Bessel {base}R Documentation

Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, J(nu) and Y(nu), and Modified Bessel functions (of first and third kind), I(nu) and K(nu).

gammaCody is the (Γ) function as from the Specfun package and originally used in the Bessel code.

Usage

besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)
gammaCody(x)

Arguments

x numeric, >= 0.
nu numeric; The order (maybe fractional!) of the corresponding Bessel function.
expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow (I(nu)) or underflow (K(nu)), respectively.

Details

The underlying C code stems from Netlib (http://www.netlib.org/specfun/r[ijky]besl).

If expon.scaled = TRUE, exp(-x) I(x;nu), or exp(x) K(x;nu) are returned.

gammaCody may be somewhat faster but less precise and/or robust than R's standard gamma. It is here for experimental purpose mainly, and may be defunct very soon.

For nu < 0, formulae 9.1.2 and 9.6.2 from the reference below are applied (which is probably suboptimal), unless for besselK which is symmetric in nu.

Value

Numeric vector of the same length of x with the (scaled, if expon.scale=TRUE) values of the corresponding Bessel function.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R: Martin Maechler maechler@stat.math.ethz.ch.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover, New York; Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, such as gamma, Γ(x), and beta, B(x).

Examples

nus <- c(0:5,10,20)

x <- seq(0,4, len= 501)
plot(x,x, ylim = c(0,6), ylab="",type='n', main = "Bessel Functions  I_nu(x)")
for(nu in nus) lines(x,besselI(x,nu=nu), col = nu+2)
legend(0,6, leg=paste("nu=",nus), col = nus+2, lwd=1)

x <- seq(0,40,len=801); yl <- c(-.8,.8)
plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions  J_nu(x)")
for(nu in nus) lines(x,besselJ(x,nu=nu), col = nu+2)
legend(32,-.18, leg=paste("nu=",nus), col = nus+2, lwd=1)

## Negative nu's :
xx <- 2:7
nu <- seq(-10,9, len = 2001)
op <- par(lab = c(16,5,7))
matplot(nu, t(outer(xx,nu, besselI)), type = 'l', ylim = c(-50,200),
        main = expression(paste("Bessel ",I[nu](x)," for fixed ", x,
                                ",  as ",f(nu))),
        xlab = expression(nu))
abline(v=0, col = "light gray", lty = 3)
legend(5,200, leg = paste("x=",xx), col=seq(xx), lty=seq(xx))
par(op)

x0 <- 2^(-20:10)
plot(x0,x0^-8, log='xy', ylab="",type='n',
     main = "Bessel Functions  J_nu(x)  near 0\n log - log  scale")
for(nu in sort(c(nus,nus+.5))) lines(x0,besselJ(x0,nu=nu), col = nu+2)
legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

plot(x0,x0^-8, log='xy', ylab="",type='n',
     main = "Bessel Functions  K_nu(x)  near 0\n log - log  scale")
for(nu in sort(c(nus,nus+.5))) lines(x0,besselK(x0,nu=nu), col = nu+2)
legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

x <- x[x > 0]
plot(x,x, ylim=c(1e-18,1e11),log="y", ylab="",type='n',
     main = "Bessel Functions  K_nu(x)")
for(nu in nus) lines(x,besselK(x,nu=nu), col = nu+2)
legend(0,1e-5, leg=paste("nu=",nus), col = nus+2, lwd=1)

yl <- c(-1.6, .6)
plot(x,x, ylim = yl, ylab="",type='n', main = "Bessel Functions  Y_nu(x)")
for(nu in nus){xx <- x[x > .6*nu]; lines(xx,besselY(xx,nu=nu), col = nu+2)}
legend(25,-.5, leg=paste("nu=",nus), col = nus+2, lwd=1)

[Package Contents]