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Abstract 
Designing architectural frameworks without the aid of formal 
modeling is error prone. But, unless supported by analysis, for-
mal modeling is prone to its own class of errors, in which formal 
statements fail to match the designer’s intent. A fully automatic 
analysis tool can rapidly expose such errors, and can make the 
process of constructing and refining a formal model more effec-
tive. 

This paper describes a case study in which we recast a model 
of Microsoft COM’s query interface and aggregation mechanism 
into Alloy, a lightweight notation for describing structures. We 
used Alloy’s analyzer to simulate the specification, to check 
properties and to evaluate changes. This allowed us to manipu-
late our model more quickly and with far greater confidence than 
would otherwise have been possible, resulting in a much simpler 
model and a better understanding of its key properties. 
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1 Introduction 
Recent research has shown that some widely used architectural 
standards have serious design flaws. Garlan et al, for example, 
found a variety of problems in the DoD’s High Level Architec-
ture (HLA) for distributed, component-based simulation [2]. In 
this paper, we follow up on study [13] in which Sullivan et al cap-
tured, in a formal model, a defect of Microsoft’s Component 
Object Model (COM) [3]. 

Because such standards are the infrastructure for much indus-
trial development, their design and validation is a major concern. 
Moreover, articulating their key properties is vital for their effec-
tive and safe use. 

Formal modeling and analysis are often advocated as aids to 
design. For control-oriented properties, there are tools that allow 
formal models to be simulated and checked automatically. For 
structural properties, however, tools have not generally been 
available, and the construction of formal models has been more 
manual, and thus less appealing to practitioners.  

The study described here is unusual in two respects. First, it 
involves automatic analysis of structural properties, expressed in 
a logical language. Most studies of automated formal analysis 
have either involved control-oriented properties, or have re-
stricted the language to an operational subset. This study sup-
ports our contention that executability and abstraction (ie, im-
plicit specification) are not incompatible, as often thought. Sec-
ond, our use of the analysis focuses on the refinement of the for-
mal model. Most previous studies have emphasized the use of 
analysis for ex post facto checking of properties; ours shows how 
analysis contributed to the form of the model itself. 

In this paper, we explain how we used the Alloy Analyzer 
(AA) [9] in the development of a model of Microsoft COM’s 
query interface and aggregation mechanism. We started by trans-
lating an existing model from the Z specification language to 
Alloy [8], in order to exploit AA’s analysis. Although there are 
many tools available for Z, none offer the kind of automatic, deep 
semantic analysis that AA provides. Using AA, we were able to 
simplify the model dramatically, and in so doing to sharpen our 
understanding of the key properties the model expresses. 

It is hard to convey in our paper how much fun this experi-
ence was, and how humbling, as we discovered again and again 
how subtle even a small model can be, and how many errors we 
made as we refined it. We have come to think that one should 
have very little confidence in a model that has not been subjected 
to some form of deep semantic analysis. Although theorem prov-
ing might also have exposed our errors, it would have been far 
more labor intensive. AA is fully automatic and requires no 
manual assistance (beyond the selection of a scope, explained 
below). In our sessions using the tool to refine our model, almost 
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all the time was spent formulating queries for analysis and react-
ing to them. 

By increasing our confidence in changes we made to the 
model, the tool allowed us to explore alternative formulations far 
more rapidly, and to spend more time understanding the model 
and refining it, and less time checking that it said what we in-
tended. The tool helps to mitigate one of the major risks of for-
malization: that the model does not reflect the designer’s intent. 
It makes modeling more like programming, and thus less daunt-
ing to non-mathematicians. Like any tool, it can of course be 
abused, but, unlike a debugger, it seems to encourage a more 
systematic approach to modelling, by giving the designer an in-
centive to formulate properties that are expected to hold, and by 
reducing the cost of reworking. 

This paper is a case study intended to illustrate the kind of 
analysis that is possible in the context of a realistic problem. It 
does not present general guidelines, let alone a comprehensive 
method. Nevertheless, the approach we took is likely to be appli-
cable to many problems of this sort. Alloy, our modeling lan-
guage, is well suited to describing architectural structure, and 
seems to be compatible with several recently developed architec-
tural modeling languages [5], such as AML [18], Darwin [12], 
and Armani [14], whose tools do not currently provide the kind 
of deep semantic analysis offered by AA. 

The rest of this paper is organized as follows. Section 2 pre-
sents an overview of COM focusing on its design rationale. Sec-
tion 3 presents a brief informal specification of the central ele-
ments of COM that we then discuss in formal terms for the rest of 
the paper. Section 4 presents a new formal model of COM, in 
Alloy, which we derived by simplifying an initial Alloy model 
(given in the appendix) obtained by direct translation of our Z 
model. 

Sections 5 and 6 describe the analysis. Section 5 presents the 
results of checking a variety of properties, and illustrates the use 
of the Alloy Analyzer to generate sample configurations. Section 
6 explains how we used the analyzer to simplify and refine the 
model. Section 7 addresses the runtime performance of the Alloy 
Analyzer as we applied it in these tasks. Section 8 discusses re-
lated work. Section 9 summarizes and concludes. 

2 Overview of COM 
The COM specification [13] defines an infrastructure for the 
creation, operation, and management of components. COM is 
intended to overcome shortcomings in earlier models for com-
ponent-based software. In particular, language-based models, 
such as C++, did not foster rich component markets. In retro-
spect, such models had numerous problems. 

First, binary level procedure call interoperability was not 
specified by C++, so incompatibilities can arise between object 
modules generated by different compilers. COM resolves this 
problem by defining a standard binary format supporting proce-
dure call among components, irrespective of source language or 
compiler technology [3].  

Second is the problem of sharing of components. When com-
ponents are distributed as object libraries, changing the version 
of an installed component can break other applications that de-
pend on it, since two versions of the same component can export 
interfaces that differ in syntax and semantics.  

COM resolves this problem by introducing a language-
independent, binary version of dynamic type coercion, called 
interface negotiation. Every interface of a component is required 
to provide a method for obtaining interfaces of other types on the 
same component. Clients are required always to ‘query’ a com-
ponent for interfaces of desired types. If a component does not 
support the requested type, the client has an opportunity to re-
spond gracefully, rather than failing catastrophically [3].  

COM also stipulates that the syntax and the semantics of all 
interface types are fixed: an interface type always means the same 
thing. Changing the syntax or semantics of an interface requires 
the introduction of a new type. For this reason, it is common in 
COM systems to find multiple versions of an interface, such as 
IPersist and IPersist2. 

A third issue is runtime performance. When components are 
hierarchically nested, an outer object may sometimes need to 
export an interface that is already implemented by an inner 
component. Traditional object-oriented design would require 
that the outer component export an interface that simply 
forwards calls to the corresponding inner interface. This incurs 
an unnecessary forwarding cost. 

COM therefore introduced an aggregation mechanism in 
which an outer object can pass off an interface of inner object as 
its own. When a client of the outer component queries one of the 
component interfaces for an interface that is implemented by an 
inner component, the outer component queries the inner for the 
requested interface and passes the result to the client. Calls made 
through such an interface are implemented directly by the inner 
component. In high performance applications with deep nesting, 
the savings can be significant [13]. 

It is clear even from the published COM specification [13] 
that interface negotiation and aggregation interact in complex 
ways. When an interface that is exposed by an outer component 
but implemented by an inner component is queried, the query 
must be treated as pertaining to the outer component. COM thus 
requires aggregated components to delegate queries made to 
inner interfaces to interfaces implemented by the outer compo-
nent. 

Another problem arises. If an inner component delegates all 
queries, then not even the outer can obtain inner interfaces. 
COM thus requires that every inner component provide a special 
non-delegating interface. When an outer component is queried 
for an interface that is implemented by an inner component, the 
outer queries this non-delegating interface.  

The basic problem that we found our earlier analysis is that 
inner components cannot generally be first-class COM objects. 
All of their interfaces but for non-delegating interfaces must 
delegate to the outer component. Consequently, inner interfaces 
do not follow the standard rules of COM, and one cannot build a 



  

system in which multiple aggregated components treat each 
other as ordinary COM components.  

3 Essential Features of COM 
In this section we outline with more precision the core object 
model of COM. Our description corresponds closely to the for-
mal model presented later. 

There are two kinds of COM components. First there are those 
that follow all of the normal rules of interface negotiation, which 
we call legal, or outer, components. Then there are those that are 
aggregated by other components. We call them inner compo-
nents. Since inner components do not obey standard COM rules, 
they are not legal in our technical sense, although our specifica-
tion admits them, in order to model realistic systems. 

An outer component has one or more interfaces. As we will 
see, an inner component has two or more interfaces. An interface 
is said to satisfy one or more interface specifications, each of 
which has a corresponding unique interface identifier, or IID. In 
this paper, we abstract from most details of interfaces, them-
selves, and so we model interfaces as simply having IIDs. A com-
ponent thus also has a set of IIDs, namely those of all its inter-
faces. 

Every interface must satisfy a special interface specification 
called Unknown that defines an operation called QueryInterface, 
or QI. QI takes an IID as a parameter. A call to QI must succeed 
or fail. When a call succeeds it must return an interface; other-
wise it must not return an interface. Calling QI through an inter-
face of an outer component with a given IID succeeds if and only 
if the component exports an interface satisfying that IID; other-
wise the call fails. If such a call succeeds, the returned interface 
must be an interface of the outer component and the interface 
must satisfy the given IID. We will discuss the rules for QI for 
interfaces of inner components in a moment. 

A component, inner or outer, has a fixed identity, defined to 
be the special interface returned when QI is called through any 
interface of the component with the IID Unknown. Two compo-
nents are COM-equal if and only if they have the same identity.  

A component can aggregate any number of other compo-
nents, to arbitrary depth. By definition, a component aggregates 
another if and only if there is some interface of the second com-
ponent that is also an interface of the first component. No com-
ponent can aggregate itself, either directly or indirectly. A COM 
component that no other component aggregates is an outer com-
ponent. A COM component that is aggregated by some other 
component is an inner component.  

An inner component must have one distinguished interface, 
first. This is the non-delegating interface of the inner component. 
Querying the first interface of an inner object is required to re-
turn a corresponding interface on the inner component, if there 
is one. But  querying an interface of the aggregated component 
other than first for any IID must produce the same result as if QI 
had been called with that IID on some interface of the directly or 
indirectly enclosing outer object.  It is in this sense that an inner 
component does not follow the standard rules of COM. 

4 A New Model 
Our new formalization of the core object model of COM (Figure 
1) is written in Alloy [8], a first-order notation that attempts to 
combine the best features of Z [17] and UML [15]. From UML 
and its predecessors, it takes various declaration shorthands, 
navigations, and a focus on set-valued rather than relation-
valued expressions; from Z, it takes schema structuring and a 
simple set-theoretic semantics. A detailed rationale for Alloy’s 
design is given elsewhere [8]. The diagram on the right hand side 
of Figure 1 corresponds exactly to the state declarations of the 
domain and state paragraphs of the textual specification. 

4.1 Alloy Basic Concepts (ABC) 

Domains. The domain paragraph introduces basic sets that parti-
tion the universe of atoms. Alloy is strongly but implicitly typed; 
there is a basic type associated with each domain (which in Z 
would be declared explicitly as a ‘given type’). Component, Inter-
face and IID model respectively the components, interfaces and 
interface identifiers in a COM system. Unlike a given type, a do-
main is a set of atoms that exist in a particular state and not a 
platonic set of possible atoms. So Component represents the set of 
components in a particular configuration, not the set of all imag-
inable components. 

Multiplicities. The symbols + (one or more), ! (exactly one) 
and ? (zero or one) are used in declarations to constrain sets and 
relations. The declaration 

 r: S m -> T n 

where m and n are multiplicity symbols, makes r a relation from S 
to T that maps each S to n atoms of T, and maps m atoms of S to 
each T. So first, for example, maps each component to exactly one 
interface, and is thus a total function; and interfaces maps at least 
one component to each interface. Similarly, the declaration 

 S : T m 

makes S a set of m atoms drawn from the set T. Omission of a 
multiplicity symbol implies no constraint, so LegalInterface is a set 
of interfaces that may have any number of elements. The declara-
tion 

 qi [Interface] : IID -> Interface?  

makes qi an ‘indexed relation’; for each atom i in the set Interface, 
qi[i] is a relation from IID to Interface (which, as the multiplicities 
indicate, is a partial function). 

Expressions. All expressions in Alloy denote sets of atoms. The 
conventional set operators are written in ASCII form: + (union), 
& (intersection), - (difference). The navigation expression e.r 
denotes the image of the set e under the relation r: that is, the set 
of atoms obtained by ‘navigating’ along r from atoms in e. In e.+r, 
the image under the transitive closure of r is taken instead: that is, 
navigating one or more steps of r. Scalars are treated as singleton 
sets. This allows us to write navigations more uniformly, without 
converting between sets and scalars or worrying about the differ-
ence between functions and more general relations. So the ex-
pression 



  

inner.interfaces – inner.first 

for example, denotes the set of interfaces of inner, with inner’s first 
interface taken away. Finally, the keyword in denotes subset, and 
because scalars are sets, doubles as set membership. 

Quantifiers. The existential and universal quantifiers are writ-
ten some and all. Less conventionally, no x | F and sole x | F mean 
that there is no x and at most one x that satisfy F respectively. 
Quantifiers are used in place of set constants, so 

some inner.interfaces & outer.interfaces 

for example, says that there is some interface in the intersec-
tion of inner.interfaces and outer.interfaces. Bounds of quantified 
variables may optionally be omitted; in  

all c | c.ciids = c.interfaces.iids 

the variable c is inferred to belong to domain Component, and 
could have been written equivalently as 

all c: Component | c.ciids = c.interfaces.iids 

Here, we have omitted most bounds for brevity’s sake, but 
used variable names consistently to avoid confusion: c and d 
for components; i and j for interfaces; and x for interface 
identifiers. 

Paragraphs. An Alloy model is divided into paragraphs 
much like Z schemas, but Alloy distinguishes different kinds 
of constraints. An invariant (introduced by the keyword inv) 
models a constraint in the world being modelled; a definition 
(def) defines one variable in terms of others, and can in prin-
ciple always be eliminated along with the variable being de-
fined. An assertion (assert) is a putative theorem to be 
checked. A condition (cond) is a constraint whose consistency 
is to be checked, but unlike an invariant is not required al-
ways to hold. 

4.2 An Alloy Model of COM 

The essential variables that model a COM configuration are: 
· the domains Component, Interface and IID, which model the 

sets of COM component objects, interfaces and interface 
identifiers respectively; 

· the relation interfaces that maps a component to the set of 
interfaces it provides; 

· the functions first and identity that map each component to 
two special interfaces: the interface that is first obtained when 
the component is created, and the interface that determines 
the component’s identity; 

· the relation iids that maps an interface to the set of interface 
identifiers that describe it. 

· the indexed relation qi, which models the query interface 
method, and for each interface i, gives a partial function qi[i] 
from identifiers to interfaces. 

model COM { 
  domain {Component, Interface,  IID} 
  state { 
     interfaces : Component+ -> Interface 
     ciids : Component -> IID 
     first, identity : Component -> Interface! 
     eq : Component -> Component 
     iids, iids_known : Interface -> IID+ 
     qi [Interface] : IID -> Interface? 
     reaches: Interface -> Interface 
     LegalInterface : Interface 
     LegalComponent : Component 
     aggregates : Component -> Component 
     } 
 
  inv ComponentProps { 
    all c | (c.first + c.identity) in c.interfaces 
    all c | all i : c.interfaces | all x: IID | x.qi[i] in c.interfaces 
    } 
 
  def ciids {all c | c.ciids = c.interfaces.iids} 
  def eq {all c | c.eq = {d | d.identity = c.identity}} 
  def iids_known {all i | i.iids_known = {x | some x.qi[i]}} 
  def reaches {all i | i.reaches = IID.qi[i]} 
 
  inv Identity {some Unknown | 
        all c | all i: c.interfaces | Unknown.qi[i] = c.identity} 
  inv InterfaceLegality {all i: LegalInterface, x: i.iids_known | x in x.qi[i].iids} 
  inv ComponentLegality {LegalComponent.interfaces in LegalInterface} 
  inv Reflexivity {all i: LegalInterface | i.iids in i.iids_known} 
  inv Symmetry {all i, j : LegalInterface | j in i.reaches -> i.iids in j.iids_known}
  inv Transitivity {all i, j : LegalInterface | 
          j in i.reaches -> j.iids_known in i.iids_known} 
 
  inv Aggregation { 
    no c | c in c.+aggregates 
    all outer | all inner : outer.aggregates | 
      (some inner.interfaces & outer.interfaces) 
      && some o: outer.interfaces | 
              all i: inner.interfaces - inner.first | all x | x.qi[i] = x.qi[o] 
    } 
} 

Figure 1: The new model of COM 
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It is clear from the published descriptions of COM that aggre-
gated components must obey additional rules. What is less clear, 
and is the key lesson of our previous study [16], is that if hiding is 
to be supported – as intended by COM’s designers and reflected 
in common practice – the standard rules must be weakened for 
aggregated components. In our model, we therefore represent 
those components that obey the standard rules as a subset Legal-
Component, to which inner components will not generally belong, 
and we impose additional rules on inner components in a sepa-
rate invariant. 

The invariant ComponentProps gives the basic properties of all 
components: that the special first and identity interfaces must be 
interfaces of the component, and that, for every interface i of a 
component c, the result of a query on any identifier x must (if it 
exists) be an interface of c. 

A sequence of definitions is then given for the relations we 
have not mentioned so far. The first introduces a shorthand, ciids, 
that maps a component to the set of identifiers of all its inter-
faces. The second specifies the standard COM notion of equality 
for components: the relation eq maps a component to those equal 
to it, defined as the components with which it shares an identity 
interface. The third makes explicit a notion mentioned infor-
mally in our previous model: reaches maps an interface to the 
interfaces that might be reached from it by a single query. The 
fourth defines iids_known to map an interface to the identifiers 
that are known to it, in the sense that queries on those identifiers 
are successful. 

The invariant Identity states a crucial property of the identity 
relation: that a query with the identifier Unknown on any interface 
of a component yields the component’s identity interface. The 
invariant actually says not only that such an identifier exists, but 
that it is the same one for all components. 

The invariant Legality gives the condition under which an in-
terface is legal: that a query for any known identifier x must yield 
an interface whose identifiers include x. 

The invariant LegalComponents says that a legal component has 
only legal interfaces. 

The following three invariants capture widely cited rules of 
COM. By quantifying over only legal interfaces, we allow inter-
faces to exist that do not obey them. 

· Reflexivity says that all the identifiers of an interface are known 
to it: that is, if an interface has an identifier itself, then a query 
on that interface for that identifier must succeed. 

· Symmetry says that if an interface j can be reached from an in-
terface i by a query, then the identifiers of i must in turn be 
known to j. 

· Transitivity says that says that if an interface j can be reached 
from an interface i by a query, then the identifiers known to j 
must also be known to i: in other words, any IID that takes 
you somewhere from j also takes you somewhere from i. 
Finally, the invariant Aggregation says what it means to be an 

aggregate, and imposes additional rules on aggregated compo-
nents. First, no component can be an aggregate of itself, directly 
or indirectly. Second, if outer aggregates inner, then they share an 

interface, and outer has an interface that gives the same query 
results, for any identifier, as every interface of inner bar its special 
first interface. Concretely, this holds because the inner compo-
nent delegates all of its queries to the outer component, except 
for those on its first interface. 

5 Analyzing the Model 
Given our formal model, we can pose questions about it to the 
Alloy Analyzer. The model can act as an oracle, answering ques-
tions about COM (only correctly, of course, if the model is faith-
ful).  

We discuss two kinds of question. First, we check the theo-
rems given in our earlier study. These expose some quite subtle 
consequences of the design of COM. Second, we pose a variety of 
questions that would more likely be asked by someone unfamil-
iar with COM. 

The Alloy Analyzer is not a decision procedure. Every analysis 
is performed within a scope that limits the number of atoms in 
each domain. All the counterexamples that we found during our 
investigation required no more than a scope of 3 – that is, 3 com-
ponents, 3 interfaces and 3 identifiers – and most in fact required 
only a scope of 2. In theory, we are not entitled to draw any con-
clusion when the analyzer fails to find a counterexample to a 
theorem. In practice, however, as the scope increases, the exis-
tence of a counterexample becomes increasingly unlikely. So we 
usually interpret the analyzer’s responses to the question ‘does 
this theorem hold?’ as no and probably, rather than no and 
maybe. 

5.1 Some Valid Theorems 

The theorems of Figure 2 are taken from our earlier paper [16]. 
The Alloy Analyzer finds no counterexamples to these in a scope 
of 4. Ignoring all the constraints, this corresponds to a space of 
about 1060 configurations. It is hard to estimate how many legal 
configurations there are in that scope. 

· Theorem 1 says that for any legal component, the identifiers 
known to any interface of that component are all the identifi-
ers of the component. In other words, every interface identi-
fier of a component is accessible from every interface of that 
component. 

· Theorem 2 says that if a component outer aggregates a legal 
component inner, then inner’s identifiers belong also to outer. 
In other words, hiding legal components is generally not per-
mitted: the standard rules must therefore be weakened for in-
ner components. 

· Theorem 3 says that if outer aggregates inner, the two compo-
nents are equal and cannot be distinguished. It could have 
been written more succinctly as 

assert Theorem 3 {all i | i.aggregates in i.eq} 

· Theorem 4a extends Theorem 2 to any case in which two com-
ponents share an interface and one is legal. Theorem 4b extends 
Theorem 3 similarly, but does not require legality. These two 
theorems demonstrate that the underlying problem with 



  

COM is deeper than it might seem, and that a different notion 
of aggregation may not help. 

5.2 An Invalid Theorem 

In our earlier work [16], we suggested that the traditional COM 
rules, captured in our model by the Reflexivity, Symmetry and 
Transitivity invariants, along with other axioms of COM, could 
be replaced by a single rule: 

inv NewRule { 
    all c: LegalComponent | all i : c.interfaces | c.iids in i.iids_known 
    } 

This rule states that every interface of a legal component knows 
all the identifiers the component exports. 

This rule follows trivially from Theorem 1, so we know that it 
follows from the other rules. We wondered whether it might in 
fact be equivalent to them. To check this, we turned all the rules – 
the three old ones and this new one – into conditions, and made 
assertions of the form 

assert NewRuleImpliesReflexivity { 
    NewRule -> Reflexivity  
    } 

To our surprise, this turned out to be false: the new rule is 
weaker than the old rules. The Alloy Analyzer generated the 
counterexample shown in Figure 3. The difference hinges on the 

tricky relationship between legal components and legal inter-
faces. The counterexample involves a component that is not le-
gal, so our new rule does not apply. The old rules, however, apply 
to all legal interfaces, whether or not they belong to legal compo-
nents. 

In fact, one might have suspected a more trivial problem. The 
invariant LegalComponents does not define components to be legal 
if their interfaces are legal; it only says that a legal component 
must have legal interfaces. Setting LegalComponent to the empty 
set cannot rule out a configuration, since it makes the invariant 
vacuously true.  

We might therefore change our model to say that a compo-
nent all of whose interfaces are legal must be deemed legal itself. 
Our counterexample, however, shows that this will not solve this 

// every iid a component exports is known to all  its interfaces 
 assert Theorem1 { 
     all c: LegalComponent, i: c.interfaces | c.ciids = i.iids_known 
     } 
 
//  can’t hide iids of legal inner components 
assert Theorem2 { 
    all outer | all inner : outer.aggregates | 
        inner in LegalComponent -> inner.ciids in outer.ciids 
    } 
 
  // aggregation merges identities 
assert Theorem3 { 
    all outer | all inner : outer.aggregates | inner in outer.eq 
    } 
 
// iids of a shared interface cannot be hidden 
 assert Theorem4a { 
      all c1: Component, c2: LegalComponent |  
         some (c1.interfaces & c2.interfaces) -> c2.ciids in c1.ciids 
    } 
 
// any sharing merges identities 
 assert Theorem4b { 
      all c1, c2 | some (c1.interfaces & c2.interfaces) ->c1 in c2.eq 
      } 

Figure 2: Theorems from [12] 

Analyzing NewRuleImpliesReflexivity ... 
Scopes: Interface(2), IID(2), Component(2) 
Conversion time: 0 seconds 
Solver time: 0 seconds 
Counterexample found: 
Domains: 
  Component = {C1} 
  IID = {II0,II1} 
  Interface = {In0,In1} 
Sets: 
  LegalComponent = {} 
  LegalInterface = {In1} 
Relations: 
  aggregates = {} 
  ciids = {C1 -> {II0,II1}} 
  eq = {C1 -> {C1}} 
  first = {C1 -> In1} 
  identity = {C1 -> In1} 
  iids = {In0 -> {II0,II1}, In1 -> {II0,II1}} 
  iids_known = {In0 -> {II0,II1}, In1 -> {II1}} 
  interfaces = {C1 -> {In0,In1}} 
  qi = { 
    In0: {II0 -> In0, II1 -> In1} 
    In1: {II1 -> In1}} 
  reaches = {In0 -> {In0,In1}, In1 -> {In1}} 
Skolem constants: 
  Unknown = II1 
  i = In1 

Figure 3: Counterexample to assertion of Section 5.2 
The Alloy Analyzer’s textual output lists each domain, and its 
value as a set of atoms (whose names are generated from the 
domain names), and then the set and relation variables with 

their values. The Skolem constants give  witnesses for quantified 
variables: for example, i is the variable in the Reflexivity invari-
ant and its value shows which interface violates the Reflexivity 
rule. We show some of the instance graphically, with compo-

nents as boxes, interfaces as circles, and the results of queries as 
arrows. Shaded elements are not legal. 
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particular problem, since one of the interfaces of the component 
is legal and the other is not. 

5.3 Some Simpler Questions 

The analyses we have discussed so far are the kind that we typi-
cally perform after a good deal of work on a model. In the early 
stages of development, or when facing the model for the first 
time, it is very helpful to pose a variety of simpler queries. 

Some such queries are shown in Figure 4. They fall into two 
categories. Assertions, as we have seen already, are putative theo-
rems that are analyzed for counterexamples: that is, the analyzer 
searches for an instance of the formula’s negation. All three theo-
rems given are invalid, the last for a subtle reason discussed be-
low. 

Conditions are analyzed for consistency: the analyzer searches 
for an instance of the formula itself. So executing the condition 
DoubleAggregation for example asks the analyzer to find a configu-
ration in which there are at least two levels of aggregation. As 
often happens, the instance produced (Figure 5) is a slight sur-
prise: it shows that it is possible for the outermost component 
and its aggregated component to aggregate a third component 
together. 

6 Simplification by Analysis 
The primary contribution of analysis to our model was not so 
much in what was included but rather what was omitted. We 
started this case study by transcribing the second author’s earlier 
Z model into Alloy; the result appears in the Appendix and is 

almost identical to the original, bar a few simplifications Alloy 
syntax allows. We then simplified the model drastically, using the 
Alloy Analyzer to check the soundness of every step. The final 
model is roughly half the size of the original Z model.  

Incidentally, the analyzer caught two typographical errors that 
slipped through copy editing into the journal version of the Z 
model [16], eg, the substitution of = for ≠. These errors were not 
present in an earlier conference version of the paper. Perhaps the 
typographic nature of Z exacerbates such problems, and suggests 
another reason to prefer ASCII notations. 

It is hard in a paper to communicate the feel of using the Alloy 
Analyzer in fast-cycle interactive design. As our performance 
figures indicate, the analyzer finds instances in seconds, so it can 
be used interactively, adjusting the model and analyzing it in 
small, incremental steps. Moreover, with an automatic checker at 
hand, one tends to be more daring, experimenting with more 
radical changes, in the knowledge that their consequences can be 
immediately checked. In this section, we explain informally what 
kinds of changes we made and how the analyzer supported them. 

We started by noticing that interface types, although dis-
cussed in the earlier paper and present in the model, appeared to 
play no role in the theorems of interest. So we eliminated them 
from the model and ran the theorems again. The theorems failed. 
By studying the counterexamples, we realized that the invariants 
about types had one important implication – that every interface 

//show me doubly nested aggregation   
cond DoubleAggregation {some c | some c.aggregates.aggregates} 

// show me sharing without any aggregation 
cond SharingWithoutAggregation { 
some c, d | (some c.interfaces & d.interfaces) && no 
Component.aggregates 
    } 

// show me a legal component that aggregates two others 
cond AggregateTwo {some c: LegalComponent | not sole c.aggregates} 

// show me an interface that knows more than its own identifiers 
cond KnowsMore {some i | some i.iids_known - i.iids} 

// show me a component whose identity interface is not its first 
cond FirstNotIdentity {some c | c.identity != c.first} 

// are all interfaces of a legal component reachable from one another? 
assert ComponentKnows { 
    all c: LegalComponent | all i, j: c.interfaces | i in j.reaches 
    } 

// are all interfaces reachable from a legal interface legal? 
assert ReachesLegal {all i: LegalInterface | i.reaches in LegalInterface} 

// if interface i reaches interface j, does j reach i? 
assert ReachesSym {all i, j: LegalInterface | i in j.reaches -> j in i.reaches} 

Figure 4: A variety of simple queries 
All conditions are consistent, all assertions are invalid 

 

Analyzing DoubleAggregation ... 
Scopes: Interface(3), IID(3), Component(3) 
Conversion time: 0 seconds 
Solver time: 0 seconds 
Instance found: 
Domains: 
  Component = {C0,C1,C2} 
  IID = {II0,II1,II2} 
  Interface = {In2} 
Sets: 
  LegalComponent = {C2} 
  LegalInterface = {In2} 
Relations: 
  aggregates = {C0 -> {C1}, C2 -> {C0,C1}} 
  ciids = {C0 -> {II2}, C1 -> {II2}, C2 -> {II2}} 
  eq = {C0 -> {C0,C1,C2}, C1 -> {C0,C1,C2}, C2 -> {C0,C1,C2}} 
  first = {C0 -> In2, C1 -> In2, C2 -> In2} 
  identity = {C0 -> In2, C1 -> In2, C2 -> In2} 
  iids = {In2 -> {II2}} 
  iids_known = {In2 -> {II2}} 
  interfaces = {C0 -> {In2}, C1 -> {In2}, C2 -> {In2}} 
  qi = { 
    In2: {II2 -> In2}} 
  reaches = {In2 -> {In2}} 
Skolem constants: 
  $54 = C1 
  Unknown = II2 
  c = C2 

Figure 5: Instance generated for DoubleAggregation (Fig. 4) 
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has at least one identifier – that was now missing. So we added 
this constraint (in the declaration of iids), and moved on. 

We then turned to the special interface identifier called 
IID_Unknown in the original model. We wondered whether this 
notion was really necessary, since it didn’t appear explicitly in 
any theorem. In the discussion of the original Z model, the in-
formal text referred to the existentially quantified variable o in 
the Aggregation invariant as being the IUnknown interface. Was 
this a formal claim, or an assertion about how aggregation is im-
plemented in practice? 

We formulated and checked a theorem to find out, and dis-
covered that such a relationship is not implied. Emboldened by 
this, we took the unknown interface and its special identifier out 
of the state declarations, and made the identifier local to the Iden-
tity invariant. We tried a different version of the invariant in 
which the identifier Unknown can be different for each compo-
nent – that is, we swapped the two outermost quantifiers. The 
theorems involving equality broke; a global identifier for the 
identity interface is necessary. 

The most substantial simplification was to the notion of tran-
sitivity. The original model gave the following invariant 

inv Transitivity { 
   all a, b, c : LegalInterfaces, iidA, iidB, iidC | 
      iidA in a.IIDsOfInterface && 
      iidB.QI[a] = b && 
      iidC.QI[b] = c 
      -> some iidC.QI[a] 
    } 

and its accompanying text explained that ‘…informally, if Query-
Interface can get you from here to there and there to somewhere 
else, it can get you from here to somewhere else’. 

It seemed odd that such a simple intuition should require 
such a complex invariant. So we postulated, in a rather cavalier 
fashion that we could write instead 

inv Transitivity { 
   all i, j, k | j in i.reaches && k in j.reaches -> k in i.reaches 
   } 

and define reaches (as in Figure 1) by saying that an interface i 
reaches an interface j if there is a query of i with some identifier 
that yields j. To check this, we turned both old and new versions 
of the invariant into conditions, and checked the assertion 

assert {Transitivity-Old <-> Transitivity-New} 

It turns out that both directions of the implication are false. The 
informal explanation of the original invariant did not explain 
that the notion of getting from here to there is rather subtle, and 
depends on what you mean by ‘getting’, by ‘here’ and by ‘there’! 
The original invariant does not in fact require that c be reachable 
from a, only that some interface be reachable from a with the 
identifier that b used to obtain c. 

This motivated the definition of the relation iids_known, and 
the new formulation of transitivity: 

inv Transitivity { 
    all i, j : LegalInterface | 
        j in i.reaches -> j.iids_known in i.iids_known 
       } 

which says that if you can reach j from i, then i knows about (that 
is, will yield an interface for) any identifier that j knows about. 
We performed a similar comparison of this new version and the 
original one, and discovered that it is in fact stronger. 

The counterexample in Figure 6 shows why. The new invari-
ant does not require the identifiers of j to yield legal interfaces; 
but the original does by the quantification bound of c. 

 scope of 2 scope of 3 scope of 4 scope of 5 

Space (bits) 36 69 120 195 

Theorem 1 2s 3s 20s 150s 

Theorem 2 2s 3s 40s 609s 

Theorem 3 2s 2s 5s 11s 

Theorem 4a 2s 2s 21s 97s 

Theorem 4b 2s 2s 3s 5s 

Table 1: Analysis times for checking theorems 

 
Analyzing Transitivity-Same ... 
Scopes: Interface(3), IID(3), Component(3) 
Conversion time: 1 seconds 
Solver time: 2 seconds 
Counterexample found: 
Domains: 
  Component = {C1} 
  IID = {II0,II1,II2} 
  Interface = {In0,In1,In2} 
Sets: 
  LegalComponent = {} 
  LegalInterface = {In0,In1} 
Relations: 
  aggregates = {} 
  ciids = {C1 -> {II0,II1,II2}} 
  eq = {C1 -> {C1}} 
  first = {C1 -> In1} 
  identity = {C1 -> In1} 
  iids = {In0 -> {II2}, In1 -> {II1,II2}, In2 -> {II0,II1,II2}} 
  iids_known = {In0 -> {II0,II1,II2}, In1 -> {II1,II2}, In2 -> {II0,II1,II2}} 
  interfaces = {C1 -> {In0,In1,In2}} 
  qi = { 
    In0: {II0 -> In2, II1 -> In1, II2 -> In2} 
    In1: {II1 -> In1, II2 -> In0} 
    In2: {II0 -> In2, II1 -> In1, II2 -> In0}} 
  reaches = {In0 -> {In1,In2}, In1 -> {In0,In1}, In2 -> {In0,In1,In2}} 
Skolem constants: 
  Unknown = II1 
  i = In1 
  j = In0 

Figure 6: Counterexample to assertion of Section 6 
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 We made a number of other uninteresting changes, including 
renamings. The Alloy Analyzer’s type checker caught many slips 
on the way. 

7 Performance 
For most runs of the Alloy Analyzer in the course of this study 
(perhaps a hundred or so in total), an instance was found. This 
never took more than about 10 seconds. For the problems of 
Figure 1, all take less than 4 seconds in a scope of 3. The more 
complicated transitivity check of section 6 took 7 seconds. 
Moreover, in a scope of 2, the analyzer found an instance for 
most of these, and if it did not, completed its search in a couple of 
seconds. So we would usually set the scope to 2, and increase it to 
3 if no instance was found. 

Checking valid theorems is computationally harder, since the 
analyzer must exhaust the space within the specified scope. Nev-
ertheless, the performance is still good. Table 1 shows the timings 
for the theorems of Figure 2 for various scopes. The top line 
shows the number of bits that would be required to encode a 
single configuration, so the last entry says that there are roughly 
2195, or 1060, cases to consider in a scope of 5. Because the Alloy 
Analyzer is based on a SAT solver that uses heuristics, its per-
formance is hard to predict, so some theorems take much longer 
than others. There seems to be a scope for each problem at which 
the analysis falls into the intractability tar-pit, but fortunately this 
scope is large enough to give us some confidence that the theo-
rem at stake is valid. 

All analyses were performed on a Pentium II with a 233MHz 
processor and 192MB of memory. Version 1.1 of the Alloy Ana-
lyzer was used, with symmetry reduction turned on. 

8 Related Work 
Formalizing software architectures is not a new idea. Abowd et al. 
[1] gave a formal semantics to informal architectural diagram 
using Z, and Garlan et al. [6] showed how such models enabled 
efficient development of tools for architectural design. Recently, 
a number of ‘architectural description languages’ have been de-
veloped, some of which (such as AML [18] and Darwin [12]) are 
very similar to Alloy and could be translated into it straightfor-
wardly. 

Although there are now many formalizations of architecture, 
very few have exploited mechanical analysis. Luckham and Vera 
use posets [11] to describe event orderings, and thus address an 
aspect of architecture that is complementary to the structural 
aspect we address here. More closely related is Le Métayer’s 
analysis of evolving configurations graph grammars [10]. This 
framework is more specialized than ours, and while admitting 
proof, does not allow a full range of structural properties to be 
analyzed. Inverardi and Wolf [7] formalized architectures with 
chemical abstract machines, which, like algebras for specifying 
datatypes, are very expressive but likely to be intractable and 
hard to automate. 

An analysis of the High Level Architecture (HLA) framework 
was performed using Damon’s Ladybug tool [4]. The analysis 

was used to find bugs in HLA itself; in this case study we focused 
instead on the refinement of the model. Ladybug, like its prede-
cessor Nitpick, has an input language based on Tarski’s relational 
calculus, which does not include quantifiers, indexed relations or 
object-model-style declarations. An invariant such as Identity 
would have been quite tricky to express. 

There are many general purpose specification languages, such 
as Z and VDM, that are suitable for describing structural proper-
ties of software. These are more powerful than Alloy, but are not 
currently supported by automatic semantic analyses. What dis-
tinguishes Alloy’s analysis is the combination of concreteness (in 
the instances generated) and abstraction (in the implicit nature 
of the specification); existing tools tend to provide animation 
only by requiring that the specification be more program-like. 

Model checkers provide the kind of deep semantic analysis 
that our analyzer provides, but they are designed for state transi-
tion systems, and not for analyzing logical consequence. Their 
input languages, moreover, tend not to support the description 
of structural properties, usually providing only low-level 
datatypes. 

9 Conclusions and Future Work 
In this paper we have presented a case study using Alloy and the 
Alloy Analyzer to refine a model of interface negotation in COM. 
The use of Alloy and its analyzer allowed us to experiment with a 
confidence that manual manipulation would not have engen-
dered, but with a nimbleness incompatible with more heavy-
weight tools, such as theorem provers. We were continually as-
tonished at how hard it turned out to be to preserve the precise 
meaning of the COM specification as we restructured it, and at 
how effective the tool was in revealing subtle changes in meaning. 

Our model illustrates the power of simple first-order logic. 
Conjunction allows properties to be developed and expressed 
incrementally, but can result in unexpected non-local interac-
tions. A tool such as the Alloy Analyzer helps mitigate the risks of 
logical specification, while retaining its benefits. The continual, 
interactive, fully automated feedback produces an emotional 
reward – similar to that provided by running a program – which, 
while easy to dismiss, may be key to making formal modeling 
and analysis attractive to practitioners. 

Our experience with the Alloy Analyzer suggests a number of 
ways in which it might be improved. Graphical display of in-
stances, implemented since our case study, would have been a 
major help. It might also be nice to have a configuration man-
agement system that retains previous versions of models with 
their analysis results, and allows the user to walk around a tree of 
modified models. The deficiences of the Alloy language – princi-
pally lack of arithmetic, a flexible structuring mechanism, and a 
sequence datatype – were not impediments in this particular 
study. 

Since Alloy is a rather pure language with very little domain-
specific baggage, it might make a good intermediate language 
into which architectural description languages are translated. 



  

This is perhaps one route by which our tool and approach could 
be integrated into standard architectural practice. 
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Appendix: Original Model 
The following model is the original translation of the Z model of 
[16] into Alloy. 

 
model COM { 
  domain {Interface, InterfaceType, IID, Component} 
  state { 
    IUnknown : fixed  InterfaceType! 
    IID_IUnknown : fixed IID! 
    IIDOfInterfaceType : InterfaceType! -> IID! 
    InterfaceTypesOf : Interface -> InterfaceType 
    IIDsOfInterface : Interface -> IID 
    QI [Interface] : IID -> Interface? 
    interfaces : Component -> Interface 
    iids : Component -> IID 
    firstInterface, identity : Component -> Interface! 
    eq : Component -> Component 
    LegalInterfaces : Interface 
    LegalComponents : Component 
    Aggregates : Component -> Component 
    } 
 
  inv BasicRels { 
    IUnknown.IIDOfInterfaceType = IID_IUnknown 
    all i | IUnknown in i.InterfaceTypesOf 
    all i | i.IIDsOfInterface =  
           i.InterfaceTypesOf.IIDOfInterfaceType } 
 
  inv ComponentProps { 
    all c | c.firstInterface in c.interfaces 
    all c, d | all i : c.interfaces | d.QI[i] in c.interfaces 
    all c | c.iids = c.interfaces.IIDsOfInterface } 
 
  inv IdentityAxiom { 
    all x, i | i in x.interfaces -> IID_IUnknown.QI[i] = x.identity } 
 
assert InterfaceEquality { 
    all x | x.identity in x.interfaces } 
 

  inv ComponentEquality { 
    all x, y | y in x.eq <-> x.identity = y.identity } 
 
  inv Legality { 
    all i: LegalInterfaces, d: IID | 
           some d.QI[i] -> d in d.QI[i].IIDsOfInterface } 
 
  inv Reflexivity { 
    all a: LegalInterfaces, iidA | iidA in a.IIDsOfInterface  ->  
            some iidA.QI[a] } 
 
  inv Symmetry { 
    all a, b : LegalInterfaces , iidA, iidB | 
      iidA in a.IIDsOfInterface && iidB.QI[a] = b ->  
           some iidA.QI[b] } 
 
inv Transitivity { 
   all a, b, c : LegalInterfaces, iidA, iidB, iidC | 
      iidA in a.IIDsOfInterface && 
      iidB.QI[a] = b && 
      iidC.QI[b] = c 
      -> some iidC.QI[a] } 
 
  inv LegalComponent {     
    all c: LegalComponents | c.interfaces in LegalInterfacesm } 
 
  inv Aggregation { 
    all outer | all inner : outer.Aggregates | 
      some (inner.interfaces & outer.interfaces)  
      && (some o: outer.interfaces | 
                 all i: inner.interfaces - inner.firstInterface | 
                       all d | d.QI[i] = d.QI[o] )) } 
 
assert Theorem1 { 
    all c: LegalComponents, iidA | all i: c.interfaces | 
       some iidA.QI[i] <-> iidA in c.iids } 
 
assert Theorem2 { 
    all outer | all inner : outer.Aggregates | 
        inner in LegalComponents -> inner.iids in outer.iids } 
 
assert Theorem3 { 
    all outer | all inner : outer.Aggregates | 
        inner.identity = outer.identity } 
 
assert Theorem4 { 
    all inner, outer |  
        some (inner.interfaces & outer.interfaces) -> 
          ((inner in LegalComponents -> inner.iids in outer.iids) 
          && inner.identity = outer.identity) } 
} 
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