NG (Call
| rI AS_Get Type to determine the type of the current result item.)

Byte* Irl1 AS GetUserString(lrlasQuery* token)
-->t oken Pointertoan | r | asQuery structure.

Pointer to result string.

IrIAS_GetUserStringCharSet

Returns the character set of the user string, assuming that the cur-
rent result item is of type | AS_ATTRI B_USER_STRI NG (Call
| rI AS_Get Type to determine the type of the current result item.)

| rCharSet 1rl AS _Get User Stri ngChar Set

(I'rlasQuery* token)

-->t oken

Pointertoan | r | asQuer y structure.

Character set.

324 Developing Palm OS 3.0 Applications, Part Il

IR Library
IAS Functions

Purpose

Prototype
Parameters

Result

Purpose
Prototype

Parameters

Result

Comments

IrlIAS GetUserStringLen

Gets the length of a user string, assuming that the current result
item is of type | AS_ATTRI B_USER_STRI NG (Call
| rI AS_Get Type to determine the type of the current result item.)

Byte Irl AS GetUserStringLen (IrlasQuery* token)
-->t oken Pointertoan | r | asQuery structure.

Length of user string.

IrIAS_Next

Moves the internal pointer to the next result item.

BytePtr Irl1 AS Next (U nt refNumlrlasQuery* token)

-->ref num IR library refNum.
-->t oken Pointertoan | r | asQuery structure.

Pointer to the next result item, or 0 if there are no more items.

This function returns a pointer to the start of the next result item. If
the pointer is 0, then there are no more result items.

Developing Palm OS 3.0 Applications, Part Ill 325

IR Library
IAS Functions

Purpose

Prototype

Parameters

Result

Comments

IrIAS Query

Makes an IAS query of another device’s IAS database.

IrStatus Irl AS Query (U nt refNum
I rlasQuery* token)

-->ref num IR library refNum.
-->t oken Pointertoan | r | asQuery structure initialized

as described in the Comments section.

| R_STATUS_SUCCESS means the operation is started successfully
and the result will be signaled via the callback function.

IR_STATUS_FAILED means the operation failed for one of the fol-
lowing reasons:
e The query exceeds | R_MAX_ QUERY_LEN.
Theresul t field of t oken is 0.
Theresul t Buf Si ze field of t oken is 0.
The cal | back field of t oken is 0.
A query is already in progress.

| R_STATUS_NO I RLAP means the operation failed because there is
no IrLAP connection.

An IrLAP connection must exist to the other device. The IAS query
token must be initialized as described below. The result is signaled
by calling the callback function whose pointer exists in the

| r I asQuery structure. Only one query can be made at a time.

Thel r 1 asQuer y structure passed in the t oken parameter must be
initialized as follows:

= pointer to a callback function in which the result will signaled.

= resul t points to a buffer large enough to hold the result of the
query.
e resul t Buf Si ze is set to the size of the result buffer.

326 Developing Palm OS 3.0 Applications, Part Il

IR Library
IAS Functions

= quer yBuf must point to a valid query.

e quer yLen is set to the number of bytes in quer yBuf . The
length must not exceed | R_MAX_QUERY_LEN.

IrIAS_SetDeviceName

Purpose Sets the val ue field of the device name attribute of the “Device” ob-
ject in the 1AS database.

Prototype IrStatus IrlAS_Set Devi ceNane (U nt refNum
Byt ePtr nane,
Byte | en)

Parameters -->refnum IR library refNum.

--> nane Pointer to an IAS val ue field for the device
name attribute of the device object. It includes
the attribute type, character set and device
name. This val ue field should be a constant
and the pointer must remain valid until
| rI AS_Set Devi ceNane is called with anoth-
er pointer.

-->| en Total length of the val ue field. Maximum size
allowedis| R_ MAX | AS ATTR _SI ZE.

Result | R_STATUS SUCCESS means the operation is successful.

| R_STATUS FAI LEDmeans | en is too big, or the val ue field is
not a valid user string.

Developing Palm OS 3.0 Applications, Part Ill 327

IR Library
IAS Functions

IrIAS StartResult

Purpose Puts the internal pointer to the start of the result buffer.
Prototype void IrlAS StartResult (IrlasQuery* token)

Parameters -->token Pointertoan | r | asQuer y structure.

Result Returns nothing.

328 Developing Palm OS 3.0 Applications, Part Il

Ind ex

Numerics

1.0 heaps 35

2.0 heaps 35

2.0 Note 96, 141
3.0 heaps 35

68328 processor 24

A

allocating chunks on dynamic heap 69
architecture of memory 23
archiving

marking record as archived 79

B

back-up of data to PC 23
battery life 140
baud rate, parity options 141
bcmp (Berkeley Sockets API) 278
bcopy (Berkeley Sockets API) 278
Berkeley Sockets APl 181
and net library functions 192
calls 272-278
differences from net library 184
mapping example 185
bind (Berkeley Sockets API) 273
boot, and heap compacting 59
busy bit 117
byte ordering 137
bzero (Berkeley Sockets API) 278

C

card number 53
category
DmSeekRecordInCategory 128
moving records 105
changing serial port settings 141
chunks 31
card number 53
disposing of chunk 54
heap ID 54, 68
locking 55
resizing 34

size 34,57

unlocking 58, 71
close (Berkeley Sockets API) 273
closing net library 189, 196
closing serial link manager 150
closing serial port 140
CMP 138
compacting heaps 59
comparing memory blocks 52
configuration, net library 186
connect (Berkeley Sockets API) 273
connection management protocol 138
CRC-16 146
Crcl6CalcBlock 180
creating a chunk 33
creating database 41
creating resources 48
CTS timeout 141

D

data manager 37
error codes 98
using 41
data storage heap 67
handles 53
database headers 39
fields 39
database ID 91
databases 26, 38
closing 82
creating 82
cutting and pasting 80
deleting. See Also DmDatabaseProtect
getting and setting information 42
debugging and MemHeapScramble 62
debugging mode 52, 72
default receive queue, restoring 142
delete bit 88
deleting database 41
deleting databases See Also DmDatabaseProtect
deleting records 88
desktop link protocol 138
Desktop Link Server 148

Developing Palm OS 3.0 Applications, Part Ill 329

Index

DLP 138
DmArchiveRecord 79
DmAttachRecord 80
DmAttachResource 81
DmCloseDatabase 82
DmComparF 96, 104
DmCreateDatabase 41, 47, 82
DmCreateDatabaseFromimage 83
DmDatabaselnfo 42, 47, 84
DmbDatabaseProtect 85
DmDatabaseSize 42, 86
DmDeleteCategory 87
DmDeleteDatabase 41, 47, 87
DmDeleteRecord 88
DmDetachRecord 89
DmDetachResource 90
dmErrAlreadyExists 83
dmeErrCantFind 87
dmeErrCantOpen 87
dmeErrCorruptDatabase 90, 121
dmeErrDatabaseOpen 87
dmErrindexOutOfRange 79, 80, 81, 88, 89, 90, 106,
119,121, 122, 125, 131, 132
dmeErrinvalidDatabaseName 83
dmeErrinvalidParam 82, 84
dmErrMemError 80, 81, 83, 86
dmErrNotValidRecord 129, 133, 134, 135

dmErrReadOnly 79, 80, 81, 88, 89, 90, 103, 106, 121,
122,131, 132

dmeErrRecordIinWrongCard 80, 81
dmErrROMBased 87, 123
dmErrUniquelDNotFound 91
dmErrWriteOutOfBounds 129, 133, 134, 135
DmFindDatabase 42, 83, 87, 91
DmFindRecordByID 91
DmFindResource 92
DmFindResourceType 93
DmFindSortPosition 94
DmFindSortPositionV10 95
DmGetlResource 103, 110
DmGetApplinfolD 97
DmGetDatabase 42, 87, 97
DmGetLastErr 98

DmGetNextDatabaseByTypeCreator 99

DmGetRecord 42, 101
DmGetResource 102
DmGetResourcelndex 102
DminsertionSort 103
DmMoveCategory 105
DmMoveRecord 106
DmNewHandle 107
DmNewRecord 108
DmNewResource 48, 109
DmNextOpenDatabase 110
DmNextOpenResDatabase 110
DmNumDatabases 111
DmNumRecords 111
DmNumRecordsIinCategory 112
DmNumResources 112
DmOpenDatabase 113

DmOpenDatabaseByTypeCreator 114

DmOpenDatabaselnfo 115
DmPositionInCategory 116
DmQueryNextinCategory 117
DmQueryRecord 42, 117
DmQuickSort 118
DmRecordinfo 119
DmReleaseRecord 42,101, 120
DmReleaseResource 47, 109, 120
DmRemoveRecord 121
DmRemoveResource 122
DmRemoveSecretRecords 122
DmResetRecordStates 123
DmResizeRecord 42,123
DmResizeResource 124
DmResourcelnfo 125
DmSearchRecord 126
DmSearchResource 127
DmSeekRecordInCategory 128
DmSet 129
DmSetDatabaselnfo 42, 129
DmSetRecordinfo 131
DmSetResourcelnfo 132
DmStrCopy 133

DmWrite 134

DmWriteCheck 135

330 Developing Palm OS 3.0 Applications, Part Il

Index

dynamic heap 151
adding chunk 55
allocating chunk 69
test 59

dynamic heap handles 53
dynamic RAM 24

E

error code from data manager call 98
error codes 184
EvtResetAutoOffTimer 142
exchange manager 279
ExgAccept 283
ExgDBRead 284
ExgDBWrite 286
ExgDisconnect 288
ExgPut 290

ExgReceive 291
ExgRegisterData 292
ExgSend 294

F

finding database 42
flushing serial port 142

G

getdomainname (Berkeley Sockets API) 276
gethostbyaddr (Berkeley Sockets API) 276
gethostbyname (Berkeley Sockets API) 276
gethostname (Berkeley Sockets API) 276
getpeername (Berkeley Sockets API) 273
getservbyname (Berkeley Sockets API) 276
getsockname (Berkeley Sockets API) 273
getsockopt (Berkeley Sockets API) 273
gettimeofday() (Berkeley Sockets API) 276
global variables 151

H

handshaking options 141
heap header 30
heap ID 61, 68
of chunk 54
heaps
and soft reset 28

compacting 59

free bytes 60

in Palm OS 1.0 35

in Palm OS 2.0 35

in Palm OS 3.0 35

overview 27

RAM and ROM based 22

ROM based 60

structure 30
htonl (Berkeley Sockets API) 277
htons (Berkeley Sockets API) 277

IAS Query Callback Function 303
ID

databases 91

heap 61

local 29
inet_addr (Berkeley Sockets API) 277
inet_Inaof (Berkeley Sockets API) 277
inet_makeaddr (Berkeley Sockets API) 277
inet_netof (Berkeley Sockets API) 278
inet_network (Berkeley Sockets API) 277
inet_ntoa (Berkeley Sockets API) 278
initialization 188
interface(s) used by net library 187
Internet 188
Internet applications 181
IPOptions 209
IR manager 295
IrAdvanceCredit 305
IrBind 306
IRCallbackParms 300
IrClose 307
IrConnect 297
IrConnectirLap 307
IrConnectReq 308
IrConnectRsp 310
IrDA stack 295
IrDataReq 311
IrDisconnectirLap 312
IrDiscoverReq 313
IrIAS_Add 321
IrlIAS_GetlInteger 322
IrlAS_GetIntLsap 322

Developing Palm OS 3.0 Applications, Part Ill 331

Index

IrlAS_GetObjectID 323
IrlAS_GetOctetString 323
IrlAS_GetOctetStringLen 323
IrlAS_GetType 324
IrlAS_GetUserString 324
IrlAS_GetUserStringCharSet 324
IrlAS_GetUserStringLen 325
IrlAS_Next 325
IrlAS_Query 326
IrlAS_SetDeviceName 327
IrlAS_StartResult 328
IrlASObject 299

IrlASQuery 299
IrlslrLapConnected 314
IrlsMediaBusy 314
IriIsNoProgress 314
IrlIsRemoteBusy 315
IrLocalBusy 315
IrMaxRxSize 316
IrMaxTxSize 316

IrOpen 317

IrPacket 298
IrSetConTypeLMP 317
IrSetConTypeTTP 318
IrSetDevicelnfo 318
IrTestReq 319

IrUnbind 320

L

LEVENT_DATA_IND 301
LEVENT_DISCOVERY_CNF 301
LEVENT_LAP_CON_CNF 301
LEVENT_LAP_CON_IND 301
LEVENT_LAP_DISCON_IND 302
LEVENT_LM_CON_CNF 302
LEVENT_LM_CON_IND 302
LEVENT_LM_DISCON_IND 302
LEVENT_PACKET_HANDLED 302
LEVENT_STATUS_IND 302
LEVENT_TEST_CNF 303
LEVENT_TEST_IND 303

library reference number 184
listen (Berkeley Sockets API) 274

local ID 63,71

from chunk handle 57
local IDs 29, 38
locking a chunk 33
locking chunk 55
Loop-back Test 148

M

mailbox queue 182
master pointer table 31
MemCardInfo 51
MemCmp 52
MemDebugMode 52
memErrCardNotPresent 83
memErrChunkLocked 56, 80, 81, 83, 87, 89, 90, 106,
121, 122
memErrinvalidParam 56, 58, 68, 80, 81, 83, 87, 88,
89, 90, 106, 121, 122
memErrinvalidStoreHeader 83
memErrNotEnoughSpace 56, 80, 81, 83, 87, 89, 90,
106, 121, 122
memErrRAMOnlyCard 83
MemHandleCardNo 53
MemHandleDataStorage 53
MemHandleFree 34, 54
MemHandleHeapID 54
MemHandleLock 33, 55
MemHandleNew 33, 55
MemHandleResize 34, 56
MemHandleSize 34,57
MemHandleToLocallD 57
MemHandleUnlock 33, 58
MemHeapCheck 58
MemHeapCompact 59
MemHeapDynamic 59
memHeapFlagReadOnly 60
MemHeapFlags 60
MemHeapFreeBytes 60
MemHeapID 61
MemHeapScramble 62
MemHeapSize 62
MemLocallIDKind 63
MemLocallDToGlobal 63
MemLocallDToGlobalNear 63

332 Developing Palm OS 3.0 Applications, Part Il

Index

MemLocallDToLockedPtr 64
MemLocallIDToPtr 64
MemMove 35, 65
MemNumCards 65
MemNumHeaps 61, 66
MemNumRAMHeaps 66
memory architecture 23
memory blocks, comparing 52
memory card information 51
memory functions for system use only 74
memory management

architecture 23

Introduction 22
memory manager

chunks 26

debugging mode 52, 72
memory manager See Also data manager
memory manager See Also resource manager
MemPtrCardNo 67
MemPtrDataStorage 67
MemPtrFree 68
MemPtrHeaplID 68
MemPtrNew 34, 69
MemPtrRecoverHandle 34, 69
MemPtrResize 69
MemPtrSize 70
MemPtrToLocallD 71
MemPtrUnlock 71
MemSet 35, 72
MemSetDebugMode 72
MemStoreinfo 73
Modem Manager 138
Motorola byte ordering 137
moving memory 35

N

net library
closing 189
differences from Berkeley Sockets APl 184
implementation as system library 182
open count 202
open sockets maximum 183
opening and closing 189, 196
OS requirement 182
preferences 186, 189

RAM requirement 183

runtime calls 188

setup and configuration 186

using 186

version checking 191
net protocol stack 182

as separate task 182
netErrAlreadyConnected 216, 218, 220
netErrAlreadyOpen 200
netErrAuthFailure 265
netErrBadScript 265
neteErrBufTooSmall 256, 263, 266, 270
netErrBufWrongSize 256, 263, 266, 270
netErrClosedByRemote 213, 215, 216, 218, 220,

228, 230
netErrDNSAborted 236, 237, 239
netErrDNSAllocationFailure 235, 237, 239
netErrDNSBadName 235, 237, 239
netErrDNSBadProtocol 236, 237, 240
netErrDNSFormat 235, 237, 239
netErrDNSImpossible 235, 237, 239
netErrDNSlrrelevant 236, 238, 240
netErrDNSLabelTooLong 235, 237, 239
netErrDNSNameToolLong 235, 237, 239
netErrDNSNIY 235, 237, 239
netErrDNSNonexistantName 235, 237, 239
netErrDNSNoPort 236, 238, 240
netErrDNSNoRecursion 236, 238, 240
netErrDNSNORRS 235, 237, 239
netErrDNSNotInLocalCache 236, 238, 240
netErrDNSRefused 235, 237, 239
netErrDNSServerFailure 235, 237, 239
netErrDNSTimeout 235, 237, 239
netErrDNSTruncated 236, 237, 240
netErrDNSUnreachable 235, 237, 239
netErrinterfaceNotFound 252, 253, 254, 256, 263,
265

netErrinternal 218, 220
netErrinvalidinterface 255
netErrinvalidSettingSize 270
netErrlIPCantFragment 228, 231
netErrIPNoDst 228, 231
netErrlPNoRoute 228, 231
netErrlPNoSrc 228, 231
netErrlPPktOverflow 228, 231

Developing Palm OS 3.0 Applications, Part Ill 333

Index

netErrMessageTooBig 228, 230 NetLibGetHostByName 236
netErrNolnterfaces 200, 218, 220 NetLibGetMailExchangeByName 238
netErrNoMoreSockets 204 NetLibGetServByName 240
netErrNotConnected 213 NetLiblFAttach 187, 252

netErrNotOpen 196, 203, 204, 207, 208, 213, 215, NetLiblFDetach 187, 253
216, 217, 220, 221, 223, 225, 226, 228, 230, 235, 237, NetLibIFDown 254

239, 241, 242, 249, 250, 254, 265 NetLibIFGet 187, 255
netErrOutOfMemory 200 NetLiblIFSettingGet 187, 256
netErrOutOfResources 220 NetLibIFSettingSet 187, 263
netErrParamErr 203, 204, 207, 208, 213, 215, 216, NetLibIFUp 264

218, 220, 221, 223, 225, 226, 228, 230, 242 NetLibMaster 242
netErrPortinUse 218, 220 NetLibOpen 200
netErrPPPAddressRefused 265 NetLibOpenCount 202
netErrPPPTimeout 265 NetLibReceive 224
neterrPrefNotFound 200, 255, 256, 263, 266 NetLibReceivePB 226
netErrQuietTimeNotElapsed 218 NetLibSelect 246
netErrReadOnlySetting 263, 270 NetlLibSend 227
netErrSocketBusy 218, 220 NetLibSendPB 230

netErrSocketNotConnected 228, 230
netErrSocketNotListening 213
netErrSocketNotOpen 203, 207, 209, 213, 215, 216,

218, 220, 221, 223, 225, 226, 228, 230
netErrStillOpen 196

NetLibSettingGet 187, 266
NetLibSettingSet 187, 270
NetLibSocketAccept 212, 213, 229, 231
NetLibSocketAddr 214

netErrTimeout 203, 204, 207, 208, 213, 215, 216, sg:t:gzggt:i'lgge 221(?:;) 220
217, 220, 221, 223, 224, 226, 228, 230, 235, 237, 239, .
241 NetLibSocketConnect 217
netErrTooManylnterfaces 252 NetL!bSOCKetLlsten 219, 220
netErrTooManyTCPConnections 218 NetLibSocketOpen 204

netErrUnimplemented 207, 209, 242, 256, 263 NetLibSocketOptionGet 206
netErrUnknownProtocol 241 NetLibSocketOptionSet 208
netErrUnknownService 241 NetLibSocketShutdown 221

netErrUnknownSetting 256, 263, 266, 270 NetLibTracePrintF 249
netErrUserCancel 265 NetLibTracePutS 250
netErrWouldBlock 223, 225, 226 NetNToHL 251
netErrWrongSocketType 207, 209, 213, 220 NetNToHS 251

NetHToNL 232 NetSocketRef 204

NetHToNS 232 NetSockOptSockNonBlocking 211
netlib interface introduction 182 network device drivers 182
NetLibAddrAToIN 233 network services 181
NetLibAddrINToA 234 ntohl (Berkeley Sockets API) 277
NetLibClose 196 ntohs (Berkeley Sockets API) 277
NetLibConnectionRefresh 198

NetLibDmReceive 222 O

NetLibFinishCloseWait 199 open count of net library 202
NetLibGetHostByAddr 234 open sockets maximum (net library) 183

334 Developing Palm OS 3.0 Applications, Part Il

Index

opening net library 189, 196
opening serial link manager 150
opening serial port 140

P

packet assembly/disassembly protocol 138
packet footer, SLP 148
packet header, SLP 147
packet receive timeout 151
PADP 138, 148
PC connectivity 23
preferences database
net library 186, 189

R

RAM store 22
RAM use 22
RAM-based heaps 66
read (Berkeley Sockets API) 274
receiving SLP packet 149
records 37

deleting 88

detaching 89

ID 91

retrieving information 119
recv (Berkeley Sockets API) 274
recvfrom (Berkeley Sockets API) 274
recvmsg (Berkeley Sockets API) 274
reference number for socket 151
refnum 184
Remote Console 148
Remote Console packets 148
Remote Debugger 148, 150
remote inter-application communication 138
Remote Procedure Call packets 148
remote procedure calls 138, 150
Remote Ul 148
resource database header 46
resource manager 45

using 47
resource type 93
resources

retrieving 102

retrieving information 125

searching for 127
storing 45
restoring default receive queue 142
RIAC 138
ROM store 22
ROM use 22
ROM-based heaps 60, 66
ROM-based records 116, 117
RPC 138, 150
RS232 signals 140
runtime calls 188

S

secret records, removing 122
select (Berkeley Sockets API) 275
send (Berkeley Sockets API) 275
sending stream of bytes 141
sendmsg (Berkeley Sockets API) 275
sendto (Berkeley Sockets API) 275
SerBlockingHookHandler 144
SerClearErr 141, 155, 159
SerClose 156
SerControl 157
serCtlBreakStatus (in SerCtIEnum) 143
serCtIEmuSetBlockingHook (in SerCtIEnum) 144
SerCtIEnum 143
serCtlIFirstReserved (in SerCtIEnum) 143
serCtlIHandshakeThreshold (in SerCtIEnum) 143
serCtILAST (in SerCtIEnum) 144
serCtIMaxBaud (in SerCtIEnum) 143
serCtlStartBreak (in SerCtlIEnum) 143
serCtlStartLocalLoopback (in SerCtIEnum) 143
serCtIStopBreak (in SerCtlIEnum) 143
serCtlStopLocalLoopback (in SerCtIEnum) 143
serErrAlreadyOpen 140, 156, 160
serErrLineErr 141
SerGetSettings 158
SerGetStatus 159
Serial Library 140, 160
serial link manager 150
serial link protocol 138, 146, 148, 150
serial manager 138, 140

function summary 145

prolonging battery life 140

Developing Palm OS 3.0 Applications, Part Ill 335

Index

serial port SLP packets 147
changing settings 141 SO_ERROR (Berkeley Sockets API) 274
closing 140 SO_KEEPALIVE (Berkeley Sockets API) 274, 275
flushing 142 SO_LINGER (Berkeley Sockets API) 274, 275
opening 140 SO_TYPE (Berkeley Sockets API) 274

SerOpen 140, 160 SockAcceptConn 210

SerReceive 141, 161, 162 SockBroadcast 210

SerReceivel0 162 SockDebug 209

SerReceiveCheck 142, 163 SockDontRoute 210

SerReceiveFlush 142, 163 SockErrorStatus 210

SerReceiveWait 142, 163, 164 socket (Berkeley Sockets API) 276

SerSend 141, 165 socket listener 151, 153, 176

SerSend10 166 socket listener procedure 151, 154, 176, 178

SerSendWait 141, 167 sockets, opening serial link socket 150

SerSetReceiveBuffer 142, 168 SockKeepAlive 210

SerSetSettings 141, 166, 169 SockLinger 210

SerSettingsPir 169 SockNonBlocking 210, 211

SerSettingsType 158, 169 SockOOBInLine 210

setdomainname (Berkeley Sockets API) 276 SockRcvBuUfSize 210

sethostname (Berkeley Sockets API) 276 SockRevLowWater 210

setsockopt (Berkeley Sockets API) 275 SockRevTimeout 210

settimeofday (Berkeley Sockets API) 276 SockReuseAddr 210

setup, net library 186 SockSndBufSize 210

shutdown (Berkeley Sockets API) 276 SockSndLowWater 210

sleep (Berkeley Sockets API) 278 SockSndTimeout 210

SlkClose 150, 171 SockSocketType 210

SIkCloseSocket 151, 172 SockUselLoopback 210

sIkErrAlreadyOpen 150, 173 soft reset 28

SlkFlushSocket 173 storage RAM 24

SIkOpen 150, 173 SysLibFind 140, 297

SlkOpenSocket 150, 174

SIkPktHeaderType 151, 152,178 T

SIkReceivePacket 152, 153, 175
SIkSendPacket 152, 177
SlkSetSocketListener 178
SlkSocketListenType 151
SIkSocketRefNum 151, 179
SlkSocketSetTimeout 151, 179
SIkWriteDataType 152

TCP/IP 181

TCP_MAXSEG (Berkeley Sockets API) 274
TCP_NODELAY (Berkeley Sockets API) 273, 275
TCPMaxSeg 209

TCPNoDelay 209

timeout 151

transmitting SLP packet 149

SLP 138, 146
SLP packet U
footer 148
header 147 UDP 181
receiving 149 Ul resources, storing 45
transmitting 149 unlocking a chunk 33

336 Developing Palm OS 3.0 Applications, Part Il

Index

user interface elements V
storing (resource manager) 45

using the data manager 41 version checking 191

W
write (Berkeley Sockets API) 276

Developing Palm OS 3.0 Applications, Part Ill 337

Index

338 Developing Palm OS 3.0 Applications, Part Il

	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Guide Contains
	Conventions Used in This Guide

	Palm OS Memory Management
	Introduction to Memory Use on Palm OS
	Hardware Architecture
	PC Connectivity

	Memory Architecture
	Heap Overview
	Overview of Memory Chunk Structure

	The Memory Manager
	Memory Manager Structures
	Heap Structures
	Chunk Structures
	Local ID Structures

	Using the Memory Manager
	Overview of the Memory Manager API
	Storage Heap Sizes and Memory Management Schemes
	Optimizing Memory Manager Performance

	Memory Manager Function Summary

	The Data Manager
	Records and Databases
	Accessing Data With Local IDs

	Structure of a Database Header
	Database Header Fields
	Structure of a Record Entry in a Database Header

	Using the Data Manager
	Data Manager Function Summary

	The Resource Manager
	Structure of a Resource Database Header
	Using the Resource Manager
	Resource Manager Functions

	Memory Management Functions
	Memory Manager Functions
	MemCardInfo
	MemCmp
	MemDebugMode
	MemHandleCardNo
	MemHandleDataStorage
	MemHandleFree
	MemHandleHeapID
	MemHandleLock
	MemHandleNew
	MemHandleResize
	MemHandleSize
	MemHandleToLocalID
	MemHandleUnlock
	MemHeapCheck
	MemHeapCompact
	MemHeapDynamic
	MemHeapFlags
	MemHeapFreeBytes
	MemHeapID
	MemHeapScramble
	MemHeapSize
	MemLocalIDKind
	MemLocalIDToGlobal
	MemLocalIDToLockedPtr
	MemLocalIDToPtr
	MemMove
	MemNumCards
	MemNumHeaps
	MemNumRAMHeaps
	MemPtrCardNo
	MemPtrDataStorage
	MemPtrFree
	MemPtrHeapID
	MemPtrNew
	MemPtrRecoverHandle
	MemPtrResize
	MemPtrSize
	MemPtrToLocalID
	MemPtrUnlock
	MemSet
	MemSetDebugMode
	MemStoreInfo
	Functions for System Use Only
	MemCardFormat
	MemChunkFree
	MemChunkNew
	MemHandleFlags
	MemHandleLockCount
	MemHandleOwner
	MemHandleResetLock
	MemHandleSetOwner
	MemHeapFreeByOwnerID
	MemHeapInit
	MemInit
	MemInitHeapTable
	MemKernelInit
	MemPtrFlags
	MemPtrOwner
	MemPtrResetLock
	MemPtrSetOwner
	MemSemaphoreRelease
	MemSemaphoreReserve
	MemStoreSetInfo

	Data and Resource Manager Functions
	Data Manager Functions
	DmArchiveRecord
	DmAttachRecord
	DmAttachResource
	DmCloseDatabase
	DmCreateDatabase
	DmCreateDatabaseFromImage
	DmDatabaseInfo
	DmDatabaseProtect
	DmDatabaseSize
	DmDeleteCategory
	DmDeleteDatabase
	DmDeleteRecord
	DmDetachRecord
	DmDetachResource
	DmFindDatabase
	DmFindRecordByID
	DmFindResource
	DmFindResourceType
	DmFindSortPosition
	DmFindSortPositionV10
	DmGetAppInfoID
	DmGetDatabase
	DmGetLastErr
	DmGetNextDatabaseByTypeCreator
	DmGetRecord
	DmGetResource
	DmGetResourceIndex
	DmGet1Resource
	DmInsertionSort
	DmMoveCategory
	DmMoveRecord
	DmNewHandle
	DmNewRecord
	DmNewResource
	DmNextOpenDatabase
	DmNextOpenResDatabase
	DmNumDatabases
	DmNumRecords
	DmNumRecordsInCategory
	DmNumResources
	DmOpenDatabase
	DmOpenDatabaseByTypeCreator
	DmOpenDatabaseInfo
	DmPositionInCategory
	DmQueryNextInCategory
	DmQueryRecord
	DmQuickSort
	DmRecordInfo
	DmReleaseRecord
	DmReleaseResource
	DmRemoveRecord
	DmRemoveResource
	DmRemoveSecretRecords
	DmResetRecordStates
	DmResizeRecord
	DmResizeResource
	DmResourceInfo
	DmSearchRecord
	DmSearchResource
	DmSeekRecordInCategory
	DmSet
	DmSetDatabaseInfo
	DmSetRecordInfo
	DmSetResourceInfo
	DmStrCopy
	DmWrite
	DmWriteCheck
	Functions for System Use Only
	DmMoveOpenDBContext

	Palm OS Communications
	Byte Ordering
	Communications Architecture Hierarchy
	The Serial Manager
	Using the Serial Manager
	Serial Manager Function Summary

	The Serial Link Protocol
	SLP Packet Structures
	SLP Packet Format
	Packet Type Assignment
	Socket ID Assignment
	Transaction ID Assignment

	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager
	Serial Link Manager Function Summary

	Communications Functions
	Serial Manager Functions
	SerClearErr
	SerClose
	SerControl
	SerGetSettings
	SerGetStatus
	SerOpen
	SerReceive
	SerReceive10
	SerReceiveCheck
	SerReceiveFlush
	SerReceiveWait
	SerSend
	SerSend10
	SerSendWait
	SerSetReceiveBuffer
	SerSetSettings
	Functions Used Only by System Software
	SerReceiveISP
	SerReceiveWindowClose
	SerReceiveWindowOpen
	SerSetWakeupHandler
	SerSleep
	SerWake

	Serial Link Manager Functions
	SlkClose
	SlkCloseSocket
	SlkFlushSocket
	SlkOpen
	SlkOpenSocket
	SlkReceivePacket
	SlkSendPacket
	SlkSetSocketListener
	SlkSocketRefNum
	SlkSocketSetTimeout
	Functions for Use By System Software Only
	SlkSysPktDefaultResponse
	SlkProcessRPC

	Miscellaneous Communications Functions
	Crc16CalcBlock

	Palm OS Net Library
	Overview
	Structure
	System Requirements
	Constraints

	The Programmer’s Interface
	Net Library and Berkeley Sockets API: Differences
	Example

	Using the Net Library
	Setup and Configuration Calls
	Interface Specific Settings
	General Settings
	Settings for Interface Selection
	Summary

	Runtime Calls
	Initialization and Shutdown
	Calls Made Before Opening the Net Library
	Opening the Net Library
	Closing the Net Library
	Summary of Initialization
	Initialization Example

	Version Checking
	Network I/O and Utility Calls

	Net Library Functions
	Library Open and Close
	NetLibClose
	NetLibConnectionRefresh
	NetLibFinishCloseWait
	NetLibOpen
	NetLibOpenCount

	Socket Creation and Deletion
	NetLibSocketClose
	NetLibSocketOpen

	Socket Options
	NetLibSocketOptionGet
	NetLibSocketOptionSet

	Socket Connections
	NetLibSocketAccept
	NetLibSocketAddr
	NetLibSocketBind
	NetLibSocketConnect
	NetLibSocketListen
	NetLibSocketShutdown

	Send and Receive Routines
	NetLibDmReceive
	NetLibReceive
	NetLibReceivePB
	NetLibSend
	NetLibSendPB

	Utilities
	NetHToNL
	NetHToNS
	NetLibAddrAToIN
	NetLibAddrINToA
	NetLibGetHostByAddr
	NetLibGetHostByName
	NetLibGetMailExchangeByName
	NetLibGetServByName
	NetLibMaster
	netMasterInterfaceInfo
	netMasterInterfaceStats
	netMasterIPStats
	netMasterICMPStats
	netMasterUDPStats
	netMasterTCPStats
	netMasterTraceEventGet

	NetLibSelect
	NetLibTracePrintF
	NetLibTracePutS
	NetNToHL
	NetNToHS

	Configuration
	NetLibIFAttach
	NetLibIFDetach
	NetLibIFDown
	NetLibIFGet
	NetLibIFSettingGet
	NetLibIFSettingSet
	NetLibIFUp
	NetLibSettingGet
	NetLibSettingSet

	Berkeley Sockets API Calls
	Supported Socket Functions
	Supported Network Utility Functions
	Supported Byte Ordering Functions
	Supported Network Address Conversion Functions
	Supported System Utility Functions

	Exchange Manager
	Overview
	Exchange Manager and Launch Codes
	Exchange Manager Function Summary
	Exchange Manager Functions
	ExgAccept
	ExgDBRead
	ExgDBWrite
	ExgDisconnect
	ExgPut
	ExgReceive
	ExgRegisterData
	ExgSend

	IR Library
	IrDA Stack
	Loading the IR Library
	IR Data Structures
	IrConnect
	IrPacket
	IrIASObject
	IrIasQuery
	IrCallbackParms

	IR Stack Callback Events
	LEVENT_DATA_IND
	LEVENT_DISCOVERY_CNF
	LEVENT_LAP_CON_CNF
	LEVENT_LAP_CON_IND
	LEVENT_LAP_DISCON_IND
	LEVENT_LM_CON_CNF
	LEVENT_LM_CON_IND
	LEVENT_LM_DISCON_IND
	LEVENT_PACKET_HANDLED
	LEVENT_STATUS_IND
	LEVENT_TEST_CNF
	LEVENT_TEST_IND

	IAS Query Callback Function
	IR Library Function Summary
	IR Library Functions
	IrAdvanceCredit
	IrBind
	IrClose
	IrConnectIrLap
	IrConnectReq
	IrConnectRsp
	IrDataReq
	IrDisconnectIrLap
	IrDiscoverReq
	IrIsIrLapConnected
	IrIsMediaBusy
	IrIsNoProgress
	IrIsRemoteBusy
	IrLocalBusy
	IrMaxRxSize
	IrMaxTxSize
	IrOpen
	IrSetConTypeLMP
	IrSetConTypeTTP
	IrSetDeviceInfo
	IrTestReq
	IrUnbind

	IAS Functions
	IrIAS_Add
	IrIAS_GetInteger
	IrIAS_GetIntLsap
	IrIAS_GetObjectID
	IrIAS_GetOctetString
	IrIAS_GetOctetStringLen
	IrIAS_GetType
	IrIAS_GetUserString
	IrIAS_GetUserStringCharSet
	IrIAS_GetUserStringLen
	IrIAS_Next
	IrIAS_Query
	IrIAS_SetDeviceName
	IrIAS_StartResult

	Index

