SSasymp {stats} | R Documentation |
This selfStart
model evaluates the asymptotic regression
function and its gradient. It has an initial
attribute that
will evaluate initial estimates of the parameters Asym
, R0
,
and lrc
for a given set of data.
SSasymp(input, Asym, R0, lrc)
input |
a numeric vector of values at which to evaluate the model. |
Asym |
a numeric parameter representing the horizontal asymptote on
the right side (very large values of input ). |
R0 |
a numeric parameter representing the response when
input is zero. |
lrc |
a numeric parameter representing the natural logarithm of the rate constant. |
a numeric vector of the same length as input
. It is the value of
the expression Asym+(R0-Asym)*exp(-exp(lrc)*input)
. If all of
the arguments Asym
, R0
, and lrc
are
names of objects, the gradient matrix with respect to these names is
attached as an attribute named gradient
.
Jose Pinheiro and Douglas Bates
data( Loblolly ) Lob.329 <- Loblolly[ Loblolly$Seed == "329", ] SSasymp( Lob.329$age, 100, -8.5, -3.2 ) # response only Asym <- 100 resp0 <- -8.5 lrc <- -3.2 SSasymp( Lob.329$age, Asym, resp0, lrc ) # response and gradient getInitial(height ~ SSasymp( age, Asym, resp0, lrc), data = Lob.329) ## Initial values are in fact the converged values fm1 <- nls(height ~ SSasymp( age, Asym, resp0, lrc), data = Lob.329) summary(fm1)