pretty {base}R Documentation

Pretty Breakpoints

Description

Compute a sequence of about n+1 equally spaced nice values which cover the range of the values in x. The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty(x, n = 5, min.n = n %/% 3,  shrink.sml = 0.75,
       high.u.bias = 1.5, u5.bias = .5 + 1.5*high.u.bias,
       eps.correct = 0)

Arguments

x numeric vector
n integer giving the desired number of intervals. Non-integer values are rounded down.
min.n nonnegative integer giving the minimal number of intervals. If min.n == 0, pretty(.) may return a single value.
shrink.sml positive numeric by a which a default scale is shrunk in the case when range(x) is “very small” (usually 0).
high.u.bias non-negative numeric, typically > 1. The interval unit is determined as {1,2,5,10} times b, a power of 10. Larger high.u.bias values favor larger units.
u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and “optimal”: u5.bias = .5 + 1.5*high.u.bias.
eps.correct integer code, one of {0,1,2}. If non-0, an “epsilon correction” is made at the boundaries such that the result boundaries will be outside range(x); in the small case, the correction is only done if eps.correct >=2.

Details

Let d <- max(x) - min(x) >= 0. If d is not (very close) to 0, we let c <- d/n, otherwise more or less c <- max(abs(range(x)))*shrink.sml / min.n. Then, the 10 base b is 10^(floor(log10(c))) such that b <= c < 10b.

Now determine the basic unit u as one of {1,2,5,10} b, depending on c/b in [1,10) and the two “bias” coefficients, h =high.u.bias and f =u5.bias.

.........

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

See Also

axTicks for the computation of pretty axis tick locations in plots, particularly on the log scale.

Examples

pretty(1:15)     # 0  2  4  6  8 10 12 14 16
pretty(1:15, h=2)# 0  5 10 15
pretty(1:15, n=4)# 0  5 10 15
pretty(1:15 * 2) # 0  5 10 15 20 25 30
pretty(1:20)      # 0  5 10 15 20
pretty(1:20, n=2) # 0 10 20
pretty(1:20, n=10)# 0  2  4 ... 20

for(k in 5:11) {
  cat("k=",k,": "); print(diff(range(pretty(100 + c(0, pi*10^-k)))))}

##-- more bizarre, when  min(x) == max(x):
pretty(pi)

add.names <- function(v) { names(v) <- paste(v); v}
str(lapply(add.names(-10:20), pretty))
str(lapply(add.names(0:20),   pretty, min = 0))
sapply(    add.names(0:20),   pretty, min = 4)

pretty(1.234e100)
pretty(1001.1001)
pretty(1001.1001, shrink = .2)
for(k in -7:3)
  cat("shrink=",formatC(2^k,wid=9),":",
      formatC(pretty(1001.1001, shrink = 2^k), wid=6),"\n")

[Package Contents]