"""NumArray Universal Function Module

$Id: ufunc.py,v 1.98 2004/03/12 18:14:19 jaytmiller Exp $
"""

import types
import memory
import _sort, _bytes
from operator import and_  
import _ufuncall
import generic as _gen
import _ufunc
import _converter
import numerictypes as _nt
import numarraycore as _nc
import safethread
import warnings as _warnings

# note more imports are at end of file

#import pywin.debugger

"""DEBUGGING NOTE:

     A reasonable amount of care went into maintaining the Python
     prototype for _callOverDimensions, _UnaryUFunc, _BinaryUFunc,
     _Converter, and _Operator.  Thus, problems in the C
     implementation can sometimes be isolated by substituting the
     original Python code back in, either in whole or part.
     Substituting in the whole is easy: set _PROTOTYPE to 1 below.
"""
_PROTOTYPE = 0

_FPE_DIVIDE_BY_ZERO = 1
_FPE_OVERFLOW       = 2
_FPE_UNDERFLOW      = 4
_FPE_INVALID        = 8

class _NumErrorMode:
    
    _errorset = ("ignore", "warn", "raise")

    def _num_mode_test(self, val, all, default):
        if val not in self._errorset and val is not None:
            raise ValueError("Error mode value must be in " +
                             repr(self._errorset) + " or None.")
        if all is not None:
            if val is not default:
                return 1
            else:
                return 0
        else:
            return 1
        
    
    def __init__(self, all=None, overflow="warn", underflow="ignore",
                 dividebyzero="warn", invalid="warn"):
        
        if all in self._errorset:
            self.overflow = all
            self.underflow = all
            self.dividebyzero = all
            self.invalid = all

        if self._num_mode_test(overflow, all, "warn"):
            self.overflow = overflow
            
        if self._num_mode_test(underflow, all, "ignore"):
            self.underflow = underflow
            
        if self._num_mode_test(dividebyzero, all,  "warn"):
            self.dividebyzero = dividebyzero
            
        if self._num_mode_test(invalid, all, "warn"):
            self.invalid = invalid

    def __repr__(self):
        return ("_NumErrorMode(overflow='%s', underflow='%s', dividebyzero='%s', invalid='%s')" % (self.overflow, self.underflow, self.dividebyzero, self.invalid))

class NumError:
    """Defines how numeric errors should be handled.

    Error configuration is managed as a mapping (by thread) of stacks.
    Thus it is possible for each thread to have an independent error
    configuration, and also for multiple routines within the same
    thread to save and restore error configurations as needed.
    
    """
    def __init__(self, all=None,
                 overflow="warn", underflow="ignore", dividebyzero="warn",
                 invalid="warn"):
        self._modestack = {}  # map of stacks indexed by thread id
        self._defaultmode = _NumErrorMode()
        self.setMode(all=all, underflow=underflow, overflow=overflow,
                     dividebyzero=dividebyzero, invalid=invalid)

    def setDefaultMode(self, all=None, overflow="warn", underflow="ignore",
                       dividebyzero="warn", invalid="warn"):
        self._defaultmode = _NumErrorMode(all, overflow, underflow,
                                         dividebyzero, invalid)

    def setMode(self, all=None, overflow="warn", underflow="ignore",
                      dividebyzero="warn", invalid="warn"):
        self._setmodes( _NumErrorMode(all, overflow, underflow,
                                      dividebyzero, invalid) )

    def pushMode(self, all=None, overflow="warn", underflow="ignore",
                      dividebyzero="warn", invalid="warn"):
        self._pushmodes( _NumErrorMode(all, overflow, underflow,
                                      dividebyzero, invalid) )

    def _getmodestack(self):
        id = safethread.get_ident()
        try:
            l = self._modestack[id]
        except KeyError:
            l = [ self._defaultmode ]
            self._modestack[id] = l
        if l == []:
            l = [ self._defaultmode ]
        return l

    def _setmodes(self, modes):
        l = self._getmodestack()
        l[-1] = modes

    def getMode(self):
        l = self._getmodestack()
        return l[-1]

    def _pushmodes(self, modes):
        l = self._getmodestack()
        l.append(modes)

    def popMode(self):
        l = self._getmodestack()
        return l.pop()
    
Error = NumError()

class MathDomainError(ArithmeticError): pass
class UnderflowError(ArithmeticError): pass

def handleError(errorStatus, sourcemsg):
    """Take error status and use error mode to handle it."""
    modes = Error.getMode()
    if errorStatus & _FPE_INVALID:
        if modes.invalid == "warn":
            print "Warning: Encountered invalid numeric result(s)", sourcemsg
        if modes.invalid == "raise":
            raise MathDomainError(sourcemsg)
    if errorStatus & _FPE_DIVIDE_BY_ZERO:
        if modes.dividebyzero == "warn":
            print "Warning: Encountered divide by zero(s)", sourcemsg
        if modes.dividebyzero == "raise":
            raise ZeroDivisionError(sourcemsg)
    if errorStatus & _FPE_OVERFLOW:
        if modes.overflow == "warn":
            print "Warning: Encountered overflow(s)", sourcemsg
        if modes.overflow == "raise":
            raise OverflowError(sourcemsg)
    if errorStatus & _FPE_UNDERFLOW:
        if modes.underflow == "warn":
            print "Warning: Encountered underflow(s)", sourcemsg
        if modes.underflow == "raise":
            raise UnderflowError(sourcemsg)

def ufuncFactory(operator, ucfuncs, identity=None):

    """Create UFunc instance based on signature of functions"""

    ninputs, noutputs = _nIOArgs(ucfuncs)
    if ninputs==1 and noutputs==1:
        return _UnaryUFunc(operator, ucfuncs, identity)
    elif ninputs==2 and noutputs==1:
        return _BinaryUFunc(operator, ucfuncs, identity)
    elif noutputs==1:
        raise ValueError("ufunc with more than 2 input arguments")
    else:
        raise ValueError("ufunc with more than 1 output argument")

def _nIOArgs(ucfuncs):

    """Determine number of arguments from signature

    Returns tuple of number of input and output arguments.
    Also check for consistency in numbers of arguments.
    """

    # The number of items in the optype key implies the number of inputs,
    # hence the number of inputs = # of underscores+1
    noptypeinputs = []
    ninputs = []
    noutputs = []
    for key in ucfuncs.keys():
        if key in ['reduce', 'accumulate']:
            continue
        noptypeinputs.append(key.count('_'))
        for insigkey in ucfuncs[key].keys():
            ninputs.append(len(insigkey))
            noutputs.append(len(ucfuncs[key][insigkey][0]))
    if max(noptypeinputs) != min(noptypeinputs):
        raise StandardError(
            "inconsistency in operator types for operator: "+operator)
    if max(ninputs) != min(ninputs):
        raise StandardError(
            "not all input signatures match in number of arguments\n" +
            "for operator: "+operator)
    if max(noutputs) != min(noutputs):
        raise StandardError(
            "not all output signatures match in number of arguments\n" +
            "for operator: "+operator)
    return max(ninputs), max(noutputs)

def _getBlockingMiss(shape, niter, overlap=0):
    """Figure out how to split the input array into subnumarray
    close (but less than) the size of the block buffers.
    overlap is used in cases where it is necessary to overlap the
    last dimension in computations (for example for reduce and
    accumulate.)

    returns:

    level:      index at which the c functions should be called
    blockingparameters:  tuple consisting of
         number of full subnumarray at the given level
         subarray shape
         a flag indicating if there is a leftover part of the array
             which is smaller than the regular subarray (leftover)
         the shape of the leftover subarray
    """
    
    # Now in C:
    # retval = _blockingParametersCache.get((shape,niter,overlap))
    # if retval is not None:
    #     return retval
    
    if shape == ():
        retval = 0, (1, (), 0, None)
        _blockingParametersCache[(shape,niter,overlap)] = retval
        return retval
    
    ndim = len(shape)
    csize = long(shape[-1]) # cumulative shape
    if csize > niter:
        # last dimension is too big for buffer
        # special overlap handling in this case
        nblocks, leftover = divmod(csize, niter-overlap)
        nblocks, leftover = int(nblocks), int(leftover)
        if leftover:
            retval = ndim-1, (nblocks, (niter,), 1, (leftover,))
        else:
            retval = ndim-1, (nblocks, (niter,), 0, None)
    else:
        for i in xrange(2,ndim+1):
            csize *= shape[-i]
            if csize >= niter:
                # need to break up this dimension
                tdim = long(shape[-i])
                blockdim = niter*tdim/csize
                nblocks, leftover = divmod(tdim, blockdim)
                nblocks, leftover = int(nblocks), int(leftover)
                stail = shape[-i+1:]
                if leftover:
                    retval = ndim-i, (nblocks, (blockdim,)+stail,
                        1, (leftover,) + stail)
                else:
                    retval = ndim-i, (nblocks, (blockdim,)+stail, 0, None)
                break
        else:
            # don't need to break up
            retval = 0, (1, shape, 0, None)
    _blockingParametersCache[(shape,niter,overlap)] = retval
    return retval

# _doOverDimensions has been re-implemented in C.
def _doOverDimensions(objects, outshape,
            dims, indexlevel, blockingparameters, overlap=0, level=0):
    """This version handles alignment, byteswapping and n-dimensions

    This is a recursive method dims starts out as an empty list, and
    accumulates the indices for each dimension. Eg. if the array has
    shape (7, 3, 5) on the initial call, the next level call will
    specify the the 'first' index (corresponding to the 7), the next
    will have the first two indices (and that would be the last level
    since the lowest dimension is taken care of by the cfuncs.)

    """
    if level == indexlevel:
        nregShapeIters, shape, leftover, leftoverShape, = blockingparameters
        if shape != ():
            dimval = shape[0]-overlap
            for i in xrange(nregShapeIters):
                for o in objects:
                    o.compute(dims+[i*dimval], shape)
            if leftover:
                for o in objects:
                    o.compute(dims+[(i+1)*dimval], leftoverShape)
        else:
                for o in objects:
                    o.compute([0], shape)
    else:
        # recurse
        for i in xrange(outshape[level]):
            _doOverDimensions(objects, outshape,
                              dims+[i], indexlevel, blockingparameters,
                              overlap, level+1)

def _callOverDimensions(objects, outshape, index, blocking, overlap=0, level=0):
    return _doOverDimensions(objects, outshape, [], index, blocking, overlap, level)

# Replace the Python version of _callOverDimensions with one implemented in C.
# Although _doOverDimensions is not replaced here, it has been re-implemented
# in C as well
if not _PROTOTYPE:
    from _ufunc import _callOverDimensions

def _copyFromAndConvertMiss(inarr, outarr):
    key = (_digest(inarr), _digest(outarr), safethread.get_ident())
    # Type conversion done using inputconverter
    input = _InputConverter(inarr, outarr._type.name)
    # Ensure output step uses output buffer of input step
    output = _OutputConverter(outarr, outarr._type.name,
                              inbuffer=input.result_buff,
                              forcestride=1)
    maxitemsize = max(inarr._type.bytes, outarr._type.bytes)
    niter = _ufunc.getBufferSize()/maxitemsize
    if (isinstance(inarr, _nc.NumArray) and
        isinstance(outarr, _nc.NumArray)):
        _copyCache[ key ] = input, output, niter
    return input, output, niter

if _PROTOTYPE:
    def _copyFromAndConvert(inarr, outarr):
        """Copy from one array to another handling strides, form & conv"""
        if inarr._shape != outarr._shape:
            raise ValueError("Arrays must have the same shape")

        key = (_digest(inarr), _digest(outarr), safethread.get_ident())
        try:
            input, output, niter = _copyCache[ key ]
        except KeyError:
            input, output, niter = _copyFromAndConvertMiss(inarr, outarr)

        input.rebuffer(inarr)
        output.rebuffer(outarr, input.result_buff)
        
        indexlevel, blockingparameters = \
                    _ufunc._getBlockingParameters(outarr._shape, niter)
        objects = (input, output)
        _ufunc.CheckFPErrors()
        _callOverDimensions(objects, outarr._shape, indexlevel,
                            blockingparameters)
        errorstatus = _ufunc.CheckFPErrors()
        input.rebuffer(None)
        output.rebuffer(None)
        if errorstatus:
            handleError(errorstatus, " during type conversion")
else:
    from _ufunc import _copyFromAndConvert

def _noConversionNeeded(x, xt):
    """returns 1 iff x is a c_array of type xt."""
    return x.is_c_array() and (x._type.name == xt or x._type == xt)

def _inputcheck(*inargs):
    """Check input args for type, convert sequences to numnumarray

    Return list of 1) input arg tuple with scalars and numnumarray only
                   2) signature string indicating which args are scalars
                      and which are numnumarray
                   3) flag indicating if only scalar arguments are present
    """

    retargs = []
    retsig = []
    scalar = 1
    for inarg in inargs:
        if isinstance(inarg, _nc.NumArray):
            scalar = 0
            retsig.append('vector')
        elif _nc.PyNUMERIC_TYPES.has_key(type(inarg)):
            retsig.append('scalar')
        else:
            scalar = 0
            retsig.append('vector')
            # see if it can be made into an array
            try:
                inarg = _nc.array(inarg)
            except TypeError:
                raise TypeError(
                 "UFunc arguments must be numarray, scalars or numeric sequences")
        retargs.append(inarg)
    return retargs, '_'.join(retsig), scalar

def _pseudoArrayFromScalars(scalarvalues, type):
    """Wrap a scalar in a buffer so it can be used as an array"""
    
    arr = _bufferPool.getBuffer()
    arr._check_overflow = 1
    newtype = _numtypedict[type]
    arr._strides = (newtype.bytes,)
    arr._shape = (len(scalarvalues),)
    arr._type = newtype
    arr._itemsize = newtype.bytes
    for i in xrange(len(scalarvalues)):
        arr[i] = scalarvalues[i];
    arr._strides = None
    #  Modify block buffer attributes to look like vector/vector setup.
    return arr

# Portions of the UFunc classes have been re-implemented in C.
class _UFunc(_ufunc._ufunc):
    """Class to handle all element-by-element mathematical functions

    This is the base class -- subclasses must implement __call__ and
    (if allowed) the outer and _cumulative methods.
    """

    def __init__(self, operator, ufuncs, identity):
        self.operator = operator
        self._ucfuncs = ufuncs
        self._identity = identity
        self._coercions = _nt.genericCoercions
        self._promotionExclusions = _nt.genericPromotionExclusions
        self._typerank = _nt.genericTypeRank
        self._cache = {}
        self.arity = 0

    def _getidentity(self):
        return _nc.array([self._identity])

    if _PROTOTYPE:
        def __call__(self, *args):
            raise NotImplementedError("__call__ is not implemented by base UFunc class")

    def __repr__(self): return "<UFunc: '%s'>" % self.operator

    def _typematch(self, inputSignature, bintypeDict, scalar=0):
        """Determine which C function is most appropriate for the given
        types returns the input types the inputs must be converted to,
        the output type, and the cfunc object
        """

        # First see if there is an exact match
        if bintypeDict.has_key(inputSignature):
            return inputSignature + bintypeDict[inputSignature]
        else:
            # Look for 'closest' diagonal element.
            # First find 'lowest' common type.
            intype = self._coercions[inputSignature]
            keys = bintypeDict.keys()
            atypelist = []
            for key in keys:
                if key[0] == key[1]:
                    atypelist.append(key[0])
            newInputSignature = (self._typePromoter(intype, atypelist),)*2
            return newInputSignature + bintypeDict[newInputSignature]

    def _typePromoter(self, intype, typelist):
        """Type a given type should be promoted to given a list of choices"""

        # type as string for now
        # Not an efficient version for now
        # Generate the type specific rank list
        tranks = self._typerank[:] # copy since we will be deleting elements
        exclusions = self._promotionExclusions[intype]
        for exclusion in exclusions:
            del tranks[exclusion]
        index = tranks.index(intype)
        tranks = tranks[index:]
        # Which one has lowest rank?
        minimumRank = 100
        for atype in typelist:
            try:
                rank = tranks.index(atype)
                if rank < minimumRank:
                    minimumRank = rank
            except ValueError:
                pass
        if minimumRank < 100:
            return tranks[minimumRank]
        else:
            raise TypeError("unable to find type to promote to")

    def _typeDemoter(self, intype, typelist):
        """The opposite of what typePromoter does--not implemented yet"""
        pass

    def outer(self, inarr1, inarr2, outarr=None):
        raise ValueError("Outer only available for binary functions")

_blockingParametersCache = {}
_copyCache = {}

def flush_caches():
    """flush_cache elminates all ufunc cache entries."""
    import sys
    module = sys.modules[__name__]
    for n in module.__dict__.keys():
        f = module.__dict__[n]
        if isinstance(f, _UFunc):
            f._cache_flush()
    _blockingParametersCache = {}
    _copyCache = {}

class _BufferPool:
    """A Pool of available buffers available for block compuations

    Buffers can be gotten. When they are deleted they are automatically
    returned to the buffer pool so they can be reused.
    """
    def __init__(self, buffersize=100000):
        # buffers are initially allocated as needed
        self.buffers = []
        self.setBufferSize(buffersize)
        
    def getBuffer(self):
        try:
            return _nc._UBuffer(self.buffers.pop())
        except IndexError:
            # out of buffers, create a new one
            return _nc._UBuffer(memory.new_memory(_ufunc.getBufferSize()))
    def getBufferSize(self):
        return _ufunc.getBufferSize()
    
    def setBufferSize(self, buffersize):
        """Change buffer size (useful mainly for testing)"""
        oldsize = _ufunc.getBufferSize()
        if buffersize != oldsize:
            _ufunc.setBufferSize(buffersize)
            # delete existing (wrong-sized) buffers
            self.buffers = []
            flush_caches()
        return oldsize

_bufferPool = _BufferPool()

def _sequence(x):
    return isinstance(x, list) or isinstance(x, tuple)

if _PROTOTYPE:
    def _digest(x):
        if isinstance(x, _nc.NumArray):
            return ("array",
                    x.iscontiguous(),
                    x.isaligned(),
                    x.isbyteswapped(),
                    x.type())
        elif _isScalar(x):
            return type(x), x   # for demo only
        elif x is None:
            return None
        else:
            raise KeyError, "_digest force cache miss"

    def _restuff_pseudo(p, x):
        if _isScalar(x):
            if p is None:
                raise RuntimeError, "scalar value with no pseudo array"
            else: # restuff p with x
                # p[0] = x
                return p
        else:
            if p is not None: 
                return p
            else:
                return x
else:
    _digest = _ufunc.digest
    _restuff_pseudo = _ufunc.restuff_pseudo

def _cache(original_input, pseudo_array):
    if _isScalar(original_input):
        return pseudo_array
    else:
        return None

def _rank(seq, r=0):
    if isinstance(seq, _nc.NumArray):
        return r + len(seq._shape)
    try:
        x = len(seq)
    except:
        return r
    else:
        if x == 0:
            return r
        else:
            return _rank(seq[0], r+1)

class _UnaryUFunc(_UFunc):
    """Class for ufuncs with 1 input and 1 output argument"""

    def __init__(self, *args, **keys):
        _UFunc.__init__(self, *args, **keys)
        self.arity = 1
        if _PROTOTYPE:
            self._cache = {}

    if _PROTOTYPE:
        def __call__(self, inarr1, outarr=None):
            """The standard calling interface for UFuncs"""
            return self._cached_dispatch1(inarr1, outarr)

        def _fast_exec1(self, in1, out, cached):
            mode, outtype, cfunc, ufargs_junk, insig, cin1 = cached
            ufargs = (out.nelements(), 1, 1,
                      ((in1._data, in1._byteoffset),
                       (out._data, out._byteoffset)))
            apply(cfunc, ufargs)

        def _slow_exec1(self, in1, out, cached):
            mode, outtype, cfunc, ufargs, insig, cin1 = cached
            inputs, outputs, maxitemsize = ufargs
            niter = _ufunc.getBufferSize()/maxitemsize
            indexlevel, blockingparameters = \
                        _ufunc._getBlockingParameters(out._shape, niter)
            operator = _Operator(cfunc,
                                 [inputs[0].rebuffer(in1)],
                                 [outputs[0].rebuffer(out)])
            objects = (inputs[0],operator,outputs[0])
            _callOverDimensions(objects, out._shape, indexlevel, blockingparameters)
            for o in inputs+outputs:
                o.rebuffer(None)

        def _cache_exec1(self, in1, out, cached):
            if out.nelements(): # skip 0-element arrays
                _ufunc.CheckFPErrors()
                if cached[0] == "fast":
                    self._fast_exec1(in1, out, cached)
                else:
                    self._slow_exec1(in1, out, cached)
                error = _ufunc.CheckFPErrors()
                if error:
                    handleError(error, " in "+self.operator)
            if out._shape == ():
                return out[()]
            else:
                return out

        def _cache_lookup1(self, in1, out):
            """_cache_lookup2 checks the ufunc cache for an entry corresponding to
            (in1, in2, out) and returns it if it is found.  If the cache misses,
            _cache_lookup2 performs a full ufunc setup and returns it.  In either
            case,  vector_vector inputs are dual broadcast to match shapes.
            """
            win1 = in1
            try:
                key = (_digest(win1), _digest(out), safethread.get_ident())
                cached = self._cache[ key ]
            except KeyError:
                return self._cache_miss1(win1, out)
            else:
                mode, otype, cfunc, ufargs, insig, cin1 = cached
                cin1 = _restuff_pseudo(cin1, in1)
                if out is None:
                    if insig == "vector":
                        wout = win1.new(cached[1])
                    else: # scalar
                        wout = _nc.zeros((), type=otype)
                else:
                    if insig == "vector":
                        shape = win1._shape
                    else: # scalar
                        shape = ()
                    if shape != out._shape:
                        raise ValueError("Supplied output array does not have appropriate shape")
                    wout = out
            return cin1, wout, cached

        def _cached_dispatch1(self, inarr1, outarr):
            params = self._cache_lookup1(inarr1, outarr)
            result = self._cache_exec1(*params)
            if outarr is None:
                return result
            else:
                return None

    def _cache_miss1(self, n1, out):
        (in1,), insig, scalar = _inputcheck(n1)
        
        mode, win1, wout, cfunc, ufargs = \
              self._setup(in1, insig, out)
        
        if mode == "fast":
            cached = mode, wout._type, cfunc, None, insig, _cache(n1, win1)
        else:
            cached = mode, wout._type, cfunc, ufargs, insig, _cache(n1, win1)

        try:
            key = (_digest(n1), _digest(out), safethread.get_ident())
        except KeyError:
            pass
        else:
            if _PROTOTYPE:
                self._cache[ key ] = cached
            else:
                self._cache_insert( cached, n1, None, out)                
        return win1, wout, cached
        
    def _setup(self, inarr, insig, outarr):
        """Setup for unary ufunc"""
        ufdict = self._ucfuncs["vector"]
        if insig == "scalar":
            t =  _nc.array(inarr)  # create rank-0
            t._check_overflow = 1  # enable overflow checking for t
            t[()] = inarr           # force any overflow
            inarr = t
        shape = inarr._shape
        typekeys  = [key[0] for key in ufdict.keys()]
        intype = self._typePromoter(inarr._type.name, typekeys)
        outtype, ucfunc = ufdict[(intype,)]
        if outarr is None:
            outarr = inarr.new(_numtypedict[outtype[0]])
        if shape != outarr._shape:
            raise ValueError("Supplied output array does not have appropriate shape")
        # If fast case, return the arguments for an immediate call to the
        #  C function
        if (_noConversionNeeded(inarr, intype) and
            _noConversionNeeded(outarr, outtype[0])):
            ufargs = (outarr.nelements(), 1, 1,
                      ((inarr._data, inarr._byteoffset),
                       (outarr._data, outarr._byteoffset)))
            return ("fast", inarr, outarr, ucfunc, ufargs)

        # slower, general case
        inputs = (_InputConverter(inarr, intype), )
        outputs = (_OutputConverter(arr=outarr, type=outtype[0]),)
        # find largest itemsize involved, it will determine how many
        # iterations can be done on the temporary buffers (i.e., niter)
        maxitemsize = max(_numtypedict[inarr._type.name].bytes,
                          _numtypedict[intype].bytes,
                          _numtypedict[outtype[0]].bytes,
                          _numtypedict[outarr._type.name].bytes)
        preprocessing_outbuffers = (inputs[0].result_buff,)
        postprocessing_inbuffers = (outputs[0].result_buff,)
        return ("slow", inarr, outarr, ucfunc, 
                (inputs, outputs, maxitemsize))

def _firstcol(arr):
    rval = arr.view()
    rval._shape = rval._shape[:-1]
    rval._strides = rval._strides[:-1]
    return rval

def _moveToLast(dim, iseq):
    oseq = []
    for i in range(len(iseq)):
        if i != dim:
            oseq.append(iseq[i])
        else:
            s = iseq[i]
    oseq.append(s)
    return oseq

def _fixdim(axis, keys):
    """support the deprecation of the 'dim' keyword in favor of 'axis'"""
    if "dim" in keys.keys():
        if axis != 0:
            raise RuntimeError("Specify 'axis' or 'dim', but not both.  'dim' is deprecated.")
        _warnings.warn("The 'dim' keyword is deprecated.  Specify 'axis' instead.",
                       DeprecationWarning,
                       stacklevel=3)
        return keys["dim"]
    return axis

def _fixdimaux(axis, dim):
    """provide glue so C-code can easily call _fixdim.  Note that C-code
    cannot detect the default case: dim=0."""
    if dim != 0:
        return _fixdim(axis, {"dim":dim})
    else:
        return axis
    
class _BinaryUFunc(_UFunc):
    """Class for ufuncs with 2 input and 1 output arguments"""

    def __init__(self, *args, **keys):
        _UFunc.__init__(self, *args, **keys)
        self.arity = 2

    if _PROTOTYPE:
        def _fast_exec2(self, in1, in2, out, cached):
            mode, outtype, cfunc, ufargs_junk, insig, cin1, cin2 = cached
            ufargs = (out.nelements(), 2, 1,
                      ((in1._data, in1._byteoffset),
                       (in2._data, in2._byteoffset),
                       (out._data, out._byteoffset)))
            apply(cfunc, ufargs)

        def _slow_exec2(self, in1, in2, out, cached):
            mode, outtype, cfunc, ufargs, insig, cin1, cin2 = cached
            inputs, outputs, maxitemsize = ufargs
            niter = _ufunc.getBufferSize()/maxitemsize
            indexlevel, blockingparameters = \
                        _ufunc._getBlockingParameters(out._shape, niter)
            operator = _Operator(cfunc,[inputs[0].rebuffer(in1),
                                        inputs[1].rebuffer(in2)],
                                 [outputs[0].rebuffer(out)])
            objects = inputs + (operator,) + outputs
            _callOverDimensions(objects, out._shape, indexlevel, blockingparameters)
            for o in inputs+outputs:
                o.rebuffer(None)

        def _cache_exec2(self, in1, in2, out, cached):
            if out.nelements():  # skip 0-element arrays
                _ufunc.CheckFPErrors()
                if cached[0] == "fast":
                    self._fast_exec2(in1, in2, out, cached)
                else:
                    self._slow_exec2(in1, in2, out, cached)
                error = _ufunc.CheckFPErrors()
                if error:
                    handleError(error, " in "+self.operator)
            if out._shape == (): 
                return out[()]
            else:
                return out

        def _cache_lookup2(self, in1, in2, out):
            """_cache_lookup2 checks the ufunc cache for an entry corresponding to
            (in1, in2, out) and returns it if it is found.  If the cache misses,
            _cache_lookup2 performs a full ufunc setup and returns it.  In either
            case,  vector_vector inputs are dual broadcast to match shapes.
            """
            if (isinstance(in1, _nc.NumArray) and
                isinstance(in2, _nc.NumArray)):
                win1, win2 = in1._dualbroadcast(in2)
            else:
                win1, win2 = in1, in2
            try:
                key = (_digest(win1), _digest(win2), _digest(out), safethread.get_ident())
                cached = self._cache[ key ]
            except KeyError:
                return self._cache_miss2(win1, win2, out)
            else:
                mode, otype, cfunc, ufargs, insig, cin1, cin2 = cached
                cin1 = _restuff_pseudo(cin1, win1)
                cin2 = _restuff_pseudo(cin2, win2)
                if out is None:
                    if insig in ["vector_scalar", "vector_vector"]:
                        wout = win1.new(cached[1])
                    elif insig == "scalar_vector":
                        wout = win2.new(cached[1])
                    else: # scalar_scalar
                        wout = _nc.zeros((), type=otype)
                else:
                    if insig in ["vector_scalar", "vector_vector"]:
                        shape = win1._shape
                    elif insig == "scalar_vector":
                        shape = win2._shape
                    else: # scalar_scalar
                        shape = ()
                    if shape != out._shape:
                        raise ValueError("Supplied output array does not have appropriate shape")
                    wout = out
            return cin1, cin2, wout, cached

        def _cached_dispatch2(self, inarr1, inarr2, outarr):
            params = self._cache_lookup2(inarr1, inarr2, outarr)
            result = self._cache_exec2(*params)
            if isinstance(result, _nc.NumArray) and result.rank == 0:
                result = result[()]
            if outarr is None:
                return result
            else:
                return None
        
        def __call__(self, inarr1, inarr2, outarr=None):
            """The standard calling interface for UFuncs"""
            return self._cached_dispatch2(inarr1, inarr2, outarr)

    def _cache_miss2(self, n1, n2, out):
        (in1, in2), insig, scalar = _inputcheck(n1, n2)
        
        mode, win1, win2, wout, cfunc, ufargs = \
              self._setup(in1, in2, insig, out)
        
        if mode == "fast":
            cached = mode, wout._type, cfunc, None, insig, \
                     _cache(n1, win1), _cache(n2, win2)
        else:
            cached = mode, wout._type, cfunc, ufargs, insig, \
                     _cache(n1, win1), _cache(n2, win2)
            
        try:
            key = (_digest(n1), _digest(n2), _digest(out),
                   safethread.get_ident())
        except KeyError:
            pass
        else:
            if _PROTOTYPE:
                self._cache[ key ] = cached
            else:
                self._cache_insert(cached, n1, n2, out)
        
        return win1, win2, wout, cached
        
    def _setup(self, in1, in2, insig, out):
        """Setup for binary ufunc"""
        wout = out
        if insig == "scalar_scalar":
            # do it as two 0-d numarray.
            in1, in2 = _nc.array(in1), _nc.array(in2)
            insig = "vector_vector"
            if out is None: wout = in1.copy()
        elif insig == "vector_scalar":
            intypes = (in1._type.name, type(in2))
            convtype1, convtype2, outtype, ucfunc \
                = self._typematch(intypes, self._ucfuncs[insig])
            inarr1, inarr2 = in1, _pseudoArrayFromScalars([in2], convtype2)
            if out is None: wout = in1.new(outtype[0])
        elif insig == "scalar_vector":
            intypes = (type(in1), in2._type.name)
            convtype1, convtype2, outtype, ucfunc \
                = self._typematch(intypes, self._ucfuncs[insig])
            inarr1, inarr2 = _pseudoArrayFromScalars([in1], convtype1), in2
            if out is None: wout = in2.new(outtype[0])
        if insig == "vector_vector":
            intypes = (in1._type.name, in2._type.name)
            inarr1, inarr2 = in1._dualbroadcast(in2)
            convtype1, convtype2, outtype, ucfunc \
                = self._typematch(intypes, self._ucfuncs[insig])
            if out is None: wout = inarr1.new(outtype[0])
        
        #If fast case, return the arguments for an immediate call to the
        #  C function
        if (_noConversionNeeded(inarr1, convtype1) and
            _noConversionNeeded(inarr2, convtype2) and
            _noConversionNeeded(wout, _numtypedict[outtype[0]])):
            ufargs = (wout.nelements(), 2, 1,
                      ((inarr1._data, inarr1._byteoffset),
                      (inarr2._data, inarr2._byteoffset),
                      (wout._data, wout._byteoffset)))
            return ("fast", inarr1, inarr2, wout, ucfunc, ufargs)

        # slower, general case
        inputs = (_InputConverter(inarr1, convtype1),
                  _InputConverter(inarr2, convtype2))
        outputs = (_OutputConverter(arr=wout, type=outtype[0]),)

        # find largest itemsize involved, it will determine how many
        # iterations can be done on the temporary buffers (i.e., niter)
        maxitemsize = max(_numtypedict[inarr1._type.name].bytes,
                          _numtypedict[inarr2._type.name].bytes,
                          _numtypedict[convtype1].bytes,
                          _numtypedict[convtype2].bytes,
                          _numtypedict[outtype[0]].bytes,
                          _numtypedict[wout._type.name].bytes)
        return ("slow", inarr1, inarr2, wout, ucfunc,
                (inputs, outputs, maxitemsize))

    def outer(self, inarr1, inarr2, outarr=None):
        """Return outer product of 2 numarray"""
        (inarr1, inarr2), insig, scalar = _inputcheck(inarr1, inarr2)
        ndim2 = len(inarr2._shape)
        indexarg = (slice(None, None, None),)*len(inarr1._shape) + (None,)*ndim2
        if outarr is not None:
            self(inarr1.__getitem__(indexarg), inarr2, outarr)
        else:
            return self(inarr1.__getitem__(indexarg), inarr2)

    def zreduce(self, array, axis=0, out=None, type=None, **keys):
        """zreduce returns a rank-0 array as the result of the
        reduction of array <= rank-1 array, similar to Numeric.
        """
        axis = _fixdim(axis, keys)
        in1 = _nc.asarray(array)
        r = self._cum_swapped(in1, axis, out, "reduce", type)
        if in1.rank <= 1:
            r.shape = ()
            r.strides = ()
        return r

    if _PROTOTYPE:
        def accumulate(self, array, axis=0, out=None, type=None, **keys):
            """accumulate applies the binary operator 'self' at successive
            pairs of elements of 'array' along dimension 'dim', storing the
            result in 'out'.  If no 'out' is provided, the result of the
            accumulation will be returned.  The result of accumulating
            'array' has the same shape as 'array'.
            """
            axis = _fixdim(axis, keys)
            in1 = _nc.asarray(array)
            return self._cum_swapped(in1, axis, out, "accumulate", type)

        def areduce(self, array, axis=0, out=None, type=None, **keys):
            """areduce applies the operator of ufunc 'self' to reduce
            'array' along its 'dim' axis.  If no 'out' is provided,
            the result of the reduction is returned.  The result of
            reducing an N-dimensional array is an N-1 dimensional array.
            The result of reducing a rank-1 array is a rank-0 array.

            see also 'reduce'.
            """
            axis = _fixdim(axis, keys)
            in1 = _nc.asarray(array)
            return self._cum_swapped(in1, axis, out, "reduce", type)

        def reduce(self, array, axis=0, out=None, type=None, **keys):
            """areduce applies the operator of ufunc 'self' to reduce
            'array' along its 'dim' axis.  If no 'out' is provided,
            the result of the reduction is returned.  The result of
            reducing an N-dimensional array is an N-1 dimensional array.
            The result of reducing a rank-1 array is a scalar.

            see also 'areduce'.
            """
            axis = _fixdim(axis, keys)
            in1 = _nc.asarray(array)
            r = self._cum_swapped(in1, axis, out, "reduce", type)
            if r is not None:
                if r._shape == (1,) and in1.rank <= 1:
                    r = r[0]
            return r

        def _cum_cached(self, cumop, in1, out, type):
            if (out is not None):
                if not isinstance(out, _nc.NumArray):
                    raise TypeError("output array must be a NumArray")
                if (not out.isaligned() or out.isbyteswapped()):
                    raise ValueError("Reduce/Accumulate: no support for misaligned / byteswapped output numarray")
            if cumop not in ["reduce", "accumulate"]:
                raise ValueError("Unknown cumulative option")
            if in1.rank == 0:
                if self._identity is not None:
                    return self._getidentity() # 0D array form
                else:
                    raise ValueError("Empty array in a ufunc that has no identity value")
            params = self._cum_lookup(cumop, in1, out, type)
            wout = self._cum_exec(*params)
            
            if cumop=="reduce":
                wout._strides = wout._strides[:-1]
                if wout._shape == ():
                    wout._shape = (1,)
                    wout._strides = (wout._itemsize,)
            if out is None:
                return wout
            i, o, cached = params
            mode, otype, cfunc, ufargs = cached
            if out._type != otype: 
                _copyFromAndConvert(wout, out)
            return out

        def _cum_lookup(self, cumop, in1, out, type):
            try:
                key = (_digest(in1), _digest(out), cumop, safethread.get_ident(), type)
                cached = self._cache[ key ]
            except KeyError:  # lists always miss
                return self._cum_cache_miss(cumop, in1, out, type)
            else:
                mode, otype, cfunc, ufargs = cached
                if cumop == "reduce":
                    wout = self._reduce_out(in1, out, otype)
                else:
                    wout = self._accumulate_out(in1, out, otype)
                return in1, wout, cached

        def _cum_exec(self, in1, out, cached):
            mode, otype, cfunc, ufargs = cached
	    if otype == _nt.Bool:
	        if in1._type != _nt.Bool:
		   in1 = in1.astype(_nt.Bool)
            if in1.nelements():  # skip 0-element arrays
                _ufunc.CheckFPErrors()
                if mode == "fast":
                    self._cum_fast_exec(in1, out, cached)
                else:
                    self._cum_slow_exec(in1, out, cached)
                errorstatus = _ufunc.CheckFPErrors()
                if errorstatus:
                    handleError(errorstatus, sourcemsg)
            return out

        def _cum_fast_exec(self, in1, out, cached):
            mode, otype, cfunc, ufargs = cached
            cfunc(in1._shape,
                  in1._data,  in1._byteoffset,  in1._strides,
                  out._data, out._byteoffset, out._strides)

        def _cum_slow_exec(self, in1, out, cached):
            mode, otype, cfunc, ufargs = cached
            input, output, maxitemsize = ufargs
            niter = _ufunc.getBufferSize()/maxitemsize
            if in1._shape[-1] > niter:
                overlap = 1
            else:
                overlap = 0
            indexlevel, blockingparameters = \
                        _ufunc._getBlockingParameters(in1._shape, niter, overlap)
            operator = _Operator(cfunc,
                                 [input.rebuffer(in1)],
                                 [output.rebuffer(out)],
                                 otype.bytes)
            objects = (input, operator, output)
            _callOverDimensions(objects, out._shape,
                                indexlevel, blockingparameters, overlap)
            input.rebuffer(None)
            output.rebuffer(None)

        def _accumulate_out(self, inarr, outarr, outtype):
            """_accumulate_out creates output array for accumulate"""
            # Create output array if not supplied.
            if outarr is None:
                toutarr = inarr.new( outtype )
            else:
                if outarr._shape != inarr._shape:
                    raise ValueError(
                       "Supplied output array does not have the appropriate shape")
                toutarr = outarr
            # It is necessary to initialize the first subarray of the output
            # to the first subarray of the input (C functions depend on it).
            # toutarr[...,0] = inarr[...,0]
            if inarr.nelements():
                _firstcol(toutarr)._copyFrom(_firstcol(inarr))
            return toutarr

        def _reduce_out(self, inarr, outarr, outtype):
            """_reduce_out creates output array for reduce"""
            firstcol = _firstcol(inarr) # inarr[..., 0]
            # Create output array if not supplied or wrong type
            if outarr is None or outarr._type != outtype:
                toutarr = firstcol.new(outtype)
            else:
                toutarr = outarr.view()
            if len(inarr._shape) == 1 and toutarr._shape == (1,):
                toutarr._shape, toutarr._strides = (), ()
            if firstcol._shape != toutarr._shape:
                raise ValueError("output array shape mismatch")
            if inarr.nelements(): # skip 0-element arrays
                toutarr._copyFrom(firstcol)  # Assign first subarray of output
            else:
                toutarr._copyFrom(self._identity)
            toutarr._strides += (0,)
            return toutarr

        def _cum_swapped(self, in1, dim, out, cumop, type=None):
            if dim == in1.rank-1:
                dim = -1
            if dim != -1:
                _in1 = _gen.swapaxes(in1, -1, dim)
                _out = _gen.swapaxes(out, -1, dim)
            else:
                _in1, _out = in1, out
            _out1 = self._cum_cached(cumop, _in1, _out, type)
            if cumop == "accumulate":
                if dim != -1:
                    _out1.swapaxes(-1, dim) # swap axes to "fix" the result
            else:
                if dim != -1:
                    _out1._shape = _moveToLast(dim, _out1._shape)
                    _out1._strides = _moveToLast(dim, _out1._strides)
            if out is None:
                return _out1        

    def _cum_cache_miss(self, cumop, in1, out, type):
        mode, win1, wout, cfunc, ufargs = \
              self._cum_setup(cumop, in1, out, type)
        cached = mode, wout._type, cfunc, ufargs
        try:
            key = (_digest(in1), _digest(out), cumop,
                   safethread.get_ident(), type)
        except KeyError:
            pass
        else:
            if _PROTOTYPE:
                self._cache[ key ] = cached
            else:
                self._cache_insert(cached, in1, None, out, cumop, type);
        return win1, wout, cached
            
    def _cum_setup(self, cumop, in1, out, type=None):
        """Used by both reduce and accumulate to compute accumulations.

        Assumes that the dimension of accumulation/reduction is 0.

            in1        -- The input array to accumulate/reduce
            out       -- Optional output array

        The output array must have a consistent shape with the input
        Array (the same for accumulate and minus the accumulated dimension
        for reduce).

        The output type must match that produced by default
        and cannot be nonaligned or byteswapped. (It is a real mess to
        remove this restriction. (The original numeric doesn't even support
        output numarray.)
        """
        (win1,), insig, scalar = _inputcheck(in1)  # win1 substitute for lists
        if scalar:
            raise ValueError("First argument must be an array or sequence")

        # The original numeric returns the operations identity for empty numarray.
        sourcemsg = "in %s.%s" % (self.operator, cumop) # For error message

        # Get appropriate function, figure out any needed input type conversions
        # and what the output type will be
        ufdict = self._ucfuncs[cumop]
        typekeys  = [key[0] for key in ufdict.keys()]
        try:
            intype  = _numtypedict[self._typePromoter(win1._type.name, typekeys)]
        except TypeError: 
            if typekeys == ['Bool']:  # Hack for logical operators
                return self._cum_setup( cumop, win1.astype('Bool'), out)

        if out is None:
            if type is None:
                optype = intype
            else:
                optype = _nt.getType(type)
        else:
            if type is not None:
                raise ValueError("Can't specify both 'type' and 'out'")
            else:
                optype = out.type()
               
        otype, cfunc = ufdict[(optype,)]
        otype = _numtypedict[otype[0]]

        # A few words on shape/stride manipulations:
        # The C function assumes the last dimension is being accumulated.
        # Create the accumulate/reduce specific output array, tout
        #   type of reduce tout is always otype to avoid output conversion
        #   with mismatched shapes.
        if cumop == "reduce":
            tout = self._reduce_out(win1, out, otype)
        else:
            tout = self._accumulate_out(win1, out, otype)

        # check for fast case (Unlike Ufuncs, contiguous numarray not required)
        if (not win1.isbyteswapped() and win1.isaligned()
            and optype == win1._type
            and not tout.isbyteswapped()
            and tout.isaligned()):
            return "fast", win1, tout, cfunc, None
        else:
            # slow case
            # And now a few words about overlap. It is used to allow the
            # accumulate C function to work across blocks. Overlap in effect
            # makes the first subarray of the next block the last subarray
            # of the previous block (or last array value for 1-d numarray) so
            # the accumulate can carry on. The computation of the block size
            # must take it into account as does computeOverDimensions in its
            # computation of the offsets for the blocks. This is only needed
            # where the accumulated dimension is larger than a block. It is
            # not needed at all for reduce since the output array contains
            # the net accumulation.

            # check special case where last dimension is bigger than blocksize
            maxitemsize = max(intype.bytes, optype.bytes, otype.bytes)

            niter = _ufunc.getBufferSize()/maxitemsize
            
            # This is a bit tricky. If the accumulated dimension is bigger
            # than the block size, it is necessary to overlap the block
            # computations by one element so that the last value of the
            # previous block can continue the count into the next block.
            if win1._shape[-1] > niter:
                overlap = 1
            else:
                overlap = 0
            indexlevel, blockingparameters = \
                _ufunc._getBlockingParameters(win1._shape, niter, overlap)
            # The usual compute stuff
            input = _InputConverter(win1, type=optype.name)

            # Since cfunc is selected by output type, no type conversion
            #  is required.  Since the cfuncs are striding, no striding
            #  is required.  Byteswapping and aligning are disallowed.
            #  Thus, the output converter is a NULL converter.
            output = _OutputConverter(tout, type=otype.name, nonstriding=1)
            return "slow", win1, tout, cfunc, (input, output, maxitemsize)
            

# Portions of the following class are implemented in C. See _convertermodule.c.
# In particular, compute, stride, convert, and rebuffer.
class _Converter(_converter._converter):
    def __init__(self, arr, type, inbuffer=None, forcestride=0, nonstriding=0):
        self.stridefunction = None
        self.convfunction = None
        self.type = type

        if arr.isbyteswapped():
            if isinstance(arr._type, _nt.ComplexType):
                fname = "byteswap" + arr._type.name
            else:
                fname = "byteswap"+`arr._itemsize`+"bytes"
            self.stridefunction = _bytes.functionDict[fname]
        elif not arr.isaligned():
            fname = "align"+`arr._itemsize`+"bytes"
            self.stridefunction = (_bytes.functionDict.get(fname) or
                                   _bytes.functionDict["copyNbytes"])
        elif not nonstriding and not arr.iscontiguous() or forcestride:
            fname = "copy"+`arr._itemsize`+"bytes"
            self.stridefunction = (_bytes.functionDict.get(fname) or
                                   _bytes.functionDict["copyNbytes"])
        if type != arr._type.name:
            self.convfunction = \
                          _numtypedict[type]._conv.astype[arr._type.name]
            
        if self.stridefunction:
            # Since the output array is iterated over dimensions, even
            # the input array, always contiguous, needs strides defined.
            # But first see if input buffer is a real array.
            if (inbuffer is not None) and inbuffer._strides:
                if not inbuffer.is_c_array():
                    raise ValueError("input buffer is not a c_array")
                self.bytestrides = [ inbuffer._strides,
                                     list(arr._strides) ]
                self.generated = 0
            else:
                self.bytestrides = [ _stridesFromShape(arr._shape,
                                                       arr._itemsize),
                                     list(arr._strides) ]
                self.generated = 1
        else:
            self.bytestrides = [ None, None ]
                
        # If inbuffer not specified, allocate one
        if (inbuffer is None) and (self.stridefunction or self.convfunction):
            inbuffer = _bufferPool.getBuffer()
            
        self.conversion_required = 1
        if self.convfunction:
            if self.stridefunction:
                buff = _bufferPool.getBuffer()
                buffers = [inbuffer, buff, buff, arr]
                self.arr_position = 3
                self.inb_position = 0
            else:
                buffers = [inbuffer, arr, None, None]
                self.arr_position = 1
                self.inb_position = 0
        else:
            if self.stridefunction:
                buffers = [None, None,inbuffer, arr]
                self.arr_position = 3
                self.inb_position = 2
            else:
                if inbuffer is not None:
                    raise ValueError(
                     "Specified both input and output but no conversion implied")
                buffers = [None, None, None, None]
                inbuffer = arr
                self.conversion_required = 0

        self.buffers = buffers
        self.result_buff = inbuffer

    if _PROTOTYPE:
        # The following method has been re-implemented in C.
        def rebuffer(self, arr, inbuffer=None):
            if not self.conversion_required:
                self.result_buff = arr
                return arr
            l = self.buffers
            l[self.arr_position] = arr
            if not self.generated and inbuffer is not None:
                self.result_buff = inbuffer
                l[self.inb_position] = inbuffer
            self.buffers = l
            if arr is not None and self.bytestrides != [None, None]:
                if self.generated:
                    ustrides = _stridesFromShape(arr._shape, arr._itemsize)
                else:
                    if inbuffer is not None:
                        ustrides = inbuffer._strides
                    else:
                        ustrides = self.bytestrides[ not self.direction ]
                if self.direction:
                    self.bytestrides = [ ustrides, arr._strides ]
                else:
                    self.bytestrides = [ arr._strides, ustrides ]
            return self.result_buff

        def convert(self, buf, indices, shape):
            """Perform type conversions."""
            if self.convfunction:
                niter = _gen.product(shape)
                inoffset = self.buffers[buf*2+0]._getByteOffset(indices)
                offset = self.buffers[buf*2+1]._getByteOffset(indices)
                self.convfunction(niter, 1, 1, 
                                  ((self.buffers[buf*2+0]._data, inoffset),
                                   (self.buffers[buf*2+1]._data, offset)))

        def stride(self, buf, indices, shape):
            """Perform copies and re-alignments."""
            if self.stridefunction:
                inoffset = self.buffers[buf*2+0]._getByteOffset(indices)
                offset = self.buffers[buf*2+1]._getByteOffset(indices)
                self.stridefunction(shape, 
                                    self.buffers[buf*2+0]._data, inoffset,
                                    self.bytestrides[0][-len(shape):],
                                    self.buffers[buf*2+1]._data, offset,
                                    self.bytestrides[1][-len(shape):])

        # The following code has been implemented in C.
        # Renaming "compute" below affects compute, stride, and convert.
        def compute(self, indices, shape):
            """ Perform the necessary transformations on the array.
            """
            if self.direction:
                self.convert(0, indices, shape)
                self.stride(1, indices, shape)
            else:
                self.stride(0, indices, shape)
                self.convert(1, indices, shape)

class _InputConverter(_Converter):
    """This class handles alignment, byteswaping, copying and type conversions

    Stride here is a bit of a misnomer, it refers to one of
    functions (three currently) that deal with strides. These are:
    byteswap, align, copy operations. The conv functions are type conversion
    operations. They never deal with strides. At most one of each is
    necessary; neither is required. Strides and offsets are *byte*!
    """
    def __init__(self, arr, type, inbuffer=None, forcestride=0):
        _Converter.__init__(self, arr, type, inbuffer, forcestride)
        self.direction = 0 # input
            
        if type != arr._type.name:
            self.convfunction = arr._type._conv.astype[type]

        l = self.bytestrides
        l.reverse()
        self.bytestrides = l
        
        l = self.buffers
        l.reverse()
        self.buffers = l
        
        if self.conversion_required:
            self.arr_position = {1:2, 3:0}[self.arr_position]
            self.inb_position = {0:3, 2:1}[self.inb_position]
            

class _OutputConverter(_Converter):
    """This class handles alignment, byteswaping, copying and type
    conversions processing the output of a ufunc.
    """
    def __init__(self, arr, type, inbuffer=None, forcestride=0, nonstriding=0):
        _Converter.__init__(self, arr, type, inbuffer, forcestride,
                            nonstriding)
        self.direction = 1  # output


# The following class has been re-implemented in C.  See _operatormodule.c.
class _Operator:
    """performs the operation"""

    def __init__(self, cfunction, inputs, outputs, striding=0):
        self.cfunction = cfunction
        self.inputs = inputs
        self.outputs = outputs
        self.striding = striding

    def compute(self, indices, shape):
        niter = _gen.product(shape)
        args = []
        for item in self.inputs+self.outputs:
            if item._strides:
                offset = item._getByteOffset(indices)
            else:
                offset = 0
            args.append((item._data, offset))
            if self.striding:
                if item._strides:
                    args.append(item._strides)
                else:
                    args.append(_stridesFromShape(shape, self.striding))
        if not self.striding:
            self.cfunction(niter, len(self.inputs), len(self.outputs),
                           tuple(args))
        else:
            self.cfunction(shape, args[0][0], args[0][1], args[1],
                           args[2][0], args[2][1], args[3])

# Replace the Python version of "_Operator" with a C version.
if not _PROTOTYPE:
    from _operator import _operator as _Operator

def _stridesFromShape(shape, bytestride):

    """Compute the strides from shape for a contiguous array, sort of"""
    if shape != ():
        ndim = len(shape)
        strides = [0]*ndim
        strides[-1] = bytestride
        for i in xrange(ndim-2, -1, -1):
            strides[i] = strides[i+1] * shape[i+1]
    else:
        strides = ()
    return strides

def _makeCUFuncDict(functionDict):
    """Organize C functions by function name and signature"""
    dict = {}
    for keystr in functionDict.keys():
        operator, optype, signature = eval(keystr)
        if not dict.has_key(operator):
            dict[operator] = {}
        if not dict[operator].has_key(optype):
            dict[operator][optype] = {}
        dict[operator][optype][signature[0]] = (signature[1],functionDict[keystr])
    return dict

def _isScalar(x):
    return _nc.PyNUMERIC_TYPES.has_key(type(x))

def _maxPopType(xs):
    """_maxPopType determines the maximum type of a sequence of
    numarray and scalars.  see _nt.genericCoercions.
    """
    if isinstance(xs[0], types.InstanceType) and \
       not isinstance(xs[0], _nc.NumArray):
        return None  # If they're not all NumArrays, quit now.

    maxT = None
    for x in xs:
        if isinstance(x, _nc.NumArray):
            t = x._type
        elif _nc.PyNUMERIC_TYPES.has_key(type(x)):
            t = type(x)
        else:
            t = _nc._maxtype(x)
            
        if maxT is None:
            maxT = t
        else:
            maxT = _nt.genericCoercions[(maxT, t)]
    return maxT

CLIP = 0    # Peg indices > N-1 at N-1, indices < 0 at 0
WRAP = 1    # Index = Index % N
RAISE = 2   # Raise an exception for out of range indices

class _ChooseUFunc(_UFunc):
    
    """Class for building the "choose" ufunc.
    Class for ufuncs with 2 input (S, [~S...]) and 1 output (S) arguments"""

    def __init__(self, operator = "choose"):
        self.operator = operator

    def _doit(self, computation_mode, outarr, cfunc, ufargs, scalar):
        _ufunc.CheckFPErrors()
        if computation_mode == "fast":
            apply(cfunc, ufargs)
        else:
            inputs, outputs, preprocessing_outbuffers, \
            postprocessing_inbuffers, maxitemsize = ufargs
            niter = _ufunc.getBufferSize()/maxitemsize

            outshape = outarr._shape
            indexlevel, blockingparameters = \
                _ufunc._getBlockingParameters(outshape, niter)
            operator = _Operator(cfunc, preprocessing_outbuffers,
                                 postprocessing_inbuffers)
            objects = inputs + (operator,)+ outputs
            _callOverDimensions(objects, outshape, indexlevel,
                                blockingparameters)
            
        errorstatus = _ufunc.CheckFPErrors()
        if errorstatus:
            handleError(errorstatus, " in "+self.operator)
        if scalar:
            return outarr[()]
        else:
            return outarr

    def __call__(self, inarr1, inarr2, outarr=None, clipmode=CLIP):
        """The standard calling interface for UFuncs"""
        computation_mode, woutarr, cfunc, ufargs = \
                          self._setup(inarr1, inarr2, outarr, clipmode)

        result = self._doit(computation_mode, woutarr, cfunc, ufargs, 0)
        if outarr is None:
            return result
        else:
            return None

    def _setup(self, in1, in2, outarr=None, clipmode=CLIP):
        """Setup for Nary ufunc"""

        in1 = _nc.asarray(in1, type=MaybeLong)
        in2 = list(in2)

        if outarr is None:
            convType = _maxPopType(in2)
        else:
            convType = outarr._type

        for i in range(len(in2)):
            if _isScalar(in2[i]):
                in2[i] = _nc.array([in2[i]], type=convType)
            elif isinstance(in2[i], _gen.NDArray):
                pass
            else:
                in2[i] = _nc.array(in2[i], type=convType)

        result = _gen._nWayBroadcast( [in1] + in2 )
        in1, in2 = result[0], result[1:]

        if outarr is None:
            outarr = in1.new(convType)
            
        if in1._shape != outarr._shape:
            raise ValueError("Supplied output array does not have appropriate shape")
        N = outarr._itemsize
        if N in [1,2,4,8,16]:
            ucfname = "choose" + `N` + "bytes"
            ucfunc = _bytes.functionDict[ucfname]
        else:
            ucfunc = _bytes.functionDict["chooseNbytes"]

        # pars = clipmode, population count, itemsize
        pars = _pseudoArrayFromScalars([clipmode, len(in2),N],
                                       _nt.MaybeLong)
        args = [pars, in1] + in2 + [outarr]
        fastargs = reduce(and_,
            [ _noConversionNeeded(x, convType) for x in in2 + [outarr]])
        fastargs = fastargs and _noConversionNeeded(in1, _nt.MaybeLong)
        if fastargs:
            # If fast case, return the arguments for an immediate call to the
            #  C function
            assert outarr._byteoffset == 0
            fastparms = tuple([ (x._data, x._byteoffset) for x in args])
            return ("fast", outarr, ucfunc,
                    (outarr.nelements(), len(args)-1, 1, fastparms))

        # slower, general case
        cpars         = _InputConverter(pars, _nt.MaybeLong)
        selector      = _InputConverter(in1, _nt.MaybeLong)
        population    = [_InputConverter(x, convType) for x in in2 ]

        inputs = (cpars, selector,) + tuple(population)
        outputs = (_OutputConverter(arr=outarr, type=convType),)


        alltypes = [_numtypedict[convType], _nt.MaybeLong] + \
                   [a.type() for a in in2]
        maxitemsize = max([t.bytes for t in alltypes])
        preprocessing_outbuffers = tuple([x.result_buff for x in inputs])
        postprocessing_inbuffers = tuple([x.result_buff for x in outputs])
        return ("slow", outarr, ucfunc, 
                (inputs, outputs, preprocessing_outbuffers,
                 postprocessing_inbuffers, maxitemsize))

_choose = _ChooseUFunc()

def choose(selector, population, outarr=None, clipmode=CLIP):
    """
    choose() returns a new array shaped like 'selector' with elements
    chosen from members of sequence 'population' by the values of
    selector.  The shape of each member of 'population' must be
    broadcastable to the shape of 'selector'.  The value of each
    member of 'selector' must satisfy: 0 <= value < len(population).

    clipmode=CLIP   if clipmode is CLIP, out of range selector values
                        are clipped at [0, shape[i]).

                    if clipmode is WRAP, out of range selector values
                        are wrapped around from 0 to shape[i] (<0) or
                        from shape[i] to 0 (>= shape[i]).

    """
    return _choose(selector, population, outarr, clipmode)

def _scatteredPseudos( scattered ):
    scatteredStrides = _pseudoArrayFromScalars(scattered._strides,
                                               type=MaybeLong)
    scatteredShape   = _pseudoArrayFromScalars(scattered._shape,
                                               type=MaybeLong)
    return scatteredStrides, scatteredShape

class _TakeUFunc(_ChooseUFunc):
    """take(scattered, indexArrays, gathered=None)

    scattered:     input,        array from which elements are "gathered"

    indexArrays:   input,        tuple of index numarray or scalars

    gathered:      input/output  result array

    take plucks the elements of 'scattered' specified by the tuple of
    index numarray, 'indexArrays', and stores the result in the output array
    'gathered'.

    'indexArrays' may be partial, i.e.  incompletely specified,
    hence the shape of 'gathered' is derived from both the shape of
    'indexArrays' (primarily) and the shape of the trailing unspecified
    dimensions of 'scattered'.
    """
    def _setup(self, scattered, indexArrays, gathered=None, clipmode=RAISE):
        """Setup for Nary ufunc
        """
        scattered = _nc.asarray(scattered)
        indexArrays = list(indexArrays)
        gatheredWasSpecified = (gathered is not None)
        if gatheredWasSpecified:
            ctype = gathered._type
        else:
            ctype = scattered._type

        # *All* of the scattered array must be simultaneously available.
        #    So blocked conversions won't work.
        if not _noConversionNeeded(scattered, ctype):
            scattered = scattered.astype(ctype)

        impliedShape, N = _gen._takeShape(scattered, indexArrays)
        scatteredStrides, scatteredShape = _scatteredPseudos(scattered) 

        if gatheredWasSpecified:
            if gathered._shape != impliedShape:
                raise ValueError("Inconsistent array shapes...")
        else:
            gathered = scattered.__class__(shape=impliedShape,
                                           type=scattered._type)
        # scattered and gathered should now be identically typed.

        # Since N can be arbitrarily large depending on the trailing
        # dimensions of scattered, may have to make gathered contiguous
        # to ensure a buffer large enough to store at least N.
        # if (N > _ufunc.getBufferSize()
        
        if not _noConversionNeeded(gathered, scattered._type):
            raise ValueError("take() destination array must be contiguous, aligned, not byteswapped, and of the same type as the source array")

        niter = (gathered.nelements()*gathered._itemsize)/N
        ucfunc = _bytes.functionDict[self.operator + "Nbytes"]

        pars = _pseudoArrayFromScalars([clipmode, N], type=MaybeLong)

        # Index arrays must be aligned, not byteswapped, and correctly typed.
        #  Throw in contiguous for now.
        for i in range(len(indexArrays)):
            x = indexArrays[i]
            if not _noConversionNeeded(x, MaybeLong):
                indexArrays[i] = x.astype(MaybeLong)

        args = [pars, scattered, scatteredStrides, scatteredShape] + \
               indexArrays + [gathered]
        fastparms = tuple([ (x._data, x._byteoffset) for x in args])
        return ("fast", gathered, ucfunc, (niter, len(args)-1, 1, fastparms))

_take = _TakeUFunc("take")

def take(array, indices, axis=0, outarr=None, clipmode=RAISE):    
    """take() picks elements of 'array' specified by sequence of
    numerical sequences 'indices'.

    parameters which must be specified by keyword:

    array           data to be indexed & collected (taken from).

    indices         An integer sequence, or tuple of integer sequences
                    specifying the array coordinates from which data
                    is to be taken.  Partial indices result in entire
                    inner blocks being taken.

    axis=0          selects the axis (or axes) along which the take
                    should be performed.

    clipmode=CLIP   if clipmode is CLIP, out of range indices are clipped
                        at [0, shape[i]).

                    if clipmode is WRAP, out of range indices are wrapped
                        around from 0 to shape[i] (<0) or from shape[i] to
                        0 (>= shape[i]).
    """
    if axis == 0:
        array = _nc.asarray(array)
        return array._take((indices,), outarr=outarr, clipmode=clipmode)
    elif isinstance(axis, (int, long)):
        if isinstance(indices, (int,long,float)):
            raise ValueError("indices must be a sequence")
        work = _gen.swapaxes(array, 0, axis)
        work = work._take((indices,), outarr=outarr, clipmode=clipmode)
        return _gen.swapaxes(work, 0, axis)
    else:
        def_axes = range(array.rank)
        for x in axis:
            def_axes.remove(x)
        axis = list(axis) + def_axes
        work = _gen.transpose(array, axis)
        return work._take(indices, outarr=outarr, clipmode=clipmode)

def _nonIteratedArray(a):
    ni = a.view()
    ni._shape=(0,)
    ni._strides = (0,)
    ni._contiguous = 1
    return ni

class _PutUFunc(_TakeUFunc):
    """put(scattered, indexArrays, gathered) is the inverse function of "take",
    and scatters the elements of array 'gathered' across array 'scattered' as
    specified by tuple of index numarray, 'indexArrays'.

    scattered: input/output           Array where "stuff" gets put
    indexArrays: input                Arrays of indexArrays of scattered where
                                         corresponding pieces of gathered go.
    gathered: input                  Source array

    gathered can be an array which is broadcastable to the array shape
    implied by scattered and indexArrays  -or-  gathered can be a scalar.
    """
    def _setup(self, scattered, indexArrays, gathered, clipmode=RAISE):
        """Setup for Nary ufunc
        """
        if not isinstance(scattered, _gen.NDArray):
            raise TypeError("put only works on NDArray and its subclasses")
            
        indexArrays = list(indexArrays)

        impliedShape, N = _gen._takeShape(scattered, indexArrays)
        scatteredStrides, scatteredShape = _scatteredPseudos(scattered)
        scattered = _nonIteratedArray(scattered)

        pars = _pseudoArrayFromScalars([clipmode, N], type=MaybeLong)

        gathered = _nc.asarray(gathered, type=scattered._type)
        gathered = _gen._broadcast(gathered, impliedShape)

        if not gathered.iscontiguous():
            gathered = gathered.copy()

        # gathered and scattered should now be identically typed.
        # gathered need not be contiguous since it is "bufferable".
        # Since N can be arbitrarily large depending on the trailing
        # dimensions of scattered, may have to pre-process gathered.
        # if N > _ufunc.getBufferSize() and \
        if not _noConversionNeeded(gathered, scattered._type):
            gathered = gathered.astype( scattered._type )

        niter = (gathered.nelements()*gathered._itemsize)/N
        ucfunc = _bytes.functionDict[self.operator + "Nbytes"]

        for i in range(len(indexArrays)):
            x = indexArrays[i]
            if not _noConversionNeeded(x, MaybeLong):
                indexArrays[i] = x.astype(MaybeLong)
        
        args = [pars, gathered, scatteredStrides, scatteredShape] + \
               indexArrays + [scattered]
        fastparms = tuple([ (x._data, x._byteoffset) for x in args])
        return ("fast", scattered, ucfunc, (niter, len(args)-1, 1, fastparms))

_put = _PutUFunc("put")

def put(array, indices, values, axis=0, clipmode=RAISE):
    """put(array, indices, values, clipmode=(CLIP|WRAP), axis=0)
    stores 'values' into 'array' at 'indices...'.

    parameters which must be specified by keyword:

    array           data to be indexed & stuffed (put to).

    indices         An integer sequence, or tuple of integer sequences
                    specifying the array coordinates to hich data
                    is to be put.  Partial indices result in entire
                    inner blocks being overwritten.

    values          A sequence of values to be written to the specified
                    indices of array.

    axis=0          selects the axis along which the put should be performed.
    
    clipmode=CLIP   if clipmode is CLIP, out of range indices are clipped
                        at [0, shape[i]).

                    if clipmode is WRAP, out of range indices are wrapped
                        around from 0 to shape[i] (<0) or from shape[i] to
                        0 (>= shape[i])
    """
    work = _nc.asarray(array)
    if axis == 0:
        work._put((indices,), values, clipmode=clipmode)
    elif isinstance(axis, (int, long)):
        if isinstance(indices, (int,long,float)):
            raise ValueError("indices must be a sequence")
        work = _gen.swapaxes(work, 0, axis)
        work._put((indices,), values, clipmode=clipmode)
        work = _gen.swapaxes(work, 0, axis)
    else:
        def_axes = range(work.rank)
        for x in axis:
            def_axes.remove(x)
        axis = list(axis) + def_axes
        work = _gen.transpose(work, axis)
        work._put(indices, values, clipmode=clipmode)
        work = _gen.transpose(work, axis)
    if work is not array:
        if isinstance(array, _gen.NDArray):
            array[:] = work

class _NonzeroUFunc:
    """nonzero(array)

    array: input,        array scanned for non-zero elements

    Nonzero scans "array" for nonzero elements, and returns a tuple
    of coordinate numarray corresponding to the nonzero elements.

    """
    def __call__(self, array):

        """The standard calling interface for UFuncs"""
        computation_mode, outarr, cfunc, ufargs = self._setup(array)
        apply(cfunc, ufargs)
        return tuple(outarr)

    def _setup(self, inarr1):
        """Setup for Nonzero
        """
        nz = _nc.asarray(not_equal(inarr1, 0))
        if nz.rank < 1:
            raise ValueError("Can't compute nonzero of a rank-0 array")
        nonzeroCount = add.reduce(_gen.ravel(nz).astype(MaybeLong))
        outarr = [ _nc.NumArray(shape=(nonzeroCount,), type=Long)
                   for i in range(nz.rank) ]
        sstrides = _nc.array(nz._strides, type=MaybeLong)
        sstrides /= nz._bytestride

        niter = nz.nelements()
        ucfunc = _sort.functionDict[repr(("Bool", "nonzeroCoords"))]

        args = [ nz, sstrides] + outarr
        fastparms = tuple([ (x._data, x._byteoffset) for x in args])
        return ("fast", outarr, ucfunc, (niter, 2, len(args)-2, fastparms))


def _sort1(inarr1):
    """1D in-place Sort"""
    conversionNeeded = not _noConversionNeeded(inarr1, inarr1._type)
    contigarr1 = _nc.array(inarr1, copy=conversionNeeded)
    cfunc = _sort.functionDict[repr((contigarr1._type.name, 'sort'))]
    cfunc(contigarr1.nelements(), 0, 1,
          ((contigarr1._data, contigarr1._byteoffset),))
    if conversionNeeded:
        inarr1._copyFrom(contigarr1)
 
def searchsorted(bins, values):
    """searchsort(bins, values) returns the array A[j] of
    greatest indices 'i' such that each values[j] <= bins[i].
    """
    bins = _nc.asarray(bins)
    values = _nc.asarray(values)
    if len(bins._shape) > 1 or len(values._shape) > 1:
        raise ValueError("Multi-dimensional searchsort not supported.")
    outarr = _nc.NumArray(shape=values.shape, type=Long)
    if not _noConversionNeeded(bins, bins._type):
        bins = bins.copy()
    if not _noConversionNeeded(values, bins._type):
        values = values.astype(bins._type)
    cfunc = _sort.functionDict[repr((bins._type.name, 'searchsorted'))]
    nbins = _pseudoArrayFromScalars([len(bins)], MaybeLong)
    args = [(x._data, x._byteoffset) for x in [nbins, bins, values, outarr]]
    cfunc(values.nelements(), 3, 1, tuple(args))
    if outarr.rank == 0:
        return outarr[()]
    else:
        return outarr

def _argsort1(inarr1, witness=None):
    """1D ArgSort"""
    niter = inarr1.nelements()
    inarr1 = _nc.array(inarr1) # make a discardable copy
    if witness is None:
        witness =_nc.arange(niter,type=Long)
    elif not _noConversionNeeded(witness, Long):
        raise ValueError("No support for converting the witness array")
    cfunc = _sort.functionDict[repr((inarr1._type.name,'asort'))]
    cfunc(niter, 0, 2,
          tuple([ (x._data, x._byteoffset) for x in [inarr1, witness]]))
    return witness

# =====================================================================
nonzero = _NonzeroUFunc()

def _fbroadcast(f, N, shape, args, params=()):
    """_fbroadcast(f, N, args, shape, params=()) calls 'f' for each of the
    'N'-dimensional inner subnumarray of 'args'.  Each subarray has
    .shape == 'shape'[-N:].  There are a total of product(shape[:-N])
    calls to 'f'.
    """
    if len(shape) == N:
        apply(f, tuple(args)+params)
    else:
        for i in range(shape[0]):
            _fbroadcast(f, N, shape[1:], [x[i] for x in args], params)
        
def _sortN(a):
    """_sortN implements N-D in-place sort in terms of 1D sort"""
    _fbroadcast(_sort1, 1, a._shape, (a,))

def _argsortN(a, w):
    """_argsortN implements N-D in-place argsort in terms of 1D argsort"""
    _fbroadcast(_argsort1, 1, a._shape, (a,w))

def _chktype(a):
    if isinstance(a._type, _nt.IntegralType):
        artype = _nt.Long
    elif isinstance(a._type, _nt.FloatingType):
        artype = _nt.Float
    elif isinstance(a._type, _nt.ComplexType):
        artype = _nt.Complex
    else:
        raise ValueError("Only integer, float, and complex matrixmultiply supported.")
    return artype

def _matrixtype(a,b):
    artype, brtype = _chktype(a), _chktype(b)
    return max(artype, brtype)

def innerproduct(a,b):
    """innerproduct(a,b) computes dot products of the last dimensions of
    MxL matrix 'a' and NxL matrix 'b' resulting in an MxN matrix.

    innerproduct coerces its inputs to the maximum type of the inputs'
    typeclass, either Long, Float, or Complex
    """
    a = _nc.asarray(a)
    b = _nc.asarray(b)

    if a.rank == 0:
        a._shape = (1,)
        a._strides = (a._itemsize,)
    if b.rank == 0:
        b._shape = (1,)
        b._strides = (b._itemsize,)
    
    if a._shape[-1] != b._shape[-1]:
        raise ValueError("incompatible array dimensions.")

    rtype = _matrixtype(a,b)

    if not _noConversionNeeded(a, rtype):
        a = a.astype(rtype)
    if not _noConversionNeeded(b, rtype):
        b = b.astype(rtype)

    adots, bdots = a._shape[:-1], b._shape[:-1]
    r = a.__class__(shape=adots+bdots, type=rtype)

    maxijk = _pseudoArrayFromScalars([_gen.product(adots),
                                    _gen.product(bdots),
                                    a._shape[-1]],
                                     MaybeLong)

    _ufunc.CheckFPErrors()

    cfunc = _sort.functionDict[repr((rtype.name, "mxmultiply"))]
    cfunc(1, 3, 1, tuple([(x._data, x._byteoffset) for x in \
                          [ a, b, maxijk, r]]))

    errorstatus = _ufunc.CheckFPErrors()
    if errorstatus:
        handleError(errorstatus, " in innerproduct")

    if len(adots+bdots):
        return r
    else:
        return r[()]

def divide_remainder(a,b):
    """returns (a/b, a%b)."""
    a, b = _nc.asarray(a), _nc.asarray(b)
    return (a/b,a%b)


Long = _nt.Long
MaybeLong = _nt.MaybeLong

# module-level variables
_numtypedict = _nt.typeDict

# Short term solution -- identity needs to be defined in _ufuncall module XXX
_identities = {"add":0, "subtract":0, "multiply":1, "divide":1,
               "bitwise_and":1, "bitwise_or":0, "bitwise_xor":0,
               "logical_and":1, "logical_or":0, "logical_xor":0,
               }
_cufuncs = _makeCUFuncDict(_ufuncall.functionDict)

_UFuncs = {}
for operator in _cufuncs.keys():
    _UFuncs[operator] = ufuncFactory(operator, _cufuncs[operator],
                            identity=_identities.get(operator))
globals().update(_UFuncs)
del operator, _UFuncs

