
1

Presentation of a CVS Repository as an SFS Read-Only File System

Jorge Rafael Nogueras, Peter A. Portante, Wei Shi
{rafaeln, portante, shi}@mit.edu

Laboratory of Computer Science
Massachusetts Institute of Technology

545 Technology Square, Cambridge, MA 02139

December 7th, 2000

Abstract

We present a read-only file-system view of a Concurrent
Versions System (CVS) repository, providing a useful
mapping of familiar file-system semantics to CVS
browsing operations. This mapping gives users a more
natural way of browsing a CVS repository. Through the
use of virtual directories, we transparently provide
several commonly used CVS features, like revisions,
history and tags, through file-system semantics. We use
the Secure File System (SFS) framework for our NFS3
file-system implementation, gaining the benefits of the
SFS security model.

1 Introduction

The Concurrent Versions System (CVS) is a
version control system: it works as a database
where different versions of source files can be
stored and later retrieved. It is widely used for
keeping repositories of code that can be accessed
by different developers simultaneously. It can be
used to store text or binary file types. However, it
is optimized for handling text files.

In this paper we describe a read-only file system
interface to CVS that allows users to access a
repository using natural file-system semantics.

1.1 Why is CVS popular?

The reason CVS is so popular is because it
facilitates project management by allowing
developers to “check out” (retrieve) code stored in
the repository, perform local changes to it, and
later commit these changes to the repository for
others to see. It reduces the necessary
coordination between developers: files can be
"checked out" by more than one user at a time,

without resorting to locking the files while
changes are being made.

Perhaps one of the reasons why CVS has
flourished is because it supports, and even
encourages, the open, evolutionary development
methods favored by free software [1], which
greatly benefits from decentralized management.
This is why many free projects, especially those
with large, distributed development teams, store
their source code in a CVS repository (and the
source code for CVS itself is no exception).

It must be noted, however, that although CVS
aids in project management, it is not a substitute
for it [2]. Schedules, merge points, branch names
and release dates are considerations that must be
coordinated in conjunction with all the
developers. Even though CVS provides tags and
branches to aid the tracking changes, the decisions
associated with when to tag and when to branch
are outside the scope of CVS and this file system.

1.2 How is it used?

The editing cycle using CVS beings when the user
"checks out" her own copy of the files from the
repository into her local directory; these checked-
out files are referred to as her "working copy."
Changes performed on the user's working copy do
not affect the public repository. After the user has
finished the changes to the working copy, she
must commit, or "check in," her changes back
into the CVS repository. In reality this is a two-
step process: before committing a file, the user
must make sure that no one has made any changes
to the public repository that would be overwritten
by the working copy. For this reason, the user
should update her working copy with the latest



2

version in the repository, possibly merging the
file's contents with that of the repository.

While CVS is usually adept when performing
merges between different versions of a file, there
are occasions in which the versions conflict in a
way that requires user intervention. When that
happens, CVS flags the file as having a conflict,
which must be manually resolved before being
finally checked into the repository.

1.3 What is CVS lacking?

Although CVS provides a way of maintaining a
repository of files (much like a local disk), one
cannot access these files in a way that would seem
natural (users access CVS repositories using
commands typed at a command prompt). There
are graphical user interfaces for CVS (see Section
4), but it is more natural for developers to interact
with their source files using command-line tools
that work using file-system semantics. It would
therefore be valuable to be able to "browse"
through the repository by going to a particular
directory, asking for its contents, changing to
another directory, maybe printing the contents of
a file, et cetera. Files should look and feel as
though they actually reside on a file system, and
file system semantics should be used to operate on
them.

1.4 What are the problems that
we solve?

Currently, developers using CVS must execute a
"checkout" command to get a copy of a given
module to browse its contents. For larger and
more complex projects, there may be many
released versions of the software. This would
require the developer to execute multiple CVS
"checkout" commands in order to retrieve the
contents from various releases, even if the user
only wants to look at one file's contents. It may
not be convenient to populate a local file system
when accessing such large projects.

Also, one of the standard methods of accessing a
CVS repository from across the network is the
password server, or "pserver." It works with a
simple password file, which contains usernames
and encrypted passwords for authorized CVS

users. The disadvantage of using this
authentication method is that passwords have to
be transmitted as clear-text over the network: the
"pserver" does not have the option to encrypt the
traffic (passwords are trivially encrypted, but this
would not thwart an active attacker, only a casual
observer). This may compromise the security of
the repository if an attacker is examining packets
on the network and thus gleans user and password
information. The attacker could then log in using
the "pserver" method and modify the files in the
repository: what is even worse, after having
succeeded in gaining repository access, the
attacker may effectively gain access to the whole
system, since CVS has features that execute
arbitrary commands on the system.

Aside from the "pserver" method, there are
options that allow for Kerberos authentication
(both versions 4 and 5). Using Kerberos, it is
possible to authenticate a user, set up a secure
connection, and transmit the data encrypted.
However, the Kerberos framework requires a
centralized server that is in charge of all
authentication requests. Furthermore, it requires
all possible users to have previously registered
with the centralized server.

1.4.1 What is our solution?

We solve these problems by using the SFS
framework to implement a Network File System 3
(NFS3) server that will provide a read-only file
system view of a CVS repository. The entire CVS
repository can be mounted as a remote file system
and accessed across the network. The user is
provided a general file-system view of the CVS
repository and she can choose which modules and
versions to view by moving around in the file
system. Typical file-system operations can be
applied to these read-only files, such as diff3, vi,
cmp, cksum, et cetera. Per-file CVS history
information is also accessible through the file
system.

Although using the SFS file-system framework
guided our implementation to some degree, we
must note that our code was designed to interact
directly with a NFS3 layer. That is, while it works
well under the SFS framework (which also relies
on NFS3), it is independent of it and can be used
with any NFS3 framework. However, as we have



3

discussed before, SFS provides secure data
transfer, which NFS3 lacks, so it makes sense to
use SFS as the underlying networked file system
framework.

1.4.2 What does SFS bring?

The Secure File System (SFS) [3] provides
transparent and secure access to a remote file
system. It prevents many of the vulnerabilities
caused by today's insecure network file system
protocols. It makes file sharing across
administrative realms trivial, lettings users access
files from anywhere and share files with anyone.

SFS decouples key management from file system
security. SFS filenames are constructed by
embedding public key information in the path
itself (they are called "self-certifying pathnames").
SFS needs no separate key management
machinery to communicate securely with file
servers, nor does it need a centralized
authentication server like Kerberos does.

If one desires to export an SFS file system to the
public, the SFS server software is run, allowing
remote users to mount the exported directory and
access it as though it were a local file system.
Security is provided by symmetric and asymmetric
encryption schemes that ensure the data
transferred cannot be deciphered by anyone
looking at network traffic.

Using the SFS framework for exporting a file
system, which provides excellent security, is a
proper base from which to develop a CVS read-
only file system.

In Section 2 we will explore the design of our
project, talking specifically about the file-system
interface that is presented to the user; in Section 3
we will give a few implementation details; in
Section 4 we will talk about related work; in
Section 5 we give ideas for future work on the
subject; and finally in Section 6 we will offer some
brief conclusions.

2 Design

We chose to implement a read-only file-system for
CVS, since browsing a CVS database can be
awkward and unnatural. We did not implement a
read-write file-system since the file system

semantic mapping to CVS commands required
more time than we had been given (See section
5.1). Several principles guided our CVS read-only
file system design:

• Transparency: the CVS file system
should behave in a manner consistent
with any read-only file system; the SFS
client software should not change, and
should not be even aware that it is
working with a CVS repository

• Ease-of-use: the user should be able to
navigate the repository using familiar file
system commands

• Minimal framework changes: the user-
mode server should not require extensive
changes to work with the CVS

• Extensibility: the implementation should
lend itself to future changes by having an
abstract design that does not restrict the
file-system view in any way

We do not address performance issues: we are
only concerned with the conceptual design and
the usability of the resulting interface. We outline
the different aspects of our project design in the
next sub-sections.

2.1 Virtual Directories

In order to meet our goals for this file system, we
use a concept called virtual directories to provide the
transparency and ease-of-use required. A virtual
directory is a directory that is created or
interpreted by the file system itself and has no real
counterpart in the repository. They exist solely to
expose some aspect of CVS functionality in the
file-system, relieving the user from having to
memorize and type commands, instead using file-
system semantics. The idea of a virtual directory is
akin to the way special files are used in the Plan 9
operating system [4]. It often uses special-purpose
files to endow the file system with a particular
function (like networking and accessing other
system resources).

The use of virtual directories is quite pervasive
throughout our framework. The obvious
drawback of virtual directories is that whatever
name is chosen might already be in use by the
repository. This is similar to the problem of a



4

working directory containing a bona-fide directory
named CVS (CVS creates a directory called CVS in
every subdirectory of a user's working copy for its
own purposes). If there is a real directory with a
name that clashes with a virtual directory, the
latter will simply be inaccessible until the real
directory is either renamed or removed.

2.2 Namespace Mapping

One of the first things we had to decide was how
to map the contents of the CVS repository to a
file system. For the most part, the internal
structure of a CVS repository is stored using
directories and files: our file system simply
exposes that existing structure. This provides for
ease-of-use since a user of an existing CVS
repository will already be familiar with the
structure.

CVS has three particular features, repository-wide
tags and branches, file-specific revisions and
revision history, which are accessible transparently
in our file system design.

2.2.1 Tag view

Tags are markers in CVS that bind files (with their
respective versions) together with a common
name. They can be thought of as symbolic names
that represent the state of a project at a specific
moment in time; they make it easier, for example,
to revert to or view the last stable revision of a
project.

We expose tags as virtual directories in the root
directory of our file system. All tags in the CVS
repository are visible as directories from the root
of the file system. This way, changing to a
particular directory from the root would show the
directory tree of the repository as it looks for that
tagged version. For instance:

$ cd /cvs/
$ ls -F

HEAD/ 1_3_00_rev/ bugfix
tag1/

(For the purpose of simplifying our discussion,
the /cvs/ directory is actually a symbolic link to
the full self-certifying SFS pathname representing
the exported CVS repository: the remaining

examples assume this link is in place.) We can see
that 1_3_00_rev, bugfix, and tag1 are names of
tags that appear throughout the repository. They
are shown as directories so the user can see the
revision they represent by simply changing
directory.

Note there is a directory called HEAD shown: this is
a virtual directory that will always appear at the
top-most directory level, whether or not other tags
are present. It represents the repository as it looks
in its latest incarnation (which may or may not
have been tagged with a specific name). The name
comes from a special tag that CVS uses in some
contexts to refer to the end of the main
development branch, or the "main trunk."

So, when the user then types:

$ cd HEAD
$ ls -F

the list of all the subdirectories of the CVS
repository will be shown:

xemacs/ kde/ class-project/

and changing directory appropriately to another
tag exposes the corresponding directory structure
as it appears in the repository for that tag.

The file system exposes all repository tags at the
top-most level of the directory structure to
provide for easy access to the tagged information.
As source code projects evolve and become more
complex, users of CVS repositories are relying on
tagged branches to help manage the state of a
project more effectively. This file-system feature
targets large CVS repositories with complex
branching. The main trunk of a CVS repository is
used mainly as a synchronization point between
branches, and often not for active development.
Although access to the main trunk is still useful
(and provided through the HEAD virtual directory),
it may actually be overshadowed by more frequent
use of branches and tags.

2.2.2 Revisions and Branches

Another useful feature to expose to the file-system
view is the files' version numbers, or revisions, as
well as branches and branch revision hierarchy.
Each time a file is committed, or checked into the
repository after being edited, its revision number



5

is increased by one. This means that there is
always a way of seeing how an earlier revision of a
file looked.

When a branch is created, there is a special type of
revision number associated with that branch and
the revisions therein will evolve separately from
the revisions on the main branch of the repository
(this may be useful, for example, to do
development in parallel, perhaps to fix a bug in a
previously released version concurrent with main-
branch development). It is noteworthy that
branches may be created off of existing branches,
thus creating an arbitrarily complex branch
hierarchy.

We incorporate these concepts into a file-system
view as follows: inside each directory in the
repository, a virtual directory called .fi (short for
"file information") will exist; its contents are the
same as the current directory, but all files appear
as directories (explained later). This virtual .fi
directory will not show up in directory listings,
however; this facilitates doing operations that
involve the whole directory structure; for instance,
tar’ing a directory and its subdirectories. If the
.fi directory were returned in directory listings,
the "tar" program would include the files inside it,
adding them to the archive when the user
intended to include only those files actually in her
working copy. Even though the .fi directory is
not shown in directory listings, users can change
directory to it and list its contents.

The .fi virtual directory is structured as follows:
all files which appear in its parent directory,
appear as directories in the virtual directory; each
of those directories in turn contain the file's
different revisions as files named by their revision
numbers, with tag names as symbolic links, as well
as directories representing the branch hierarchy.
An example will help in illustrating this scheme:

$ cd /cvs/HEAD/xemacs
$ ls -F

file1.c README

$ cd .fi
$ ls -F

file1.c/ README/

$ cd file1.c
$ ls -F

.log 1.1 1.2

1.3 1.2.2/ rev-1@
bugfix@

(The use of the .log file will be explained in the
next section). By examining these files, the user
can see how each file looked at a specific revision
number. As a concrete example, versions 1.2 and
1.3 of file file1.c can be diff’ed (compared)
like so:

$ cd /cvs/HEAD/xemacs
$ diff .fi/file1.c/1.2 .fi/file1.c/1.3

We represent tags in this scheme as symbolic
links. The rev-1 is a symbolic link pointing to the
appropriate revision number (so for example,
printing out rev-1 would be the same as printing
out the revision tagged with that name).

Note that there is also a directory called 1.2.2:
this 3-digit revision number is a branch identifier.
CVS uses revisions numbers with an odd number
of digits to represent branch revisions. They also
have a tag name that corresponds to that revision
number; in this case it is shown as the symbolic
link bugfix.

Thus, all branches in which the file exists will have
their own subdirectory:

$ cd 1.2.2
$ ls -F

1.2.2.1 1.2.2.2 1.2.2.3

would show the revision numbers for the file on
that branch. The file 1.2.2.3, for example, would
contain the latest revision of file1.c on branch
1.2.2.

2.2.3 History

Another useful feature of CVS is its ability to store
log messages with each file as changes are
committed to the repository. Whenever a user
commits her changes to the repository, she must
type a log message that should explain the nature
of the changes that were made to the files. These
log messages should aid other users in figuring out
the changes that a file has gone through and the
reason for said changes. The list of all the log
messages attached to a file through its different
revisions is called its history.



6

We believe it is useful to expose the history of
these log messages in the file-system view. That is
why in the virtual .fi directory there is a .log file
that lists the file's log messages. For instance:

$ cd /cvs/HEAD/xemacs/.fi
$ ls -F

file1.c/ README/

$ cd file1.c
$ ls -F

.log 1.1 1.2
1.3 1.2.2/ rev-1@
bugfix@

and printing out the .log file would display all the
log messages for file1.c.

2.3 File-system Semantics

Having described how CVS repository elements
are mapped to a file-system view, there are a few
more design issues to consider.

2.3.1 File status

For each directory and file in the file system, we
must generate creation, access and modification
times that make sense. For a given directory, we
use the actual file times of the directory in the
CVS repository itself. For a given revision of a file,
the creation, access and modification times are
taken from the CVS revision creation time.

2.3.2 Updates to a CVS Repository

A CVS repository is dynamic: directories and files
can be added and removed; new revisions are
continuously being generated. We provide for the
dynamic nature of CVS repositories by
automatically updating the read-only file system
with the changed information. This behavior is no
different from making updates to a local Unix file
system visible to remote clients.

2.3.3 NFS3 File Handles

One feature of a CVS repository is that a given file
is never actually removed. Rather, a record of the
removal is kept so that a particular revision of the

file in the past can always be accessed. This means
that a file handle for a given revision will always
be valid. Checking in a new version of a file will
create another revision, leaving previous revisions
intact. So if a user is viewing a tagged hierarchy,
which is not a branch tag, a new revision checked
in for a given file will not disturb the tagged
hierarchy

For a branch tag view, the file system presents the
latest revision for each file in that branch. As
updates are made to a branch, the file system will
automatically incorporate them. As a result, an
existing file handle will become stale when a new
revision is made to the file on that branch and
subsequent accesses will see the most recent
revision. Note that the main line tagged with HEAD
also behaves this way even though it is not
considered a branch.

2.4 Authentication

CVS requires the user who is performing an
operation to authenticate herself somehow: in the
case of a user executing a CVS command locally, it
verifies that she has the appropriate access to the
repository. In our system, the user that starts the
SFS server running performs the CVS operations
on behalf of the client user. Thus, any client will
be able to access those parts of the repository
available to the server user (and then, of course,
performing read-only operations).

This means that if there is a reason why the read-
only access to the CVS repository should be
restricted to only some authorized users (instead
of everyone who knows the server’s self-certifying
pathname), some user authentication must be
done at the SFS level. It is, however, outside the
scope of our work.

3 Implementation

We implemented our CVS read-only file system
using the SFS user-mode server as our framework.
This provided us with a solid NFS3
implementation and excellent security
infrastructure. We augmented the user-mode
server so that it could serve either a normal Unix
file system or our CVS read-only file system,
selected via a simple configuration option. We



7

NFS3 Protocol Interface
File-System Interface

CVSFS Presentation UnixFS Presentation
CVS Repository Unix File System

Figure 1: Layering of the SFS user-mode server

chose to modify the server in such a way that any
other file-system could be added in a similar
fashion. We made minimal framework changes to
the existing server code, allowing us to leverage its
NFS3 protocol implementation for our new file
system.

3.1 Interface Layering

We define a series of interface layers in order to
implement our file system with a minimal amount
of change to the existing framework. As shown in
Figure 1, we logically separated the user-mode
server into four layers, each with distinct
responsibilities and well-defined interfaces. The
top two layers, which we refer to as the abstract
layers, are shared by all file system
implementations within the server, while the
bottom two layers, referred to as concrete layers, are
provided by the individual file system
implementations. This construction allows us to
leverage the existing NFS3 protocol
implementation for all file systems.

3.1.1 NFS3 Protocol Interface Layer

The SFS user-mode server conveniently provides
the definition of our first layer, the NFS3 protocol
interface. We chose to keep this layer intact, not
making any semantic changes to it, so that all file
system implementations will behave consistently
and so that lower layers need not worry about
NFS3 semantics. This keeps our framework
changes to a minimum and allows us to focus on
the concrete file system layers.

3.1.2 File-System Interface Layer

The NFS3 protocol layer was designed to work
with traditional Unix file-system interfaces. We

define an abstract file-system interface layer, with
identical semantics, as the boundary between the
NFS3 protocol layer and a particular file-system’s
concrete layer. No changes where made to the
NFS3 protocol layer as a result of adding support
for our new file system, other than the minimal
changes needed to utilize this abstract layer. To
the NFS3 protocol layer, all file-systems have the
same semantics. This prevents the protocol layer
from having to know the details of a particular
file-system implementation. In turn, the concrete
layers for each file-system do not have to know
NFS3 semantics.

Additionally, this layer provides the benefit of
being able to server more than one file-system at a
time, since it can dispatch to the particular file
system’s concrete layer as needed. This allows an
instance of an SFS user-mode server to serve both
a traditional Unix file system and our CVS read-
only file system at the same time.

3.1.3 Concrete File-System Layers

The concrete file-system layers implement the
abstract file-system interface, providing the
functionality for the particular file-system they
represent. There are two distinct layers within the
concrete layers: the top one we refer to as the
presentation layer and the bottom one as the raw
layer.

Our modifications to the SFS user-mode server
provide two concrete layer implementations. The
first is the pre-existing Unix file system
implementation, which we will refer to as UnixFS;
the second is our new CVS read-only file system
implementation, referred to as CVSFS.

The UnixFS concrete layers are quite simple. The
operating system’s file-system interface is the raw
layer, with the presentation layer being a simple
translation of our abstract file-system interface



8

semantics to and from the operating system
semantics. These layers provide the behavior of
the pre-existing SFS server.

Our CVS read-only file system layers are more
intricate since they need to fabricate the actual file
system for the repository to be served. The
following sections describe the details of each
layer. We present the raw layer first, followed by
the presentation layer, to make it easier to
understand the presentation layer implementation.

3.1.3.1 CVS Raw Layer

The CVS raw file-system layer provides the
presentation layer access to a CVS repository.
There are two fundamental pieces of information
provided by this layer: the file-system hierarchy of
the repository and the list of all tags in the
repository.

To provide the file-system hierarchy of the
repository, the raw layer maps it into a pseudo file
system hierarchy we call the object hierarchy. Each
directory and file in the repository has a
corresponding object in the object hierarchy. A
given object in the hierarchy provides the
necessary methods for accessing that object’s data
in the repository.

Each file object in the hierarchy provides three
pieces of information from the repository: the list
of revisions and tags associated with the file, the
CVS history log entries and the contents of the
file for a given revision. Each directory object in
the hierarchy simply provides the list of all files
and directories contained within it.

3.1.3.2 CVS Presentation Layer

The CVS presentation layer implements the file-
system semantics outlined in Section 2. In
particular, all virtual directories, which do not
have a real counterpart in the repository, are
fabricated in this layer. The basic file-system
hierarchy is built from the object hierarchy
provided by the raw layer. The repository-wide tag
list provided by the raw layer is turned into the
virtual directories located at the root of the CVS
file-system hierarchy. Underneath each of these
virtual directories, the object hierarchy is then
replicated and displayed. It must also display the

file information virtual directories and provide
their semantics.

For instance, as described in Section 2, suppose
the user types the following:

$ cat /cvs/HEAD/xemacs/.fi/file1.c/1.1

This means that the user wants to see version 1.1
of file1.c in the directory xemacs, from the
main branch of the revision tree. The presentation
layer first validates that HEAD is a valid tag, checks
that xemacs/file1.c exists in the object
hierarchy, and then requests the contents for
revision 1.1 of file1.c.

3.2 Implementation Specifics

We chose to use the SFS user-mode server for our
file system implementation because a kernel-level
server is not a good fit for a CVS database. The
existing CVS code can be used from user-mode
only. The level of difficulty to make it work in
some form from within the kernel is beyond the
scope of our work. By using the user-mode server,
we also gain the benefit of reusing much the
existing code.

We augmented the user-mode server’s
configuration file syntax so that a particular file
system can be specified. The existing syntax we
left as the default, and added an argument to the
file system export option to request a specific
concrete file-system.

We based our file-system on CVS V1.11 [5] since
it was the latest revision available at the time. The
source code for CVS is organized as one large
executable containing all of the necessary
functionality. We chose to rework the code
somewhat to create an API for our needs. This
was relatively easy to do, and helped us to keep
the behavior of our file-system close to that of
CVS' behavior.

The requirements of a read-only file-system place
a few simple demands on the API we needed to
develop. We needed to be able to discover the
directory hierarchy and the files contained therein,
fetch the list of tags and revisions for each file, get
the contents of a file given a tag or revision, and
retrieve the log history for each file.



9

4 Related Work

Not surprisingly, CVS' ubiquity has prompted
many developers to create enhancements and add-
ons to CVS. As far as we know, however, ours is
the first attempt to expose CVS as a file system,
even if it is only a read-only view of a repository.

We have encountered, however, several other
projects that aim to improve a CVS repository's
accessibility. For instance, there is CVSWeb [6],
originally created as a Perl script by Bill Fenner
and currently maintained by Henner Zeller: as its
name suggests, it makes a CVS repository available
through the web using any browser. In many ways
it shares a common goal with our read-only file
system, since it provides a read-only way of
examining a repository. While it is quite effective,
allowing common operations such as log browsing
and viewing differences between versions, by
definition, a user is limited to those operations
presented in the web interface. A file system
interface, on the other hand, allows any arbitrary
operation to be performed on the files (like
printing, grep’ing, copying, line counting, et
cetera).

The SCVS, or "Secure CVS", project [7] attempts
to address some of the shortcomings in CVS'
security model. It basically starts an SSH (Secure
shell) tunnel and routes all the CVS traffic through
it. In general, when giving users remote access to a
CVS repository using the "pserver" method,
passwords are transmitted practically in the clear
over the network. While SCVS addresses this
security weakness in CVS, it does nothing to
ameliorate the interface to the system.

There are many other projects that aim to provide
a graphical user interface (GUI) to CVS: gCVS [8],
jCVS [9], tkCVS [10] and WinCVS [11], among
several others. While certainly improving CVS'
interface by making it easier and more intuitive
than a command-line interface, these
enhancements do not bestow CVS with the
flexibility of file-system semantics.

A commercial version control system, Rational’s
ClearCase [12], also provides a file system view of
a source code database. The user can create a view
and edit the configuration specification to specify
which branch and label (similar to tags in CVS) to
view. The user does not have to check out the
entire module to view the source tree: however,

ClearCase does not provide a file system view of
the entire source code database as we do. If a user
wants to view the source tree of a different branch
or label, she would have to create different views
or switch the specification of the current view
[13]. Although it does have a GUI tool to view the
relationship of branches and labels, it does not
provide a file system view of the history of the
code base. On the other hand, our .fi directory
presents a natural file system view of the evolution
of revisions and branches.

5 Future Work

There are several enhancements to our project
that would improve its overall usability.

5.1 Read-write Repository

A natural progression would be to move from a
read-only file system to a read-write file system,
allowing the user to commit changes back to the
repository, not only view its contents. We gave a
lot of thought to this possibility, though
compelling, we decided it was fraught with
complications that could not be successfully dealt
with in the timeframe we were given. Several
issues made it particularly hard:

• How and when should edited versions of
a file be checked into the repository?
Clearly, files cannot be automatically
checked in every time they are saved or
every time an editing session ends. By
definition, the check-in process is totally
asynchronous and has to be left
completely at the discretion of the user.
Thus, the file system would have to
provide a way for the user to check in a
file, perhaps by having a virtual .COMMIT
directory where files are copied when the
user wants to check them in.

• How are files updated? There has to be a
method (which again must be
asynchronous and at the user's discretion)
by which changes made to the repository
are merged into the local working copy.
Since this may cause conflicts that must
be manually resolved, it is clear that the
system cannot update files arbitrarily: the



10

user must decide when an update is
appropriate. Like with committing a file,
one can envision a virtual .UPDATE

directory, and to specify that a file should
be updated it is simply copied into that
directory.

These considerations would have made the design
more complex: first of all, there would have been
a need for an intelligent, CVS-aware agent in the
client. In our current implementation, the client is
blissfully unaware of any CVS semantics and as
such, needs not be changed in any way: it is simply
given file and directory information by the server
and it displays it to the user. Thus, the client
cannot, and should not be able to, tell the
difference between real directories contained in
the repository and virtual ones. This fact greatly
simplified the design and implementation of our
system.

5.2 Project View

In our discussions we realized that there are
several ways of exposing tags through a file-
system interface, each with its own strengths and
weaknesses. While we chose the "tag view" for
our implementation, it is worthwhile to discuss an
alternative view we had considered and how it
might fit in a future version.

The project view of a repository is characterized by
root directory containing the directories of the
repository and not all of the repository tags. For
instance, we would observe the following:

$ cd /cvs/
$ ls -F

.TAGS/ xemacs/ kde/
class-project/

and changing to each directory reveals the
structure contained therein (it implicitly shows the
latest revision of each file in the repository).
However, since we also wish to expose tags in this
file-system view, we would create the virtual
directory called .TAGS containing the names of all
the tags in the repository as directories, much like
in the tag view. In other words, changing directory
to .TAGS yields:

$ cd .TAGS
$ ls -F

1-3-00-rev/ bugfix/ tag1/

and changing to any one of those directories
reveals the rest of the repository's hierarchy at the
revision number corresponding to the tag.

We feel that a possible addition to our project
would be the incorporation of the "project view"
coexisting with the "tag view" that was actually
implemented. One can visualize having the
following two virtual directories at the top-most
level of the repository structure:

$ cd /cvs/
$ ls -F

tag-view/ project-view/

where the contents of each directory would follow
the format of each type of view. This way the user
could choose whichever view she is more
comfortable with, or which one makes more sense
with the way that the repository is being viewed.
This also allows for other views to be
incorporated in the same file structure.

5.3 Extra CVS Features

CVS contains more features than we have exposed
in our project. As an example, CVS has a feature
called "watches," which aid in the synchronization
between developers. A user may register an
interest in a file using watches, and when another
developer declares she is editing a file, the first
user is given an indication of this fact.

Commands such as these may be implemented by
having virtual directories with appropriate names
(which should not be displayed in directory
listings). To apply a command to a particular file,
it should be copied to the directory; for instance:

$ cd /cvs/HEAD/xemacs
$ ls -F

file1.c README

$ cp file1.c .WATCH/

to access this command. A possible drawback of
using different virtual directories to expose these
features is that it increases the likelihood of them
clashing with bona-fide directories in the
repository. However, this chance may be quite



11

small and the advantage given to the system would
outweigh this minor annoyance.

6 Conclusions

We have presented a read-only file-system view of
a CVS repository, providing a useful mapping of
familiar file-system semantics to CVS browsing
operations. This mapping gives users a more
natural way of browsing a CVS repository.
Through the use of virtual directories, we
transparently provided several commonly used
CVS features, like revisions, history and tags,
through file-system semantics. We used the SFS
framework for our NFS3 file-system
implementation, gaining the benefits of the SFS
security model. Also, our abstract layer design
enables both CVS repositories and file-systems
exports by the same executable image.

References

[1] K. Fogel, Open Source Development with CVS.
The Coriolis Group, LLC: Scottsdale,
Arizona, USA (1999).

[2] P. Cederqvist et al, "Version Management
with CVS,"
http://www.cvshome.org/docs/cvspdf/cvs1_11.p
df (2000)

[3] David Mazières, Michael Kaminsky, M. Frans
Kaashoek, and Emmett Witchel. "Separating
key management from file system security,"
Proc. SOSP, pages 124-139, December 1999.

[4] Rob Pike, Dave Presotto, Sear Dorward et al.
"Plan 9 from Bell Labs," AT&T Bell
Laboratories, Murray Hill, NJ. (1995).

[5] CVS main site, http://www.cvshome.org

[6] CVSWeb, http://stud.fh-
heilbronn.de/~zeller/cgi/cvsweb.cgi/ (2000).

[7] SCVS, http://cuba.xs4all.nl/~tim/scvs/ (2000).

[8] gCVS, http://www.arachne.org/software/gcvs/
(2000).

[9] jCVS, http://www.jcvs.org/ (2000).

[10] tkCVS,
http://www.neosoft.com/tcl/ftparchive/sorted/app
s/tkcvs-6.0/ (2000).

[11] WinCVS, http://www.wincvs.org/ (2000).

[12] ClearCase,
http://www.rational.com/products/clearcase/inde
x.jsp (2000).

[13] ClearCase Reference Manual, UNIX Edition
Release 2.0, ATRIA Inc.


