Imaging Around Corners With Ultrasound Biyeun Buczyk

Hallway Ambush

Hallway Ambush

The hallway is deserted. The office...too quiet.

Ambush avoidance: Turn the wall into a 'mirror'

Femtosecono Transient Imaging

Femtosecono Transient Imaging

Femtosecono Transient Imaging

Femtosecond Transient Imaging

Ultrasound Transient Imaging

- Image underwater
- Eye safe
- Body safe
- More intensity, less power input

Photo by Ken Marschall

40 kHz transducers

3rd Bounce Object

Occluding Wall

Ultrasound

40 kHz transducers

3rd Bounce Object

Occluding Wall

Ultrasound

40 kHz transducers

3rd Bounce Object

Occluding Wall

Ultrasound Rx/Tx

40 kHz transducers

3rd Bounce Object

Occluding Wall

Ultrasound Rx/Tx

Light $\lambda \sim 7 \times 10^{-9} \text{ m}$

Ultrasound

 $\lambda \sim 8 \times 10^{-3} \text{ m}$

Light

- Most materials have a significant diffuse component.
- Intensity attenuates quickly.

Ultrasound

- Most materials have a significant specular component.
- Theoretically, intensity is mostly maintained.

How do we reconstruct the geometry?

Source & Receiver

Cannot assume Lambertian scattering for majority of materials.

Time

More diffuse scattering in nature (tree bark, rocks, etc.)

More diffuse scattering in nature (tree bark, rocks, etc.)

Femtosecond Laser

• Collimated and easily focused

Ultrasonic Transducer

• Single transducer has wide beamwidth and not focusable alone

Diameter vs. Divergence

nice, directional

less divergent

highly divergent

Cost = Angular Resolution Beam too wide.

Synchronous

Focused

Focus as far as $(L_{Array})^2/\lambda$

Steered

Focused & Steered

Phased arrays in air: Difficult to manufacture.

But wait! Higher frequency, smaller beamwidth.

No need for an array...

Atmospheric Absorption of Sound Air = high acoustic impedance mismatch

H. E. Bass, et. al.

Dependent on humidity, atmospheric pressure, and temperature.

In this room...

40 kHz I.32 dB/m 100 kHz 3.31 dB/m 1 MHz 163.83 dB/m

Water: Lower impedance mismatch. Ideal for ultrasound.

Speed of sound is faster in water.

40 kHz $\lambda \sim 3.7 \text{ cm}$ 100 kHz $\lambda \sim 1.5 \text{ cm}$ 1 MHz $\lambda \sim 1.5 \text{ mm}$

What does the future hold?

Looking around the corner in air

- Circular piezoelectric stack
- Combine ultrasound with lasers...best of both worlds.

Carry out experiments in water

Where could this go?

- From one place, know entire geometry of the scene, even hidden objects
- 3D reconstruction
- High-speed 3D capture

Questions